WO2015087954A1 - シーラント - Google Patents

シーラント Download PDF

Info

Publication number
WO2015087954A1
WO2015087954A1 PCT/JP2014/082792 JP2014082792W WO2015087954A1 WO 2015087954 A1 WO2015087954 A1 WO 2015087954A1 JP 2014082792 W JP2014082792 W JP 2014082792W WO 2015087954 A1 WO2015087954 A1 WO 2015087954A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealant
block copolymer
mass
farnesene
block
Prior art date
Application number
PCT/JP2014/082792
Other languages
English (en)
French (fr)
Inventor
佐々木 啓光
陽介 上原
Original Assignee
株式会社クラレ
アミリス, インコーポレイティド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ, アミリス, インコーポレイティド filed Critical 株式会社クラレ
Priority to US15/103,168 priority Critical patent/US20180134931A1/en
Priority to JP2015552500A priority patent/JP6679041B2/ja
Priority to CN201480067984.3A priority patent/CN105793384A/zh
Priority to EP14869628.9A priority patent/EP3081613A4/en
Priority to KR1020167015381A priority patent/KR20160096610A/ko
Priority to CA2933261A priority patent/CA2933261A1/en
Publication of WO2015087954A1 publication Critical patent/WO2015087954A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K3/1006Materials in mouldable or extrudable form for sealing or packing joints or covers characterised by the chemical nature of one of its constituents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J153/00Adhesives based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
    • C09J153/02Vinyl aromatic monomers and conjugated dienes
    • C09J153/025Vinyl aromatic monomers and conjugated dienes modified
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J153/00Adhesives based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
    • C09J153/02Vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/01High molecular weight, e.g. >800,000 Da.
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/04Broad molecular weight distribution, i.e. Mw/Mn > 6
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/20Copolymer characterised by the proportions of the comonomers expressed as weight or mass percentages

Definitions

  • the present invention relates to a sealant using a block copolymer composed of a polymer block composed of a structural unit derived from an aromatic vinyl compound and a polymer block composed of a structural unit derived from a conjugated diene.
  • Sealants are used in a wide range of industrial fields such as architecture, electricity, and automobiles. There are two types of sealants: cross-linked types and hot-melt types. Cross-linked types include silicone-based sealants, urethane-based sealants, polysulfide-based sealants, and vulcanized rubber-based sealants, while hot-melt types include EVA-based sealants and soft vinyl chloride-based sealants. There are thermoplastic elastomer sealants such as sealants, butyl rubber sealants, and styrene thermoplastic elastomers. Sealants are widely used in automobiles and building materials as a material that fills joints to obtain water tightness and air tightness. The sealant is required to have high hermeticity, and in many cases, it is required to have characteristics such as flexibility and high mechanical strength, although it varies depending on the application to be used.
  • reactive solidifying sealants such as silicone sealants, urethane sealants, and polysulfide sealants at the factory or work site.
  • the reactive solidified sealant is filled or bonded during assembly or after assembly, or is attached during assembly using a natural rubber or synthetic rubber molded packing, or a butyl rubber sealant or styrene heat After a hot melt sealant such as a plastic elastomer sealant is applied at the time of assembling the seal portion, it is assembled.
  • Patent Document 1 discloses a hot melt composition containing a high molecular weight styrene block copolymer, and the hot melt composition has sufficient adhesiveness to a hardly adhesive polyolefin resin material, and has a high temperature. It is disclosed that it does not deteriorate even when placed underneath, and is excellent in adhesion and sealing properties.
  • Patent Document 2 discloses a thermoplastic containing a hydrogenated product of a block copolymer composed of a polymer block composed of a structural unit derived from an aromatic vinyl compound and a polymer block composed of a structural unit derived from a conjugated diene.
  • a hot melt sealant comprising an elastomer composition is disclosed, and the hot melt sealant is disclosed to be excellent in flexibility, workability, heat resistance, vibration damping properties, oxygen gas barrier properties, and the like.
  • Patent Documents 3 and 4 describe polymers of ⁇ -farnesene, but their practical use has not been sufficiently studied.
  • the subject of the present invention is a sealant which is excellent in molding processability, flexibility and adhesiveness, and excellent in sound insulation and vibration damping (vibration damping characteristics) in a high frequency region near 4,000 Hz even at high temperatures. Is to provide.
  • the present invention contains a polymer block (a) composed of a structural unit derived from an aromatic vinyl compound and 1 to 100% by mass of a structural unit (b1) derived from farnesene, and a structural unit derived from a conjugated diene other than farnesene ( a polymer block (b) containing 99 to 0% by mass of b2), and the mass ratio [(a) / (b)] of the polymer block (a) to the polymer block (b) is 5 /
  • a sealant comprising a block copolymer (A) of 95 to 45/55.
  • a sealant which is excellent in molding processability, flexibility and adhesiveness, and is excellent in sound insulation and vibration damping (vibration damping characteristics) in a high frequency region in the vicinity of 4,000 Hz even at high temperatures. can do.
  • the sealant of the present invention contains 1 to 100% by mass of a polymer block (a) composed of a structural unit derived from an aromatic vinyl compound and a structural unit (b1) derived from farnesene, and is a structural unit derived from a conjugated diene other than farnesene.
  • the block copolymer (A) used in the present invention contains 1 to 100% by mass of a polymer block (a) composed of a structural unit derived from an aromatic vinyl compound and a structural unit (b1) derived from farnesene.
  • a polymer block (b) containing 99 to 0% by mass of a structural unit (b2) derived from a conjugated diene other than the above, and the mass ratio of the polymer block (a) to the polymer block (b) [(a ) / (B)] is a block copolymer having a ratio of 5/95 to 45/55.
  • the polymer block (a) is composed of a structural unit derived from an aromatic vinyl compound.
  • the aromatic vinyl compound include styrene, ⁇ -methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-propylstyrene, 4-tert-butylstyrene, 4-cyclohexylstyrene, 4- Dodecylstyrene, 2,4-dimethylstyrene, 2,4-diisopropylstyrene, 2,4,6-trimethylstyrene, 2-ethyl-4-benzylstyrene, 4- (phenylbutyl) styrene, 1-vinylnaphthalene, 2- Examples thereof include vinyl naphthalene, vinyl anthracene, N, N-diethyl-4-aminoethyl styrene, vinyl pyridine, 4-methoxy s
  • the peak top molecular weight (Mp) of the polymer block (a) is preferably from 4,000 to 100,000, more preferably from 5,000 to 80,000, from the viewpoints of moldability, flexibility, adhesiveness and the like. Preferably, 6,000 to 60,000 is more preferable.
  • the peak top molecular weight (Mp) in this specification means the value measured by the method described in the Example mentioned later.
  • the polymer block (b) contains 1 to 100% by mass of farnesene-derived structural units (b1) and 99 to 0% by mass of structural units (b2) derived from conjugated dienes other than farnesene.
  • the structural unit (b1) may be either ⁇ -farnesene or a ⁇ -farnesene-derived structural unit represented by the following formula (I), but from the viewpoint of ease of production of the block copolymer (A), ⁇ - A structural unit derived from farnesene is preferred. Note that ⁇ -farnesene and ⁇ -farnesene may be used in combination.
  • Examples of the conjugated diene constituting the structural unit (b2) derived from a conjugated diene other than farnesene include butadiene, isoprene, 2,3-dimethylbutadiene, 2-phenyl-butadiene, 1,3-pentadiene, 2-methyl-1 , 3-pentadiene, 1,3-hexadiene, 1,3-octadiene, 1,3-cyclohexadiene, 2-methyl-1,3-octadiene, 1,3,7-octatriene, myrcene, chloroprene, etc. . These may be used alone or in combination of two or more. Among them, one or more of butadiene, isoprene and myrcene are more preferable, and butadiene and / or isoprene are more preferable.
  • the polymer block (b) contains 1 to 100% by mass of the structural unit (b1) derived from farnesene and 99 to 0% by mass of the structural unit (b2) derived from conjugated dienes other than farnesene.
  • the content of the structural unit (b1) derived from farnesene is less than 1% by mass, the molding processability, flexibility and adhesiveness of the sealant are lowered, and sound insulation and vibration damping properties are lowered at high temperatures. To do.
  • the content of the structural unit (b1) in the polymer block (b) is preferably 30 to 100% by mass, more preferably 45 to 100% by mass.
  • the content of the structural unit (b2) is preferably 70% by mass or less, and more preferably 55% by mass or less. preferable.
  • the sealant of the present invention contains a softener (B) described later, the content of the structural unit (b1) derived from farnesene that the polymer block (b) has is more preferably 30 to 90% by mass, More preferably, it is 45 to 85% by mass.
  • the content of the structural unit (b2) derived from a conjugated diene other than farnesene is more preferably 10 to 70% by mass, and further preferably 15 to 55% by mass.
  • the content of the structural unit (b1) derived from farnesene in the polymer block (b) is more preferably 50 to 100% by mass, and 70 to 100% by mass is more preferable, 90 to 100% by mass is still more preferable, and 100% by mass is even more preferable.
  • the content of the structural unit (b2) derived from a conjugated diene other than farnesene is more preferably 50% by mass or less, further preferably 30% by mass or less, and still more preferably 10% by mass or less.
  • the total content of the structural unit (b1) and the structural unit (b2) in the polymer block (b) is preferably 80% by mass or more, More preferably, it is 90 mass% or more, More preferably, it is 95 mass% or more, More preferably, it is 99 mass% or more, More preferably, it is 100 mass%.
  • the block copolymer (A) used in the present invention has an unsaturated double bond (carbon-carbon double bond) in the polymer block (b) from the viewpoint of improving adhesiveness, heat resistance, and weather resistance. ) May be partially or fully hydrogenated.
  • the hydrogenation rate of the polymer block (b) at that time is preferably 70 mol% or more, more preferably 80 mol% or more, and further preferably 85 mol% or more.
  • the hydrogenation rate of the unsaturated double bond in the polymer block (b) is determined by measuring the content of the unsaturated double bond in the polymer block (b) before and after hydrogenation, and measuring the iodine value and infrared spectroscopy. It can be measured from a photometer (IR), nuclear magnetic resonance ( 1 H-NMR) or the like and obtained from the measured value.
  • the bonding form of the polymer block (a) and the polymer block (b) is not particularly limited, and may be linear, branched, radial, or a combination of two or more thereof.
  • a form in which each block is linearly bonded is preferable, and when the polymer block (a) is represented by a and the polymer block (b) is represented by b, (ab) l , a- (ba ) Preferred is a bond form represented by m or b- (ab) n .
  • said l, m, and n represent an integer greater than or equal to 1 each independently.
  • the block copolymer (A) is preferably a block copolymer containing two or more polymer blocks (a) and one or more polymer blocks (b). From the viewpoint of obtaining a sealant that is excellent in molding processability, flexibility and adhesiveness, and excellent in sound insulation and vibration damping properties at high temperatures, a triblock copolymer represented by aba is preferred. Further, when the block copolymer (A) has two or more polymer blocks (a) or two or more polymer blocks (b), each polymer block is a polymer comprising the same structural unit. It may be a block or a polymer block composed of different structural units. For example, in the two polymer blocks (a) in the triblock copolymer represented by [aba], each aromatic vinyl compound may be the same or different in type. Good.
  • the mass ratio [(a) / (b)] of the polymer block (a) and the polymer block (b) in the block copolymer (A) is 5/95 to 45/55. If it is out of the range, it is not possible to obtain a sealant that is excellent in molding processability, flexibility, and adhesiveness, and that is excellent in sound insulation and vibration control at high temperatures. From this viewpoint, the mass ratio [(a) / (b)] of the polymer block (a) and the polymer block (b) is preferably 10/90 to 45/55, more preferably 10/90 to 40/60. 10/90 to 35/65 are more preferable.
  • the block copolymer (A) is a polymer block (c) composed of other monomers in addition to the polymer block (a) and the polymer block (b) as long as the gist of the present invention is not impaired. May be contained.
  • examples of such other monomers include propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-decene, 1-undecene, 1-dodecene, 1- Unsaturated hydrocarbon compounds such as tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nonadecene, 1-eicocene; acrylic acid, methacrylic acid, methyl acrylate, methyl methacrylate , Acrylonitrile, methacrylonitrile, maleic acid, fumaric acid, crotonic acid, ita
  • the block copolymer (A) has a polymer block (c)
  • the content thereof is preferably 50% by mass or less, more preferably 40% by mass or less, further preferably 30% by mass or less, and more preferably 10% by mass or less. Most preferred.
  • the total content of the polymer block (a) and the polymer block (b) in the block copolymer (A) is preferably 50% by mass or more, more preferably 60% by mass or more, and still more preferably. It is 70 mass% or more, More preferably, it is 90 mass% or more.
  • the peak top molecular weight (Mp) of the block copolymer (A) is preferably from 4,000 to 500,000, and preferably from 9,000 to 400,000 from the viewpoints of moldability, flexibility, adhesiveness and the like. More preferred is 50,000 to 400,000, and most preferred is 70,000 to 390,000.
  • the peak top molecular weight (Mp) in this specification means the value measured by the method described in the Example mentioned later.
  • the molecular weight distribution (Mw / Mn) of the block copolymer (A) is preferably 1 to 4, more preferably 1 to 3, and still more preferably 1 to 2. When the molecular weight distribution is within the above range, the viscosity of the block copolymer (A) is small and easy to handle.
  • the block copolymer (A) has a melt flow rate (MFR) measured under the conditions described in the examples, preferably 1 g / 10 min or more, more preferably from the viewpoint of improving the workability of the resulting sealant. Is 10 g / 10 min or more, more preferably 30 g / 10 min or more, still more preferably 40 g / 10 min or more.
  • MFR melt flow rate
  • the block copolymer (A) has a hardness (type A hardness) measured under the conditions described in the examples from the viewpoint of improving the flexibility of the obtained sealant, preferably 60 or less, more preferably 55.
  • it is more preferably 40 or less, still more preferably 30 or less, and still more preferably 10 or less.
  • the hardness is preferably 1 or more, more preferably 2 or more, and still more preferably 3 or more from the viewpoint of strength.
  • the block copolymer (A) has an adhesive force measured under the conditions described in the examples, preferably 0.2 or more, more preferably, from the viewpoint of ensuring the adhesive function of the obtained sealant. Is 0.5 or more, more preferably 0.7 or more.
  • the block copolymer (A) preferably has a loss coefficient under a vibration condition of a frequency of 4,000 hertz in the range of 40 to 80 ° C. from the viewpoint of excellent sound insulation and vibration damping properties at high temperatures. It is 0.070 or more, More preferably, it is 0.075 or more, More preferably, it is 0.080 or more, More preferably, it is 0.085 or more.
  • the loss factor is within the above range, the obtained sealant of the present invention is further improved in vibration damping properties and can absorb external vibrations, so that sound insulation is also improved.
  • the block copolymer (A) can be produced by a solution polymerization method or a method described in JP-A-2012-502135 and JP-A-2012-502136.
  • the solution polymerization method is preferable, and known methods such as an ion polymerization method such as anion polymerization and cation polymerization, and a radical polymerization method can be applied.
  • the anionic polymerization method is preferred.
  • the other monomer which comprises is added sequentially, and a block copolymer (A) is obtained.
  • the anionic polymerization initiator include alkali metals such as lithium, sodium and potassium; alkaline earth metals such as beryllium, magnesium, calcium, strontium and barium; lanthanoid rare earth metals such as lanthanum and neodymium; And compounds containing earth metals and lanthanoid rare earth metals.
  • an alkali metal and a compound containing an alkali metal are preferable, and an organic alkali metal compound is more preferable.
  • organic alkali metal compound examples include methyl lithium, ethyl lithium, n-butyl lithium, sec-butyl lithium, t-butyl lithium, hexyl lithium, phenyl lithium, stilbene lithium, dilithiomethane, dilithionaphthalene, 1,4-dilithiobutane.
  • Organic lithium compounds such as 1,4-dilithio-2-ethylcyclohexane and 1,3,5-trilithiobenzene; sodium naphthalene, potassium naphthalene and the like. Of these, organic lithium compounds are preferred, n-butyllithium and sec-butyllithium are more preferred, and sec-butyllithium is particularly preferred.
  • the organic alkali metal compound may be used as an organic alkali metal amide by reacting with a secondary amine such as diisopropylamine, dibutylamine, dihexylamine, and dibenzylamine.
  • a secondary amine such as diisopropylamine, dibutylamine, dihexylamine, and dibenzylamine.
  • the amount of the organic alkali metal compound used for the polymerization varies depending on the molecular weight of the block copolymer (A), but is usually 0.01 to 3 with respect to the total amount of aromatic vinyl compound, farnesene and conjugated dienes other than farnesene. It is the range of mass%.
  • the solvent is not particularly limited as long as it does not adversely affect the anionic polymerization reaction.
  • saturated aliphatic hydrocarbons such as n-pentane, isopentane, n-hexane, n-heptane, isooctane; cyclopentane, cyclohexane, methylcyclopentane And saturated alicyclic hydrocarbons; aromatic hydrocarbons such as benzene, toluene and xylene. These may be used alone or in combination of two or more.
  • Lewis base plays a role in controlling the microstructure of structural units derived from farnesene and structural units derived from conjugated dienes other than farnesene.
  • Lewis bases include ether compounds such as dibutyl ether, diethyl ether, tetrahydrofuran (THF), dioxane, and ethylene glycol diethyl ether; pyridine; N, N, N ′, N′-tetramethylethylenediamine (TMEDA), trimethylamine, and the like.
  • TEZDiamine tetramethylethylenediamine
  • Tertiary metal alkoxides such as potassium t-butoxide; phosphine compounds and the like.
  • the amount is usually preferably in the range of 0 to 1000 molar equivalents per mole of anionic polymerization initiator.
  • the temperature of the polymerization reaction is usually in the range of ⁇ 80 to 150 ° C., preferably 0 to 100 ° C., more preferably 10 to 90 ° C.
  • the polymerization reaction may be carried out batchwise or continuously. Each monomer is continuously or intermittently supplied into the polymerization reaction solution so that the amount of aromatic vinyl compound, farnesene and / or conjugated diene other than farnesene in the polymerization reaction system falls within a specific range, Or a block copolymer (A) can be manufactured by superposing
  • the polymerization reaction can be stopped by adding an alcohol such as methanol or isopropanol as a polymerization terminator.
  • the block copolymer (A) is obtained by pouring the obtained polymerization reaction liquid into a poor solvent such as methanol to precipitate the block copolymer (A), or washing the polymerization reaction liquid with water, separating, and drying. Can be isolated.
  • an unmodified block copolymer (A) may be obtained as described above, but before the hydrogenation step described later, a functional group is introduced into the block copolymer (A).
  • a modified block copolymer (A) may be obtained.
  • functional groups that can be introduced include amino groups, alkoxysilyl groups, hydroxyl groups, epoxy groups, carboxyl groups, carbonyl groups, mercapto groups, isocyanate groups, and acid anhydrides.
  • tin tetrachloride, tetrachlorosilane, dimethyldichlorosilane, dimethyldiethoxysilane, tetramethoxysilane which can react with a polymerization active terminal are used.
  • Examples thereof include a method of adding a modifying agent or other modifying agents described in JP2011-132298A.
  • maleic anhydride or the like can be grafted onto the isolated copolymer.
  • the position where the functional group is introduced may be the polymerization terminal of the block copolymer (A) or the side chain.
  • the said functional group may be used individually by 1 type or in combination of 2 or more types.
  • the modifying agent is usually preferably in the range of 0.01 to 10 molar equivalents relative to the anionic polymerization initiator.
  • the block copolymer (A) obtained by the above method or the modified block copolymer (A) may be used as it is as the block copolymer (A), but the block copolymer (A) is hydrogenated.
  • subjecting to the process to perform can also be used as a block copolymer (A).
  • a known method can be used for the hydrogenation. For example, in a solution in which the block copolymer (A) is dissolved in a solvent that does not affect the hydrogenation reaction, a Ziegler catalyst; nickel, platinum, palladium, ruthenium supported on carbon, silica, diatomaceous earth, etc.
  • Rhodium metal catalyst An organic metal complex having cobalt, nickel, palladium, rhodium or ruthenium metal is present as a hydrogenation catalyst to carry out a hydrogenation reaction.
  • palladium carbon in which palladium is supported on carbon is preferably used as a hydrogenation catalyst.
  • the hydrogen pressure is preferably 0.1 to 20 MPa
  • the reaction temperature is preferably 100 to 200 ° C.
  • the reaction time is preferably 1 to 20 hours.
  • the sealant of the present invention may contain a softener (B) for the purpose of imparting flexibility.
  • the softener (B) include paraffinic, naphthenic, and aromatic process oils; phthalic acid derivatives such as dioctyl phthalate and dibutyl phthalate; white oil; mineral oil; liquid co-oligomer of ethylene and ⁇ -olefin Liquid paraffin; polybutene; low molecular weight polyisobutylene; liquid polybutadiene, liquid polyisoprene, liquid polyisoprene / butadiene copolymer, liquid styrene / butadiene copolymer, liquid polydiene such as liquid styrene / isoprene copolymer and hydrogenation thereof Thing etc.
  • paraffinic process oil paraffinic process oil
  • liquid co-oligomer of ethylene and ⁇ -olefin liquid paraffin
  • low molecular weight polyisobutylene low molecular weight polyisobutylene
  • hydrogenated products thereof are preferable.
  • a hydrogenated product of paraffinic process oil is more preferable.
  • the content of the softening agent (B) is preferably from 100 parts by weight of the block copolymer (A) from the viewpoint of obtaining a sealant having excellent molding processability, flexibility and adhesiveness, and a high loss factor. Is in the range of 10 to 200 parts by weight, more preferably in the range of 20 to 150 parts by weight. Further, from the viewpoint of obtaining a sealant having excellent flexibility, the content of the softening agent (B) is preferably 10 to 500 parts by mass, more preferably 100 parts by mass with respect to 100 parts by mass of the block copolymer (A). 50 to 400 parts by mass, more preferably 100 to 350 parts by mass.
  • the sealant of the present invention can further contain a polyphenylene ether resin (C) from the viewpoint of obtaining a sealant that is excellent in moldability, flexibility and adhesiveness and has a high loss factor.
  • a polyphenylene ether resin (C) for example, a polymer having a structural unit represented by the following general formula (II) can be used.
  • R 1 , R 2 , R 3 and R 4 each independently represents a hydrogen atom, a halogen atom, a hydrocarbon group, a substituted hydrocarbon group, an alkoxy group, a cyano group, a phenoxy group or a nitro group. .
  • polyphenylene ether resin (C) those in which R 1 and R 2 in the general formula (II) are alkyl groups, particularly alkyl groups having 1 to 4 carbon atoms are preferable. In addition, it is preferable that R 3 and R 4 in the general formula (II) are a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • the polyphenylene ether resin (C) include poly (2,6-dimethyl-1,4-phenylene) ether, poly (2,6-diethyl-1,4-phenylene) ether, poly (2-methyl-6).
  • -Ethyl-1,4-phenylene) ether poly (2-methyl-6-propyl-1,4-phenylene) ether, poly (2,6-dipropyl-1,4-phenylene) ether, poly (2-ethyl) -6-propyl-1,4-phenylene) ether, poly (2,6-dimethoxy-1,4-phenylene) ether, poly (2,6-dichloromethyl-1,4-phenylene) ether, poly (2, 6-dibromomethyl-1,4-phenylene) ether, poly (2,6-diphenyl-1,4-phenylene) ether, poly (2,6-ditolyl-1,4-phen) Len) ether, poly (2,6-dichloro-1,4-phenylene) ether, poly (2,6-dibenzyl-1,4-phenylene) ether, poly (2,5-dimethyl-1,4-phenylene) Examples include ether.
  • a particularly preferable polyphenylene ether resin (C) is poly (2,6-dimethyl-1,4-phenylene) ether. These may be modified with a modifying agent having a polar group.
  • polar groups include acid halides, carbonyl groups, acid anhydrides, acid amides, carboxylic acid esters, acid azides, sulfone groups, nitrile groups, cyano groups, isocyanate esters, amino groups, imide groups, hydroxyl groups, and epoxy groups.
  • these polyphenylene ether resins may be a mixture with polystyrene resin.
  • the polyphenylene ether resin (C) used in the present invention preferably has a number average molecular weight in the range of 1,000 to 250,000, and particularly in the range of 5,000 to 150,000 in consideration of the balance of various physical properties. More preferably.
  • the block copolymer (A) is obtained from the viewpoint of obtaining a sealant that is excellent in molding processability, flexibility and adhesiveness and has a high loss factor.
  • the range of 5 to 60 parts by mass is preferable with respect to 100 parts by mass, and the range of 10 to 60 parts by mass is more preferable.
  • the sealant of the present invention can contain a tackifier resin (D) as necessary as long as it does not impair the gist of the present invention.
  • a tackifier resin (D) those conventionally used as a resin imparting tackiness can be used without particular limitation.
  • rosin resins such as gum rosin, tall oil rosin, wood rosin, hydrogenated rosin, disproportionated rosin, polymerized rosin, rosin esters such as glycerin ester and pentaerythritol ester; ⁇ -pinene, ⁇ -pinene, dipentene Terpene resins such as terpene resins, aromatic modified terpene resins, hydrogenated terpene resins, terpene phenol resins, etc .; (hydrogenated) aliphatic (C5) petroleum resins, (hydrogenated) aromatic (C9) -Based petroleum resin, (hydrogenated) copolymerized (C5 / C9-based) petroleum resin, (hydrogenated) dicyclopentadiene-based petroleum resin, alicyclic saturated hydrocarbon resin, etc.
  • hydrogenated terpene resins, alicyclic saturated hydrocarbon resins, and aliphatic petroleum resins are preferable from the viewpoint of suppressing coloring of the sealant. These may be used alone or in combination of two or more.
  • the tackifying resin (D) is contained, the amount thereof is 100 parts by mass of the block copolymer (A) from the viewpoint of obtaining a sealant having excellent molding processability, flexibility and adhesiveness and a high loss factor. Is preferably in the range of 1 to 200 parts by mass, more preferably in the range of 5 to 180 parts by mass, and still more preferably in the range of 5 to 150 parts by mass.
  • the softening point of the tackifier resin (D) is preferably 50 ° C. to 150 ° C., more preferably 80 ° C. to 150 ° C. from the viewpoint of heat resistance.
  • the sealant of the present invention may be cross-linked as necessary within a range that does not impair the gist of the present invention.
  • kneading is performed by adding a radical generator, a crosslinking agent such as sulfur or a sulfur compound, and, if necessary, a crosslinking aid.
  • radical generator examples include hydroperoxides such as t-butyl hydroperoxide, cumene hydroperoxide, and 2,5-dimethylhexane-2,5-dihydroperoxide; di-t-butyl peroxide, t-butylcumyl peroxide, dioctyl Milperoxide, ⁇ , ⁇ '-bis (t-butylperoxy) -p-diisopropylbenzene, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, 2,5-dimethyl-2,5- Dialkyl peroxides such as di (t-butylperoxy) -hexyne-3; diacyl peroxides such as acetyl peroxide, succinic acid peroxide and benzoyl peroxide; t-butyl peroxyacetate, t-butylperoxyisobutyrate, t-butylperoxy
  • Examples of the crosslinking method using a radical generator include a method of melt-kneading the thermoplastic elastomer composition, the radical generator, and, if necessary, another thermoplastic resin under heating.
  • the heating temperature is preferably 140 to 230 ° C., and the melt kneading can be carried out batchwise or continuously in an extruder, kneader, roll, plastograph or the like.
  • the crosslinking reaction proceeds by the melt-kneading process.
  • sulfur compounds include sulfur monochloride and sulfur dichloride.
  • the amount added is preferably 0.1 to 20 parts by mass, more preferably 0.2 to 10 parts by mass with respect to 100 parts by mass of the block copolymer (A).
  • crosslinking is performed using sulfur or a sulfur compound, it is extremely preferable to use a vulcanization accelerator in combination as a crosslinking aid.
  • vulcanization accelerator examples include thiazoles such as N, N-diisopropyl-2-benzothiazole-sulfenamide, 2-mercaptobenzothiazole, 2- (4-morpholinodithio) benzothiazole; diphenylguanidine, triphenylguanidine Guanidines such as butyraldehyde-aniline reactant, aldehyde-amine reactant such as hexamethylenetetramine-acetaldehyde reactant or aldehyde-ammonia reactant, imidazoline such as 2-mercaptoimidazoline; thiocarbanilide, diethylurea, dibutyl Thioureas such as thiourea, trimethylthiourea, diorthotolylthiourea; tetramethylthiuram monosulfide, tetramethylthiuram disulfide, pentamethylenethiuramtetrasulfur Thiuram mono- or
  • vulcanization accelerators may be used alone or in combination of two or more.
  • the amount added is preferably 0.05 to 30 parts by weight, more preferably 0.1 to 20 parts by weight, and more preferably 100 parts by weight of the block copolymer (A).
  • the amount is preferably 0.2 to 10 parts by mass.
  • the sealant of the present invention can contain various additives as necessary, as long as the gist of the present invention is not impaired.
  • additives include lubricants, fillers, flame retardants, antioxidants, heat stabilizers, light stabilizers, weathering agents, metal deactivators, ultraviolet absorbers, light stabilizers, copper damage inhibitors, and reinforcing agents.
  • the lubricant has an effect of improving the fluidity of the sealant and suppressing thermal deterioration.
  • the lubricant that can be used in the present invention include silicone oils; hydrocarbon lubricants such as paraffin wax, microwax, and polyethylene wax; butyl stearate, monoglyceride stearate, pentaerythritol tetrastearate, stearyl stearate, and the like. It is done.
  • the antioxidant include hindered phenol-based antioxidants and phosphoric acid-based antioxidants.
  • the sealant of the present invention contains a filler, it is preferably 1 to 20 parts by weight, more preferably 1 to 15 parts by weight, still more preferably 5 to 15 parts per 100 parts by weight of the block copolymer (A). Part by mass.
  • the filler examples include calcium carbonate, talc, carbon black, titanium oxide, silica, clay, barium sulfate, magnesium carbonate, glass fiber, and carbon fiber, and preferably calcium carbonate.
  • the sealant of the present invention contains a filler, it is preferably in the range of 10 to 200 parts by mass with respect to 100 parts by mass of the entire sealant from the viewpoint of maintaining flexibility and vibration damping properties. A range of 150 parts by mass is more preferable.
  • the flame retardant examples include phosphorus-based flame retardants such as triphenylphosphine, triallyl phosphate, aromatic phosphate ester, polyphosphate, red phosphorus, 2-ethylhexyl diphenyl phosphate, triethyl phosphate; magnesium hydroxide, aluminum hydroxide And inorganic flame retardants.
  • phosphorus-based flame retardants such as triphenylphosphine, triallyl phosphate, aromatic phosphate ester, polyphosphate, red phosphorus, 2-ethylhexyl diphenyl phosphate, triethyl phosphate; magnesium hydroxide, aluminum hydroxide And inorganic flame retardants.
  • the polyolefin resin is contained, it is preferably in the range of 1 to 100 parts by weight, preferably in the range of 5 to 50 parts by weight, with respect to 100 parts by weight of the whole sealant. More preferred is the range of parts.
  • the total content of the block copolymer (A), the softener (B), the polyphenylene ether resin (C), the tackifier resin (D) and the various additives described above in the sealant of the present invention is preferably Is 80% by mass or more, more preferably 90% by mass or more, and still more preferably 100% by mass.
  • Resin (C), tackifying resin (D) and other various additives are pre-blended and mixed together, and then melt-kneaded using a single screw extruder, multi-screw extruder, Banbury mixer, heating roll, various kneaders, etc.
  • a block copolymer (A) and, if necessary, a softener (B), a polyphenylene ether resin (C), a tackifier resin (D) and various additives are supplied from separate charging ports. Examples thereof include a melt kneading method.
  • Examples of the preblending method include a method using a mixer such as a Henschel mixer, a high speed mixer, a V blender, a ribbon blender, a tumbler blender, or a conical blender.
  • the temperature at the time of melt kneading can be arbitrarily selected within the range of 120 ° C. to 300 ° C.
  • the sealant of the present invention has a melt flow rate (MFR) measured under the conditions described in the examples, preferably 10 g / 10 min or more, more preferably 30 g / 10 min or more, still more preferably. Is 40 g / 10 min or more, more preferably 50 or more.
  • MFR melt flow rate
  • the sealant of the present invention has a hardness (type A hardness) measured under the conditions described in the examples, preferably 60 or less, more preferably 55 or less, still more preferably 40 or less, and more. More preferably, it is 30 or less, More preferably, it is 10 or less.
  • the hardness is preferably 0.1 or more, more preferably 0.5 or more, still more preferably 1 or more, and still more preferably 3 or more, from the viewpoint of strength.
  • the type C hardness measured under the conditions described in the examples is preferably 100 or less, more preferably 50 or less, From the viewpoint of strength, it is preferably 1 or more, more preferably 3 or more.
  • the sealant of the present invention has an adhesive force measured under the conditions described in the examples, preferably 0.2 N / 25 mm or more, more preferably 0.5 N / 25 mm or more, Preferably it is 0.7 N / 25mm or more, More preferably, it is 1 or more.
  • the sealant of the present invention has a loss factor in the excitation condition of a frequency of 4,000 hertz in the range of 40 to 80 ° C. from the viewpoint of being excellent in sound insulation and vibration suppression at high temperatures, and is preferably about 0.00. It is 070 or more, More preferably, it is 0.075 or more, More preferably, it is 0.080 or more, More preferably, it is 0.085 or more.
  • the loss factor can be measured by the method described in the examples.
  • the sealant of the present invention can be suitably used as a hot melt sealant, for example.
  • the sealant of the present invention has a high loss factor and is therefore excellent in sound insulation and vibration damping properties, it can be suitably used as a sound insulation sealant and a vibration damping sealant (damping sealant).
  • the sealant of the present invention is excellent as a loss factor in a high frequency region in the vicinity of 4,000 hertz even at a relatively high temperature of 40 to 80 ° C., and thus is suitable as a sealant for suppressing noise in such a high frequency region.
  • the sealant of the present invention can be suitably used by adhering it to automobile parts as a vibration damping sealant (damping sealant) in an automobile used at high temperatures.
  • a block copolymer comprising the sealant of the present invention, a polymer block comprising a structural unit derived from an aromatic vinyl compound such as styrene, and a polymer block comprising a structural unit derived from a conjugated diene such as isoprene or butadiene. Or it may be used as a sealant for automobile parts in combination with the hydrogenated product. That is, some of these block copolymers or their hydrogenated products have sound insulation and vibration damping properties in the vicinity of 4,000 hertz in the temperature range of 40 ° C. or lower, but in the high temperature range of 40 ° C. or higher, 4 In some cases, the sound insulation performance and vibration control performance in the vicinity of 1,000 Hz are inferior.
  • the sealant of the present invention in combination with the block copolymer or a hydrogenated product thereof, it is possible to provide a sealant that is excellent in sound insulation and vibration damping properties from room temperature to high temperature.
  • the sealant of this invention the said block copolymer, or its hydrogenated material may be mixed and used, and both laminated bodies may be formed in a target object.
  • the damping member can be obtained by molding the sealant of the present invention by applying a conventionally known molding method such as hot pressing, injection molding, extrusion molding, calendar molding, or the like.
  • the shape of the vibration damping member obtained in this manner is arbitrary, and for example, a disk shape, a plate shape, a cylindrical body, and the like are preferable examples.
  • ⁇ -farnesene purity 97.6% by mass Amiris, Inc., manufactured by Incorporated
  • ⁇ -farnesene purified by 3 ⁇ molecular sieve and distilled under a nitrogen atmosphere to obtain gingivalene, bisabolene, farnesene epoxide, farnesol isomerism.
  • hydrocarbon impurities such as dimer, E, E-farnesol, squalene, ergosterol and some of the dimers of farnesene, it was used for the following polymerization.
  • the peak top molecular weight (Mp) of the styrene block and the peak top molecular weight (Mp) and molecular weight distribution (Mw / Mn) of the block copolymer are determined by GPC (gel permeation). Chromatography) was performed using a standard polystyrene equivalent molecular weight, and the peak top molecular weight (Mp) was determined from the peak position of the molecular weight distribution peak.
  • GPC gel permeation
  • GPC device GPC device “GPC8020” manufactured by Tosoh Corporation Separation column: “TSKgel G4000HXL” manufactured by Tosoh Corporation ⁇ Detector: “RI-8020” manufactured by Tosoh Corporation ⁇ Eluent: Tetrahydrofuran ⁇ Eluent flow rate: 1.0 ml / min ⁇ Sample concentration: 5 mg / 10 ml -Column temperature: 40 ° C
  • Hydrogenation rate ⁇ 1 ⁇ (number of moles of carbon-carbon double bond contained per mole of block copolymer after hydrogenation) / (carbon contained per mole of block copolymer before hydrogenation ⁇ ) Number of moles of carbon double bond) ⁇ ⁇ 100 (mol%)
  • seat was mounted on the said to-be-adhered body, and both were crimped
  • This laminate was used as a test specimen for measurement.
  • a 180 ° peel test was performed with a tensile tester (model 5566) manufactured by Instron Corporation at a distance between chucks of 10 cm and a pulling speed of 1 cm / min. In addition, it is excellent in adhesiveness, so that a value is high.
  • Rebound resilience (damping property) Using the sealant obtained in each Example and Comparative Example, compression molding was performed at 200 ° C. for 3 minutes by a compression molding machine, and a cylindrical test having a diameter of 29.0 ⁇ 0.5 mm and a thickness of 12.5 ⁇ 0.5 mm. A piece was made. Using this test piece, the rebound resilience at 25 ° C. was measured with a Lüpke-type rebound resilience tester in accordance with JIS K 6255. The smaller the value of the impact resilience, the better the vibration damping.
  • polymerization was performed for 1 hour to obtain a reaction solution containing a polystyrene-poly ( ⁇ -farnesene) -polystyrene triblock copolymer (polymerization step).
  • a reaction solution containing a polystyrene-poly ( ⁇ -farnesene) -polystyrene triblock copolymer polymerization step.
  • 5% by mass of palladium carbon (palladium supported amount: 5% by mass) as a hydrogenation catalyst was added to the block copolymer, and the reaction was performed for 10 hours under conditions of a hydrogen pressure of 2 MPa and 150 ° C. .
  • Copolymer (I) -1) was obtained (hydrogenation step).
  • the block copolymer (I) -1 was evaluated as described above.
  • the peak top molecular weight (Mp) of the styrene block in the block copolymer (I) -1 is the same as that of the styrene (1) in the process of polymerizing the polystyrene-poly ( ⁇ -farnesene) -polystyrene triblock copolymer.
  • the measured value of the peak top molecular weight (Mp) of the polystyrene obtained by sampling after polymerization was taken as the peak top molecular weight (Mp) of the styrene block in the block copolymer (I) -1.
  • the results are shown in Table 1.
  • Block copolymer (I ′)-7, (I ′) was prepared in the same manner as in Production Example 1 except that tetrahydrofuran (THF) as a Lewis base was mixed with cyclohexane as a solvent and the formulation shown in Table 1 was followed. ⁇ 9 and (I ′)-11 were prepared. The obtained block copolymers (I ′)-7, (I ′)-9 and (I ′)-11 were evaluated as described above. The results are shown in Table 1.
  • Example 1 to 6 and Comparative Examples 1 to 6 The resulting block copolymers (I) -1 to (I) -5, (I) -10 and (I ′)-6 to (I ′)-9, (I ′)-11, (I ′) -12 was used as the sealant of Examples 1 to 6 and Comparative Examples 1 to 6, respectively, and the above evaluation was performed. The results are shown in Table 2.
  • the sealants of Examples 1 to 6 are excellent in molding processability, flexibility and adhesiveness in order to satisfy the constituent requirements of the present invention, and have a loss factor at 4,000 Hz over 40 to 80 ° C. It can be seen that the sound insulation and vibration control in the high frequency region at high temperature are excellent.
  • the sealants of Comparative Examples 1 to 6 do not contain the structural unit (b1) derived from farnesene, all of them have poor flexibility, low adhesive strength, low loss coefficient at 40 to 80 ° C., sound insulation and It turns out that it is inferior to a damping property.
  • the sealant of Comparative Example 2 has a loss coefficient at 80 ° C. equivalent to that of the present invention, the loss coefficient at 60 ° C.
  • the sealant of Comparative Example 3 has a high loss factor at 40 ° C., but has a low loss factor of 60 ° C. or more, which indicates that it is not suitable as a sealant used at high temperatures.
  • Examples 7 to 14 and Comparative Examples 7 to 22 Each component shown in Table 3 and Table 4 was mixed at 200 to 230 ° C. for 2 hours using a sigma blade type kneader according to the formulation shown in Table 3 and Table 4 to prepare a sealant. Various measurements were performed by the above method using the obtained sealant. The results are shown in Tables 3 and 4.
  • the sealants of Examples 7 to 14 have the same or better compression set (heat resistance) and rebound resilience at high temperatures than the sealants of Comparative Examples 7 to 22. It has excellent moldability, flexibility and adhesiveness, has a high loss factor at 4,000 Hz over 40-80 ° C, and has sound insulation and vibration control (vibration) at high frequencies at high temperatures. Excellent attenuation characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Sealing Material Composition (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

芳香族ビニル化合物由来の構造単位からなる重合体ブロック(a)と、ファルネセン由来の構造単位(b1)を1~100質量%含有し、ファルネセン以外の共役ジエン由来の構造単位(b2)を99~0質量%含有する重合体ブロック(b)とを含有し、重合体ブロック(a)と重合体ブロック(b)との質量比[(a)/(b)]が5/95~45/55であるブロック共重合体を含むシーラントは、成形加工性、柔軟性及び粘接着性に優れ、かつ高温下でも4,000ヘルツ近傍の高周波数領域における遮音性及び制振性(振動減衰特性)に優れる。

Description

シーラント
 本発明は、芳香族ビニル化合物由来の構造単位からなる重合体ブロック及び共役ジエン由来の構造単位からなる重合体ブロックで構成されるブロック共重合体を用いたシーラントに関する。
 シーラントは建築、電気、自動車など幅広い産業分野で用いられている。シーラントには架橋型とホットメルト型があり、架橋型にはシリコーン系シーラント、ウレタン系シーラント、ポリサルファイド系シーラント、加硫ゴム系シーラントなどが、一方ホットメルト型にはEVA系シーラント、軟質塩化ビニル系シーラント、ブチルゴム系シーラント、スチレン系熱可塑性エラストマーなどの熱可塑性エラストマー系シーラントなどがある。シーラントは、水密性や気密性を得るために目地に充填する材料として、自動車や建材などに幅広く使用される。シーラントには高い気密性が求められ、また使用する用途により異なるものの、多くの場合、柔軟性や高機械的強度などの特性を有することが求められる。
 このような特性が要求される部位には、現状では、工場あるいは作業現場にて、シリコーン系シーラント、ウレタン系シーラント、ポリサルファイド系シーラントなどの反応性固化型シーラントが充填されたカートリッジを用いて、シール部分の組立時または組立後に前記反応性固化型シーラントの充填または接着が行われたり、天然ゴムまたは合成ゴム系の成形パッキンを用いて組立時にその取付けが行われたり、ブチルゴム系シーラントやスチレン系熱可塑性エラストマー系シーラントなどのホットメルトシーラントをシール部分の組立時に塗布した後、組立がなされたりしている。
 例えば、特許文献1には、高分子量スチレン系ブロックコポリマーを含有するホットメルト組成物が開示され、該ホットメルト組成物は難接着性のポリオレフィン系樹脂素材にも充分な接着性を有し、高温下に置かれても劣化することがなく、かつ密着性、シール性などに優れることが開示されている。
 また、特許文献2には、芳香族ビニル化合物由来の構造単位からなる重合体ブロック及び共役ジエン由来の構造単位からなる重合体ブロックで構成されるブロック共重合体の水素添加物を含有する熱可塑性エラストマー組成物からなるホットメルトシーラントが開示され、該ホットメルトシーラントは柔軟性、加工性、耐熱性、制振性、酸素ガスバリア性などに優れることが開示されている。
 なお、特許文献3,4には、β-ファルネセンの重合体が記載されているが、実用的な用途については十分に検討されていない。
特開2005-097360号公報 特開2011-074168号公報 特表2012-502135号公報 特表2012-502136号公報
 しかしながら、近年ハイブリッドカー及び電気自動車の普及に伴い、今までの内燃機関のみのエンジン自動車では気にならなかった4,000ヘルツ近傍の高周波数領域における遮音性及び制振性の向上が求められるようになり、従来の熱可塑性エラストマー組成物を用いたシーラントではこれらの要求性能を十分に満足することができず、更なる性能向上が求められていた。
 しかして本発明の課題は、成形加工性、柔軟性及び粘接着性に優れ、かつ高温下でも4,000ヘルツ近傍の高周波数領域における遮音性及び制振性(振動減衰特性)に優れるシーラントを提供することにある。
 本発明者らは鋭意検討した結果、ファルネセン由来の構造単位を有する特定のブロック共重合体又はその水素添加物含むシーラントが、上記課題を解決できることを見出し、本発明を完成するに至った。
 すなわち本発明は、芳香族ビニル化合物由来の構造単位からなる重合体ブロック(a)と、ファルネセン由来の構造単位(b1)を1~100質量%含有し、ファルネセン以外の共役ジエン由来の構造単位(b2)を99~0質量%含有する重合体ブロック(b)とを含有し、重合体ブロック(a)と重合体ブロック(b)との質量比[(a)/(b)]が5/95~45/55であるブロック共重合体(A)を含むシーラントである。
 本発明によれば、成形加工性、柔軟性及び粘接着性に優れ、かつ高温下でも4,000ヘルツ近傍の高周波数領域における遮音性及び制振性(振動減衰特性)に優れるシーラントを提供することができる。
 本発明のシーラントは、芳香族ビニル化合物由来の構造単位からなる重合体ブロック(a)と、ファルネセン由来の構造単位(b1)を1~100質量%含有し、ファルネセン以外の共役ジエン由来の構造単位(b2)を99~0質量%含有する重合体ブロック(b)とを含有し、重合体ブロック(a)と重合体ブロック(b)との質量比[(a)/(b)]が5/95~45/55であるブロック共重合体(A)を含むシーラントである。
[ブロック共重合体]
 本発明で用いられるブロック共重合体(A)は、芳香族ビニル化合物由来の構造単位からなる重合体ブロック(a)と、ファルネセン由来の構造単位(b1)を1~100質量%含有し、ファルネセン以外の共役ジエン由来の構造単位(b2)を99~0質量%含有する重合体ブロック(b)とを含有し、重合体ブロック(a)と重合体ブロック(b)との質量比[(a)/(b)]が5/95~45/55である、ブロック共重合体である。
 前記重合体ブロック(a)は芳香族ビニル化合物由来の構造単位で構成される。かかる芳香族ビニル化合物としては、例えばスチレン、α-メチルスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、4-プロピルスチレン、4-t-ブチルスチレン、4-シクロヘキシルスチレン、4-ドデシルスチレン、2,4-ジメチルスチレン、2,4-ジイソプロピルスチレン、2,4,6-トリメチルスチレン、2-エチル-4-ベンジルスチレン、4-(フェニルブチル)スチレン、1-ビニルナフタレン、2-ビニルナフタレン、ビニルアントラセン、N,N-ジエチル-4-アミノエチルスチレン、ビニルピリジン、4-メトキシスチレン、モノクロロスチレン、ジクロロスチレン及びジビニルベンゼン等が挙げられる。これらの芳香族ビニル化合物は1種を単独で又は2種以上を併用してもよい。中でも、スチレン、α-メチルスチレン、4-メチルスチレンの1種又は2種以上がより好ましく、スチレンが更に好ましい。
 重合体ブロック(a)のピークトップ分子量(Mp)は、成形加工性、柔軟性、粘接着性等の観点から、4,000~100,000が好ましく、5,000~80,000がより好ましく、6,000~60,000が更に好ましい。
 なお、本明細書におけるピークトップ分子量(Mp)は後述する実施例に記載した方法で測定した値を意味する。
 前記重合体ブロック(b)はファルネセン由来の構造単位(b1)を1~100質量%含有し、ファルネセン以外の共役ジエン由来の構造単位(b2)を99~0質量%含有する。構造単位(b1)は、α-ファルネセン又は下記式(I)で表されるβ-ファルネセン由来の構造単位のいずれでもよいが、ブロック共重合体(A)の製造容易性の観点から、β-ファルネセン由来の構造単位であることが好ましい。なお、α-ファルネセンとβ-ファルネセンとは組み合わせて用いてもよい。
Figure JPOXMLDOC01-appb-C000001
 ファルネセン以外の共役ジエンに由来する構造単位(b2)を構成する共役ジエンとしては、例えばブタジエン、イソプレン、2,3-ジメチルブタジエン、2-フェニル-ブタジエン、1,3-ペンタジエン、2-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、1,3-オクタジエン、1,3-シクロヘキサジエン、2-メチル-1,3-オクタジエン、1,3,7-オクタトリエン、ミルセン及びクロロプレン等が挙げられる。これらは1種を単独で又は2種以上を併用してもよい。中でもブタジエン、イソプレン及びミルセンの1種又は2種以上がより好ましく、ブタジエン及び/又はイソプレンが更に好ましい。
 重合体ブロック(b)はファルネセン由来の構造単位(b1)を1~100質量%含有し、ファルネセン以外の共役ジエン由来の構造単位(b2)を99~0質量%含有する。ファルネセンに由来する構造単位(b1)の含有量が1質量%未満であると、シーラントの成形加工性、柔軟性及び粘接着性が低下し、また高温下における遮音性及び制振性が低下する。重合体ブロック(b)中の構造単位(b1)の含有量は、30~100質量%が好ましく、45~100質量%がより好ましい。また、重合体ブロック(b)がファルネセン以外の共役ジエン由来の構造単位(b2)を含有する場合には、構造単位(b2)の含有量は70質量%以下が好ましく、55質量%以下が更に好ましい。
 また、本発明のシーラントが後述する軟化剤(B)を含有する場合、前記重合体ブロック(b)が有するファルネセン由来の構造単位(b1)の含有量は、30~90質量%がより好ましく、45~85質量%が更に好ましい。ファルネセン以外の共役ジエン由来の構造単位(b2)の含有量は、10~70質量%がより好ましく、15~55質量%が更に好ましい。
 本発明のシーラントが後述する軟化剤(B)を含有しない場合、前記重合体ブロック(b)が有するファルネセン由来の構造単位(b1)の含有量は、50~100質量%がより好ましく、70~100質量%が更に好ましく、90~100質量%がより更に好ましく、100質量%がより更に好ましい。ファルネセン以外の共役ジエン由来の構造単位(b2)の含有量は、50質量%以下がより好ましく、30質量%以下が更に好ましく、10質量%以下がより更に好ましい。
 また、粘接着性、耐熱性、耐候性の向上の観点から、重合体ブロック(b)中における構成単位(b1)及び構成単位(b2)の合計含有量は、好ましくは80質量%以上、より好ましくは90質量%以上、更に好ましくは95質量%以上、より更に好ましくは99質量%以上、より更に好ましくは100質量%である。
 本発明に用いられるブロック共重合体(A)は、粘接着性、耐熱性、耐候性の向上の観点から、その重合体ブロック(b)における不飽和二重結合(炭素-炭素二重結合)の一部または全部が水素添加されていてもよい。その際の重合体ブロック(b)の水素添加率は70モル%以上であることが好ましく、80モル%以上であることがより好ましく、85モル%以上であることが更に好ましい。
 なお、重合体ブロック(b)における不飽和二重結合の水素添加率は、重合体ブロック(b)における不飽和二重結合の含有量を、水素添加の前後において、ヨウ素価測定、赤外分光光度計(IR)、核磁気共鳴(1H-NMR)などによって測定し、その測定値から求めることができる。
 重合体ブロック(a)及び重合体ブロック(b)の結合形態は特に制限されず、直線状、分岐状、放射状又はそれらの2つ以上の組み合わせであってもよい。中でも、各ブロックが直線状に結合した形態が好ましく、重合体ブロック(a)をa、重合体ブロック(b)をbで表したときに、(a-b)l、a-(b-a)m又はb-(a-b)nで表される結合形態が好ましい。なお、前記l、m及びnはそれぞれ独立して1以上の整数を表す。
 中でもブロック共重合体(A)としては、重合体ブロック(a)を2個以上、及び重合体ブロック(b)を1個以上含むブロック共重合体であることが好ましく、前記結合形態としては、成形加工性、柔軟性及び粘接着性に優れ、かつ高温下における遮音性及び制振性に優れたシーラントを得る観点から、a-b-aで表されるトリブロック共重合体が好ましい。
 また、ブロック共重合体(A)が重合体ブロック(a)を2個以上又は重合体ブロック(b)を2個以上有する場合には、それぞれの重合体ブロックは、同じ構造単位からなる重合体ブロックであっても、異なる構造単位からなる重合体ブロックであってもよい。例えば、〔a-b-a〕で表されるトリブロック共重合体における2個の重合体ブロック(a)において、それぞれの芳香族ビニル化合物は、その種類が同じであっても異なっていてもよい。
 ブロック共重合体(A)中の重合体ブロック(a)と重合体ブロック(b)との質量比[(a)/(b)]は5/95~45/55である。当該範囲外であると、成形加工性、柔軟性及び粘接着性に優れ、かつ高温下における遮音性及び制振性に優れたシーラントを得ることができない。当該観点から、重合体ブロック(a)と重合体ブロック(b)との質量比[(a)/(b)]は10/90~45/55が好ましく、10/90~40/60がより好ましく、10/90~35/65が更に好ましい。
 ブロック共重合体(A)は、前記重合体ブロック(a)と重合体ブロック(b)のほか、本発明の主旨を損なわない限り、他の単量体で構成される重合体ブロック(c)を含有していてもよい。
 かかる他の単量体としては、例えばプロピレン、1-ブテン、1-ペンテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、1-ウンデセン、1-ドデセン、1-トリデセン、1-テトラデセン、1-ペンタデセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセン、1-ノナデセン、1-エイコセン等の不飽和炭化水素化合物;アクリル酸、メタクリル酸、アクリル酸メチル、メタクリル酸メチル、アクリロニトリル、メタクリロニトリル、マレイン酸、フマル酸、クロトン酸、イタコン酸、2-アクリロイルエタンスルホン酸、2-メタクリロイルエタンスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸、2-メタクリルアミド-2-メチルプロパンスルホン酸、ビニルスルホン酸、酢酸ビニル、メチルビニルエーテル等の官能基含有不飽和化合物;等が挙げられる。これらは1種を単独で又は2種以上を併用してもよい。
 ブロック共重合体(A)が重合体ブロック(c)を有する場合、その含有量は50質量%以下が好ましく、40質量%以下がより好ましく、30質量%以下が更に好ましく、10質量%以下が最も好ましい。
 また、ブロック共重合体(A)中における、前記重合体ブロック(a)と重合体ブロック(b)の合計含有量は、好ましくは50質量%以上、より好ましくは60質量%以上、更に好ましくは70質量%以上、より更に好ましくは90質量%以上である。
 ブロック共重合体(A)のピークトップ分子量(Mp)は、成形加工性、柔軟性、粘接着性等の観点から、4,000~500,000が好ましく、9,000~400,000がより好ましく、50,000~400,000が更に好ましく、70,000~390,000が最も好ましい。
 なお、本明細書におけるピークトップ分子量(Mp)は後述する実施例に記載した方法で測定した値を意味する。
 ブロック共重合体(A)の分子量分布(Mw/Mn)は1~4が好ましく、1~3がより好ましく、1~2が更に好ましい。分子量分布が前記範囲内であると、ブロック共重合体(A)の粘度のばらつきが小さく、取り扱いが容易である。
 ブロック共重合体(A)は、得られるシーラントの加工成形性の向上の観点から、実施例に記載の条件で測定されるメルトフローレート(MFR)が、好ましくは1g/10分以上、より好ましくは10g/10分以上、更に好ましくは30g/10分以上、より更に好ましくは40g/10分以上である。
 また、ブロック共重合体(A)は、得られるシーラントの柔軟性の向上の観点から、実施例に記載の条件で測定される硬度(タイプA硬度)が、好ましくは60以下、より好ましくは55以下、更に好ましくは40以下、より更に好ましくは30以下、より更に好ましくは10以下である。また、当該硬度は、強度の観点から、好ましくは1以上、より好ましくは2以上、更に好ましくは3以上である。
 また、ブロック共重合体(A)は、得られるシーラントの粘接着性の機能を担保する観点から、実施例に記載の条件で測定される粘着力が、好ましくは0.2以上、より好ましくは0.5以上、更に好ましくは0.7以上である。
 また、ブロック共重合体(A)は、高温下における遮音性及び制振性に優れる観点から、40~80℃の範囲において、4,000ヘルツの周波数の加振条件における損失係数が、好ましくは0.070以上、より好ましくは0.075以上、更に好ましくは0.080以上、より更に好ましくは0.085以上である。損失係数が当該範囲内であると、得られる本発明のシーラントは、制振性がより向上し、外部からの振動を吸収できるため、遮音性も向上する。
[ブロック共重合体(A)の製造方法]
 ブロック共重合体(A)は、溶液重合法又は特表2012-502135号公報、特表2012-502136号公報に記載の方法等により製造することができる。中でも溶液重合法が好ましく、例えば、アニオン重合やカチオン重合等のイオン重合法、ラジカル重合法等の公知の方法を適用できる。中でもアニオン重合法が好ましい。
 アニオン重合法としては、溶媒、アニオン重合開始剤、及び必要に応じてルイス塩基の存在下、芳香族ビニル化合物、ファルネセン及び/又はファルネセン以外の共役ジエン、必要に応じて重合体ブロック(c)を構成する他の単量体を逐次添加して、ブロック共重合体(A)を得る。
 アニオン重合開始剤としては、例えば、リチウム、ナトリウム、カリウム等のアルカリ金属;ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム等のアルカリ土類金属;ランタン、ネオジム等のランタノイド系希土類金属;前記アルカリ金属、アルカリ土類金属、ランタノイド系希土類金属を含有する化合物等が挙げられる。中でもアルカリ金属及びアルカリ金属を含有する化合物が好ましく、有機アルカリ金属化合物がより好ましい。
 前記有機アルカリ金属化合物としては、例えばメチルリチウム、エチルリチウム、n-ブチルリチウム、sec-ブチルリチウム、t-ブチルリチウム、ヘキシルリチウム、フェニルリチウム、スチルベンリチウム、ジリチオメタン、ジリチオナフタレン、1,4-ジリチオブタン、1,4-ジリチオ-2-エチルシクロヘキサン、1,3,5-トリリチオベンゼン等の有機リチウム化合物;ナトリウムナフタレン、カリウムナフタレン等が挙げられる。中でも有機リチウム化合物が好ましく、n-ブチルリチウム、sec-ブチルリチウムがより好ましく、sec-ブチルリチウムが特に好ましい。なお、有機アルカリ金属化合物は、ジイソプロピルアミン、ジブチルアミン、ジヘキシルアミン、ジベンジルアミン等の第2級アミンと反応させて、有機アルカリ金属アミドとして用いてもよい。
 重合に用いる有機アルカリ金属化合物の使用量は、ブロック共重合体(A)の分子量によっても異なるが、通常、芳香族ビニル化合物、ファルネセン及びファルネセン以外の共役ジエンの総量に対して0.01~3質量%の範囲である。
 溶媒としてはアニオン重合反応に悪影響を及ぼさなければ特に制限はなく、例えば、n-ペンタン、イソペンタン、n-ヘキサン、n-ヘプタン、イソオクタン等の飽和脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタン等の飽和脂環式炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素等が挙げられる。これらは1種を単独で又は2種以上を併用してもよい。
 ルイス塩基はファルネセン由来の構造単位及びファルネセン以外の共役ジエン由来の構造単位におけるミクロ構造を制御する役割がある。かかるルイス塩基としては、例えばジブチルエーテル、ジエチルエーテル、テトラヒドロフラン(THF)、ジオキサン、エチレングリコールジエチルエーテル等のエーテル化合物;ピリジン;N,N,N’,N’-テトラメチルエチレンジアミン(TMEDA)、トリメチルアミン等の3級アミン;カリウムt-ブトキシド等のアルカリ金属アルコキシド;ホスフィン化合物等が挙げられる。ルイス塩基を使用する場合、その量は、通常、アニオン重合開始剤1モルに対して0~1000モル当量の範囲であることが好ましい。
 重合反応の温度は、通常、-80~150℃、好ましくは0~100℃、より好ましくは10~90℃の範囲である。重合反応の形式は回分式でも連続式でもよい。重合反応系中の芳香族ビニル化合物、ファルネセン及び/又はファルネセン以外の共役ジエンの存在量が特定範囲になるように、重合反応液中に各単量体を連続的あるいは断続的に供給するか、又は重合反応液中で各単量体が特定比となるように順次重合することで、ブロック共重合体(A)を製造できる。
 重合反応は、メタノール、イソプロパノール等のアルコールを重合停止剤として添加して停止できる。得られた重合反応液をメタノール等の貧溶媒に注いでブロック共重合体(A)を析出させるか、重合反応液を水で洗浄し、分離後、乾燥することによりブロック共重合体(A)を単離できる。
 本重合工程では、前記のように未変性のブロック共重合体(A)を得てもよいが、後述の水素添加工程の前に、前記ブロック共重合体(A)に官能基を導入して、変性したブロック共重合体(A)を得てもよい。導入可能な官能基としては、例えばアミノ基、アルコキシシリル基、水酸基、エポキシ基、カルボキシル基、カルボニル基、メルカプト基、イソシアネート基、酸無水物等が挙げられる。
 ブロック共重合体(A)の変性方法としては、例えば、重合停止剤を添加する前に、重合活性末端と反応し得る四塩化錫、テトラクロロシラン、ジメチルジクロロシラン、ジメチルジエトキシシラン、テトラメトキシシラン、テトラエトキシシラン、3-アミノプロピルトリエトキシシラン、テトラグリシジル-1,3-ビスアミノメチルシクロヘキサン、2,4-トリレンジイソシアネート、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、N-ビニルピロリドン等の変性剤、又は特開2011-132298号公報に記載のその他の変性剤を添加する方法が挙げられる。また、単離後の共重合体に無水マレイン酸等をグラフト化して用いることもできる。
 官能基が導入される位置はブロック共重合体(A)の重合末端でも、側鎖でもよい。また上記官能基は1種を単独で又は2種以上を組み合わせてもよい。上記変性剤は、アニオン重合開始剤に対して、通常、0.01~10モル当量の範囲であることが好ましい。
 前記方法により得られたブロック共重合体(A)又は変性されたブロック共重合体(A)を、そのままブロック共重合体(A)としてもよいが、当該ブロック共重合体(A)を水素添加する工程に付すことにより得られる水添ブロック共重合体を、ブロック共重合体(A)として用いることもできる。水素添加する方法は公知の方法を用いることができる。例えば、水素添加反応に影響を及ぼさない溶媒にブロック共重合体(A)を溶解させた溶液に、チーグラー系触媒;カーボン、シリカ、けいそう土等に担持されたニッケル、白金、パラジウム、ルテニウム又はロジウム金属触媒;コバルト、ニッケル、パラジウム、ロジウム又はルテニウム金属を有する有機金属錯体等を、水素添加触媒として存在させて水素化反応を行う。中でも、パラジウムをカーボンに担持させたパラジウムカーボンを水素添加触媒として用いるのが好ましい。
 水素添加反応において、水素圧力は0.1~20MPaが好ましく、反応温度は100~200℃が好ましく、反応時間は1~20時間が好ましい。
[軟化剤(B)]
 本発明のシーラントは、柔軟性を付与する目的から、軟化剤(B)を含有してもよい。かかる軟化剤(B)としては、例えばパラフィン系、ナフテン系、芳香族系のプロセスオイル;ジオクチルフタレート、ジブチルフタレート等のフタル酸誘導体;ホワイトオイル;ミネラルオイル;エチレンとα-オレフィンとの液状コオリゴマー;流動パラフィン;ポリブテン;低分子量ポリイソブチレン;液状ポリブタジエン、液状ポリイソプレン、液状ポリイソプレン/ブタジエン共重合体、液状スチレン/ブタジエン共重合体、液状スチレン/イソプレン共重合体等の液状ポリジエン及びその水添物等が挙げられる。中でも、ブロック共重合体(A)との相容性の観点から、パラフィン系プロセスオイル;エチレンとα-オレフィンとの液状コオリゴマー;流動パラフィン;低分子量ポリイソブチレン;並びにこれらの水添物が好ましく、パラフィン系プロセスオイルの水添物がより好ましい。
 軟化剤(B)の含有割合は、成形加工性、柔軟性及び粘接着性に優れ、かつ損失係数の高いシーラントを得る観点から、ブロック共重合体(A)100質量部に対して、好ましくは10~200質量部の範囲であり、より好ましくは20~150質量部の範囲である。また、柔軟性に非常に優れるシーラントを得る観点からは、軟化剤(B)の含有割合は、ブロック共重合体(A)100質量部に対して、好ましくは10~500質量部、より好ましくは50~400質量部、更に好ましくは100~350質量部である。
[ポリフェニレンエーテル系樹脂(C)]
 本発明のシーラントには、成形加工性、柔軟性及び粘接着性に優れ、かつ損失係数の高いシーラントを得る観点から、さらにポリフェニレンエーテル系樹脂(C)を含有させることができる。かかるポリフェニレンエーテル系樹脂(C)としては、例えば、下記一般式(II)で示される構造単位を有する重合体を用いることができる。
Figure JPOXMLDOC01-appb-C000002
(式中、R1、R2、R3、及びR4はそれぞれ独立して、水素原子、ハロゲン原子、炭化水素基、置換炭化水素基、アルコキシ基、シアノ基、フェノキシ基又はニトロ基を表す。)
 ポリフェニレンエーテル系樹脂(C)としては、上記一般式(II)におけるR1及びR2がアルキル基、特に炭素原子数1~4のアルキル基であるものが好ましい。また、上記一般式(II)におけるR3及びR4が、水素原子又は炭素原子数1~4のアルキル基であるものが好ましい。
 ポリフェニレンエーテル系樹脂(C)としては、例えばポリ(2,6-ジメチル-1,4-フェニレン)エーテル、ポリ(2,6-ジエチル-1,4-フェニレン)エーテル、ポリ(2-メチル-6-エチル-1,4-フェニレン)エーテル、ポリ(2-メチル-6-プロピル-1,4-フェニレン)エーテル、ポリ(2,6-ジプロピル-1,4-フェニレン)エーテル、ポリ(2-エチル-6-プロピル-1,4-フェニレン)エーテル、ポリ(2,6-ジメトキシ-1,4-フェニレン)エーテル、ポリ(2,6-ジクロロメチル-1,4-フェニレン)エーテル、ポリ(2,6-ジブロモメチル-1,4-フェニレン)エーテル、ポリ(2,6-ジフェニル-1,4-フェニレン)エーテル、ポリ(2,6-ジトリル-1,4-フェニレン)エーテル、ポリ(2,6-ジクロロ-1,4-フェニレン)エーテル、ポリ(2,6-ジベンジル-1,4-フェニレン)エーテル、ポリ(2,5-ジメチル-1,4-フェニレン)エーテル等が挙げられる。中でも特に好ましいポリフェニレンエーテル系樹脂(C)は、ポリ(2,6-ジメチル-1,4-フェニレン)エーテルである。またこれらは極性基を有する変性剤により変性されていてもよい。極性基としては、例えば、酸ハライド、カルボニル基、酸無水物、酸アミド、カルボン酸エステル、酸アジド、スルフォン基、ニトリル基、シアノ基、イソシアン酸エステル、アミノ基、イミド基、水酸基、エポキシ基、オキサゾリン基、チオール基等が挙げられる。また、これらのポリフェニレンエーテル系樹脂は、ポリスチレン樹脂との混合物であってもよい。
 本発明で用いるポリフェニレンエーテル系樹脂(C)は、数平均分子量として1,000~250,000の範囲であるのが好ましく、特に各種の物性のバランスを考慮すると5,000~150,000の範囲であるのがさらに好ましい。
 本発明のシーラントにポリフェニレンエーテル系樹脂(C)を含有させる場合は、成形加工性、柔軟性及び粘接着性に優れ、かつ損失係数の高いシーラントを得る観点から、ブロック共重合体(A)100質量部に対して、5~60質量部の範囲が好ましく、10~60質量部の範囲がより好ましい。
[粘着付与樹脂(D)]
 本発明のシーラントには、本発明の主旨を損なわない範囲内であれば、必要に応じて粘着付与樹脂(D)を含有させることができる。かかる粘着付与樹脂(D)は、従来より粘着性を付与する樹脂として使用されているものを特に制限なく用いることができる。例えば、ガムロジン、トール油ロジン、ウッドロジン、水添ロジン、不均化ロジン、重合ロジン、これらのグリセリンエステル、ペンタエリスリトールエステル等のロジンエステル等のロジン系樹脂;α-ピネン、β-ピネン、ジペンテン等を主体とするテルペン樹脂、芳香族変性テルペン樹脂、水添テルペン樹脂、テルペンフェノール樹脂等のテルペン系樹脂;(水添)脂肪族系(C5系)石油樹脂、(水添)芳香族系(C9系)石油樹脂、(水添)共重合系(C5/C9系)石油樹脂、(水添)ジシクロペンタジエン系石油樹脂、脂環式飽和炭化水素樹脂等の水素添加されていてもよい石油樹脂;ポリα-メチルスチレン、α-メチルスチレン/スチレン共重合体、スチレン系モノマー/脂肪族系モノマー共重合体、スチレン系モノマー/α-メチルスチレン/脂肪族系モノマー共重合体、スチレン系モノマー共重合体、スチレン系モノマー/スチレン系モノマー以外の芳香族系モノマー共重合体等のスチレン系樹脂、クマロン-インデン系樹脂、フェノール系樹脂、キシレン樹脂等の合成樹脂等が挙げられる。
 これらの中でも、シーラントの着色抑制の観点から、水添テルペン樹脂、脂環式飽和炭化水素樹脂、脂肪族系石油樹脂が好ましい。これらは単独で用いてもよく、2種以上を併用してもよい。粘着付与樹脂(D)を含有させる場合、その量は、成形加工性、柔軟性及び粘接着性に優れ、かつ損失係数の高いシーラントを得る観点から、ブロック共重合体(A)100質量部に対して1~200質量部の範囲であるのが好ましく、5~180質量部の範囲であるのがより好ましく、5~150質量部の範囲であることがより更に好ましい。なお、粘着付与樹脂(D)の軟化点については、耐熱性の観点から、50℃~150℃のものが好ましく、80℃~150℃がより好ましい。
[その他の添加剤]
 本発明のシーラントは、本発明の主旨を損なわない範囲内で、必要に応じて、架橋を行ってもよい。架橋を行う場合は、ラジカル発生剤、硫黄又は硫黄化合物等の架橋剤、さらに必要に応じて架橋助剤を添加して混練を行う。
 ラジカル発生剤としては、例えばt-ブチルヒドロペルオキシド、クメンヒドロペルオキシド、2,5-ジメチルヘキサン-2,5-ジヒドロペルオキシド等のヒドロペルオキシド;ジ-t-ブチルペルオキシド、t-ブチルクミルペルオキシド、ジクミルペルオキシド、α,α'-ビス(t-ブチルペルオキシ)-p-ジイソプロピルベンゼン、2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)-ヘキシン-3等の過酸化ジアルキル;アセチルペルオキシド、コハク酸ペルオキシド、ベンゾイルペルオキシド等の過酸化ジアシル;t-ブチルペルオキシアセテート、t-ブチルペルオキシイソブチレート、t-ブチルペルオキシイソプロピルカーボネート等の過酸化エステル、メチルエチルケトンペルオキシド、シクロヘキサノンペルオキシド等のケトンペルオキシド等の有機過酸化物;過酸化水素、過硫酸塩、金属酸化物等の無機過酸化物、アゾ化合物、モノ及びジスルフィド、金属キレート、レドックス開始剤等が挙げられる。これらのラジカル発生剤を用いる場合は、ブロック共重合体(A)100質量部に対して、好ましくは0.01~15質量部、より好ましくは0.05~10質量部の範囲内で使用される。
 ラジカル発生剤を用いる架橋方法としては、例えば、該熱可塑性エラストマー組成物、ラジカル発生剤、及び必要に応じ他の熱可塑性樹脂を加熱下で溶融混練する方法等が挙げられる。加熱温度は好ましくは140~230℃であり、溶融混練は、押出機、ニーダー、ロール、プラストグラフ等の装置でバッチ式又は連続式で行うことができる。かかる溶融混練工程により架橋反応が進行する。
 硫黄化合物としては、例えば一塩化硫黄、二塩化硫黄等が挙げられる。硫黄又は硫黄化合物を用いる場合、その添加量は、ブロック共重合体(A)100質量部に対して、好ましくは0.1~20質量部、より好ましくは0.2~10質量部である。硫黄又は硫黄化合物を用いて架橋を行う場合は、架橋助剤として加硫促進剤を併用するのが極めて好ましい。
 加硫促進剤としては、例えばN,N-ジイソプロピル-2-ベンゾチアゾール-スルフェンアミド、2-メルカプトベンゾチアゾール、2-(4-モルホリノジチオ)ベンゾチアゾール等のチアゾール類;ジフェニルグアニジン、トリフェニルグアニジン等のグアニジン類;ブチルアルデヒド-アニリン反応物、ヘキサメチレンテトラミン-アセトアルデヒド反応物等のアルデヒド-アミン系反応物ないしはアルデヒド-アンモニア系反応物、2-メルカプトイミダゾリン等のイミダゾリン類;チオカルバニリド、ジエチルウレア、ジブチルチオウレア、トリメチルチオウレア、ジオルソトリルチオウレア等のチオウレア類;テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィド、ペンタメチレンチウラムテトラスルフィド等のチウラムモノないしポリスルフィド類;ジメチルジチオカルバミン酸亜鉛、エチルフェニルジチオカルバミン酸亜鉛、ジメチルジチオカルバミン酸ナトリウム、ジメチルジチオカルバミン酸セレン、ジエチルジチオカルバミン酸テルル等のチオカルバミン酸塩類;ジブチルキサントゲン酸亜鉛等のキサントゲン酸塩類、有機過酸化物、亜鉛華等が挙げられる。これらの加硫促進剤は1種でもよく、2種以上併用してもよい。加硫促進剤を併用する場合、その添加量は、ブロック共重合体(A)100質量部に対して、好ましくは0.05~30質量部、より好ましくは0.1~20質量部、さらに好ましくは0.2~10質量部である。
 本発明のシーラントは、本発明の主旨を損なわない範囲内であれば、必要に応じて、各種添加剤を含有させることができる。かかる添加剤としては、例えば、滑剤、充填剤、難燃剤、酸化防止剤、熱安定剤、耐光剤、耐候剤、金属不活性剤、紫外線吸収剤、光安定剤、銅害防止剤、補強剤、帯電防止剤、防菌剤、防かび剤、分散剤、着色剤や、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂、イソブチレン・イソプレン共重合体、シリコーンゴム等のゴム、エチレン-酢酸ビニル共重合体、ABS樹脂等の熱可塑性樹脂等を挙げることができる。
 中でも、滑剤はシーラントの流動性を向上させるとともに、熱劣化を抑制する作用を有する。本発明で用いることのできる滑剤としては、例えばシリコンオイル;パラフィンワックス、マイクロワックス、ポリエチレンワックス等の炭化水素系滑剤;ステアリン酸ブチル、ステアリン酸モノグリセリド、ペンタエリスリトールテトラステアレート、ステアリン酸ステアリル等が挙げられる。
 酸化防止剤としては、ヒンダードフェノール系酸化防止剤、リン酸系酸化防止剤が挙げられる。本発明のシーラントに充填剤を含有させる場合は、ブロック共重合体(A)100質量部に対して、好ましくは1~20質量部、より好ましくは1~15質量部、更に好ましくは5~15質量部である。
 上記充填剤としては、例えば、炭酸カルシウム、タルク、カーボンブラック、酸化チタン、シリカ、クレー、硫酸バリウム、炭酸マグネシウム、ガラス繊維、カーボン繊維等が挙げられ、好ましくは炭酸カルシウムである。
 本発明のシーラントに充填剤を含有させる場合は、柔軟性、制振性維持の観点から、シーラント全体の質量100質量部に対して、10~200質量部の範囲であることが好ましく、10~150質量部の範囲であることがより好ましい。
 上記難燃剤としては、例えばトリフェニルホスフィン、トリアリルホスフェート、芳香族リン酸エステル、ポリリン酸塩、赤リン、2-エチルヘキシルジフェニルホスフェート、トリエチルホスフェート等のリン系難燃剤;水酸化マグネシウム、水酸化アルミニウム等の無機系難燃剤が挙げられる。
 ポリオレフィン樹脂を含有する場合には、シーラント全体の質量100質量部に対して、1~100質量部の範囲であることが好ましく、5~50質量部の範囲であることが好ましく、5~30質量部の範囲であることがより好ましい。
 なお、本発明のシーラント中における、ブロック共重合体(A)、軟化剤(B)、ポリフェニレンエーテル系樹脂(C)、粘着付与樹脂(D)及び前述の各種添加剤の合計含有量は、好ましくは80質量%以上、より好ましくは90質量%以上、更に好ましくは100質量%である。
[シーラントの製造方法]
 本発明のシーラントの製造方法に特に制限はなく、前述のブロック共重合体(A)を、そのままシーラントとして用いてもよい。また、シーラントがブロック共重合体(A)以外に添加剤を含有する場合、シーラントの製造方法としては、例えばブロック共重合体(A)、並びに必要に応じて軟化剤(B)、ポリフェニレンエーテル系樹脂(C)、粘着付与樹脂(D)及びその他の各種添加剤をプレブレンドして一括混合してから一軸押出機、多軸押出機、バンバリーミキサー、加熱ロール、各種ニーダー等を用いて溶融混練する方法や、ブロック共重合体(A)、並びに必要に応じて軟化剤(B)、ポリフェニレンエーテル系樹脂(C)、粘着付与樹脂(D)及び各種添加剤を別々の仕込み口から供給して溶融混練する方法等が挙げられる。なお、プレブレンドする方法としては、ヘンシェルミキサー、ハイスピードミキサー、Vブレンダー、リボンブレンダー、タンブラーブレンダー、コニカルブレンダー等の混合機を用いる方法が挙げられる。なお、溶融混練時の温度は好ましくは120℃~300℃の範囲で任意に選択することができる。
[シーラントの物性]
 本発明のシーラントは、成形加工性の観点から、実施例に記載の条件で測定されるメルトフローレート(MFR)が、好ましくは10g/10分以上、より好ましくは30g/10分以上、更に好ましくは40g/10分以上、より更に好ましくは50以上である。
 また、本発明のシーラントは、柔軟性の観点から、実施例に記載の条件で測定される硬度(タイプA硬度)が、好ましくは60以下、より好ましくは55以下、更に好ましくは40以下、より更に好ましくは30以下、より更に好ましくは10以下である。また、当該硬度は、強度の観点から、好ましくは0.1以上、より好ましくは0.5以上、更に好ましくは1以上、より更に好ましくは3以上である。
 ただし、非常に高い柔軟性が要求される用途に本発明のシーラントを用いる場合は、実施例に記載の条件で測定されるタイプC硬度が、好ましくは100以下、より好ましくは50以下であり、また強度の観点から、好ましくは1以上、より好ましくは3以上である。
 また、本発明のシーラントは、粘接着性の観点から、実施例に記載の条件で測定される粘着力が、好ましくは0.2N/25mm以上、より好ましくは0.5N/25mm以上、更に好ましくは0.7N/25mm以上、より更に好ましくは1以上である。
 また、本発明のシーラントは、高温下での遮音性及び制振性に優れる観点から、40~80℃の範囲において、4,000ヘルツの周波数の加振条件における損失係数が、好ましくは0.070以上、より好ましくは0.075以上、更に好ましくは0.080以上、より更に好ましくは0.085以上である。当該損失係数は、実施例に記載の方法で測定することができる。
 本発明のシーラントは、例えば、ホットメルトシーラントとして好適に用いることができる。また、本発明のシーラントは、損失係数が高く、したがって、遮音性及び制振性に優れるため、遮音性シーラント、制振性シーラント(ダンピングシーラント)としても好適に用いることができる。
 特に、本発明のシーラントは40~80℃の比較的高温下でも4,000ヘルツ近傍の高周波数領域における損失係数に優れているため、このような高周波領域における騒音等の抑制用のシーラントとして好適に用いることができる。例えば、本発明のシーラントは高温で使用される自動車内の制振性シーラント(ダンピングシーラント)として自動車用部品に付着させる等して好適に用いることができる。
 また、本発明のシーラントと、スチレン等の芳香族ビニル化合物由来の構造単位からなる重合体ブロック、及びイソプレン、ブタジエン等の共役ジエン由来の構造単位からなる重合体ブロックで構成されるブロック共重合体又はその水素添加物とを併用して、自動車用部品等のシーラントとして用いてもよい。すなわち、これらのブロック共重合体又はその水素添加物は、40℃以下の温度領域では4,000ヘルツ近傍の遮音性及び制振性を備えるものがあるが、40℃以上の高温領域では、4,000ヘルツ近傍の遮音性及び制振性に劣る場合がある。従って、本発明のシーラントと前記ブロック共重合体又はその水素添加物とを併用することにより、常温から高温領域にわたり遮音性及び制振性に優れたシーラントを提供することができる。併用する場合には、本発明のシーラントと前記ブロック共重合体又はその水素添加物とを混合して用いてもよいし、対象物に両者の積層体を形成させてもよい。
 また、本発明のシーラントを、例えば熱プレス、射出成形、押出成形、カレンダー成形等の従来公知の成形方法を適用して成形加工することにより、制振部材を得ることができる。このようにして得られる制振部材の形状は任意であり、例えば円盤状、板状、筒状体等が好適な例として挙げられる。
 以下、実施例により本発明を説明するが、本発明はこれらの実施例に限定されるものではない。なお、β-ファルネセン(純度97.6質量%アミリス,インコーポレイティド社製)は、3Åのモレキュラーシーブにより精製し、窒素雰囲気下で蒸留することで、ジンギベレン、ビサボレン、ファルネセンエポキシド、ファルネソール異性体、E,E-ファルネソール、スクアレン、エルゴステロール及びファルネセンの数種の二量体等の炭化水素系不純物を除き、以下の重合に用いた。
(1)分子量分布及びピークトップ分子量(Mp)の測定
 スチレンブロックのピークトップ分子量(Mp)並びにブロック共重合体のピークトップ分子量(Mp)及び分子量分布(Mw/Mn)は、GPC(ゲルパーミエーションクロマトグラフィー)により標準ポリスチレン換算分子量で求め、分子量分布のピークの頂点の位置からピークトップ分子量(Mp)を求めた。測定装置及び条件は、以下のとおりである。
・装置    :東ソー株式会社製GPC装置「GPC8020」
・分離カラム :東ソー株式会社製「TSKgelG4000HXL」
・検出器   :東ソー株式会社製「RI-8020」
・溶離液   :テトラヒドロフラン
・溶離液流量 :1.0ml/分
・サンプル濃度:5mg/10ml
・カラム温度 :40℃
(2)水素添加率の測定方法
 各実施例及び比較例において、水素添加前のブロック共重合体及び水素添加後のブロック共重合体(水添ブロック共重合体)をそれぞれ重クロロホルム溶媒に溶解し、日本電子株式会社製「Lambda-500」を用いて50℃で1H-NMRを測定した。水添ブロック共重合体中の重合体ブロック(b)の水素添加率は、得られたスペクトルの4.5~6.0ppmに現れる炭素-炭素二重結合が有するプロトンのピークから、下記式により算出した。
水素添加率={1-(水素添加後のブロック共重合体1モルあたりに含まれる炭素-炭素二重結合のモル数)/(水素添加前のブロック共重合体1モルあたりに含まれる炭素-炭素二重結合のモル数)}×100(モル%)
(3)メルトフローレート(MFR)の測定方法
 各実施例及び比較例で得られたシーラントをメルトインデクサL244(株式会社テクノ・セブン製)を用いて、230℃、98N、ノズル寸法=直径1mm×長さ10mmの条件で測定した。なお、MFR値が高いほど成形加工性に優れる。
(4)硬度の測定方法
<タイプA硬度>
 各実施例及び比較例で得られたシーラントを200℃、10MPaにて2分間圧縮成形した後、1MPaで1.5分間冷却することによって、シート(成形体)(縦150mm、横150mm、厚さ1mm)を得た。このシートからJIS K 6251に準拠したダンベル5号型の試験片を打ち抜いて試験片を得た。
 得られた試験片を用い、タイプAデュロメータの圧子を用い、JIS K 6253-3に準拠して測定した。なお、硬度が低いほど柔軟性に優れる。
<アスカーC硬度>
 各実施例及び比較例で得られたシーラントを、プレス成形機を使用して230℃、10MPaの圧力で、3分間加熱プレス成形することによって、縦50mm×横50mm×厚さ2mmのシート状試験片を得た。この試験片を用いて、高分子計器株式会社製アスカーゴム硬度計C型タイプCデュロメータの圧子を用い、JIS K7312に準拠して測定した。なお、硬度が低いほど柔軟性に優れる。
(5)粘着力の測定方法
 長さ75mm×幅25mm×厚み0.5mmのアルミニウム板(JIS H4000 A1050P)を使用し、このアルミニウム板をサンドペーパー(粒度100(WTCC-D))でサンディングして前処理し、次いでアセトンにて脱脂した後、UV処理[センエンジニアリング株式会社製「UVR-200G-SSII」を使用]を10分間行って、被着体とした。
 また、上記(4)で得られたシーラントのシートから、長さ75mm×幅25mm×厚み1mmのシートを打ち抜いた。
 当該シートを上記被着体に載せ、圧着ロールで、ロール重量2kgf、温度23±2℃、速度300mm/分の条件で両者を圧着して、積層体を得た。この積層体を測定用の試験片として用いた。
 当該試験片を用いて、インストロン社製引張試験機(5566型)にて、チャック間距離10cm、引張り速度1cm/minにて、180°剥離試験を行った。なお、値が高いほど粘接着性に優れる。
(6)損失係数
 各実施例及び比較例で得られたシーラントを200℃、10MPaにて2分間圧縮成形した後、1MPaで1.5分間冷却することによって、シート(成形体)(縦200mm、横10mm、厚さ4mm)を得た。
 この試験片につき、中央加振法(JIS K7391)(JIS G 0602-1993)によって損失係数を測定した。測定条件は下記の通りとした。
   測定温度:40℃、60℃、及び80℃
   損失係数算出方法:半値幅法
   周波数:4,000ヘルツ
   マスキャンセル:有り
   振動モード:半共振
   支持体:鋼板
 損失係数の値が大きいほど制振効果および遮音効果は高く、0.05以上であれば通常は制振効果および遮音効果があるとされる。
(7)圧縮永久歪み
 各実施例及び比較例で得られたシーラントを圧縮成形機により200℃、3分間圧縮成形し、直径13.0±0.5mm、厚さ6.3±0.3mmの円柱状試験片を作製した。この円柱状試験片を用い、JIS K 6262に準拠し、70℃および100℃の2点の温度それぞれにおける、25%圧縮変形を22時間保った後の圧縮永久歪みを測定した。この値が小さいほど高温での圧縮永久歪みに優れる。
(8)反発弾性率(制振性)
 各実施例及び比較例で得られたシーラントを用いて、圧縮成形機により200℃、3分間圧縮成形し、直径29.0±0.5mm、厚さ12.5±0.5mmの円柱状試験片を作製した。この試験片を用い、JIS K 6255に準拠して、リュプケ式反発弾性試験機によって25℃の反発弾性率を測定した。反発弾性率の値が小さいほど制振性に優れる。
<ブロック共重合体(A)>
〔製造例1〕
 窒素置換し、乾燥させた耐圧容器に、溶媒としてシクロヘキサン50.0kg、アニオン重合開始剤としてsec-ブチルリチウム(10.5質量%シクロヘキサン溶液)41.3g(sec-ブチルリチウム4.3g)を仕込み、50℃に昇温した後、スチレン(1)1.12kgを加えて1時間重合させ、引き続いてβ-ファルネセン10.25kgを加えて2時間重合を行い、更にスチレン(2)1.12kgを加えて1時間重合することにより、ポリスチレン-ポリ(β-ファルネセン)-ポリスチレントリブロック共重合体を含む反応液を得た(重合工程)。
 この反応液に、水素添加触媒としてパラジウムカーボン(パラジウム担持量:5質量%)を前記ブロック共重合体に対して5質量%添加し、水素圧力2MPa、150℃の条件で10時間反応を行った。放冷、放圧後、濾過によりパラジウムカーボンを除去し、濾液を濃縮し、更に真空乾燥することにより、ポリスチレン-ポリ(β-ファルネセン)-ポリスチレントリブロック共重合体の水素添加物(以下、ブロック共重合体(I)-1と称する)を得た(水素添加工程)。ブロック共重合体(I)-1について上記した評価を行った。
 なお、ブロック共重合体(I)-1におけるスチレンブロックのピークトップ分子量(Mp)は、上記のポリスチレン-ポリ(β-ファルネセン)-ポリスチレントリブロック共重合体を重合する過程において、スチレン(1)を重合した後、サンプリングして得たポリスチレンのピークトップ分子量(Mp)の測定値を、上記ブロック共重合体(I)-1におけるスチレンブロックのピークトップ分子量(Mp)とした。
 結果を表1に示す。
〔製造例2〕
 製造例1の重合工程と同様の操作を行ってポリスチレン-ポリ(β-ファルネセン)-ポリスチレントリブロック共重合体を含む反応液を得た後、水素添加工程を実施することなく、当該反応液を濃縮し、更に真空乾燥した。このようにして、ポリスチレン-ポリ(β-ファルネセン)-ポリスチレントリブロック共重合体(以下、ブロック共重合体(I)-2と称する)を得た。ブロック共重合体(I)-2について上記した評価を行った。結果を表1に示す。
〔製造例3~6,10,12〕
 表1に記載の配合にしたがったこと以外は、製造例1と同様にしてブロック共重合体(I)-3~(I)-5、(I’)-6、(I)-10及び(I’)-12を製造した。得られたブロック共重合体(I)-3~(I)-5、(I’)-6、(I)-10及び(I’)-12について、上記した評価を行った。結果を表1に示す。
〔製造例7,9,11〕
 溶媒のシクロヘキサンに、ルイス塩基としてテトラヒドロフラン(THF)を混合し、表1に記載の配合にしたがった以外は、製造例1と同様にしてブロック共重合体(I’)-7、(I’)-9及び(I’)-11を製造した。得られたブロック共重合体(I’)-7、(I’)-9及び(I’)-11について、上記した評価を行った。結果を表1に示す。
〔製造例8〕
 溶媒のシクロヘキサンに、ルイス塩基としてN,N,N’,N’-テトラメチルエチレンジアミン(TMEDA)を混合し、表1に記載の配合にしたがった以外は、製造例2と同様にしてブロック共重合体(I’)-8を製造した。得られたブロック共重合体(I’)-8について、上記した評価を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000003
〔実施例1~6及び比較例1~6〕
 得られたブロック共重合体(I)-1~(I)-5、(I)-10及び(I’)-6~(I’)-9、(I’)-11、(I’)-12を、それぞれ、実施例1~6及び比較例1~6のシーラントとして用い、上記した評価を行った。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000004
 表2より、実施例1~6のシーラントは、本発明の構成要件を満たすため、成形加工性、柔軟性及び粘接着性に優れ、かつ40~80℃にわたり、4,000ヘルツにおける損失係数が高く、高温下での高周波数領域における遮音性及び制振性に優れることが分かる。
 一方、比較例1~6のシーラントは、ファルネセン由来の構造単位(b1)を含まないため、いずれも柔軟性に劣り、粘着力が低く、また40~80℃における損失係数が低く、遮音性及び制振性に劣ることが分かる。比較例2のシーラントは80℃における損失係数は本発明と同等であるものの、60℃以下の損失係数は低く、常温付近の遮音性及び制振性に劣る。また、比較例3のシーラントは40℃における損失係数は高いものの、60℃以上の損失係数は低く、高温下で使用されるシーラントとしては適さないことがわかる。
〔実施例7~14及び比較例7~22〕
 表3及び表4に示す各成分を、表3及び表4に示す配合にしたがって、シグマブレード型のニーダーを使用して200~230℃で2時間混合して、シーラントを作製した。得られたシーラントを用いて、上記方法により各種測定を行った。結果を表3及び表4に示す。
 なお、表3及び表4に示す各成分は下記のとおりである。
・軟化剤(B):ダイアナプロセスオイルPW-90(水添パラフィン系オイル、出光興産株式会社製)
・ポリフェニレンエーテル系樹脂(C):変性ポリフェニレンエーテル樹脂;旭化成ケミカルズ製、商品名「ザイロン500H」
・粘着付与樹脂(D):水添脂環族系炭化水素樹脂;エクソンモービル製、商品名「エスコレッツ ECR-227E」
・充填剤:重質炭酸カルシウム;三共精粉(株)製、商品名「エスカロン200」
・ポリオレフィン樹脂:ホモポリプロピレン;日本ポリプロ(株)製、商品名「ノバテックPP MA3」、MFR=10g/10min
・酸化防止剤-1:ヒンダードフェノール系酸化防止剤;チバスペシャルティーケミカルズ製、商品名「イルガノックス1010」
・酸化防止剤-2:リン系酸化防止剤;チバスペシャルティーケミカルズ製、商品名「イルガフォス168」
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表3及び表4から明らかなとおり、実施例7~14のシーラントは、比較例7~22のシーラントと比較して、高温での圧縮永久歪み(耐熱性)及び反発弾性率は同等以上の性能を有し、成形加工性、柔軟性及び粘接着性に優れ、かつ40~80℃にわたり4,000ヘルツにおける損失係数が高く、高温下での高周波数領域における遮音性及び制振性(振動減衰特性)に優れる。

Claims (11)

  1.  芳香族ビニル化合物由来の構造単位からなる重合体ブロック(a)と、ファルネセン由来の構造単位(b1)を1~100質量%含有し、ファルネセン以外の共役ジエン由来の構造単位(b2)を99~0質量%含有する重合体ブロック(b)とを含有し、重合体ブロック(a)と重合体ブロック(b)との質量比[(a)/(b)]が5/95~45/55であるブロック共重合体(A)を含むシーラント。
  2.  前記ブロック共重合体(A)のゲルパーミエーションクロマトグラフィーにより標準ポリスチレン換算で求めたピークトップ分子量(Mp)が4,000~500,000である、請求項1に記載のシーラント。
  3.  前記ブロック共重合体(A)は、40~80℃の範囲において、4,000ヘルツの周波数の加振条件における損失係数が0.07以上である、請求項1又は2に記載のシーラント。
  4.  前記芳香族ビニル化合物がスチレンである、請求項1~3のいずれかに記載のシーラント。
  5.  前記ファルネセンがβ-ファルネセンである、請求項1~4のいずれかに記載のシーラント。
  6.  前記ファルネセン以外の共役ジエンが、イソプレン、ブタジエン及びミルセンから選ばれる少なくとも1種である、請求項1~5のいずれかに記載のシーラント。
  7.  前記ブロック共重合体(A)の分子量分布(Mw/Mn)が1~4である、請求項1~6のいずれかに記載のシーラント。
  8.  前記ブロック共重合体(A)は、前記重合体ブロック(b)中の炭素-炭素二重結合の水素添加率が70モル%以上である水添ブロック共重合体である、請求項1~7のいずれかに記載のシーラント。
  9.  更に軟化剤(B)を含む、請求項1~8のいずれかに記載のシーラント。
  10.  更にポリフェニレンエーテル系樹脂(C)を含む、請求項1~9のいずれかに記載のシーラント。
  11.  更に粘着付与樹脂(D)を含む、請求項1~10のいずれかに記載のシーラント。
PCT/JP2014/082792 2013-12-11 2014-12-11 シーラント WO2015087954A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US15/103,168 US20180134931A1 (en) 2013-12-11 2014-12-11 Sealant
JP2015552500A JP6679041B2 (ja) 2013-12-11 2014-12-11 シーラント
CN201480067984.3A CN105793384A (zh) 2013-12-11 2014-12-11 密封剂
EP14869628.9A EP3081613A4 (en) 2013-12-11 2014-12-11 Sealant
KR1020167015381A KR20160096610A (ko) 2013-12-11 2014-12-11 실란트
CA2933261A CA2933261A1 (en) 2013-12-11 2014-12-11 Sealant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013255849 2013-12-11
JP2013-255849 2013-12-11

Publications (1)

Publication Number Publication Date
WO2015087954A1 true WO2015087954A1 (ja) 2015-06-18

Family

ID=53371253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082792 WO2015087954A1 (ja) 2013-12-11 2014-12-11 シーラント

Country Status (8)

Country Link
US (1) US20180134931A1 (ja)
EP (1) EP3081613A4 (ja)
JP (1) JP6679041B2 (ja)
KR (1) KR20160096610A (ja)
CN (1) CN105793384A (ja)
CA (1) CA2933261A1 (ja)
TW (1) TW201529690A (ja)
WO (1) WO2015087954A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016125899A1 (ja) * 2015-02-06 2016-08-11 株式会社クラレ 水添ブロック共重合体
JPWO2016068141A1 (ja) * 2014-10-28 2017-08-10 株式会社クラレ シーリング材組成物
JPWO2020235006A1 (ja) * 2019-05-21 2020-11-26
WO2023002932A1 (ja) * 2021-07-21 2023-01-26 クラレプラスチックス株式会社 熱可塑性エラストマー組成物、および該組成物からなる成形体

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10759913B2 (en) 2017-12-13 2020-09-01 Allegiance Corporation Vulcanization composition for reducing allergenic potential and elastomeric articles formed therewith
JP7388363B2 (ja) * 2018-10-17 2023-11-29 日本ゼオン株式会社 共重合体水素化物およびその製造方法、共重合体水素化物含有組成物、合わせガラス用中間膜、合わせガラス用中間膜積層体、封止材、光学フィルム、医療用成形体およびその製造方法、接着剤、ならびに、接合体およびその製造方法
US20220403145A1 (en) * 2019-11-18 2022-12-22 Kuraray Co., Ltd. Resin composition and molded article
CN115380069A (zh) * 2020-03-17 2022-11-22 宝理塑料株式会社 减振用成形品和减振用成形品用的树脂组合物的制造方法
CN115516032A (zh) * 2020-05-08 2022-12-23 倍耐力轮胎股份公司 高性能轮胎

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005097360A (ja) 2003-09-22 2005-04-14 Aica Kogyo Co Ltd ホットメルト組成物
JP2011074168A (ja) 2009-09-30 2011-04-14 Kuraray Co Ltd ホットメルトシーラント
JP2011132298A (ja) 2009-12-22 2011-07-07 Sumitomo Rubber Ind Ltd 変性共重合体、それを用いたゴム組成物および空気入りタイヤ
JP2012502135A (ja) 2008-09-04 2012-01-26 アムイリス ビオテクフノロジエス,インコーポレイテッド ポリファルネセンを含む接着剤組成物
JP2012502136A (ja) 2008-09-04 2012-01-26 アムイリス ビオテクフノロジエス,インコーポレイテッド ファルネセン共重合体
WO2013183570A1 (ja) * 2012-06-08 2013-12-12 株式会社クラレ 水添ブロック共重合体、及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4987194A (en) * 1988-10-07 1991-01-22 Kuraray Company, Limited Block copolymers and composition containing the same
ES2620090T3 (es) * 2013-09-30 2017-06-27 Kuraray Co., Ltd. Composición de elastómero termoplástico y cuerpo moldeado
CA2910452C (en) * 2013-09-30 2016-04-05 Kuraray Co., Ltd. Polyolefin-based resin composition and molded body

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005097360A (ja) 2003-09-22 2005-04-14 Aica Kogyo Co Ltd ホットメルト組成物
JP2012502135A (ja) 2008-09-04 2012-01-26 アムイリス ビオテクフノロジエス,インコーポレイテッド ポリファルネセンを含む接着剤組成物
JP2012502136A (ja) 2008-09-04 2012-01-26 アムイリス ビオテクフノロジエス,インコーポレイテッド ファルネセン共重合体
JP2011074168A (ja) 2009-09-30 2011-04-14 Kuraray Co Ltd ホットメルトシーラント
JP2011132298A (ja) 2009-12-22 2011-07-07 Sumitomo Rubber Ind Ltd 変性共重合体、それを用いたゴム組成物および空気入りタイヤ
WO2013183570A1 (ja) * 2012-06-08 2013-12-12 株式会社クラレ 水添ブロック共重合体、及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3081613A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016068141A1 (ja) * 2014-10-28 2017-08-10 株式会社クラレ シーリング材組成物
EP3214149A4 (en) * 2014-10-28 2018-07-25 Kuraray Co., Ltd. Sealant composition
WO2016125899A1 (ja) * 2015-02-06 2016-08-11 株式会社クラレ 水添ブロック共重合体
CN107207685A (zh) * 2015-02-06 2017-09-26 株式会社可乐丽 氢化嵌段共聚物
US10597481B2 (en) 2015-02-06 2020-03-24 Kuraray Co., Ltd. Hydrogenated block copolymer
CN107207685B (zh) * 2015-02-06 2020-12-01 株式会社可乐丽 氢化嵌段共聚物
JPWO2020235006A1 (ja) * 2019-05-21 2020-11-26
JP7239691B2 (ja) 2019-05-21 2023-03-14 アロン化成株式会社 制振部材用熱可塑性エラストマー組成物
WO2023002932A1 (ja) * 2021-07-21 2023-01-26 クラレプラスチックス株式会社 熱可塑性エラストマー組成物、および該組成物からなる成形体

Also Published As

Publication number Publication date
EP3081613A1 (en) 2016-10-19
KR20160096610A (ko) 2016-08-16
CA2933261A1 (en) 2015-06-18
JP6679041B2 (ja) 2020-04-15
CN105793384A (zh) 2016-07-20
TW201529690A (zh) 2015-08-01
EP3081613A4 (en) 2017-08-09
US20180134931A1 (en) 2018-05-17
JPWO2015087954A1 (ja) 2017-03-16

Similar Documents

Publication Publication Date Title
JP6679041B2 (ja) シーラント
JP5998154B2 (ja) 熱可塑性重合体組成物および成形品
KR100687943B1 (ko) 향상된 고온 외부성형 특성을 가진 수소첨가된 스티렌계 블록 공중합체 조성물
US10131780B2 (en) Thermoplastic elastomer composition, stopper for medical container, and medical container
JP5382839B2 (ja) ブロック共重合体及び該共重合体を含有する組成物
WO2018139122A1 (ja) 熱可塑性エラストマー組成物、栓体及び容器
MXPA05004529A (es) Composicion de elastomero termoplastico.
JP2016113614A (ja) 熱可塑性エラストマー組成物、架橋物、成形体、部材、ウェザーシール、及びウェザーシール用コーナー部材
JP2010248328A (ja) 熱可塑性エラストマー組成物およびそれからなるホットメルトシーラント
JP4846327B2 (ja) ブロック共重合体、及び該共重合体を含有する熱可塑性エラストマー組成物
CN114075317A (zh) 新型嵌段共聚物及其用途
JP2019026826A (ja) 樹脂組成物及び成形体
JP4855055B2 (ja) ジエン系ゴム接着用熱可塑性エラストマー組成物
WO2020235661A1 (ja) 粘接着組成物
JP2011111499A (ja) 家電製品用防振部材
KR20210010573A (ko) 핫멜트 조성물 및 밀봉재
JP5507182B2 (ja) ホットメルトシーラント
WO2007114062A1 (ja) ゴム組成物およびゴム架橋物
JP4767673B2 (ja) ジエン系ゴム接着用水添スチレン系エラストマー積層体
JP2003128870A (ja) 熱可塑性エラストマー組成物
WO2024070188A1 (ja) 樹脂組成物及び成形体
JP2020070344A (ja) ホットメルト組成物、シーリング材およびシリンジ
JP7554954B2 (ja) 樹脂組成物及び成形体
JP2010159363A (ja) 熱可塑性重合体組成物
EP4286431A1 (en) Resin composition and molded body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14869628

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015552500

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2933261

Country of ref document: CA

Ref document number: 20167015381

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014869628

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15103168

Country of ref document: US

Ref document number: 2014869628

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE