WO2015093527A1 - フッ素化炭化水素化合物の精製方法 - Google Patents

フッ素化炭化水素化合物の精製方法 Download PDF

Info

Publication number
WO2015093527A1
WO2015093527A1 PCT/JP2014/083406 JP2014083406W WO2015093527A1 WO 2015093527 A1 WO2015093527 A1 WO 2015093527A1 JP 2014083406 W JP2014083406 W JP 2014083406W WO 2015093527 A1 WO2015093527 A1 WO 2015093527A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorinated hydrocarbon
hydrocarbon compound
compound
amount
chain saturated
Prior art date
Application number
PCT/JP2014/083406
Other languages
English (en)
French (fr)
Inventor
悠子 小日向
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to KR1020167017997A priority Critical patent/KR20160098304A/ko
Priority to CN201480064090.9A priority patent/CN105764877B/zh
Priority to EP14871549.3A priority patent/EP3085681B1/en
Priority to JP2015553581A priority patent/JP6380764B2/ja
Priority to US15/103,747 priority patent/US9682906B2/en
Publication of WO2015093527A1 publication Critical patent/WO2015093527A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • C07C17/389Separation; Purification; Stabilisation; Use of additives by adsorption on solids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/08Acyclic saturated compounds containing halogen atoms containing fluorine

Definitions

  • the present invention relates to a method for purifying a fluorinated hydrocarbon compound. More specifically, the crude product of the fluorinated hydrocarbon compound is brought into contact with a specific molecular sieve (hereinafter, also referred to as “MS”), which is a kind of hydrated metal salt of synthetic crystal aluminosilicate, with simple equipment.
  • MS specific molecular sieve
  • the present invention relates to a method for purifying a fluorinated hydrocarbon compound that can suppress the generation of a deHF compound caused by a decomposition reaction and can efficiently remove moisture.
  • a fluorinated hydrocarbon compound has been used as a dry etching gas for semiconductor production because it has excellent etching selectivity with respect to a material to be etched.
  • a fluorinated carbon compound used in the semiconductor manufacturing field or the like is required to be purified to a high purity with an organic component purity of 99.90% or more and a water concentration of 50 ppm or less in order to realize high etching selectivity.
  • a method for dehydrating such a fluorinated hydrocarbon compound a method using MS which is a general dehydrating agent is known.
  • MS which is a general dehydrating agent
  • Patent Document 1 proposes a method for purifying hexafluoro-1,3-butadiene (formula; C 4 F 6 ) using MS having an average pore diameter of 5 mm. According to this method, it is said that hexafluoro-1,3-butadiene having at least 99.9% and a water content of 100 ppm or less can be obtained by contacting the compound with MS in a flow-through manner.
  • this document only describes the case where an unsaturated fluorinated carbon compound having 4 carbon atoms is used.
  • Patent Document 2 proposes a method for purifying fluorinated hydrocarbons, characterized by reducing hydrogen fluoride by bringing a fluorinated hydrocarbon compound having 4 to 8 carbon atoms into contact with MS or alumina. ing.
  • this document includes 1,1,1,2,4,4,4-heptafluoro-n-butane, 1,1,1,2,2,3 as specific examples of the fluorinated hydrocarbon compound. , 5,5,5-nonafluoro-n-pentane.
  • Patent Document 3 proposes a method of dehydrating the compound by suppressing the decomposition reaction of the organic liquid using MS3A in which the amount of acid sites is reduced to a predetermined amount or less by pretreatment.
  • an alcohol compound is used in the examples.
  • JP 2003-261480 A (US 6,544,319 B1) JP 2002-47218 A Japanese translation of PCT publication No. 2002-531538 (WO00 / 34217 pamphlet)
  • An object of the present invention is to provide a method for purifying a fluorinated hydrocarbon compound.
  • the present inventor has decomposed the fluorinated hydrocarbon compound using MS having a carbon dioxide adsorption amount of a predetermined amount or less and an average pore diameter of a predetermined diameter.
  • MS having a carbon dioxide adsorption amount of a predetermined amount or less and an average pore diameter of a predetermined diameter.
  • the inventors have found that the production of a deHF compound caused by the reaction is suppressed and water can be efficiently removed, and the present invention has been completed.
  • the chain saturated fluorinated hydrocarbon compound represented by the formula: C 4 H 9 F or C 5 H 11 F, the carbon dioxide adsorption amount is 50 ⁇ mol / g or less, and Provided is a method for purifying a chain saturated fluorinated hydrocarbon compound, characterized by removing water contained in the crude product by contacting with a hydrous metal salt of a synthetic crystal aluminosilicate having an average pore size of 3 mm Is done.
  • the chain saturated fluorinated hydrocarbon compound is preferably a chain saturated fluorinated hydrocarbon compound having no fluorine atom bonded to a terminal carbon atom, such as 2-fluorobutane, A compound selected from the group consisting of 2-methyl-2-fluoropropane and 2-fluoropentane is more preferable, and 2-fluorobutane is particularly preferable.
  • the purification method of the present invention includes a crude product of a chain saturated fluorinated hydrocarbon compound represented by the formula: C 4 H 9 F or C 5 H 11 F, a carbon dioxide adsorption amount of 50 ⁇ mol / g or less, and Moisture contained in the crude product is removed by contacting with a hydrous metal salt of synthetic crystal aluminosilicate having an average pore diameter of 3 mm. According to the purification method of the present invention, generation of a deHF compound caused by a decomposition reaction is suppressed, and moisture can be efficiently removed.
  • the purity of the fluorinated hydrocarbon compound to be purified and the content of the deHF compound are values calculated from the peak area by gas chromatography using a flame ionization detector (FID) as a detector. It is.
  • the water content in the fluorinated hydrocarbon compound is a value measured using FT-IR.
  • the fluorinated hydrocarbon compound to be purified is a chain saturated fluorinated hydrocarbon compound represented by the formula: C 4 H 9 F or C 5 H 11 F.
  • C 4 H 9 F or C 5 H 11 F include 1-fluorobutane, 2-fluorobutane, 1-fluoro-2-methylpropane, 2-fluoro-2-methylpropane, 1-fluoropentane, 2 -Fluoropentane, 3-fluoropentane, 1-fluoro-2-methylbutane, 1-fluoro-3-methylbutane, 2-fluoro-2-methylbutane, 2-fluoro-3-methylbutane, 1-fluoro-2,2-dimethyl Propane is mentioned.
  • a chain saturated fluorination selected from the group consisting of 2-fluorobutane, 2-fluoro-2-methylpropane, and 2-fluoropentane from the viewpoint of obtaining a more remarkable effect of the present invention.
  • a hydrocarbon compound is more preferable, and 2-fluorobutane is particularly preferable.
  • fluorinated hydrocarbon compounds are known compounds.
  • the “crude product of a fluorinated hydrocarbon compound” refers to an object to be purified by contact with a hydrous metal salt of a synthetic crystal aluminosilicate.
  • a crude product of the fluorinated hydrocarbon compound a crude product as described below is usually used, but it was purified according to a separate purification method before purification by contact with a hydrous metal salt of a synthetic crystal aluminosilicate. It may be a thing. Further, the purification method of the present invention may be repeated.
  • the crude product of the fluorinated hydrocarbon compound used in the present invention contains a deHF compound, moisture, and the like. Contains a trace amount.
  • the content of the deHF compound contained in the crude product is usually 0.01% to 0.1%, preferably 0.02% to 0.05% on a volume basis.
  • the amount of water contained in the crude product (that is, the amount of water contained in the crude product of the fluorinated hydrocarbon compound before contacting with the hydrous metal salt of the synthetic crystal aluminosilicate is usually 100 ppm to 5000 ppm, preferably 100 ppm to 3000 ppm.
  • the crude product of the fluorinated hydrocarbon compound used in the present invention can be produced and obtained by a known production method.
  • a crude product of 2-fluorobutane is disclosed in J. Org. Org. Chem, 44 (22), 3872 (1987), and can be obtained and obtained.
  • what is marketed can also be used as a crude product of a fluorinated hydrocarbon compound.
  • the hydrous metal salt (MS) of the synthetic crystalline aluminosilicate used in the present invention is a molecular sieve (MS3A) having an average pore diameter of 3 mm.
  • MS is known as a solid acid.
  • the amount of carbon dioxide adsorbed is 50 ⁇ mol / g or less because the generation of deHF compounds caused by decomposition reactions and the like can be suppressed and moisture can be removed efficiently even when brought into contact with a fluorinated hydrocarbon compound.
  • the measuring method of a carbon dioxide adsorption amount is a method of the Example description mentioned later.
  • the hydrated metal salt of synthetic crystal aluminosilicate having a carbon dioxide adsorption amount of 50 ⁇ mol / g or less and an average pore diameter of 3 mm is a known substance and can be produced and obtained by a known method. Moreover, what is marketed as a hydrous metal salt of the synthetic crystal aluminosilicate whose carbon dioxide adsorption amount is 50 ⁇ mol / g or less and whose average pore diameter is 3 mm can be used as it is.
  • the hydrous metal salt of synthetic crystal aluminosilicate is commercially available in various shapes such as pellets, trisives, beads, and powders. Among these, from the viewpoint of excellent dehydration effect and handling, pellets are preferable, pellets having a diameter of 1 to 4 mm are more preferable, and pellets having a diameter of 1.5 to 3.5 mm are further preferable. preferable.
  • the hydrated metal salt of synthetic crystal aluminosilicate may be subjected to an activation treatment as necessary before use.
  • the amount of the hydrous metal salt of the synthetic crystalline aluminosilicate is preferably 5 to 80 parts by weight, more preferably 10 to 50 parts by weight with respect to 100 parts by weight of the fluorinated hydrocarbon compound. If the amount of the hydrous metal salt in the synthetic crystal aluminosilicate is too small, the dehydration ability tends to decrease, and conversely, even if the amount of the hydrous metal salt in the synthetic crystal aluminosilicate is excessively increased, the effect is not particularly improved. There is no productivity.
  • Examples of the method of bringing a crude product of a fluorinated hydrocarbon compound into contact with a hydrated metal salt of a synthetic crystal aluminosilicate include, for example, (1) fluorinated carbonization to be purified in a container containing a hydrated metal salt of a synthetic crystal aluminosilicate Immersion method in which a crude product of hydrogen compound is charged and allowed to stand, (2) A distribution method in which a crude product of a fluorinated hydrocarbon compound is circulated through a tube filled with a hydrous metal salt of a synthetic crystal aluminosilicate, and both are brought into contact with each other Etc. Either a dipping method or a distribution method may be used and can be selected as appropriate.
  • the temperature at which the crude product of the fluorinated hydrocarbon compound is brought into contact with the hydrous metal salt of the synthetic crystal aluminosilicate varies depending on the boiling point of the fluorinated hydrocarbon compound to be used. Since there exists a possibility of causing a fall, it is preferable to make it contact at temperature lower than a boiling point.
  • the contact temperature is preferably in the range of 0 to 50 ° C., more preferably in the range of 0 to 30 ° C. from the viewpoint of productivity.
  • the time for bringing the crude product of the fluorinated hydrocarbon compound into contact with the hydrous metal salt of the synthetic crystal aluminosilicate is usually 1 hour to 72 hours.
  • deHF compound produced by a decomposition reaction caused by contacting a crude product of a fluorinated hydrocarbon compound with a hydrous metal salt of a synthetic crystal aluminosilicate for example, as a deHF product of 2-fluorobutane, ( E) -2-butene, (Z) -2-butene, and 1-butene.
  • the content of the deHF compound in the purified product of the fluorinated hydrocarbon compound after the contact treatment of the crude product of the fluorinated hydrocarbon compound and the hydrous metal salt of the synthetic crystal aluminosilicate is preferably 0.1% or less, More preferably, it is 0.05% or less.
  • the purity of the purified product of the fluorinated hydrocarbon compound is usually 99.90% or more, preferably 99.95% or more on a volume basis.
  • the amount of water contained in the purified product is usually on a volume basis. It is 50 ppm or less, preferably 30 ppm, more preferably 20 ppm or less.
  • the temperature is raised to 800 ° C. at 10 ° C./min, and the total amount of carbon dioxide desorbed at this time is defined as the carbon dioxide adsorption amount ( ⁇ mol / g) of the hydrated metal salt of the synthetic crystal aluminosilicate.
  • Example 1 5 g of molecular sieve MS3A (A) (product name: Zeorum (registered trademark) A3, manufactured by Tosoh Corporation) having an average pore size of 3 mm and 20 g of 2-fluorobutane are placed in a glass ampule bottle and immersed at 23 ° C. for 72 hours. did. The amount of deHF compound and the amount of water in 2-fluorobutane before and after immersion were measured. Moreover, the carbon dioxide adsorption amount of MS3A (A) before immersion was measured.
  • A molecular sieve MS3A (A) (product name: Zeorum (registered trademark) A3, manufactured by Tosoh Corporation) having an average pore size of 3 mm and 20 g of 2-fluorobutane are placed in a glass ampule bottle and immersed at 23 ° C. for 72 hours. did. The amount of deHF compound and the amount of water in 2-fluorobutane before and after immersion were measured. Moreover, the carbon dioxide a
  • Example 2 In the same manner as in Example 1, except that MS3A (B) (trade name: Molecular Sieve 3A pellet 1.6 manufactured by Union Showa Co., Ltd.) having an average pore diameter of 3 mm was used instead of MS3A (A) The amount of compound, the amount of water, and the carbon dioxide adsorption amount of MS3A (B) before immersion were measured.
  • MS3A (B) trade name: Molecular Sieve 3A pellet 1.6 manufactured by Union Showa Co., Ltd.
  • MS3A (C) having an average pore diameter of 3 mm was used in the same manner as in Example 1, and the amount of deHF compound, the amount of water, and the amount before immersion The amount of carbon dioxide adsorption of MS3A (C) was measured.
  • Example 2 A deHF compound was obtained in the same manner as in Example 1 except that MS3A (D) (manufactured by Mizusawa Chemical Co., Ltd., product name: Mizuka Sieves (registered trademark) 3A) having an average pore diameter of 3 mm was used instead of MS3A (A). The amount, moisture content, and carbon dioxide adsorption amount of MS3A (D) before immersion were measured.
  • MS3A (D) manufactured by Mizusawa Chemical Co., Ltd., product name: Mizuka Sieves (registered trademark) 3A
  • Example 3 (Comparative Example 3) In the same manner as in Example 1, except that molecular sieve MS4A (trade name: Molecular Sieve 4A pellet 1.6, manufactured by Union Showa Co., Ltd.) having an average pore diameter of 4 mm was used instead of MS3A (A). The amount of compound, the amount of water, and the amount of carbon dioxide adsorbed by MS4A before immersion were measured.
  • MS4A trade name: Molecular Sieve 4A pellet 1.6, manufactured by Union Showa Co., Ltd.
  • Example 3 The amount of deHF compound, the amount of moisture, and the amount of carbon dioxide adsorption were measured in the same manner as in Example 1 except that 2-methyl-2-fluoropropane was used instead of 2-fluorobutane.
  • Example 4 Except that 2-fluoropentane was used instead of 2-fluorobutane, the amount of deHF compound, the amount of water, and the amount of carbon dioxide adsorbed by MS3A (A) before immersion were measured in the same manner as in Example 1. .
  • MS4A MS having an average pore diameter of 4 mm
  • MS5A MS having an average pore diameter of 5 mm

Abstract

 本発明は、炭素数4又は5の鎖状飽和フッ素化炭化水素化合物の粗製物と、二酸化炭素吸着量が50μmol/g以下であり、かつ平均細孔径が3Åである合成結晶アルミノシリケートの含水金属塩とを接触させることにより、前記粗製物に含まれる水分を除去することを特徴とする鎖状飽和フッ素化炭化水素化合物の精製方法である。本発明によれば、鎖状飽和フッ素化炭化水素化合物の分解反応により引き起こされる脱HF化合物の生成が抑制され、かつ効率よく水分を除去することができる。

Description

フッ素化炭化水素化合物の精製方法
 本発明は、フッ素化炭化水素化合物の精製方法に関する。より詳しくは、簡易な設備でフッ素化炭化水素化合物の粗製物と、合成結晶アルミノシリケートの含水金属塩の一種である特定のモレキュラーシーブ(以下、「MS」ということがある。)とを接触させても、分解反応により引き起こされる脱HF化合物の生成を抑制し、かつ効率よく水分を除去することができるフッ素化炭化水素化合物を精製する方法に関する。
 近年、フッ素化炭化水素化合物は、被エッチングガス材料に対するエッチング選択性に優れることから、半導体製造用ドライエッチングガスとして利用されている。
 半導体製造分野等で使用されるフッ素化炭素化合物は、高いエッチング選択性を実現するために、有機成分純度99.90%以上、かつ、水分濃度50ppm以下の高純度に精製することが求められる。このようなフッ素化炭化水素化合物の脱水方法としては、一般的な脱水剤であるMSを用いる方法が知られている。
 しかし、フッ素化炭化水素化合物は、MSと接触すると、異性化や分解反応が起こりやすく、当該化合物の純度が低下する問題があった。
 例えば、特許文献1には、平均細孔径5ÅのMSを用いて、ヘキサフルオロ-1,3-ブタジエン(式;C)を精製する方法が提案されている。この方法によれば、当該化合物を流通式でMSと接触させ、少なくとも99.9%、かつ水分含有量100ppm以下のヘキサフルオロ-1,3-ブタジエンを得ることができるとされる。
 しかし、この文献には、炭素数4の不飽和フッ素化炭素化合物を用いた場合のみしか記載されていない。
 特許文献2には、炭素数4~8のフッ素化炭化水素化合物と、MS又はアルミナとを接触させることにより、フッ化水素を低減させることを特徴とするフッ化炭化水素の精製方法が提案されている。実施例では、MSによる処理前後で、当該化合物の純度に変化は見られず、新たな分解生成物も認めらなかったと記載されている。また、この文献には、前記フッ素化炭化水素化合物の具体例として、1,1,1,2,4,4,4-ヘプタフルオロ-n-ブタン、1,1,1,2,2,3,5,5,5-ノナフルオロ-n-ペンタンの記載がされている。しかし、実施例では、鎖状化合物でなく環状化合物であるオクタフルオロシクロペンテン及び1,1,2,2,3,3,4-ヘプタフルオロシクロペンタンを用いた場合のみしか記載されていない。また、段落(0023)には、MSについては、「最も好ましいのは4Aと5Aである」と記載され、実施例でも4A又は5Aが用いられている。
 特許文献3には、予備処理により所定量以下に酸点の量を減らしたMS3Aを用いて、有機液の分解反応を抑制し、当該化合物を脱水する方法が提案されている。しかし、実施例では、アルコール化合物を用いた場合のみしか記載されていない。
特開2003-261480号公報(US6,544,319B1) 特開2002-47218号公報 特表2002-531538号公報(WO00/34217号パンフレット)
 上述のように、これまでにもフッ素化炭化水素化合物の脱水方法として、MSを用いて、吸着剤による処理前後で純度変化なく、当該化合物を精製する方法が種々提案されている。しかしながら、本発明者が、特許文献1の記載に従って、式:CFで表される鎖状飽和フッ素化炭化水素化合物の粗製物と、MS5Aとを接触させたところ、脱HF化合物が増加することが確認された。
 そこで、本発明は、簡易な設備でフッ素化炭化水素化合物の粗製物とMSとを接触させても、分解反応により引き起こされる脱HF化合物の生成を抑制し、かつ効率よく水分を除去することができるフッ素化炭化水素化合物の精製方法を提供することを目的とする。
 本発明者は、上記課題を解決すべく鋭意研究を重ねた結果、二酸化炭素吸着量が所定量以下であり、かつ平均細孔径が所定径であるMSを用いると、フッ素化炭化水素化合物の分解反応により引き起こされる脱HF化合物の生成が抑制され、かつ効率よく水分を除去できることを見出し、本発明を完成するに至った。
 かくして本発明によれば、式:CF又はC11Fで表される鎖状飽和フッ素化炭化水素化合物の粗製物と、二酸化炭素吸着量が50μmol/g以下であり、かつ平均細孔径が3Åである合成結晶アルミノシリケートの含水金属塩とを接触させることにより、前記粗製物に含まれる水分を除去することを特徴とする鎖状飽和フッ素化炭化水素化合物の精製方法が提供される。
 本発明の精製方法においては、前記鎖状飽和フッ素化炭化水素化合物が、末端の炭素原子にフッ素原子が結合していない鎖状飽和フッ素化炭化水素化合物であるのが好ましく、2-フルオロブタン、2-メチル-2-フルオロプロパン、2-フルオロペンタンからなる群より選択される化合物であるのがより好ましく、2-フルオロブタンであるのが特に好ましい。
 本発明の精製方法は、式:CF又はC11Fで表される鎖状飽和フッ素化炭化水素化合物の粗製物と、二酸化炭素吸着量が50μmol/g以下であり、かつ平均細孔径が3Åである合成結晶アルミノシリケートの含水金属塩とを接触させることにより、前記粗製物に含まれる水分を除去することを特徴とする。
 本発明の精製方法によれば、分解反応により引き起こされる脱HF化合物の生成が抑制され、かつ効率よく水分を除去することができる。
 本発明において、精製の対象となるフッ素化炭化水素化合物の純度、及び脱HF化合物の含有量は、水素炎イオン化検出器(FID)を検出器としたガスクロマトグラフィーによりピーク面積から算出される値である。また、前記フッ素化炭化水素化合物中の水分量は、FT-IRを用いて測定した値である。
 本発明において、精製の対象となるフッ素化炭化水素化合物は、式:CF又はC11Fで表される鎖状飽和フッ素化炭化水素化合物である。
 CF又はC11Fの例としては、1-フルオロブタン、2-フルオロブタン、1-フルオロ-2-メチルプロパン、2-フルオロ-2-メチルプロパン、1-フルオロペンタン、2-フルオロペンタン、3-フルオロペンタン、1-フルオロ-2-メチルブタン、1-フルオロ-3-メチルブタン、2-フルオロ-2-メチルブタン、2-フルオロ-3-メチルブタン、1-フルオロ-2,2-ジメチルプロパンが挙げられる。これらの中でも、本発明のより顕著な効果が得られる観点から、2-フルオロブタン、2-フルオロ-2-メチルプロパン、及び、2-フルオロペンタンからなる群より選択される、鎖状飽和フッ素化炭化水素化合物であるのがより好ましく、2-フルオロブタンであるのが特に好ましい。
 これらのフッ素化炭化水素化合物は公知化合物である。本願明細書において「フッ素化炭化水素化合物の粗製物」とは、合成結晶アルミノシリケートの含水金属塩との接触による精製処理の対象物をいう。フッ素化炭化水素化合物の粗製物としては、通常、以下に記載するような粗製物が用いられるが、合成結晶アルミノシリケートの含水金属塩との接触による精製処理前に別途の精製方法に従って精製されたものであってもよい。また、本発明の精製方法は、繰り返し実施してもよい。
 本発明に用いるフッ素化炭化水素化合物の粗製物は、式:CF又はC11Fで表される鎖状飽和フッ素化炭化水素化合物のほかに、脱HF化合物や水分等を微量含むものである。前記粗製物に含まれる脱HF化合物の含有量は、体積基準で、通常0.01%~0.1%、好ましくは0.02%~0.05%である。
 また、前記粗製物に含まれる水分量(すなわち、合成結晶アルミノシリケートの含水金属塩と接触させる前のフッ素化炭化水素化合物の粗製物中に含まれる水分含有量は、体積基準で、通常100ppm~5000ppm、好ましくは100ppm~3000ppmである。
 本発明に用いるフッ素化炭化水素化合物の粗製物は、公知の製造方法により製造し、入手することができる。例えば、2-フルオロブタンの粗製物は、J.Org.Chem,44(22),3872(1987)記載の方法により製造し、入手することができる。また、本発明においては、フッ素化炭化水素化合物の粗製物として、市販されているものを用いることもできる。
 本発明に用いる合成結晶アルミノシリケートの含水金属塩(MS)は、平均細孔径が3Åのモレキュラーシーブ(MS3A)である。一般的に、MSは固体酸として知られている。このようなMSの中でも、フッ素化炭化水素化合物を接触させても分解反応等により引き起こされる脱HF化合物の生成を抑制し、かつ効率よく水分を除去できることから、二酸化炭素吸着量が50μmol/g以下のもの、好ましくは、二酸化炭素吸着量が40μmol/g以下、より好ましくは、30μmol/g以下のものを用いる。なお、二酸化炭素吸着量の測定方法は、後述する実施例記載の方法である。
 二酸化炭素吸着量が50μmol/g以下であり、かつ平均細孔径が3Åである合成結晶アルミノシリケートの含水金属塩は、公知物質であり、公知の方法により製造し入手することができる。また、二酸化炭素吸着量が50μmol/g以下であり、かつ平均細孔径が3Åである合成結晶アルミノシリケートの含水金属塩として市販されているものを、そのまま使用することもできる。
 合成結晶アルミノシリケートの含水金属塩は、ペレット状、トライシブ状、ビーズ状、パウダー状など種々の形状で市販されている。なかでも、脱水効果に優れることや取り扱い性の観点から、ペレット状のものが好ましく、直径1~4mmのペレット状のものがより好ましく、直径1.5~3.5mmのペレット状のものがさらに好ましい。
 合成結晶アルミノシリケートの含水金属塩は、使用する前に必要に応じて活性化処理を行っても良い。
 合成結晶アルミノシリケートの含水金属塩の使用量は、フッ素化炭化水素化合物100重量部に対して、好ましくは5~80重量部、より好ましくは10~50重量部である。合成結晶アルミノシリケートの含水金属塩の使用量が少なすぎると、脱水能力が低下する傾向があり、逆に合成結晶アルミノシリケートの含水金属塩使用量を過度に多くしても効果が特に上がるわけではなく、生産性は低下する。
 フッ素化炭化水素化合物の粗製物と、合成結晶アルミノシリケートの含水金属塩とを接触させる方法としては、例えば、(1)合成結晶アルミノシリケートの含水金属塩が入った容器に、精製するフッ素化炭化水素化合物の粗製物を投入して放置する浸漬法、(2)合成結晶アルミノシリケートの含水金属塩を充填した管に、フッ素化炭化水素化合物の粗製物を流通させて、両者を接触させる流通法などが挙げられる。浸漬法、流通法のいずれの方法でも良く、適宜選択することができる。
 フッ素化炭化水素化合物の粗製物と、合成結晶アルミノシリケートの含水金属塩とを接触させる温度は、使用するフッ素化炭化水素化合物の沸点により異なるが、沸点よりも温度が高い場合には、収率低下を招くおそれがあるため、沸点よりも低い温度で接触させることが好ましい。接触温度は、生産性の観点から、0~50℃の範囲が好ましく、より好ましくは0~30℃の範囲である。
 フッ素化炭化水素化合物の粗製物と、合成結晶アルミノシリケートの含水金属塩とを接触させる時間は、通常1時間~72時間である。
 フッ素化炭化水素化合物の粗製物と、合成結晶アルミノシリケートの含水金属塩とを、接触させることにより起こる分解反応により生じる脱HF化合物としては、例えば、2-フルオロブタンの脱HF化物としては、(E)-2-ブテン、(Z)-2-ブテン、1-ブテンが挙げられる。
 本発明の精製方法によれば、分解反応により引き起こされる脱HF化合物の生成が抑制され、かつ効率よく水分を除去することができる。
 フッ素化炭化水素化合物の粗製物と、合成結晶アルミノシリケートの含水金属塩との接触処理後におけるフッ素化炭化水素化合物の精製物中の脱HF化合物の含有量は、好ましくは0.1%以下、より好ましくは0.05%以下である。
 また、前記フッ素化炭化水素化合物の精製物の純度は、体積基準で、通常99.90%以上、好ましくは99.95%以上である。
 また、前記精製物に含まれる水分量(すなわち、合成結晶アルミノシリケートの含水金属塩と接触させた後のフッ素化炭化水素化合物の精製物中に含まれる水分含有量)は、体積基準で、通常50ppm以下、好ましくは30ppm、より好ましくは20ppm以下である。
 以下に、実施例を挙げて、本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 以下において採用した分析方法は下記の通りである。
(1)合成結晶アルミノシリケートの含水金属塩の二酸化炭素吸着量の測定
 合成結晶アルミノシリケートの含水金属塩の二酸化炭素吸着量(固体表面の塩基点の量)は、昇温脱離測定法(TPD法)により求めた。
 合成結晶アルミノシリケートの含水金属塩0.1gを、全自動昇温脱離スペクトル装置(日本ベル社製、型名;TPD-1-ATw)の測定用セルに入れ、0.5体積%の二酸化炭素ガスを含むヘリウムガスを100ml/分で気流下、100℃で30分間保持した後に、ヘリウムガスに変更し、50ml/分の速度で30分間流す。さらに、10℃/分で800℃まで昇温し、このときに脱離した二酸化炭素量の合計を、合成結晶アルミノシリケートの含水金属塩の二酸化炭素吸着量(μmol/g)とする。
(2)脱HF化合物量の測定
 フッ素化炭化水素化合物の粗製物の浸漬処理前後における脱HF化合物量は、ガスクロマトグラフィーによりピーク面積から算出した。
・ガスクロマトグラフィー分析(GC分析)の条件は下記の通りである。
装置:Agilent(登録商標)7890A(アジレント社製)
カラム:ジーエルサイエンス社製、製品名「Inert Cap(登録商標)1」、長さ60m、内径0.25mm、膜厚1.5μm
カラム温度:40℃で20分間保持  
インジェクション温度:80℃
キャリヤーガス:窒素
スプリット比:40/1
検出器:FID
(3)水分含有量の測定
フッ素化炭化水素化合物の粗製物の浸漬処理前後における水分含有量(vppm:Volumetric Parts per Million)は、FT-IRを測定することにより求めた。
 測定装置:FT-IR測定装置(大塚電子社製、製品名:IG-1000))
 セル長:10m
(実施例1)
 平均細孔径が3ÅのモレキュラーシーブMS3A(A)(東ソー社製、製品名;ゼオラム(登録商標)A3)5gと、2-フルオロブタン20gとを、ガラスアンプル瓶に入れ、23℃で72時間浸漬した。浸漬前後の2-フルオロブタン中の脱HF化合物量及び水分量を測定した。また、浸漬前のMS3A(A)の二酸化炭素吸着量を測定した。
(実施例2)
 MS3A(A)の代わりに、平均細孔径3ÅのMS3A(B)(ユニオン昭和社製、商品名:モレキュラーシーブ3Aペレット1.6)を用いた以外は、実施例1と同様にして、脱HF化合物量、水分量及び、浸漬前のMS3A(B)の二酸化炭素吸着量を測定した。
(比較例1)
 MS3A(A)の代わりに、平均細孔径3ÅのMS3A(C)(和光純薬社製)を用いた以外は、実施例1と同様にして、脱HF化合物量、水分量、及び浸漬前のMS3A(C)の二酸化炭素吸着量を測定した。
(比較例2)
 MS3A(A)の代わりに、平均細孔径3ÅのMS3A(D)(水澤化学社製、製品名;ミズカシーブス(登録商標)3A)を用いた以外は、実施例1と同様にして、脱HF化合物量、水分量、及び浸漬前のMS3A(D)の二酸化炭素吸着量を測定した。
(比較例3)
 MS3A(A)の代わりに、平均細孔径が4ÅのモレキュラーシーブMS4A(ユニオン昭和社製、商品名:モレキュラーシーブ4Aペレット1.6)を用いた以外は、実施例1と同様にして、脱HF化合物量、水分量、及び浸漬前のMS4Aの二酸化炭素吸着量を測定した。
(比較例4)
 MS3A(A)の代わりに、平均細孔径が5ÅのモレキュラーシーブMS5A(ユニオン昭和社製、商品名:モレキュラーシーブ5Aペレット1.6)を用いた以外は、実施例1と同様にして、脱HF化合物量、水分量、及び浸漬前のMS5Aの二酸化炭素吸着量を測定した。
(実施例3)
 2-フルオロブタンの代わりに、2-メチル-2-フルオロプロパンを用いた以外は、実施例1と同様にして、脱HF化合物量、水分量、二酸化炭素吸着量を測定した。
(比較例5)
 MS3A(A)の代わりに、MS3A(C)を用いた以外は、実施例3と同様にして、脱HF化合物量、水分量、及び浸漬前のMS3A(C)の二酸化炭素吸着量を測定した。
(実施例4)
 2-フルオロブタンの代わりに、2-フルオロペンタンを用いた以外は、実施例1と同様にして、脱HF化合物量、水分量、及び浸漬前のMS3A(A)の二酸化炭素吸着量を測定した。
(比較例6)
 MS3A(A)の代わりに、MS3A(C)を用いた以外は、実施例4と同様にして、脱HF化合物量、水分量、及び浸漬前のMS3A(C)の二酸化炭素吸着量を測定した。
  実施例1~4、比較例1~6の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1からわかるように、式:CF又はC11Fで表される鎖状飽和フッ素化炭化水素化合物と、二酸化炭素吸着量50μmol/g以下のMS3A(平均細孔径が3ÅのMS)を接触させた場合は、分解反応等により引き起こされる脱HF化合物の生成量を抑制することができ、かつ効率よく水分を除去できることがわかる(実施例1~4)。
 一方で、前記鎖状フッ素化炭化水素化合物と、50μmol/g以上のMS3Aを接触させた場合は、浸漬処理後において脱HF化合物量が増加することがわかる(比較例1、2、5、6)。また、前記鎖状フッ素化炭化水素化合物と、接触させるMSがMS4A(平均細孔径が4ÅのMS)やMS5A(平均細孔径が5ÅのMS)の場合は、その二酸化炭素吸着量によらず、浸漬処理後において脱HF化合物量が増加することがわかる(比較例3、4)。

Claims (4)

  1.  式:CF又はC11Fで表される鎖状飽和フッ素化炭化水素化合物の粗製物と、二酸化炭素吸着量が50μmol/g以下であり、かつ平均細孔径が3Åである合成結晶アルミノシリケートの含水金属塩とを接触させることにより、前記粗製物に含まれる水分を除去することを特徴とする鎖状飽和フッ素化炭化水素化合物の精製方法。
  2.  前記鎖状飽和フッ素化炭化水素化合物が、末端の炭素原子にフッ素原子が結合していないことを特徴とする請求項1に記載の精製方法。
  3.  前記鎖状飽和フッ素化炭化水素化合物が、2-フルオロブタン、2-メチル-2-フルオロプロパン、及び2-フルオロペンタンからなる群より選択される化合物であることを特徴とする請求項1又は2に記載の精製方法。
  4.  前記鎖状飽和フッ素化炭化水素化合物が、2-フルオロブタンであることを特徴とする請求項1~3のいずれかに記載の精製方法。
PCT/JP2014/083406 2013-12-20 2014-12-17 フッ素化炭化水素化合物の精製方法 WO2015093527A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020167017997A KR20160098304A (ko) 2013-12-20 2014-12-17 불소화탄화수소 화합물의 정제 방법
CN201480064090.9A CN105764877B (zh) 2013-12-20 2014-12-17 氟化烃化合物的提纯方法
EP14871549.3A EP3085681B1 (en) 2013-12-20 2014-12-17 Method for purifying hydrofluorocarbon compound
JP2015553581A JP6380764B2 (ja) 2013-12-20 2014-12-17 フッ素化炭化水素化合物の精製方法
US15/103,747 US9682906B2 (en) 2013-12-20 2014-12-17 Method for purifying hydrofluorocarbon compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013263228 2013-12-20
JP2013-263228 2013-12-20

Publications (1)

Publication Number Publication Date
WO2015093527A1 true WO2015093527A1 (ja) 2015-06-25

Family

ID=53402872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083406 WO2015093527A1 (ja) 2013-12-20 2014-12-17 フッ素化炭化水素化合物の精製方法

Country Status (7)

Country Link
US (1) US9682906B2 (ja)
EP (1) EP3085681B1 (ja)
JP (1) JP6380764B2 (ja)
KR (1) KR20160098304A (ja)
CN (1) CN105764877B (ja)
TW (1) TWI619691B (ja)
WO (1) WO2015093527A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016117463A1 (ja) * 2015-01-22 2016-07-28 日本ゼオン株式会社 フッ素化炭化水素化合物の精製方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6835061B2 (ja) * 2018-12-28 2021-02-24 ダイキン工業株式会社 ヘキサフルオロブタジエンの精製方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08173799A (ja) * 1994-10-28 1996-07-09 Tosoh Corp 乾燥剤、その製造方法及びその用途
WO2000034217A1 (en) 1998-12-10 2000-06-15 Bp Chemicals Limited A method of dewatering organic liquids
JP2001247495A (ja) * 2000-03-07 2001-09-11 Maruzen Petrochem Co Ltd 1,1−ジフルオロエタンの精製方法
JP2001261330A (ja) * 2000-03-24 2001-09-26 Tosoh Corp ゼオライトビーズ成形体、その製造方法及びこれを用いた吸着除去方法
JP2002047218A (ja) 2000-07-27 2002-02-12 Nippon Zeon Co Ltd フッ素化炭化水素の精製方法、溶剤、潤滑性重合体含有液および潤滑性重合体膜を有する物品
US6544319B1 (en) 2002-01-16 2003-04-08 Air Products And Chemicals, Inc. Purification of hexafluoro-1,3-butadiene
JP2013095669A (ja) * 2011-10-28 2013-05-20 Nippon Zeon Co Ltd 含フッ素化アルカンの製造方法
JP2014024785A (ja) * 2012-07-26 2014-02-06 Nippon Zeon Co Ltd フッ素化炭化水素化合物の精製方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03173799A (ja) 1989-12-01 1991-07-29 Fuji Photo Film Co Ltd 印刷版用アルミニウム支持体の製造方法
KR0153347B1 (ko) 1994-03-15 1999-01-15 사토 후미오 하이드로플루오로카본계 냉동 사이클용 조성물 및 냉동장치
JPH08121908A (ja) * 1994-10-19 1996-05-17 Sanyo Electric Co Ltd ハイドロフルオロカーボン用ドライヤ
US6589444B2 (en) * 1997-11-10 2003-07-08 Honeywell International Inc. Process for separating water from chemical mixtures
JP2002119849A (ja) * 2000-10-13 2002-04-23 Tosoh Corp バインダーレス3a型ゼオライトビーズ吸着剤およびその製造方法並びにこれを用いた吸着除去方法
JP5446710B2 (ja) * 2009-10-16 2014-03-19 東ソー株式会社 冷媒用脱水剤及びそれを用いた脱水方法
KR20150125005A (ko) 2013-03-07 2015-11-06 제온 코포레이션 고순도 2-플루오로부탄
KR101814406B1 (ko) * 2013-10-30 2018-01-04 제온 코포레이션 고순도 불소화 탄화수소, 플라즈마 에칭용 가스로서의 사용, 및, 플라즈마 에칭 방법

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08173799A (ja) * 1994-10-28 1996-07-09 Tosoh Corp 乾燥剤、その製造方法及びその用途
WO2000034217A1 (en) 1998-12-10 2000-06-15 Bp Chemicals Limited A method of dewatering organic liquids
JP2002531538A (ja) 1998-12-10 2002-09-24 ビーピー ケミカルズ リミテッド 有機液の脱水方法
JP2001247495A (ja) * 2000-03-07 2001-09-11 Maruzen Petrochem Co Ltd 1,1−ジフルオロエタンの精製方法
JP2001261330A (ja) * 2000-03-24 2001-09-26 Tosoh Corp ゼオライトビーズ成形体、その製造方法及びこれを用いた吸着除去方法
JP2002047218A (ja) 2000-07-27 2002-02-12 Nippon Zeon Co Ltd フッ素化炭化水素の精製方法、溶剤、潤滑性重合体含有液および潤滑性重合体膜を有する物品
US6544319B1 (en) 2002-01-16 2003-04-08 Air Products And Chemicals, Inc. Purification of hexafluoro-1,3-butadiene
JP2003261480A (ja) 2002-01-16 2003-09-16 Air Products & Chemicals Inc ヘキサフルオロ−1,3−ブタジエン精製方法
JP2013095669A (ja) * 2011-10-28 2013-05-20 Nippon Zeon Co Ltd 含フッ素化アルカンの製造方法
JP2014024785A (ja) * 2012-07-26 2014-02-06 Nippon Zeon Co Ltd フッ素化炭化水素化合物の精製方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J. ORG. CHEM, vol. 44, no. 22, 1987, pages 3872
See also references of EP3085681A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016117463A1 (ja) * 2015-01-22 2016-07-28 日本ゼオン株式会社 フッ素化炭化水素化合物の精製方法
US10017437B2 (en) * 2015-01-22 2018-07-10 Zeon Corporation Method for purifying fluorinated hydrocarbon compound

Also Published As

Publication number Publication date
JP6380764B2 (ja) 2018-08-29
KR20160098304A (ko) 2016-08-18
CN105764877A (zh) 2016-07-13
US20160318832A1 (en) 2016-11-03
EP3085681A4 (en) 2017-05-10
TWI619691B (zh) 2018-04-01
TW201524940A (zh) 2015-07-01
US9682906B2 (en) 2017-06-20
EP3085681A1 (en) 2016-10-26
CN105764877B (zh) 2017-07-11
EP3085681B1 (en) 2019-05-08
JPWO2015093527A1 (ja) 2017-03-23

Similar Documents

Publication Publication Date Title
EP2303819B1 (fr) PROCEDE DE PURIFICATION DE 2,3,3,3-TETRAFLUORO-1-PROPENE (HF01234yf)
WO2014185499A1 (ja) 塩化水素の精製方法
TWI816959B (zh) 六氟丁二烯之純化方法
US8337595B2 (en) Purification of trans-1,3,3,3-tetrafluoropropene
JP6380764B2 (ja) フッ素化炭化水素化合物の精製方法
JP5929588B2 (ja) フッ素化炭化水素化合物の精製方法
CN109937196B (zh) 1-氯-2,3,3-三氟丙烯的制造方法
JP2016166157A (ja) フッ素化炭化水素化合物充填済みガス充填容器
KR101717369B1 (ko) 불화 온실 가스의 정제 방법
EP3593889A1 (en) Improved adsorption of acid gases
WO2016117463A1 (ja) フッ素化炭化水素化合物の精製方法
KR102612966B1 (ko) 신규의 옥타플루오로시클로부탄(c4f8) 정제방법
JP5544696B2 (ja) 液化塩素の製造方法
JP2005161306A (ja) ペルフルオロメタンの精製
KR20180054613A (ko) 불소화 탄화수소 화합물 충전 완료 가스 충전 용기, 가스 충전 용기의 제조 방법, 및 불소화 탄화수소 화합물의 보존 방법
JPH07330316A (ja) 三弗化窒素ガスの精製方法
KR20180001676A (ko) 삼불화질소 흡착제의 제조방법
EK Adsorptive Capacity and Evolution of the Pore Structure of Alumina on Reaction with Gaseous Hydrogen Fluoride
TH10015C3 (th) ตัวดูดซับคลอไรด์ชนิดอะลูมินาเอิบชุ่มด้วยสังกะสีออกไซด์

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14871549

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015553581

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15103747

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014871549

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014871549

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167017997

Country of ref document: KR

Kind code of ref document: A