WO2015103910A1 - 薄膜支撑梁的制作方法 - Google Patents

薄膜支撑梁的制作方法 Download PDF

Info

Publication number
WO2015103910A1
WO2015103910A1 PCT/CN2014/093054 CN2014093054W WO2015103910A1 WO 2015103910 A1 WO2015103910 A1 WO 2015103910A1 CN 2014093054 W CN2014093054 W CN 2014093054W WO 2015103910 A1 WO2015103910 A1 WO 2015103910A1
Authority
WO
WIPO (PCT)
Prior art keywords
support beam
metal film
pattern
final
layer
Prior art date
Application number
PCT/CN2014/093054
Other languages
English (en)
French (fr)
Inventor
荆二荣
Original Assignee
无锡华润上华半导体有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡华润上华半导体有限公司 filed Critical 无锡华润上华半导体有限公司
Priority to US15/023,057 priority Critical patent/US9862595B2/en
Publication of WO2015103910A1 publication Critical patent/WO2015103910A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00134Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems comprising flexible or deformable structures
    • B81C1/00142Bridges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0102Surface micromachining
    • B81C2201/0105Sacrificial layer
    • B81C2201/0108Sacrificial polymer, ashing of organics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0102Surface micromachining
    • B81C2201/0105Sacrificial layer
    • B81C2201/0109Sacrificial layers not provided for in B81C2201/0107 - B81C2201/0108
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0128Processes for removing material
    • B81C2201/013Etching

Definitions

  • the invention relates to the technical field of microelectronic mechanical systems, and in particular to a method for manufacturing a film supporting beam.
  • MEMS Micro Electro Mechanical Systems, microelectromechanical systems
  • MEMS Micro Electro Mechanical Systems, microelectromechanical systems
  • MEMS Basic manufacturing technology MEMS include a large number of complex three-dimensional microstructures and movable structures, which often include a thin film support beam.
  • these support beams are often composed of a multilayer film, and some of the layers need to be separately patterned, such as the support beam of the infrared sensor, which is often composed of a dielectric film/metal film multilayer film, wherein the metal layer It is used to electrically connect the sensitive film and the substrate processing circuit, and needs to be separately patterned.
  • the most common technique for preparing a film support beam is to use a one-step lithography and etching to form a film layer pattern on the support beam and other areas that needs to be separately patterned, such as a metal layer in the infrared sensor support beam, and then through one-step lithography and Etching produces the final support beam pattern, and finally the support beam is produced by the release technique.
  • the width of the support beam prepared by this technique must be greater than the width of the metal layer pattern, that is, only the minimum size equal to the minimum line width plus 2 times the optimal registration accuracy can be prepared using this technique.
  • Beam for example, the process capability of a semiconductor production line is: minimum line width of 0.5 microns and best registration accuracy of +/- 0.35 microns, this method can only produce support beams with a minimum size of 1.2 microns, at the same time, The method has higher registration accuracy requirements for lithography and increases the process difficulty.
  • a method of fabricating a film support beam includes: providing a substrate having opposite first and second surfaces; at a first surface of the substrate Coating a sacrificial layer and patterning the sacrificial layer; depositing a dielectric film on the sacrificial layer, forming a dielectric film layer, and depositing a metal film on the dielectric film layer to form a metal film layer; patterning the metal film layer, and forming the metal film layer The patterned area is divided into a metal film pattern of the support beam portion and a metal film pattern of the unsupported beam portion.
  • the width of the metal film pattern of the support beam portion is larger than the width of the final support beam pattern, and the metal film of the unsupported beam portion.
  • the width of the pattern is equal to the width of the final unsupported beam pattern; the final support beam pattern, the final unsupported beam pattern and the final dielectric film layer are photolithographically and etched on the metal film layer and the dielectric film layer, at which point the final medium
  • the film layer serves as a support film for the final support beam pattern and the final unsupported beam pattern; and the sacrificial layer is removed.
  • the material of the sacrificial layer is polyimide, and the thickness of the sacrificial layer is from 500 nm to 3,000 nm.
  • the material of the sacrificial layer is porous silicon.
  • the material of the dielectric film is SiO 2
  • the thickness of the dielectric film layer is from 100 nm to 2000 nm.
  • the material of the dielectric film is SiN.
  • the material of the metal film is Al, and the thickness of the metal film layer is from 100 nm to 3,000 nm.
  • the material of the metal film is TiN.
  • the sacrificial layer is removed by oxygen.
  • the manufacturing method of the film supporting beam in the invention can prepare the supporting beam with the minimum size equal to the minimum line width, and at the same time, the method has lower requirements on the registration precision of the lithography, and reduces the process difficulty. .
  • FIG. 1 is a flow chart showing a method of fabricating a film support beam according to an embodiment
  • FIG. 2 to 5 and FIG. 8 are schematic longitudinal cross-sectional views of the wafer obtained in each manufacturing process of the manufacturing method shown in FIG. 1;
  • FIG. 6 6, 7, and 9 are schematic plan views of the wafer obtained in a part of the manufacturing process of the manufacturing method shown in Fig. 1.
  • a method 100 for manufacturing a film support beam includes the following steps:
  • FIG. 2 is a schematic longitudinal cross-sectional view of the wafer obtained in the manufacturing process of the step, providing a substrate 10 having a first surface 11 and a second surface 12 disposed opposite each other.
  • the first surface 11 is the upper surface of the substrate 10.
  • the substrate 10 is a silicon wafer.
  • FIG. 3 is a schematic longitudinal cross-sectional view of the wafer obtained in the manufacturing process of the step.
  • the sacrificial layer 13 is coated on the first surface 11 of the substrate 10 and the sacrificial layer 13 is patterned.
  • polyimide or porous silicon is coated on the first surface 11 of the substrate 10 as the sacrificial layer 13, and the polyimide is coated to a thickness of 500 nm to 3000 nm, and then patterned, and patterned here. It is for fixing the film support beam to the substrate 10.
  • FIG. 4 is a schematic longitudinal cross-sectional view of the wafer obtained in the manufacturing process of the step, depositing a dielectric film on the upper surface of the sacrificial layer 13, forming a dielectric film layer 14, and in the dielectric film layer 14.
  • a metal film is deposited on the upper surface to form a metal film layer 15.
  • the dielectric film layer 14 is used as a support film for the film supporting beam, the dielectric film material is SiO 2 or SiN, and the dielectric film layer 14 has a thickness of 100 nm to 2000 nm.
  • the metal film layer 15 is used for stress matching and electrical connection of the film supporting beam, the metal film material is Al or TiN, and the metal film layer 15 has a thickness of 100 nm to 3000 nm.
  • FIG. 5 is a schematic longitudinal cross-sectional view of the wafer obtained in the manufacturing process of the step
  • FIG. 6 is a schematic plan view of the wafer obtained in the manufacturing process of the step, the patterned metal film layer 15, the metal film.
  • the patterned area of the layer 15 is divided into a metal film pattern 16a supporting the beam portion and a metal film pattern 17a of the unsupported beam portion, at which time the width of the metal film pattern 16a of the support beam portion is greater than the width of the final support beam pattern 18.
  • the width of the metal film pattern 17a of the unsupported beam portion is equal to the width of the final unsupported beam pattern 19.
  • the width of the metal film pattern of the support beam portion in the prior art is smaller than the width of the final support beam pattern.
  • FIG. 7 is a top view of the wafer obtained in the manufacturing process of the step, and photolithographically and etched the final support beam pattern 18 on the metal film layer 15 and the dielectric film layer 14, and the final non- The beam pattern 19 and the final dielectric film layer 14a are supported, at which time the final dielectric film layer 14a acts as a support film for the final support beam pattern 18 and the final unsupported beam pattern 19.
  • the final support beam pattern 18, the final unsupported beam pattern 19 and the final dielectric film layer pattern 14a obtained in this step are simultaneously completed by the photolithography and etching, and only one of them is required
  • the steps are made to avoid the lithography alignment problem, and a support beam having a minimum size equal to the minimum line width can be fabricated.
  • the final support beam pattern has been fabricated in the previous step, and when fabricating the dielectric film pattern of the support beam portion, it is necessary to ensure alignment with the metal film layer pattern of the previous step, so the existing process
  • the minimum size of the support beam produced is the minimum line width plus 2 times the best registration accuracy, and the process difficulty is increased.
  • FIG. 8 is a schematic longitudinal cross-sectional view of the wafer obtained in the manufacturing process of the step
  • FIG. 9 is a top view of the wafer obtained in the manufacturing process of the step, and the sacrificial layer 13 is removed.
  • the sacrificial layer 13 is removed using oxygen to complete the film support beam structure.
  • one of the features or objects of the present invention is to first complete the fabrication and patterning of the sacrificial layer, and then deposit a dielectric film layer and a metal film layer on the surface of the sacrificial layer.
  • the metal film layer is photolithographically etched on the dielectric film layer and the metal film layer to etch the support beam pattern, the unsupported beam pattern and the support film pattern, and then only the sacrificial layer needs to be removed to obtain the film support beam structure, which can be prepared.
  • the support beam with the smallest dimension equal to the minimum line width is used.
  • the method has lower registration accuracy requirements for lithography and reduces the process difficulty.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Micromachines (AREA)

Abstract

一种薄膜支撑梁的制作方法,包括:提供具有相对设置的第一表面和第二表面的衬底;在衬底的第一表面涂覆牺牲层并图形化牺牲层;在牺牲层上淀积介质膜,形成介质膜层,并在介质膜层上淀积金属膜,形成金属膜层;图形化金属膜层,将金属膜层的图形化区域分为支撑梁部分的金属膜图形和非支撑梁部分的金属膜图形,此时支撑梁部分的金属膜图形的宽度大于最终的支撑梁图形的宽度,非支撑梁部分的金属膜图形的宽度等于最终的非支撑梁图形的宽度;在金属膜层和介质膜层上光刻和刻蚀出最终的支撑梁图形、最终的非支撑梁图形和最终介质膜层,此时最终介质膜层作为最终的支撑梁图形和最终的非支撑梁图形的支撑膜;及去除牺牲层。

Description

薄膜支撑梁的制作方法
【技术领域】
本发明涉及微电子机械系统技术领域,特别涉及一种薄膜支撑梁的制作方法。
【背景技术】
MEMS(Micro Electro Mechanical Systems,微电子机械系统)是随着集成电路制造技术的发展而发展起来的,集成电路制造技术和微加工技术是MEMS 的基础制造技术。与集成电路只包括平面晶体管和金属互连不同,MEMS包括大量复杂的三维微结构和可动结构,这些三维微结构和可动结构往往都包括一个薄膜支撑梁。为了应力匹配和电连接,这些支撑梁往往由多层薄膜构成,且其中某些膜层需要单独图形化,如红外传感器的支撑梁,往往由介质膜/金属膜多层膜构成,其中金属层用于电连接敏感膜和衬底处理电路,需要单独进行图形化,一般只需要保留支撑梁和接触孔上的金属层。制备薄膜支撑梁最常用的技术是采用一步光刻和刻蚀制作出支撑梁上和其它区域的需要单独图形化的薄膜层图形,如红外传感器支撑梁中的金属层,然后通过一步光刻和刻蚀制作出最终的支撑梁图形,最后通过释放技术制作出支撑梁。考虑到光刻对准误差,采用该技术制备的支撑梁的宽度必须大于金属层图形的宽度,即使用该技术只能制备出最小尺寸等于最小线宽加上2倍最佳套准精度的支撑梁,比如,某半导体生产线的工艺能力为:最小线宽为0.5微米和最佳套准精度为+/-0.35微米,则采用该方法只能制作出最小尺寸为1.2微米的支撑梁,同时,该方法对光刻的套准精度要求比较高,增加了工艺难度。
【发明内容】
基于此,有必要提供一种薄膜支撑梁的制作方法,其可以制备出最小尺寸等于最小线宽的支撑梁,同时,对光刻的套准精度要求比较低,可以减小工艺难度。
为了解决上述问题,根据本发明的一个方面,本发明提供一种薄膜支撑梁的制作方法,其包括:提供具有相对设置的第一表面和第二表面的衬底;在衬底的第一表面涂覆牺牲层并且图形化牺牲层;在牺牲层上淀积介质膜,形成介质膜层,并在介质膜层上淀积金属膜,形成金属膜层;图形化金属膜层,将金属膜层的图形化区域分为支撑梁部分的金属膜图形和非支撑梁部分的金属膜图形,此时支撑梁部分的金属膜图形的宽度大于最终的支撑梁图形的宽度,非支撑梁部分的金属膜图形的宽度等于最终的非支撑梁图形的宽度;在金属膜层和介质膜层上光刻和刻蚀出最终的支撑梁图形、最终的非支撑梁图形和最终介质膜层,此时最终介质膜层作为最终的支撑梁图形和最终的非支撑梁图形的支撑膜;及去除牺牲层。
作为本发明的一个优选的实施例,牺牲层的材料为聚酰亚胺,牺牲层的厚度为500纳米~3000纳米。
作为本发明的一个优选的实施例,牺牲层的材料为多孔硅。
作为本发明的一个优选的实施例,介质膜的材料为SiO2,介质膜层的厚度为100纳米~2000纳米。
作为本发明的一个优选的实施例,介质膜的材料为SiN。
作为本发明的一个优选的实施例,金属膜的材料为Al,金属膜层的厚度为100纳米~3000纳米。
作为本发明的一个优选的实施例,金属膜的材料为TiN。
作为本发明的一个优选的实施例,通过氧气去除牺牲层。
与现有技术相比,本发明中薄膜支撑梁的制作方法,可以制备出最小尺寸等于最小线宽的支撑梁,同时,该方法对光刻的套准精度要求比较低,减小了工艺难度。
【附图说明】
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。其中:
图1为一实施例的薄膜支撑梁的制作方法的流程图;
图2至图5、以及图8为图1所示的制造方法的各个制造工序得到晶圆的纵剖面示意图;
图6、图7、以及图9为图1所示的制造方法的部分制造工序得到晶圆的俯视示意图。
【具体实施方式】
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施的限制。
如图1所示,一实施例的薄膜支撑梁的制造方法100包括如下步骤:
步骤110,结合图2所示,图2为本步骤制造工序得到晶圆的纵剖面示意图,提供具有相对设置的第一表面11和第二表面12的衬底10。在本实施方式中,第一表面11为衬底10的上表面。
具体的,衬底10为硅片。
步骤120,结合图3所示,图3为本步骤制造工序得到晶圆的纵剖面示意图,在衬底10的第一表面11涂覆牺牲层13并且图形化牺牲层13。
具体的,在衬底10的第一表面11上涂覆聚酰亚胺或多孔硅作为牺牲层13,聚酰亚胺的涂覆厚度为500纳米~3000纳米,然后图形化,此处图形化是为了使薄膜支撑梁固定在衬底10上。
步骤130,结合图4所示,图4为本步骤制造工序得到晶圆的纵剖面示意图,在牺牲层13的上表面上淀积介质膜,形成介质膜层14,并在介质膜层14的上表面上淀积金属膜,形成金属膜层15。
具体的,介质膜层14用作薄膜支撑梁的支撑膜,介质膜材料为SiO2或SiN,介质膜层14的厚度为100纳米~2000纳米。金属膜层15用于薄膜支撑梁的应力匹配和电连接,金属膜材料为Al或TiN,金属膜层15的厚度为100纳米~3000纳米。
步骤140,结合图5和图6所示,图5为本步骤制造工序得到晶圆的纵剖面示意图,图6为本步骤制造工序得到晶圆的俯视示意图,图形化金属膜层15,金属膜层15的图形化区域分为支撑梁部分的金属膜图形16a和非支撑梁部分的金属膜图形17a,此时所述支撑梁部分的金属膜图形16a的宽度大于最终的支撑梁图形18的宽度,所述非支撑梁部分的金属膜图形17a的宽度等于最终的非支撑梁图形19的宽度。
在现有工艺中的支撑梁部分的金属膜图形的宽度小于最终的支撑梁图形的宽度。
步骤150,结合图7所示,图7为本步骤制造工序得到晶圆的俯视示意图,在金属膜层15和介质膜层14上光刻和刻蚀出最终的支撑梁图形18、最终的非支撑梁图形19和最终介质膜层14a,此时最终介质膜层14a作为最终的支撑梁图形18和最终的非支撑梁图形19的支撑膜。
在本实施例中,因为本步骤所得到的最终的支撑梁图形18、最终的非支撑梁图形19和最终介质膜层图形14a是通过该步光刻和刻蚀同时完成,并且仅需这一个步骤制得,避免了光刻对位问题,可以制作出最小尺寸等于最小线宽的支撑梁。
在现有工艺中,最终的支撑梁图形已在上一步骤制作好,而制作支撑梁部分的介质膜层图形时,要确保与上一步骤的金属膜层图形对准,所以现有工艺所制作的支撑梁最小尺寸为最小线宽加上2倍最佳套准精度,工艺难度增加。
步骤160,结合图8和图9所示,图8为本步骤制造工序得到晶圆的纵剖面示意图,图9为本步骤制造工序得到晶圆的俯视示意图,去除牺牲层13。
在一个实施例中,利用氧气去除牺牲层13,制作完成薄膜支撑梁结构。
所属领域内的普通技术人员应该能够理解的是,本发明的特点或目的之一在于:首先完成牺牲层的制作并图形化,之后在牺牲层表面淀积制备介质膜层和金属膜层,图形化金属膜层,在介质膜层和金属膜层上光刻并刻蚀出支撑梁图形、非支撑梁图形和支撑膜图形,然后仅需要去除牺牲层即可得到薄膜支撑梁结构,这样可以制备出最小尺寸等于最小线宽的支撑梁,同时,该方法对光刻的套准精度要求比较低,减小了工艺难度。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (8)

  1. 一种薄膜支撑梁的制作方法,包括:
    提供具有相对设置的第一表面和第二表面的衬底;
    在所述衬底的第一表面涂覆牺牲层并且图形化所述牺牲层;
    在所述牺牲层上淀积介质膜,形成介质膜层,并在所述介质膜层上淀积金属膜,形成金属膜层;
    图形化所述金属膜层,将所述金属膜层的图形化区域分为支撑梁部分的金属膜图形和非支撑梁部分的金属膜图形,此时所述支撑梁部分的金属膜图形的宽度大于最终的支撑梁图形的宽度,所述非支撑梁部分的金属膜图形的宽度等于最终的非支撑梁图形的宽度;
    在所述金属膜层和介质膜层上光刻和刻蚀出所述最终的支撑梁图形、最终的非支撑梁图形和最终介质膜层,此时所述最终介质膜层作为所述最终的支撑梁图形和最终的非支撑梁图形的支撑膜;及
    去除牺牲层。
  2. 根据权利要求1所述的薄膜支撑梁的制作方法,其特征在于,所述牺牲层的材料为聚酰亚胺,所述牺牲层的厚度为500纳米~3000纳米。
  3. 根据权利要求1所述的薄膜支撑梁的制作方法,其特征在于,所述牺牲层的材料为多孔硅。
  4. 根据权利要求1所述的薄膜支撑梁的制作方法,其特征在于,所述介质膜的材料为SiO2,所述介质膜层的厚度为100纳米~2000纳米。
  5. 根据权利要求1所述的薄膜支撑梁的制作方法,其特征在于,所述介质膜的材料为SiN。
  6. 根据权利要求1所述的薄膜支撑梁的制作方法,其特征在于,所述金属膜的材料为Al,所述金属膜层的厚度为100纳米~3000纳米。
  7. 根据权利要求1所述的薄膜支撑梁的制作方法,其特征在于,所述金属膜的材料为TiN。
  8. 根据权利要求1所述的薄膜支撑梁的制作方法,其特征在于,通过氧气去除所述牺牲层。
PCT/CN2014/093054 2014-01-07 2014-12-04 薄膜支撑梁的制作方法 WO2015103910A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/023,057 US9862595B2 (en) 2014-01-07 2014-12-04 Method for manufacturing thin-film support beam

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410007410.9A CN104760925B (zh) 2014-01-07 2014-01-07 一种薄膜支撑梁的制作方法
CN201410007410.9 2014-01-07

Publications (1)

Publication Number Publication Date
WO2015103910A1 true WO2015103910A1 (zh) 2015-07-16

Family

ID=53523526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/093054 WO2015103910A1 (zh) 2014-01-07 2014-12-04 薄膜支撑梁的制作方法

Country Status (3)

Country Link
US (1) US9862595B2 (zh)
CN (1) CN104760925B (zh)
WO (1) WO2015103910A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9620615B2 (en) 2013-07-29 2017-04-11 Csmc Technologies Fab1 Co., Ltd. IGBT manufacturing method
US9666682B2 (en) 2013-09-02 2017-05-30 Csmc Technologies Fab1 Co., Ltd. Reverse conduction insulated gate bipolar transistor (IGBT) manufacturing method
US9673193B2 (en) 2013-08-23 2017-06-06 Csmc Technologies Fab1 Co., Ltd. Manufacturing method for reverse conducting insulated gate bipolar transistor
US9954074B2 (en) 2013-07-22 2018-04-24 Csmc Technologies Fab1 Co., Ltd. Insulated gate bipolar transistor and manufacturing method therefor
US10818655B2 (en) 2013-12-06 2020-10-27 Csmc Technologies Fab2 Co., Ltd. Semiconductor device and related method of adjusting threshold voltage in semiconductor device during manufacture via counter doping in diffusion region

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106483758B (zh) 2015-09-02 2019-08-20 无锡华润上华科技有限公司 光学邻近效应修正方法和系统
CN106653842B (zh) 2015-10-28 2019-05-17 无锡华润上华科技有限公司 一种具有静电释放保护结构的半导体器件
CN106816468B (zh) 2015-11-30 2020-07-10 无锡华润上华科技有限公司 具有resurf结构的横向扩散金属氧化物半导体场效应管
CN107465983B (zh) 2016-06-03 2021-06-04 无锡华润上华科技有限公司 Mems麦克风及其制备方法
CN109095435A (zh) * 2018-08-02 2018-12-28 北京大学 一种三维全金属微腔结构表面等离激元阵列加工方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006118851A2 (en) * 2005-05-03 2006-11-09 Guardian Industries Corp. Method of making scratch resistant coated glass article including layer(s) resistant to fluoride-based etchant(s)
US20070281497A1 (en) * 2006-06-01 2007-12-06 Applied Materials, Inc. Method to mitigate impact of uv and e-beam exposure on semiconductor device film properties by use of a bilayer film
CN101289160A (zh) * 2008-05-20 2008-10-22 无锡市纳微电子有限公司 0-100pa单片硅基SOI高温低漂移微压传感器及其加工方法
CN101381070A (zh) * 2007-09-05 2009-03-11 中国科学院微电子研究所 一种制备射频单电子晶体管位移传感器的方法
WO2011126438A1 (en) * 2010-04-09 2011-10-13 Frank Niklaus Free form printing of silicon micro- and nanostructures
US20110278566A1 (en) * 2010-05-17 2011-11-17 Industry-Academic Cooperation Foundation, Yonsei University Method of patterning thin film solution-deposited
CN103241706A (zh) * 2012-02-06 2013-08-14 中国科学院微电子研究所 应力匹配的双材料微悬臂梁的制造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6995034B2 (en) * 2000-12-07 2006-02-07 Reflectivity, Inc Methods for depositing, releasing and packaging micro-electromechanical devices on wafer substrates
US6706548B2 (en) * 2002-01-08 2004-03-16 Motorola, Inc. Method of making a micromechanical device
CA2616268A1 (en) * 2005-07-22 2007-02-01 Qualcomm Incorporated Mems devices having support structures and methods of fabricating the same
JP2008114354A (ja) * 2006-11-08 2008-05-22 Seiko Epson Corp 電子装置及びその製造方法
US8187795B2 (en) * 2008-12-09 2012-05-29 The Board Of Trustees Of The University Of Illinois Patterning methods for stretchable structures
CN101936937A (zh) * 2010-07-06 2011-01-05 电子科技大学 一种微悬臂梁气体传感器及其制作方法
CN102092672B (zh) * 2010-12-31 2016-04-27 上海集成电路研发中心有限公司 微电子机械系统的电连接的制造方法
CN102951597B (zh) * 2011-08-19 2016-03-30 烟台睿创微纳技术有限公司 一种微桥结构红外探测器的制备方法和微桥结构
CN104332494B (zh) 2013-07-22 2018-09-21 无锡华润上华科技有限公司 一种绝缘栅双极晶体管及其制造方法
CN104347401B (zh) 2013-07-29 2017-05-10 无锡华润上华半导体有限公司 一种绝缘栅双极性晶体管的制造方法
CN104425245B (zh) 2013-08-23 2017-11-07 无锡华润上华科技有限公司 反向导通绝缘栅双极型晶体管制造方法
CN104425259B (zh) 2013-09-02 2017-09-15 无锡华润上华半导体有限公司 反向导通绝缘栅双极型晶体管制造方法
CN104701356B (zh) 2013-12-06 2018-01-12 无锡华润上华科技有限公司 半导体器件及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006118851A2 (en) * 2005-05-03 2006-11-09 Guardian Industries Corp. Method of making scratch resistant coated glass article including layer(s) resistant to fluoride-based etchant(s)
US20070281497A1 (en) * 2006-06-01 2007-12-06 Applied Materials, Inc. Method to mitigate impact of uv and e-beam exposure on semiconductor device film properties by use of a bilayer film
CN101381070A (zh) * 2007-09-05 2009-03-11 中国科学院微电子研究所 一种制备射频单电子晶体管位移传感器的方法
CN101289160A (zh) * 2008-05-20 2008-10-22 无锡市纳微电子有限公司 0-100pa单片硅基SOI高温低漂移微压传感器及其加工方法
WO2011126438A1 (en) * 2010-04-09 2011-10-13 Frank Niklaus Free form printing of silicon micro- and nanostructures
US20110278566A1 (en) * 2010-05-17 2011-11-17 Industry-Academic Cooperation Foundation, Yonsei University Method of patterning thin film solution-deposited
CN103241706A (zh) * 2012-02-06 2013-08-14 中国科学院微电子研究所 应力匹配的双材料微悬臂梁的制造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9954074B2 (en) 2013-07-22 2018-04-24 Csmc Technologies Fab1 Co., Ltd. Insulated gate bipolar transistor and manufacturing method therefor
US9620615B2 (en) 2013-07-29 2017-04-11 Csmc Technologies Fab1 Co., Ltd. IGBT manufacturing method
US9673193B2 (en) 2013-08-23 2017-06-06 Csmc Technologies Fab1 Co., Ltd. Manufacturing method for reverse conducting insulated gate bipolar transistor
US9666682B2 (en) 2013-09-02 2017-05-30 Csmc Technologies Fab1 Co., Ltd. Reverse conduction insulated gate bipolar transistor (IGBT) manufacturing method
US10818655B2 (en) 2013-12-06 2020-10-27 Csmc Technologies Fab2 Co., Ltd. Semiconductor device and related method of adjusting threshold voltage in semiconductor device during manufacture via counter doping in diffusion region

Also Published As

Publication number Publication date
US9862595B2 (en) 2018-01-09
CN104760925A (zh) 2015-07-08
CN104760925B (zh) 2016-05-25
US20160229691A1 (en) 2016-08-11

Similar Documents

Publication Publication Date Title
WO2015103910A1 (zh) 薄膜支撑梁的制作方法
CN105353506B (zh) 垂直梳齿驱动moems微镜及其制作方法
US8389317B2 (en) MEMS device and method of fabricating the same
TWI450319B (zh) 大區域奈米尺度圖案的製造方法
JP5768074B2 (ja) パターン形成方法
US10570005B2 (en) Method and apparatus for release-assisted microcontact printing of MEMS
WO2013033032A2 (en) Method and apparatus for release-assisted microcontact printing of mems
US20090289313A1 (en) Micro electric mechanical system device and method of producing the same
WO2020155654A1 (zh) 一种gmr/tmr麦克风的制造方法
TW201919149A (zh) 半導體裝置結構
WO2023241252A1 (zh) 显示面板、显示装置、三维微结构器件及其制备方法
JP7110189B2 (ja) 電子素子の遅延ビア形成
JP2017502328A (ja) 表面上に堆積パターンを形成する方法
JP2018501636A (ja) 転写印刷方法
US9340415B2 (en) MEMS device with non-planar features
US20170057816A1 (en) Mems device and fabrication method thereof
CN209835625U (zh) Mems器件
CN107516637B (zh) 线路板结构及其制造方法
KR20070071429A (ko) 다단계 습식 식각을 이용한 유리 미세 가공
TWI586968B (zh) 高頻垂直式探針、探針卡及高頻垂直式探針的製作方法
JPH11221829A (ja) 薄膜形成用基板及び微小構造体の製造方法
TW580734B (en) Method to fabricate vertical comb actuator by surface micromachining technology
JP2010046730A (ja) 微細構造体
JP2008155342A (ja) 微細構造体の製造方法
JP6818299B2 (ja) 微細素子およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14877743

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15023057

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14877743

Country of ref document: EP

Kind code of ref document: A1