WO2015104754A1 - 鉛蓄電池 - Google Patents
鉛蓄電池 Download PDFInfo
- Publication number
- WO2015104754A1 WO2015104754A1 PCT/JP2014/006105 JP2014006105W WO2015104754A1 WO 2015104754 A1 WO2015104754 A1 WO 2015104754A1 JP 2014006105 W JP2014006105 W JP 2014006105W WO 2015104754 A1 WO2015104754 A1 WO 2015104754A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lattice
- bone
- upper frame
- frame bone
- electrode plate
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/06—Lead-acid accumulators
- H01M10/12—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/531—Electrode connections inside a battery casing
- H01M50/54—Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges
- H01M50/541—Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges for lead-acid accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/70—Carriers or collectors characterised by shape or form
- H01M4/72—Grids
- H01M4/74—Meshes or woven material; Expanded metal
- H01M4/745—Expanded metal
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/20—Batteries in motive systems, e.g. vehicle, ship, plane
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a lead storage battery.
- connection part As a connection between cells in a lead-acid battery, a connection part is formed on a shelf (strap) that connects the ears of the same polarity electrode plate stored in the cell chamber, and is formed on a different polarity shelf stored in the adjacent cell chamber.
- a method of connecting the connected parts is known.
- Patent Document 1 describes a configuration in which the connection parts are formed at substantially the same height as the shelf. As a result, the distance between the lid of the battery case and the shelf can be reduced compared to the configuration in which the connection parts are formed directly above the shelf, and a higher electrode plate can be accommodated inside the battery case with limited dimensions. Can do.
- a positive electrode grid which is a current collector of a positive electrode plate
- a negative electrode grid which is a current collector of a negative electrode plate
- the present invention has been made in view of such a problem, and the main purpose of the lead storage battery adopting an expanded grid as a positive grid is the occurrence of an internal short circuit caused by the positive grid contacting a negative connection component. It is to provide a highly reliable lead-acid battery that suppresses the occurrence of sudden death.
- a lead storage battery includes a plurality of electrode plate groups in which a positive electrode plate made of a positive electrode active material and a positive electrode lattice, and a negative electrode plate made of a negative electrode active material and a negative electrode lattice are stacked via a separator,
- a battery case having a plurality of cell chambers each storing a group of electrode plates, a shelf connecting ears of electrode plates of the same polarity among the electrode plate groups stored in each cell chamber, and connected to and adjacent to the shelf
- the positive electrode lattice is an expanded lattice in which a mesh-like lattice bone is developed below the upper frame bone, and the connection component is connected to the opposite polarity shelves of the electrode plate group housed in the cell chamber.
- the total area of the upper frame bone on the side in contact with the lattice bone is A
- the lattice bone is the upper frame
- the ratio B / A is 0.34 or more and 0.63 or less Characterized in that there.
- the ratio B / A is 0.41 or more and 0.55 or less.
- the ratio D / C is 0.017 or more and 0.052 or less, where C is the height of the positive grid and D is the height of the upper frame bone in the positive grid.
- the negative electrode lattice is an expanded lattice in which a mesh lattice bone expands under the upper frame bone, and the total area of the upper frame bone on the surface in contact with the lattice bone in the negative electrode lattice is The ratio B ′ / A ′ is not less than 0.34 and not more than 0.63, where B ′ is the total area of A ′ and the lattice bone in contact with the upper frame bone.
- a high lead acid battery can be provided.
- FIG. 3 is a sectional view taken along the line ⁇ - ⁇ ′ in FIG. 2. It is a figure explaining the factor of internal short circuit occurrence.
- FIG. 1 is a diagram schematically showing a configuration of a lead storage battery according to an embodiment of the present invention.
- FIG. 2 is a diagram schematically showing the main part of the positive electrode grid.
- the electrode plate group 1 is configured by laminating a positive electrode plate 1a composed of a positive electrode active material and a positive electrode lattice 8 and a negative electrode plate 1b composed of a negative electrode active material and a negative electrode lattice via a separator 1c.
- the inside of the battery case 2 has a plurality of cell chambers 2a that are partitioned by an intermediate partition plate 2b and each store a plurality of electrode plate groups 1.
- connection parts 4a and 4b are connected to the shelves 3a and 3b to connect shelves of different polarities of the electrode plate group 1 housed in the adjacent cell chambers 2a.
- the positive electrode lattice 8 is an expanded lattice in which a mesh lattice bone 8b is developed under the upper frame bone 8a.
- connection components 4a and 4b are each formed in the direction parallel to the longitudinal direction of the upper frame bone 8a from the side part of the shelf 3a and 3b.
- connection component 4a connected to the positive polarity shelf 3a and the connection component 4b connected to the negative polarity shelf 3b are connected through the partition plate 2b.
- the electrode plate groups 1 accommodated in the plurality of cell chambers 2a are connected in series.
- each electrode plate group 1 In the cell chambers 2a at both ends, different polarity shelves 3a and 3b of each electrode plate group 1 are respectively connected to terminals 6 and 6 formed on the lid 5 of the battery case 2 via pole columns (not shown). It is connected. An electrolytic solution is injected from a liquid port (not shown) provided for each cell chamber 2 a, and the liquid port is sealed with a liquid port plug 7.
- FIG. 3 is a cross-sectional view taken along the line ⁇ - ⁇ ′ in FIG.
- the positive grid 8 has a total area A of the upper frame bone 8a on the side in contact with the grid bone 8b, and a total area of connection points 8c where the grid bone 8b is in contact with the upper frame bone 8a.
- the ratio B / A is 0.34 or more and 0.63 or less, more preferably, the ratio B / A is 0.41 or more and 0.55 or less.
- connection components 4a and 4b are formed in the direction parallel to the longitudinal direction of the upper frame bone 8a from the sides of the shelves 3a and 3b, respectively.
- cover 5 of a battery case and the shelf 3a, 3b can be shortened.
- the design capacity of the lead storage battery can be increased.
- the shelves 3a and 3b and the connecting parts 4a and 4b are substantially the same height. Therefore, the upper frame bone 8a of the positive grid 8 is more likely to come into contact with the negative connection component 4b as compared with the configuration in which the connection components 4a and 4b are connected directly above the shelves 3a and 3a.
- the sudden death of a lead-acid battery due to such an internal short circuit cannot be foreseen by the user of the lead-acid battery, for example, a car driver, so take measures to replace the lead-acid battery before sudden death. I can't take it.
- Such sudden death due to an internal short circuit becomes more prominent when the lead storage battery is used at a high temperature at which the lattice bone 8b is easy to stretch.
- the inventors focused on the area where the lattice bone 8b of the positive electrode lattice 8 is in contact with the upper frame bone 8a in order to suppress the occurrence of sudden death of the lead storage battery due to such an internal short circuit. As a result, by optimizing the area of the connection portion 8c where the lattice bone 8b contacts the upper frame bone 8a in the positive electrode lattice 8, the lattice bone 8b pushes the upper frame bone 8a upward (in the direction of the shelves 3a and 3b). It has been found that stress can be relaxed.
- the total area of the upper frame bone 8a on the side in contact with the lattice bone 8b is A
- the total area of the connection portions 8c where the lattice bone 8b is in contact with the upper frame bone 8a is B.
- this ratio B / A is preferably 0.34 or more and 0.63 or less.
- the ratio D / C when the height of the positive grid 8 is C and the height of the upper frame bone 8a in the positive grid 8 is D, the ratio D / C is 0.017 or more and 0.052 or less. preferable.
- the ratio D / C is less than 0.017, since the upper frame bone 8a is thin, the upper frame bone 8a is easily pushed upward (in the directions of the shelves 3a and 3b), and sudden death due to an internal short circuit occurs. There is a risk.
- the ratio D / C exceeds 0.052 because the upper frame bone 8a is thick, cracks are likely to occur around the intersection of the lattice bone 8b when the expanded lattice is produced. There is a risk that the life characteristics will be reduced by a little progress.
- the lead storage battery adopting the expanded lattice as the positive electrode lattice 8 by optimizing the area of the connection portion 8c where the lattice bone 8b of the positive electrode lattice 8 is in contact with the upper frame bone 8a, The occurrence of an internal short circuit due to the positive grid 8 coming into contact with the negative connection component 4b can be suppressed.
- the corrosion hardly occurs. Therefore, since the volume of the lattice bone does not change, there is very little possibility that the negative electrode lattice contacts with the positive-polarity connection component 4a and an internal short circuit occurs.
- the ratio B ′ / A ′ is preferably 0.34 or more and 0.63 or less.
- the contact area between the lattice bone and the upper frame bone becomes sufficient, so that the current collecting property is improved, and the ratio B ′ / A ′ is 0.63 or less. By doing so, cracks are less likely to occur around the intersection of the lattice bone 8b when the expanded lattice is produced, and both can improve the voltage characteristics of the lead-acid battery.
- the composition of the positive electrode lattice is not particularly limited, but is preferably a lead alloy containing calcium and tin, for example, a lead-calcium-tin alloy.
- the calcium content is preferably in the range of 0.02 to 0.10% by mass
- the tin content is preferably in the range of 1.0 to 2.0% by mass.
- the number of positive and negative electrode plates constituting the electrode plate group is not particularly limited.
- the lead acid battery produced in the present example is a D26L type size specified in JIS D5301, and is a lead acid battery having the configuration shown in FIG.
- each cell chamber 2a seven positive electrode plates 1a and eight negative electrode plates 1b are accommodated as an electrode plate group 1, and the negative electrode plate 1b is accommodated in a bag-like polyethylene separator 1c.
- Each ear of the seven positive electrode plates 1a housed in the cell chamber 2a is connected by a shelf 3a, and each ear of the eight negative electrode plates 1b is connected by a shelf 3b.
- the connecting component 4a is connected to the shelf 3a at substantially the same height, and the connecting component 4b is connected to the shelf 3b at approximately the same height.
- the connection components 4a and 4b accommodated in the adjacent cell chambers 2a are connected through the partition plate 2b.
- both the positive grid 8 and the negative grid use an expanded grid.
- the positive electrode plate 1a was prepared by mixing a lead oxide powder with sulfuric acid and purified water to prepare a paste, and filling the positive electrode lattice 8 made of a Pb—Ca—Sn alloy with the paste.
- the negative electrode plate 1b is prepared by adding an organic additive to lead oxide powder, kneading with sulfuric acid and purified water to prepare a paste, and filling this into a negative electrode lattice made of a Pb—Ca—Sn alloy. Produced.
- the negative electrode plate 1b is accommodated in a polyethylene bag-like separator 1c, and alternately stacked with the positive electrode plates 1a, and the seven positive electrode plates 1a and the eight negative electrode plates are stacked.
- the electrode plate group 1 in which 1b was laminated via the separator 1c was produced.
- This electrode plate group 1 was accommodated in cell chambers 2a partitioned into six, and six cells were directly connected. Further, an electrolytic solution made of dilute sulfuric acid having a density of 1.28 g / cm 3 was added to perform chemical conversion to obtain a lead storage battery.
- the batteries A-1 to A-7 and B-1 to B-7 in which the area of the connection portion 8c where the lattice bone 8b is in contact with the upper frame bone 8a are changed are used.
- the number of contacts in which the lattice bone 8b is in contact with the upper frame bone 8a is 13
- the batteries B-1 to B-7 the lattice bone 8b is the upper frame bone 8a.
- the positive electrode grid 8 having 9 contacts in contact with was used. Therefore, the lattice bone 8b of the batteries A-1 to A-7 is thinner than the lattice bone 8b of the batteries B-1 to B-7.
- the height C of the positive grid 8 was 115 mm
- the total area A of the upper frame bone 8a was 178.8 mm2
- the height D of the upper frame bone 8a was 4.0 mm.
- Table 1 also shows the total area (contact area ⁇ number of contacts) B where the lattice bone 8b is in contact with the upper frame bone 8a, and the total area A of the upper frame bone 8a and the total area B of the lattice bone 8b.
- the ratio B / A is also shown.
- the lead storage battery immediately after the formation was placed in a constant temperature room at 75 ° C., and charging and discharging were performed repeatedly with constant current discharge (25 A, 120 seconds) and constant voltage charge (14.8 V, 600 seconds) as one cycle.
- This charging / discharging was allowed to stand for 56 hours every 480 cycles, and then discharged at a rated cold cranking current (490 A) for 30 seconds to obtain a voltage at 30 seconds.
- the time when this voltage became 7.2 V or less was judged to have reached the end of life, and the number of cycles until reaching the end of life was measured.
- the battery A-1 having a ratio B / A of 0.27 is The number of cycles that reached the end of its life was very low. This is because the lattice bone 8b relieves the stress that pushes the upper frame bone 8a upward (in the direction of the shelves 3a and 3b) because the total area of the connecting portions 8c where the lattice bone 8b contacts the upper frame bone 8a is small. This is probably because the upper frame bone 8a pushed up and in contact with the negative connection component 4b caused an internal short circuit.
- the battery A-7 having a ratio B / A of 0.70 also had a very low number of cycles that reached the end of its life. This is probably because cracks are likely to occur around the intersection of the lattice bones 8b when the expanded lattice is produced, and as a result, corrosion progresses excessively, resulting in a significant decrease in life characteristics.
- the batteries A-2 to A-6 having a ratio B / A of 0.34 to 0.63 had remarkably superior life characteristics as compared with the batteries A-1 and A-7.
- the total area A of the upper frame bone 8a and the lattice The ratio B / A to the total sum B of the areas where the bone 8b is in contact with the upper frame bone 8a is preferably 0.34 or more and 0.63 or less.
- the life characteristics can be further improved by setting the ratio B / A to 0.41 or more and 0.55 or less.
- the batteries B-1 to B-7 in which the relatively thick grid bone 8b is connected to the upper frame bone 8a as the positive grid 8 are substantially the same as the batteries A-1 to A-7. Results were obtained. For this reason, the effect of suppressing the occurrence of an internal short circuit due to the positive grid 8 coming into contact with the negative connection component 4b is not limited to the thickness of each grid bone 8b, and the grid bone 8b. It is understood that is restricted by the sum B of the area of the connection portion 8c in contact with the upper frame bone 8a.
- batteries C-1 to C-4 in which the height D of the upper frame 8a of the positive electrode lattice 8 was changed were produced.
- the height C of the positive electrode lattice 8 and the positive electrode lattice is preferably 0.017 or more and 0.052 or less.
- batteries A-1 to A-7 and B-1 to B-7 were manufactured in which the area of the connection portion 8c where the lattice bone 8b was in contact with the upper frame bone 8a was changed.
- the positive electrode lattice 8 was produced under the same conditions as the battery A-4.
- the lead storage battery was placed in a thermostatic chamber at ⁇ 15 ° C., discharged at 300 A for 30 seconds, and the voltage after 30 seconds was measured.
- the ratio B ′ / A ′ between the total area A ′ of the upper frame bone of the negative electrode lattice 4 and the total sum B ′ of the area where the lattice bone is in contact with the upper frame bone is 0.34 or more.
- the ratio B ′ / A ′ is set to 0.34 or more, the contact area between the lattice bone and the upper frame bone is sufficient, so that the current collecting property is improved, and the ratio B ′ / A ′ is set to 0. .63 or less is considered to be because cracks are less likely to occur around the intersection of the lattice bone 8b when the expanded lattice is produced.
- Table 4 shows battery A-4 in which connecting parts 4a and 4b are formed in the direction parallel to the longitudinal direction of the upper frame bone 8a from the sides of the shelves 3a and 3b, and connecting parts 4a and 4b.
- 3 is a table showing results of comparison of life characteristics with a battery E-1 formed immediately above 3a and 3b.
- the configuration of the positive electrode grid 8 of the battery E-1 was the same as that of the battery A-4 except for the configuration of the connection parts 4a and 4b.
- connection components 4a and 4b are formed immediately above the shelves 3a and 3b, the positive grid 8 comes into contact with the negative connection component 4b. There was no occurrence of an internal short circuit, and the same life characteristics as battery A-4 were obtained.
- the connection parts 4a and 4b are formed immediately above the shelves 3a and 3b, the height of the electrode plate group, that is, the height of the positive grid 8 is higher than that of the battery A-4. Since the thickness C had to be lowered by 10 mm, the design capacity was reduced by 6 Ah (a reduction rate of 10%), which is not suitable for increasing the capacity.
- the present invention is useful for a lead-acid battery using an expanded lattice as a positive electrode lattice.
- Electrode plate group 1a Positive electrode plate 1b Negative electrode plate 1c Separator 2 Battery case 2a Cell chamber 2b Middle partition plate 3a, 3b Shelf 4a, 4b Connection component 5 Lid 6 Terminal 7 Liquid plug 8 Positive electrode lattice 8a Upper frame bone 8b Lattice bone 8c Connection location
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Cell Electrode Carriers And Collectors (AREA)
- Secondary Cells (AREA)
- Connection Of Batteries Or Terminals (AREA)
Abstract
本発明に係る鉛蓄電池は、複数の極板群1を収納する複数のセル室2aを有する電槽2、各セル室に収納された極板群のうち、同一極性の極板の耳を連結する棚3a、3b、及び、棚に接続され、極板群の異極性の棚どうしを接続する接続部品4a、4bを備え、正極格子8は、上枠骨8aの下に網目状の格子骨8bが展開されたエキスパンド格子からなり、接続部品は、棚の側部から、上枠骨の長手方向と平行な方向に形成されており、格子骨と接する側の面の上枠骨の総面積をA、格子骨が上枠骨と接している面積の総和をBとしたときに、比B/Aが0.34以上、0.63以下である。
Description
本発明は、鉛蓄電池に関する。
鉛蓄電池におけるセル間接続として、セル室に収納された同一極性の極板の耳を接続する棚(ストラップ)に接続部品を形成し、隣り合うセル室に収納された異極性の棚に形成された接続部品どうしを接続する方法が知られている。
特許文献1には、この接続部品を、棚と概ね同一の高さに形成する構成が記載されている。これにより、接続部品を棚の直上に形成する構成と比べて、電槽の蓋と棚との距離を近づけることができ、限られた寸法の電槽内部に、より高い極板を収納することができる。
近年、鉛蓄電池を軽量化する目的で、正極板の集電体である正極格子や、負極板の集電体である負極格子を、従来の鋳造方法で作製した格子(鋳造格子)から、エキスパンド工法で作製した格子(エキスパンド格子)へと切り替える動きが進んできている。
しかしながら、特許文献1に記載されたような、接続部品を棚と略同一の高さに形成する構成を採用した場合、正極格子を鋳造格子からエキスパンド格子に切り替えると、正極格子が負極性の接続部品に接触することによって、内部短絡が発生するという問題が生じた。この場合、鉛蓄電池を使用中に、突然、その機能を失うという不具合(以降、突然死と呼ぶ)を生じる。
本発明は、かかる課題に鑑みなされたもので、その主な目的は、正極格子にエキスパンド格子を採用した鉛蓄電池において、正極格子が負極性の接続部品に接触することに起因する内部短絡の発生を抑制し、突然死が起こらない、信頼性の高い鉛蓄電池を提供することにある。
本発明に係る鉛蓄電池は、正極活物質と正極格子とからなる正極板と、負極活物質と負極格子とからなる負極板とを、セパレータを介して積層した複数の極板群と、複数の極板群をそれぞれ収納する複数のセル室を有する電槽と、各セル室に収納された極板群のうち、同一極性の極板の耳を連結する棚と、棚に接続され、隣り合うセル室に収納された極板群の異極性の棚どうしを接続する接続部品とを備え、正極格子は、上枠骨の下に網目状の格子骨が展開されたエキスパンド格子からなり、接続部品は、棚の側部から、上枠骨の長手方向と平行な方向に形成されており、正極格子において、格子骨と接する側の面の上枠骨の総面積をA、格子骨が上枠骨と接している面積の総和をBとしたときに、比B/Aが0.34以上、0.63以下であることを特徴とする。
ある好適な実施形態において、比B/Aが0.41以上、0.55以下である。
ある好適な実施形態において、正極格子の高さをC、正極格子における上枠骨の高さをDとしたときに、比D/Cが0.017以上、0.052以下である。
ある好適な実施形態において、負極格子は、上枠骨の下に網目状の格子骨が展開するエキスパンド格子であって、負極格子において、格子骨と接する側の面の上枠骨の総面積をA’、格子骨が上枠骨と接している面積の総和をB’としたときに、比B’/A’が0.34以上、0.63以下である。
本発明によれば、正極格子にエキスパンド格子を採用した鉛蓄電池において、正極格子が負極性の接続部品に接触することに起因する内部短絡の発生を抑制し、突然死が起こらない、信頼性の高い鉛蓄電池を提供することができる。
以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではない。また、本発明の効果を奏する範囲を逸脱しない範囲で、適宜変更は可能である。
図1は、本発明の一実施形態における鉛蓄電池の構成を模式的に示した図である。また、図2は、正極格子の要部を模式的に示した図である。
極板群1は、正極活物質と正極格子8とからなる正極板1aと、負極活物質と負極格子とからなる負極板1bとを、セパレータ1cを介して積層して構成される。電槽2の内部は、中仕切板2bで区切られ、複数の極板群1をそれぞれ収納する複数のセル室2aを有している。
セル室2aに収納された極板群1において、複数の正極板1aの耳部は、棚(ストラップ)3aで接続されており、複数の負極板1bの耳部は、棚(ストラップ)3bで接続されている。棚3aおよび3bには、隣り合うセル室2aに収納された極板群1の異極性の棚どうしを接続する接続部品4a、4bが、それぞれ接続されている。
正極格子8は、図2に示すように、上枠骨8aの下に網目状の格子骨8bが展開されたエキスパンド格子からなる。そして、接続部品4a、4bは、それぞれ、棚3a、3bの側部から、上枠骨8aの長手方向と平行な方向に形成されている。
隣り合うセル室2aにおいて、正極性の棚3aと接続している接続部品4aと、負極性の棚3bと接続している接続部品4bとは、中仕切板2bを貫通して接続されており、これにより、複数のセル室2aに収容された各極板群1は、直列接続されている。
両端のセル室2aにおいて、各極板群1の異極性の棚3a及び3bは、それぞれ、極柱(図示せず)を介して、電槽2の蓋5に形成された端子6、6に接続されている。セル室2a毎に設けた液口(図示せず)から電解液が注入され、液口は液口栓7で封口されている。
図3は、図2におけるα-α‘線に沿った断面図で、格子骨8bと接する側の上枠骨8aの面を、矢印方向から見たものである。
本実施形態において、正極格子8は、格子骨8bと接する側の面の上枠骨8aの総面積をA、格子骨8bが上枠骨8aと接している接続箇所8cの面積の総和をBとしたときに、比B/Aが0.34以上、0.63以下、より好ましくは、比B/Aが0.41以上、0.55以下であることを特徴とする。
図1に示すように、接続部品4a、4bは、それぞれ、棚3a、3bの側部から、上枠骨8aの長手方向と平行な方向に形成されている。これにより、接続部品4a、4bを、棚3a、3bの直上に形成する構成と比べて、電槽の蓋5と棚3a、3bとの距離を近づけることができる。その結果、限られた寸法の電槽内部に、より高い極板を収納することができるため、鉛蓄電池の設計容量を大きくすることができる。
しかしながら、このようなセル間接続の構成を採用した場合、正極格子8を軽量化が可能なエキスパンド格子にした場合、図4に示すように、格子骨8bが伸びようとする応力によって、上枠骨8aが上方(棚3a、3bの方向)に押し上げられる。これにより、上方に押し上げられた正極格子8の上枠骨8aは、負極性の接続部品4bと接触することによって、内部短絡が発生する。
本実施形態のように、接続部品4a、4bを、棚3a、3bの側部から、上枠骨8aの長手方向と平行な方向に形成した場合、棚3a、3bと接続部品4a、4bとは、略同一の高さになる。そのため、棚3a、3aの真上に接続部品4a、4bを接続した構成と比べて、正極格子8の上枠骨8aは、負極性の接続部品4bと接触しやすくいなる。このような内部短絡に起因する鉛蓄電池の突然死は、鉛蓄電池の使用者、例えば、自動車のドライバーは、予見することができないため、突然死する前に、鉛蓄電池を交換するような対応を取ることができない。このような内部短絡に起因する突然死は、格子骨8bが伸びやすい高温下で鉛蓄電池を使用した場合に、より顕著になる。
発明者らは、このような内部短絡に起因する鉛蓄電池の突然死の発生を抑制するために、正極格子8の格子骨8bが上枠骨8aと接している面積に着目した。その結果、正極格子8において、格子骨8bが上枠骨8aに接する接続箇所8cの面積を最適化することによって、格子骨8bが上枠骨8aを上方(棚3a、3bの方向)に押し上げる応力を緩和することができることを見出した。具体的には、正極格子8において、格子骨8bと接する側の面の上枠骨8aの総面積をA、格子骨8bが上枠骨8aと接している接続箇所8cの面積の総和をBとしたときに、比B/Aを0.34以上にすることによって、上枠骨8aと格子骨8bとが一体の構造物に近づくことで、格子骨8bが上枠骨8aを棚3a、3bの方向に押し上げる応力を緩和できることを見出した。
ただし、この比B/Aが0.63を超えると、エキスパンド格子を作製する際に、格子骨8bの交点を中心にクラックが発生しやすくなり、その結果、腐食が過剰に進むことで、寿命特性が顕著に低下する問題が生じる。従って、この比B/Aは、0.34以上、0.63以下とすることが好ましい。
本実施形態において、正極格子8の高さをC、正極格子8における上枠骨8aの高さをDとしたときに、比D/Cが0.017以上、0.052以下であることが好ましい。比D/Cが0.017未満の場合、上枠骨8aが細いために、上枠骨8aが上方(棚3a、3bの方向)に押し上げられやすくなり、内部短絡に起因する突然死が発生するおそれがある。一方、比D/Cが0.052を超える場合、上枠骨8aが太いために、エキスパンド格子を作製する際に、格子骨8bの交点を中心にクラックが発生しやすくなり、その結果、腐食が少し進むことで寿命特性が低下するおそれがある。
以上、説明したように、本発明では、正極格子8にエキスパンド格子を採用した鉛蓄電池において、正極格子8の格子骨8bが上枠骨8aに接する接続箇所8cの面積を最適化することによって、正極格子8が負極性の接続部品4bに接触することに起因する内部短絡の発生を抑制することができる。
一方、負極格子にエキスパンド格子を採用した場合には、正極格子8にエキスパンド格子を採用した場合と異なり、腐食がほとんど起こらない。そのため、格子骨の体積が変化しないので、負極格子が正極性の接続部品4aに接触して、内部短絡が発生するおそれは非常に小さい。
ところで、負極格子にエキスパンド格子を採用した場合、鉛蓄電池の電圧特性の観点で、負極格子の格子骨が上枠骨に接する接続箇所の面積を最適化することが好ましい。すなわち、格子骨と接する側の面の上枠骨の総面積をA’、格子骨が上枠骨と接している面積の総和をB’としたときに(図3参照)、比B’/A’が0.34以上、0.63以下であることが好ましい。比B’/A’を0.34以上とすることで、格子骨と上枠骨との接触面積が十分になるので集電性が高まり、また、比B’/A’を0.63以下とすることで、エキスパンド格子を作製する際に格子骨8bの交点を中心にクラックが発生しにくくなり、ともに、鉛蓄電池の電圧特性を向上することができる。
本発明において、正極格子の組成は特に限定されないが、カルシウムとスズとを含む鉛合金、例えば、鉛-カルシウム-スズ合金であることが好ましい。ここで、カルシウムの含有量は、0.02~0.10質量%の範囲が好ましく、スズの含有量は、1.0~2.0質量%の範囲が好ましい。
また、本発明において、極板群を構成する正極板及び負極板の数は、特に制限されない。
以下、本発明の実施例を挙げて本発明の構成及び効果をさらに説明するが、本発明はこれら実施例に限定されるものではない。
(1)鉛蓄電池の作製
本実施例で作製した鉛蓄電池は、JISD5301に規定するD26Lタイプの大きさで、図1に示した構成の鉛蓄電池である。
本実施例で作製した鉛蓄電池は、JISD5301に規定するD26Lタイプの大きさで、図1に示した構成の鉛蓄電池である。
各セル室2aには、極板群1として、7枚の正極板1aと8枚の負極板1bとが収容され、負極板1bは、袋状のポリエチレン製のセパレータ1cに収容されている。セル室2aに収納された7枚の正極板1aの各耳は棚3aで接続され、8枚の負極板1bの各耳は棚3bで接続されている。棚3aには略同一の高さで接続部品4aが接続されており、棚3bには略同一の高さで接続部品4bが接続されている。隣り合うセル室2aに収納された接続部品4aと4bとは、中仕切板2bを貫通して接続されている。
本実施例では、正極格子8も負極格子も、エキスパンド格子を用いている。
正極板1aは、酸化鉛粉を硫酸と精製水とで混練してペーストを作製し、Pb-Ca-Sn合金からなる正極格子8にこれを充填して作製した。負極板1bは、酸化鉛粉に対し、有機添加剤等を添加して、硫酸と精製水とで混練してペーストを作成し、Pb-Ca-Sn合金からなる負極格子にこれを充填して作製した。
作製した正極板1a及び負極板1bを熟成乾燥した後、負極板1bをポリエチレンの袋状のセパレータ1cに収容し、正極板1aと交互に重ね、7枚の正極板1aと8枚の負極板1bとがセパレータ1cを介して積層された極板群1を作製した。この極板群1を、6つに仕切られたセル室2aにそれぞれ収容し、6つのセルを直接接続した。さらに、密度が1.28g/cm3の希硫酸からなる電解液を入れて化成を行い、鉛蓄電池を得た。
本実施例では、表1に示すように、格子骨8bが上枠骨8aと接している接続箇所8cの面積を変えた電池A-1~A-7、及びB-1~B-7を作製した。ここで、電池A-1~A-7は、格子骨8bが上枠骨8aと接している接触本数が13本で、電池B-1~B-7は、格子骨8bが上枠骨8aと接している接触本数が9本の正極格子8を用いた。そのため、電池A-1~A-7の格子骨8bは、電池B-1~B-7の格子骨8bよりも細くなっている。また、正極格子8の高さCは、115mm、上枠骨8aの総面積Aは、178.8mm2、上枠骨8aの高さDは、4.0mmとした。
また、表1には、格子骨8bが上枠骨8aと接している面積の総和(接触面積×接触本数)B、及び、上枠骨8aの総面積Aと格子骨8bの面積総和Bとの比B/Aも示している。
(2)寿命特性
作製した鉛蓄電池に対して、以下の方法で寿命特性を評価した。
作製した鉛蓄電池に対して、以下の方法で寿命特性を評価した。
化成直後の鉛蓄電池を、75℃の恒温室に置き、定電流放電(25A、120秒)と、定電圧充電(14.8V、600秒)を1サイクルとして、繰り返し充放電を行った。この充放電を、480サイクルごとに56時間放置した後、定格コールドクランキング電流(490A)で30秒間放電を行い、30秒目の電圧を求めた。この電圧が7.2V以下になった時点を寿命に達したと判断し、寿命に達するまでのサイクル数を測定した。
表1に示すように、正極格子8として、比較的細い格子骨8bを上枠骨8aに接続した電池A-1~A-7において、比B/Aが0.27の電池A-1は、寿命に至ったサイクル数が非常に低かった。これは、格子骨8bが上枠骨8aに接する接続箇所8cの面積総和が小さいために、格子骨8bが上枠骨8aを上方(棚3a、3bの方向)に押し上げる応力を緩和することができず、上方に押し上げられた上枠骨8aが、負極性の接続部品4bと接触して、内部短絡を引き起こしたためと考えられる。
また、比B/Aが0.70の電池A-7も、寿命に至ったサイクル数が非常に低かった。これは、エキスパンド格子を作製する際に、格子骨8bの交点を中心にクラックが発生しやすくなり、その結果、腐食が過剰に進むことで、寿命特性が顕著に低下したためと考えられる。
一方、比B/Aが0.34~0.63の電池A-2~A-6では、電池A-1、A-7に比べて、寿命特性が格段に優れていた。
以上の結果から、正極格子8が負極性の接続部品4bに接触することに起因する内部短絡の発生を抑制する、正極格子8の最適な構成として、上枠骨8aの総面積Aと、格子骨8bが上枠骨8aと接している面積の総和Bとの比B/Aを、0.34以上、0.63以下にすることが好ましい。なお、表1に示すように、比B/Aを、0.41以上、0.55以下にすることによって、より寿命特性を向上させることができる。
また、表1に示すように、正極格子8として、比較的太い格子骨8bを上枠骨8aに接続した電池B-1~B-7においても、電池A-1~A-7とほぼ同様の結果が得られた。このことから、正極格子8が負極性の接続部品4bに接触することに起因する内部短絡の発生を抑制する効果は、格子骨8bの一本一本の太さに規制されず、格子骨8bが上枠骨8aと接している接続箇所8cの面積の総和Bに規制されることが分かる。
次に、表2に示すように、正極格子8の上枠骨8aの高さDを変えた電池C-1~C-4を作製した。なお、このとき、上枠骨8aの総面積Aと、格子骨8bが上枠骨8aと接している面積の総和Bとの比B/Aは、電池A-4の条件(B/A=0.48)とした。
表2に示すように、正極格子8の高さCと、上枠骨8aの高さDとの比D/Cが0.013の電池C-1では、電池C-2~C-3(0.017≦D/C≦0.052)に比べて、寿命に至ったサイクル数が、若干低下していた。これは、上枠骨8aが細いために、上枠骨8aが上方(棚3a、3bの方向)に押し上げられやすくなり、最終的に、正極格子8が負極性の接続部品4bに接触して内部短絡が発生することにより、寿命特性が低下したものと考えられる。また、比D/Cが0.057の電池C-4でも、電池C-2~C-3に比べて、寿命に至ったサイクル数が、若干低下していた。これは、上枠骨8aが太いために、エキスパンド格子を作製する際に、格子骨8bの交点を中心にクラックが発生しやすくなり、その結果、腐食が少し進むことで寿命特性が低下したためと考えられる。
以上の結果から、正極格子8が負極性の接続部品4bに接触することに起因する内部短絡の発生を抑制する、正極格子8の最適な構成として、正極格子8の高さCと、正極格子8の上枠骨8aの高さDとの比D/Cを、0.017以上、0.052以下にすることが好ましい。
次に、表3に示すように、格子骨8bが上枠骨8aと接している接続箇所8cの面積を変えた電池A-1~A-7、及びB-1~B-7を作製した。ここで、正極格子8は、電池A-4と同じ条件で作製した。
(3)電圧特性
作製した鉛蓄電池に対して、以下の方法で電圧特性を評価した。
作製した鉛蓄電池に対して、以下の方法で電圧特性を評価した。
鉛蓄電池を、-15℃の恒温室に置き、300Aで30秒の放電を行い、30秒後の電圧を測定した。
表3に示すように、負極格子4の上枠骨の総面積A’と、格子骨が上枠骨と接している面積の総和B’との比B’/A’が、0.34以上、0.63以下の電池D-2~D-3では、電圧特性が、電池D-1(比B’/A’=0.27)、電池D-4(比B’/A’=0.70)に比べて、電圧特性が優れていた。これは、比B’/A’を0.34以上とすることで、格子骨と上枠骨との接触面積が十分になるので集電性が高まり、また、比B’/A’を0.63以下とすることで、エキスパンド格子を作製する際に格子骨8bの交点を中心にクラックが発生しにくくなったためと考えられる。
表4は、接続部品4a、4bを、それぞれ、棚3a、3bの側部から、上枠骨8aの長手方向と平行な方向に形成した電池A-4と、接続部品4a、4bを、棚3a、3bの直上に形成した電池E-1との、寿命特性の比較を行った結果を示した表である。なお、電池E-1の正極格子8の構成は、接続部品4a、4bの構成以外、電池A-4と同じにした。
表4に示すように、電池E-1は、接続部品4a、4bが、棚3a、3bの直上に形成されているため、正極格子8が負極性の接続部品4bに接触することに起因する内部短絡の発生をなく、電池A-4と同じ寿命特性が得られた。しかしながら、電池E-1は、接続部品4a、4bが、棚3a、3bの直上に形成されているため、電池A-4に比べて、極板群の高さ、すなわち、正極格子8の高さCを10mm低くせざるを得なかったため、設計容量が6Ah低下(低下率として10%)し、高容量化には適さない。
以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、もちろん、種々の改変が可能である。
本発明は、正極格子としてエキスパンド格子を用いた鉛蓄電池に有用である。
1 極板群
1a 正極板
1b 負極板
1c セパレータ
2 電槽
2a セル室
2b 中仕切板
3a、3b 棚
4a、4b 接続部品
5 蓋
6 端子
7 液口栓
8 正極格子
8a 上枠骨
8b 格子骨
8c 接続箇所
1a 正極板
1b 負極板
1c セパレータ
2 電槽
2a セル室
2b 中仕切板
3a、3b 棚
4a、4b 接続部品
5 蓋
6 端子
7 液口栓
8 正極格子
8a 上枠骨
8b 格子骨
8c 接続箇所
Claims (4)
- 正極活物質と正極格子とからなる正極板と、負極活物質と負極格子とからなる負極板とを、セパレータを介して積層した複数の極板群と、
前記複数の極板群をそれぞれ収納する複数のセル室を有する電槽と、
各セル室に収納された極板群のうち、同一極性の極板の耳を連結する棚と、
前記棚に接続され、隣り合うセル室に収納された極板群の異極性の棚どうしを接続する接続部品と、
を備えた鉛蓄電池であって、
前記正極格子は、上枠骨の下に網目状の格子骨が展開されたエキスパンド格子からなり、
前記接続部品は、前記棚の側部から、前記上枠骨の長手方向と平行な方向に形成されており、
前記正極格子において、前記格子骨と接する側の面の前記上枠骨の総面積をA、前記格子骨が前記上枠骨と接している面積の総和をBとしたときに、比B/Aが0.34以上、0.63以下であることを特徴とする、鉛蓄電池。 - 比B/Aが0.41以上、0.55以下であることを特徴とする、請求項1に記載の鉛蓄電池。
- 前記正極格子の高さをC、前記正極格子の前記上枠骨の高さをDとしたときに、比D/Cが0.017以上、0.052以下であることを特徴とする、請求項1または2に記載の鉛蓄電池。
- 前記負極格子は、上枠骨の下に網目状の格子骨が展開するエキスパンド格子からなり、
前記負極格子において、前記格子骨と接する側の面の前記上枠骨の総面積をA’、前記格子骨が前記上枠骨と接している面積の総和をB’としたときに、比B’/A’が0.34以上、0.63以下であることを特徴とする、請求項1に記載の鉛蓄電池。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015517515A JP5866510B2 (ja) | 2014-01-08 | 2014-12-05 | 鉛蓄電池 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-001324 | 2014-01-08 | ||
JP2014001324 | 2014-01-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015104754A1 true WO2015104754A1 (ja) | 2015-07-16 |
Family
ID=53523613
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/006105 WO2015104754A1 (ja) | 2014-01-08 | 2014-12-05 | 鉛蓄電池 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5866510B2 (ja) |
WO (1) | WO2015104754A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5582767U (ja) * | 1978-12-04 | 1980-06-07 | ||
JP2001006686A (ja) * | 1999-06-18 | 2001-01-12 | Matsushita Electric Ind Co Ltd | 鉛蓄電池 |
JP2001307742A (ja) * | 2000-04-24 | 2001-11-02 | Matsushita Electric Ind Co Ltd | 鉛蓄電池 |
JP2002222662A (ja) * | 2001-01-26 | 2002-08-09 | Matsushita Electric Ind Co Ltd | 鉛蓄電池 |
JP2003163008A (ja) * | 2001-11-26 | 2003-06-06 | Japan Storage Battery Co Ltd | 鉛蓄電池 |
JP2004119106A (ja) * | 2002-09-25 | 2004-04-15 | Matsushita Electric Ind Co Ltd | 制御弁式鉛蓄電池 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1079253A (ja) * | 1996-09-03 | 1998-03-24 | Matsushita Electric Ind Co Ltd | 鉛蓄電池 |
JP2001266835A (ja) * | 2000-03-17 | 2001-09-28 | Yuasa Corp | 鉛電池のセル間接続構造 |
JP5050564B2 (ja) * | 2007-02-27 | 2012-10-17 | 新神戸電機株式会社 | 鉛蓄電池の正極又は負極用集電体及びその製造方法、並びに、鉛蓄電池及びその製造方法 |
JP5088666B2 (ja) * | 2007-02-28 | 2012-12-05 | 新神戸電機株式会社 | 鉛蓄電池、鉛蓄電池の集電体及びその製造方法 |
-
2014
- 2014-12-05 WO PCT/JP2014/006105 patent/WO2015104754A1/ja active Application Filing
- 2014-12-05 JP JP2015517515A patent/JP5866510B2/ja active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5582767U (ja) * | 1978-12-04 | 1980-06-07 | ||
JP2001006686A (ja) * | 1999-06-18 | 2001-01-12 | Matsushita Electric Ind Co Ltd | 鉛蓄電池 |
JP2001307742A (ja) * | 2000-04-24 | 2001-11-02 | Matsushita Electric Ind Co Ltd | 鉛蓄電池 |
JP2002222662A (ja) * | 2001-01-26 | 2002-08-09 | Matsushita Electric Ind Co Ltd | 鉛蓄電池 |
JP2003163008A (ja) * | 2001-11-26 | 2003-06-06 | Japan Storage Battery Co Ltd | 鉛蓄電池 |
JP2004119106A (ja) * | 2002-09-25 | 2004-04-15 | Matsushita Electric Ind Co Ltd | 制御弁式鉛蓄電池 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015104754A1 (ja) | 2017-03-23 |
JP5866510B2 (ja) | 2016-02-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014162674A1 (ja) | 鉛蓄電池 | |
JPWO2005093890A1 (ja) | 鉛蓄電池および鉛蓄電池の保管方法 | |
JP6045329B2 (ja) | 鉛蓄電池 | |
JP4501330B2 (ja) | 鉛蓄電池 | |
JP6043734B2 (ja) | 鉛蓄電池 | |
JP6844610B2 (ja) | 鉛蓄電池 | |
JP2010170939A (ja) | 鉛蓄電池 | |
JP5168893B2 (ja) | 鉛蓄電池 | |
JP6398111B2 (ja) | 鉛蓄電池 | |
JP5866510B2 (ja) | 鉛蓄電池 | |
WO2014097516A1 (ja) | 鉛蓄電池 | |
JP5861077B2 (ja) | 鉛蓄電池 | |
JP2012138331A (ja) | 鉛蓄電池及びアイドリングストップ車 | |
JP6318852B2 (ja) | 鉛蓄電池 | |
JP6197426B2 (ja) | 鉛蓄電池 | |
WO2015159478A1 (ja) | 鉛蓄電池 | |
JP4896392B2 (ja) | 鉛蓄電池 | |
JP6175930B2 (ja) | 鉛蓄電池 | |
JP6071116B2 (ja) | 鉛蓄電池 | |
JP2006114416A (ja) | 鉛蓄電池 | |
JP5504383B1 (ja) | 鉛蓄電池 | |
JP5866702B2 (ja) | 鉛蓄電池 | |
JP5375049B2 (ja) | 鉛蓄電池 | |
JP2005044761A (ja) | 鉛蓄電池用格子基板およびそれを用いた鉛蓄電池 | |
JP2016081736A (ja) | 鉛蓄電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2015517515 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14877772 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14877772 Country of ref document: EP Kind code of ref document: A1 |