WO2024070188A1 - 樹脂組成物及び成形体 - Google Patents

樹脂組成物及び成形体 Download PDF

Info

Publication number
WO2024070188A1
WO2024070188A1 PCT/JP2023/027887 JP2023027887W WO2024070188A1 WO 2024070188 A1 WO2024070188 A1 WO 2024070188A1 JP 2023027887 W JP2023027887 W JP 2023027887W WO 2024070188 A1 WO2024070188 A1 WO 2024070188A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
mass
block copolymer
composition according
polymer block
Prior art date
Application number
PCT/JP2023/027887
Other languages
English (en)
French (fr)
Inventor
大輔 小西
啓光 佐々木
周平 金子
裕太 冨島
卓宏 関口
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Publication of WO2024070188A1 publication Critical patent/WO2024070188A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/01Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes

Definitions

  • the present invention relates to a resin composition and a molded article, and in particular to a resin composition that contains a material that can reduce the environmental impact and has excellent moldability, and a molded article made using the resin composition.
  • Thermoplastic resins are lightweight and have excellent moldability, and some of them also have excellent strength and heat resistance, etc., and therefore are widely used in various packaging materials, home appliances, machine parts, automobile parts, industrial parts, etc.
  • biomass-derived raw materials for these components. Technologies have been disclosed that use plant-derived plasticizers and vegetable oils (sunflower oil, linseed oil) as biomass-derived raw materials to impart various physical properties while keeping in mind the reduction of environmental impact (see, for example, Patent Document 1).
  • the present invention aims to provide a resin composition that contains a material that can reduce the environmental impact and has excellent moldability, as well as a molded article made using the resin composition.
  • the present inventors have conceived the following invention and found that the above problems can be solved. That is, the present invention is as follows.
  • a resin composition comprising: a block copolymer (I) including a polymer block (a1) containing a structural unit derived from an aromatic vinyl compound and a polymer block (a2) containing a structural unit derived from a conjugated diene compound; and a biomass-derived plasticizer (II) having no carboxy group, wherein the biobased content of the plasticizer (II) is 70 mass% or more.
  • n 1 to n 3 each independently represent 1 or 3
  • R 1 to R 6 each independently represent a hydrogen atom or an unsubstituted hydrocarbon group
  • R 1 and R 2 have a total of 14 carbon atoms
  • R 3 and R 4 have a total of 14 carbon atoms
  • R 5 and R 6 have a total of 14 carbon atoms
  • R 1 to R 6 may have a branched structure.
  • n4 and n5 each independently represent 1 or 3
  • R 7 to R 10 each independently represent a hydrogen atom or an unsubstituted hydrocarbon group
  • the total number of carbon atoms of R 7 and R 8 is 14
  • the total number of carbon atoms of R 9 and R 10 is 14, and
  • R 7 to R 10 may have a branched structure.
  • the aromatic vinyl compound in the polymer block (a1) in the block copolymer (I) is at least one selected from the group consisting of styrene, ⁇ -methylstyrene, and 4-methylstyrene.
  • the resin composition according to any one of [1] to [3] above.
  • the resin composition according to [12] above, wherein the polyolefin resin (III) comprises polyethylene and/or polypropylene.
  • the resin composition according to the above [12], wherein the polyolefin resin (III) is polypropylene.
  • the present invention provides a resin composition that contains a material that can reduce the environmental impact and has excellent moldability, and a molded article made using the resin composition.
  • FIG. 2 is a diagram for explaining a tensile test (forward stress, return stress, stress relaxation) of a film as a molded article obtained by using the resin composition of the present invention.
  • bio-based content is an index that indicates the content ratio of bio-derived materials in a target substance, measured in accordance with ASTM D6866-21.
  • bio-based content of a resin composition means the content ratio of bio-derived raw materials in a resin composition, measured in accordance with ASTM D6866-21.
  • Bio-based content of a resin means the content ratio of bio-derived raw materials in a resin, measured in accordance with ASTM D6866-21.
  • the resin composition of this embodiment contains a block copolymer (I) and a plasticizer (II), and further contains a polyolefin resin (III), a tackifier (IV), and additives, as necessary.
  • the resin composition of this embodiment contains the block copolymer (I), and thus has good flexibility, which makes it easier to suppress deterioration of physical properties at low temperatures, and can exhibit excellent moldability.
  • the block copolymer (I) contains a polymer block (a1) containing a structural unit derived from an aromatic vinyl compound, and a polymer block (a2) containing a structural unit derived from a conjugated diene compound (excluding the polymer block (a1)).
  • the block copolymer (I) may be used alone or in combination of two or more kinds.
  • the polymer block (a1) in the block copolymer (I) contains a structural unit derived from an aromatic vinyl compound.
  • aromatic vinyl compounds include styrene, ⁇ -methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-propylstyrene, 4-t-butylstyrene, 4-cyclohexylstyrene, 4-dodecylstyrene, 2,4-dimethylstyrene, 2,4-diisopropylstyrene, 2,4,6-trimethylstyrene, 2-ethyl-4-benzylstyrene, 4-(phenylbutyl)styrene, 1-vinylnaphthalene, 2-vinylnaphthalene, vinylanthracene, N,N-diethyl-4-aminoethylstyrene
  • the polymer block (a1) may contain structural units derived from monomers other than aromatic vinyl compounds, such as monomers constituting the polymer block (a2) described below.
  • the content of structural units derived from aromatic vinyl compounds in the polymer block (a1) is preferably 70% by mass or more, more preferably 80% by mass or more, even more preferably 90% by mass or more, even more preferably 95% by mass or more, and particularly preferably 100% by mass.
  • the content of polymer block (a1) in block copolymer (I) is preferably 1 to 65 mass%, more preferably 5 to 60 mass%, even more preferably 5 to 50 mass%, even more preferably 10 to 40 mass%, and even more preferably 10 to 35 mass%. If the content is 1 mass% or more, the resin composition is likely to exhibit excellent moldability. If the content is 65 mass% or less, it is expected that the resin composition will exhibit tear strength, tensile properties, and the like while retaining sufficient flexibility. When block copolymer (I) contains multiple polymer blocks (a1), it is preferable that the total amount of the multiple polymer blocks (a1) is within the above range.
  • the polymer block (a2) in the block copolymer (I) is a polymer block containing a structural unit derived from a conjugated diene compound.
  • the conjugated diene compound include isoprene, butadiene, farnesene, 2,3-dimethyl-butadiene, 2-phenyl-butadiene, 1,3-pentadiene, 2-methyl-1,3-pentadiene, 1,3-hexadiene, 1,3-octadiene, 1,3-cyclohexadiene, 2-methyl-1,3-octadiene, 1,3,7-octatriene, myrcene, chloroprene, etc. These may be used alone or in combination of two or more. Among these, isoprene, butadiene, farnesene, and myrcene are preferred, and isoprene, butadiene, and farnesene are more preferred.
  • the polymer block (a2) containing structural units derived from a conjugated diene compound may be composed of structural units derived from only one of these conjugated diene compounds, or may be composed of structural units derived from two or more of these conjugated diene compounds.
  • the polymer block (a2) is composed of structural units derived from butadiene, isoprene, or farnesene, or structural units derived from butadiene and isoprene.
  • the farnesene may be either ⁇ -farnesene or ⁇ -farnesene represented by the following formula (1), but ⁇ -farnesene is preferred from the viewpoint of ease of production of the block copolymer (I). ⁇ -farnesene and ⁇ -farnesene may be used in combination.
  • the polymer block (a2) containing structural units derived from a conjugated diene compound is preferably a polymer block containing 70% by mass or more of structural units derived from a conjugated diene compound, more preferably 80% by mass or more of the structural units, even more preferably 90% by mass or more of the structural units, even more preferably 95% by mass or more of the structural units, and particularly preferably 100% by mass of the structural units.
  • the polymer block (a2) may contain only structural units derived from a conjugated diene compound, but may also contain structural units derived from other copolymerizable monomers in addition to the structural units, as long as it does not interfere with the present invention.
  • Examples of other copolymerizable monomers include styrene, ⁇ -methylstyrene, and 4-methylstyrene.
  • the proportion thereof is preferably 20% by mass or less, more preferably 10% by mass or less, and even more preferably 5% by mass or less, based on the total amount of the structural units derived from the conjugated diene compound and the structural units derived from the other copolymerizable monomers.
  • the block copolymer (I) may further contain a polymer block (a3) containing a structural unit derived from a conjugated diene compound, in addition to the above-mentioned polymer block (a1) and polymer block (a2). It should be noted that the block (a2) and the block (a3) are not the same polymer block.
  • the conjugated diene compounds constituting the structural units derived from the conjugated diene compound include the same conjugated diene compounds constituting the structural units derived from the conjugated diene compound in the polymer block (a2) described above, and preferred examples are also the same.
  • the polymer block (a3) may contain structural units other than the structural units derived from the conjugated diene compound.
  • the content of the structural unit derived from the conjugated diene compound in the polymer block (a3) is preferably from 70 to 100% by mass, more preferably from 80 to 100% by mass, even more preferably from 90 to 100% by mass, still more preferably from 95 to 100% by mass, and particularly preferably 100% by mass.
  • the block copolymer (I) is a block copolymer containing at least one polymer block (a1) and at least one polymer block (a2).
  • the bonding form of the polymer block (a1) and the polymer block (a2) is not particularly limited, and may be linear, branched, radial, or a combination of two or more thereof. Among these, a form in which each block is bonded linearly is preferred.
  • Examples of the linear bonding form include bonding forms represented by (A-B) l , A-(B-A) m , or B-(A-B) n , where A represents the polymer block (a1) and B represents the polymer block (a2), where l, m, and n each independently represent an integer of 1 or more.
  • the block copolymer (I) contains at least one each of the polymer block (a1) and the polymer block (a2), it is preferable that the block copolymer (I) is a triblock copolymer represented by A-B-A, having blocks in the order of the polymer block (a1), the polymer block (a2) and the polymer block (a1). That is, the block copolymer (I) is preferably a triblock copolymer represented by ABA, and the triblock copolymer may be either an unhydrogenated product or a hydrogenated product.
  • the block copolymer (I) may also be a block copolymer containing at least two polymer blocks (a1), at least one polymer block (a2), and at least one polymer block (a3).
  • the bonding form of the multiple polymer blocks is not particularly limited and may be linear, branched, radial or a combination of two or more of these. Among these, a form in which each block is bonded linearly is preferred.
  • a polymer block that should strictly be expressed as A-X-A (X represents a coupling agent residue) is expressed as A as a whole. Since this type of polymer block containing a coupling agent residue is treated as above in this specification, for example, a block copolymer that contains a coupling agent residue and should strictly be expressed as B-A-C-X-C-A-B is expressed as B-A-C-A-B and is treated as an example of a pentablock copolymer.
  • the two or more polymer blocks (a1) in the above-mentioned block copolymer (I) may each be a polymer block consisting of the same structural unit or a polymer block consisting of different structural units.
  • each polymer block may be a polymer block consisting of the same structural unit or a polymer block consisting of different structural units.
  • the type of aromatic vinyl compound in each may be the same or different.
  • the mass ratio of the polymer block (a1) to the polymer block (a2) [(a1)/(a2)] is preferably 1/99 to 65/35, more preferably 5/95 to 60/40, even more preferably 10/90 to 50/50, even more preferably 15/85 to 40/60, and even more preferably 15/85 to 35/65.
  • a resin composition having excellent flexibility and even more excellent moldability can be obtained.
  • the mass ratio of the polymer block (a1) to the polymer block (a2) [(a1)/(a2)] is preferably 1/99 to 70/30, more preferably 5/95 to 60/40, even more preferably 10/90 to 50/50, even more preferably 20/80 to 40/60, and even more preferably 25/75 to 35/65.
  • a resin composition having excellent flexibility and even more excellent moldability can be obtained.
  • the mass ratio of the polymer block (a1) to the total amount of the polymer block (a2) and the polymer block (a3) [(a1)/((a2)+(a3)] is preferably 1/99 to 65/35.
  • the mass ratio [(a1)/((a2)+(a3)] is more preferably 5/95 to 60/40, even more preferably 10/90 to 40/60, even more preferably 10/90 to 30/70, and even more preferably 15/85 to 25/75.
  • the block copolymer (I) contains the polymer block (a1) and the polymer block (a2) but does not contain the polymer block (a3)
  • the total content of the polymer block (a1) and the polymer block (a2) in the block copolymer is preferably 80% by mass or more, more preferably 90% by mass or more, even more preferably 95% by mass or more, and even more preferably 100% by mass.
  • One embodiment of the block copolymer (I) is, for example, a block copolymer consisting of at least one polymer block (a1) and at least one polymer block (a2).
  • examples of the block copolymer (I) include (a1)-(a2) diblock copolymer, (a1)-(a2)-(a1) triblock copolymer, (a1)-(a2)-(a1)-(a2) tetrablock copolymer, (a2)-(a1)-(a2)-(a1)-(a2) pentablock copolymer, (a2)-(a1)-(a2)-(a1)-(a2)-(a1) hexablock copolymer, a multi-branched block copolymer represented by ((a1)-(a2)) n -X (X represents a coupling agent residue, and n represents an integer of 2 or more), and ((a2)-(a1)-(a2)) n Preferred embodiments include multi-branched block copolymers represented by -X (X represents a coupling agent residue, and n represents an integer of 2 or more), and ((a2)-(a1)-(a2)) n Preferred embodiments
  • the block copolymer (I) contains the polymer block (a1), the polymer block (a2) and the polymer block (a3)
  • the total content of these polymer blocks (a1) to (a3) in the block copolymer is preferably 80% by mass or more, more preferably 90% by mass or more, even more preferably 95% by mass or more, and even more preferably 100% by mass.
  • One embodiment of the block copolymer (I) is, for example, a block copolymer consisting of at least one polymer block (a1), at least one polymer block (a2) and at least one polymer block (a3).
  • the block copolymer (I) may contain, in addition to the polymer block (a1), the polymer block (a2) and the polymer block (a3), a polymer block constituted by another monomer, so long as the effect of the present invention is not impaired.
  • Examples of such other monomers include functional group-containing unsaturated compounds such as acrylic acid, methacrylic acid, methyl acrylate, methyl methacrylate, acrylonitrile, methacrylonitrile, maleic acid, fumaric acid, crotonic acid, itaconic acid, 2-acryloylethanesulfonic acid, 2-methacryloylethanesulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid, 2-methacrylamido-2-methylpropanesulfonic acid, vinylsulfonic acid, vinyl acetate, and methyl vinyl ether. These may be used alone or in combination of two or more.
  • the block copolymer (I) has a polymer block constituted by another monomer, the content thereof is preferably 10% by mass or less, more preferably 5% by mass or less.
  • Block Copolymer (I) is, for example, a block copolymer containing polymer block (a1) and polymer block (a2), or a block copolymer containing polymer block (a1), polymer block (a2), and polymer block (a3), it can be suitably produced by a polymerization step of obtaining a block copolymer by anionic polymerization.
  • the block copolymer (I) is a hydrogenated block copolymer, it can be suitably produced by a step of hydrogenating a carbon-carbon double bond in a structural unit derived from a conjugated diene compound in the block copolymer.
  • the block copolymer (I) can be produced by a solution polymerization method or the methods described in JP-A-2012-502135 and JP-A-2012-502136, etc.
  • the solution polymerization method is preferred, and known methods such as ionic polymerization methods such as anionic polymerization and cationic polymerization, and radical polymerization methods can be applied.
  • the anionic polymerization method is preferred.
  • an aromatic vinyl compound and a conjugated diene compound are successively added in the presence of a solvent, an anionic polymerization initiator, and, if necessary, a Lewis base to obtain a block copolymer.
  • anionic polymerization initiator examples include alkali metals such as lithium, sodium, and potassium; alkaline earth metals such as beryllium, magnesium, calcium, strontium, and barium; lanthanoid rare earth metals such as lanthanum and neodymium; and compounds containing the above-mentioned alkali metals, alkaline earth metals, and lanthanoid rare earth metals.
  • alkali metals such as lithium, sodium, and potassium
  • alkaline earth metals such as beryllium, magnesium, calcium, strontium, and barium
  • lanthanoid rare earth metals such as lanthanum and neodymium
  • compounds containing an alkali metal or an alkaline earth metal are preferred, and organic alkali metal compounds are more preferred.
  • organic alkali metal compound examples include organic lithium compounds such as methyl lithium, ethyl lithium, n-butyl lithium, sec-butyl lithium, t-butyl lithium, hexyl lithium, phenyl lithium, stilbene lithium, dilithiomethane, dilithionaphthalene, 1,4-dilithiobutane, 1,4-dilithio-2-ethylcyclohexane, and 1,3,5-trilithiobenzene; sodium naphthalene, and potassium naphthalene.
  • organolithium compounds are preferred, n-butyllithium and sec-butyllithium are more preferred, and sec-butyllithium is even more preferred.
  • the organolithium compounds may be reacted with secondary amines such as diisopropylamine, dibutylamine, dihexylamine, and dibenzylamine to form organolithium amides.
  • secondary amines such as diisopropylamine, dibutylamine, dihexylamine, and dibenzylamine to form organolithium amides.
  • the amount of the organic alkali metal compound used in the polymerization varies depending on the molecular weight of the block copolymer (I), but is usually in the range of 0.01 to 3 mass % based on the total amount of the aromatic vinyl compound and the conjugated diene compound.
  • the solvent there are no particular limitations on the solvent as long as it does not adversely affect the anionic polymerization reaction, and examples include saturated aliphatic hydrocarbons such as n-pentane, isopentane, n-hexane, n-heptane, and isooctane; saturated alicyclic hydrocarbons such as cyclopentane, cyclohexane, and methylcyclopentane; and aromatic hydrocarbons such as benzene, toluene, and xylene. These may be used alone or in combination of two or more. There are no particular limitations on the amount of solvent used.
  • saturated aliphatic hydrocarbons such as n-pentane, isopentane, n-hexane, n-heptane, and isooctane
  • saturated alicyclic hydrocarbons such as cyclopentane, cyclohexane, and methylcyclopentane
  • aromatic hydrocarbons such
  • Lewis bases play a role in controlling the microstructure of structural units derived from conjugated diene compounds.
  • Lewis bases include ether compounds such as dibutyl ether, diethyl ether, tetrahydrofuran, dioxane, and ethylene glycol diethyl ether; pyridine; tertiary amines such as N,N,N',N'-tetramethylethylenediamine and trimethylamine; alkali metal alkoxides such as potassium t-butoxide; and phosphine compounds.
  • the amount is usually preferably in the range of 0.01 to 1000 molar equivalents per mole of the anionic polymerization initiator.
  • the temperature of the polymerization reaction is usually in the range of about -80 to +150°C, preferably 0 to 100°C, and more preferably 10 to 90°C.
  • the polymerization reaction may be carried out batchwise or continuously.
  • the block copolymer (I) can be produced by continuously or intermittently supplying each monomer to the polymerization reaction liquid so that the amounts of the aromatic vinyl compound and the conjugated diene compound present in the polymerization reaction system are within a specific range, or by sequentially polymerizing each monomer in the polymerization reaction liquid so that the monomers are in a specific ratio.
  • the polymerization reaction can be terminated by adding an alcohol such as methanol or isopropanol as a polymerization terminator.
  • the resulting polymerization reaction solution is poured into a poor solvent such as methanol to precipitate the block copolymer, or the polymerization reaction solution is washed with water, separated, and then dried to isolate the block copolymer.
  • block copolymer (I) is a structure having polymer block (a1), polymer block (a2), and polymer block (a1) in this order. Therefore, a process for obtaining block copolymer (I) by producing polymer block (a1), polymer block (a2), and polymer block (a1) in this order is preferred. In the case of a hydrogenated product, it is more preferred to produce hydrogenated block copolymer (I) by a method that further includes a process for hydrogenating the obtained block copolymer (I).
  • a coupling agent can be used from the viewpoint of efficient production.
  • the coupling agent include divinylbenzene; polyfunctional epoxy compounds such as epoxidized 1,2-polybutadiene, epoxidized soybean oil, and tetraglycidyl-1,3-bisaminomethylcyclohexane; halides such as tin tetrachloride, tetrachlorosilane, trichlorosilane, trichloromethylsilane, dichlorodimethylsilane, and dibromodimethylsilane; ester compounds such as methyl benzoate, ethyl benzoate, phenyl benzoate, diethyl oxalate, diethyl malonate, diethyl adipate, dimethyl phthalate, and dimethyl terephthalate; carbonate compounds such as dimethyl carbonate, diethyl carbonate, and diphenyl carbonate; al
  • the block copolymer (I) may be hydrogenated by subjecting the block copolymer obtained by the above-mentioned method to a step of hydrogenating the block copolymer (I).
  • One of the preferred embodiments of the block copolymer (I) is the hydrogenated block copolymer (I).
  • the hydrogenation can be carried out by a known method.
  • the hydrogenation reaction is carried out in a solution of the block copolymer (I) dissolved in a solvent that does not affect the hydrogenation reaction, in the presence of a hydrogenation catalyst such as a Ziegler catalyst; a nickel, platinum, palladium, ruthenium or rhodium metal catalyst supported on carbon, silica, diatomaceous earth, or an organometallic complex having a cobalt, nickel, palladium, rhodium or ruthenium metal.
  • a hydrogenation reaction may be carried out by adding a hydrogenation catalyst to the polymerization reaction liquid containing the block copolymer obtained by the above-mentioned production method of the block copolymer (I).
  • the hydrogenation catalyst is preferably palladium carbon in which palladium is supported on carbon.
  • the hydrogen pressure is preferably 0.1 to 20 MPa
  • the reaction temperature is preferably 100 to 200° C.
  • the reaction time is preferably 1 to 20 hours.
  • the hydrogenation rate of the carbon-carbon double bonds in the structural units derived from the conjugated diene compound in the block copolymer (I) is preferably 5.0 mol% or more. From the viewpoints of heat resistance and weather resistance, the hydrogenation rate of the carbon-carbon double bonds in the structural units derived from the conjugated diene compound is more preferably 10.0 mol% or more, even more preferably 20.0 mol% or more, even more preferably 25.0 mol% or more, and particularly preferably 30.0 mol% or more.
  • the hydrogenation rate of the carbon-carbon double bonds in the structural units derived from the conjugated diene compound in the block copolymer (I) is preferably 70.0 mol% or more.
  • the hydrogenation rate of the carbon-carbon double bonds in the structural units derived from the conjugated diene compound is more preferably 75.0 mol% or more, even more preferably 80.0 mol% or more, even more preferably 85.0 mol% or more, and particularly preferably 90.0 mol% or more.
  • the hydrogenation rate is preferably 93.0 mol% or more, more preferably 95.0 mol% or more, and even more preferably 97.0 mol% or more.
  • a block copolymer having a hydrogenation rate of substantially 100.0 mol% can also be preferably used.
  • the upper limit of the hydrogenation rate is preferably 99.7 mol% or less, and more preferably 99.5 mol% or less.
  • the hydrogenation rate can be calculated by measuring 1 H-NMR of the block copolymer (I) before and after hydrogenation.
  • the above hydrogenation rate is the hydrogenation rate of the carbon-carbon double bonds in all structural units derived from the conjugated diene compound present in the block copolymer (I).
  • An example of the carbon-carbon double bond in the structural unit derived from a conjugated diene compound present in the block copolymer (I) is a carbon-carbon double bond in the structural unit derived from a conjugated diene compound in the polymer block (a2).
  • the polymer block (a2) and the polymer block (a3) in the hydrogenated block copolymer (I) have been hydrogenated, they are referred to as "polymer block (a2)" and “polymer block (a3)” in the same manner as before hydrogenation.
  • an unmodified block copolymer may be used, but a block copolymer modified as described below may also be used.
  • the block copolymer may be modified after the hydrogenation step.
  • functional groups that can be introduced by modification include amino groups, alkoxysilyl groups, hydroxyl groups, epoxy groups, carboxy groups, carbonyl groups, mercapto groups, isocyanate groups, and acid anhydride groups.
  • a method for modifying the block copolymer for example, a method in which the isolated and hydrogenated block copolymer is grafted with a modifying agent such as maleic anhydride can be mentioned.
  • the block copolymer can also be modified before the hydrogenation step.
  • Specific methods include adding a coupling agent such as tin tetrachloride, tetrachlorosilane, dichlorodimethylsilane, dimethyldiethoxysilane, tetramethoxysilane, tetraethoxysilane, 3-aminopropyltriethoxysilane, tetraglycidyl-1,3-bisaminomethylcyclohexane, or 2,4-tolylenediisocyanate that can react with the polymerization active terminal, a polymerization terminal modifier such as 4,4'-bis(diethylamino)benzophenone or N-vinylpyrrolidone, or other modifiers described in JP-A-2011-132298, before adding a polymerization terminator.
  • a coupling agent such as tin tetrachloride, tetrachlorosilane, dichlorodimethylsilane, dimethyldiethoxysilane, te
  • the position where the functional group is introduced may be the polymerization terminal or the side chain of the block copolymer.
  • the functional group may be one type or a combination of two or more types.
  • the modifier is preferably used in an amount of 0.01 to 10 molar equivalents per mole of the anionic polymerization initiator.
  • the weight average molecular weight (Mw) of the block copolymer (I) is preferably from 50,000 to 600,000, more preferably from 100,000 to 500,000, and even more preferably from 150,000 to 300,000, from the viewpoint of moldability.
  • the molecular weight distribution (Mw/Mn) of the block copolymer (I) is preferably from 1 to 6, more preferably from 1 to 4, even more preferably from 1 to 3, and even more preferably from 1 to 2. When the molecular weight distribution is within the above range, the viscosity of the block copolymer (I) varies little, making it easy to handle.
  • the weight average molecular weight (Mw) and the molecular weight distribution (Mw/Mn) are values measured by the method described in the examples described later.
  • the total weight average molecular weight (Mw) of the polymer blocks (a1) in the block copolymer (I) is preferably 2,000 to 100,000, more preferably 4,000 to 80,000, even more preferably 5,000 to 70,000, and even more preferably 6,000 to 65,000, from the viewpoint of moldability.
  • the bond forms of isoprene and butadiene can be 1,2-bonds and 1,4-bonds in the case of butadiene, and 1,2-bonds, 3,4-bonds, and 1,4-bonds in the case of isoprene.
  • the total content of 3,4-bond units and 1,2-bond units in the polymer block (a2) (hereinafter, sometimes simply referred to as "vinyl bond amount”) is preferably 1.0 to 40.0 mol%, more preferably 1.0 to 35.0 mol%, even more preferably 1.0 to 30.0 mol%, and still more preferably 1.0 to 25.0 mol%, or may be 1.0 to 20.0 mol%, 1.0 to 15.0 mol%, or 1.0 to 10.0 mol%. If it is within the above range, it is suitable for suppressing deterioration of physical properties at low temperatures.
  • the vinyl bond amount herein is the total content of 3,4-bond units and 1,2-bond units relative to the total amount of structural units derived from butadiene and isoprene in the polymer block (a2), and is a value calculated by 1 H-NMR measurement according to the method described in the Examples.
  • the resin composition of this embodiment contains the plasticizer (II), and thus has good moldability and flowability. Furthermore, the resin composition of this embodiment has good durability (compression set) by containing the plasticizer (II).
  • the mechanism of action of the inclusion of the plasticizer (II) to improve durability (compression set) is that the plasticizer (II) has a relatively low viscosity, but a high molecular weight, and contains few naphthene components and aromatic components, so it does not corrode the polymer block (a1) in the block copolymer (I), does not lower the glass transition point, and maintains durability at high temperatures.
  • the content of the plasticizer (II) in the resin composition of this embodiment is not particularly limited, and is preferably 10% by mass or more, more preferably 15% by mass or more, and even more preferably 20% by mass or more.
  • the resin composition of this embodiment is sufficient as long as it contains the plasticizer (II), and may contain other plasticizers such as vegetable oils and synthetic plasticizers, but it is preferable that the other plasticizers are plasticizers that do not have a carboxy group.
  • the content of the plasticizer (II) is preferably 40 parts by mass or more, more preferably 60 parts by mass or more, even more preferably 80 parts by mass or more, even more preferably 90 parts by mass or more, particularly preferably 95 parts by mass or more, and most preferably 100 parts by mass.
  • the biobased content of the plasticizer (II) is preferably 80% by mass or more, more preferably 85% by mass or more, even more preferably 90% by mass or more, even more preferably 95% by mass or more, and most preferably 100% by mass.
  • the kinetic viscosity of the plasticizer (II) at 40°C is not particularly limited, but is preferably 100.0 cSt or less, more preferably 90.0 cSt or less, even more preferably 80.0 cSt or less, even more preferably 70.0 cSt or less, and even more preferably 60.0 cSt or less.
  • the melting point (pour point) of the plasticizer (II) is not particularly limited, but is preferably -70°C or higher, more preferably -60°C or higher, even more preferably -50°C or higher, and is preferably 20°C or lower, more preferably 10°C or lower, even more preferably 0°C or lower.
  • the plasticizer (II) is a biomass-derived plasticizer that does not have a carboxy group. As long as the biobased content is 70% by mass or more, there are no particular limitations on the plasticizer, but preferred examples include compounds represented by the following general formula (1) and compounds represented by the following general formula (2). These may be used alone or in combination of two or more types.
  • n 1 to n 3 each independently represent 1 or 3
  • R 1 to R 6 each independently represent a hydrogen atom or an unsubstituted hydrocarbon group
  • R 1 and R 2 have a total of 14 carbon atoms
  • R 3 and R 4 have a total of 14 carbon atoms
  • R 5 and R 6 have a total of 14 carbon atoms
  • R 1 to R 6 may have a branched structure.
  • n4 and n5 each independently represent 1 or 3
  • R 7 to R 10 each independently represent a hydrogen atom or an unsubstituted hydrocarbon group
  • the total number of carbon atoms of R 7 and R 8 is 14
  • the total number of carbon atoms of R 9 and R 10 is 14, and
  • R 7 to R 10 may have a branched structure.
  • Specific examples of compounds represented by general formula (1) include compounds represented by the following structural formulas (1-1) to (1-8).
  • Specific examples of compounds represented by general formula (2) include compounds represented by the following structural formulas (2-1) to (2-8).
  • oils examples include castor oil, cottonseed oil, linseed oil, safflower oil, rapeseed oil, soybean oil, safflower oil, Japan wax, pine oil, corn oil, peanut oil, olive oil, palm oil, palm olein, palm stearin, and other plant-derived oils and fats, as well as interesterified oils, hydrogenated oils, and fractionated oils thereof. These oils and fats may be used alone or in combination of two or more.
  • the bio-based content of the vegetable oil is preferably 10% by mass or more, more preferably 30% by mass or more, even more preferably 50% by mass or more, even more preferably 70% by mass or more, and even more preferably 80% by mass or more.
  • Synthetic plasticizer examples include oil-based softeners such as paraffinic, naphthenic, and aromatic process oils, mineral oils, and white oils; phthalic acid derivatives such as dioctyl phthalate and dibutyl phthalate; liquid cooligomers of ethylene and ⁇ -olefins; liquid paraffin; polybutene; low molecular weight polyisobutylene; liquid polydienes such as liquid polybutadiene, liquid polyisoprene, liquid polyisoprene/butadiene copolymers, liquid styrene/butadiene copolymers, and liquid styrene/isoprene copolymers; and hydrogenated or modified products thereof. These may be used alone or in combination of two or more.
  • paraffinic and naphthenic process oils from the viewpoint of compatibility with the block copolymer (I), paraffinic and naphthenic process oils; liquid cooligomers of ethylene and ⁇ -olefins; liquid paraffin; and low molecular weight polyisobutylene are preferred, with paraffinic and naphthenic process oils being more preferred.
  • the resin composition of the present invention may further contain a polyolefin resin (III).
  • the polyolefin resin (III) is preferably contained in an amount of 1 to 200 parts by mass, more preferably 5 to 150 parts by mass, still more preferably 15 to 150 parts by mass, and even more preferably 35 to 130 parts by mass, per 100 parts by mass of the block copolymer (I).
  • polyolefin resin (III) examples include polyethylene resins and polypropylene resins derived from biomass; homopolymers of olefins such as ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 3-methyl-1-butene, and 4-methyl-1-pentene; homopolymers of ethylene and propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-octene, 1-hexene, 1-heptene, 6-methyl-1-heptene, isooctene, isooctane, decadiene, and the like.
  • olefins such as ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene,
  • elastomers examples include ethylene- ⁇ -olefin copolymers, which are copolymers with an ⁇ -olefin having 3 to 20 carbon atoms such as ethylene glycol, ethylene-propylene-diene copolymer (EPDM), ethylene-vinyl acetate copolymer, ethylene-unsaturated carboxylic acid copolymers such as ethylene-acrylic acid copolymer and ethylene-methacrylic acid copolymer, and polyolefin-based elastomers containing a polyolefin such as polypropylene or polyethylene as a hard segment and an ethylene-propylene copolymer rubber (EPM), ethylene-propylene-diene copolymer rubber (EPDM), or the like as a soft segment.
  • EPM ethylene-propylene copolymer rubber
  • EPDM ethylene-propylene-diene copolymer rubber
  • polypropylene e.g., homopolypropylene, block polypropylene, random polypropylene
  • biomass-derived polyethylene resins are preferred
  • biomass-derived low-density polyethylene (LDPE) and biomass-derived high-density polyethylene (HDPE) are more preferred
  • biomass-derived high-density polyethylene (HDPE) is even more preferred.
  • the bio-based content of the polyolefin resin (III) is preferably 20% by mass or more, more preferably 50% by mass or more, and from the viewpoint of further reducing the environmental burden, is even more preferably 70% by mass or more, still more preferably 80% by mass or more, and still more preferably 90% by mass or more.
  • the melt flow rate of the polyolefin resin (III) under conditions of a temperature of 190° C. and a load of 2.16 kgf (21 N) is preferably 0.1 to 100 (g/10 min), more preferably 0.5 to 80 (g/10 min), and even more preferably 1 to 70 (g/10 min), from the viewpoints of compatibility with the block copolymer (I), moldability, and flowability.
  • the melt flow rate of the polypropylene under conditions of a temperature of 230° C. and a load of 2.16 kgf (21 N) is preferably 0.1 to 100 (g/10 min), more preferably 0.5 to 80 (g/10 min), and even more preferably 1 to 70 (g/10 min), from the viewpoints of compatibility with the block copolymer (I), moldability, and flowability.
  • a load of 2.16 kgf (21 N) is preferably 1 to 100 (g/10 min), more preferably 5 to 50 (g/10 min), and even more preferably 10 to 30 (g/10 min), from the viewpoints of compatibility with the block copolymer (I), moldability, and flowability.
  • the resin composition of the present invention may further contain a tackifier (IV).
  • the resin composition of the present invention preferably contains 1 to 300 parts by mass of the tackifier (IV) per 100 parts by mass of the block copolymer (I), more preferably 10 to 250 parts by mass, even more preferably 50 to 200 parts by mass, and even more preferably 100 to 180 parts by mass.
  • tackifier (IV) examples include coumarone-based resins such as coumarone-indene resins; phenolic resins and terpene-based resins such as p-t-butylphenol-acetylene resins, phenol-formaldehyde resins, terpene-phenolic resins, polyterpene resins, and xylene-formaldehyde resins; petroleum resins such as aromatic petroleum resins, aliphatic petroleum resins, alicyclic petroleum resins, aromatic petroleum resins, and modified alicyclic petroleum resins; rosin-based resins such as rosin esters represented by pentaerythritol ester of rosin and glycerol ester of rosin, hydrogenated rosin, methyl ester of hydrogenated rosin, pentaerythritol ester of polymerized rosin, hydrogenated rosin ester, high melting point ester-based resins, polymerized rosin, poly
  • terpene resins such as ARKON P100, manufactured by Arakawa Chemical Industries, Ltd.
  • ARKON P100 manufactured by Arakawa Chemical Industries, Ltd.
  • the softening point of the tackifier is preferably 70 to 160°C, more preferably 80 to 140°C, and even more preferably 85 to 120°C. If the softening point of the tackifier is 70°C or higher, the resin composition used as an adhesive tends to have high heat resistance and to bleed out (seep out) less onto the adherend, and if it is 160°C or lower, the coatability and processability tend to be good.
  • the resin composition of this embodiment may contain additives other than those described above, provided that the effects of the present invention are not impaired.
  • additives include inorganic fillers, heat aging inhibitors, hindered phenol-based antioxidants (ADEKA CORPORATION, ADEKASTAB AO-60), phosphorus-based antioxidants (BASF Japan, IRGAFOS 168), and other antioxidants, light stabilizers, antistatic agents, release agents, flame retardants, foaming agents, pigments, dyes, and brighteners. These additives may be used alone or in combination of two or more.
  • the content of the additive in the resin composition is preferably 15% by mass or less, more preferably 5% by mass or less, and even more preferably 1% by mass or less.
  • the content of the additive in the resin composition can be, for example, 0.01% by mass or more.
  • the resin composition of this embodiment is Relative to 100 parts by mass of the block copolymer (I), In one preferred embodiment, the plasticizer (II) is contained in an amount of 1 to 1,500 parts by mass.
  • the content of the plasticizer (II) relative to 100 parts by mass of the block copolymer (I) is preferably 1 to 1500 parts by mass, more preferably 10 to 1000 parts by mass, even more preferably 15 to 500 parts by mass, and even more preferably 20 to 300 parts by mass.
  • the resin composition comprises: Relative to 100 parts by mass of the block copolymer (I),
  • the plasticizer (II) is preferably 1 to 1500 parts by mass, more preferably 10 to 1000 parts by mass, even more preferably 15 to 500 parts by mass, and even more preferably 20 to 200 parts by mass
  • the polyolefin resin (III) is preferably 1 to 200 parts by mass, more preferably 5 to 150 parts by mass, even more preferably 15 to 150 parts by mass, and even more preferably 35 to 130 parts by mass, can be mentioned.
  • the resin composition comprises: Relative to 100 parts by mass of the block copolymer (I),
  • the plasticizer (II) is preferably 1 to 1500 parts by mass, more preferably 10 to 1000 parts by mass, even more preferably 15 to 500 parts by mass, and even more preferably 20 to 100 parts by mass
  • the tackifier (IV) is preferably 1 to 300 parts by mass, more preferably 10 to 250 parts by mass, even more preferably 50 to 200 parts by mass, and even more preferably 100 to 180 parts by mass, can be mentioned.
  • the total content of the above (I) to (IV) in the resin composition of this embodiment is not particularly limited, but is preferably 85 to 100 mass%, more preferably 90 to 100 mass%, and even more preferably 95 to 100 mass%.
  • Examples of the resin composition of the present invention include pellets, gel compositions, and pressure-sensitive adhesives, and examples of the embodiments include the following (1) to (3).
  • Pellets containing a block copolymer (I), a plasticizer (II), and a polyolefin resin (III) Such pellets have a high bio-based content, little oil bleeding and coloring, and have physical properties equivalent to those of paraffin-based process oil.
  • a gel composition containing a block copolymer (I) and a plasticizer (II) Such a gel composition has a high bio-based content, a low viscosity, and physical properties equivalent to those of paraffin-based process oil.
  • An adhesive comprising a block copolymer (I), a plasticizer (II), and a tackifier (IV):
  • Such an adhesive has a high bio-based content, a low viscosity, and adhesive performance equivalent to that of paraffin-based process oil.
  • the method for producing the resin composition of this embodiment is not particularly limited, and examples thereof include a method in which the above (I) to (II), and if necessary, the above (III) to (IV), and further other additives are preblended and mixed together, and then melt-kneaded using a single-screw extruder, a multi-screw extruder, a Banbury mixer, a heating roll, various kneaders, etc. Also included is a method in which the above (I) to (II), and if necessary, the above (III) to (IV), and further additives are fed from separate feed ports and melt-kneaded.
  • Examples of the preblending method include a method using a mixer such as a Henschel mixer, a high-speed mixer, a V blender, a ribbon blender, a tumbler blender, a conical blender, etc.
  • the temperature during melt kneading can be arbitrarily selected preferably within the range of 150°C to 300°C.
  • the resin composition may be produced by the following method. First, the above (I) and (II) are premixed, and the premixed composition is melt-kneaded, extruded and cut to produce an oil-extended compound for dry blending (V). Next, the produced oil-extended compound for dry blending (V), the above (III), optionally the above (IV), and optionally other additives are mixed to obtain a resin composition.
  • the gel composition (2) above can be produced using a production method well known in the art. For example, it can be produced by mixing the plasticizer (II), the block copolymer (I), and other components as necessary. Mixing can be performed using a well-known mixing device. More specifically, it can be produced by mixing the plasticizer (II), the block copolymer (I), and other components as necessary at 100 to 200°C under air or nitrogen for 0.1 to 10 hours, placing the mixture under vacuum as necessary, and then cooling.
  • the biobased content of the resin composition of this embodiment is preferably 15% by mass or more, and can be 30% by mass or more, 45% by mass or more, 50% by mass or more, 55% by mass or more, or 60% by mass or more.
  • the biobased content is an index showing the petroleum dependency of the resin composition, and by having the biobased content in the above range, the petroleum dependency can be reduced.
  • MI represents the mass ratio (mass%) of the block copolymer (I) relative to the total mass of the resin composition
  • MII represents the mass ratio (mass%) of the plasticizer (II) relative to the total mass of the resin composition
  • MIII represents the mass ratio (mass%) of the polyolefin resin (III) relative to the total mass of the resin composition
  • XI (mass%) represents the biobased degree of the block copolymer (I)
  • XII (mass%) represents the biobased degree of the plasticizer (II)
  • XIII (mass%) represents the biobased degree of the polyolefin
  • the resin composition of this embodiment has a melt flow rate (MFR) of preferably 200 (g/10 min) or less, more preferably 160 (g/10 min) or less, even more preferably 120 (g/10 min) or less, and preferably 1 (g/10 min) or more, more preferably 3 (g/10 min) or more, even more preferably 5 (g/10 min) or more. If the melt flow rate (MFR) is within the above range, the breaking strength is good and the moldability is also excellent.
  • the "melt flow rate (MFR)” is a value measured at a temperature of 230°C and a load of 2.16 kgf in accordance with JIS K7210:1999, as in the examples described later.
  • the resin composition of this embodiment has a hardness according to JIS K 6253-2:2012 (Type A: 22°C: 0 seconds) of preferably 97 or less, and more preferably 10 or more, more preferably 20 or more, and even more preferably 25 or more. If the A hardness is within the above range, the moldability is good and the flexibility is also excellent.
  • “hardness (Type A: 22° C.: 0 seconds)" is a value measured under the same conditions as in the examples described later.
  • the resin composition of this embodiment has a hardness according to JIS K 6251:2010 (Type A: 22°C: 15 seconds) of preferably 97 or less, more preferably 93 or less, and even more preferably 90 or less.
  • the hardness (Type A: 22°C: 15 seconds) is preferably 5 or more, more preferably 10 or more, and even more preferably 20 or more. If the A hardness is within the above range, the moldability is good and the flexibility is also excellent.
  • the resin composition of this embodiment has a hardness (Type C: 23°C) according to JIS K 7312:1996 using an Asker rubber hardness tester Type C of preferably 30 or less, more preferably 10 or less, and even more preferably 5 or less. If the hardness (Type C: 23°C) is within the above range, the flexibility is good and the feel is excellent.
  • hardness (Type C: 23° C.) is a value measured under the same conditions as in the examples described later.
  • the resin composition of this embodiment has a hardness (Type C: -20°C) according to JIS K 7312:1996 using an Asker rubber hardness tester Type C of preferably 10 or less, more preferably 7 or less, and even more preferably 4 or less. If the hardness (Type C: -20°C) is within the above range, the composition has good flexibility at low temperatures and exhibits little change in hardness over a wide temperature range. In this specification, "hardness (type C: -20°C)" is a value measured under the same conditions as in the examples described later.
  • the tensile strength of the resin composition of this embodiment can be evaluated according to JIS K6251:2010.
  • the tensile strength is preferably 1 MPa or more, more preferably 2 MPa or more, and even more preferably 3 MPa or more. If the tensile strength is within the above range, the resin composition has excellent durability.
  • the resin composition of this embodiment can be evaluated for tensile elongation according to JIS K6251:2010.
  • the tensile elongation is preferably 100% or more, more preferably 150% or more, and even more preferably 200% or more. If the tensile elongation is within the above range, the resin composition has excellent elongation properties.
  • compression set The resin composition of this embodiment can be evaluated for compression set (100 ° C. x 22 hours) according to JIS K6262: 2013.
  • the compression set (100 ° C. x 22 hours) is preferably 95% or less, more preferably 90% or less, and even more preferably 85% or less. If the compression set (100 ° C. x 22 hours) is within the above range, the composition has excellent heat resistance.
  • the storage modulus (22°C) of the resin composition of this embodiment can be evaluated by viscoelasticity measurement.
  • the storage modulus (22°C) is preferably 2.0 x 105 Pa or less, more preferably 1.5 x 105 Pa or less, and even more preferably 1.0 x 105 Pa or less.
  • the storage modulus (22°C) is preferably 1.0 x 104 Pa or more, more preferably 2.0 x 104 Pa or more, and even more preferably 3.0 x 104 Pa or more. If the storage modulus (22°C) is within the above range, the balance between flexibility and shape retention is excellent.
  • the storage modulus (-30°C) of the resin composition of this embodiment can be evaluated by viscoelasticity measurement.
  • the storage modulus (-30°C) is preferably 3.0 x 10 5 Pa or less, more preferably 2.0 x 10 5 Pa or less, and even more preferably 1.5 x 10 5 Pa or less. If the storage modulus (-30°C) is within the above range, the flexibility at low temperatures is excellent.
  • the melt viscosity (160 ° C) of the resin composition of this embodiment can be evaluated by a B-type viscometer.
  • the melt viscosity (160 ° C) is preferably 2.0 ⁇ 10 5 mPa ⁇ s or less, more preferably 1.5 ⁇ 10 5 mPa ⁇ s or less, and even more preferably 8.0 ⁇ 10 4 mPa ⁇ s or less.
  • the melt viscosity (160 ° C) is preferably 1.0 ⁇ 10 3 mPa ⁇ s or more, more preferably 5.0 ⁇ 10 3 mPa ⁇ s or more, and even more preferably 1.5 ⁇ 10 4 mPa ⁇ s or more. If the melt viscosity (160 ° C) is in the above range, the low-temperature coatability (moldability) is excellent.
  • the melt viscosity (180 ° C) of the resin composition of this embodiment can be evaluated by a B-type viscometer.
  • the melt viscosity (180 ° C) is preferably 1.0 ⁇ 10 5 mPa ⁇ s or less, more preferably 8.0 ⁇ 10 4 mPa ⁇ s or less, and even more preferably 5.0 ⁇ 10 4 mPa ⁇ s or less.
  • the melt viscosity (180 ° C) is preferably 1.0 ⁇ 10 3 mPa ⁇ s or more, more preferably 5.0 ⁇ 10 3 mPa ⁇ s or more, and even more preferably 1.5 ⁇ 10 4 mPa ⁇ s or more. If the melt viscosity (180 ° C) is in the above range, the coating property (moldability) is excellent.
  • the resin composition of this embodiment has a compressive stress (22°C) of preferably 0.500 MPa or less, more preferably 0.100 MPa or less, and even more preferably 0.035 MPa or less, and is also preferably 0.001 MPa or more, more preferably 0.005 MPa or more, and even more preferably 0.010 MPa or more. If the compressive stress (22°C) is within the above range, the composition has excellent flexibility and shape retention.
  • the "compressive stress (22°C)" is a value measured under the same conditions as those in the examples described later.
  • the resin composition of this embodiment has a dropping point of preferably 175° C. or higher, more preferably 185° C. or higher, even more preferably 195° C. or higher, even more preferably 205° C. or higher, even more preferably 215° C. or higher, and even more preferably 220° C. or higher. If the dropping point is within the above range, the gel composition as a filler will not flow out from the protective tube or cable over a wide range of temperatures even if the protective tube is damaged.
  • the "dropping point" is a value measured under the same conditions as those in the examples described later.
  • the resin composition of this embodiment has a 1s -1 viscosity of preferably 200,000 mPa ⁇ s or less, more preferably 100,000 mPa ⁇ s or less, even more preferably 50,000 mPa ⁇ s or less, and also preferably 10,000 mPa ⁇ s or more, more preferably 20,000 mPa ⁇ s or more, even more preferably 30,000 mPa ⁇ s or more. If the 1s -1 viscosity is within the above range, the gel composition can be easily filled into a protective tube or a cable during cable production, and the gel composition has excellent handleability.
  • the resin composition of this embodiment has a 6s -1 viscosity of preferably 50,000 mPa ⁇ s or less, more preferably 30,000 mPa ⁇ s or less, even more preferably 20,000 mPa ⁇ s or less, and preferably 5,000 mPa ⁇ s or more, more preferably 8,000 mPa ⁇ s or more, even more preferably 12,000 mPa ⁇ s or more. If the 6s -1 viscosity is within the above range, the gel composition can be easily filled into a protective tube or a cable during cable production, and the gel composition has excellent handleability.
  • the resin composition of this embodiment has a 50s -1 viscosity of preferably 20,000 mPa ⁇ s or less, more preferably 10,000 mPa ⁇ s or less, even more preferably 5,000 mPa ⁇ s or less, and preferably 1,000 mPa ⁇ s or more, more preferably 2,000 mPa ⁇ s or more, even more preferably 3,000 mPa ⁇ s or more. If the 50s -1 viscosity is within the above range, the gel composition can be easily filled into a protective tube or a cable during cable production, and the gel composition has excellent handleability.
  • the "1 s -1 viscosity,”"6 s -1 viscosity,” and "50 s -1 viscosity" are values measured under the same conditions as in the examples described later.
  • the resin composition of this embodiment can be evaluated for 100°C oil separation according to JIS K 2220:2013.
  • the resin composition of this embodiment has a 100°C oil separation of preferably 10.0% or less, more preferably 5.0% or less, and even more preferably 1.0% or less. If the 100°C oil separation is within the above range, it indicates that the composition of the gel composition is uniform, and the gel composition is difficult to separate.
  • the resin composition of this embodiment can be evaluated for worked penetration according to item 7 of JIS K 2220:2013.
  • the resin composition of this embodiment has a worked penetration of preferably 3,000 or less, more preferably 1,500 or less, and even more preferably 1,000 or less, and preferably 100 or more, more preferably 150 or more, and even more preferably 200 or more. If the worked penetration is within the above range, the gel composition as a filler does not flow out from the protective tube or cable under a wide range of temperatures even if the protective tube is damaged.
  • the molded article of the present invention is produced using the resin composition of the present invention.
  • the shape of the molded product may be any shape that can be produced using the resin composition of the present invention.
  • the molded product may be molded into various shapes such as pellets, films, sheets, plates, pipes, tubes, rods, and granules.
  • the method for producing the molded product is not particularly limited, and the molded product may be molded by various conventional molding methods such as injection molding, blow molding, foam molding, press molding, extrusion molding, and calendar molding.
  • the resin composition of the present invention has excellent moldability and is therefore suitable for injection-molded or extrusion-molded articles, and in particular, injection-molded articles that have been embossed by injection molding can be obtained with good design.
  • the molded article of the present invention may have the following embodiments, for example.
  • the resin composition of the present invention can provide a molded article with a high bio-based content, and in particular, when it is made into a film, it can provide a film with small differences in physical properties between the MD and TD.
  • the MD/TD ratio at 100% elongation can be set to 0.1 to 2.8, 0.2 to 2.4, or even 0.3 to 2.1.
  • the resin composition of the present invention is expected to have a reduced environmental impact and excellent moldability. Therefore, the resin composition and molded article of the present invention can be suitably used as molded products such as sheets, films, tubes, hoses, and belts.
  • the present invention can be suitably used for various vibration-proof and vibration-damping members such as anti-vibration rubber, mats, sheets, cushions, dampers, pads, and mounting rubber; footwear such as sports shoes and fashion sandals; home appliance parts such as televisions, stereos, vacuum cleaners, and refrigerators; building materials such as sealing packings for building doors and window frames; interior and exterior automotive parts such as bumper parts, body panels, weather strips, grommets, instrument panels, and airbag covers; grips of equipment used in sports and fitness such as drivers, golf clubs, tennis rackets, ski poles, bicycles, motorcycles, fishing gear, and water sports; grips of tools and electric tools such as hammers, drivers, pliers, and wrenches; grips of water-related products such as kitchen utensils, toothbrushes, interdental brushes, razors, and bathtub handrails; grips of writing instruments such as pens and scissors; grips used in the interior and exterior of automobiles, such as shift levers and assist knobs; grips of bags;
  • the film can also be suitably used for food packaging materials such as food wrap films; medical devices such as infusion bags, syringes, and catheters; stoppers and cap liners for containers for storing foods, beverages, medicines, etc.; stretch films; diapers; and the like.
  • food packaging materials such as food wrap films
  • medical devices such as infusion bags, syringes, and catheters
  • stoppers and cap liners for containers for storing foods, beverages, medicines, etc.
  • stretch films for storing foods, beverages, medicines, etc.
  • diapers and the like.
  • ⁇ -Farnesene purity: 97.6% by mass, biobased concentration (ASTM D6866-21): 99%, manufactured by Amyris, Inc.
  • ⁇ -Farnesene purity: 97.6% by mass, biobased concentration (ASTM D6866-21): 99%, manufactured by Amyris, Inc.
  • hydrocarbon impurities such as zingiberene, bisabolene, farnesene epoxide, farnesol isomers, E,E-farnesol, squalene, ergosterol, and several dimers of farnesene, and then used in the following polymerization.
  • Plasticizer A Product name: VIVA-B-FIX10227, manufactured by H&R, mixture having a structure represented by general formula (1), biobased content (ASTM D6866-21): 100% by mass Plasticizer
  • B Product name: VIVASPES10234, H&R Company, mixture having a structure represented by general formula (2), biobased content (ASTM D6866-21): 100% by mass ⁇ Plasticizers not covered by the present invention>
  • Plasticizer C Paraffin-based process oil (product name: Diana Process PW-90, manufactured by Idemitsu Kosan Co., Ltd.), bio-based content (ASTM D6866-21): 0% by mass Plasticizer
  • D Sunflower oil (product name: Olein Rich, manufactured by Showa Sangyo Co., Ltd.), biobased content (ASTM D6866-21): 95% by mass, containing carboxyl groups
  • Plasticizer E Linseed oil (product name: Linseed oil, manufactured by Nisshin Oillio Co., Ltd
  • Biobased content (ASTM D6866-21): 0% by mass Plasticizer I: Paraffin-based process oil (product name: PW-32, manufactured by Idemitsu Kosan Co., Ltd.), bio-based content (ASTM D6866-21): 0% by mass Plasticizer J: Paraffin-based process oil (product name: KP0-50, manufactured by MORESCO Corporation), bio-based content (ASTM D6866-21): 0% by mass
  • Homo-PP Homopolypropylene (product name: J107G, manufactured by Prime Polymer Co., Ltd., MFR: 30 g/10 min (temperature 230° C., load 2.16 kg), biobased content (ASTM D6866-21): 0% by mass)
  • Block-PP Block polypropylene (product name: J707, manufactured by Prime Polymer Co., Ltd., MFR: 30 g/10 min (temperature 230° C., load 2.16 kg), biobased content (ASTM D6866-21): 0% by mass)
  • Bio-Block-PP Bio-Block Polypropylene (product name: Circluen EP540P, manufactured by Lyondellbasell, melt flow rate: 15 g/10 min (temperature 230° C., load 2.16 kg), bio-based content (ASTM D6866-21): 25% by mass)
  • Bio-LDPE Bio-LDPE polyethylene (product name: SPB608, manufactured by Braskem, melt flow rate
  • Tackifier resin A Tackifier (product name: ARKON P100, manufactured by Arakawa Chemical Industries, Ltd.)
  • Tackifier resin B Trade name: Regalite TM R1125, manufactured by EASTMAN Chemical Company ⁇ Antioxidants> Hindered phenol-based antioxidant (ADEKA CORPORATION, ADEKASTAB AO-60)
  • the measuring device and conditions are as follows: ⁇ Apparatus: Tosoh Corporation GPC device "HLC-8320GPC” Separation column: Tosoh Corporation column "TSKgel Super HZ4000” Eluent: Tetrahydrofuran Eluent flow rate: 0.7 mL/min Sample concentration: 5 mg/10 mL Column temperature: 40°C
  • Hydrogenation rate (mol %) ⁇ 1-(number of moles of carbon-carbon double bonds contained per mole of block copolymer (I) after hydrogenation)/(number of moles of carbon-carbon double bonds contained per mole of block copolymer (I) before hydrogenation) ⁇ 100
  • Block Copolymer (I) The details of the method for measuring the vinyl bond content of the block copolymer (I) obtained in the Production Examples are as follows.
  • the block copolymer (I) before hydrogenation was dissolved in CDCl 3 and subjected to 1 H-NMR measurement [apparatus: "ADVANCE 400 Nano bay” (manufactured by Bruker), measurement temperature: 30° C.].
  • the amount of vinyl bonds was calculated from the ratio of the peak area corresponding to the 3,4-bond unit and the 1,2-bond unit in the isoprene structural unit and the 1,2-bond unit in the butadiene structural unit to the total peak area of the structural units derived from butadiene, the structural units derived from isoprene, or the structural units derived from butadiene and isoprene.
  • Block copolymer (P-1) A pressure vessel that had been purged with nitrogen and dried was charged with 50.0 kg of cyclohexane as a solvent and 0.0310 kg of sec-butyllithium (10.5 mass% cyclohexane solution) as an anionic polymerization initiator, and the vessel was heated to 50°C.
  • Palladium carbon (palladium loading: 5% by mass) was added as a hydrogenation catalyst to the reaction liquid in an amount of 5% by mass relative to the block copolymer, and the reaction was carried out for 10 hours under conditions of a hydrogen pressure of 2 MPa and 150° C. After cooling and releasing the pressure, the hydrogenation catalyst was removed by filtration, and the filtrate was concentrated and further dried in vacuum to obtain a hydrogenated product of polystyrene-poly(butadiene/isoprene)-polystyrene triblock copolymer (block copolymer (P-1)). The above physical properties of the block copolymer (P-1) were measured, and the results are shown in Table 1.
  • Block copolymer (P-2), block copolymer (Q-1) Block copolymer (P-2) and block copolymer (Q-1) were produced in the same manner as in Production Example 1, except that the raw materials and the amounts used were as shown in Table 1. However, in the production of block copolymer (Q-1), tetrahydrofuran was used as the Lewis base. The above physical properties of the resulting block copolymer (P-2) and block copolymer (Q-1) were measured, and the results are shown in Table 1.
  • Block copolymer (R-1) A pressure vessel that had been purged with nitrogen and dried was charged with 50.0 kg of cyclohexane as a solvent and 0.0155 kg of sec-butyllithium (10.5 mass% cyclohexane solution) as an anionic polymerization initiator, and the vessel was heated to 50°C.
  • block copolymer (R-1) After cooling and releasing the pressure, the hydrogenation catalyst was removed by filtration, and the filtrate was concentrated and further dried in vacuum to obtain a hydrogenated product of polystyrene-poly( ⁇ -farnesene)-polystyrene triblock copolymer (block copolymer (R-1)).
  • the resulting block copolymer (R-1) had a bio-based content of 68% by mass as measured in accordance with ASTM D6866-21. The above physical properties of the block copolymer (R-1) were measured, and the results are shown in Table 1.
  • Block copolymer (R-2) A block copolymer (R-2) was produced in the same manner as in Production Example 4, except that the raw materials and the amounts used were as shown in Table 1. The above physical properties of the resulting block copolymer (R-2) were measured, and the results are shown in Table 1.
  • Block copolymer (R-3) A pressure vessel that had been purged with nitrogen and dried was charged with 50.0 kg of cyclohexane as a solvent and 0.0413 kg of sec-butyllithium (10.5 mass% cyclohexane solution) as an anionic polymerization initiator, and the vessel was heated to 50°C.
  • block copolymer (R-3) After cooling and releasing the pressure, the hydrogenation catalyst was removed by filtration, and the filtrate was concentrated and further dried in vacuum to obtain a hydrogenated product of polystyrene-poly( ⁇ -farnesene)-polystyrene triblock copolymer (block copolymer (R-3)).
  • the resulting block copolymer (R-3) had a bio-based content of 80% by mass as measured in accordance with ASTM D6866-21. The above physical properties of the block copolymer (R-3) were measured, and the results are shown in Table 1.
  • Block copolymer (T-1) A pressure-resistant vessel that had been purged with nitrogen and dried was charged with 50.0 kg of cyclohexane as a solvent and 0.061 kg of sec-butyllithium (10.5 mass% cyclohexane solution) as an anionic polymerization initiator, and the vessel was heated to 50°C.
  • Block copolymer (P-3), block copolymer (P-4) Block copolymers (P-3) and (P-4) were produced in the same manner as in Production Example 1, except that the raw materials and the amounts used were as shown in Table 1. The above physical properties of the resulting block copolymer (P-3) and block copolymer (P-4) were measured, and the results are shown in Table 1.
  • Block copolymer (P-5), block copolymer (P-6) Block copolymers (P-5) and (P-6) were produced in the same manner as in Production Example 1, except that the raw materials and the amounts used were as shown in Table 1. The above physical properties of the resulting block copolymer (P-5) and block copolymer (P-6) were measured, and the results are shown in Table 1.
  • Oil-extended compound for dry blend (V)> Oil-extended compound for dry blending (T-2), Oil-extended compound for dry blending (T-3), Oil-extended compound for dry blending (T-4)
  • the components were premixed according to the formulation shown in Table 9 below.
  • the premixed composition was then fed to a hopper of a twin-screw extruder (Coperion's "ZSK26Mc"; number of cylinders: 14) at a cylinder temperature of 180° C. and a screw rotation speed of 300 rpm.
  • the mixture was then melt-kneaded, extruded into strands, and cut to produce pellets of the resin composition.
  • St-Ip-St denotes a polystyrene-poly(isoprene)-polystyrene triblock copolymer.
  • St-Ip denotes a polystyrene-poly(isoprene) diblock copolymer.
  • the adhesive strength measurement solution was applied to the base layer (PET film: thickness 50 ⁇ m) using a Baker type applicator SA-201 (manufactured by Tester Sangyo Co., Ltd.) set to 6 mil and an automatic film coater PI-1210 (manufactured by Tester Sangyo Co., Ltd.), and then dried at 60°C for 0.5 hours and at room temperature for 22 hours to obtain a laminate with an adhesive layer thickness of approximately 25 ⁇ m.
  • Tackifier resin B Trade name: Regalite TM R1125, manufactured by EASTMAN Chemical Company
  • Polyolefin elastomer ExxonMobil Corporation
  • Vistamaxx TM 6102 structural units derived from ethylene: 16% by mass
  • Polystyrene resin INEOS Styrosolution America LLC
  • Styrosolution PS3190 weight average molecular weight: 250,000
  • Table 10-1 Pellets, injection sheets> The components were premixed according to the formulation shown in Table 10-1. Next, using a twin-screw extruder (Coperion's "ZSK26Mc"; number of cylinders: 14), the premixed composition was fed into a hopper under conditions of a cylinder temperature of 210° C. and a screw rotation speed of 300 rpm. The mixture was then melt-kneaded, extruded into strands, and cut to produce pellets of the resin composition.
  • ZSK26Mc twin-screw extruder
  • the pellets obtained above were injection molded using an injection molding machine "EC75SX" (manufactured by Toshiba Machine Co., Ltd.) at a cylinder temperature of 210°C, a mold temperature of 40°C, and an injection pressure of 80 MPa to produce an injection sheet 110 mm long, 110 mm wide, and 2 mm thick.
  • E75SX injection molding machine
  • Table 10-1 Injection sheet (dry blend)>
  • T-2 or T-3 and polyolefin resin were placed in a bag and premixed, and the mixture was placed in an injection molding machine "EC75SX" (manufactured by Toshiba Machine Co., Ltd.) and injection molded at a cylinder temperature of 210°C, a mold temperature of 40°C, and an injection pressure of 80 MPa to produce an injection sheet with a length of 110 mm, a width of 110 mm, and a thickness of 2 mm.
  • the pellets obtained above were molded into a ribbon sheet having a thickness of 1 mm and a width of 35 mm using a single screw extruder ("NV40mm” manufactured by Freesia Macross; L/D 36) under conditions of a barrel temperature of 180°C and a screw rotation speed of 30 rpm.
  • NV40mm manufactured by Freesia Macross; L/D 36
  • Table 10-2 Ribbon sheet (dry blend)>
  • T-2 and polyolefin resin were placed in a bag and premixed, and the mixture was fed into a single-screw extruder ("NV40mm” manufactured by Freesia Macross; L/D 36) and molded into a ribbon sheet having a thickness of 1 mm and a width of 35 mm under the conditions of a barrel temperature of 180°C and a screw rotation speed of 30 rpm.
  • the pellets obtained above were injection molded using an injection molding machine "EC75SX" (manufactured by Toshiba Machine Co., Ltd.) at a cylinder temperature of 210°C, a mold temperature of 40°C, and an injection pressure of 80 MPa to produce an injection sheet 110 mm long, 110 mm wide, and 2 mm thick.
  • E75SX injection molding machine
  • Table 11 Injection sheet (dry blend) According to the formulation shown in Table 11, T-4 and polyolefin resin were placed in a bag and premixed, and the mixture was placed in an injection molding machine "EC75SX" (manufactured by Toshiba Machine Co., Ltd.) and injection molded at a cylinder temperature of 210 ° C., a mold temperature of 40 ° C., and an injection pressure of 80 MPa to produce an injection sheet having a length of 110 mm, a width of 110 mm, and a thickness of 2 mm.
  • E75SX injection molding machine
  • the obtained resin composition (gel composition) was compression press molded at 160°C and a load of 100 kgf/cm2 for 3 minutes using a compression press molding machine "NF-37" manufactured by Shindo Metal Industries Co., Ltd., with a Teflon (registered trademark) coated metal frame as a spacer, and then cooled to obtain a sheet sample for a bending test.
  • the pieces for the compression stress test and the compression set test were compression molded at 160°C for 3 minutes to prepare cylindrical test pieces with a diameter of 13.0 ⁇ 0.5 mm and a thickness of 6.3 ⁇ 0.3 mm (d0).
  • Table 13 Gel composition According to the formulation shown in Table 13, the ingredients were mixed under nitrogen at 120° C. for 3 hours, placed under vacuum, and then cooled to obtain a gel composition.
  • Homo-PP A Homopolypropylene (product name: J107G, manufactured by Prime Polymer Co., Ltd., MFR: 30 g/10 min (temperature 230°C, load 2.16 kg)
  • Homo-PP B Homopolypropylene (product name: J106G, manufactured by Prime Polymer Co., Ltd., MFR: 16g/10min (temperature 230°C, load 2.16kg)
  • Homo-PP C Homopolypropylene (product name: J105G, manufactured by Prime Polymer Co., Ltd., MFR: 9.0 g/10 min (temperature 230°C, load 2.16 kg)
  • Homo-PP D Homopolypropylene (product name: E-100GPL, manufactured by Prime Polymer Co., Ltd., MFR: 0.9 g/10 min (temperature 230 ° C., load 2.16 kg) "Difference from pellet" is the value of "pel
  • Hardness change is the value of "hardness at an ambient temperature of 23° C.” minus “hardness at an ambient temperature of -20° C.” The lower the value, the smaller the change and the better.
  • Biobased Degree of Resin Composition The biobased degree (mass%) of the resin composition was calculated from the mass ratio of the block copolymer (I), plasticizer (II) and polyolefin resin (III) used in the above Examples and Comparative Examples, and the biobased degree of each component, using the following formula. The results are shown in Tables 3-1 to 13.
  • Biobased content (mass%) (MI ⁇ XI/100)+(MII ⁇ XII/100)+(MIII ⁇ XIII/100)
  • MI represents the mass ratio (mass%) of the block copolymer (I) relative to the total mass of the resin composition
  • MII represents the mass ratio (mass%) of the plasticizer (II) relative to the total mass of the resin composition
  • MIII represents the mass ratio (mass%) of the polyolefin resin (III) relative to the total mass of the resin composition
  • XI (mass%) represents the biobased degree of the block copolymer (I)
  • XII (mass%) represents the biobased degree of the plasticizer (II)
  • XIII (mass%) represents the biobased degree of the polyolefin resin (III).
  • melt flow rate (MFR) The melt flow rate (MFR) of the resin compositions in Tables 3-1, 3-2, 4, 7, 8, and 10-1 to 11 was measured in accordance with JIS K7210:1999 using a Melt Indexer L244 (manufactured by Techno Seven Co., Ltd.) under the following measurement conditions. The results are shown in Tables 3-1, 3-2, 4, 7, 8, and 10-1 to 11.
  • test piece (2 mm) was obtained from the above-mentioned injection sheet using a punching blade conforming to JIS K 6251:2010. Three of the obtained test pieces were stacked and the hardness of a 6 mm thick test piece was measured using a Type A durometer indenter at a room temperature of 22°C in accordance with JIS K 6253-3:2012 ((1) 22°C, 0 sec; (2) 22°C 15 sec). The results are shown in Tables 3-1 to 5, 7, and 10-1 to 11.
  • thermoplastic elastomer compositions obtained in each Example and Comparative Example were compression molded at 160°C for 3 minutes to prepare cylindrical test pieces with a diameter of 13.0 ⁇ 0.5 mm and a thickness of 6.3 ⁇ 0.3 mm (d0).
  • the cylindrical test pieces were compressed and deformed by 25% using a spacer with a thickness of 4.8 mm (d1), and were held in an atmosphere of 70°C or 100°C for 22 hours, after which the compression was released.
  • the thickness (d2: mm) of the cylindrical test pieces was measured when the test pieces were left in an atmosphere of 23°C and 50% relative humidity for 30 minutes, and the compression set (%) was calculated as 100 ⁇ (d0-d2)/(d0-d1). The lower the value, the better the rubber elasticity. The results are shown in Tables 3-1 to 4, 7, and 10-1 to 11.
  • Adhesive strength A smooth SUS304 (BA one side SG pasted, thickness 1.0 mm) or acrylic resin plate (product name: Sumipex E, thickness 1.5 mm, manufactured by Sumitomo Chemical Co., Ltd.) was used as an adherend.
  • the laminate for "adhesive strength measurement" described above was pasted to the adherend so that the adhesive layer was in contact with the adherend, and cut to a width of 25 mm to prepare a test piece. This test piece was rolled at a speed of 20 mm/min using a 2 kg rubber roller, and then left for 30 minutes in an atmosphere of 23 ⁇ 1°C and humidity 50 ⁇ 5%.
  • the 180° peel strength was measured at a peel speed of 300 mm/min, and the peel strength (23°C) was determined.
  • the peel strength (23°C) is preferably 10 N/25 mm or more, more preferably 15 N/25 mm or more. When the peel strength (23°C) is within the above range, the adhesive strength to the adherend is excellent. The results are shown in Table 6.
  • test pieces were inserted into the pneumatic grips of an Instron 5567 (manufactured by Instron Corporation) equipped with Bluehill 3 software and a 100 N load cell, and the crosshead was operated to stretch the test pieces at 250 mm/min until they reached 200% elongation, held at 200% elongation for 30 seconds, and then returned to 0% elongation in 60 seconds, and the stress relaxation property (%) was calculated according to the following formula.
  • a 100N load cell was used with a pneumatic film grip having a 12.7mm x 25.4mm grip on one side and a 25.4mm line grip on the other side. The results are shown in Table 8.
  • Stress relaxation rate (%) ["forward stress at 200% elongation” - “stress after 200% elongation and holding for 30 seconds”] / "forward stress at 200% elongation” x 100
  • the “stress relaxation property (%)” is represented, for example, by (3) or (6) in FIG. 1 described later, the "forward stress at 200% elongation” is represented, for example, by (2) or (5) in FIG. 1 described later, and the “stress after 200% elongation and holding for 30 seconds” is represented, for example, by (2-2) or (5-2) in FIG. 1 described later.
  • Return stress at the second 30% elongation The stress when the sample is stretched from 0% to 200% under the above conditions, held for 30 seconds, and then returned to 30% ((7) in FIG. 1).
  • thermoplastic elastomer compositions obtained in each of the Examples and Comparative Examples were compression molded at 140°C for 3 minutes to prepare cylindrical test pieces with a diameter of 13.0 ⁇ 0.5 mm and a thickness of 6.3 ⁇ 0.3 mm (d0).
  • the cylindrical test pieces were deformed with an AUTOGRAPH AGX-V (manufactured by Shimadzu Corporation) at a compression speed of 1 mm/min and a compression width of 4 mm, and the stress was measured at an ambient temperature of 22°C. The lower the stress, the better the flexibility. The results are shown in Table 12.
  • Viscosity of Gel Composition The viscosity was measured using a rheometer (R/S+ RHEOMETER, manufactured by BROOKFIELD) at shear rates of 1 s -1 , 6 s -1 , and 50 s -1 at 25° C. More specifically, about 30 mL of the gel composition was placed in a sample chamber (MB3-25F, manufactured by BROOKFIELD), which was then attached to a rheometer body equipped with a spindle (CC3-25, manufactured by BROOKFIELD), and the viscosity was measured at a shear rate of 1 s -1 for 300 seconds at 25° C. to stabilize the viscosity.
  • R/S+ RHEOMETER manufactured by BROOKFIELD
  • the shear rate was increased from 1 s -1 to 50 s -1 over 120 seconds, and then decreased from 50 s -1 to 1 s -1 over 120 seconds, (2) the shear rate was increased from 1 s -1 to 50 s -1 over 120 seconds, and then decreased from 50 s -1 to 1 s -1 over 120 seconds, and (3) the shear rate was increased from 1 s -1 to 50 s -1 over 120 seconds, and then decreased from 50 s -1 to 1 s -1 over 120 seconds.
  • the viscosities under shear rate conditions of 1 s -1 , 6 s -1 , and 50 s -1 obtained in the measurement of the step of increasing the shear rate from 1 s -1 to 50 s -1 over 120 seconds in (3) were adopted.
  • the 1 s -1 viscosity, 6 s -1 viscosity, and 50 s -1 viscosity in Table 13 refer to the viscosities under shear rate conditions of 1 s -1 , 6 s -1 , and 50 s -1 , respectively.
  • Parts in the resin composition refers to parts by mass in the resin composition.
  • % in the resin composition means mass % of the resin composition.
  • Tables 3-1 to 3-7 show that the resin compositions and molded articles of the examples contain materials that can reduce the environmental impact, and that the resin compositions and molded articles obtained have excellent moldability.
  • Table 8 shows that the films of the examples have a high bio-based content, small film orientation (small difference in physical properties between MD and TD), and a small stress difference obtained by subtracting the stress when stretched from 0% to 200% in the second pass from the stress when stretched from 0% to 200% in the first pass.
  • This makes the films of the examples suitable for use as stretch films, and it can be inferred that, for example, in adult diapers where film is used all over, the small difference in stress between the length and width will provide a good fit.
  • Table 10-2 shows that when comparing Examples 51 and 52, and Examples 53 and 54, which have the same ingredients but are manufactured using different methods, the hardness and compression set are equivalent.
  • the resin compositions and molded articles of the examples in Table 12 were found to be compositions with high flexibility and durability over a wide temperature range.
  • Example 66 had a higher biobased content, dropping point, and thixotropy (viscosity ratio) and a lower viscosity than Comparative Example 28. Also, as can be seen from Table 13, Example 66 and Comparative Example 28 had the same oil separation rate and worked penetration.
  • the resin composition of the present invention contains materials that can reduce the environmental impact, and is expected to have excellent moldability. Therefore, the resin composition and molded article of the present invention can be suitably used as molded products such as sheets, films, tubes, hoses, and belts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

環境負荷を低減可能な材料を含み、且つ、成形性に優れた樹脂組成物、及び該樹脂組成物を用いてなる成形体を提供する。芳香族ビニル化合物由来の構造単位を含有する重合体ブロック(a1)と、共役ジエン化合物由来の構造単位を含有する重合体ブロック(a2)とを含むブロック共重合体(I)、及びカルボキシ基を有さないバイオマス由来の可塑剤(II)を含み、前記可塑剤(II)のバイオベース度が70質量%以上である、樹脂組成物。

Description

樹脂組成物及び成形体
 本発明は、樹脂組成物及び成形体に関し、特に、環境負荷を低減可能な材料を含み、且つ、成形性に優れた樹脂組成物、及び該樹脂組成物を用いてなる成形体に関する。
 熱可塑性樹脂は、軽量及び優れた成形性を有し、中には強度及び耐熱性等にも優れるものもあることから、各種包装材、家電製品、機械部品、自動車部品、及び工業用部品等に幅広く使用されている。またこれら部材には、環境意識の高まりにより、バイオマス由来の原料を用いる要望が高まっている。
 バイオマス由来の原料として、植物由来の可塑剤や植物油(ひまわり油、あまに油)を用いて、環境負荷の低減を意識しつつ、様々な物性を付与する技術が開示されている(例えば、特許文献1参照)。
特表2019-529688号公報
 しかしながら、特許文献1に記載の植物由来の可塑剤を用いた場合は、バイオベース度が低くて環境負荷の低減が十分ではなく、また、植物油を用いた場合は、樹脂成分との混合が困難であり、オイルブリードが発生していた。
 そこで本発明は、環境負荷を低減可能な材料を含み、且つ、成形性に優れた樹脂組成物、及び該樹脂組成物を用いてなる成形体を提供することを課題とする。
 上記課題を解決すべく鋭意検討した結果、本発明者らは下記本発明を想到し、上記課題を解決できることを見出した。
 すなわち、本発明は下記のとおりである。
[1] 芳香族ビニル化合物由来の構造単位を含有する重合体ブロック(a1)と、共役ジエン化合物由来の構造単位を含有する重合体ブロック(a2)とを含むブロック共重合体(I)、及びカルボキシ基を有さないバイオマス由来の可塑剤(II)を含み、前記可塑剤(II)のバイオベース度が70質量%以上である、樹脂組成物。
[2] 前記可塑剤(II)は、40℃における動粘度が100.0cSt以下である、上記[1]に記載の樹脂組成物。
[3] 前記可塑剤(II)は、下記一般式(1)で表される化合物及び下記一般式(2)で表される化合物の少なくともいずれかである、上記[1]又は[2]に記載の樹脂組成物。
Figure JPOXMLDOC01-appb-C000003

 但し、一般式(1)中、n~nは、それぞれ独立して、1又は3であり、R~Rは、それぞれ独立して、水素原子又は無置換の炭化水素基であり、R及びRの合計炭素数が14であり、R及びRの合計炭素数が14であり、R及びRの合計炭素数が14であり、R~Rは分岐構造を有してもよい。
Figure JPOXMLDOC01-appb-C000004

 但し、一般式(2)中、n及びnは、それぞれ独立して、1又は3であり、R~R10は、それぞれ独立して、水素原子又は無置換の炭化水素基であり、R及びRの合計炭素数が14であり、R及びR10の合計炭素数が14であり、R~R10は分岐構造を有してもよい。
[4] 前記ブロック共重合体(I)中の前記重合体ブロック(a1)における前記芳香族ビニル化合物がスチレン、α-メチルスチレン、及び4-メチルスチレンからなる群より選択される少なくとも1種である、上記[1]~[3]のいずれかに記載の樹脂組成物。
[5] 前記ブロック共重合体(I)中の前記重合体ブロック(a1)における前記芳香族ビニル化合物の含有量が1~65質量%である、上記[1]~[4]のいずれかに記載の樹脂組成物。
[6] 前記ブロック共重合体(I)のゲルパーミエーションクロマトグラフィーにより標準ポリスチレン換算で求める重量平均分子量が、50,000~600,000である、上記[1]~[5]のいずれかに記載の樹脂組成物。
[7] 前記ブロック共重合体(I)の重合体ブロック(a2)中のビニル結合量が、1.0~40.0モル%である、上記[1]~[6]のいずれかに記載の樹脂組成物。
[8] 前記ブロック共重合体(I)中の共役ジエン化合物由来の構造単位における炭素-炭素二重結合の水素添加率が、5.0モル%以上である上記[1]~[7]のいずれかに記載の樹脂組成物。
[9] 前記ブロック共重合体(I)中の共役ジエン化合物由来の構造単位における炭素-炭素二重結合の水素添加率が、30.0モル%以上である、上記[8]に記載の樹脂組成物。
[10] 前記ブロック共重合体(I)中の共役ジエン化合物由来の構造単位における炭素-炭素二重結合の水素添加率が、70.0モル%以上である、上記[9]に記載の樹脂組成物。
[11] 前記ブロック共重合体(I)100質量部に対し、前記可塑剤(II)を1~1500質量部含む、上記[1]~[10]のいずれかに記載の樹脂組成物。
[12] 前記ブロック共重合体(I)100質量部に対し、ポリオレフィン系樹脂(III)を1~200質量部含む、上記[1]~[11]のいずれかに記載の樹脂組成物。
[13] 前記ポリオレフィン系樹脂(III)がポリエチレン及び/又はポリプロピレンを含む、上記[12]に記載の樹脂組成物。
[14] 前記ポリオレフィン系樹脂(III)がポリプロピレンである、上記[12]に記載の樹脂組成物。
[15] 前記ポリオレフィン系樹脂(III)がポリエチレンである、上記[12]に記載の樹脂組成物。
[16] 前記ブロック共重合体(I)100質量部に対し、粘着付与剤(IV)を1~300質量部含む、上記[1]~[15]のいずれかに記載の樹脂組成物。
[17] 前記樹脂組成物のバイオベース度が15質量%以上である、上記[1]~[16]のいずれかに記載の樹脂組成物。
[18] 上記[1]~[17]のいずれかに記載の樹脂組成物を用いてなる成形体。
 本発明によれば、環境負荷を低減可能な材料を含み、且つ、成形性に優れた樹脂組成物、及び該樹脂組成物を用いてなる成形体を提供することができる。
本発明の樹脂組成物を用いてなる成形体としてのフィルムの引張試験(行きの応力、帰りの応力、応力緩和)を説明するための図である。
 以下、本発明の実施形態の一例に基づいて説明する。ただし、以下に示す実施態様は、本発明の技術思想を具体化するための例示であって、本発明は以下の記載に限定されない。
 本明細書における記載事項を任意に選択した態様又は任意に組み合わせた態様も本発明に含まれる。
 本明細書において、好ましいとする規定は任意に選択でき、好ましいとする規定同士の組み合わせはより好ましいといえる。
 本明細書において、「XX~YY」との記載は、「XX以上YY以下」を意味する。
 本明細書において、好ましい数値範囲(例えば、含有量等の範囲)について、段階的に記載された下限値及び上限値は、それぞれ独立して組み合わせることができる。例えば、「好ましくは10~90、より好ましくは30~60」という記載から、「好ましい下限値(10)」と「より好ましい上限値(60)」とを組み合わせて、「10~60」とすることもできる。
 また本明細書において、「バイオベース度」は、ASTM D6866-21に準拠して測定される、対象物質におけるバイオ由来物質の含有割合を示す指標である。例えば、「樹脂組成物のバイオベース度」とは、ASTM D6866-21に準拠して測定される、樹脂組成物中のバイオ由来原料の含有割合を意味する。「樹脂のバイオベース度」とは、ASTM D6866-21に準拠して測定される、樹脂中のバイオ由来原料の含有割合を意味する。
<樹脂組成物>
 本実施態様の樹脂組成物は、ブロック共重合体(I)と、可塑剤(II)とを含み、必要に応じて、ポリオレフィン系樹脂(III)、粘着付与剤(IV)、及び添加剤を更に含む。
[ブロック共重合体(I)]
 本実施態様の樹脂組成物は、ブロック共重合体(I)を含有することにより、柔軟性が良好となって、低温での物性低下を抑制しやすくなり、優れた成形性を発現することができる。
 ブロック共重合体(I)は、芳香族ビニル化合物由来の構造単位を含有する重合体ブロック(a1)と、共役ジエン化合物由来の構造単位を含有する重合体ブロック(a2)(ただし、重合体ブロック(a1)を除く)とを含む。
 ブロック共重合体(I)は、1種を単独で用いてもよく、2種以上を併用してもよい。
(重合体ブロック(a1))
 ブロック共重合体(I)中の重合体ブロック(a1)は、芳香族ビニル化合物由来の構造単位を含有する。かかる芳香族ビニル化合物としては、例えばスチレン、α-メチルスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、4-プロピルスチレン、4-t-ブチルスチレン、4-シクロヘキシルスチレン、4-ドデシルスチレン、2,4-ジメチルスチレン、2,4-ジイソプロピルスチレン、2,4,6-トリメチルスチレン、2-エチル-4-ベンジルスチレン、4-(フェニルブチル)スチレン、1-ビニルナフタレン、2-ビニルナフタレン、ビニルアントラセン、N,N-ジエチル-4-アミノエチルスチレン、ビニルピリジン、4-メトキシスチレン、モノクロロスチレン、ジクロロスチレン及びジビニルベンゼン等が挙げられる。これらの芳香族ビニル化合物は、1種を単独で又は2種以上を併用してもよい。これらの中でも、スチレン、α-メチルスチレン、4-メチルスチレンが好ましく、スチレンがより好ましい。
 重合体ブロック(a1)は、芳香族ビニル化合物以外の単量体、例えば、後述する重合体ブロック(a2)を構成する単量体等のその他の単量体に由来する構造単位を含有してもよい。ただし、重合体ブロック(a1)中の芳香族ビニル化合物由来の構造単位の含有量は、70質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上が更に好ましく、95質量%以上がより更に好ましく、100質量%であることが特に好ましい。
 また、ブロック共重合体(I)における重合体ブロック(a1)の含有量は、好ましくは1~65質量%であり、より好ましくは5~60質量%であり、更に好ましくは5~50質量%であり、より更に好ましくは10~40質量%であり、より更に好ましくは10~35質量%である。上記含有量が1質量%以上であれば樹脂組成物に、優れた成形性が発現しやすくなる。また、上記含有量が65質量%以下であれば十分な柔軟性を有しつつ、引裂強度及び引張特性等を発現することが期待できる。ブロック共重合体(I)が複数の重合体ブロック(a1)を含む場合、複数の重合体ブロック(a1)の合計量が上記範囲内であることが好ましい。
(重合体ブロック(a2))
 ブロック共重合体(I)中の重合体ブロック(a2)は、共役ジエン化合物由来の構造単位を含有する重合体ブロックである。
 上記共役ジエン化合物としては、例えば、イソプレン、ブタジエン、ファルネセン、2,3-ジメチル-ブタジエン、2-フェニル-ブタジエン、1,3-ペンタジエン、2-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、1,3-オクタジエン、1,3-シクロヘキサジエン、2-メチル-1,3-オクタジエン、1,3,7-オクタトリエン、ミルセン、クロロプレン、などが挙げられる。これらは、1種を単独で又は2種以上を併用してもよい。
 これらの中でも、イソプレン、ブタジエン、ファルネセン、ミルセンが好ましく、イソプレン、ブタジエン、ファルネセンがより好ましい。
 共役ジエン化合物由来の構造単位を含有する重合体ブロック(a2)は、これらの共役ジエン化合物の1種のみに由来する構造単位からなっていてもよいし、2種以上に由来する構造単位からなっていてもよい。特に、ブタジエン、イソプレン、又はファルネセンに由来する構造単位、ブタジエン及びイソプレンに由来する構造単位からなっていることが好ましい。
 上記ファルネセンとしては、α-ファルネセン、又は下記式(1)で表されるβ-ファルネセンのいずれでもよいが、ブロック共重合体(I)の製造容易性の観点から、β-ファルネセンが好ましい。なお、α-ファルネセンとβ-ファルネセンとは組み合わせて用いてもよい。
Figure JPOXMLDOC01-appb-C000005
 共役ジエン化合物由来の構造単位を含有する重合体ブロック(a2)は、好ましくは共役ジエン化合物由来の構造単位を70質量%以上、より好ましくは該構造単位を80質量%以上、更に好ましくは該構造単位を90質量%以上、更に好ましくは該構造単位を95質量%以上、特に好ましくは該構造単位を100質量%含有する重合体ブロックである。前記重合体ブロック(a2)は、共役ジエン化合物由来の構造単位のみを有していてもよいが、本発明の妨げにならない限り、該構造単位と共に、他の共重合性単量体に由来する構造単位を有していてもよい。他の共重合性単量体としては、例えば、スチレン、α-メチルスチレン、4-メチルスチレン、などが挙げられる。他の共重合性単量体に由来する構造単位を有する場合、その割合は、共役ジエン化合物由来の構造単位及び他の共重合性単量体に由来する構造単位の合計量に対して、好ましくは20質量%以下、より好ましくは10質量%以下、更に好ましくは5質量%以下である。
(重合体ブロック(a3))
 ブロック共重合体(I)は、前述の重合体ブロック(a1)及び重合体ブロック(a2)に加えて、更に共役ジエン化合物由来の構造単位を含有する重合体ブロック(a3)を含むことができる。
 なお、ブロック(a2)及びブロック(a3)は同一の重合体ブロックではない。
 共役ジエン化合物由来の構造単位を構成する共役ジエン化合物は、前述の重合体ブロック(a2)における共役ジエン化合物由来の構造単位を構成する共役ジエン化合物と同様のものが挙げられ、好ましい例も同様である。
 また、重合体ブロック(a3)は、共役ジエン化合物由来の構造単位以外の他の構造単位を含んでいてもよい。
 重合体ブロック(a3)中における共役ジエン化合物由来の構造単位の含有量は、70~100質量%が好ましく、80~100質量%がより好ましく、90~100質量%が更に好ましく、95~100質量%がより更に好ましく、100質量%であることが特に好ましい。
(結合形態)
 ブロック共重合体(I)は、重合体ブロック(a1)及び重合体ブロック(a2)をそれぞれ少なくとも1個含むブロック共重合体である。
 重合体ブロック(a1)及び重合体ブロック(a2)の結合形態は特に制限されず、直線状、分岐状、放射状又はそれらの2つ以上の組み合わせであってもよい。これらの中でも、各ブロックが直線状に結合した形態が好ましい。
 直線状の結合形態としては、重合体ブロック(a1)をA、重合体ブロック(a2)をBで表したときに、(A-B)、A-(B-A)、又はB-(A-B)で表される結合形態等を例示することができる。なお、前記l、m及びnはそれぞれ独立して1以上の整数を表す。
 ブロック共重合体(I)が、重合体ブロック(a1)及び重合体ブロック(a2)をそれぞれ少なくとも1個含む場合、重合体ブロック(a1)、重合体ブロック(a2)、重合体ブロック(a1)の順にブロックを有する結合形態であって、A-B-Aで表されるトリブロック共重合体であることが好ましい。
 すなわち、ブロック共重合体(I)は、A-B-Aで表されるトリブロック共重合体であることが好ましく、上記トリブロック共重合体は未水添加物であっても水素添加物であってもよい。
 また、ブロック共重合体(I)は、少なくとも2個の重合体ブロック(a1)、少なくとも1個の重合体ブロック(a2)、及び少なくとも1個の重合体ブロック(a3)を含むブロック共重合体であってもよい。
 ブロック共重合体(I)が、重合体ブロック(a1)、重合体ブロック(a2)及び重合体ブロック(a3)を含む場合、複数の重合体ブロックの結合形態は特に制限されず、直線状、分岐状、放射状又はそれらの2つ以上の組み合わせであってもよい。これらの中でも、各ブロックが直線状に結合した形態が好ましい。
 ここで、本明細書においては、同種の重合体ブロックが2価のカップリング剤等を介して直線状に結合している場合、結合している重合体ブロック全体は一つの重合体ブロックとして取り扱われる。これに従い、本来厳密にはA-X-A(Xはカップリング剤残基を表す)と表記されるべき重合体ブロックは、全体としてAと表示される。本明細書においては、カップリング剤残基を含むこの種の重合体ブロックを上記のように取り扱うので、例えば、カップリング剤残基を含み、厳密にはB-A-C-X-C-A-Bと表記されるべきブロック共重合体は、B-A-C-A-Bと表記され、ペンタブロック共重合体の一例として取り扱われる。
 また、上述のブロック共重合体(I)における2個以上の重合体ブロック(a1)は、それぞれ同じ構造単位からなる重合体ブロックであっても、異なる構造単位からなる重合体ブロックであってもよい。同様に、ブロック共重合体(I)が、重合体ブロック(a2)を2個以上又は重合体ブロック(a3)を2個以上有する場合には、それぞれの重合体ブロックは、同じ構造単位からなる重合体ブロックであっても、異なる構造単位からなる重合体ブロックであってもよい。例えば、A-B-Aで表されるトリブロック共重合体における2個の重合体ブロック(a1)において、それぞれの芳香族ビニル化合物は、その種類が同じであっても異なっていてもよい。
 ブロック共重合体(I)が、重合体ブロック(a1)及び重合体ブロック(a2)を含み、重合体ブロック(a3)を含まない場合、重合体ブロック(a1)と重合体ブロック(a2)との質量比[(a1)/(a2)]は、1/99~65/35が好ましく、5/95~60/40がより好ましく、10/90~50/50が更に好ましく、15/85~40/60がより更に好ましく、15/85~35/65がより更に好ましい。上記範囲内であると、柔軟性に優れ、より一層優れた成形性を有する樹脂組成物を得ることができる。
 ブロック共重合体(I)が、重合体ブロック(a1)、重合体ブロック(a2)及び重合体ブロック(a3)を含む場合、重合体ブロック(a1)と重合体ブロック(a2)との質量比[(a1)/(a2)]は、1/99~70/30が好ましく、5/95~60/40がより好ましく、10/90~50/50が更に好ましく、20/80~40/60がより更に好ましく、25/75~35/65がより更に好ましい。上記範囲内であると、柔軟性に優れ、より一層優れた成形性を有する樹脂組成物を得ることができる。
 ブロック共重合体(I)において、重合体ブロック(a1)と、重合体ブロック(a2)と重合体ブロック(a3)との合計量との質量比[(a1)/((a2)+(a3))]は、1/99~65/35が好ましい。上記質量比[(a1)/((a2)+(a3))]は、5/95~60/40がより好ましく、10/90~40/60が更に好ましく、10/90~30/70がより更に好ましく、15/85~25/75がより更に好ましい。
 ブロック共重合体(I)が、重合体ブロック(a1)及び重合体ブロック(a2)を含み、重合体ブロック(a3)を含まない場合、ブロック共重合体中における、重合体ブロック(a1)及び重合体ブロック(a2)の合計含有量は、80質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上が更に好ましく、100質量%がより更に好ましい。ブロック共重合体(I)の実施態様の一つとして、例えば、少なくとも1個の重合体ブロック(a1)及び少なくとも1個の重合体ブロック(a2)からなるブロック共重合体が挙げられる。ブロック共重合体(I)が、重合体ブロック(a1)及び重合体ブロック(a2)を含み、重合体ブロック(a3)を含まない場合、ブロック共重合体(I)の実施態様としては、(a1)-(a2)ジブロック共重合体、(a1)-(a2)-(a1)トリブロック共重合体、(a1)-(a2)-(a1)-(a2)テトラブロック共重合体、(a2)-(a1)-(a2)-(a1)-(a2)ペンタブロック共重合体、(a2)-(a1)-(a2)-(a1)-(a2)-(a1)ヘキサブロック共重合体、((a1)-(a2))-X(Xはカップリング剤残基を表し、nは2以上の整数を表す)で示される多分岐型ブロック共重合体、及び((a2)-(a1)-(a2))-X(Xはカップリング剤残基を表し、nは2以上の整数を表す)で示される多分岐型ブロック共重合体などが好ましい実施態様として例示され、(a1)-(a2)ジブロック共重合体、(a1)-(a2)-(a1)トリブロック共重合体、(a1)-(a2)-(a1)-(a2)テトラブロック共重合体、及び(a2)-(a1)-(a2)-(a1)-(a2)ペンタブロック共重合体がより好ましく、(a1)-(a2)ジブロック共重合体、(a1)-(a2)-(a1)トリブロック共重合体、及び(a1)-(a2)-(a1)-(a2)テトラブロック共重合体が更に好ましく、(a1)-(a2)-(a1)トリブロック共重合体、及び(a1)-(a2)-(a1)-(a2)テトラブロック共重合体がより更に好ましい。
 また、ブロック共重合体(I)が、重合体ブロック(a1)、重合体ブロック(a2)及び重合体ブロック(a3)を含む場合、ブロック共重合体中における、これら重合体ブロック(a1)~(a3)の合計含有量は、80質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上が更に好ましく、100質量%がより更に好ましい。ブロック共重合体(I)の実施態様の一つとして、例えば、少なくとも1個の重合体ブロック(a1)、少なくとも1個の重合体ブロック(a2)、及び少なくとも1個の重合体ブロック(a3)からなるブロック共重合体が挙げられる。
(他の単量体で構成される重合体ブロック)
 ブロック共重合体(I)は、重合体ブロック(a1)、重合体ブロック(a2)及び重合体ブロック(a3)のほか、本発明の効果を阻害しない限り、他の単量体で構成される重合体ブロックを含有していてもよい。
 かかる他の単量体としては、例えば、アクリル酸、メタクリル酸、アクリル酸メチル、メタクリル酸メチル、アクリロニトリル、メタクリロニトリル、マレイン酸、フマル酸、クロトン酸、イタコン酸、2-アクリロイルエタンスルホン酸、2-メタクリロイルエタンスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸、2-メタクリルアミド-2-メチルプロパンスルホン酸、ビニルスルホン酸、酢酸ビニル、メチルビニルエーテル等の官能基含有不飽和化合物;等が挙げられる。これらは1種を単独で又は2種以上を併用してもよい。
 ブロック共重合体(I)が他の単量体で構成される重合体ブロックを有する場合、その含有量は10質量%以下が好ましく、5質量%以下がより好ましい。
(ブロック共重合体(I)の製造方法)
 ブロック共重合体(I)が、例えば、重合体ブロック(a1)及び重合体ブロック(a2)を含有するブロック共重合体、又は、重合体ブロック(a1)、重合体ブロック(a2)及び重合体ブロック(a3)を含有するブロック共重合体の場合、アニオン重合によりブロック共重合体を得る重合工程により好適に製造できる。更に、ブロック共重合体(I)が水添ブロック共重合体である場合、前記ブロック共重合体中の共役ジエン化合物由来の構造単位における炭素-炭素二重結合を水素添加する工程により好適に製造できる。
((重合工程))
 ブロック共重合体(I)は、溶液重合法又は特表2012-502135号公報、特表2012-502136号公報に記載の方法等により製造することができる。これらの中でも溶液重合法が好ましく、例えば、アニオン重合やカチオン重合等のイオン重合法、ラジカル重合法等の公知の方法を適用できる。
 これらの中でも、アニオン重合法が好ましい。アニオン重合法としては、溶媒、アニオン重合開始剤、及び必要に応じてルイス塩基の存在下、芳香族ビニル化合物、共役ジエン化合物を逐次添加して、ブロック共重合体を得る。
 アニオン重合開始剤としては、例えば、リチウム、ナトリウム、カリウム等のアルカリ金属;ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム等のアルカリ土類金属;ランタン、ネオジム等のランタノイド系希土類金属;前記アルカリ金属、アルカリ土類金属、ランタノイド系希土類金属を含有する化合物、などが挙げられる。
 これらの中でも、アルカリ金属及びアルカリ土類金属を含有する化合物が好ましく、有機アルカリ金属化合物がより好ましい。
 前記有機アルカリ金属化合物としては、例えば、メチルリチウム、エチルリチウム、n-ブチルリチウム、sec-ブチルリチウム、t-ブチルリチウム、ヘキシルリチウム、フェニルリチウム、スチルベンリチウム、ジリチオメタン、ジリチオナフタレン、1,4-ジリチオブタン、1,4-ジリチオ-2-エチルシクロヘキサン、1,3,5-トリリチオベンゼン等の有機リチウム化合物;ナトリウムナフタレン、カリウムナフタレン、などが挙げられる。
 これらの中でも、有機リチウム化合物が好ましく、n-ブチルリチウム、sec-ブチルリチウムがより好ましく、sec-ブチルリチウムが更に好ましい。なお、有機アルカリ金属化合物は、ジイソプロピルアミン、ジブチルアミン、ジヘキシルアミン、ジベンジルアミン等の第2級アミンと反応させて、有機アルカリ金属アミドとして用いてもよい。
 重合に用いる有機アルカリ金属化合物の使用量は、ブロック共重合体(I)の分子量によっても異なるが、通常、芳香族ビニル化合物、共役ジエン化合物の総量に対して0.01~3質量%の範囲である。
 溶媒としてはアニオン重合反応に悪影響を及ぼさなければ特に制限はなく、例えば、n-ペンタン、イソペンタン、n-ヘキサン、n-ヘプタン、イソオクタン等の飽和脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタン等の飽和脂環式炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素;などが挙げられる。これらは1種を単独で又は2種以上を併用してもよい。溶媒の使用量には特に制限はない。
 ルイス塩基は、共役ジエン化合物由来の構造単位におけるミクロ構造を制御する役割がある。かかるルイス塩基としては、例えば、ジブチルエーテル、ジエチルエーテル、テトラヒドロフラン、ジオキサン、エチレングリコールジエチルエーテル等のエーテル化合物;ピリジン;N,N,N’,N’-テトラメチルエチレンジアミン、トリメチルアミン等の3級アミン;カリウムt-ブトキシド等のアルカリ金属アルコキシド;ホスフィン化合物;などが挙げられる。ルイス塩基を使用する場合、その量は、通常、アニオン重合開始剤1モルに対して0.01~1000モル当量の範囲であることが好ましい。
 重合反応の温度は、通常、-80~+150℃程度、好ましくは0~100℃、より好ましくは10~90℃の範囲である。重合反応の形式は回分式でも連続式でもよい。重合反応系中の芳香族ビニル化合物、共役ジエン化合物の存在量が特定範囲になるように、重合反応液中に各単量体を連続的あるいは断続的に供給するか、又は重合反応液中で各単量体が特定比となるように順次重合することで、ブロック共重合体(I)を製造できる。
 重合反応は、メタノール、イソプロパノール等のアルコールを重合停止剤として添加して停止できる。得られた重合反応液をメタノール等の貧溶媒に注いでブロック共重合体を析出させるか、重合反応液を水で洗浄し、分離後、乾燥することによりブロック共重合体を単離できる。
 ブロック共重合体(I)の好ましい実施態様の一例として、重合体ブロック(a1)、重合体ブロック(a2)、及び重合体ブロック(a1)をこの順に有する構造が挙げられる。したがって、重合体ブロック(a1)、重合体ブロック(a2)、重合体ブロック(a1)をこの順に製造することによりブロック共重合体(I)を得る工程が好ましい。また、水素添加物の場合は、更に得られたブロック共重合体(I)を水素添加する工程を含む方法により水素添加されたブロック共重合体(I)を製造することがより好ましい。
 ブロック共重合体(I)の製造においては、効率的に製造する観点から、カップリング剤を用いることができる。
 前記カップリング剤としては、例えば、ジビニルベンゼン;エポキシ化1,2-ポリブタジエン、エポキシ化大豆油、テトラグリシジル-1,3-ビスアミノメチルシクロヘキサン等の多価エポキシ化合物;四塩化錫、テトラクロロシラン、トリクロロシラン、トリクロロメチルシラン、ジクロロジメチルシラン、ジブロモジメチルシラン等のハロゲン化物;安息香酸メチル、安息香酸エチル、安息香酸フェニル、シュウ酸ジエチル、マロン酸ジエチル、アジピン酸ジエチル、フタル酸ジメチル、テレフタル酸ジメチル等のエステル化合物;炭酸ジメチル、炭酸ジエチル、炭酸ジフェニル等の炭酸エステル化合物;ジエトキシジメチルシラン、トリメトキシメチルシラン、トリエトキシメチルシラン、テトラメトキシシラン、テトラエトキシシラン、テトラブトキシシラン、テトラキス(2-エチルヘキシルオキシ)シラン、ビス(トリエトキシシリル)エタン、3-アミノプロピルトリエトキシシラン等のアルコキシシラン化合物;2,4-トリレンジイソシアネート;などが挙げられる。
((水素添加工程))
 ブロック共重合体(I)は、前記方法により得られたブロック共重合体を水素添加する工程に付すことにより、水素添加されたブロック共重合体(I)としてもよい。ブロック共重合体(I)の好ましい実施態様の一つが、水素添加されたブロック共重合体(I)である。
 水素添加する方法は公知の方法を用いることができる。例えば、水素添加反応に影響を及ぼさない溶媒にブロック共重合体(I)を溶解させた溶液に、チーグラー系触媒;カーボン、シリカ、けいそう土等に担持されたニッケル、白金、パラジウム、ルテニウム又はロジウム金属触媒;コバルト、ニッケル、パラジウム、ロジウム又はルテニウム金属を有する有機金属錯体;などを、水素添加触媒として存在させて水素化反応を行う。
 水素添加工程においては、前記したブロック共重合体(I)の製造方法によって得られたブロック共重合体を含む重合反応液に、水素添加触媒を添加して水素添加反応を行ってもよい。本発明において水素添加触媒は、パラジウムをカーボンに担持させたパラジウムカーボンが好ましい。
 水素添加反応において、水素圧力は0.1~20MPaが好ましく、反応温度は100~200℃が好ましく、反応時間は1~20時間が好ましい。
 ブロック共重合体(I)中の共役ジエン化合物由来の構造単位における炭素-炭素二重結合の水素添加率は、好ましくは、5.0モル%以上である。耐熱性及び耐候性の観点から、共役ジエン化合物由来の構造単位における炭素-炭素二重結合の水素添加率は、10.0モル%以上がより好ましく、20.0モル%以上が更に好ましく、25.0モル%以上がより更に好ましく、30.0モル%以上が特に好ましい。
 ブロック共重合体(I)中の共役ジエン化合物由来の構造単位における炭素-炭素二重結合の水素添加率は、好ましくは、70.0モル%以上である。耐熱性及び耐候性の観点から、共役ジエン化合物由来の構造単位における炭素-炭素二重結合の水素添加率は、75.0モル%以上がより好ましく、80.0モル%以上が更に好ましく、85.0モル以上%がより更に好ましく、90.0モル%以上が特に好ましい。特に耐候性を重視する実施態様の場合は前記水素添加率は93.0モル%以上が好ましく、95.0%モル以上がより好ましく、97.0モル%以上が更に好ましい。前記水添率の上限値については特に制限はなく、実質的に水素添加率が100.0モル%のブロック共重合体も好ましく用いることができる。ブロック共重合体(I)中の共役ジエン化合物由来の構造単位における炭素-炭素二重結合のみを選択的かつ安定的に水素添加する観点からは、前記水添率の上限値は99.7モル%以下であることが好ましく、99.5モル%以下であることがより好ましい。
 水素添加率は、水素添加前のブロック共重合体(I)及び水素添加後のブロック共重合体(I)のH-NMRを測定することにより算出できる。
 なお、上記水素添加率は、ブロック共重合体(I)中に存在する全ての共役ジエン化合物由来の構造単位における炭素-炭素二重結合の水素添加率である。
 ブロック共重合体(I)中に存在する共役ジエン化合物由来の構造単位における炭素-炭素二重結合としては、例えば、重合体ブロック(a2)中の共役ジエン化合物由来の構造単位における炭素-炭素二重結合が挙げられる。
 なお本明細書において、水素添加されたブロック共重合体(I)中の重合体ブロック(a2)及び重合体ブロック(a3)は水素添加されているが、水素添加前と同様にこれらを「重合体ブロック(a2)」及び「重合体ブロック(a3)」と表記する。
 本実施態様では、未変性のブロック共重合体を用いてもよいが、以下のように変性したブロック共重合体を用いてもよい。
 変性したブロック共重合体の場合、水素添加工程の後に、ブロック共重合体を変性してもよい。変性により導入可能な官能基としては、例えばアミノ基、アルコキシシリル基、水酸基、エポキシ基、カルボキシ基、カルボニル基、メルカプト基、イソシアネート基、酸無水物基等が挙げられる。
 ブロック共重合体の変性方法としては、例えば、単離後の水素添加されたブロック共重合体に、無水マレイン酸等の変性剤を用いてグラフト化する方法が挙げられる。
 また、ブロック共重合体は水素添加工程の前に変性することもできる。具体的な手法としては、重合停止剤を添加する前に、重合活性末端と反応し得る四塩化錫、テトラクロロシラン、ジクロロジメチルシラン、ジメチルジエトキシシラン、テトラメトキシシラン、テトラエトキシシラン、3-アミノプロピルトリエトキシシラン、テトラグリシジル-1,3-ビスアミノメチルシクロヘキサン、2,4-トリレンジイソシアネート等のカップリング剤や、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、N-ビニルピロリドン等の重合末端変性剤、又は特開2011-132298号公報に記載のその他の変性剤を添加する方法が挙げられる。
 官能基が導入される位置はブロック共重合体の重合末端でも、側鎖でもよい。また上記官能基は1種又は2種以上を組み合わせてもよい。上記変性剤は、アニオン重合開始剤1モルに対して、0.01~10モル当量の範囲であることが好ましい。
(重量平均分子量及び分子量分布)
 ブロック共重合体(I)の重量平均分子量(Mw)は、成形性の観点から50,000~600,000が好ましく、100,000~500,000がより好ましく、150,000~300,000が更に好ましい。
 ブロック共重合体(I)の分子量分布(Mw/Mn)は1~6が好ましく、1~4がより好ましく、1~3が更に好ましく、1~2がより更に好ましい。分子量分布が前記範囲内であると、ブロック共重合体(I)の粘度のばらつきが小さく、取り扱いが容易である。
 なお、本明細書における重量平均分子量(Mw)及び分子量分布(Mw/Mn)は、後述する実施例に記載の方法で測定した値である。
 ブロック共重合体(I)における重合体ブロック(a1)の合計の重量平均分子量(Mw)は、成形性の観点から、2,000~100,000が好ましく、4,000~80,000がより好ましく、5,000~70,000が更に好ましく、6,000~65,000がより更に好ましい。
 ブロック共重合体(I)中の重合体ブロック(a2)を構成する構造単位が、イソプレン単位、ブタジエン単位、イソプレン及びブタジエンの混合物単位のいずれかである場合、イソプレン及びブタジエンそれぞれの結合形態としては、ブタジエンの場合には1,2-結合、1,4-結合を、イソプレンの場合には1,2-結合、3,4-結合、1,4-結合をとることができる。
 ブロック共重合体(I)において、重合体ブロック(a2)中の3,4-結合単位及び1,2-結合単位の含有量(以下、単に「ビニル結合量」と称することがある。)の合計が、好ましくは1.0~40.0モル%、より好ましくは1.0~35.0モル%、更に好ましくは1.0~30.0モル%、より更に好ましくは1.0~25.0モル%であり、1.0~20.0モル%であってもよく、1.0~15.0モル%であってもよく、1.0~10.0モル%であってもよい。上記範囲内であれば、低温での物性低下を抑制する上で好適である。
 ここで、ビニル結合量は、重合体ブロック(a2)中のブタジエン及びイソプレン由来の構造単位の全量に対する3,4-結合単位及び1,2-結合単位の合計含有量であり、実施例に記載の方法に従って、H-NMR測定によって算出した値である。
[可塑剤(II)]
 本実施態様の樹脂組成物は、可塑剤(II)を含有することにより、成形性及び流動性が良好となる。
 さらに、本実施態様の樹脂組成物は、可塑剤(II)を含有することにより、耐久性(圧縮永久ひずみ)が良好となる。可塑剤(II)を含有することにより、耐久性(圧縮永久ひずみ)が良好となる作用機序としては、可塑剤(II)は、比較的低粘度であるが、分子量が高いため、また、ナフテン成分、アロマ成分が少ないために、ブロック共重合体(I)における重合体ブロック(a1)を浸食することがなく、ガラス転移点を低下させることがなく、高温時の耐久性が維持されているものと推察することができる。
 本実施態様の樹脂組成物における可塑剤(II)の含有量としては、特に制限はなく、好ましくは10質量%以上、より好ましくは15質量%以上、更に好ましくは20質量%以上である。
 なお、本実施態様の樹脂組成物は、可塑剤(II)を含んでいればよく、植物油、合成可塑剤等の他の可塑剤が含まれていてもよいが、他の可塑剤はカルボキシ基を有していない可塑剤であることが好ましい。
 可塑剤(II)及び他の可塑剤の合計を100質量部とした場合に、可塑剤(II)の含有量が、40質量部以上であることが好ましく、60質量部以上であることがより好ましく、80質量部以上であることが更に好ましく、90質量部以上であることがより更に好ましく、95質量部以上であることが特に好ましく、100質量部であることが最も好ましい。
 可塑剤(II)のバイオベース度としては、70質量%以上である限り、特に制限はないが、環境負荷をより低減させる観点から、好ましくは80質量%以上、より好ましくは85質量%以上、更に好ましくは90質量%以上、より更に好ましくは95質量%以上、最も好ましくは100質量%である。
 上記可塑剤(II)の40℃における動粘度としては、特に制限はないが、好ましくは100.0cSt以下、より好ましくは90.0cSt以下、更に好ましくは80.0cSt以下、より更に好ましくは70.0cSt以下、より更に好ましくは60.0cSt以下である。
 上記可塑剤(II)の融点(流動点)としては、特に制限はないが、好ましくは-70℃以上、より好ましくは-60℃以上、更に好ましくは-50℃以上であり、また、好ましくは20℃以下、より好ましくは10℃以下、更に好ましくは0℃以下である。
 上記可塑剤(II)は、カルボキシ基を有さないバイオマス由来の可塑剤であり、バイオベース度が70質量%以上である限り、特に制限はないが、下記一般式(1)で表される化合物、下記一般式(2)で表される化合物、などが好適に挙げられる。これらは、1種を単独で使用してもよく、2種以上を併用してもよい。
Figure JPOXMLDOC01-appb-C000006

 但し、一般式(1)中、n~nは、それぞれ独立して、1又は3であり、R~Rは、それぞれ独立して、水素原子又は無置換の炭化水素基であり、R及びRの合計炭素数が14であり、R及びRの合計炭素数が14であり、R及びRの合計炭素数が14であり、R~Rは分岐構造を有してもよい。
Figure JPOXMLDOC01-appb-C000007

 但し、一般式(2)中、n及びnは、それぞれ独立して、1又は3であり、R~R10は、それぞれ独立して、水素原子又は無置換の炭化水素基であり、R及びRの合計炭素数が14であり、R及びR10の合計炭素数が14であり、R~R10は分岐構造を有してもよい。
(一般式(1)で表される化合物の具体例)
 一般式(1)で表される化合物の具体例としては、例えば、下記構造式(1-1)~(1-8)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000008

(構造式(1-1)で表される化合物は、一般式(1)中、R=H、R=C1429、R=C1429、R=H、R=H、R=C1429、n=1、n=1、n=1の化合物である。)
Figure JPOXMLDOC01-appb-C000009

(構造式(1-2)で表される化合物は、一般式(1)中、R=H、R=C1429、R=C1429(分岐)、R=H、R=H、R=C1429(分岐)、n=1、n=1、n=1の化合物である。)
Figure JPOXMLDOC01-appb-C000010

(構造式(1-3)で表される化合物は、一般式(1)中、R=H、R=C1429(分岐)、R=C1021、R=C、R=H、R=C1429、n=3、n=1、n=1の化合物である。)
Figure JPOXMLDOC01-appb-C000011
(構造式(1-4)で表される化合物は、一般式(1)中、R=H、R=C1429(分岐)、R=C1123(分岐)、R=C、R=C、R=C1123、n=3、n=1、n=1の化合物である。)
Figure JPOXMLDOC01-appb-C000012

(構造式(1-5)で表される化合物は、一般式(1)中、R=C13、R=C17、R=C、R=C1123(分岐)、R=C19、R=C11、n=1、n=3、n=1の化合物である。)
Figure JPOXMLDOC01-appb-C000013

(構造式(1-6)で表される化合物は、一般式(1)中、R=H、R=C1429、R=C、R=C1123(分岐)、R=C1123(分岐)、R=C、n=3、n=3、n=3の化合物である。)
Figure JPOXMLDOC01-appb-C000014

(構造式(1-7)で表される化合物は、一般式(1)中、R=C1021、R=C、R=C、R=C1123、R=C1123、R=C、n=3、n=3、n=3の化合物である。)
Figure JPOXMLDOC01-appb-C000015

(構造式(1-8)で表される化合物は、一般式(1)中、R=C19(分岐)、R=C11、R=C11、R=C19、R=C19、R=C11、n=3、n=3、n=3の化合物である。)
(一般式(2)で表される化合物の具体例)
 一般式(2)で表される化合物の具体例としては、例えば、下記構造式(2-1)~(2-8)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000016

(構造式(2-1)で表される化合物は、一般式(2)中、R=C1429、R=H、R=C1429、R10=H、n=1、n=1の化合物である。)
Figure JPOXMLDOC01-appb-C000017

(構造式(2-2)で表される化合物は、一般式(2)中、R=C1429(分岐)、R=H、R=C1429(分岐)、R10=H、n=1、n=1の化合物である。)
Figure JPOXMLDOC01-appb-C000018

(構造式(2-3)で表される化合物は、一般式(2)中、R=C1429、R=H、R=C1021、R10=C、n=1、n=1の化合物である。)
Figure JPOXMLDOC01-appb-C000019
(構造式(2-4)で表される化合物は、一般式(2)中、R=C1123、R=C、R=C1123(分岐)、R10=C、n=1、n=1の化合物である。)
Figure JPOXMLDOC01-appb-C000020

(構造式(2-5)で表される化合物は、一般式(2)中、R=C11、R=C19、R=C、R10=C1123(分岐)、n=1、n=3の化合物である。)
Figure JPOXMLDOC01-appb-C000021

(構造式(2-6)で表される化合物は、一般式(2)中、R=C、R=C1123(分岐)、R=C、R10=C1123(分岐)、n=3、n=3の化合物である。)
Figure JPOXMLDOC01-appb-C000022

(構造式(2-7)で表される化合物は、一般式(2)中、R=C、R=C1123、R=C、R10=C1123、n=3、n=3の化合物である。)
Figure JPOXMLDOC01-appb-C000023

(構造式(2-8)で表される化合物は、一般式(2)中、R=C11、R=C19、R=C11、R10=C19、n=3、n=3の化合物である。)
(植物油)
 植物油としては、例えば、ひまし油、綿実油、あまに油、ベニバナ油、なたね油、大豆油、梛子油、木ろう、パインオイル、トウモロコシ油、ピーナッツ油、オリーブ油、パーム油、パームオレイン、パームステアリン等の植物由来油脂、及びこれらのエステル交換油、水素添加油、又は分別油等の油脂類を挙げることができる。これらは、1種を単独で又は2種以上を併用してもよい。
 これらの中でも、ブロック共重合体(I)との相容性の観点から、粗パーム油、精製パーム油、粗パームステアリン、精製パームステアリン、粗パームオレイン、精製パームオレイン、及びこれらの水素添加物が好ましく、精製パームステアリンの水素添加物が更に好ましい。
 植物油のバイオベース度は、好ましくは10質量%以上、より好ましくは30質量%以上、更に好ましくは50質量%以上、より更に好ましくは70質量%以上、より更に好ましくは80質量%以上である。
(合成可塑剤)
 合成可塑剤としては、例えば、パラフィン系、ナフテン系及び芳香族系等のプロセスオイル、ミネラルオイル、ホワイトオイル等のオイル系軟化剤;ジオクチルフタレート、ジブチルフタレート等のフタル酸誘導体;エチレンとα-オレフィンとの液状コオリゴマー;流動パラフィン;ポリブテン;低分子量ポリイソブチレン;液状ポリブタジエン、液状ポリイソプレン、液状ポリイソプレン/ブタジエン共重合体、液状スチレン/ブタジエン共重合体、液状スチレン/イソプレン共重合体等の液状ポリジエン;及びこれらの水素添加物又は変性物;などが挙げられる。これらは、1種を単独で又は2種以上を併用してもよい。
 これらの中でも、ブロック共重合体(I)との相容性の観点から、パラフィン系及びナフテン系プロセスオイル;エチレンとα-オレフィンとの液状コオリゴマー;流動パラフィン;低分子量ポリイソブチレンが好ましく、パラフィン系及びナフテン系プロセスオイルが更に好ましい。
[ポリオレフィン系樹脂(III)]
 本発明の樹脂組成物は、ポリオレフィン系樹脂(III)をさらに含んでいてもよい。
 本発明の樹脂組成物は、ブロック共重合体(I)100質量部に対し、ポリオレフィン系樹脂(III)を1~200質量部含むことが好ましい一態様であり、より好ましくは5~150質量部、更に好ましくは15~150質量部、より更に好ましくは35~130質量部で含む態様が挙げられる。
 ポリオレフィン系樹脂(III)としては、例えば、バイオマス由来のポリエチレン系樹脂及びポリプロピレン系樹脂;エチレン、プロピレン、1-ブテン、1-ペンテン、1-へキセン、1-へプテン、1-オクテン、1-ノネン、1-デセン、3-メチル-1-ブテン、4-メチル-1-ペンテン等のオレフィンの単独重合体;エチレンと、プロピレン、1-ブテン、1-ペンテン、4-メチル-1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ヘキセン、1-ヘプテン、6-メチル-1-ヘプテン、イソオクテン、イソオクタジエン、デカジエン等の炭素数3~20のα-オレフィンとの共重合体であるエチレン-α-オレフィン共重合体;エチレン-プロピレン-ジエン共重合体(EPDM);エチレン-酢酸ビニル共重合体;エチレン-アクリル酸共重合体、エチレン-メタクリル酸共重合体等のエチレン-不飽和カルボン酸共重合体;ハードセグメントとしてポリプロピレン、ポリエチレン等のポリオレフィンと、ソフトセグメントとしてエチレン-プロピレン共重合ゴム(EPM)、エチレン-プロピレン-ジエン共重合ゴム(EPDM)等とを含むポリオレフィン系エラストマー;などが挙げられる。これらは、1種を単独で又は2種以上を併用してもよい。
 これらの中でも、ポリプロピレン(例えば、ホモポリプロピレン、ブロックポリプロピレン、ランダムポリプロピレン)、バイオマス由来のポリエチレン系樹脂が好ましく、バイオマス由来の低密度ポリエチレン(LDPE)、バイオマス由来の高密度ポリエチレン(HDPE)がより好ましく、バイオマス由来の高密度ポリエチレン(HDPE)が更に好ましい。
 ポリオレフィン系樹脂(III)のバイオベース度は、好ましくは20質量%以上、より好ましくは50質量%以上、環境負担の低減をより一層高める観点から、更に好ましくは70質量%以上、より更に好ましくは80質量%以上、より更に好ましくは90質量%以上である。
 ポリオレフィン系樹脂(III)の、温度190℃、荷重2.16kgf(21N)での条件下におけるメルトフローレートは、ブロック共重合体(I)との相容性、成形性及び流動性の観点から、0.1~100(g/10min)が好ましく、0.5~80(g/10min)がより好ましく、1~70(g/10min)が更に好ましい。
 また、ポリプロピレンの、温度230℃、荷重2.16kgf(21N)での条件下におけるメルトフローレートは、ブロック共重合体(I)との相容性、成形性及び流動性の観点から、0.1~100(g/10min)が好ましく、0.5~80(g/10min)がより好ましく、1~70(g/10min)が更に好ましい。
 なお、バイオマス由来の高密度ポリエチレン(HDPE)の、温度190℃、荷重2.16kgf(21N)での条件下におけるメルトフローレートは、ブロック共重合体(I)との相容性、成形性及び流動性の観点から、1~100(g/10min)が好ましく、5~50(g/10min)がより好ましく、10~30(g/10min)が更に好ましい。
[粘着付与剤(IV)]
 本発明の樹脂組成物は、粘着付与剤(IV)をさらに含んでいてもよい。
 本発明の樹脂組成物は、ブロック共重合体(I)100質量部に対し、粘着付与剤(IV)を好ましくは1~300質量部、より好ましくは10~250質量部、更に好ましくは50~200質量部、より更に好ましくは100~180質量部で含む実施態様が挙げられる。
 粘着付与剤(IV)としては、例えば、クマロン・インデン樹脂等のクマロン系樹脂;p-t-ブチルフェノール・アセチレン樹脂、フェノール・ホルムアルデヒド樹脂、テルペン・フェノール樹脂、ポリテルペン樹脂、キシレン・ホルムアルデヒド樹脂等のフェノール系樹脂及びテルペン系樹脂;芳香族系石油樹脂、脂肪族系石油樹脂、脂環式系石油樹脂、芳香族系石油樹脂、変性脂環式系石油樹脂等の石油樹脂;ロジンのペンタエリスリトールエステル及びロジンのグリセロールエステル等に代表されるロジンエステル、水素添加ロジン、水素添加ロジンのメチルエステル、重合ロジンのペンタエリスリトールエステル、水素添加ロジンエステル、高融点エステル系樹脂、重合ロジン、硬化ロジン、特殊ロジンエステル等のロジン系樹脂;などが挙げられる。これらは、1種を単独で又は2種以上を併用してもよい。
 これらの中でも、テルペン系樹脂、石油樹脂、ロジン系樹脂が好ましく、水素化石油樹脂(製品名:ARKON P100、荒川化学工業株式会社製)等の石油樹脂がより好ましい。
 粘着付与剤の軟化点は、好ましくは70~160℃であり、より好ましくは80~140℃であり、更に好ましくは85~120℃である。粘着付与剤の軟化点が70℃以上であれば、樹脂組成物を粘着剤として用いた際に、耐熱性が高くなり、また、被着体へのブリードアウト(染み出し)が少なくなる傾向にあり、160℃以下であれば、塗工性や加工性が良好となる傾向にある。
[添加剤]
 本実施態様の樹脂組成物には、本発明の効果を損なわない範囲において、上述したもの以外の添加剤を添加することができる。添加剤としては、例えば、無機充填剤、熱老化防止剤、ヒンダードフェノール系酸化防止剤(株式会社ADEKA製、ADEKASTAB AO-60)、リン系酸化防止剤(BASFジャパン製、IRGAFOS 168)等の酸化防止剤、光安定剤、帯電防止剤、離型剤、難燃剤、発泡剤、顔料、染料、増白剤等が挙げられる。これらの添加剤は、1種を単独で又は2種以上を併用してもよい。
 添加剤の含有量は、樹脂組成物中、15質量%以下が好ましく、5質量%以下がより好ましく、1質量%以下が更に好ましい。添加剤の含有量は、樹脂組成物中、例えば、0.01質量%以上とすることができる。
[樹脂組成物における各成分の含有量]
 本実施態様の樹脂組成物は、
 ブロック共重合体(I)100質量部に対し、
 可塑剤(II)を1~1500質量部含む
ことが、好ましい実施態様の一つである。
 本実施態様の樹脂組成物において、ブロック共重合体(I)100質量部に対し、可塑剤(II)の含有量は、1~1500質量部が好ましく、10~1000質量部がより好ましく、15~500質量部が更に好ましく、20~300質量部がより更に好ましい。
 また、好ましい本実施態様の一つとして、樹脂組成物は、
 ブロック共重合体(I)100質量部に対し、
 可塑剤(II)を好ましくは1~1500質量部、より好ましくは10~1000質量部、更に好ましくは15~500質量部、より更にこのましくは20~200質量部、及び
 ポリオレフィン系樹脂(III)を好ましくは1~200質量部、より好ましくは5~150質量部、更に好ましくは15~150質量部、より更に好ましくは35~130質量部で含む実施態様が挙げられる。
 また、好ましい本実施態様の一つとして、樹脂組成物は、
ブロック共重合体(I)100質量部に対し、
 可塑剤(II)を好ましくは1~1500質量部、より好ましくは10~1000質量部、更に好ましくは15~500質量部、より更に好ましくは20~100質量部、及び
 粘着付与剤(IV)を好ましくは1~300質量部、より好ましくは10~250質量部、更に好ましくは50~200質量部、より更に好ましくは100~180質量部で含む実施態様が挙げられる。
 本実施態様の樹脂組成物における上記(I)~(IV)の合計含有量は特に限定されないが、85~100質量%が好ましく、90~100質量%がより好ましく、95~100質量%が更に好ましい。
 本発明の樹脂組成物の実施形態としては、ペレット、ゲル組成物、及び粘着剤が挙げられ、例えば、下記(1)~(3)のような実施形態が挙げられる。
(1)ブロック共重合体(I)と、可塑剤(II)と、ポリオレフィン系樹脂(III)とを含むペレット:斯かるペレットは、バイオベース度が高く、オイルブリード及び着色が少なく、パラフィン系プロセスオイルと同等の諸物性を有する。
(2)ブロック共重合体(I)と、可塑剤(II)とを含むゲル組成物:斯かるゲル組成物は、バイオベース度が高く、粘度が低く、パラフィン系プロセスオイルと同等の諸物性を有する。
(3)ブロック共重合体(I)と、可塑剤(II)と、粘着付与剤(IV)とを含む粘着剤:斯かる粘着剤は、バイオベース度が高く、粘度が低く、パラフィン系プロセスオイルと同等の粘着性能を有する。
[樹脂組成物の製造方法]
 本実施態様の樹脂組成物の製造方法に特に制限はなく、上記(I)~(II)及び必要に応じて上記(III)~(IV)、更にその他の添加剤を、プレブレンドして一括混合してから単軸押出機、多軸押出機、バンバリーミキサー、加熱ロール、各種ニーダー等を用いて溶融混練する方法が挙げられる。また、上記(I)~(II)及び必要に応じて上記(III)~(IV)、更に添加剤を、別々の仕込み口から供給して溶融混練する方法等が挙げられる。
 また、プレブレンドする方法としては、ヘンシェルミキサー、ハイスピードミキサー、Vブレンダー、リボンブレンダー、タンブラーブレンダー、コニカルブレンダー等の混合機を用いる方法が挙げられる。溶融混練時の温度は好ましくは150℃~300℃の範囲で任意に選択することができる。
 以下に示す樹脂組成物の製造方法であってもよい。
 まず、上記(I)及び上記(II)を予備混合し、予備混合した組成物を溶融混練し、押し出して切断して、ドライブレンド用油展コンパウンド(V)を製造する。
 次いで、製造したドライブレンド用油展コンパウンド(V)と、上記(III)と、任意の上記(IV)と、任意のその他の添加剤を混合して、樹脂組成物を得る。
 なお、上記(2)のゲル組成物は、本分野で周知の製造方法を用いて製造することができる。例えば、前記可塑剤(II)、前記ブロック共重合体(I)、及び必要に応じてその他の成分を混合することによって製造することができる。混合は、周知の混合装置を用いて行うことができる。より具体的には、前記可塑剤(II)、前記ブロック共重合体(I)、及び必要に応じて前記その他の成分を、空気下又は窒素下で100~200℃で0.1~10時間混合し、必要に応じて真空下にした後、冷却することにより製造することができる。
[バイオベース度]
 本実施態様の樹脂組成物のバイオベース度は、好ましくは15質量%以上であり、30質量%以上にすることもでき、45質量%以上にすることもでき、50質量%以上にすることもでき、55質量%以上にすることもでき、60質量%以上にすることもできる。上記バイオベース度は、樹脂組成物の石油依存度を示す指標であり、バイオベース度が上記範囲であることで、石油依存度を低減することができる。
 上記バイオベース度(質量%)は、ブロック共重合体(I)、可塑剤(II)及びポリオレフィン系樹脂(III)の質量比率、各成分のバイオベース度から下記式より算出される。
 バイオベース度(質量%)=(MI×XI/100)+(MII×XII/100)+(MIII×XIII/100)
 上記式中、MIは樹脂組成物の合計質量に対するブロック共重合体(I)の質量比率(質量%)、MIIは樹脂組成物の合計質量に対する可塑剤(II)の質量比率(質量%)、MIIIは樹脂組成物の合計質量に対するポリオレフィン系樹脂(III)の質量比率(質量%)を示す。XI(質量%)はブロック共重合体(I)のバイオベース度、XII(質量%)は可塑剤(II)のバイオベース度、XIII(質量%)はポリオレフィン系樹脂(III)のバイオベース度を示す。
<樹脂組成物の物性>
(メルトフローレート値(MFR))
 本実施態様の樹脂組成物は、メルトフローレート値(MFR)が、好ましくは200(g/10min)以下、より好ましくは160(g/10min)以下、更に好ましくは120(g/10min)以下であり、また、好ましくは1(g/10min)以上、より好ましくは3(g/10min)以上、更に好ましくは5(g/10min)以上である。メルトフローレート値(MFR)が上記範囲内であれば破断強度が良好となり、また、成形性にも優れたものとなる。
 なお、本明細書において、「メルトフローレート値(MFR)」は、後述する実施例と同様に、JIS K7210:1999に準拠して温度230℃、荷重2.16kgfの条件で測定した値である。
(硬度)
 本実施態様の樹脂組成物は、JIS K 6253-2:2012による硬度(タイプA:22℃:0秒)が、好ましくは97以下であり、また、好ましくは10以上、より好ましくは20以上、更に好ましくは25以上である。当該A硬度が上記範囲内であれば成形加工性が良好となり、また、柔軟性にも優れたものとなる。
 なお、本明細書において、「硬度(タイプA:22℃:0秒)」は、後述する実施例と同様の条件で測定した値である。
 本実施態様の樹脂組成物は、JIS K 6251:2010による硬度(タイプA:22℃:15秒)が、好ましくは97以下、より好ましくは93以下、更に好ましくは90以下である。また、硬度(タイプA:22℃:15秒)は、好ましくは5以上、より好ましくは10以上、更に好ましくは20以上である。当該A硬度が上記範囲内であれば成形加工性が良好となり、また、柔軟性にも優れたものとなる。
 本実施態様の樹脂組成物は、アスカーゴム硬度計C型を用いたJIS K 7312:1996による硬度(タイプC:23℃)が、好ましくは30以下、より好ましくは10以下、更に好ましくは5以下である。当該硬度(タイプC:23℃)が上記範囲内であれば柔軟性が良好となり、また、感触が優れたものとなる。
 なお、本明細書において、「硬度(タイプC:23℃)」は、後述する実施例と同様の条件で測定した値である。
 本実施態様の樹脂組成物は、アスカーゴム硬度計C型を用いたJIS K 7312:1996による硬度(タイプC:-20℃)が、好ましくは10以下、より好ましくは7以下、更に好ましくは4以下である。当該硬度(タイプC:-20℃)が上記範囲内であれば低温下で柔軟性が良好となり、また、幅広い温度範囲で硬度変化少ない組成物となる。
 なお、本明細書において、「硬度(タイプC:-20℃)」は、後述する実施例と同様の条件で測定した値である。
(引張強度)
 本実施態様の樹脂組成物は、引張強度をJIS K6251:2010により評価することができる。引張強度は、好ましくは1MPa以上、より好ましくは2MPa以上、更に好ましくは3MPa以上である。引張強度が上記範囲内であれば、耐久性に優れたものとなる。
(引張伸び)
 本実施態様の樹脂組成物は、引張伸びをJIS K6251:2010により評価することができる。引張伸びは、好ましくは100%以上、より好ましくは150%以上、更に好ましくは200%以上である。引張伸びが上記範囲内であれば、伸張性に優れたものとなる。
(圧縮永久ひずみ)
 本実施態様の樹脂組成物は、圧縮永久ひずみ(100℃×22時間)をJIS K6262:2013により評価することができる。圧縮永久ひずみ(100℃×22時間)が、好ましくは95%以下、より好ましくは90%以下、更に好ましくは85%以下である。圧縮永久ひずみ(100℃×22時間)が上記範囲内であれば、耐熱性に優れたものとなる。
(貯蔵弾性率)
 本実施態様の樹脂組成物は、貯蔵弾性率(22℃)を粘弾性測定により評価することができる。貯蔵弾性率(22℃)が、好ましくは2.0×10Pa以下、より好ましくは1.5×10Pa以下、更に好ましくは1.0×10Pa以下である。また、貯蔵弾性率(22℃)は、好ましくは1.0×10Pa以上、より好ましくは2.0×10Pa以上、更に好ましくは3.0×10Pa以上である。貯蔵弾性率(22℃)が上記範囲内であれば、柔軟性と形状保持性のバランスに優れたものとなる。
 本実施態様の樹脂組成物は、貯蔵弾性率(-30℃)を粘弾性測定により評価することができる。貯蔵弾性率(-30℃)が、好ましくは3.0×10Pa以下、より好ましくは2.0×10Pa以下、更に好ましくは1.5×10Pa以下である。貯蔵弾性率(-30℃)が上記範囲であれば、低温下での柔軟性に優れたものとなる。
(溶融粘度)
 本実施態様の樹脂組成物は、溶融粘度(160℃)をB型粘度計により評価することができる。溶融粘度(160℃)が、好ましくは2.0×10mPa・s以下、より好ましくは1.5×10mPa・s以下、更に好ましくは8.0×10mPa・s以下である。また、溶融粘度(160℃)は、好ましくは1.0×10mPa・s以上、より好ましくは5.0×10mPa・s以上、更に好ましくは1.5×10mPa・s以上である。溶融粘度(160℃)が上記範囲であれば、低温塗工性(成形性)に優れたものとなる。
 本実施態様の樹脂組成物は、溶融粘度(180℃)をB型粘度計により評価することができる。溶融粘度(180℃)が、好ましくは1.0×10mPa・s以下、より好ましくは8.0×10mPa・s以下、更に好ましくは5.0×10mPa・s以下である。また、溶融粘度(180℃)は、好ましくは1.0×10mPa・s以上、より好ましくは5.0×10mPa・s以上、更に好ましくは1.5×10mPa・s以上である。溶融粘度(180℃)が上記範囲であれば、塗工性(成形性)に優れたものとなる。
(圧縮応力)
 本実施態様の樹脂組成物は、圧縮応力(22℃)が、好ましくは0.500MPa以下、より好ましくは0.100MPa以下、更に好ましくは0.035MPa以下であり、また、好ましくは0.001MPa以上、より好ましくは0.005MPa以上、更に好ましくは0.010MPa以上である。圧縮応力(22℃)が上記範囲内であれば、柔軟性に優れ、形状保持性にも優れた組成物となる。
 なお、本明細書において、「圧縮応力(22℃)」は、後述する実施例と同様の条件で測定した値である。
(滴点)
 本実施態様の樹脂組成物は、滴点が、好ましくは175℃以上、より好ましくは185℃以上、更に好ましくは195℃以上であり、より更に好ましくは205℃以上、より更に好ましくは215℃以上、より更に好ましくは220℃以上である。滴点が上記範囲内であれば、保護チューブが破損した場合であっても広い範囲の温度下において保護チューブやケーブル内から充填材としてのゲル組成物が流れ出ないという特性を有するようになる。
 なお、本明細書において、「滴点」は、後述する実施例と同様の条件で測定した値である。
(粘度)
 本実施態様の樹脂組成物は、1s-1粘度が、好ましくは200,000mPa・s以下、より好ましくは100,000mPa・s以下、更に好ましくは50,000mPa・s以下であり、また、好ましくは10,000mPa・s以上、より好ましくは20,000mPa・s以上、更に好ましくは30,000mPa・s以上である。1s-1粘度が上記範囲内であれば、ケーブルの製造時にゲル組成物を保護チューブやケーブル内に容易に充填でき取り扱い性に優れたものとなる。
 本実施態様の樹脂組成物は、6s-1粘度が、好ましくは50,000mPa・s以下、より好ましくは30,000mPa・s以下、更に好ましくは20,000mPa・s以下であり、また、好ましくは5,000mPa・s以上、より好ましくは8,000mPa・s以上、更に好ましくは12,000mPa・s以上である。6s-1粘度が上記範囲内であれば、ケーブルの製造時にゲル組成物を保護チューブやケーブル内に容易に充填でき取り扱い性に優れたものとなる。
 本実施態様の樹脂組成物は、50s-1粘度が、好ましくは20,000mPa・s以下、より好ましくは10,000mPa・s以下、更に好ましくは5,000mPa・s以下であり、また、好ましくは1,000mPa・s以上、より好ましくは2,000mPa・s以上、更に好ましくは3,000mPa・s以上である。50s-1粘度が上記範囲内であれば、ケーブルの製造時にゲル組成物を保護チューブやケーブル内に容易に充填でき取り扱い性に優れたものとなる。
 なお、本明細書において、「1s-1粘度」、「6s-1粘度」、及び「50s-1粘度」は、後述する実施例と同様の条件で測定した値である。
(100℃離油度)
 本実施態様の樹脂組成物は、100℃離油度をJIS K 2220:2013により評価することができる。本実施態様の樹脂組成物は、100℃離油度が、好ましくは10.0%以下、より好ましくは5.0%以下、更に好ましくは1.0%以下である。100℃離油度が上記範囲内であれば、ゲル組成物の組成が均一であることを示し、分離しにくいゲル組成物になる。
(混和ちょう度)
 本実施態様の樹脂組成物は、混和ちょう度をJIS K 2220:2013の項目7により評価することができる。本実施態様の樹脂組成物は、混和ちょう度が、好ましくは3,000以下、より好ましくは1,500以下、更に好ましくは1,000以下であり、また、好ましくは100以上、より好ましくは150以上、更に好ましくは200以上である。混和ちょう度が上記範囲内であれば、保護チューブが破損した場合であっても広い範囲の温度下において保護チューブやケーブル内から充填材としてのゲル組成物が流れ出ないという特性を有するようになる。
<成形体>
 本発明の成形体は、本発明の樹脂組成物を用いてなる。
 成形体の形状は、本発明の樹脂組成物を用いて製造できる成形体であればいずれでもよい。例えばペレット、フィルム、シート、プレート、パイプ、チューブ、棒状体、粒状体等種々の形状に成形することができる。この成形体の製造方法は特に制限はなく、従来からの各種成形法、例えば、射出成形、ブロー成形、発泡成形、プレス成形、押出成形、カレンダー成形等により成形することができる。
 本発明の樹脂組成物は成形加工性に優れるため、射出成形体又は押出成形体が好適であり、特に射出成形でシボ加工した射出成形体を、意匠性良く得ることができる。
 本発明の成形体としては、例えば、下記のような実施形態が挙げられる。
 共重合体(I)と、可塑剤(II)と、ポリオレフィン系樹脂(III)とを含む樹脂組成物によるフィルム:斯かるフィルムは、バイオベース度が高く、フィルムの配向が少ない。
<成形体(特にフィルム)の物性>
 本発明の樹脂組成物によれば、バイオベース度が高い成形体を得ることが可能であるが、特にフィルムとした場合は、MD方向とTD方向の物性差が小さいフィルムを得ることが可能である。本発明の樹脂組成物を用いることによって、100%伸長時のMD方向/TD方向の比が0.1~2.8とすることができ、0.2~2.4とすることができ、更に0.3~2.1とすることも可能である。
<用途>
 本発明の樹脂組成物は環境負荷が低減され、成形性に優れることが期待できる。そのため、本発明の樹脂組成物及び成形体は、シート、フィルム、チューブ、ホース、ベルト等の成形品として好適に用いることができる。具体的には、防振ゴム、マット、シート、クッション、ダンパー、パッド、マウントゴム等の各種防振、制振部材;スポーツシューズ、ファッションサンダル等の履物;テレビ、ステレオ、掃除機、冷蔵庫等の家電用品部材;建築物の扉、窓枠用シーリング用パッキン等の建材;バンパー部品、ボディーパネル、ウェザーストリップ、グロメット、インパネ等の表皮、エアバッグカバー等の自動車用内装部品又は自動車用外装部品;ドライバー、ゴルフクラブ、テニスラケット、スキーストック、自転車、バイク、釣具及び水上競技等のスポーツ及びフィットネス等に用いる器具のグリップ;ハンマー、ドライバー、ペンチ及びレンチ等の工具及び電気工具のグリップ;台所用品、歯ブラシ、歯間ブラシ、髭剃り、浴槽の手すり等の水周り用品のグリップ;ペン及びはさみ等の筆記具のグリップ;シフトレバー及びアシストノブ等の自動車内外装に用いられるグリップ;鞄のグリップ;手袋の滑り止め、キッチンマット等の滑り止めマット;玩具;自動車用タイヤ、自転車用タイヤ及びバイク用タイヤ等のタイヤ;等に好適に用いることができる。
 また、食品ラップフィルム等の食品用包装材;輸液バッグ、シリンジ、カテーテル等の医療用具;食品、飲料、薬等を貯蔵する容器用の栓、キャップライナー;伸縮フィルム;おむつ;等にも好適に用いることができる。
 以下、本発明を実施例及び比較例により具体的に説明するが、本発明はこれらに限定されるものではない。
 なお、β-ファルネセン(純度:97.6質量%、バイオベース濃度(ASTM D6866-21):99%、アミリス,インコーポレイティド社製)は、3Åのモレキュラーシーブにより精製し、窒素雰囲気下で蒸留することで、ジンギベレン、ビサボレン、ファルネセンエポキシド、ファルネソール異性体、E,E-ファルネソール、スクアレン、エルゴステロール及びファルネセンの数種の二量体等の炭化水素系不純物を除き、以下の重合に用いた。
 実施例及び比較例に使用される各成分は次のとおりである。
<ブロック共重合体(I)>
 後述の製造例1のブロック共重合体(P-1)、バイオベース度(ASTM D6866-21):0質量%
 後述の製造例2のブロック共重合体(P-2)、バイオベース度(ASTM D6866-21):0質量%
 後述の製造例3のブロック共重合体(Q-1)、バイオベース度(ASTM D6866-21):0質量%
 後述の製造例4のブロック共重合体(R-1)、バイオベース度(ASTM D6866-21):68質量%
 後述の製造例5のブロック共重合体(R-2)、バイオベース度(ASTM D6866-21):80質量%
 後述の製造例6のブロック共重合体(T-1)、バイオベース度(ASTM D6866-21):0質量%
 後述の製造例7のブロック共重合体(P-3)、バイオベース度(ASTM D6866-21):0質量%
 後述の製造例8のブロック共重合体(P-4)、バイオベース度(ASTM D6866-21):0質量%
 後述の製造例9のブロック共重合体(P-5)、バイオベース度(ASTM D6866-21):0質量%
 後述の製造例10のブロック共重合体(P-6)、バイオベース度(ASTM D6866-21):0質量%
 後述の製造例14のブロック共重合体(R-3)、バイオベース度(ASTM D6866-21):80質量%
<可塑剤(II)>
 可塑剤A:製品名:VIVA-B-FIX10227、H&R社製、一般式(1)で示される構造を有する混合物、バイオベース度(ASTM D6866-21):100質量%
 可塑剤B:製品名:VIVASPES10234、H&R社、一般式(2)で示される構造を有する混合物、バイオベース度(ASTM D6866-21):100質量%
<本発明の対象外である可塑剤>
 可塑剤C:パラフィン系プロセスオイル(製品名:ダイアナプロセスPW-90、出光興産株式会社製)、バイオベース度(ASTM D6866-21):0質量%
 可塑剤D:ひまわり油(製品名:オレインリッチ、昭和産業株式会社社製)、バイオベース度(ASTM D6866-21):95質量%、カルボキシ基含有
 可塑剤E:あまに油(製品名:アマニ油、日清オイリオ株式会社社製)、バイオベース度(ASTM D6866-21):95質量%、カルボキシ基含有 
 可塑剤F:ナフテンオイル(製品名:SUNTHEN450、日本サン石油株式会社社製)、バイオベース度(ASTM D6866-21):0質量%
 可塑剤G:製品名:KrystolTM550、Petro-Canada Lubricants Inc.製、バイオベース度(ASTM D6866-21):0質量%
 可塑剤H:製品名:Renoil70-W、D-A Lubricants Campany Inc.製、バイオベース度(ASTM D6866-21):0質量%
 可塑剤I:パラフィン系プロセスオイル(製品名:PW-32、出光興産株式会社製)、バイオベース度(ASTM D6866-21):0質量%
 可塑剤J:パラフィン系プロセスオイル(製品名:KP0-50、株式会社MORESCO製)、バイオベース度(ASTM D6866-21):0質量%
<ポリオレフィン系樹脂(III)>
 Homo-PP:ホモポリプロピレン(製品名:J107G、プライムポリマー社製、MFR:30g/10min(温度230℃、荷重2.16kg)、バイオベース度(ASTM D6866-21):0質量%)
 Block-PP:ブロックポリプロピレン(製品名:J707、プライムポリマー社製、MFR:30g/10min(温度230℃、荷重2.16kg)、バイオベース度(ASTM D6866-21):0質量%)
 Bio-Block-PP:バイオブロックポリプロレン(製品名:Circluen EP540P、Lyondellbasell社製、メルトフローレート:15g/10min(温度230℃、荷重2.16kg)、バイオベース度(ASTM D6866-21):25質量%)
 Bio-LDPE:バイオLDPEポリエチレン(製品名:SPB608、Braskem社製、メルトフローレート:30g/10min(温度190℃、荷重2.16kg)、バイオベース度(ASTM D6866-21):95質量%)
 Bio-HDPE:バイオHDPEポリエチレン(製品名:SHA7260、Braskem社製、メルトフローレート:20g/10min(温度190℃、荷重2.16kg)、バイオベース度(ASTM D6866-21):94質量%)
<粘着付与剤(IV)>
 粘着付与樹脂A:タッキファイヤー(製品名:ARKON P100、荒川化学工業株式会社製)
 粘着付与樹脂B:EASTMAN Chemical Company製、商品名:RegaliteTMR1125
<酸化防止剤>
 ヒンダードフェノール系酸化防止剤(株式会社ADEKA製、ADEKASTAB AO-60)
 製造例で得られたブロック共重合体(I)についての各測定方法の詳細は次のとおりである。
(1)重量平均分子量(Mw)及び分子量分布等の測定
 ブロック共重合体(I)及びスチレンブロックの重量平均分子量(Mw)及び分子量分布(Mw/Mn)は、GPC(ゲルパーミエーションクロマトグラフィー)により標準ポリスチレン換算分子量で求めた。測定装置及び条件は、以下のとおりである。
・装置    :東ソー株式会社製 GPC装置「HLC-8320GPC」
・分離カラム :東ソー株式会社製 カラム「TSKgelSuperHZ4000」
・溶離液   :テトラヒドロフラン
・溶離液流量 :0.7mL/min
・サンプル濃度:5mg/10mL
・カラム温度 :40℃
(2)水素添加率の測定方法
 水素添加前のブロック共重合体(I)、及び、水素添加後のブロック共重合体(I)をそれぞれCDClに溶解して、H-NMR測定[装置:「ADVANCE 400 Nano bay」(Bruker社製)、測定温度:30℃]を行った。水素添加前のブロック共重合体(I)中の共役ジエン化合物由来の構造単位における炭素-炭素二重結合の水素添加率は、得られたスペクトルの4.5~6.0ppmに現れる炭素-炭素二重結合が有するプロトンのピークから、下記式により算出した。
 水素添加率(モル%)={1-(水素添加後のブロック共重合体(I)1モルあたりに含まれる炭素-炭素二重結合のモル数)/(水素添加前のブロック共重合体(I)1モルあたりに含まれる炭素-炭素二重結合のモル数)}×100
(3)ブロック共重合体(I)のビニル結合量
 また、製造例で得られたブロック共重合体(I)についてのビニル結合量の測定方法の詳細は次のとおりである。
 水素添加前のブロック共重合体(I)を、CDClに溶解して、H-NMR測定[装置:「ADVANCE 400 Nano bay」(Bruker社製)、測定温度:30℃]を行った。ブタジエン由来の構造単位、イソプレン由来の構造単位、又は、ブタジエン及びイソプレン由来の構造単位の全ピーク面積に対する、イソプレン構造単位における3,4-結合単位及び1,2-結合単位、ブタジエン構造単位における1,2-結合単位に対応するピーク面積の比から、ビニル結合量を算出した。
<ブロック共重合体(I)>
[製造例1]
ブロック共重合体(P-1)
 窒素置換し、乾燥させた耐圧容器に、溶媒としてシクロヘキサン50.0kg、アニオン重合開始剤としてsec-ブチルリチウム(10.5質量%シクロヘキサン溶液)0.0310kgを仕込み、50℃に昇温した後、スチレン(1)1.32kgを加えて1時間重合を行い、ブタジエン2.73kg及びイソプレン3.44kgの混合液を加えて2時間重合を行い、更にスチレン(2)1.32kgを加えて1時間重合を行い、ポリスチレン-ポリ(ブタジエン/イソプレン)-ポリスチレントリブロック共重合体を含む反応液を得た。
 上記反応液に、水素添加触媒としてパラジウムカーボン(パラジウム担持量:5質量%)を上記ブロック共重合体に対して5質量%添加し、水素圧力2MPa、150℃の条件で10時間反応を行った。放冷、放圧後、濾過により水素添加触媒を除去し、濾液を濃縮し、更に真空乾燥することにより、ポリスチレン-ポリ(ブタジエン/イソプレン)-ポリスチレントリブロック共重合体の水素添加物(ブロック共重合体(P-1))を得た。
 また、ブロック共重合体(P-1)について上記の物性を測定した。結果を表1に示す。
[製造例2~3]
ブロック共重合体(P-2)、ブロック共重合体(Q-1)
 原料及びその使用量を表1に示すものとしたこと以外は、製造例1と同様の手順で、ブロック共重合体(P-2)、ブロック共重合体(Q-1)を製造した。ただし、ブロック共重合体(Q-1)の製造において、ルイス塩基としてテトラヒドロフランを用いた。
 得られたブロック共重合体(P-2)、ブロック共重合体(Q-1)について上記の物性を測定した。結果を表1に示す。
[製造例4]
ブロック共重合体(R-1)
 窒素置換し、乾燥させた耐圧容器に、溶媒としてシクロヘキサン50.0kg、アニオン重合開始剤としてsec-ブチルリチウム(10.5質量%シクロヘキサン溶液)0.0155kgを仕込み、50℃に昇温した後、スチレン(1)1.32kgを加えて1時間重合を行い、続いてβ-ファルネセン6.18kgを加えて2時間重合を行い、更にスチレン(2)1.32kgを加えて1時間重合を行い、ポリスチレン-ポリ(β-ファルネセン)-ポリスチレントリブロック共重合体を含む反応液を得た。
 上記反応液に、水素添加触媒としてパラジウムカーボン(パラジウム担持量:5質量%)を上記ブロック共重合体に対して5質量%添加し、水素圧力2MPa、150℃の条件で10時間反応を行った。放冷、放圧後、濾過により水素添加触媒を除去し、濾液を濃縮し、更に真空乾燥することにより、ポリスチレン-ポリ(β-ファルネセン)-ポリスチレントリブロック共重合体の水素添加物(ブロック共重合体(R-1))を得た。
 得られたブロック共重合体(R-1)のASTM D6866-21に準拠して測定されたバイオベース度は68質量%であった。
 また、ブロック共重合体(R-1)について上記の物性を測定した。結果を表1に示す。
[製造例5]
ブロック共重合体(R-2)
 原料及びその使用量を表1に示すものとしたこと以外は、製造例4と同様の手順で、ブロック共重合体(R-2)を製造した。
 得られたブロック共重合体(R-2)について上記の物性を測定した。結果を表1に示す。
[製造例14]
ブロック共重合体(R-3)
 窒素置換し、乾燥させた耐圧容器に、溶媒としてシクロヘキサン50.0kg、アニオン重合開始剤としてsec-ブチルリチウム(10.5質量%シクロヘキサン溶液)0.0413kgを仕込み、50℃に昇温した後、スチレン(1)1.12kgを加えて1時間重合を行い、続いてβ-ファルネセン10.25kgを加えて2時間重合を行い、更にスチレン(2)1.12kgを加えて1時間重合を行い、ポリスチレン-ポリ(β-ファルネセン)-ポリスチレントリブロック共重合体を含む反応液を得た。
 上記反応液に、水素添加触媒としてパラジウムカーボン(パラジウム担持量:5質量%)を上記ブロック共重合体に対して5質量%添加し、水素圧力2MPa、150℃の条件で3時間反応を行った。放冷、放圧後、濾過により水素添加触媒を除去し、濾液を濃縮し、更に真空乾燥することにより、ポリスチレン-ポリ(β-ファルネセン)-ポリスチレントリブロック共重合体の水素添加物(ブロック共重合体(R-3))を得た。
 得られたブロック共重合体(R-3)のASTM D6866-21に準拠して測定されたバイオベース度は80質量%であった。
 また、ブロック共重合体(R-3)について上記の物性を測定した。結果を表1に示す。
[製造例6]
ブロック共重合体(T―1)
 窒素置換し、乾燥させた耐圧容器に、溶媒としてシクロヘキサン50.0kg、アニオン重合開始剤としてsec-ブチルリチウム(10.5質量%シクロヘキサン溶液)0.061kgを仕込み、50℃に昇温した後、スチレン(1)0.81kgを加えて1時間重合させ、引き続いてイソプレン10.87kgを加えて2時間重合を行い、更にスチレン(2)0.81kgを加えて1時間重合することにより、スチレン-イソプレン-スチレントリブロック共重合体を含む反応液を得た。
 この反応液に、水素添加触媒としてパラジウムカーボン(パラジウム担持量:5質量%)を前記ブロック共重合体に対して5質量%添加し、水素圧力2MPa、150℃の条件で10時間反応を行った。
 放冷、放圧後、濾過によりパラジウムカーボンを除去し、濾液を濃縮し、更に真空乾燥することにより、スチレン-イソプレン-スチレントリブロック共重合体の水素添加物(SEPS)を得た。
 また(SEPS)と同様に、窒素置換し、乾燥させた耐圧容器に、溶媒としてシクロヘキサン50.0kg、アニオン重合開始剤としてsec-ブチルリチウム(10.5質量%シクロヘキサン溶液)0.420kg(sec-ブチルリチウム44.1g)を仕込み、50℃に昇温した後、スチレン(1)2.83kgを加えて1時間重合させ、引き続いてイソプレン19.81kgを加えて2時間重合を行い、スチレン-イソプレンジブロック共重合体を含む反応液を得た。
 この反応液に、(SEPS)と同様に水素添加を行い、スチレン-イソプレンジブロック共重合体の水素添加物(SEP)を得た。
 上記で得られた(SEPS)および(SEP)をコペリオン社製に軸押出機ZSK26MagaCopounder(L/D=56)を用いてスクリュー300rpm、混練温度200℃にて溶融混練することで、SEPS及びSEPからなる組成物であるブロック共重合体(T-1)を得た。
[製造例7~8]
ブロック共重合体(P-3)、ブロック共重合体(P-4)
 原料及びその使用量を表1に示すものとしたこと以外は、製造例1と同様の手順で、ブロック共重合体(P-3)、ブロック共重合体(P-4)を製造した。
 得られたブロック共重合体(P-3)、ブロック共重合体(P-4)について上記の物性を測定した。結果を表1に示す。
[製造例9~10]
ブロック共重合体(P-5)、ブロック共重合体(P-6)
 原料及びその使用量を表1に示すものとしたこと以外は、製造例1と同様の手順で、ブロック共重合体(P-5)、ブロック共重合体(P-6)を製造した。
 得られたブロック共重合体(P-5)、ブロック共重合体(P-6)について上記の物性を測定した。結果を表1に示す。
ブロック共重合体(S―1)
 SBS、スチレン-ブタジエン-スチレンブロック共重合体、Mw:304,000/119,000/59,000=1.0/87/13、水添率:0モル%、ビニル結合量11モル%(製品名:D-1102、KRATON社製)
ブロック共重合体(U-1)
 SIS、スチレン-イソプレン-スチレンブロック共重合体、Mw:213,000/112,000=64/36、水添率:0モル%、ビニル結合量7.0モル%(製品名:Quintac3421、ZEON社製)
[製造例11~13]
<表9:ドライブレンド用油展コンパウンド(V)>
 ドライブレンド用油展コンパウンド(T-2)、ドライブレンド用油展コンパウンド(T-3)、ドライブレンド用油展コンパウンド(T-4)
 後述する表9に示す配合にしたがって、各成分をそれぞれ予備混合した。次いで、二軸押出機(Coperion社製「ZSK26Mc」;シリンダー数14)を用い、シリンダー温度180℃、スクリュー回転数300rpmの条件下で、上記予備混合した組成物をホッパーに供給した。更に、溶融混練し、ストランド状に押し出して切断し、樹脂組成物のペレットを製造した。
Figure JPOXMLDOC01-appb-T000024
 なお、表1中の各表記は下記のとおりである。
 [(a1)/(a2)]:
 重合体ブロック(a1)の含有量と重合体ブロック(a2)の含有量との質量比を示す。
 ポリマー骨格:
 St-(Bd/Ip)-Stは、ポリスチレン-ポリ(ブタジエン/イソプレン)-ポリスチレントリブロック共重合体を示す。
 St-Bd-Stは、ポリスチレン-ポリ(ブタジエン)-ポリスチレントリブロック共重合体を示す。
 St-F-Stは、ポリスチレン-ポリ(β-ファルネセン)-ポリスチレントリブロック共重合体を示す。
 St-Ip-Stは、ポリスチレン-ポリ(イソプレン)-ポリスチレントリブロック共重合体を示す。
 St-Ipは、ポリスチレン-ポリ(イソプレン)ジブロック共重合体を示す。
 可塑剤(II)についての各測定方法の詳細は次のとおりである。
(1)動粘度の測定
 可塑剤A~Jの動粘度を40℃の条件でSVM動的粘度計(製品名:SVM(TM)3001、油潤滑油通信社製)を用いて測定した。結果を表2に示す。
(2)融点(流動点)の測定
 可塑剤A~Jの融点(流動点)をJIS K2269:1987の条件で自動流動点試験機(製品名:RPP-303CML、離合社製)を用いて測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000025
(実施例1~22、29~31及び69、比較例1~14及び17~20)
<表3-1~4及び7:コンパウンド>
 表3-1~4及び7に示す配合にしたがって、各成分をそれぞれ予備混合した。
 次いで、二軸押出機(Coperion社製「ZSK26Mc」;シリンダー数14)を用い、シリンダー温度210℃、スクリュー回転数300rpmの条件下で、上記予備混合した組成物をホッパーに供給した。更に、溶融混練し、ストランド状に押し出して切断し、樹脂組成物のペレットを製造した。
<表5:油展コンパウンド>
 表5に示す配合にしたがって、各成分をそれぞれ予備混合した。次いで、二軸押出機(Coperion社製「ZSK26Mc」;シリンダー数14)を用い、シリンダー温度160℃、スクリュー回転数300rpmの条件下で、上記予備混合した組成物をホッパーに供給した。更に、溶融混練し、ストランド状に押し出して切断し、樹脂組成物のペレットを製造した。
(実施例23~28及び70、比較例15~16)
<表6:粘着剤>
 表6に示す配合にしたがって、各成分をシクロヘキサンに固形分濃度25質量%になるように溶液を作製した。
・溶融粘度測定用
上記溶液を容器に入れて、乾燥して樹脂組成物を得た。
・接着力測定用
溶液を基材層(PETフィルム:厚み50μm)に、ベーカー式アプリケーター SA-201(テスター産業社製)を6milに設定して、自動フィルム塗工機 PI―1210(テスター産業社製)で塗布した後、60℃×0.5時間、常温で22時間乾燥することにより、粘着層厚み約25μmの積層体を得た。
(実施例32~34、実施例67~68、比較例21~22、比較例29~30)
<表8:フィルム>
 表8に示す配合にしたがって、各成分をそれぞれ予備混合した。
 次いで、二軸押出機(Coperion社製「ZSK26Mc」;シリンダー数14)を用い、シリンダー温度205℃、スクリュー回転数300rpmの混練条件下で、上記予備混合した組成物をホッパーに供給した。更に、溶融混練し、ストランド状に押し出して切断し、樹脂組成物のペレットを製造した。
 次いで、温度220℃に設定したThermo Fisher 20mm単軸スクリュー機を使用した成形条件で、熱可塑性エラストマー組成物のフィルムを得た。
 なお、表8中の各表記は下記のとおりである。
・粘着付与樹脂B:EASTMAN Chemical Company製、商品名:RegaliteTMR1125
・ポリオレフィンエラストマー:エクソンモービル社製、商品名:VistamaxxTM6102(エチレンに由来する構造単位:16質量%)
・ポリスチレン系樹脂:INEOS Styrolution America LLC製、商品名:Styrolution PS3190(重量平均分子量:250,000)
(実施例35、39、41、43、45、47、及び49)
<表10-1:ペレット、射出シート>
 表10-1に示す配合にしたがって、各成分をそれぞれ予備混合した。次いで、二軸押出機(Coperion社製「ZSK26Mc」;シリンダー数14)を用い、シリンダー温度210℃、スクリュー回転数300rpmの条件下で、上記予備混合した組成物をホッパーに供給した。更に、溶融混練し、ストランド状に押し出して切断し、樹脂組成物のペレットを製造した。
 上記で得られたペレットを射出成形機「EC75SX」(東芝機械株式会社製)によりシリンダー温度210℃、金型温度40℃、射出圧力80MPaで射出成形し、縦110mm、横110mm、厚み2mmの射出シートを作製した。
(実施例36、37、38、40、42、44、46、48、50)
<表10-1:射出シート(ドライブレンド)>
 表10-1に示す配合にしたがって、T-2又はT-3と、ポリオレフィン樹脂とを袋に入れて予備混合したものを射出成形機「EC75SX」(東芝機械株式会社製)に投入し、シリンダー温度210℃、金型温度40℃、射出圧力80MPaで射出成形し、縦110mm、横110mm、厚み2mmの射出シートを作製した。
(実施例51及び53)
<表10-2:ペレット>
 表10-2に示す配合にしたがって、各成分をそれぞれ予備混合した。次いで、二軸押出機(Coperion社製「ZSK26Mc」;シリンダー数14)を用い、シリンダー温度210℃、スクリュー回転数300rpmの条件下で、上記予備混合した組成物をホッパーに供給した。更に、溶融混練し、ストランド状に押し出して切断し、樹脂組成物のペレットを製造した。
 上記で得られたペレットを単軸押出機(フリージア・マクロス製「NV40mm」;L/D36)を用い、バレル温度180℃、スクリュー回転数30rpmの条件下で、厚み1mm、幅35mmのリボンシートに成形した。
(実施例52及び54)
<表10-2:リボンシート(ドライブレンド)>
 表10-2に示す配合にしたがって、T-2とポリオレフィン樹脂とを袋に入れて予備混合したものを単軸押出機(フリージア・マクロス製「NV40mm」;L/D36)に投入し、バレル温度180℃、スクリュー回転数30rpmの条件下で、厚み1mm、幅35mmのリボンシートに成形した。
(比較例23及び25)
<表11:ペレット、射出シート>
 表11に示す配合にしたがって、各成分をそれぞれ予備混合した。次いで、二軸押出機(Coperion社製「ZSK26Mc」;シリンダー数14)を用い、シリンダー温度210℃、スクリュー回転数300rpmの条件下で、上記予備混合した組成物をホッパーに供給した。更に、溶融混練し、ストランド状に押し出して切断し、樹脂組成物のペレットを製造した。
 上記で得られたペレットを射出成形機「EC75SX」(東芝機械株式会社製)によりシリンダー温度210℃、金型温度40℃、射出圧力80MPaで射出成形し、縦110mm、横110mm、厚み2mmの射出シートを作製した。
(比較例24)
<表11:射出シート(ドライブレンド)>
 表11に示す配合にしたがって、T-4とポリオレフィン樹脂とを袋に入れて予備混合したものを射出成形機「EC75SX」(東芝機械株式会社製)に投入し、シリンダー温度210℃、金型温度40℃、射出圧力80MPaで射出成形し、縦110mm、横110mm、厚み2mmの射出シートを作製した。
(実施例55~65及び比較例26~27)
<表12:樹脂組成物(ゲル組成物)、シートサンプル、円柱状試験片>
 表12に示す配合にしたがって、各成分をそれぞれ予備混合し、120℃に昇温したセーフィーオーブンSPH-202(エスペック社製)に1.5時間放置して吸油させた。次いで、ラボプラストミル(東洋精機製)を用いて、設定温度110℃、回転数70rpmで5分間混練して樹脂組成物(ゲル組成物)を得た。
 得られた樹脂組成物(ゲル組成物)を、(株)新藤金属工業所製圧縮プレス成形機「NF-37」を用いて、テフロン(登録商標)コーティング金属枠をスペーサーとして用い、160℃、100kgf/cmの荷重で3分間、圧縮プレス成形した後、冷却して屈曲試験用のシートサンプルを得た。一方、圧縮応力用ピース及び圧縮永久歪み試験用ピースは、160℃、3分間圧縮成形し、直径13.0±0.5mm、厚さ6.3±0.3mm(d0)の円柱状試験片を作製した。
(実施例66及び比較例28)
<表13:ゲル組成物>
 表13に示す配合にしたがって、窒素下で、120℃で、3時間混合し、真空下にした後、冷却することによりゲル組成物を得た。
 なお、表10-1、10-2及び11中の各表記は下記のとおりである。
・Homo-PP A:ホモポリプロピレン(製品名:J107G、プライムポリマー社製、MFR:30g/10min(温度230℃、荷重2.16kg)
・Homo-PP B:ホモポリプロピレン(製品名:J106G、プライムポリマー社製、MFR:16g/10min(温度230℃、荷重2.16kg)
・Homo-PP C:ホモポリプロピレン(製品名:J105G、プライムポリマー社製、MFR:9.0g/10min(温度230℃、荷重2.16kg)
・Homo-PP D:ホモポリプロピレン(製品名:E-100GPL、プライムポリマー社製、MFR:0.9g/10min(温度230℃、荷重2.16kg)
・「ペレットとの差」は、「ペレットの値」-「Dry blendの値」の値であり、数値が低いほど差が小さくて良好である。
・「ペレットに対する変化率」は、(「ペレットの値」-「Dry blendの値」)/「ペレットの値」*100の値であり、数値が低いほど変化率が小さくて良好である。
 なお、表12中の表記は下記のとおりである。
・「硬度変化」は、「雰囲気温度23℃の硬度」-「雰囲気温度-20℃の硬度」の値であり、数値が低いほど変化が小さくて良好である。
<測定及び評価>
 上記実施例及び比較例で得られた樹脂組成物を用いて下記測定及び評価を行った。結果を表3-1~8及び10-1~13に示す。なお、表3-1~8及び10-1~13における結果は、同じ組成比の群(例えば、(1)実施例1~3並びに比較例1~5からなる群、(2)実施例5、6及び8並びに比較例6~8からなる群、(3)実施例9~11並びに比較例9~11からなる群、(4)実施例12~14からなる群、(5)実施例19及び20並びに比較例12からなる群、(6)実施例21並びに比較例13からなる群、(7)実施例22並びに比較例14からなる群、(8)実施例23、24、26及び28並びに比較例15及び16からなる群、(9)実施例29並びに比較例17からなる群、(10)実施例30並びに比較例18からなる群、(11)実施例15並びに比較例19からなる群、(12)実施例31並びに比較例20からなる群、(13)実施例32、33、67、及び68並びに比較例21、29、及び30からなる群、(14)実施例34並びに比較例22からなる群、(15)実施例35~40からなる群、(16)実施例41~44からなる群、(17)実施例45~48からなる群、(18)実施例49~50からなる群、(19)実施例51~52からなる群、(20)実施例53~54からなる群、(21)比較例23~24からなる群、(22)実施例55~59及び65並びに比較例26からなる群、(23)実施例60~64及び比較例27からなる群、(24)実施例66及び比較例28からなる群、(25)実施例27及び70からなる群)に属するもの同士を互いに比較するのが好ましい。
(1)樹脂組成物のバイオベース度
 上記実施例及び比較例で用いたブロック共重合体(I)、可塑剤(II)及びポリオレフィン系樹脂(III)の質量比率、各成分のバイオベース度から、樹脂組成物のバイオベース度(質量%)を下記式より算出した。結果を表3-1~13に示す。
 バイオベース度(質量%)=(MI×XI/100)+(MII×XII/100)+(MIII×XIII/100)
 上記式中、MIは樹脂組成物の合計質量に対するブロック共重合体(I)の質量比率(質量%)、MIIは樹脂組成物の合計質量に対する可塑剤(II)の質量比率(質量%)、MIIIは樹脂組成物の合計質量に対するポリオレフィン系樹脂(III)の質量比率(質量%)を示す。XI(質量%)はブロック共重合体(I)のバイオベース度、XII(質量%)は可塑剤(II)のバイオベース度、XIII(質量%)はポリオレフィン系樹脂(III)のバイオベース度を示す。
(2)メルトフローレート値(MFR)
 表3-1、3-2、4、7、8、10-1~11の樹脂組成物をメルトインデクサL244(テクノ・セブン社製)を用いて、下記測定条件で、JIS K7210:1999に準じてメルトフローレート値(MFR)を測定した。結果を表3-1、3-2、4、7、8、10-1~11に示す。
(測定条件)
・温度:230℃
・荷重:2.16kg
・ダイ:標準ダイ(直径:2.095mm、長さ:8.000mm)
(3)硬度
(3-1)樹脂組成物のシートの作製
 各例で得られた樹脂組成物のペレットを、射出成形機「EC75SX」(東芝機械株式会社製)によりシリンダー温度210℃、金型温度40℃、射出圧力80MPaで射出成形し、縦110mm、横110mm、厚み2mmの射出シートを作製した。
(3-2)硬度の測定
 上記射出シートからJIS K 6251:2010に準拠した打ち抜き刃を用い、ダンベル3号形試験片(2mm)を得た。
 得られた試験片を3枚重ねて厚み6mmの硬度を、TypeA デュロメータの圧子を用い、室内温度22℃で、JIS K 6253-3:2012に準拠して測定した((1)22℃,0sec;(2)22℃15sec)。結果を表3-1~5、7、10-1~11に示す。
(4)引張強度、(5)引張伸び
 上述の(3-2)にて作製したダンベル3号形試験片(2mm)を用い、JIS K 6251:2010に準じて、引張強度及び引張伸びを、表3-1~5、7、10-1、10-2はTD(横)方向の流れ方向について測定し、表11はMD方向について測定した。引張強度及び引張伸びの数値が高いほど引張特性に優れる。結果を表3-1~5、7、10-1~11に示す。
(6)圧縮永久ひずみ
 各実施例及び比較例で得られた熱可塑性エラストマー組成物を160℃、3分間圧縮成形し、直径13.0±0.5mm、厚さ6.3±0.3mm(d0)の円柱状試験片を作製した。JIS K6262:2013に準拠し、この円柱状試験片をスペーサー厚み4.8mm(d1)を用い25%圧縮変形し、70℃又は100℃の雰囲気下に22時間保持した後、圧縮を開放した。その後、23℃、相対湿度50%雰囲気下に30分間放置したときの、円柱状試験片の厚さ(d2:mm)を測定し、圧縮永久ひずみ(%)=100×(d0-d2)/(d0-d1)により求めた。数値が低いほどゴム弾性に優れる。結果を表3-1~4、7、10-1~11に示す。
(7)貯蔵弾性率
 上述の(3-1)にて作製したシートから直径25mm、厚さ2mmの円盤状の試験片を切り出した。この試験片についてARES-G2レオメーター(TA Instruments社製)を用いて、下記条件で動的粘弾性測定を行い、-22℃及び+22℃の貯蔵弾性率(G’)をそれぞれ測定した。結果を表5に示す。
(動的粘弾性測定装置及び測定条件)
・平行プレート:直径25mm
・振動モード :ねじり振動
・歪み量   :0.1%
・周波数   :1Hz
・測定温度  :-70~200℃
・昇温速度  :3℃/分
(8)複素粘度
 上述の(3-1)にて作製したシートから直径25mm、厚さ2mmの円盤状の試験片を切り出した。この試験片についてARES-G2レオメーター(TA Instruments社製)を用いて、下記条件で複素粘度を測定した。この周波数領域で複素粘度が低いと、低せん断で混練が可能になり、樹脂発熱などが低減でき、成形性が優れたものとなる。結果を表5に示す。
・平行プレート:直径25mm
・振動モード :ねじり振動
・周波数   :0.25Hz
・測定温度:240℃(実施例21、比較例13)
      250℃(実施例19、20、比較例12)、
      270℃(実施例22、比較例14)
(9)臭気
 上述の(3-1)にて作製した上記シートを、23℃、相対湿度50%雰囲気下に24時間放置したのち、臭気を、下記の評価基準で評価した。評価結果を表3-1~5、7、10-1~11に示す。
(評価基準)
1:無臭   (良)
2:若干臭気有(可)
3:臭気有  (不可)
(10)オイルブリード
 上述の(3-1)にて作製した上記シートを、23℃、相対湿度50%雰囲気下に24時間放置したのち、目視および触感により、下記の評価基準で評価した。評価結果を表3-1~8、10-1~11に示す。
(評価基準)
1:ブリード無   目視で確認できず、手に残らない(良)
2:若干ブリード有 目視では確認できず、手には若干残る(可)
3:ブリード有   目視で確認可能、手にも残る(不可)
(11)着色
上述の(3-1)にて作製した上記シートを、23℃、相対湿度50%雰囲気下に24時間放置したのち、目視により、下記評価基準で評価した。評価結果を表3-1~5、7、10-1~11に示す。
(評価基準)
1:着色無  (良)
2:若干着色有(可)
3:着色有  (不可)
(12)溶融粘度
 粘着剤評価用と同様の方法で作製した溶液を、常温で48時間風乾した後、60℃の真空乾燥機で0.5時間乾燥して、シクロヘキサンを除去して、5cm×5cm×約0.1cmのキャストフィルムを作製した。本キャストフィルムを切削したサンプルをB型粘度計 BROOKFIELD DV-II+VISCMETER(ブルックフィールド製)を用いて、160℃、180℃で溶融粘度を測定した。値が小さいほど、成形性が優れたものとなる。結果を表6に示す。
(13)接着力
 平滑なSUS304(BA片面SG貼、厚み1.0mm)又はアクリル樹脂板(商品名:スミペックスE、厚さ1.5mm、住友化学社製)を被着体として用いた。前記被着体に、上述の「接着力測定用」の積層体を、その粘着層が被着体と接面するように貼り付け、幅25mmに裁断したものを、試験片とした。この試験片を、2kgゴムローラーを用いて20mm/分の速度で転圧した後、23±1℃、湿度50±5%の雰囲気下で30分放置した。その後、JIS Z 0237:2009に準拠し、180°剥離強度を300mm/分の剥離速度で測定し、剥離強度(23℃)とした。剥離強度(23℃)は、好ましくは10N/25mm以上、より好ましくは15N/25mm以上である。剥離強度(23℃)が前記範囲であると、被着体への粘着力に優れる。結果を表6に示す。
(14)引張試験(行きの応力、帰りの応力、応力緩和、応力差)
 実施例32~34、実施例67~68、比較例21~22、比較例29~30のフィルム成形した熱可塑性エラストマー組成物(MD、TD方向)を用いて、ASTM D882-18に準拠して23℃の雰囲気下で試験を行った。50.8mm×25.4mmの大きさにダイを用いて切断し、試験片(6個)を作製し、各試験片の中央の厚さ(インチ)を測定した。表8に記載した試験結果は、試験片6個の平均値とした。Bluehill3ソフトウェアおよび100Nロードセルを備えたInstron5567(Instron社製)の空気圧グリップに上記試験片を挿入し、クロスヘッドを稼働させて200%伸びに達するまで250mm/分で試験片を伸ばし、200%伸びで30秒間保持し、次いで、60秒間で0%伸びまで戻す操作を行い、下記式により応力緩和性(%)を算出した。なお、100Nロードセルは、空気圧フィルムグリップと共に使用され、該グリップは片側に12.7mm×25.4mmのグリップを有し、反対側に25.4mmのライングリップを有する。結果を表8に示す。
応力緩和性(%)=[「200%伸長時の行きの応力」-「200%伸長し30秒間保持した後の応力」]/「200%伸長時の行きの応力」×100
 なお、「応力緩和性(%)」は、例えば、後述する図1の(3)又は(6)で表され、「200%伸長時の行きの応力」は、例えば、後述する図1の(2)又は(5)で表され、「200%伸長し30秒間保持した後の応力」は、例えば、後述する図1の(2-2)又は(5-2)で表される。
(1)1回目の100%伸長時の行きの応力:上記条件で0%から200%まで伸長している時の、100%伸長した時の応力(図1の(1))
(2)1回目の200%伸長時の行きの応力:上記条件で0%から200%まで伸長している時の、200%伸長した時の応力(図1の(2))
(3)1回目応力緩和性:上記条件で0%から200%まで伸長して、30秒間保持した後の応力の低下率(%)(=[(1回目の200%伸長時の行きの応力)-(1回目の200%伸長し30秒間保持した後の応力)](図1の(3))/(1回目の200%伸長時の行きの応力)×100)
(4)1回目の30%伸長時の帰りの応力:上記条件で0%から200%まで伸長して、30秒間保持した後、30%まで戻した時の応力(図1の(4))
(5)2回目の200%伸長時の行きの応力:1回測定したサンプルを再度、0%から200%まで伸長している時の、200%伸長した時の応力(図1の(5))
(6)2回目の応力緩和性:上記条件で0%から200%まで伸長して、30秒間保持した後の応力の低下率(%)(=[(2回目の200%伸長時の行きの応力)-(2回目の200%伸長し30秒間保持した後の応力)](図1の(6))/(2回目の200%伸長時の行きの応力)×100)
(7)2回目の30%伸長時の帰りの応力:上記条件で0%から200%まで伸長して、30秒間保持した後、30%まで戻した時の応力(図1の(7))
(8)応力差の割合(%):「1回目の200%伸長時の行きの応力(図1の(2))」から「2回目の200%伸長時の行きの応力(図1の(5))」を引いた応力差(図1の(8))の「1回目の200%伸長時の行きの応力(図1の(2))」に対する割合(%)(=[(1回目の200%伸長時の行きの応力)-(2回目の200%伸長時の行きの応力)]/(1回目の200%伸長時の行きの応力)×100)
(15)圧縮応力(22℃)
 各実施例及び比較例で得られた熱可塑性エラストマー組成物を140℃、3分間圧縮成形し、直径13.0±0.5mm、厚さ6.3±0.3mm(d0)の円柱状試験片を作製した。本円柱状試験片をAUTOGRAPH AGX-V(島津製作所製)で圧縮速度1mm/min、圧縮幅4mmで変形させた時の応力を雰囲気温度22℃で状態で測定した。応力が低いほど柔軟で良い。結果を表12に示す。
(16)硬度(23℃)、硬度(-20℃)
 アスカーゴム硬度計C型を用いてJIS K 7312:1996に準じて、23℃及び-20℃で測定した。結果を表12に示す。
(17)ゲル組成物の滴点
 得られた各ゲル組成物の滴点を、JIS K 2220:2013に準拠して測定した。結果を表13に示す。
(18)ゲル組成物の粘度
 粘度はレオメーター(BROOKFIELD社製、R/S+ RHEOMETER)を用いて、25℃にて1s-1、6s-1、及び50s-1のせん断速度条件で測定した。より詳細には、サンプルチャンバー(BROOKFIELD社製、MB3-25F)に約30mLのゲル組成物を仕込み、スピンドル(BROOKFIELD社製、CC3-25)をセットしたレオメーター本体に取り付け、25℃にてせん断速度を1s-1で300秒間測定して安定化させた。続いて、(1)せん断速度を1s-1から50s-1まで120秒かけて上げた後に50s-1から1s-1まで120秒かけて下げ、続けて(2)せん断速度を1s-1から50s-1まで120秒かけて上げた後に50s-1から1s-1まで120秒かけて下げ、さらに続けて(3)せん断速度を1s-1から50s-1まで120秒かけて上げた後に50s-1から1s-1まで120秒かけて下げた。前記(3)のせん断速度を1s-1から50s-1まで120秒かけて上げる工程の測定において得られる、1s-1、6s-1、及び50s-1のせん断速度条件における粘度を採用した。表13に記載の1s-1粘度、6s-1粘度、及び50s-1粘度は、それぞれ1s-1、6s-1、及び50s-1のせん断速度条件における粘度のことを意味する。結果を表13に示す。
(19)ゲル組成物の離油度
 離油度は、JIS K 2220:2013に準じた方法で行った。より詳細には、10gのゲル組成物を金網円すいろ過器(JIS Z 8801-1:2013に規定する目開き250μm(線径160μm)のステンレス金網からなる円すいろ過器)に量り入れ、80℃で24時間保持した後、ゲル組成物から分離した油の質量を測定し、離油度を算出した。結果を表13に示す。
(20)ゲル組成物の混和ちょう度
 得られた各ゲル組成物のちょう度(混和ちょう度)を、JIS K 2220:2013の項目7に準拠して測定した。結果を表13に示す。
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
 なお、表3-1~13中の各表記は下記のとおりである。
・樹脂組成物中の「部」は、樹脂組成物中の質量部を意味する。
・樹脂組成物中の「%」は、樹脂組成物中の質量%を意味する。
 表3-1~7より、実施例の樹脂組成物及び成形体は、環境負荷を低減可能な材料を含み、且つ、成形性に優れた樹脂組成物、及び成形体が得られたことがわかる。
 表8より、実施例のフィルムは、バイオベース度が高く、フィルムの配向が小さく(MD方向とTD方向の物性差が小さく)、1回目の行きの0%から200%伸長時の応力から、2回目の行きの0%から200%伸長時の応力を引いた応力差の割合が小さいことがわかる。これにより、実施例のフィルムを伸縮フィルムとして好適使用することができ、例えば、全面にフィルムが使われている大人用のおむつ等において、縦横の応力差が少ないことで良好なフィット感が得られると推察できる。
 表10-1より、同成分で製造方法が違う、実施例35と実施例36、実施例39と実施例40、実施例41と実施例42、実施例43と実施例44、実施例45と実施例46、実施例47と実施例48、実施例49と実施例50を、それぞれ比較すると、硬度、圧縮永久歪みが、同等であることが分かる。
 また、同等の配合比率でドライブレンドするポリオレフィン系樹脂のMFRの値を変更した実施例36~38を比較すると、硬度、圧縮永久歪みが、同等であることが分かる。
 表10-2より、同成分で製造方法が違う実施例51と実施例52、実施例53と実施例54を、それぞれ比較すると、硬度、圧縮永久歪みが、同等であることが分かる。
 表10-1および表11より、使用している可塑剤(II)だけが違う、実施例35と比較例23、実施例36と比較例24を、それぞれ比較すると、引張伸び、臭気、着色、及びオイルブリードで実施例が優れることが分かる。また、使用している可塑剤(II)だけが違う実施例49と比較例25とを、それぞれ比較すると、バイオベース度及び圧縮永久ひずみで実施例が優れることが分かる。
 表12の実施例の樹脂組成物及び成形体は、幅広い温度範囲で、柔軟性、耐久性が高い組成物になることが分かった。
 表13から分かるように、実施例66は、比較例28に比べて、バイオベース度、滴点、チキソ性(粘度比)が高く、粘度が低かった。また、表13から分かるように、実施例66及び比較例28は、離油度、混和ちょう度が同等であった。
 本発明の樹脂組成物は、環境負荷を低減可能な材料を含み、且つ、成形性に優れることが期待できる。そのため、本発明の樹脂組成物及び成形体は、シート、フィルム、チューブ、ホース、ベルト等の成形品として好適に用いることができる。

Claims (18)

  1.  芳香族ビニル化合物由来の構造単位を含有する重合体ブロック(a1)と、共役ジエン化合物由来の構造単位を含有する重合体ブロック(a2)とを含むブロック共重合体(I)、及び
     カルボキシ基を有さないバイオマス由来の可塑剤(II)を含み、
     前記可塑剤(II)のバイオベース度が70質量%以上である、樹脂組成物。
  2.  前記可塑剤(II)は、40℃における動粘度が100.0cSt以下である、請求項1に記載の樹脂組成物。
  3.  前記可塑剤(II)は、下記一般式(1)で表される化合物及び下記一般式(2)で表される化合物の少なくともいずれかである、請求項1又は2に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001

     但し、一般式(1)中、n~nは、それぞれ独立して、1又は3であり、R~Rは、それぞれ独立して、水素原子又は無置換の炭化水素基であり、R及びRの合計炭素数が14であり、R及びRの合計炭素数が14であり、R及びRの合計炭素数が14であり、R~Rは分岐構造を有してもよい。
    Figure JPOXMLDOC01-appb-C000002

     但し、一般式(2)中、n及びnは、それぞれ独立して、1又は3であり、R~R10は、それぞれ独立して、水素原子又は無置換の炭化水素基であり、R及びRの合計炭素数が14であり、R及びR10の合計炭素数が14であり、R~R10は分岐構造を有してもよい。
  4.  前記ブロック共重合体(I)中の前記重合体ブロック(a1)における前記芳香族ビニル化合物がスチレン、α-メチルスチレン、及び4-メチルスチレンからなる群より選択される少なくとも1種である、請求項1~3のいずれか1項に記載の樹脂組成物。
  5.  前記ブロック共重合体(I)中の前記重合体ブロック(a1)における前記芳香族ビニル化合物の含有量が1~65質量%である、請求項1~4のいずれか1項に記載の樹脂組成物。
  6.  前記ブロック共重合体(I)のゲルパーミエーションクロマトグラフィーにより標準ポリスチレン換算で求める重量平均分子量が、50,000~600,000である、請求項1~5のいずれか1項に記載の樹脂組成物。
  7.  前記ブロック共重合体(I)の重合体ブロック(a2)中のビニル結合量が、1.0~40.0モル%である、請求項1~6のいずれか1項に記載の樹脂組成物。
  8.  前記ブロック共重合体(I)中の共役ジエン化合物由来の構造単位における炭素-炭素二重結合の水素添加率が、5.0モル%以上である、請求項1~7のいずれか1項に記載の樹脂組成物。
  9.  前記ブロック共重合体(I)中の共役ジエン化合物由来の構造単位における炭素-炭素二重結合の水素添加率が、30.0モル%以上である、請求項8に記載の樹脂組成物。
  10.  前記ブロック共重合体(I)中の共役ジエン化合物由来の構造単位における炭素-炭素二重結合の水素添加率が、70.0モル%以上である、請求項9に記載の樹脂組成物。
  11.  前記ブロック共重合体(I)100質量部に対し、前記可塑剤(II)を1~1500質量部含む、請求項1~10のいずれか1項に記載の樹脂組成物。
  12.  前記ブロック共重合体(I)100質量部に対し、ポリオレフィン系樹脂(III)を1~200質量部含む、請求項1~11のいずれか1項に記載の樹脂組成物。
  13.  前記ポリオレフィン系樹脂(III)がポリエチレン及び/又はポリプロピレンを含む、請求項12に記載の樹脂組成物。
  14.  前記ポリオレフィン系樹脂(III)がポリプロピレンである、請求項12に記載の樹脂組成物。
  15.  前記ポリオレフィン系樹脂(III)がポリエチレンである、請求項12に記載の樹脂組成物。
  16.  前記ブロック共重合体(I)100質量部に対し、粘着付与剤(IV)を1~300質量部含む、請求項1~15のいずれか1項に記載の樹脂組成物。
  17.  前記樹脂組成物のバイオベース度が15質量%以上である、請求項1~16のいずれか1項に記載の樹脂組成物。
  18.  請求項1~17のいずれか1項に記載の樹脂組成物を用いてなる成形体。
     
PCT/JP2023/027887 2022-09-30 2023-07-31 樹脂組成物及び成形体 WO2024070188A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022159143 2022-09-30
JP2022-159143 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024070188A1 true WO2024070188A1 (ja) 2024-04-04

Family

ID=90477046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/027887 WO2024070188A1 (ja) 2022-09-30 2023-07-31 樹脂組成物及び成形体

Country Status (1)

Country Link
WO (1) WO2024070188A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5592306A (en) * 1979-01-06 1980-07-12 Nitto Electric Ind Co Ltd Adherent sheet pack
WO2022163787A1 (ja) * 2021-01-29 2022-08-04 株式会社クラレ 樹脂組成物及び成形体
WO2023145927A1 (ja) * 2022-01-31 2023-08-03 Mcppイノベーション合同会社 熱可塑性エラストマー組成物及びその成形体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5592306A (en) * 1979-01-06 1980-07-12 Nitto Electric Ind Co Ltd Adherent sheet pack
WO2022163787A1 (ja) * 2021-01-29 2022-08-04 株式会社クラレ 樹脂組成物及び成形体
WO2023145927A1 (ja) * 2022-01-31 2023-08-03 Mcppイノベーション合同会社 熱可塑性エラストマー組成物及びその成形体

Similar Documents

Publication Publication Date Title
JP5763865B1 (ja) 熱可塑性エラストマー組成物及び成形体
JP5763866B1 (ja) ポリオレフィン系樹脂組成物及び成形体
JP6435022B2 (ja) 水添ブロック共重合体およびそれを含む組成物
JP6716612B2 (ja) 水添共重合体、組成物及び成形体
CA2907822A1 (en) Laminate, protective film and method for manufacturing laminate
JP6679041B2 (ja) シーラント
WO2001085818A1 (fr) Copolymere bloc et composition contenant ce copolymere
JPWO2007119390A1 (ja) 熱可塑性エラストマー組成物
JP2019157067A (ja) 熱可塑性樹脂組成物およびそれからなる部材
EP1405877A1 (en) Process for production of thermoplastic elastomer composition
JP7073857B2 (ja) 樹脂組成物及び成形体
JP2010106200A (ja) 樹脂組成物およびそれからなるシート状成形体
JP7439308B2 (ja) 樹脂組成物及び成形体
WO2024070188A1 (ja) 樹脂組成物及び成形体
JP7195417B2 (ja) 水添共重合体、粘着フィルム、樹脂組成物、及び成形体
WO2015156289A1 (ja) 組成物及び表面保護フィルム
TW202415723A (zh) 樹脂組成物及成形體
JP7442693B2 (ja) 樹脂組成物及び成形体
JP4031226B2 (ja) 熱可塑性重合体組成物
EP4306559A1 (en) Resin composition and molded body
US20240218172A1 (en) Resin composition and molded body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23871431

Country of ref document: EP

Kind code of ref document: A1