WO2015097954A1 - 電波反射装置 - Google Patents

電波反射装置 Download PDF

Info

Publication number
WO2015097954A1
WO2015097954A1 PCT/JP2014/005284 JP2014005284W WO2015097954A1 WO 2015097954 A1 WO2015097954 A1 WO 2015097954A1 JP 2014005284 W JP2014005284 W JP 2014005284W WO 2015097954 A1 WO2015097954 A1 WO 2015097954A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio wave
angle
antenna device
reflector
wave reflection
Prior art date
Application number
PCT/JP2014/005284
Other languages
English (en)
French (fr)
Inventor
浩介 田邊
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US15/104,674 priority Critical patent/US10637150B2/en
Priority to CN201480070896.9A priority patent/CN105849977A/zh
Priority to EP14874352.9A priority patent/EP3089268B1/en
Publication of WO2015097954A1 publication Critical patent/WO2015097954A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/1207Supports; Mounting means for fastening a rigid aerial element
    • H01Q1/1228Supports; Mounting means for fastening a rigid aerial element on a boom
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/18Reflecting surfaces; Equivalent structures comprising plurality of mutually inclined plane surfaces, e.g. corner reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/104Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces using a substantially flat reflector for deflecting the radiated beam, e.g. periscopic antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • H01Q19/185Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces wherein the surfaces are plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
    • H01Q3/08Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying two co-ordinates of the orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/12Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems
    • H01Q3/16Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems for varying relative position of primary active element and a reflecting device
    • H01Q3/20Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems for varying relative position of primary active element and a reflecting device wherein the primary active element is fixed and the reflecting device is movable
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/145Passive relay systems

Definitions

  • the present invention relates to a radio wave reflection device. Specifically, the present invention relates to a radio wave reflection device that relays radio communication radio waves by reflection.
  • a point-to-point system using a parabolic antenna is used as a mobile backhaul radio system.
  • measures are often taken to secure the line of sight by installing the antenna at a high place.
  • radio waves are simply reflected by a single reflector.
  • a single reflector can reflect radio waves so as to bypass obstacles.
  • Patent Documents 4-6 disclose a single reflector having a mechanism capable of adjusting the angle, and finely adjust the angle of the reflector so that the maximum reception level can be obtained while using such an angle adjustment mechanism. I think that it should be done. However, for example, consider a case where a reflector is installed so as to relay radio waves between the first antenna and the second antenna. In this case, it is necessary to maximize the reception level of the second antenna while changing the direction of the first antenna, the direction of the reflector, and further the direction of the second antenna.
  • each of these is a vector in a three-dimensional space. As a matter of fact, it would be impossible to match these by looking at the reception level.
  • An object of the present invention is to provide a radio wave reflection device capable of relaying radio waves with sufficient reflection intensity. Furthermore, the objective of this invention is providing the electromagnetic wave reflection apparatus which can adjust direction easily and correctly.
  • the radio wave reflection device of the present invention is A radio wave reflection device that relays radio wave communication between a first antenna device and a second antenna device at a remote location by reflection, A mounting part for fixedly mounting the radio wave reflection device in a stable installation place; A reflector unit that supports two reflectors; A joint portion connecting between the reflector unit and the mounting portion, The two reflecting plates are supported in a state inclined at a predetermined angle with respect to the respective supporting shafts, the reflecting surfaces face each other, and at least one of them can be rotated around the supporting shaft while being coaxial.
  • the joint portion has biaxial rotational degrees of freedom that are orthogonal to each other.
  • the installation method of the radio wave reflection device of the present invention is as follows.
  • a method of installing a radio wave reflection device that relays radio wave communication between a first antenna device and a second antenna device at remote locations by reflection
  • the radio wave reflector is A mounting part for fixedly mounting the radio wave reflection device in a stable installation place;
  • a reflector unit that supports the two reflectors at an inclination angle of 45 °, and supports the two reflectors so that they can rotate independently while being coaxial,
  • connecting the reflector unit and the mounting portion, and having a joint portion having a biaxial rotational freedom in an orthogonal relationship Measure the direction of the first antenna device and the direction of the second antenna device, Specify an incident surface defined by the first antenna device, the second antenna device, and the radio wave reflection device, Adjusting the angle of the joint so that the normal of the incident surface and the rotation axis of the two reflectors coincide; Further, the two reflecting plates are respectively directed toward the first antenna device and the second antenna device.
  • a radio wave reflection device that relays radio wave communication between a first antenna device and a second antenna device at a remote location with sufficient reflection intensity.
  • the figure which shows a communication system The figure which shows an electromagnetic wave reflection apparatus.
  • the figure which shows the structure of a coupling part The figure for demonstrating the path
  • the flowchart which shows the installation procedure of a radio wave reflection apparatus The flowchart which shows the installation procedure of a radio wave reflection apparatus.
  • the figure which illustrated the parameter The figure which illustrated the angle measuring device provided in a support shaft.
  • FIG. 1 shows a communication system 100.
  • the communication system 100 includes a first antenna device 110 and a second antenna device 120, and transmits and receives communication radio waves between the first antenna device 110 and the second antenna device 120.
  • the first antenna device 110 and the second antenna device 120 transmit and receive radio waves using a directional antenna such as a parabolic antenna.
  • a directional antenna such as a parabolic antenna.
  • the radio wave reflection device 200 is installed as a part of the communication system 100, and the radio wave reflection device 200 reflects the radio wave so as to bypass the obstacle 10. Thereby, point-to-point communication is realized between the first antenna device 110 and the second antenna device 120.
  • the present embodiment is characterized by the structure of the radio wave reflection device 200 and the method of appropriately installing the radio wave reflection device 200. This will be described below.
  • FIG. 2 shows the radio wave reflection device 200.
  • the radio wave reflection device 200 includes an attachment part 210, a joint part 220, and a reflection plate unit 300.
  • the radio wave reflection device 200 is ideally installed at a high place, and is installed at a high place by using a pole 20 or a building.
  • a pole 20 is set up, and the radio wave reflection device 200 is supported at a high place by the pole 20.
  • the structure of the attachment portion 210 is not particularly limited, and any structure that can attach and fix the radio wave reflection device 200 to the pole 20 may be used.
  • the pole 20 is attached to two plates 211 and 211 as shown in FIG. Generally, a structure sandwiched between the two is conceivable.
  • the joint part 220 connects the attachment part 210 and the reflector unit 300 so that the posture of the reflector unit with respect to the attachment part 210 (or the pole 20) can be changed.
  • the joint 220 may be a well-known universal joint, but if possible, a scale is provided so that the azimuth angle (Azimuth Angle) and elevation angle (Elevation Angle) can be measured, and the scale is read. It is preferable that it is easy. Therefore, the structure of the joint part 220 may have a biaxial rotational degree of freedom in an orthogonal relationship.
  • the universal joint using the cross shaft is not bad, but more preferably, the joint structure in which the AZ axis (vertical axis) and the EL axis (horizontal axis) are separated as shown in FIG. Is desirable.
  • the joint part 220 has two axes that are orthogonal to each other as a rotation axis. (To be precise, the two axes are not “orthogonal" and are in a spatially twisted position. When one axis is projected so as to overlap the other, it is orthogonal.)
  • the radio wave reflection device 200 it is desirable to adjust so that one of these two axes is vertical and the other axis is horizontal. Therefore, the vertical axis is the AZ axis, and the horizontal axis is the EL axis. That is, the azimuth angle (Azimuth Angle) of the reflecting plate unit 300 is changed by the rotation around the AZ axis.
  • the elevation angle (Elevation Angle) of the reflector unit 300 is changed by the rotation around the EL axis.
  • ⁇ I will add a note about the name of the angle.
  • the angle above the horizontal plane is called the elevation angle
  • the angle below the horizontal plane is generally called the depression angle.
  • the angle will be referred to as the elevation angle.
  • an angle between the vertical line and the vertical line is also referred to as an elevation angle.
  • the joint part 220 includes a fixed part 230 integrated with the mounting part 210, a rotating part 240 supported (pivotally supported) on the fixed part 230 with the AZ axis as a rotation axis, and a reflector unit 300. And a connecting portion 250 that is integrated with the rear surface and supported (pivotally supported) by the rotating part 240 about the EZ axis as a rotation axis.
  • the fixed part 230 has two support pieces 231 and 231 bent in an L shape from the base surface when viewed from the side, and the two support pieces 231 and 231 are parallel to each other and face each other with a predetermined gap. is doing.
  • the predetermined gap is an interval in the AZ axis (vertical axis) direction.
  • the two support pieces 231 and 231 have a hole 232 (may be a concave portion or a convex portion) on one imaginary line along the AZ axis (vertical axis), and pivotally support the rotating part 240.
  • a scale 233 for angle measurement is formed on the outer surface of the support piece 231.
  • the angle scale 233 is an angle scale for measuring the azimuth angle (AZ).
  • a part of the outer edge of the support piece 231 has an arc shape, which makes it easy to read the relative angular position of the reference mark 242 provided on the rotating part 240 side.
  • Rotating part 240 has two connecting pieces 241 and 241 on the back side of the base surface, and two supporting pieces 245 and 245 on the front side.
  • the side of the reflector unit 300 is the front side
  • the side of the mounting portion 210 is the back side.
  • the connection pieces 241 and 241 are bent in an L shape from the base surface in a side view, and are pivotally supported by the support pieces 231 and 231 of the fixing part 230. Since the connecting pieces 241 and 241 are pivotally supported by the support pieces 231 and 231 of the fixed part 230, the rotating part 240 can be rotated in the azimuth (AZ) direction.
  • a reference mark 242 is provided on the outer surface of the connecting piece 241.
  • the reference mark 242 indicates a relative angular position with respect to the angle scale 233 for measuring the azimuth angle (AZ).
  • the reference mark 242 may be engraved on the outer surface of the connecting piece 241, but it may be a seal type that can be pasted or peeled off.
  • the support piece 245 is bent in an L shape from the base surface in a front view, and the two support pieces 245 and 245 are parallel to each other and face each other with a predetermined gap.
  • the two support pieces 245 and 245 face each other with a predetermined gap in the EL axis (horizontal axis) direction.
  • the two support pieces 245 and 245 have a hole 246 (may be a concave portion or a convex portion) on one imaginary line along the EL axis (horizontal axis), and pivotally support the connecting portion 250.
  • a scale 247 for measuring an angle is formed on the outer surface of the support piece 245, a scale 247 for measuring an angle is formed.
  • the angle scale 247 is an angle scale for measuring an elevation angle (EL).
  • Part of the outer edges of the support pieces 245 and 245 have an arc shape, which makes it easy to read the relative angular position of the reference mark 251 provided on the connecting portion 250 side.
  • the reference mark 251 may be engraved, but it may be a seal type that can be pasted or peeled off.
  • Such a joint portion 220 can change the azimuth angle and elevation angle of the reflector unit 300 independently, and can independently read the azimuth angle and elevation angle.
  • the reflection plate unit 300 includes a radome 310, a support frame 320, a first support shaft (rotation support shaft) 330, a second support shaft (rotation support shaft) 340, a first reflection plate 350, and a second reflection plate. 360 and three scopes (sighting devices).
  • the radome 310 is indicated by a chain line, and the inside of the radome 310 is seen through.
  • the support frame 320 is a U-shaped member as a whole. That is, the support frame 320 has support arms 322 ⁇ / b> A and 322 ⁇ / b> B extending laterally from the upper and lower ends of the column part 321 arranged vertically (vertically), and has a U-shape as a whole.
  • the upper support arm is the first support arm 322A
  • the lower support arm is the second support arm 322B.
  • the back side of the column portion 321 becomes the connecting portion 250 and is pivotally supported by the rotating part 240 of the joint portion 220.
  • the column portion 321 exists in one direction corresponding to the back side, but the other direction is opened. Therefore, radio waves can be received or transmitted over a wide angle.
  • the first support shaft 330 is disposed so as to hang from the first support arm 322A. Further, the first support shaft 330 is supported by the first support arm 322A so that the first support shaft 330 can rotate about the axis thereof.
  • the second support shaft 340 is disposed so as to rise from the second support arm 322B. Further, the second support shaft 340 is supported by the second support arm 322B so that the second support shaft 340 can be rotated with its axis as a rotation axis.
  • the axis (rotation axis) of the first support shaft 330 and the axis (rotation axis) of the second support shaft 340 are arranged on one virtual axis. (That is, the first support shaft 330 and the second support shaft 340 are coaxial.) This virtual axis is referred to as the main axis L of the reflector unit 300.
  • the first reflector 350 is fixed to the first support shaft 330 at a predetermined inclination angle.
  • the first reflector 350 is fixed to the first support shaft 330 at an inclination angle of 45 °.
  • the second reflection plate 360 is fixed to the second support shaft 340 at a predetermined inclination angle.
  • the second reflection plate 360 is fixed to the second support shaft 340 at an inclination angle of 45 °. Yes.
  • the first reflecting plate 350 and the second reflecting plate 360 are inclined by 45 ° and are not called “opposing”, but their reflecting surfaces are almost facing each other. Therefore, as shown in FIG.
  • the radio wave coming from one antenna device is reflected by the first reflecting plate 350 and incident on the second reflecting plate 360, and further the second reflecting The radio wave can be transmitted to the other antenna device (second antenna device 120) after being reflected by the plate 360.
  • second antenna device 120 the other antenna device
  • main scope 370 is fixed to the support frame 320, that is, the main scope 370 and the support frame 320 are displaced together. In other words, the main scope 370 is displaced integrally with the entire reflector unit 300.
  • the main scope 370 When installing the main scope 370 on the support frame 320, the main scope 370 is arranged so that the optical axis of the main scope 370 is orthogonal to the main axis L of the reflector unit 300.
  • the optical axis of the main scope 370 and the main axis L of the reflector unit 300 may not be “orthogonal” but may be in a spatially twisted position. It is preferable to have an orthogonal relationship when the axis is projected so as to overlap the main axis L of the reflector unit 300.
  • the meaning of this arrangement relationship will be apparent in the angle adjustment procedure described later. , A word.
  • the first reflector 350 and the second reflector 360 are arranged at an inclination of 45 °, the incident surface defined by the first antenna device 110, the second antenna device 120, and the radio wave reflector 200 and the reflector unit 300
  • the main axis L is orthogonal
  • the radio wave from the first antenna device 110 can be relayed to the second antenna device 120. That is, it is necessary to adjust the posture of the reflector unit 300 so that the main axis L of the reflector unit 300 is orthogonal to the incident surface. Therefore, if the optical axis of the main scope 370 and the main axis L of the reflector unit 300 are orthogonal to each other, the main scope 370 can easily adjust the direction of the main axis L of the reflector unit 300.
  • the direction in which the line of sight of the main scope is directed is not a particular problem, but the direction in which the support arms 322A and 322B extend and the direction of the line of sight of the main scope 370 are determined based on the overall shape of the reflector unit 300. It is natural to keep them together and it will be easy for the user to use.
  • the first scope 371 is attached to the first support shaft 330, and the second scope 372 is attached to the second support shaft 340.
  • the optical axis of the first scope 371 is orthogonal to the first support axis 330, and the optical axis of the second scope 372 is orthogonal to the second support axis 340.
  • attachment portions 370A, 371A, and 372A for attaching / detaching the main scope 370, the first scope 371, and the second scope 372, and one scope 373 is attached to a predetermined position in order. You may keep it.
  • FIG. 6 and 7 are flowcharts showing the installation procedure of the radio wave reflection device 200.
  • the radio wave reflection device 200 is attached to the pole 20 (ST110).
  • the AZ axis of the joint part 220 is set to the vertical direction and the EL axis is kept horizontal for easy understanding.
  • the reference marks 242 and 251 are set to indicate 0 ° (zero degree) of the azimuth scale 233 and the elevation scale 247.
  • the vertical direction is the z-axis
  • the horizontal angle is 90 °. That is, the elevation angle measurement refers to an angle from the vertical direction (z axis).
  • the direction of the azimuth angle 0 ° (zero degree) is not particularly limited.
  • the direction of the azimuth angle may be 0 ° (zero degree), which is a reference for azimuth angle measurement.
  • the direction of this azimuth angle 0 ° (zero degree) is taken as the x-axis.
  • the azimuth angle is the angle from the x axis.
  • the main scope 370 is aimed at the first antenna device 110 (ST120). At this time, rotation occurs around the AZ axis and the EL axis of the joint portion 220. Therefore, if the values of the azimuth scale 233 and the elevation scale 247 are read, this indicates the direction of the first antenna device (ST130).
  • a unit vector indicating the direction of the first antenna device with the position of the radio wave reflection device 200 as an origin is a vector a. (I want to display an arrow ( ⁇ ) above “a” in vector a or display “a” in bold, but this is not possible due to display function problems.
  • the meaning (vector a) of the first antenna device 110 is represented by three-dimensional polar coordinates (spherical coordinates). An angle ⁇ 1 from the z-axis and an angle ⁇ 1 from the x-axis are assumed.
  • the main scope 370 is aimed at the second antenna device 120 (ST140). Then, the direction (vector b) of the second antenna device 120 is measured (ST150). The direction (vector b) of the second antenna device 120 is represented by an angle ⁇ 2 from the z axis and an angle ⁇ 2 from the x axis.
  • the directions of the first antenna device 110 and the second antenna device 120 are known.
  • the incident surface defined by the first antenna device 110, the second antenna device 120, and the radio wave reflection device is obtained.
  • the main axis L of the reflector unit perpendicular to the incident surface.
  • the midpoint direction is a coined word in this specification, but means the direction of the midpoint P between the first antenna device 110 and the second antenna device 120.
  • the unit vector p (vector p) in the midpoint direction is obtained as follows ( ST160).
  • the angle ⁇ 3 from the z axis and the angle ⁇ 3 from the x axis are obtained as the midpoint direction p.
  • the direction of the reflector unit 300 is adjusted to the midpoint direction (ST170). In this way, the main axis L of the reflector unit is naturally perpendicular to the incident surface. In this state, the angle of the joint part 220 is fixed.
  • the first scope 371 is aimed at the first antenna device (ST180). Then, the first reflecting plate 350 faces the direction of the first antenna device 110. Further, the second scope 372 is aimed at the second antenna device 120 (ST190). Then, the second reflecting plate 360 faces the direction of the second antenna device 120. In this state, the first support shaft 330 and the second support shaft 340 are fixed.
  • the first antenna device 110 and the second antenna device 120 can be relayed by reflection by the radio wave reflection device 200.
  • Radio waves from the first antenna device 110 enter the first reflector 350.
  • the incident angle when the radio wave from the first antenna device 110 enters the first reflecting plate 350 is 45 °.
  • the radio wave reflected by the first reflecting plate 350 enters the second reflecting plate 360.
  • the incident angle when entering the second reflector 360 is also 45 °.
  • the radio wave is reflected by the second reflector 360. Since the second reflection plate 360 faces the direction of the second antenna device 120, the radio wave reflected by the second reflection plate 360 enters the second antenna device 120. (It is exactly the same even if a radio wave is transmitted from the second antenna device 120 and received by the first antenna device 110.)
  • the reflecting plate has a two-plate configuration including a first reflecting plate 350 and a second reflecting plate 360, and each can rotate independently. Therefore, if the first reflector 350 is directed to the first antenna device 110 and the second reflector 360 is directed to the second antenna device 120, radio waves can be reflected with sufficient reflection strength. In this embodiment, since both the first reflector 350 and the second reflector 360 are provided with an inclination of 45 ° with respect to the support shaft (330, 340), the incident angle of the radio wave is 45 ° in both cases. .
  • the attachment part 210 and the reflector unit 300 are connected by the joint part 220 having a biaxial rotational degree of freedom. Thereby, the attitude
  • the posture (angle) of the reflector unit can be measured. Further, by sequentially aiming the first antenna device 110 and the second antenna device 120 by the main scope 370, the directions of the first antenna device 110 and the second antenna device 120 when the radio wave reflection device 200 is used as a reference are determined. It can be measured.
  • the joint portion 220 has the angle scales 233 and 247 and further includes the main scope 370, so that the main axis L of the reflector unit 300 can be easily made perpendicular to the incident surface. .
  • the first reflector 350 is directed toward the first antenna device 110 by the aim of the scopes 371 and 372, or the second reflector It is also easy to point 360 toward the second antenna device 120.
  • the direction of the reflector unit 300 is set to the midpoint direction. In this respect, it is not always necessary to align the direction of the reflector unit 300 with the direction of the midpoint, and what is important is to make the main axis L of the reflector unit 300 perpendicular to the incident surface. Therefore, the normal vector n of the incident surface may be obtained and the attitude (angle) of the reflector unit 300 may be adjusted so that the main axis L matches the normal vector n.
  • the normal vector n of the incident surface is calculated by the outer product (a ⁇ b) of the vector a and the vector b.
  • FIG. 9 illustrates an angle measuring device 341.
  • an angle measuring device 341 for measuring a rotation angle is provided on the second support shaft.
  • the direction of the second reflector 360 is directed toward the second antenna device 120 while looking at the scale of the angle measuring device 341. Can do. (Of course, since the azimuth angle of the joint part 220 is added, it is necessary to subtract that amount.)
  • visible light may be emitted from the first antenna device 110 and the second antenna device 120.
  • the visible light may be a flashing laser beam, a so-called searchlight or the like.
  • the joint portion 220 is provided with the scales 233 and 247 for angle measurement, and the angle of the joint portion 220 is read.
  • an angle measurement function is not used in the radio wave reflection device 200 but another device is used for angle measurement.
  • a theodolite 500 as shown in FIG. 10 is known as an angle measuring device.
  • the theodolite 500 measures the directions of the first antenna device 110 and the second antenna device 120 in advance. Thereby, the vector a and the vector b are obtained.
  • the midpoint direction p is calculated from the vectors a and b.
  • the target existing when the midpoint direction p is viewed from the radio wave reflection device 200 is specified.
  • the reflector unit 300 faces the midpoint direction p, and at the same time, the main axis L is perpendicular to the incident surface.
  • the first scope 371 may be aimed at the first antenna device (ST180), and the second scope 372 may be aimed at the second antenna device 120 (ST190).
  • This configuration eliminates the need to provide an angle scale on the joint. Therefore, as a joint part, the range of selection such as various universal joints is widened.
  • the main axis L only needs to be perpendicular to the incident surface. Regardless of the orientation, the target that will be visible on the main scope 370 when the main axis L is perpendicular to the incident surface is specified, and the aim of the main scope 370 may be aligned with the target.
  • the aim of the first scope 371 is used when the first reflector is directed to the first antenna device 110 (ST180).
  • laser light may be emitted from the first antenna device 110 toward the radio wave reflection device 200, and the direction in which the reflection intensity of the laser beam is maximized may be searched while rotating the first reflection plate 350.
  • the light receiving unit 610 is disposed immediately below the first reflecting plate 350, and the received light intensity is measured by the measuring device 620. (The same applies to the second reflector 360.) In this way, it is not necessary to install a scope on the first support shaft 330 or the second support shaft 340.
  • Aiming of the main scope 370, the first scope 371, and the second scope 372 is automated.
  • a digital imaging function CCD or CMOS
  • an image processing function image recognition function
  • the direction of the first antenna device 110 (vector a) and the direction of the second antenna device 120 (vector b) can be automated. Let's go.
  • Angle (attitude) detection (for example, ST130 and ST150) is automated.
  • sensors acceleration sensor, gyro sensor, rotary encoder
  • a sensor may be provided on each rotation axis (AZ axis, EL axis) of the joint portion 220.
  • a motor may be installed in each of the rotation shafts (AZ axis, EL axis), the first support shaft 330, and the second support shaft 340 of the joint portion 220.
  • a computer program for automating the adjustment of the direction of the radio wave reflector can be set up and executed by the computer.
  • the computer may be a normal computer having a CPU, a ROM, and a RAM, or may be equipped with dedicated hardware configured with various logic elements for each functional unit.
  • the direction adjustment program of the radio wave reflection device may be stored in various types of non-transitory computer-readable media and supplied to the computer.
  • Non-transitory computer readable media include various types of tangible storage media. Examples of non-transitory computer-readable media include magnetic recording media (for example, flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (for example, magneto-optical disks), CD-ROM (Read Only Memory) CD-R, CD-R.
  • the program may also be supplied to a computer by various types of transitory computer readable media.
  • transitory computer readable media include electrical signals, optical signals, and electromagnetic waves.
  • the temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
  • Step 1 The main axis of the reflector unit is made perpendicular to the incident surface.
  • Step 2 The first reflector and the second reflector are directed to the first antenna device 110 and the second antenna device 120, respectively.
  • Step 1.1 An incident surface is obtained.
  • Step 1.2 The angle is adjusted so that the principal axis coincides with the normal of the incident surface. is required.
  • Step 1.1 The direction (vector a) of the first antenna device 110 and the direction (vector b) of the second antenna device 120 are measured. It is necessary. There are variations in performing step 1.1.1.
  • Step 1.1.1A The main scope 370 may aim at the antenna devices 110 and 120 and read the angle at that time.
  • Step 1.1.1B The direction of the antenna devices 110 and 120 may be measured by another device such as theodolite.
  • Step 1.2A The normal line of the incident surface is obtained from the vector a and the vector b, and the angle of the joint part 220 is adjusted so that the main line axis coincides with the normal line.
  • Step 1.2B The midpoint direction is obtained from the vectors a and b, and the angle of the joint portion 220 is adjusted so that the reflector unit faces the midpoint direction.
  • Step 2A Aiming at the first antenna device 110 and the second antenna device 120 using the first scope 371 and the second scope 372, respectively.
  • Step 2B An angle measuring device is provided on the first support shaft 330 and the second support shaft 340 to adjust the angle.
  • Step 2C The laser beams from the first antenna device 110 and the second antenna device 120 are received and adjusted to the direction in which the reception intensity becomes maximum.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

 取付部(210)は、電波反射装置(200)を安定した設置場所例えばポール(20)に固定的に取り付ける。反射板ユニット(300)は、二枚の反射板(350、360)を傾斜角45°で支持するとともに、二枚の反射板(350、360)を同軸かつ独立回転可能となるように支持する。継手部(220)は、反射板ユニット(300)と取付部(210)との間を繋ぐ。継手部(220)は、直交関係にある二軸(AZ軸、EL軸)の回転自由度を有する。これにより、離れた場所にある第1アンテナ装置と第2アンテナ装置との間の電波通信を反射によって中継する電波反射装置を提供する。

Description

電波反射装置
 本発明は、電波反射装置に関する。具体的には、反射によって無線通信用の電波を中継する電波反射装置に関する。
 モバイルバックホールの無線システムとしては、パラボラアンテナを用いたポイントツーポイントシステムが用いられる。良好な通信を行うためにはお互いのアンテナが見通せる必要があるので、見通しを確保するため、アンテナを高所へ設置することによって見通しを確保するという方策が採られることが多い。
 近年、モバイル基地局のセルは、ピコセルやフェムトセルなど、小セル化される傾向にある。これに伴って、基地局をより低い位置へ設置する必要があるが、都市部で低位置にアンテナを設置すると見通し環境が確保できず、ポイントツーポイントシステムの無線通信が難しいという問題が発生する。そこで、2つのアンテナ間の見通しがきかないという状況において、反射板による反射によって電波を中継するという方策が知られている(特許文献1-6)。
特開昭58-73205号公報 特開平7-154320号公報 特開2007-299232号公報 特開2006-245886号公報 実用新案登録第3108453号 特開2012-199617号公報
 上記文献で紹介されている反射式の中継方法においては、単純に一枚の反射板で電波を反射している。たしかに、一枚の反射板でも障害物を迂回するように電波を反射させることはできる。しかしながら、一枚の反射板で電波を反射させる場合、入射角が大きいと良好な反射強度を持たせることが難しく、もし、十分な反射強度を得ようとすれば、反射板をかなり大きくする必要がある。
 また、電波を反射させて中継するというのは原理的にはもちろん可能であるが、良好な受信レベルが得られるように反射板の角度を調整して設置することは実際にはかなり難しい。特許文献4-6には角度調整できる機構を備えた一枚板の反射板が開示されており、このような角度調整機構を用いながら最大受信レベルが得られるように反射板の角度を微調整すれば良いとも考えられる。
 しかしながら、例えば、第1アンテナと第2アンテナとの間で電波を中継するように反射板を設置する場合を考えてみる。この場合、第1アンテナの向き、反射板の向き、さらには第2アンテナの向きをいろいろ変えながら第2アンテナの受信レベルが最大になるようにしなければならないであろう。第1アンテナの向き、反射板の向き、さらには第2アンテナの向き、というように少なくとも3つのパラメータがあり、しかも、これらは各々3次元空間のベクトルである。実際問題として、受信レベルを見ながらこれらを手探りで合わせるのは土台無理であろう。
 本発明の目的は、十分な反射強度で電波を中継することができる電波反射装置を提供することにある。さらに、本発明の目的は、簡便かつ正確に方向調整できる電波反射装置を提供することにある。
 本発明の電波反射装置は、
 離れた場所にある第1アンテナ装置と第2アンテナ装置との間の電波通信を反射によって中継する電波反射装置であって、
 この電波反射装置を安定した設置場所に固定的に取り付けする取付部と、
 二枚の反射板を支持する反射板ユニットと、
 前記反射板ユニットと前記取付部との間を繋ぐ継手部と、を備え、
 前記二枚の反射板は、それぞれの支持軸に対して所定角度傾斜した状態で支持され、互いの反射面が向き合い、かつ、同軸でありながら少なくとも一方が支持軸回りに回転可能であり、
 前記継手部は、直交関係にある二軸の回転自由度を有する
 ことを特徴とする。
 本発明の電波反射装置の設置方法は、
 離れた場所にある第1アンテナ装置と第2アンテナ装置との間の電波通信を反射によって中継する電波反射装置を設置する方法であって、
 前記電波反射装置は、
 この電波反射装置を安定した設置場所に固定的に取り付けする取付部と、
 二枚の反射板を傾斜角45°で支持するとともに、前記二枚の反射板が同軸でありながらそれぞれ独立回転可能となるように支持する反射板ユニットと、
 前記反射板ユニットと前記取付部との間を繋ぐとともに、直交関係にある二軸の回転自由度を有する継手部と、を備えており、
  前記第1アンテナ装置の方向と前記第2アンテナ装置の方向を計測し、
  前記第1アンテナ装置、前記第2アンテナ装置および当該電波反射装置で定義される入射面を特定し、
  前記入射面の法線と前記二枚の反射板の回転軸とが一致するように前記継手部の角度を調整し、
  さらに、前記二枚の反射板を前記第1アンテナ装置と前記第2アンテナ装置の方向にそれぞれ向ける
 ことを特徴とする。
 本発明によれば、離れた場所にある第1アンテナ装置と第2アンテナ装置との間の電波通信を十分な反射強度で中継する電波反射装置を提供することができる。
通信システムを示す図。 電波反射装置を示す図。 継手部の構造を示す図。 反射ユニット内における電波の経路を説明するための図。 着脱式のスコープを示す図。 電波反射装置の設置手順を示すフローチャート。 電波反射装置の設置手順を示すフローチャート。 パラメータを図示した図。 支持軸に設ける角度測定器を例示した図。 セオドライトを例示した図。 レーザ光を用いて反射板の向きを調整する様子を示す図。
 本発明の実施形態を図示するとともに図中の各要素に付した符号を参照して説明する。
 (第1実施形態)
 本発明の第1実施形態について説明する。
 図1に通信システム100を示す。
 通信システム100は、第1アンテナ装置110と第2アンテナ装置120とを備え、第1アンテナ装置110と第2アンテナ装置120との間で通信電波の送受信を行う。第1アンテナ装置110および第2アンテナ装置120は、パラボラアンテナなどの指向性アンテナにより電波の送受信を行う。なお、近年では通信容量の激増、広帯域化、高周波化などの要請があり、電波はミリ波レベルになってきており、ビーム幅が極めて狭くなってきている。
 ここで、第1アンテナ装置110と第2アンテナ装置120との間に障害物10が存在し、第1アンテナ装置110と第2アンテナ装置120とを真っ直ぐに見通せないとする。障害物10としては、例えば、家屋やビルなどの人工構造物が典型的であるが、その他山などであってもよい。そこで、通信システム100の一部として電波反射装置200を設置し、電波反射装置200によって障害物10を迂回するように電波を反射させる。これにより第1アンテナ装置110と第2アンテナ装置120との間でポイントツ-ポイント通信を実現させる。本実施形態においては、この電波反射装置200の構造と、電波反射装置200を適切に設置する方法と、に特徴がある。
 以下、説明する。
 図2に電波反射装置200を示す。
 電波反射装置200は、取付部210と、継手部220と、反射板ユニット300と、を備える。
 電波反射装置200は、高所に設置されることが理想であり、ポール20やビルを利用して高いところに設置される。図2においては、ポール20を立て、このポール20によって電波反射装置200を高所に支持している。取付部210の構造としては特段限定されるものではなく、ポール20に電波反射装置200を取り付け固定できるものであればよいが、例えば、図2のようにポール20を二枚の板211、211で挟み込むような構造が一般的に考えられる。
 継手部220は、取付部210(あるいはポール20)に対する反射板ユニットの姿勢を変えられるように、取付部210と反射板ユニット300との間を連結する。継手部220としては、よく知られた自在継手であってもよいが、できることなら、方位角(Azimuth Angle)と仰角(Elevation Angle)とをそれぞれ計測できるように目盛りを付け、かつ、目盛りが読み取りやすくなっていることが好ましい。したがって、継手部220の構造としては、直交関係にある二軸の回転自由度があるとよい。この観点でいえば、十字軸を用いた自在継手で悪いということはないが、より好ましくは、図3のように、AZ軸(鉛直軸)とEL軸(水平軸)とが分離した継手構造が望ましいと言える。
 継手部220は、回転軸として互いに直交関係にある二軸を有する。(正確に言うと、二軸は“直交”せずに空間的ねじれの位置にある。一方の軸を他方の軸に重なるように投影したときに直交関係になる。)
 電波反射装置200が設置されるにあたって、これら二軸のうち一方の軸が鉛直になり、他方の軸が水平になるように調整されることが望ましい。そこで、鉛直方向である軸をAZ軸とし、水平方向の軸をEL軸とする。すなわち、AZ軸回りの回転により、反射板ユニット300の方位角(Azimuth Angle)が変化する。EL軸回りの回転により、反射板ユニット300の仰角(Elevation Angle)が変化する。
 角度の呼称について付言しておく。水平面を基準として、水平面より上向きの角度を仰角といい、水平面とより下向きの角度を俯角ということが一般的であろうが、俯角や仰角といった区別をせずに、本明細書ではピッチ方向の角度を仰角と称することにする。さらには、水平面を基準とする場合のみならず、例えば、鉛直線を基準として、鉛直線との間になす角についても仰角と称することにする。
 図3において、継手部220は、取付部210に一体化された固定パーツ230と、AZ軸を回転軸として固定パーツ230に支持(枢支)された回動パーツ240と、反射板ユニット300の背面に一体化され、EZ軸を回転軸として回動パーツ240に支持(枢支)された連結部250と、を有する。
 固定パーツ230は、側方視において、基面からL字状に折れ曲がった支持片231、231を二枚有し、二枚の支持片231、231は互いに平行であり、かつ、所定ギャップをもって対向している。ここでは、前記所定ギャップは、AZ軸(鉛直軸)方向における間隔である。二枚の支持片231、231には、AZ軸(鉛直軸)に沿った一の仮想線上に孔232(凹部や凸部でもよい)を有し、回動パーツ240を枢支している。図3に示すように、支持片231の外表面上には角度測定用の目盛り233が刻設されている。この角度目盛り233は、方位角(AZ)測定用の角度目盛りとなる。支持片231の外縁の一部は円弧状になっており、回動パーツ240側に設けられた基準マーク242の相対角度位置を読み取りやすくしている。
 回動パーツ240は、基面の裏面側に二枚の連結片241、241を有し、表面側に二枚の支持片245、245を有する。ここで、回動パーツ240の向きの表現として、反射板ユニット300の側をおもて側とし、取付部210の側を裏面側とした。連結片241、241は、側面視で基面からL字状に折れ曲がり、固定パーツ230の支持片231、231に枢支されている。連結片241、241が固定パーツ230の支持片231、231に枢支されることにより、回動パーツ240が方位角(AZ)方向に回動可能となっている。連結片241の外表面には基準マーク242が設けられており、この基準マーク242は、方位角(AZ)測定用の角度目盛り233に対する相対角度位置を示す。連結片241の外表面に基準マーク242を設けるにあたっては、連結片241の外表面に基準マーク242を刻設してもよいが、貼ったり剥がしたりできるシール形式であってもよい。
 支持片245は、正面視で基面からL字状に折れ曲がり、二枚の支持片245、245は互いに平行であり、かつ、所定ギャップをもって対向している。ここでは、二枚の支持片245、245はEL軸(水平軸)方向に所定ギャップを持って対向している。二枚の支持片245,245は、EL軸(水平軸)に沿った一の仮想線上に孔246(凹部や凸部でもよい)を有し、連結部250を枢支している。支持片245の外表面上には角度測定用の目盛り247が刻設されている。この角度目盛り247は、仰角(EL)測定用の角度目盛りとなる。支持片245、245の外縁の一部は円弧状になっており、連結部250側に設けられた基準マーク251の相対角度位置を読み取りやすくしている。
 連結部250側に基準マーク251を設けるにあたっては、基準マーク251を刻設してもよいが、貼ったり剥がしたりできるシール形式であってもよい。
 このような継手部220により、反射板ユニット300の方位角と仰角とをそれぞれ独立に変化させることができ、かつ、方位角と仰角をそれぞれ独立して読み取ることができる。
 次に、反射板ユニット300の構造を説明する。
 反射板ユニット300は、レドーム310と、支持フレーム320と、第1支持軸(回転支持軸)330と、第2支持軸(回転支持軸)340と、第1反射板350と、第2反射板360と、3つのスコープ(照準器)と、を備える。(なお、図2においては、レドーム310を鎖線で示し、レドーム310の内部を透視するように描いている。)
 支持フレーム320は、全体的に見ると、コ字状の部材である。すなわち、支持フレーム320は、縦向き(鉛直)に配置される柱部321の上下端それぞれから支持腕322A、322Bが横向きに延びており、全体として、コ字状となっている。上側の支持腕を第1支持腕322Aとし、下側の支持腕を第2支持腕322Bとする。支持腕322A、322Bが延びる側をおもて側とし、その反対を裏側とすると、柱部321の裏側が前記連結部250となって継手部220の回動パーツ240に軸支されている。支持フレーム320において第1支持腕322Aと第2支持腕322Bとの間に注目すると、裏側に相当する一方向には柱部321が存在していることになるが、その他の方向は開放されており、したがって、広角にわたって電波の受け入れまたは送出が可能になっている。
 第1支持軸330は、第1支持腕322Aから垂下するように配設されている。さらに、第1支持軸330は、その軸線を回転軸として回動可能なように第1支持腕322Aに軸受けされている。第2支持軸340は、第2支持腕322Bから立ち上がるように配設されている。さらに、第2支持軸340は、その軸線を回転軸として回動可能なように第2支持腕322Bに軸受けされている。ここで、第1支持軸330の軸線(回転軸)と第2支持軸340の軸線(回転軸)とは、一の仮想軸線上に乗るようになっている。(つまり、第1支持軸330と第2支持軸340とは同軸である。)この仮想軸線を反射板ユニット300の主軸線Lと称することにする。
 第1反射板350は、所定の傾斜角度で第1支持軸330に固定されている。ここでは、第1反射板350は、傾斜角度45°で第1支持軸330に固定されている。第2反射板360も同じく、所定の傾斜角度で第2支持軸340に固定されており、具体的には、第2反射板360は、傾斜角度45°で第2支持軸340に固定されている。第1反射板350と第2反射板360とは、45°傾斜しているので“対向”とまでは言わないが、互いの反射面はほぼ向き合っている。したがって、図4に示すように、一方のアンテナ装置(第1アンテナ装置110)から飛来してくる電波を第1反射板350で反射して第2反射板360に入射させ、さらに、第2反射板360で反射して他方のアンテナ装置(第2アンテナ装置120)に電波を送出することができる。ただし、このような反射経路で第1アンテナ装置110と第2アンテナ装置120とを中継するためには反射板ユニット300の主線軸Lの向きを正確に調整しておく必要があるが、このことは後述する。
 3つのスコープに、メインスコープ370、第1スコープ371、第2スコープ372、と名前を付けることにする。メインスコープ370は支持フレーム320に固定されており、すなわち、メインスコープ370と支持フレーム320とは一体的に変位する。さらに言い換えると、メインスコープ370は反射板ユニット300全体と一体的に変位する。
 メインスコープ370を支持フレーム320に設置するにあたっては、メインスコープ370の光軸が反射板ユニット300の主軸線Lと直交するように配置する。(正確に言うと、メインスコープ370の光軸と反射板ユニット300の主軸線Lとが“直交”せずに空間的ねじれの位置にあってもよいが、この場合でも、メインスコープ370の光軸が反射板ユニット300の主軸線Lに重なるように投影したときに直交関係になるようにすることが好ましい。)この配置関係の意味は、後述する角度調整手順のなかでおのずと明らかになるが、一言触れておく。第1反射板350および第2反射板360を45°傾斜で配置しているので、第1アンテナ装置110、第2アンテナ装置120および電波反射装置200で定義される入射面と反射板ユニット300の主軸線Lとが直交関係になったとき、第1アンテナ装置110からの電波を第2アンテナ装置120に中継できることになる。つまり、前記入射面に対して反射板ユニット300の主軸線Lが直交するように反射板ユニット300の姿勢を調整する必要がある。そこで、メインスコープ370の光軸と反射板ユニット300の主軸線Lとが直交していれば、メインスコープ370によって反射板ユニット300の主軸線Lの向きを調整しやすい。
 メインスコープの視線の先をどの向きに向けるかは特段の問題ではないが、反射板ユニット300の全体形状から判断して、支持腕322A、322Bが延びる方向とメインスコープ370の視線の向きとを合わせておくのが自然であり、ユーザにとって使いやすいであろう。
 第1スコープ371は、第1支持軸330に取り付けられ、第2スコープ372は第2支持軸340に取り付けられる。第1スコープ371の光軸が第1支持軸330に直交し、第2スコープ372の光軸が第2支持軸340に直交するようにする。
 反射板の面の向きとスコープの光軸の向きとを合わせておく必要がある。反射板の法線とスコープの光軸とが同じ仮想平面内に含まれるようにしておく。あるいは、反射板を含む仮想平面に対してスコープの光軸が45°で交差するようにしておく、と言い換えてもよい。要は、スコープで照準を合わせた先が、電波の送信点または受信点になるようにしたい。
 なお、角度調整手順のなかで後述するが、メインスコープ、第1スコープおよび第2スコープを同時に使用しなければならないということはなく、順次使用できればよい。したがって、図5に示すように、メインスコープ370、第1スコープ371および第2スコープ372を着脱できる取付部370A、371A、372Aを設けておき、1つのスコープ373を順番に所定位置に取り付けて使うようにしておいてもよい。
 (電波反射装置200の設置手順)
 次に、電波反射装置200の設置手順を説明する。
 図6、図7は、電波反射装置200の設置手順を示すフローチャートである。
 図8には、パラメータを図示したので合わせて参照されたい。
 まず、電波反射装置200をポール20に取り付ける(ST110)。ここで、この後様々な方向を計測することになるので、わかりやすいように、継手部220のAZ軸を鉛直方向とし、EL軸を水平にしておくことが直感的に分かりやすくて好ましい。そして、基準マーク242、251が方位角目盛り233および仰角目盛り247の0°(零度)を指すようにする。この状態で、鉛直方向がz軸となり、水平を仰角90°とする。すなわち、仰角の計測は鉛直方向(z軸)からの角度をいうことにする。方位角0°(零度)の方向は特に問わない。差し当りの方向を方位角0°(零度)の方向とすればよく、これが方位角計測の基準となる。
 この方位角0°(零度)の方向をx軸とする。方位角はこのx軸からの角度をいうことにする。
 次に、メインスコープ370で第1アンテナ装置110に照準を合わせる(ST120)。このとき、継手部220のAZ軸およびEL軸の回りで回動が生じることになる。したがって、方位角目盛り233および仰角目盛り247の値を読めば、これが第1アンテナ装置の方向を示すことになる(ST130)。電波反射装置200の位置を原点として、第1アンテナ装置の方向を示す単位ベクトルをベクトルaとする。(本来的には、ベクトルaの“a”の上に矢印(→)を表示したり、もしくは“a”を太字で表示したりしたいところであるが、表示機能の問題でできない。読者におかれては意味を汲み取って適宜読み替えて頂きたい。)第1アンテナ装置110の方向(ベクトルa)を三次元極座標(球座標)で表わす。z軸からの角度θ1とし、x軸からの角度φ1とする。
 a=(1、θ1、φ1)
 同様にして、メインスコープ370で第2アンテナ装置120に照準を合わせる(ST140)。そして、第2アンテナ装置120の方向(ベクトルb)を計測する(ST150)。第2アンテナ装置120の方向(ベクトルb)をz軸からの角度θ2とx軸からの角度φ2とで表わす。
 b=(1、θ2、φ2)
 これで、第1アンテナ装置110および第2アンテナ装置120の方向が分かった。言い換えると、第1アンテナ装置110、第2アンテナ装置120および電波反射装置で定義される入射面が求められたことになる。次に必要なことは、反射板ユニットの主線軸Lをこの入射面に垂直にすることである。
 反射板ユニットの主線軸Lを入射面に垂直にするにあたっては他の方法もあるが、ここでは、反射板ユニットを中点方向に向けるという方法を紹介する。ここで、中点方向とは本明細書における造語であるが、第1アンテナ装置110と第2アンテナ装置120との中点Pの方向のことを意味する。
 第1アンテナ装置110の方向(ベクトルa)と第2アンテナ装置120の方向(ベクトルb)とが求まっているので、中点方向の単位ベクトルp(ベクトルp)は次のようにして求められる(ST160)。
 p=(a+b)/|a+b|
 中点方向pとして、z軸からの角度θ3とx軸からの角度φ3とが求まったとする。仰角目盛り247と方位角目盛り233とを用いて、反射板ユニット300の方向を中点方向に合わせる(ST170)。こうすれば、反射板ユニットの主線軸Lは自ずと入射面に垂直になる。この状態で継手部220の角度を固定してしまう。
 そして、第1スコープ371で第1アンテナ装置に照準を合わせる(ST180)。すると、第1反射板350は、第1アンテナ装置110の方向を向く。さらに、第2スコープ372で第2アンテナ装置120に照準を合わせる(ST190)。すると、第2反射板360は、第2アンテナ装置120の方向を向く。この状態で第1支持軸330と第2支持軸340とを固定してしまう。
 こうすれば、電波反射装置200による反射によって第1アンテナ装置110と第2アンテナ装置120とを中継できることはご理解頂けるであろう。
 第1アンテナ装置110からの電波は第1反射板350に入射する。
 このとき、第1反射板350は第1アンテナ装置110の方向を向いているので、第1アンテナ装置110からの電波が第1反射板350に入射するときの入射角は45°である。
 第1反射板350で反射された電波は第2反射板360に入射する。第2反射板360に入射するときの入射角も45°である。第2反射板360によって電波が反射される。第2反射板360は第2アンテナ装置120の方向を向いているので、第2反射板360で反射された電波は第2アンテナ装置120に入射する。(電波が第2アンテナ装置120から送出されて、第1アンテナ装置110で受信するとしても全く同様である。)
 このような第1実施形態によれば次の効果を奏する。
(1)反射板が第1反射板350と第2反射板360とからなる二枚構成であり、それぞれが独立して回転できるようになっている。
 したがって、第1反射板350を第1アンテナ装置110に向け、第2反射板360を第2アンテナ装置120に向ければ、それぞれ十分な反射強度で電波を反射することができる。本実施形態では、第1反射板350も第2反射板360も支持軸(330、340)に対して45°の傾斜で設けられているので、電波の入射角はいずれにおいても45°になる。このことは、仮に“電波反射装置200”に対する電波の入射が浅い(入射角が大きい)としても、第1反射板350および第2反射板360の向きをそれぞれ調整できる本実施形態にとっては問題とならない。したがって、第1アンテナ装置110、第2アンテナ装置120および電波反射装置の配置関係に係わらず、電波反射装置は十分な反射強度で電波を中継することができる。
(2)二軸の回転自由度を持つ継手部220によって取付部210と反射板ユニット300とを繋いでいる。これにより、電波反射装置200をポール20に取り付けた後で反射板ユニット300の姿勢(向き)を調整することができる。
(3)継手部220に角度目盛り233、247を設けているので反射板ユニットの姿勢(角度)を計測することができる。また、メインスコープ370によって第1アンテナ装置110と第2アンテナ装置120とに順次照準を合わせることで、電波反射装置200を基準としたときの第1アンテナ装置110および第2アンテナ装置120の方向を計測することができる。このように、継手部220に角度目盛り233、247があり、さらに、メインスコープ370を備えていることにより、反射板ユニット300の主線軸Lを入射面に対して垂直にすることが容易になる。
(4)さらに、第1スコープ371と第2スコープ372とを有しているので、これらスコープ371、372の照準により、第1反射板350を第1アンテナ装置110に向けたり、第2反射板360を第2アンテナ装置120に向けることも容易である。
 (変形例1)
 上記第1実施形態では、ST170において、反射板ユニット300の方向を中点方向に合わせる、とした。この点、必ずしも反射板ユニット300の方向を中点方向に合わせる必要なく、肝心なことは、反射板ユニット300の主線軸Lを入射面に対して垂直にすることである。したがって、入射面の法線ベクトルnを求め、主軸線Lが法線ベクトルnに一致するように反射板ユニット300の姿勢(角度)を調整してもよい。なお、入射面の法線ベクトルnは、ベクトルaとベクトルbとの外積(a×b)で算出される。
 (変形例2)
 上記第1実施形態においては、第1支持軸330に第1スコープを設置し、第2支持軸340に第2スコープを設置していた。ここで、第1スコープおよび第2スコープに代えて、角度測定器を第1支持軸330および第2支持軸に設置してもよい。図9に、角度測定器341を例示する。図9において、第2支持軸に、回転角計測用の角度測定器341を設けている。ここで、第2アンテナ装置120の方向(ベクトルb)はすでに計測済みであるので(ST150)、角度測定器341の目盛りを見ながら第2反射板360の向きを第2アンテナ装置120に向けることができる。(もちろん、継手部220の方位角が加算されるので、その分を差し引きする必要がある。)
 (変形例3)
 スコープ370、371、372による視認性をよくするため、第1アンテナ装置110および第2アンテナ装置120から可視光を発射するようにしてもよい。可視光は、点滅するレーザ光、いわゆるサーチライトなどでもよい。
 (第2実施形態)
 上記第1実施形態においては、継手部220に角度計測用の目盛り233、247を付し、継手部220の角度を読み取るようにしていた。ここで、第2実施形態としては、電波反射装置200に角度の計測機能を設けるのではなく、角度計測は別の装置を用いる場合を説明する。角度計測装置としては例えば図10に示すようなセオドライト500が知られている。
 このセオドライト500で第1アンテナ装置110および第2アンテナ装置120の方向を計測しておく。これにより、ベクトルaとベクトルbとが求められる。ベクトルaとベクトルbとから中点方向pを算出する。
 中点方向pが求まったら、電波反射装置200から中点方向pを見たときに存在している目標物を特定する。メインスコープ370で前記目標物に照準を合わせると、反射板ユニット300が中点方向pを向き、同時に、主軸線Lが入射面に対して垂直になる。あとは、第1スコープ371で第1アンテナ装置に照準を合わせ(ST180)、第2スコープ372で第2アンテナ装置120に照準を合わせればよい(ST190)。
 この構成によれば、継手部に角度目盛りを付ける必要がなくなる。したがって、継手部としては、各種自在継手など選択の幅が広がる。
 なお、上記第2実施形態においても、反射板ユニット300を中点方向pに向ける必要はなく、主軸線Lが入射面に垂直になればよい。方位を問わず、主軸線Lを入射面に垂直したときにメインスコープ370で見えるであろう目標物を特定しておき、メインスコープ370の照準をその目標物に合わせればよいのである。
 (第3実施形態)
 上記実施形態においては、第1反射板を第1アンテナ装置110に向けるにあたって第1スコープ371の照準を利用した(ST180)。この他、例えば、第1アンテナ装置110から電波反射装置200に向けてレーザ光を発射し、第1反射板350を回転させながらレーザ光線の反射強度が最大になる向きを探ってもよい。図11のように、第1反射板350の直下に受光部610を配置し、計測器620によって受光強度を計測する。(第2反射板360についても同様にする。)このようにすれば、第1支持軸330や第2支持軸340にスコープを設置する必要がなくなる。
 (第4実施形態)
 上記実施形態では、継手部220や支持軸330、340の角度(姿勢)調整は人が手動で行うことを想定していた。
 ここで、第4実施形態としては、電波反射装置の方向調整を半自動化することについて検討する。
 メインスコープ370、第1スコープ371、第2スコープ372の照準合わせ(例えばST120、ST140、ST180、ST190)を自動化する。
 このためには、デジタル撮像機能(CCDやCMOS)と画像処理機能(画像認識機能)とがあればよい。
 そして、例えば、アンテナ装置110、120から光を発射するなどすれば、第1アンテナ装置110の方向(ベクトルa)と第2アンテナ装置120の方向(ベクトルb)を計測することは自動化できるであろう。
 角度(姿勢)の検出(例えばST130、ST150)を自動化する。
 このためには、支持フレーム320、第1支持軸330および第2支持軸340のそれぞれにセンサ(加速度センサ、ジャイロセンサ、ロータリーエンコーダ)を設けておいてもよい。あるいは、継手部220の各回転軸(AZ軸、EL軸)にセンサ(ロータリーエンコーダ)を設けておいてもよい。
 反射板ユニット、第1反射板および第2反射板の角度(姿勢)調整を自動化する。このためには、継手部220の各回転軸(AZ軸、EL軸)、第1支持軸330および第2支持軸340にそれぞれモータを仕込んでおけばよい。
 アルゴリズムはこれまでの説明で明らかになっているので、電波反射装置の方向調整を自動化するコンピュータプログラムを組んで、これをコンピュータに実行させることができるであろう。
 コンピュータとしては、CPU、ROM、RAMを有する通常のコンピュータでもよいし、各機能部用に各種論理素子等で構成された専用ハードウェアを搭載していてもよい。電波反射装置の方向調整プログラムを様々なタイプの非一時的なコンピュータ可読媒体(non-transitorycomputerreadablemedium)に格納しておき、コンピュータに供給してもよい。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangiblestoragemedium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD-ROM(ReadOnlyMemory)CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(ProgrammableROM)、EPROM(ErasablePROM)、フラッシュROM、RAM(RandomaccessMemory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitorycomputerreadablemedium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
 (まとめ)
 上記に実施形態および変形例を複数記載したので、電波反射装置を設置するため必要な手順を整理しておく。
 電波反射装置を設置するにあたって調整すべきことは大きく分けて次ぎの二点である。
 (ステップ1)反射板ユニットの主線軸を入射面に垂直にする。
 (ステップ2)第1反射板および第2反射板をそれぞれ第1アンテナ装置110および第2アンテナ装置120に向ける。
 そして、上記ステップ1のためには、
 (ステップ1.1)入射面を求める。
 (ステップ1.2)主線軸が入射面の法線に一致するように角度調整する。
 が必要である。
 さらに、ステップ1.1のためには、
 (ステップ1.1.1):第1アンテナ装置110の方向(ベクトルa)と第2アンテナ装置120の方向(ベクトルb)を計測する。
 ことが必要である。
  ステップ1.1.1を行うにあたってはバリエーションがあり、
 (ステップ1.1.1A):メインスコープ370でアンテナ装置110、120に照準を合わせて、そのときの角度を読み取ってもいい。
 (ステップ1.1.1B):セオドライトなどの別の機器でアンテナ装置110、120の方向を計測してもよい。
 また、ステップ1.2を行うにあたってはバリエーションがある。
 (ステップ1.2A):ベクトルaとベクトルbとから入射面の法線を求めて、主線軸が前記法線に一致するように継手部220の角度を調整する。
 (ステップ1.2B):ベクトルaとベクトルbとから中点方向を求めて、反射板ユニットが中点方向を向くように継手部220の角度を調整する。
 ステップ2を行うにあたってはバリエーションがある。
 (ステップ2A):第1スコープ371と第2スコープ372とをそれぞれ用いて第1アンテナ装置110と第2アンテナ装置120とに照準を合わせる。
 (ステップ2B):第1支持軸330および第2支持軸340に角度測定器を設けておいて、角度調整を行う。
 (ステップ2C):第1アンテナ装置110および第2アンテナ装置120からのレーザ光を受信して、受信強度が最大になる方向に合わせる。
 なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。
 この出願は、2013年12月26日に出願された日本出願特願2013-269028を基礎とする優先権を主張し、その開示の全てをここに取り込む。
10…障害物、20…ポール、100…通信システム、110…第1アンテナ装置、120…第2アンテナ装置、200…電波反射装置、210…取付部、220…継手部、230…固定パーツ、231…支持片、232…孔、240…回動パーツ、241…連結片、242…基準マーク、245…支持片、246…孔、250…連結部、251…基準マーク、300…反射板ユニット、310…レドーム、320…支持フレーム、321…柱部、322A…支持腕、322B…支持腕、330…第1支持軸、340…第2支持軸、341…角度測定器、350…第1反射板、360…第2反射板、370…メインスコープ、371…第1スコープ、372…第2スコープ、373…スコープ、500…セオドライト、610…受光部、620…計測器。

Claims (8)

  1.  離れた場所にある第1アンテナ装置と第2アンテナ装置との間の電波通信を反射によって中継する電波反射装置であって、
     この電波反射装置を安定した設置場所に固定的に取り付けする取付部と、
     二枚の反射板を支持する反射板ユニットと、
     前記反射板ユニットと前記取付部との間を繋ぐ継手部と、を備え、
     前記二枚の反射板は、それぞれの支持軸に対して所定角度傾斜した状態で支持され、互いの反射面が向き合い、かつ、同軸でありながら少なくとも一方が支持軸回りに回転可能であり、
     前記継手部は、直交関係にある二軸の回転自由度を有する
     ことを特徴とする電波反射装置。
  2.  請求項1に記載の電波反射装置において、
     前記二枚の反射板は、それぞれの支持軸に対して傾斜角45°で支持されている
     ことを特徴とする電波反射装置。
  3.  請求項1または請求項2に記載の電波反射装置において、
     前記反射板ユニットの仰角および方位角をそれぞれ計測する角度計測手段をさらに備え、
     前記反射板ユニットには、この反射板ユニットと一体的に変位するメインスコープが取り付け可能になっている
     ことを特徴とする電波反射装置。
  4.  請求項3に記載の電波反射装置において、
     前記角度計測手段は、前記継手部の各回転軸の回転角度を読み取るための角度目盛りである
     ことを特徴とする電波反射装置。
  5.  請求項3に記載の電波反射装置において、
     前記角度計測手段は、前記反射板ユニットに搭載された加速度センサまたはジャイロセンサである
     ことを特徴とする電波反射装置。
  6.  請求項1から請求項5のいずれかに記載の電波反射装置において、
     前記二枚の反射板のそれぞれの回転支持軸には、スコープがそれぞれ取り付け可能になっている
     ことを特徴とする電波反射装置。
  7.  請求項1から請求項6のいずれかに記載の電波反射装置において、
      前記二枚の反射板のそれぞれの回転支持軸には、回転角を読み取るための角度目盛りが付されている
     ことを特徴とする電波反射装置。
  8.  離れた場所にある第1アンテナ装置と第2アンテナ装置との間の電波通信を反射によって中継する電波反射装置を設置する方法であって、
     前記電波反射装置は、
     この電波反射装置を安定した設置場所に固定的に取り付けする取付部と、
     二枚の反射板を傾斜角45°で支持するとともに、前記二枚の反射板が同軸でありながらそれぞれ独立回転可能となるように支持する反射板ユニットと、
     前記反射板ユニットと前記取付部との間を繋ぐとともに、直交関係にある二軸の回転自由度を有する継手部と、を備えており、
      前記第1アンテナ装置の方向と前記第2アンテナ装置の方向を計測し、
      前記第1アンテナ装置、前記第2アンテナ装置および当該電波反射装置で定義される入射面を特定し、
      前記入射面の法線と前記二枚の反射板の回転軸とが一致するように前記継手部の角度を調整し、
      さらに、前記二枚の反射板を前記第1アンテナ装置と前記第2アンテナ装置の方向にそれぞれ向ける
     ことを特徴とする電波反射装置の設置方法。
PCT/JP2014/005284 2013-12-26 2014-10-17 電波反射装置 WO2015097954A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/104,674 US10637150B2 (en) 2013-12-26 2014-10-17 Radio wave reflection device
CN201480070896.9A CN105849977A (zh) 2013-12-26 2014-10-17 无线电波反射装置
EP14874352.9A EP3089268B1 (en) 2013-12-26 2014-10-17 Radio wave reflection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-269028 2013-12-26
JP2013269028 2013-12-26

Publications (1)

Publication Number Publication Date
WO2015097954A1 true WO2015097954A1 (ja) 2015-07-02

Family

ID=53477876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005284 WO2015097954A1 (ja) 2013-12-26 2014-10-17 電波反射装置

Country Status (4)

Country Link
US (1) US10637150B2 (ja)
EP (1) EP3089268B1 (ja)
CN (1) CN105849977A (ja)
WO (1) WO2015097954A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108809402A (zh) * 2018-07-13 2018-11-13 深圳捷豹电波科技有限公司 信号传输方法及信号传输系统
JP2019009531A (ja) * 2017-06-21 2019-01-17 ソフトバンク株式会社 無給電中継装置及び無線中継システム
EP3372512A4 (en) * 2015-11-27 2019-07-17 Korea Aerospace Research Institute MANUAL HYPER FREQUENCY PROBE FOR A SATELLITE HAVING A FIXED REFLECTION PLATE
JP2021057723A (ja) * 2019-09-30 2021-04-08 Kddi株式会社 反射方向の決定方法、中継局、および基地局

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9935364B2 (en) * 2015-06-08 2018-04-03 Parallel Wireless, Inc. Single-radome multi-antenna assembly
US11056762B2 (en) * 2019-01-08 2021-07-06 Jonsa Technologies Co., Ltd. Adjustable antenna mount
CN113396507A (zh) * 2019-02-01 2021-09-14 株式会社Kmw 用于支撑无线通信装置的支架及利用其的无线通信装置支撑装配件
US11955714B2 (en) * 2019-06-17 2024-04-09 Nec Corporation Antenna apparatus, radio transmitter, and antenna diameter adjustment method
EP4009541A4 (en) * 2019-09-03 2022-12-14 Samsung Electronics Co., Ltd. HOME RELAY DEVICE AND ELECTRONIC DEVICE CONNECTED THEREOF
FI20195814A1 (en) * 2019-09-25 2021-03-26 Nokia Technologies Oy Data transmission method and device
WO2021095897A1 (ko) * 2019-11-12 2021-05-20 엘지전자 주식회사 5g 통신 중계 장치

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5873205A (ja) 1981-10-27 1983-05-02 Fujitsu Ltd マイクロ波反射板中継方式および該中継方式に使用される反射板
JPH05206946A (ja) * 1992-01-24 1993-08-13 Matsushita Electric Works Ltd 光空間伝送システム
JPH07154320A (ja) 1993-11-29 1995-06-16 Nec Corp 移動体通信システム
JPH07250024A (ja) * 1994-03-10 1995-09-26 Fujitsu Ltd 無線lan装置
JPH0951293A (ja) * 1995-05-30 1997-02-18 Matsushita Electric Ind Co Ltd 室内無線通信システム
JPH1093333A (ja) * 1996-09-17 1998-04-10 Nec Corp 無給電反射中継装置
JP3108453B2 (ja) 1991-03-01 2000-11-13 テルモ株式会社 抗血液凝固性材料および医療用器具
JP2002084115A (ja) * 2000-09-07 2002-03-22 Toshiba Corp アンテナ方位角調整方法および装置
JP2006245886A (ja) 2005-03-02 2006-09-14 Nippon Telegr & Teleph Corp <Ntt> 反射板方向調整冶具及び方法
JP2007299232A (ja) 2006-04-28 2007-11-15 Nec Corp Rfid通信システム及びrfid通信方法
JP2012199617A (ja) 2011-03-18 2012-10-18 Yokogawa Electric Corp 電波反射器

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB945859A (en) * 1961-05-08 1964-01-08 Marconi Co Ltd Improvements in or relating to anti-fading aerial systems
US5929720A (en) * 1995-09-13 1999-07-27 Kabushiki Kaisha Toshiba Electromagnetic wave matching matrix using a plurality of mirrors
US5964439A (en) * 1997-05-19 1999-10-12 Aztech, Inc. Articulatable positioning device
US6264152B1 (en) * 1998-07-17 2001-07-24 Lucent Technologies Inc. Multiple access mounting bracket
JP3844953B2 (ja) 2000-10-24 2006-11-15 株式会社東芝 アンテナ設置方法およびアンテナ設置装置
US6484987B2 (en) * 2000-12-29 2002-11-26 Bellsouth Intellectual Property Corporation Mounting bracket
WO2002095871A1 (en) 2001-05-21 2002-11-28 Mission Telecom Company, Ltd. An apparatus for setting the direction and the angle of an antenna
JP3108453U (ja) 2004-10-28 2005-04-14 株式会社神戸製鋼所 反射板調整補助装置
US7522102B2 (en) * 2004-12-16 2009-04-21 The Boeing Company Antenna beam steering
JP5473856B2 (ja) * 2010-10-06 2014-04-16 富士重工業株式会社 検査装置
US8797211B2 (en) * 2011-02-10 2014-08-05 International Business Machines Corporation Millimeter-wave communications using a reflector
CN104641508A (zh) * 2012-09-18 2015-05-20 日本电气株式会社 反射器装置、使用反射器装置的通信系统和通信方法
USD796491S1 (en) * 2014-05-22 2017-09-05 Zte Corporation Outdoor coupler unit for multi-channel trunking microwave digital radios

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5873205A (ja) 1981-10-27 1983-05-02 Fujitsu Ltd マイクロ波反射板中継方式および該中継方式に使用される反射板
JP3108453B2 (ja) 1991-03-01 2000-11-13 テルモ株式会社 抗血液凝固性材料および医療用器具
JPH05206946A (ja) * 1992-01-24 1993-08-13 Matsushita Electric Works Ltd 光空間伝送システム
JPH07154320A (ja) 1993-11-29 1995-06-16 Nec Corp 移動体通信システム
JPH07250024A (ja) * 1994-03-10 1995-09-26 Fujitsu Ltd 無線lan装置
JPH0951293A (ja) * 1995-05-30 1997-02-18 Matsushita Electric Ind Co Ltd 室内無線通信システム
JPH1093333A (ja) * 1996-09-17 1998-04-10 Nec Corp 無給電反射中継装置
JP2002084115A (ja) * 2000-09-07 2002-03-22 Toshiba Corp アンテナ方位角調整方法および装置
JP2006245886A (ja) 2005-03-02 2006-09-14 Nippon Telegr & Teleph Corp <Ntt> 反射板方向調整冶具及び方法
JP2007299232A (ja) 2006-04-28 2007-11-15 Nec Corp Rfid通信システム及びrfid通信方法
JP2012199617A (ja) 2011-03-18 2012-10-18 Yokogawa Electric Corp 電波反射器

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3372512A4 (en) * 2015-11-27 2019-07-17 Korea Aerospace Research Institute MANUAL HYPER FREQUENCY PROBE FOR A SATELLITE HAVING A FIXED REFLECTION PLATE
US10989836B2 (en) 2015-11-27 2021-04-27 Korea Aerospace Research Institute Passive microwave sounder for satellite, having fixed reflection plate
JP2019009531A (ja) * 2017-06-21 2019-01-17 ソフトバンク株式会社 無給電中継装置及び無線中継システム
CN108809402A (zh) * 2018-07-13 2018-11-13 深圳捷豹电波科技有限公司 信号传输方法及信号传输系统
JP2021057723A (ja) * 2019-09-30 2021-04-08 Kddi株式会社 反射方向の決定方法、中継局、および基地局
JP7221186B2 (ja) 2019-09-30 2023-02-13 Kddi株式会社 反射方向の決定方法、中継局、および基地局

Also Published As

Publication number Publication date
EP3089268A1 (en) 2016-11-02
US10637150B2 (en) 2020-04-28
EP3089268B1 (en) 2020-01-08
EP3089268A4 (en) 2017-08-30
US20160315392A1 (en) 2016-10-27
CN105849977A (zh) 2016-08-10

Similar Documents

Publication Publication Date Title
WO2015097954A1 (ja) 電波反射装置
US20120176608A1 (en) System and method for antenna alignment
US10615498B2 (en) Multi-beam shaped reflector antenna for concurrent communication with multiple satellites
JP2008528989A (ja) モジュール方式で拡張可能な測地用トータルステーション
CN102576925A (zh) 车载天线及用于发射和/或接收信号的方法
CN107819187B (zh) 用于微波天线的对准装置、微波天线及对准方法
AU769332B2 (en) Mobile system and method for characterizing radiation fields outdoors in an extensive and precise manner
US9711842B2 (en) Antenna alignment device and clamp
WO2014045557A1 (ja) 反射板装置及びこれを用いた通信システム、並びにこれを用いた通信方法
US9450670B1 (en) Position sensor for a fast steering mirror
US20240031040A1 (en) Methods of aligning an articulated antenna device
US20200168989A1 (en) Antenna device, antenna control device, and method for controlling antenna device
KR102098015B1 (ko) 지피에스를 이용한 기준표시 장치에 따른 측지측량 방법을 구현하는 시스템
US6774862B2 (en) Multibeam antenna apparatus
US20160363443A1 (en) Elevation angle estimating device and method for user terminal placement
JP4260038B2 (ja) 開口面アンテナ
US6208315B1 (en) Antenna for reception of satellite broadcast
WO2016147242A1 (ja) アンテナ装置、通信装置および通信システム
JP3108453U (ja) 反射板調整補助装置
JP3945491B2 (ja) 電波レンズアンテナ装置
EP3358371B1 (en) Antenna alignment device and methods for aligning antennas
KR101494159B1 (ko) 전파 망원경 및 이를 이용한 불변점 산출방법
JP2011082648A (ja) パラボラアンテナおよびパラボラアンテナ方向照準装置
US20230417867A1 (en) Tilt and direction detecting apparatus and antenna assembly using same
JPH0572763B2 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14874352

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014874352

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014874352

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15104674

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP