WO2020155654A1 - 一种gmr/tmr麦克风的制造方法 - Google Patents

一种gmr/tmr麦克风的制造方法 Download PDF

Info

Publication number
WO2020155654A1
WO2020155654A1 PCT/CN2019/107234 CN2019107234W WO2020155654A1 WO 2020155654 A1 WO2020155654 A1 WO 2020155654A1 CN 2019107234 W CN2019107234 W CN 2019107234W WO 2020155654 A1 WO2020155654 A1 WO 2020155654A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
backplane
gmr
tmr
diaphragm
Prior art date
Application number
PCT/CN2019/107234
Other languages
English (en)
French (fr)
Inventor
邹泉波
冷群文
Original Assignee
歌尔股份有限公司
北京航空航天大学青岛研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司, 北京航空航天大学青岛研究院 filed Critical 歌尔股份有限公司
Publication of WO2020155654A1 publication Critical patent/WO2020155654A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R31/00Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor

Definitions

  • the present invention relates to the manufacturing field of MEMS microphones, and more specifically, to a manufacturing process of GMR/TMR microphones.
  • Micro-Electro-Mechanical System MEMS, Micro-Electro-Mechanical System
  • MEMS Micro-Electro-Mechanical System
  • micro-electro-mechanical system micro-system, micro-machine, etc.
  • MEMS is developed on the basis of microelectronics technology (semiconductor manufacturing technology), and is a high-tech electronic machinery made by lithography, corrosion, thin film, LIGA, silicon micromachining, non-silicon micromachining and precision machining technologies. Device.
  • the existing MEMS microphone is a miniature sound pickup device manufactured based on a micro-electromechanical system.
  • Traditional MEMS microphones usually use a flat capacitor type detection mechanism. This kind of microphone only needs to form a flat diaphragm and a back plate on the substrate in sequence and separated by the support part. The diaphragm and the back plate can tolerate higher temperatures, which makes the microphone be formed layer by layer in accordance with traditional deposition and etching steps.
  • GMR/TMR is a miniature sensor device, and is not resistant to high temperatures, so that the GMR/TMR microphone cannot be manufactured in a traditional way of deposition and etching.
  • the appropriate steps and structure must be selected to make the manufacture of GMR/TMR microphones possible.
  • An object of the present invention is to provide a new technical solution for the manufacturing method of the GMR/TMR microphone.
  • a method for manufacturing a GMR/TMR microphone including a front step and a back step;
  • the preceding steps include:
  • Step S100 sequentially forming an insulating layer and a diaphragm layer on the wafer, and forming a permanent magnet pattern on the diaphragm layer;
  • Step S200 forming a protective layer covering the permanent magnet on the diaphragm layer, and etching the first protective layer to form holes that expose part of the diaphragm layer;
  • Step S300 etch part of the diaphragm layer through the hole to form a gap on the diaphragm layer;
  • Step S400 sequentially forming a sacrificial layer and a first backplane layer on the wafer; and forming a GMR/TMR pattern opposite to the permanent magnet on the first backplane layer;
  • Step S500 forming a connection line connected to the GMR/TMR on the first backplane layer;
  • the latter steps include:
  • Step S600 Deposit the second backplane layer on the wafer by ICPCVD, where the deposition temperature of ICPCVD is 50-250°C; or deposit the second backplane layer on the wafer by PECVD, where the deposition temperature of PECVD 200-250°C;
  • GMR/TMR and connecting lines are laminated between the first backplane layer and the second backplane layer; dry RIE etching is performed on part of the second backplane layer and the first backplane layer to expose part of the sacrificial layer;
  • Step S700 Perform RIE etching on the second backplane layer at the position corresponding to the connecting line to form a gap exposing part of the connecting line;
  • Step S800 forming a pad connected to the connecting line at the position of the notch by a Liftoff process or wet etching;
  • Step S900 Grind the back side of the wafer, and etch the back cavity by DRIE;
  • Step S1000 the sacrificial layer is corroded to release the diaphragm layer.
  • the insulating layer is made of SiO 2 and is formed on the wafer by thermal oxidation or LPCVD; the diaphragm layer is formed on the insulating layer by LPCVD, and its tensile stress is 0-50 MPa .
  • the pattern of the permanent magnet is formed on the diaphragm layer by PVD combined with Liftoff or IBE etching, and the thickness of the permanent magnet is 0.01-0.5um.
  • the protective layer is made of SiNx material, and the protective layer covering the permanent magnet is formed by PECVD, the refractive index RI is 2.1-2.3, and the tensile stress is 10-100 MPa; the protective layer is protected by RIE The layer is etched to form the hole.
  • step S300 the polysilicon diaphragm layer is etched by means of RIE.
  • the sacrificial layer is formed by PECVD or ICPCVD, the refractive index RI is 1.4-1.5, the deposition temperature of PECVD is 280-350°C, the deposition temperature of ICPCVD is 50-300°C, and the pressure
  • the stress is 0-100MPa;
  • the first backplane layer is made of SiNx and formed by PECVD, and its refractive index RI is 2.1-2.3.
  • the GMR/TMR pattern is formed on the first backplane layer by PVD combined with Liftoff or dry IBE etching, with a thickness of about 10-60 nm.
  • step S600 the material and refractive index of the second back plate layer are the same as those of the first back electrode layer.
  • it further includes a step of forming a pad on the diaphragm layer, which includes in step S700, while forming the notch by RIE etching, the second back electrode layer, the first back electrode layer, the sacrificial layer, the protection
  • the layer is etched to form a space that exposes part of the diaphragm layer, and the diaphragm layer is used as a stop line for RIE etching; also included in step S800, while forming a pad connected to the connection line, forming another connection to the diaphragm layer One pad.
  • the GMR/TMR microphone is manufactured by completely adopting the deposition and etching MEMS process, which avoids the use of the bonding process, and ensures the accuracy of the coordination between the permanent magnet and the GMR/TMR; At this time, the influence of subsequent processes on permanent magnets and GMR/TMR is avoided.
  • 1 to 10 are schematic diagrams of the manufacturing process of the present invention.
  • GMR Gar Magneto Resistance
  • extra-large magnetoresistance which uses the giant magnetoresistance effect to measure.
  • TMR Tunnel Magneto Resistance
  • SiNx is silicon nitride, and the ratio of nitrogen can be adjusted according to actual needs. Silicon-rich refers to SiNx with more silicon.
  • “Liftoff” is a lift-off technology in the MEMS process, through patterning on the pre-coated glue, and then preparing a thin film. Where there is glue, the film is formed on the glue, and where there is no glue, the film is directly formed on the lower layer. After the glue is removed, the unnecessary film is peeled off with the glue, and the film formed on the lower layer is retained to form a pattern.
  • RIE reactive Ion Etching
  • DRIE Deep Reactive Ion Etching
  • IBE is ion beam etching, which uses ions with a certain energy to physically bombard the surface of the material to achieve the purpose of etching.
  • PVD Physical Vapor Deposition
  • Physical vapor deposition refers to physical vapor deposition, which refers to the process of using physical processes to achieve material transfer and transferring atoms or molecules from the source to the surface of the substrate.
  • Basic methods of PVD vacuum evaporation, sputtering, ion plating, etc.
  • PECVD Plasma enhanced Chemical Vapor Deposition
  • CVD chemical vapor deposition
  • LPCVD Low Pressure Chemical Vapor Deposition
  • CVD chemical vapor deposition
  • IPCVD Inductively Coupled Plasma Chemical Vapor Deposition
  • CVD chemical vapor deposition
  • the invention provides a method for manufacturing a GMR/TMR microphone, which includes a front step and a back step.
  • the first steps include:
  • Step S100 sequentially forming an insulating layer and a diaphragm layer on the wafer, and forming a pattern of permanent magnets on the diaphragm layer;
  • an insulating layer is deposited on the wafer, and the insulating layer can be made of SiO 2 material well known to those skilled in the art.
  • the insulating layer can be formed on the wafer by means of thermal oxidation or LPCVD, and the thickness of the insulating layer can be, for example, 1 ⁇ m.
  • the diaphragm layer can be made of polysilicon.
  • the diaphragm layer is the structural layer of the microphone and is formed before the GMR/TMR and permanent magnets. Therefore, the LPCVD method can be used for deposition. Control the parameters of the diaphragm layer under higher temperature conditions. The thickness can be controlled at 1-2 ⁇ m, doped and annealed; the tensile stress is controlled at 0-50Mpa, so that it has a low stress gradient. For example, after controlling it to release, the warpage of a cantilever beam with a length of 100 ⁇ m is less than 0.1 ⁇ m.
  • the permanent magnet pattern is formed on the diaphragm layer by PVD combined with Liftoff or dry IBE etching, and the thickness of the permanent magnet is controlled between 0.01-0.5 ⁇ m.
  • a photoresist can be formed on the diaphragm layer, and the photoresist can be etched to form a photolithography pattern; a permanent magnet film layer is deposited on the photoresist by PVD, and finally the photoresist is removed to form a permanent The pattern of the magnet.
  • the permanent magnet film layer can be deposited on the diaphragm layer by PVD, and then the permanent magnet film layer is etched by the IBE process to form the permanent magnet pattern.
  • Step S200 forming a protective layer covering the permanent magnet on the diaphragm layer, and patterning and etching the protective layer to form holes that expose part of the diaphragm layer;
  • the protective layer is made of SiNx.
  • a protective layer can be formed on the entire upper surface of the wafer by PECVD at a lower temperature.
  • the protective layer is rich in silicon, its refractive index is RI2.1-2.3, the thickness is controlled at about 0.5um, the tensile stress is 10-100MPa, and the deposition temperature is about 300°C.
  • the protective layer is etched by RIE to form a hole that exposes part of the diaphragm layer, so that the diaphragm layer can be subsequently etched through the hole.
  • the hole can be chosen to be located adjacent to the permanent magnet.
  • the patterned etching of the protective layer is not only for forming holes, but also for etching at a suitable position according to actual needs to expose the functional area of the diaphragm layer, which will not be described in detail here.
  • Step S300 etch part of the diaphragm layer through the hole to form a gap on the diaphragm layer;
  • the polysilicon diaphragm layer is etched to form a gap by RIE, so that the diaphragm layer can form a cantilever structure after subsequent release, or form a gas-permeable diaphragm layer.
  • Step S400 sequentially forming a sacrificial layer and a first backplane layer on the wafer; and forming a GMR/TMR pattern opposite to the permanent magnet on the first backplane layer;
  • a sacrificial layer is formed on the entire upper surface of the wafer.
  • the sacrificial layer can be low-temperature oxide, or phosphorous silicate glass.
  • the sacrificial layer can be deposited on the upper surface of the entire wafer by PECVD or ICPCVD, and the sacrificial layer is filled into the gaps in the diaphragm and the holes in the protective layer.
  • the refractive index RI is controlled at 1.4-1.5, and the total thickness can be controlled at 4um+/-5%; when PECVD is used, the deposition temperature can be selected to be 280-350°C; when ICPCVD is used, the deposition temperature can be selected to be 50-300°C.
  • the compressive stress of the sacrificial layer is 0-100 MPa.
  • a first backplane layer is deposited on the upper surface of the sacrificial layer, and the first backplane layer can be SiNx. Limited by the heat-resistant temperature of the permanent magnet, and the backplane is not the main functional structure of the microphone, the first backplane layer can be formed on the entire upper surface of the sacrificial layer by PECVD.
  • the first backplane layer is rich in silicon, with a refractive index of RI2.1-2.3, a thickness of about 0.5 ⁇ m, and a deposition temperature of about 300°C.
  • GMR/TMR pattern is formed on the first backplane layer by means of PVD combined with Liftoff or dry IBE etching.
  • the thickness of GMR/TMR is controlled between 10-60nm.
  • a photoresist when using the Liftoff process, a photoresist can be formed on the first backplane layer, and the photoresist can be etched to form a photolithography pattern; the GMR/TMR film layer can be deposited on the photoresist by PVD, and finally The glue forms a GMR/TMR pattern.
  • the molding temperature of PVD is relatively low, and it can even be carried out at room temperature.
  • the GMR/TMR film can be deposited on the first backplane layer by PVD, and then the GMR/TMR film can be etched through the IBE process to form GMR/TMR picture of.
  • Step S500 forming a connection line connected to the GMR/TMR on the first backplane layer;
  • the connecting wire can be made of metal aluminum, or a conductive film composed of Cr and Au, and the thickness can be controlled within 0.1-0.2 ⁇ m. Connect the cable to the GMR/TMR, and conduct the GMR/TMR signal to a suitable position for subsequent lead out.
  • the connecting wire can be formed by PVD combined with Liftoff process or wet etching process, which will not be described in detail here. The molding temperature of PVD is relatively low, and it can even be carried out at room temperature.
  • the heat-resistant temperature of GMR/TMR is lower than that of permanent magnets.
  • the temperature must be strictly controlled to avoid damage to GMR/TMR.
  • the latter steps include:
  • Step S600 Deposit the second backplane layer on the wafer by ultra-low temperature (50-250°C) ICPCVD; or deposit the second backplane layer on the wafer by PECVD, where the deposition temperature of PECVD is 200-250 °C;
  • GMR/TMR and connecting lines are laminated between the first backplane layer and the second backplane layer; dry RIE etching is performed on part of the second backplane layer and the first backplane layer to expose part of the sacrificial layer;
  • the deposited second back plate layer and the first back plate clamp the GMR/TMR and the connecting wire, which can not only provide support for the GMR/TMR and the connecting wire, but also protect the GMR/TMR.
  • the material and parameters of the second backplane layer and the first backplane layer can be the same, and SiNx can be used. Limited by the heat-resistant temperature of permanent magnets and GMR/TMR, it can be formed by PECVD.
  • the second backplane layer is rich in silicon, its refractive index is RI2.1-2.3, the thickness is controlled at about 0.5 ⁇ m, the deposition temperature is about 200-250°C, and the tensile stress is 0-40MPa.
  • the second backplane layer and the first backplane layer are jointly etched by RIE to expose the sacrificial layer under the backplane for subsequent corrosion of the sacrificial layer.
  • Step S700 Perform RIE etching on the second backplane layer at the position corresponding to the connecting line to form a gap exposing part of the connecting line;
  • the part under the second backplane layer is connected and exposed by RIE etching, so that the electrical signal of the connection line can be led out later.
  • the second backplane layer is etched by RIE and automatically stops on the metal layer of the connection line.
  • Step S800 forming a pad connected to the connecting line at the position of the notch by a Liftoff process or wet etching;
  • the pads can be made of composite Cr and Au, which can be formed by PVD, and can be combined with the Liftoff process or wet etching to form a land pattern that is connected to the connecting line.
  • the thickness of the Cr/Au composite can be 50/500nm.
  • Step S900 Grind the back side of the wafer, and etch the back cavity by DRIE;
  • the back cavity is etched by DRIE to the insulating layer.
  • Step S1000 the sacrificial layer is corroded to release the diaphragm layer.
  • the sacrificial layer can be corroded by HF to release the diaphragm layer so that the diaphragm layer can vibrate.
  • the corrosion time is controlled so that part of the sacrificial layer is retained and plays the role of supporting the back plate.
  • the present invention also provides a GMR/TMR microphone manufactured by the above manufacturing method, refer to FIG. 10.
  • the diaphragm layer 3 vibrates, the distance between the permanent magnet 4 and the GMR/TMR 10 changes, so that the GMR/TMR 10 generates a changed electrical signal, which is led out through the connecting wire 11 and the pad 12.
  • the functional device permanent magnet is first formed, and then the GMR/TMR 10 is formed. If GMR/TMR 10 is formed first, the subsequent process will cause damage to GMR/TMR 10.
  • the manufacturing method further includes the step of forming an external pad on the diaphragm layer 3, which includes in step S700, while forming the notch by RIE etching, the second back electrode layer, the first back electrode layer, The sacrificial layer and the protective layer are etched to form a space that exposes part of the diaphragm layer, and the diaphragm layer serves as a stop line for RIE etching; it is also included in S800 to form a pad connected to the connection line while forming a diaphragm layer Refer to Figure 10 for another external pad 13 connected.
  • an insulating layer 2 is first deposited on a wafer 1.
  • the wafer 1 is usually a silicon wafer.
  • the insulating layer 2 is made of SiO 2 material well known to those skilled in the art. It can be formed on the wafer 1 by means of thermal oxidation or LPCVD, and the thickness of the insulating layer 2 can be, for example, 1 ⁇ m.
  • the diaphragm layer 3 is deposited on the insulating layer 2 by LPCVD.
  • the diaphragm layer 3 can be polysilicon.
  • the thickness of the diaphragm layer 3 can be controlled at 1-2 ⁇ m, doped and annealed; the stress is controlled at 0-50Mpa to make it Has a low stress gradient. For example, the warpage of the 100 ⁇ m cantilever beam after release is controlled to be less than 0.1 ⁇ m.
  • the permanent magnet 4 is patterned on the diaphragm layer 3 by PVD combined with Liftoff or dry IBE etching, and the thickness of the permanent magnet 4 is controlled between 0.01-0.5 ⁇ m.
  • a protective layer 6 covering the permanent magnet 4 is formed on the diaphragm layer 3.
  • the protective layer 6 is made of SiNx material.
  • a lower temperature PECVD method can be used on the entire wafer A protective layer 6 is formed on the surface.
  • the protective layer 6 is rich in silicon, its refractive index is RI2.1-2.3, the thickness is controlled at about 0.5um, the tensile stress is 10-100MPa, and the deposition temperature is about 300°C.
  • the protective layer 6 is etched by means of RIE to form a hole 60 exposing part of the diaphragm layer 3 so that the diaphragm layer 3 can be subsequently etched through the hole 60.
  • the protective layer 6 is etched to form the hole 60 at the same time, the corresponding position of the protective layer 6 is etched away to form the channel 61.
  • a part of the diaphragm layer 3 is etched through the holes 60 by RIE to form a gap 30 on the diaphragm layer 3; so that the diaphragm layer 3 can form a cantilever beam structure after subsequent release, or form a breathable The diaphragm layer 3. While the gap 30 is being formed, the diaphragm layer 3 at the corresponding position is etched through the channel 61 to form a cutting line 7.
  • a sacrificial layer 8 is formed on the entire upper surface of the wafer 1 by PECVD or ICPCVD.
  • the sacrificial layer 8 may be a low-temperature oxide, such as silicon oxide or phosphorous silica glass.
  • the sacrificial layer 8 is filled into the gap 30 of the diaphragm layer 3, the hole of the protective layer, and the scribe line 7 around the single chip.
  • the refractive index RI is controlled at 1.4-1.5, and the total thickness can be controlled at 4um+/-5%; the deposition temperature of PECVD is 280-350°C, and the deposition temperature of ICPCVD is 50-300°C.
  • the sacrificial lamination stress is 10-50MPa.
  • the first backplane layer 9a is deposited on the upper surface of the sacrificial layer 8 by PECVD, and the first backplane layer 9a can be SiNx.
  • the first backplane layer 9a is rich in silicon, with a refractive index of RI2.1-2.3, a thickness of about 0.5 ⁇ m, and a deposition temperature of about 300° C. to avoid damage to the permanent magnet 4.
  • the GMR/TMR 10 pattern is formed on the first backplane layer 9a by PVD combined with Liftoff or dry IBE etching.
  • the thickness of GMR/TMR 10 is controlled between 10-60nm.
  • a connecting wire 11 connected to GMR/TMR 10 is formed on the first backplane layer 9a.
  • the connecting wire 11 can be made of metal aluminum or a conductive film composed of Cr and Au, and the thickness can be controlled within 0.1-0.2 ⁇ m. .
  • the connecting wire can be formed by PVD combined with Liftoff process or wet etching process, which will not be described in detail here.
  • the molding temperature of PVD is relatively low, and it can even be carried out at room temperature.
  • connection line and GMR/TMR are formed, it needs to be transferred to the latter step for processing.
  • a second backplane layer 9b is deposited on the upper surface of the wafer 1, so as to protect the GMR/TMR 10 through the second backplane layer 9b and the first backplane layer 9a.
  • the second backplane layer 9b can be made of the same material as the first backplane layer 9a. It can be deposited by ICPCVD or PECVD. When using PECVD method of deposition, the deposition temperature is controlled between 200-250°C; when using ICPCVD, its deposition temperature is 50-250°C to avoid damage to GMR/TMR 10.
  • Dry RIE etching is performed on part of the second backplane layer 9b and the first backplane layer 9a to expose the sacrificial layer 8 in the middle area and the peripheral area of the single chip for subsequent sacrifice and release.
  • RIE etching is performed on the second backplane layer 9 b at the position corresponding to the connection line 11 and automatically stops on the metal layer of the connection line to form a gap 110 exposing part of the connection line 11.
  • the pad 12 connected to the connection line is formed at the position of the notch 110 by the Liftoff process or wet etching;
  • the pad 12 can be a composite of Cr and Au, which can be formed by PVD, and can be combined with a Liftoff process or a wet etching method to form a pattern of the pad 12 conducting with the connecting line.
  • the thickness of the Cr/Au composite can be 50/500nm, that is, the thickness of Cr is 50nm and the thickness of Au is 500nm.
  • the back side of the wafer 1 is ground and polished, and the back cavity 1 a is etched by DRIE until the insulating layer 2 is reached.
  • the sacrificial layer is etched by HF to release the diaphragm layer 3.
  • the corrosion time is controlled so that part of the sacrificial layer is retained and plays the role of supporting the back plate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Micromachines (AREA)

Abstract

本发明公开了一种GMR/TMR麦克风的制造方法,包括前道步骤和后道步骤;前道步骤包括在晶圆上依次形成绝缘层、振膜层、永磁体;在晶圆上依次形成牺牲层、第一背板层、GMR/TMR的图案;在第一背板层上形成与GMR/TMR连接的连接线;后道步骤包括:在晶圆上沉积第二背板层;对部分第二背板层、第一背板层进行干法RIE蚀刻,以将部分牺牲层露出;对晶圆的背面进行研磨,并通过DRIE的方式刻蚀背腔;腐蚀牺牲层,以释放振膜层。本发明的制造方法,完全采用沉积、刻蚀的MEMS工艺来制造。

Description

一种GMR/TMR麦克风的制造方法 技术领域
本发明涉及MEMS麦克风的制造领域,更具体地,涉及一种GMR/TMR麦克风的制造工艺。
背景技术
微机电系统(MEMS,Micro-Electro-Mechanical System),也叫做微电子机械系统、微系统、微机械等。微机电系统是在微电子技术(半导体制造技术)基础上发展起来的,融合了光刻、腐蚀、薄膜、LIGA、硅微加工、非硅微加工和精密机械加工等技术制作的高科技电子机械器件。
现有的MEMS麦克风,是基于微机电系统制造的一种微型拾音器件。传统的MEMS麦克风通常采用的是平板电容器式的检测机构。这种麦克风只要依次在衬底上形成平板状且通过支撑部间隔开的振膜、背板即可。振膜、背板可忍受较高的温度,这就使得该麦克风在制造时,按照传统的沉积、蚀刻等步骤进行逐层成型即可。
但是对于GMR/TMR麦克风,GMR/TMR属于微型传感器件,且不耐高温,使得该GMR/TMR麦克风不能按照传统的沉积、蚀刻的方式进行制造。必须选择合适的步骤及结构使得GMR/TMR麦克风的制造变为可能。
发明内容
本发明的一个目的是提供一种GMR/TMR麦克风的制造方法的新技术方案。
根据本发明的第一方面,提供了一种GMR/TMR麦克风的制造方法,包括前道步骤和后道步骤;
所述前道步骤包括:
步骤S100:在晶圆上依次形成绝缘层、振膜层,并在振膜层上形成永 磁体的图案;
步骤S200:在振膜层上形成覆盖永磁体的保护层,对第一保护层进行刻蚀,形成将部分振膜层露出的孔洞;
步骤S300:通过孔洞对部分振膜层进行刻蚀,在振膜层上形成缝隙;
步骤S400:在晶圆上依次形成牺牲层、第一背板层;并在第一背板层上形成与永磁体相对的GMR/TMR的图案;
步骤S500:在第一背板层上形成与GMR/TMR连接的连接线;
所述后道步骤包括:
步骤S600:在晶圆上通过ICPCVD的方式沉积第二背板层,其中ICPCVD的沉积温度为50-250℃;或者在晶圆上通过PECVD的方式沉积第二背板层,其中PECVD的沉积温度为200-250℃;
GMR/TMR与连接线层叠在第一背板层与第二背板层之间;对部分第二背板层、第一背板层进行干法RIE蚀刻,以将部分牺牲层露出;
步骤S700:对与连接线对应位置的第二背板层进行RIE蚀刻,以形成将部分连接线露出的缺口;
步骤S800:通过Liftoff工艺或者湿法腐蚀的方式在缺口的位置形成与连接线连接的焊盘;
步骤S900:对晶圆的背面进行研磨,并通过DRIE的方式刻蚀背腔;
步骤S1000:腐蚀牺牲层,以释放振膜层。
可选地,所述步骤S100中,绝缘层采用SiO 2,通过热氧化或LPCVD的方式形成在晶圆上;振膜层通过LPCVD的方式形成在绝缘层上,且其张应力在0-50MPa。
可选地,所述步骤S100中,永磁体的图案通过PVD结合Liftoff或IBE刻蚀的方式在振膜层上形成,永磁体的厚度为0.01-0.5um。
可选地,步骤S200中,保护层采用SiNx材质,且通过PECVD的方式形成覆盖永磁体的所述保护层,其折射率RI为2.1-2.3,张应力10-100MPa;通过RIE的方式对保护层进行刻蚀形成所述孔洞。
可选地,步骤S300中,通过RIE的方式对多晶硅的振膜层进行刻蚀。
可选地,步骤S400中,所述牺牲层通过PECVD或者ICPCVD的方 式形成,其折射率RI为1.4-1.5,PECVD的沉积温度为280-350℃,ICPCVD的沉积温度为50-300℃,压应力为0-100MPa;第一背板层采用SiNx,并通过PECVD的方式形成,其折射率RI为2.1-2.3。
可选地,步骤S400中,GMR/TMR的图案通过PVD结合Liftoff或干法IBE刻蚀的方式在第一背板层上形成,其厚度约10-60nm。
可选地,步骤S600中,第二背板层的材质与折射率与第一背极层相同。
可选地,还包括在振膜层上形成焊盘的步骤,其包括在步骤S700中,在通过RIE蚀刻形成缺口的同时,对第二背极层、第一背极层、牺牲层、保护层进行刻蚀形成将部分振膜层露出的空间,振膜层作为RIE蚀刻的停止线;还包括在步骤S800中,在形成与连接线连接的焊盘同时,形成与振膜层连接的另一焊盘。
根据本发明的另一方面,还提供了一种根据上述制造方法制得的GMR/TMR麦克风。
根据本公开的一个实施例,完全采用沉积、刻蚀的MEMS工艺来制造GMR/TMR麦克风,避免了键合工艺的使用,保证了永磁体与GMR/TMR之间配合的精度;另外在制造的时候避免了后续工艺对永磁体、GMR/TMR的影响。
通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本发明的实施例,并且连同其说明一起用于解释本发明的原理。
图1至图10是本发明制造工艺的流程示意图。
具体实施方式
现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、 数字表达式和数值不限制本发明的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
为了避免对本申请各步骤中出现的工艺方法出现误解,本申请以本领域技术人员所熟知的英文缩写代表具体的工艺名称。例如文中出现了“干法蚀刻”术语,而术语“RIE”只是干法蚀刻中的其中一种,为了避免将“RIE”与“干法蚀刻”等同,在描述具体工艺的时候均采用本领域技术人员所熟知的“RIE”进行描述。又比如“Liftoff”代表一种剥离工艺,但实际上其包含了本领域技术人员所熟知的多个步骤,例如包含了光刻、制膜、去胶等步骤,为了简化描述,本文以本领域技术人员所熟知的“Liftoff”进行描述,而没有采用容易造成误解的“剥离工艺”。
现对本说明书出现的英文术语的含义进行解释。
“GMR”(Giant Magneto Resistance)为巨磁阻,又称特大磁电阻,其利用的是巨磁阻效应来进行测量的。
“TMR”(Tunnel MagnetoResistance)为隧道磁电阻,其利用的是磁性多层膜材料的隧道磁电阻效应对磁场进行感应。
“SiNx”为氮化硅,氮元素的比列可根据实际需要进行调整,富硅指的是硅含量比较多的SiNx。
“Liftoff”是MEMS工艺中的一种剥离技术,通过在预涂胶上进行图案化处理,然后再制备薄膜。在有胶的地方,薄膜形成在胶上,而没有胶的地方,薄膜就直接形成在下层。去胶后,不需要的薄膜随胶被脱落,而 形成在下层上的薄膜被保留下来形成图形。
“RIE”(Reactive Ion Etching)为反应离子刻蚀,是一种微电子干法腐蚀工艺。
“DRIE”(Deep Reactive Ion Etching)为深度反应离子刻蚀,是一种微电子干法腐蚀工艺。
“IBE”为离子束刻蚀,利用具有一定能量的离子物理轰击材料表面,以达到刻蚀的目的。
“PVD”(Physical Vapor Deposition)为物理气相沉积,指利用物理过程实现物质转移,将原子或分子由源转移到基材表面上的过程。PVD基本方法:真空蒸发、溅射、离子镀等。
“PECVD”(Plasma Enhanced Chemical Vapor Deposition)为等离子体增强化学的气相沉积法,其为化学气相沉积(CVD)的一种。其是借助微波或射频等使含有薄膜成分原子的气体电离,在局部形成等离子体,而等离子体化学活性很强,很容易发生反应,在基片上沉积出所期望的薄膜。
“LPCVD”(Low Pressure Chemical Vapor Deposition)为低压化学气相沉积法,其为化学气相沉积(CVD)的一种。
“ICPCVD”(Inductively Coupled Plasma Chemical Vapor Deposition)为电感耦合等离子体化学气相沉积法,为化学气相沉积(CVD)的一种。其是利用感应耦合在较低温度下形成等离子体进行化学气相沉积薄膜生长。
本发明提供的一种GMR/TMR麦克风的制造方法,其包括前道步骤和后道步骤。
前道步骤包括:
步骤S100:在晶圆上依次形成绝缘层、振膜层,并在振膜层上形成永磁体的图案;
首先在晶圆上沉积绝缘层,绝缘层可以采用本领域技术人员所熟知的SiO 2材质。可通过热氧化或者LPCVD的方式在晶圆上形成该绝缘层,绝缘层的厚度例如可以是1μm。
其次,在绝缘层继续沉积振膜层,该振膜层可以选用多晶硅,振膜层是麦克风的结构层,而且在GMR/TMR、永磁体之前成型,因此可以选用LPCVD 的方式进行沉积,以在较高温度的条件下控制振膜层的参数。厚度可控制在1-2μm,掺杂退火;张应力控制在0-50Mpa,使其具有低应力梯度。例如控制使其释放后,具有100μm长的悬臂梁发生的翘曲小于0.1μm。
最后,通过PVD结合Liftoff或干法IBE刻蚀的方式在振膜层上形成永磁体的图案,永磁体的厚度控制在0.01-0.5μm之间。
例如当选用Liftoff工艺时,可在振膜层上形成光刻胶,并对光刻胶刻蚀形成光刻图案;通过PVD的方式在光刻胶上沉积永磁体膜层,最后去胶形成永磁体的图案。
例如当选用干法IBE刻蚀的工艺时,可在振膜层通过PVD的方式沉积永磁体膜层,之后通过IBE的工艺对永磁体膜层进行刻蚀,以形成永磁体的图案。
步骤S200:在振膜层上形成覆盖永磁体的保护层,对保护层进行图案化刻蚀,形成将部分振膜层露出的孔洞;
保护层采用SiNx材质,为了避免对永磁体造成影响,可通过温度较低的PECVD的方式在晶圆的整个上表面形成保护层。保护层富硅,其折射率RI2.1-2.3,厚度控制在0.5um左右,张应力10-100MPa,沉积温度约300℃。
通过RIE的方式对保护层进行刻蚀,以形成将部分振膜层透露的孔洞,以便后续可通过该孔洞对振膜层进行刻蚀。可以选择该孔洞位于邻近永磁体的位置。另外,对保护层进行图案化刻蚀不仅是为了形成孔洞,还根据实际需要在合适的位置刻蚀,以将振膜层的功能区域露出,在此不再具体说明。
步骤S300:通过孔洞对部分振膜层进行刻蚀,在振膜层上形成缝隙;
通过RIE的方式对多晶硅的振膜层进行刻蚀形成缝隙,以使振膜层在后续释放后可以形成悬臂梁结构,或者形成透气的振膜层。
步骤S400:在晶圆上依次形成牺牲层、第一背板层;并在第一背板层上形成与永磁体相对的GMR/TMR的图案;
首先,在晶圆的整个上表面形成牺牲层,牺牲层可以采用低温氧化物,或者磷硅玻璃等。牺牲层可以通过PECVD或者ICPCVD的方式沉积在整 个晶圆的上表面,牺牲层填充到振膜层的缝隙以及保护层的孔洞中。
其折射率RI控制在1.4-1.5,总厚度可控制在4um+/-5%;采用PECVD时,沉积温度可以选择为280-350℃;当采用ICPCVD时,沉积温度可以选择为50-300℃。牺牲层的压应力为0-100MPa。
之后,在牺牲层的上表面沉积第一背板层,第一背板层可采用SiNx。受限于永磁体的耐热温度,且背板不是麦克风的主要功能结构,因此可通过PECVD的方式在牺牲层的整个上表面形成第一背板层。第一背板层富硅,其折射率RI2.1-2.3,厚度控制在0.5μm左右,沉积温度约300℃。
最后,通过PVD结合Liftoff或干法IBE刻蚀的方式在第一背板层上形成GMR/TMR的图案。GMR/TMR的厚度控制在10-60nm之间。
例如当选用Liftoff工艺时,可在第一背板层上形成光刻胶,并对光刻胶刻蚀形成光刻图案;通过PVD的方式在光刻胶上沉积GMR/TMR膜层,最后去胶形成GMR/TMR的图案。PVD的成型温度较低,甚至可以在常温中进行。
例如当选用干法IBE刻蚀的工艺时,可在第一背板层通过PVD的方式沉积GMR/TMR膜层,之后通过IBE的工艺对GMR/TMR膜层进行刻蚀,以形成GMR/TMR的图案。
步骤S500:在第一背板层上形成与GMR/TMR连接的连接线;
连接线可以采用金属铝,或者采用Cr与Au复合的导电膜,厚度可以控制在0.1-0.2μm。连接线与GMR/TMR连接,并将GMR/TMR的信号导通至合适的位置,以便后续引出。连接线可以通过PVD结合Liftoff工艺或湿法腐蚀的工艺形成,在此不再具体说明。PVD的成型温度较低,甚至可以在常温中进行。
GMR/TMR的耐热温度比永磁体的耐热温度更低,在选择成型方法的时候,要严格控制温度,避免对GMR/TMR造成损伤。
所述后道步骤包括:
步骤S600:在晶圆上通过超低温(50-250℃)ICPCVD的方式沉积第二背板层;或者在晶圆上通过PECVD的方式沉积第二背板层,其中PECVD的沉积温度为200-250℃;
GMR/TMR与连接线层叠在第一背板层与第二背板层之间;对部分第二背板层、第一背板层进行干法RIE蚀刻,以将部分牺牲层露出;
沉积的第二背板层、第一背极板将GMR/TMR、连接线夹持起来,既可以为GMR/TMR、连接线提供支撑,还可以保护GMR/TMR。第二背板层与第一背板层的材质、参数可以相同,其可采用SiNx。受限于永磁体、GMR/TMR的耐热温度,可通过PECVD的方式形成。第二背板层富硅,其折射率RI2.1-2.3,厚度控制在0.5μm左右,沉积温度约200-250℃,张应力0-40MPa。
对第二背板层、第一背板层共同进行RIE蚀刻,以将背板下方的牺牲层露出来,以便后续的牺牲层腐蚀。
步骤S700:对与连接线对应位置的第二背板层进行RIE蚀刻,以形成将部分连接线露出的缺口;
通过RIE蚀刻将第二背板层下方的部分连接露出,以便后续将连接线的电信号引出。通过RIE对第二背板层进行蚀刻,并自动停止在连接线的金属层上。
步骤S800:通过Liftoff工艺或者湿法腐蚀的方式在缺口的位置形成与连接线连接的焊盘;
焊盘可采用复合的Cr与Au,其可通过PVD的方式形成,并可结合Liftoff工艺或者湿法腐蚀的方式形成与连接线导通的焊盘图案。Cr/Au复合的厚度可以为50/500nm。
步骤S900:对晶圆的背面进行研磨,并通过DRIE的方式刻蚀背腔;
对晶圆远离结构层的背面进行研磨、抛光,例如将厚度研磨至400+/-5um。之后通过DRIE的方式刻蚀出背腔,直到绝缘层。
步骤S1000:腐蚀牺牲层,以释放振膜层。
可通过HF对牺牲层进行腐蚀,将振膜层释放出来,以便振膜层可以振动。控制腐蚀的时间,以使部分牺牲层被保留下来,起到支撑背板的作用。
本发明还提供了一种通过上述制造方法制得的GMR/TMR麦克风,参考图10。当振膜层3振动时,永磁体4与GMR/TMR 10之间的间距发生变化, 从而使得GMR/TMR 10产生变化的电信号,并通过连接线11、焊盘12引出。在该麦克风及其制造方法中,只需要将层叠在背板9中GMR/TMR 10的电信号引出即可。另外,该麦克风在制造的时候,先形成功能器件永磁体,再形成GMR/TMR 10。如果先形成GMR/TMR 10,则后续的工艺会对GMR/TMR 10造成损伤。
在本发明一个可选的实施方式中,可在振膜层3上形成另一外接焊盘,以通过该外接焊盘对振动膜3施加偏压或者静电力等。因此在制造方法中,还包括在振膜层3上形成外接焊盘的步骤,其包括在步骤S700中,在通过RIE蚀刻形成缺口的同时,对第二背极层、第一背极层、牺牲层、保护层进行刻蚀形成将部分振膜层露出的空间,振膜层作为RIE蚀刻的停止线;还包括在S800中,在形成与连接线连接的焊盘同时,形成与振膜层连接的另一外接焊盘13,参考图10。
下面参照图1至图10来描述根据本发明的GMR/TMR麦克风的制造方法的一个例子。
参考图1,首先在晶圆1上沉积绝缘层2,晶圆1通常采用硅晶片。绝缘层2采用本领域技术人员所熟知的SiO 2材质。其可通过热氧化或者LPCVD的方式在晶圆1上形成,绝缘层2的厚度例如可以是1μm。
在绝缘层2上以LPCVD的方式沉积振膜层3,该振膜层3可以选用多晶硅,振膜层3的厚度可控制在1-2μm,掺杂退火;应力控制在0-50Mpa,使其具有低应力梯度。例如控制使其释放后100μm的悬臂梁翘曲小于0.1μm。
通过PVD结合Liftoff或干法IBE刻蚀的方式在振膜层3上形成永磁体4的图案,永磁体4的厚度控制在0.01-0.5μm之间。
参考图2,在振膜层3上形成覆盖永磁体4的保护层6,保护层6采用SiNx材质,为了避免对永磁体造成影响,可通过温度较低的PECVD的方式在晶圆的整个上表面形成保护层6。保护层6富硅,其折射率RI2.1-2.3,厚度控制在0.5um左右,张应力10-100MPa,沉积温度约300℃。
通过RIE的方式对保护层6进行刻蚀,形成将部分振膜层3露出的孔洞60,以便后续可通过该孔洞60对振膜层3进行刻蚀。
为了在晶圆1上形成单个芯片的切割道,在通过RIE对保护层6刻蚀形成孔洞60的同时,将保护层6的相应位置刻蚀掉形成通道61。
参考图3,通过RIE的方式经孔洞60对部分振膜层3进行刻蚀,在振膜层3上形成缝隙30;以使振膜层3在后续释放后可以形成悬臂梁结构,或者形成透气的振膜层3。在形成缝隙30的同时,经通道61对相应位置的振膜层3进行刻蚀,形成切割道7。
参考图4,通过PECVD或者ICPCVD的方式在晶圆1的整个上表面形成牺牲层8,牺牲层8可以采用低温氧化物,例如氧化硅或者磷硅玻璃等。该牺牲层8填充到振膜层3的缝隙30、保护层的孔洞中以及单个芯片周围的切割道7中。
其折射率RI控制在1.4-1.5,总厚度可控制在4um+/-5%;PECVD的沉积温度为280-350℃,ICPCVD的沉积温度为50-300℃。牺牲层压应力为10-50MPa。
在牺牲层8的上表面通过PECVD的方式沉积第一背板层9a,第一背板层可9a采用SiNx。第一背板层9a富硅,其折射率RI2.1-2.3,厚度控制在0.5μm左右,沉积温度约300℃,以避免对永磁体4带来损伤。
通过PVD结合Liftoff或干法IBE刻蚀的方式在第一背板层9a上形成GMR/TMR 10的图案。GMR/TMR 10的厚度控制在10-60nm之间。
参考图5,在第一背板层9a上形成与GMR/TMR 10连接的连接线11,连接线11可以采用金属铝,或者采用Cr与Au复合的导电膜,厚度可以控制在0.1-0.2μm。连接线与GMR/TMR连接,并将GMR/TMR的信号导通至合适的位置,以便后续引出。连接线可以通过PVD结合Liftoff工艺或湿法腐蚀的工艺形成,在此不再具体说明。PVD的成型温度较低,甚至可以在常温中进行。
上述各步骤均为前道步骤,在形成连接线与GMR/TMR后,需要转入后道步骤进行处理。
参考图6,在晶圆1的上表面沉积第二背板层9b,以通过第二背板层9b与第一背板层9a对GMR/TMR 10形成保护。
第二背板层9b可以采用与第一背板层9a相同的材质。其可通过 ICPCVD的方式或者PECVD的方式沉积。当采用PECVD的方式沉积时,沉积的温度控制200-250℃之间;当采用ICPCVD,其沉积温度为50-250℃,以避免损伤GMR/TMR 10。
对部分第二背板层9b、第一背板层9a进行干法RIE蚀刻,将中部区域以及单个芯片周边区域的牺牲层8露出,以便后续的牺牲、释放。
参考图7,对与连接线11对应位置的第二背板层9b进行RIE蚀刻,并自动停止在连接线的金属层上,以形成将部分连接线11露出的缺口110。
参考图8,通过Liftoff工艺或者湿法腐蚀的方式在缺口110的位置形成与连接线连接的焊盘12;
焊盘12可采用复合的Cr与Au,其可通过PVD的方式形成,并可结合Liftoff工艺或者湿法腐蚀的方式形成与连接线导通的焊盘12图案。Cr/Au复合的厚度可以为50/500nm,即Cr的厚度为50nm,Au的厚度为500nm。
参考图9,对晶圆1的背面进行研磨、抛光,并通过DRIE的方式刻蚀背腔1a,直到绝缘层2。
参考图10,通过HF对牺牲层进行腐蚀,以释放振膜层3。控制腐蚀的时间,以使部分牺牲层被保留下来,起到支撑背板的作用。
虽然已经通过例子对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本发明的范围。本领域的技术人员应该理解,可在不脱离本发明的范围和精神的情况下,对以上实施例进行修改。本发明的范围由所附权利要求来限定。

Claims (10)

  1. 一种GMR/TMR麦克风的制造方法,其特征在于,包括前道步骤和后道步骤;
    所述前道步骤包括:
    步骤S100:在晶圆上依次形成绝缘层、振膜层,并在振膜层上形成永磁体的图案;
    步骤S200:在振膜层上形成覆盖永磁体的保护层,对第一保护层进行刻蚀,形成将部分振膜层露出的孔洞;
    步骤S300:通过孔洞对部分振膜层进行刻蚀,在振膜层上形成缝隙;
    步骤S400:在晶圆上依次形成牺牲层、第一背板层;并在第一背板层上形成与永磁体相对的GMR/TMR的图案;
    步骤S500:在第一背板层上形成与GMR/TMR连接的连接线;
    所述后道步骤包括:
    步骤S600:在晶圆上通过ICPCVD的方式沉积第二背板层,其中ICPCVD的沉积温度为50-250℃;或者在晶圆上通过PECVD的方式沉积第二背板层,其中PECVD的沉积温度为200-250℃;
    GMR/TMR与连接线层叠在第一背板层与第二背板层之间;对部分第二背板层、第一背板层进行干法RIE蚀刻,以将部分牺牲层露出;
    步骤S700:对与连接线对应位置的第二背板层进行RIE蚀刻,以形成将部分连接线露出的缺口;
    步骤S800:通过Liftoff工艺或者湿法腐蚀的方式在缺口的位置形成与连接线连接的焊盘;
    步骤S900:对晶圆的背面进行研磨,并通过DRIE的方式刻蚀背腔;
    步骤S1000:腐蚀牺牲层,以释放振膜层。
  2. 根据权利要求1所述的制造方法,其特征在于,所述步骤S100中,绝缘层采用SiO 2,通过热氧化或LPCVD的方式形成在晶圆上;振膜层通过LPCVD的方式形成在绝缘层上,且其张应力在0-50MPa。
  3. 根据权利要求1所述的制造方法,其特征在于,所述步骤S100中, 永磁体的图案通过PVD结合Liftoff或IBE刻蚀的方式在振膜层上形成,永磁体的厚度为0.01-0.5um。
  4. 根据权利要求1所述的制造方法,其特征在于,步骤S200中,保护层采用SiNx材质,且通过PECVD的方式形成覆盖永磁体的所述保护层,其折射率RI为2.1-2.3,张应力10-100MPa;通过RIE的方式对保护层进行刻蚀形成所述孔洞。
  5. 根据权利要求1所述的制造方法,其特征在于,步骤S300中,通过RIE的方式对多晶硅的振膜层进行刻蚀。
  6. 根据权利要求1所述的制造方法,其特在于,步骤S400中,所述牺牲层通过PECVD或者ICPCVD的方式形成,其折射率RI为1.4-1.5,PECVD的沉积温度为280-350℃,ICPCVD的沉积温度为50-300℃;牺牲层的压应力为0-100MPa;第一背板层采用SiNx,并通过PECVD的方式形成,其折射率RI为2.1-2.3。
  7. 根据权利要求1所述的制造方法,其特在于,步骤S400中,GMR/TMR的图案通过PVD结合Liftoff或干法IBE刻蚀的方式在第一背板层上形成,其厚度约10-60nm。
  8. 根据权利要求7所述的制造方法,其特在于,步骤S600中,第二背板层的材质与折射率与第一背极层相同。
  9. 根据权利要求1所述的制造方法,其特在于,还包括在振膜层上形成焊盘的步骤,其包括在步骤S700中,在通过RIE蚀刻形成缺口的同时,对第二背极层、第一背极层、牺牲层、保护层进行刻蚀形成将部分振膜层露出的空间,振膜层作为RIE蚀刻的停止线;还包括在步骤S800中,在形成与连接线连接的焊盘同时,形成与振膜层连接的另一焊盘。
  10. 一种根据上述权利要求1至9任一项制造方法制得的GMR/TMR麦克风。
PCT/CN2019/107234 2019-01-29 2019-09-23 一种gmr/tmr麦克风的制造方法 WO2020155654A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910087106.2A CN109819390B (zh) 2019-01-29 2019-01-29 一种gmr/tmr麦克风的制造方法
CN201910087106.2 2019-01-29

Publications (1)

Publication Number Publication Date
WO2020155654A1 true WO2020155654A1 (zh) 2020-08-06

Family

ID=66605737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107234 WO2020155654A1 (zh) 2019-01-29 2019-09-23 一种gmr/tmr麦克风的制造方法

Country Status (2)

Country Link
CN (1) CN109819390B (zh)
WO (1) WO2020155654A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109819390B (zh) * 2019-01-29 2020-05-29 歌尔股份有限公司 一种gmr/tmr麦克风的制造方法
CN110868681B (zh) * 2019-11-29 2021-09-14 绍兴中芯集成电路制造股份有限公司 Mems麦克风翘曲补偿方法和mems麦克风晶圆
CN111885472B (zh) * 2020-06-24 2021-12-31 歌尔微电子有限公司 微机电系统麦克风、麦克风单体及电子设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1571582A (zh) * 2004-04-26 2005-01-26 清华大学 基于磁电阻效应的微声学器件
US20050122638A1 (en) * 2002-03-22 2005-06-09 Headway Technologies, Inc. Transverse or longitudinal patterned synthetic exchange biasing for stabilizing GMR sensors
CN101065721A (zh) * 2004-09-27 2007-10-31 皇家飞利浦电子股份有限公司 用于输入设备的磁传感器
US20180002165A1 (en) * 2016-06-29 2018-01-04 Akustica, Inc. Protective Coating on Trench Features of a Wafer and Method of Fabrication Thereof
CN108924720A (zh) * 2018-06-25 2018-11-30 歌尔股份有限公司 Mems麦克风
CN208300024U (zh) * 2018-06-25 2018-12-28 歌尔股份有限公司 Mems麦克风
CN109218870A (zh) * 2018-08-06 2019-01-15 歌尔股份有限公司 一种麦克风
CN109275080A (zh) * 2018-08-06 2019-01-25 歌尔股份有限公司 一种传感器
CN109819390A (zh) * 2019-01-29 2019-05-28 歌尔股份有限公司 一种gmr/tmr麦克风的制造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI308647B (en) * 2006-09-29 2009-04-11 Univ Nat Central Guided-mode resonator and the method for manufacturing the same
US8638965B2 (en) * 2010-07-14 2014-01-28 Starkey Laboratories, Inc. Receiver-in-canal hearing device cable connections

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050122638A1 (en) * 2002-03-22 2005-06-09 Headway Technologies, Inc. Transverse or longitudinal patterned synthetic exchange biasing for stabilizing GMR sensors
CN1571582A (zh) * 2004-04-26 2005-01-26 清华大学 基于磁电阻效应的微声学器件
CN101065721A (zh) * 2004-09-27 2007-10-31 皇家飞利浦电子股份有限公司 用于输入设备的磁传感器
US20180002165A1 (en) * 2016-06-29 2018-01-04 Akustica, Inc. Protective Coating on Trench Features of a Wafer and Method of Fabrication Thereof
CN108924720A (zh) * 2018-06-25 2018-11-30 歌尔股份有限公司 Mems麦克风
CN208300024U (zh) * 2018-06-25 2018-12-28 歌尔股份有限公司 Mems麦克风
CN109218870A (zh) * 2018-08-06 2019-01-15 歌尔股份有限公司 一种麦克风
CN109275080A (zh) * 2018-08-06 2019-01-25 歌尔股份有限公司 一种传感器
CN109819390A (zh) * 2019-01-29 2019-05-28 歌尔股份有限公司 一种gmr/tmr麦克风的制造方法

Also Published As

Publication number Publication date
CN109819390B (zh) 2020-05-29
CN109819390A (zh) 2019-05-28

Similar Documents

Publication Publication Date Title
WO2020155654A1 (zh) 一种gmr/tmr麦克风的制造方法
CN109941956B (zh) Mems传感器及电子设备
US7647688B1 (en) Method of fabricating a low frequency quartz resonator
JP6320812B2 (ja) 圧力センサの製造方法、成膜装置及び熱処理装置
WO2017206813A1 (zh) Mems麦克风及其制备方法
US7527997B2 (en) MEMS structure with anodically bonded silicon-on-insulator substrate
JP2002283297A5 (zh)
JPH07335908A (ja) 運動センサーを製造する方法
WO2015103910A1 (zh) 薄膜支撑梁的制作方法
TW201927684A (zh) 具有局部應變與應力調諧之裝置
JP6175134B2 (ja) Memsチップ及びその製造方法
JPH11230707A (ja) マイクロセンサデバイスの製造方法
US11905167B2 (en) Dual membrane transducer
WO2010072044A1 (zh) 一种基于金属钛的mems机械继电器的制备方法
CN114148986A (zh) 微机电系统传感器、其制造方法及电子设备
CN104909334B (zh) Mems器件的制作方法
CN107395151B (zh) 一种压阻式金硅复合纳米梁谐振器及其制作方法
JPH01213523A (ja) マイクロバルブ・マスフローコントローラ
JP2007278733A (ja) 磁気センサ及びその製造方法
CN114143688B (zh) 微机电系统磁传感器的制造方法、磁传感器和电子设备
US6797591B1 (en) Method for forming a semiconductor device and a semiconductor device formed by the method
CN113336182B (zh) 一种微机电系统封装结构及其制备方法
CN112601168B (zh) Mems麦克风的制备方法及mems器件的牺牲层的释放方法
CN104891428A (zh) 三轴各向异性磁阻的制造方法
Zhang et al. Silicon nanowires embedded pressure sensor with annularly grooved diaphragm for sensitivity improvement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19913326

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19913326

Country of ref document: EP

Kind code of ref document: A1