WO2015087833A1 - 改変型リパーゼ及びその用途 - Google Patents

改変型リパーゼ及びその用途 Download PDF

Info

Publication number
WO2015087833A1
WO2015087833A1 PCT/JP2014/082415 JP2014082415W WO2015087833A1 WO 2015087833 A1 WO2015087833 A1 WO 2015087833A1 JP 2014082415 W JP2014082415 W JP 2014082415W WO 2015087833 A1 WO2015087833 A1 WO 2015087833A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
lipase
seq
acid sequence
enzyme
Prior art date
Application number
PCT/JP2014/082415
Other languages
English (en)
French (fr)
Inventor
佑記 石垣
石原 聡
俊一 田中
Original Assignee
天野エンザイム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天野エンザイム株式会社 filed Critical 天野エンザイム株式会社
Priority to DK14869024.1T priority Critical patent/DK3081644T3/en
Priority to EP14869024.1A priority patent/EP3081644B1/en
Priority to US15/102,324 priority patent/US10415023B2/en
Priority to JP2015552440A priority patent/JP6787668B2/ja
Priority to CN201480066933.9A priority patent/CN105814199B/zh
Publication of WO2015087833A1 publication Critical patent/WO2015087833A1/ja
Priority to US16/522,803 priority patent/US10870840B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • C12N9/20Triglyceride splitting, e.g. by means of lipase
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/12Fermented milk preparations; Treatment using microorganisms or enzymes
    • A23C9/1203Addition of, or treatment with, enzymes or microorganisms other than lactobacteriaceae
    • A23C9/1216Other enzymes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/20Synthetic spices, flavouring agents or condiments
    • A23L27/24Synthetic spices, flavouring agents or condiments prepared by fermentation
    • A23L27/25Dairy flavours
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/01Carboxylic ester hydrolases (3.1.1)
    • C12Y301/01003Triacylglycerol lipase (3.1.1.3)
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Definitions

  • the present invention relates to a modified lipase. Specifically, a modified lipase, a method for producing a dairy product using the modified lipase, and the like are provided.
  • This application claims priority based on Japanese Patent Application No. 2013-255419 filed on Dec. 10, 2013, the entire contents of which are incorporated by reference.
  • Lipases are used for flavor generation and flavor enhancement of dairy products. Traditionally lipase preparations derived from goats, calves or lambs have been used. These ruminant lipases have the specificity of releasing short-chain fatty acids (C 4 , C 6 ) from milk fat and are suitable for producing flavors of dairy products.
  • an object of the present invention is to provide a microorganism-derived lipase having short-chain to medium-chain fatty acid selectivity and its use.
  • a lipase derived from Candida cylindracea (a lipase previously referred to as a lipase derived from Candida rugosa). Attempts to modify it. After trial and error, we succeeded in finding a very effective mutation position that can achieve the purpose from among the amino acids constituting the substrate pocket. Mutants with specific amino acid substitutions at the mutation positions hydrolyzed milk fat and selectively released short to medium chain fatty acids (C 4 to C 8 ), similar to animal-derived lipases. The mutants worked well on short chain fatty acids (C 4 -C 6 ) and most on C 4 fatty acids.
  • Non-patent Document 1 Non-patent Document 1
  • the three-dimensional structure (especially, the sites involved in the activity such as active sites and substrate pockets) is high, and similar mutations are similar.
  • the probability of producing an effect is high, it can be said that the same mutation technique can be applied to other enzymes having high amino acid identity with LIP1 used in the examples.
  • the following invention is mainly based on the above results and considerations.
  • a modified lipase comprising an amino acid sequence in which the following substitution (1) or (2) is performed in the lipase derived from Candida cylindrasse: (1) substitution of asparagine for the amino acid corresponding to amino acid 428 of the amino acid sequence shown in SEQ ID NO: 1; (2) Substitution of the amino acid corresponding to the 429th amino acid in the amino acid sequence shown in SEQ ID NO: 1 with phenylalanine, methionine or isoleucine.
  • [7] The gene according to [6], comprising any one of the nucleotide sequences of SEQ ID NOS: 12 to 19.
  • [8] A recombinant DNA containing the gene according to [6] or [7].
  • [9] A microorganism having the recombinant DNA according to [8].
  • [10] The microorganism according to [9], wherein the host is Escherichia coli, Candida cylindrasse, Aspergillus oryzae, Bacillus subtilis, or Pichia pastoris.
  • An enzyme agent comprising the modified lipase according to any one of [1] to [5].
  • [12] A method for improving the flavor of a food or food material, comprising causing the enzyme according to any one of [1] to [5] or the enzyme agent according to [11] to act on the food or food material. .
  • [13] A method for producing a food, comprising causing the enzyme according to any one of [1] to [5] or the enzyme agent according to [11] to act on a food material or an intermediate product.
  • a flavor improving agent for acting on a food or a food material comprising the enzyme according to any one of [1] to [5] or the enzyme agent according to [11].
  • [16] A food or food material obtained by reacting the enzyme according to any one of [1] to [5] or the enzyme agent according to [11].
  • Free fatty acid composition after enzyme treatment Wild type lipase LIP1 derived from Candida cylindrasse was allowed to act on cheese (substrate), and the free fatty acid composition was analyzed. Free fatty acid composition after enzyme treatment.
  • Various modified lipases (mutants) were allowed to act on cheese (substrate) to compare free fatty acid compositions. Upper left: Calf sublingual lipase is used. Bottom: Modified lipase (mutant 1: L428N, mutant 2: G429F, mutant 3: G429M, mutant 4: G429I) is used. Upper right: Using the previously reported modified lipase (L428F).
  • Candida cylindrasse-derived wild-type lipase LIP1 (SEQ ID NO: 2), LIP1 '(SEQ ID NO: 3), LIP2 (SEQ ID NO: 4), LIP3 (SEQ ID NO: 5), LIP4 (SEQ ID NO: 6), LIP5 (SEQ ID NO: 7) Sequence comparison. Continuation of FIG. Continuation of FIG.
  • modified lipase is an enzyme obtained by modifying or mutating a specific lipase (referred to as “reference lipase” for convenience of explanation).
  • the reference lipase is a lipase derived from Candida cylindracea or a lipase derived from Candida rugosa.
  • lipase from Candida cylindracea and the term “lipase from Candida rugosa” are used interchangeably.
  • Candida cylindrasse-derived lipase refers to a lipase that originates from Candida cylindrasse, a lipase produced by Candida cylindrasse, a lipase produced by mutating Candida cylindrasse (mutant strain), or these lipases Includes lipase expressed in other microorganisms using genetic information of enzymes.
  • lipase derived from Candida rugosa means a lipase whose origin is Candida rugosa, a lipase produced by Candida rugosa, a lipase produced by mutating Candida rugosa (mutant strain), Alternatively, lipase expressed in other microorganisms using genetic information of these enzymes is included.
  • amino acid substitution is performed as a modification or mutation. Therefore, when the modified lipase and the reference lipase are compared, some amino acid residues are different.
  • the modified lipase is also referred to as a modified enzyme or a mutant.
  • each amino acid is represented by one letter as follows.
  • the position of each amino acid is specified by a number attached from the N-terminus to the C-terminus, with the methionine corresponding to the translation start point being the first. Therefore, in the mature body in which the signal peptide is cleaved, the amino acid number is incremented by the amount of the signal peptide.
  • amino acid residue at the mutation point (amino acid residue to be substituted) is represented by a combination of the above-mentioned one letter representing the type of amino acid and a number representing the amino acid position. For example, if the glycine at position 428 is a mutation point, it is expressed as “G428”.
  • the first aspect of the present invention relates to a modified lipase (modified enzyme).
  • the modified enzyme of the present invention has an amino acid sequence obtained by substituting the following (1) or (2) in the amino acid sequence of a lipase derived from Candida cylindrasse. (1) Substitution of amino acid corresponding to amino acid 428 in the amino acid sequence shown in SEQ ID NO: 1 with asparagine (2) Phenylalanine, methionine or isoleucine for amino acid corresponding to amino acid 429 in the amino acid sequence shown in SEQ ID NO: 1 Replacement
  • the sequence of SEQ ID NO: 1 is the amino acid sequence (including signal peptide) of lipase LIP1 derived from Candida cylindrasse.
  • substitution of (1) the amino acid corresponding to the 428th amino acid in the amino acid sequence is to be substituted, and the substrate specificity of the lipase is changed by substituting the amino acid with asparagine.
  • substitution of (2) the amino acid corresponding to the 429th amino acid of the sequence of SEQ ID NO: 1 is to be substituted, and the substrate specificity of the lipase is changed by substituting the amino acid with phenylalanine, methionine or isoleucine.
  • the lipase after amino acid substitution that is, the modified enzyme is highly selective for short to medium chain fatty acids (C 4 to C 8 ), and when it acts on milk fat, typically lipase derived from calf sublingual gland Similar free fatty acid composition is shown.
  • the modified enzyme works well on short chain fatty acids (C 4 -C 6 ) and works best on C 4 fatty acids.
  • the term “corresponding” when used for amino acid residues in the present specification means that the protein (enzyme) to be compared makes an equivalent contribution to the performance of its function.
  • the amino acid sequence to be compared with the amino acid sequence of the reference lipase (amino acid sequence of SEQ ID NO: 1) is arranged so that an optimal comparison can be made while considering partial homology of the primary structure (amino acid sequence).
  • the amino acid at the position corresponding to a specific amino acid in the reference amino acid sequence is identified as a “corresponding amino acid”. Can do.
  • the “corresponding amino acid” can also be specified by comparing three-dimensional structures (three-dimensional structures). A highly reliable comparison result can be obtained by using the three-dimensional structure information.
  • a method of performing alignment while comparing atomic coordinates of the three-dimensional structures of a plurality of enzymes can be employed.
  • the three-dimensional structure information of the enzyme to be mutated can be obtained from, for example, Protein Data Bank (http://www.pdbj.org/index_j.html).
  • Crystallize the protein is indispensable for determining the three-dimensional structure, but it also has industrial utility as a high purity protein purification method and a high density and stable storage method. In this case, it is preferable to crystallize a protein bound with a substrate or an analog compound thereof as a ligand.
  • Diffraction data is collected by irradiating the produced crystal with X-rays. In many cases, protein crystals are damaged by X-ray irradiation and the diffraction ability deteriorates. In that case, a cryogenic measurement technique in which the crystal is rapidly cooled to about ⁇ 173 ° C.
  • the heavy atom isomorphous substitution method is a method of obtaining phase information by introducing a metal atom having a large atomic number such as mercury or platinum into a crystal and utilizing the contribution of the metal atom to the X-ray diffraction data of the large X-ray scattering ability. .
  • the determined phase can be improved by smoothing the electron density of the solvent region in the crystal. Since water molecules in the solvent region have large fluctuations, almost no electron density is observed, so by approximating the electron density in this region to 0, it is possible to approach the true electron density and thus the phase is improved. . Further, when a plurality of molecules are contained in the asymmetric unit, the phase is further improved by averaging the electron density of these molecules. The protein model is fit to the electron density map calculated using the improved phase in this way. This process is performed on a computer graphic using a program such as QUANTA from MSI (USA). Thereafter, the structure is refined using a program such as X-PLOR of MSI, and the structural analysis is completed.
  • crystal structure of a similar protein When the crystal structure of a similar protein is known with respect to the target protein, it can be determined by a molecular replacement method using the atomic coordinates of the known protein. Molecular replacement and structural refinement can be performed using programs such as CNS_SOLVE ver.11.
  • LIP1 ′ an enzyme exhibiting high homology to LIP1 from a mutant of a lipase producing bacterium.
  • the amino acid sequence excluding the signal peptide is SEQ ID NO: 2 (LIP1), SEQ ID NO: 3 (LIP1 ′), SEQ ID NO: 4 (LIP2), SEQ ID NO: 5 ( LIP3), SEQ ID NO: 6 (LIP4), and SEQ ID NO: 7 (LIP5).
  • any of these enzymes serves as a reference lipase (which can be modified to yield a modified enzyme). That is, specific examples of the amino acid sequence of the reference lipase are the amino acid sequences of SEQ ID NOs: 2 to 7.
  • the identity of the lipase LIP1 derived from Candida cylindrasse (SEQ ID NO: 2) is 99% for the amino acid sequence of SEQ ID NO: 3, 79% for the amino acid sequence of SEQ ID NO: 4, and 88% for the amino acid sequence of SEQ ID NO: 5,
  • the amino acid sequence of SEQ ID NO: 6 is 81%
  • the amino acid sequence of SEQ ID NO: 7 is 82% (FIGS. 3 to 5).
  • substitution in (1) substitution for the amino acid corresponding to amino acid 428 in the amino acid sequence of SEQ ID NO: 1
  • an enzyme comprising an amino acid sequence 70% or more identical to the amino acid sequence of SEQ ID NO: 2 may be used as the reference lipase.
  • LIP1, LIP1 ′, LIP2, LIP3, LIP4 and LIP5 correspond to the reference lipase.
  • an enzyme having an amino acid sequence that is 99% or more identical to the amino acid sequence of SEQ ID NO: 2 is used as the reference lipase.
  • LIP1 having the amino acid sequence of SEQ ID NO: 2 the amino acid corresponding to amino acid 428 of the amino acid sequence of SEQ ID NO: 1 is the 413th leucine (L). Therefore, when LIP1 having the amino acid sequence of SEQ ID NO: 2 is used as a reference lipase, the amino acid is a substitution target. On the other hand, when LIP1 ′ having the amino acid sequence of SEQ ID NO: 3 is used as a reference lipase, the amino acid to be substituted is leucine (L), which is the 413rd amino acid of SEQ ID NO: 3.
  • the amino acid to be substituted is leucine (L), which is the 413st amino acid in the amino acid sequence of SEQ ID NO: 4.
  • LIP3 having the amino acid sequence of SEQ ID NO: 5 is used as a reference lipase
  • the amino acid to be substituted is leucine (L), which is the 413rd amino acid of SEQ ID NO: 5.
  • LIP4 having the amino acid sequence of SEQ ID NO: 6 is used as a reference lipase
  • the amino acid to be substituted is leucine (L), which is the 413rd amino acid of the amino acid sequence of SEQ ID NO: 6.
  • LIP5 having the amino acid sequence of SEQ ID NO: 7 is used as a reference lipase
  • the amino acid to be substituted is leucine (L), which is the 413rd amino acid of the amino acid sequence of SEQ ID NO: 7.
  • an enzyme comprising an amino acid sequence 90% or more identical to the amino acid sequence of SEQ ID NO: 2 is used as a reference lipase.
  • LIP1 and LIP1 ′ correspond to the reference lipase.
  • An enzyme having a sequence (however, limited to those showing lipase activity), most preferably an enzyme having an amino acid sequence that is 99% or more identical to the amino acid sequence of SEQ ID NO: 2 (but limited to those showing lipase activity) Used as lipase.
  • LIP1 having the amino acid sequence of SEQ ID NO: 2 the amino acid corresponding to the 429th amino acid of the amino acid sequence of SEQ ID NO: 1 is the 414th glycine (G). Therefore, when LIP1 having the amino acid sequence of SEQ ID NO: 2 is used as a reference lipase, the amino acid is a substitution target. On the other hand, when LIP1 ′ having the amino acid sequence of SEQ ID NO: 3 is used as a reference lipase, the amino acid to be substituted is glycine (G), which is the 414th amino acid of SEQ ID NO: 3.
  • the modified enzyme (variant 1) having the amino acid sequence of SEQ ID NO: 8 performs substitution of the 413rd amino acid to asparagine (ie, substitution of (1)) for LIP1 having the amino acid sequence of SEQ ID NO: 2.
  • the obtained modified enzyme (variant 2) having the amino acid sequence of SEQ ID NO: 9 is a substitution of the 414th amino acid with phenylalanine (ie (2) of LIP1 having the amino acid sequence of SEQ ID NO: 2).
  • the modified enzyme having the amino acid sequence of SEQ ID NO: 10 (mutant 3) is obtained by subjecting LIP1 having the amino acid sequence of SEQ ID NO: 2 to methionine at the 414th amino acid.
  • the modified enzyme (variant 4) having the amino acid sequence of SEQ ID NO: 11 is obtained by subjecting LIP1 having the amino acid sequence of SEQ ID NO: 2 to The 414th amino acid It is obtained by substitution with isoleucine (that is, one of substitutions of (2)).
  • the protein after the mutation may have the same function as the protein before the mutation. That is, the amino acid sequence mutation does not substantially affect the protein function, and the protein function may be maintained before and after the mutation.
  • the modified enzyme any one of mutants 1 to 4
  • the difference in amino acid sequence is due to the above amino acid substitution.
  • Those that do not show a substantial difference in properties can be regarded as substantially the same enzyme as the modified enzyme.
  • “Slight difference in amino acid sequence” as used herein typically means deletion of one to several amino acids (upper limit is 3, 5, 7, 10) constituting an amino acid sequence, It means that a mutation (change) has occurred in the amino acid sequence by substitution or addition, insertion, or a combination of 1 to several amino acids (the upper limit is 3, 5, 7, 10).
  • the identity (%) between the amino acid sequence of “substantially identical enzyme” and the amino acid sequence of the modified enzyme as a reference is, for example, 90% or more, preferably 95% or more, more preferably 98%. Or more, most preferably 99% or more.
  • the difference in amino acid sequence may occur at a plurality of positions. “Slight differences in amino acid sequence” are preferably caused by conservative amino acid substitutions.
  • the second aspect of the present invention provides a nucleic acid related to the modified enzyme of the present invention. That is, a gene encoding a modified enzyme, a nucleic acid that can be used as a probe for identifying a nucleic acid encoding a modified enzyme, and a primer for amplifying or mutating a nucleic acid encoding a modified enzyme Nucleic acids capable of being provided are provided.
  • the gene encoding the modified enzyme is typically used for the preparation of the modified enzyme. According to a genetic engineering preparation method using a gene encoding a modified enzyme, it is possible to obtain a modified enzyme in a more homogeneous state. This method can also be said to be a suitable method when preparing a large amount of modified enzyme.
  • the use of the gene encoding the modified enzyme is not limited to the preparation of the modified enzyme.
  • the nucleic acid can also be used as an experimental tool for elucidating the mechanism of action of the modified enzyme, or as a tool for designing or preparing a further modified enzyme.
  • a “gene encoding a modified enzyme” refers to a nucleic acid obtained by expressing the modified enzyme, and has a base sequence corresponding to the amino acid sequence of the modified enzyme.
  • the nucleic acid includes, of course, a nucleic acid obtained by adding a sequence that does not encode an amino acid sequence to such a nucleic acid. Codon degeneracy is also considered.
  • sequence (base sequence) of the gene encoding the modified enzyme are shown in SEQ ID NOs: 12 to 15. These sequences encode the mutants shown in the examples described below, as described below. Sequence number 12: Mutant 1 (L428N) SEQ ID NO: 13: Mutant 2 (G429F) SEQ ID NO: 14: Mutant 3 (G429M) SEQ ID NO: 15: Mutant 4 (G429I)
  • the CTG codon encodes serine.
  • the present invention also provides a sequence obtained by performing such codon substitution on the sequence of any of SEQ ID NOS: 12 to 15 as a gene sequence for heterologous expression. An example of a sequence subjected to codon substitution is shown below.
  • SEQ ID NO: 16 (codon substituted in the sequence of SEQ ID NO: 12)
  • SEQ ID NO: 17 (codon substitution in the sequence of SEQ ID NO: 13)
  • SEQ ID NO: 18 (codon substitution in the sequence of SEQ ID NO: 14)
  • SEQ ID NO: 19 (codon substitution in the sequence of SEQ ID NO: 15)
  • the gene of the present invention When the gene of the present invention is expressed in a host, it is usually introduced into the host by a gene construct in which the above sequence (sequence (signal sequence) encoding a signal peptide is added to the 5 ′ end of SEQ ID NO: 5).
  • sequence sequence (signal sequence) encoding a signal peptide is added to the 5 ′ end of SEQ ID NO: 5).
  • the signal sequence of wild-type LIP1 is shown in SEQ ID NO: 21.
  • the amino acid sequence encoded by the sequence ie, signal peptide
  • the signal sequence may be selected depending on the host.
  • any signal sequence can be used in the present invention as long as it is a signal sequence capable of expressing the body.
  • the signal sequence that can be used are sequences encoding the ⁇ -factor signal peptide (Protein Engineering, 1996, vol9, p.1055-1061).
  • the nucleic acid of the present invention is isolated by using standard genetic engineering techniques, molecular biological techniques, biochemical techniques, etc. with reference to the sequence information disclosed in this specification or the attached sequence listing. Can be prepared.
  • a nucleic acid (hereinafter referred to as the following) having a partially different base sequence, although the function of the protein encoded by the same is equivalent to the base sequence of the gene encoding the modified enzyme of the present invention.
  • a base sequence defining a homologous nucleic acid is also referred to as “homologous base sequence”).
  • a modified enzyme comprising a nucleotide sequence including substitution, deletion, insertion, addition or inversion of one or more bases based on the nucleotide sequence of a nucleic acid encoding the modified enzyme of the present invention.
  • DNA encoding a protein having a characteristic enzyme activity that is, lipase activity.
  • Base substitution or deletion may occur at a plurality of sites.
  • the term “plurality” as used herein refers to, for example, 2 to 40 bases, preferably 2 to 20 bases, more preferably 2 to 10 bases, although it varies depending on the position and type of amino acid residues in the three-dimensional structure of the protein encoded by the nucleic acid. It is.
  • homologous nucleic acids include, for example, restriction enzyme treatment, treatment with exonuclease, DNA ligase, etc., site-directed mutagenesis (Molecular Cloning, Third Edition, Chapter 13, Cold Spring Harbor Laboratory Press, New York) It can be obtained by introducing mutations by mutation introduction methods (Molecular Cloning, Third Edition, Chapter 13, Cold Spring Harbor Laboratory Press, New York). Homologous nucleic acids can also be obtained by other methods such as ultraviolet irradiation.
  • nucleic acid having a base sequence complementary to the base sequence of a gene encoding the modified enzyme of the present invention is at least about 60%, 70%, 80%, 90%, 95% with respect to the base sequence of the gene encoding the modified enzyme of the present invention or a base sequence complementary thereto. Nucleic acids having 99% and 99.9% identical base sequences are provided.
  • Still another embodiment of the present invention is a nucleic acid having a base sequence that hybridizes under stringent conditions to a base sequence of a gene encoding the modified enzyme of the present invention or a base sequence complementary to the base sequence homologous thereto.
  • the “stringent conditions” here are conditions under which so-called specific hybrids are formed and non-specific hybrids are not formed. Such stringent conditions are known to those skilled in the art, such as Molecular Cloning (Third Edition, Cold Spring Harbor Laboratory Press, New York) and Current protocols in molecular biology (edited by Frederick M. Ausubel et al., 1987) Can be set with reference to.
  • hybridization solution 50% formamide, 10 ⁇ SSC (0.15M NaCl, 15 mM sodium citrate, pH 7.0), 5 ⁇ Denhardt solution, 1% SDS, 10% dextran sulfate, 10 ⁇ g / ml denaturation
  • 5 ⁇ Denhardt solution 1% SDS
  • 10% dextran sulfate 10 ⁇ g / ml denaturation
  • incubation at about 42 ° C to about 50 ° C using salmon sperm DNA, 50 mM phosphate buffer (pH 7.5), followed by washing at about 65 ° C to about 70 ° C using 0.1 x SSC, 0.1% SDS can be mentioned.
  • Further preferable stringent conditions include, for example, 50% formamide, 5 ⁇ SSC (0.15M NaCl, 15 mM sodium citrate, pH 7.0), 1 ⁇ Denhardt solution, 1% SDS, 10% dextran sulfate, 10 ⁇ g / ml as a hybridization solution. Of denatured salmon sperm DNA, 50 mM phosphate buffer (pH 7.5)).
  • nucleic acid having a base sequence of a gene encoding the modified enzyme of the present invention or a part of a base sequence complementary thereto.
  • a nucleic acid fragment can be used for detecting, identifying, and / or amplifying a nucleic acid having a base sequence of a gene encoding the modified enzyme of the present invention.
  • the nucleic acid fragment is, for example, a nucleotide portion continuous in the base sequence of the gene encoding the modified enzyme of the present invention (eg, about 10 to about 100 bases in length, preferably about 20 to about 100 bases, more preferably about 30 to about 100). It is designed to include at least a portion that hybridizes (100 base length).
  • a nucleic acid fragment can be labeled.
  • fluorescent substances, enzymes, and radioisotopes can be used.
  • Still another aspect of the present invention relates to a recombinant DNA containing the gene of the present invention (gene encoding a modified enzyme).
  • the recombinant DNA of the present invention is provided, for example, in the form of a vector.
  • vector refers to a nucleic acid molecule capable of transporting a nucleic acid inserted therein into a target such as a cell.
  • An appropriate vector is selected according to the purpose of use (cloning, protein expression) and in consideration of the type of host cell.
  • Examples of vectors using insect cells as hosts include pAc and pVL, and examples of vectors using mammalian cells as hosts include pCDM8 and pMT2PC.
  • the vector of the present invention is preferably an expression vector.
  • “Expression vector” refers to a vector capable of introducing a nucleic acid inserted therein into a target cell (host cell) and allowing expression in the cell.
  • Expression vectors usually contain a promoter sequence necessary for the expression of the inserted nucleic acid, an enhancer sequence that promotes expression, and the like.
  • An expression vector containing a selectable marker can also be used. When such an expression vector is used, the presence / absence (and extent) of introduction of the expression vector can be confirmed using a selection marker.
  • Insertion of the nucleic acid of the present invention into a vector, insertion of a selectable marker gene (if necessary), insertion of a promoter (if necessary), etc. are performed using standard recombinant DNA techniques (for example, Molecular Cloning, Third Edition, 1.84, Cold Spring Harbor Laboratory Press and New York, which can be referred to, are known methods using restriction enzymes and DNA ligases).
  • microorganisms such as koji molds (for example, Aspergillus oryzae), Bacillus bacteria (for example, Bacillus subtilis), E. coli (Escherichia coli), and budding yeast (Saccharomyces cerevisiae) can be used from the viewpoint of ease of handling.
  • Any host cell capable of replicating the recombinant DNA and expressing the gene of the modified enzyme can be used.
  • Escherichia coli (Escherichia coli) and budding yeast (Saccharomyces cerevisiae) can be used.
  • Candida yeast for example, Candida cylindrasse
  • Candida yeast for example, Candida cylindrasse
  • Pichia yeast for example, Pichia pastoris
  • E. coli examples include E. coli BL21 (DE3) pLysS when T7 promoter is used, and E. coli JM109 otherwise.
  • budding yeast examples include budding yeast SHY2, budding yeast AH22, or budding yeast INVSc1 (Invitrogen).
  • microorganism that is, a transformant
  • the microorganism of the present invention can be obtained by transfection or transformation using the vector of the present invention.
  • calcium chloride method Frnal of Molecular Biology (J. Mol. Biol.), Volume 53, pp. 159 (1970)
  • Hanahan Method Journal of Molecular Biology, Volume 166, 557) (1983)
  • SEM Gene, 96, 23 (1990)
  • Chung et al. Proceedings of the National Academy of Sciences of the USA, 86) Vol., P.
  • microorganism of the present invention can be used for producing the modified enzyme of the present invention.
  • the modified enzyme of the present invention is provided, for example, in the form of an enzyme agent.
  • the enzyme agent may contain excipients, buffers, suspending agents, stabilizers, preservatives, preservatives, physiological saline and the like in addition to the active ingredient (modified enzyme of the present invention).
  • excipient starch, dextrin, maltose, trehalose, lactose, D-glucose, sorbitol, D-mannitol, sucrose, glycerol and the like can be used.
  • Phosphate, citrate, acetate, etc. can be used as the buffer.
  • propylene glycol, ascorbic acid or the like can be used.
  • preservatives phenol, benzalkonium chloride, benzyl alcohol, chlorobutanol, methylparaben, and the like can be used.
  • preservatives ethanol, benzalkonium chloride, paraoxybenzoic acid, chlorobutanol and the like can be used.
  • a further aspect of the present invention relates to the use of modified enzymes and enzyme agents.
  • the modified enzyme of the present invention has substrate specificity close to that of animal-derived lipase, that is, short-chain to medium-chain fatty acid selectivity.
  • a modified enzyme or an enzyme agent is used to improve the flavor of foods and food ingredients.
  • "Taste improvement” means giving a more preferable flavor than the original flavor (that is, the flavor when the present invention is not applied) by enhancing or imparting a specific flavor component.
  • flavor improvement results in an enhanced flavor characteristic of the food or food ingredient.
  • the flavor may be improved by masking an unfavorable flavor component.
  • dairy products As foods or food materials to which the present invention can be applied, dairy products, margarines (margarine, fat spread), shortening, ice creams (ice cream, gelato, frozen yogurt, sundae, smoothie, soft cream, etc.), ice confectionery, mousse , Bavaroa, snacks, dressings, soups, various vegetable oils (soybean oil, rapeseed oil, corn oil, palm oil, palm kernel oil, coconut oil, sunflower oil, cottonseed oil, etc.).
  • margarines margarine, fat spread
  • shortening ice creams (ice cream, gelato, frozen yogurt, sundae, smoothie, soft cream, etc.), ice confectionery, mousse , Bavaroa, snacks, dressings, soups, various vegetable oils (soybean oil, rapeseed oil, corn oil, palm oil, palm kernel oil, coconut oil, sunflower oil, cottonseed oil, etc.).
  • the flavor can be improved by allowing the modified enzyme or enzyme agent of the present invention to act on food or food ingredients.
  • the modified enzyme or the enzyme agent of the present invention is added to, mixed with, or the like in the raw material or intermediate product during the food production process, a food with improved flavor can be produced.
  • the modified enzyme or enzyme agent of the present invention is particularly suitable for the production of dairy products.
  • the flavor (especially cheese flavor) of dairy products can be enhanced or improved.
  • dairy products to which the modified enzyme or enzyme agent of the present invention can be applied include cheeses (Chester, Cheddar, Edam, Gouda, Emmental, Parmesan, Pecorino, etc.), processed cheese (process cheese), EMC (Enzyme modified cheese) , Cheese food (which is made by processing one or more kinds of natural cheese or processed cheese, and the weight of cheese in the product is 51% or more), butter, yogurt, cream, spread, preparation Examples thereof include milk powder and seasonings (for example, those used for snacks, dressings, soups, etc.). Milk used as a main ingredient of dairy products is milk, such as a cow, a sheep, and a goat, for example.
  • the modified enzyme or enzyme agent of the present invention is added, for example, to raw materials or intermediate products in the production process of dairy products. As a result, enzymatic action on milk fat in the raw material or intermediate product is exerted, and fatty acid release occurs.
  • the modified enzyme or enzyme agent of the present invention can be added at various stages in the production process of dairy products. The amount of enzyme to be used (enzyme concentration), temperature conditions, reaction time, etc. may be determined through preliminary experiments.
  • Method (1) Selection of mutation point Candida cylindrasse-derived lipase LIP1 sequence (the amino acid sequence including the signal peptide is SEQ ID NO: 1, the gene sequence encoding the amino acid sequence is SEQ ID NO: 20, and the mature product not including the signal peptide
  • the amino acid interacting with the substrate was selected from the three-dimensional structure registered in the public database. Specifically, 261-position proline (P261), 319-position leucine (L319), and 428-position leucine (L428) were selected. These amino acid residues are represented by P246, L304 and Schmitt et al. (Non-Patent Document 1: J. Schmitt et al., Protein Engineering, vol. 15, no. 7, pp. 595-601, 2002). Each corresponds to L413.
  • mutant lipase As a result of evaluation of more than 10 mutant lipases, the mutant lipase (mutant 1: L428N, mutant 2: G429F), which has a fatty acid composition similar to that of calf sublingual gland lipase, unlike the wild-type lipase (FIG. 1). , Mutant 3: G429M, mutant 4: G429I) were found (FIG. 2). That is, a mutant lipase that selectively releases short-chain or medium-chain fatty acids (C 4 -C 8 ) was successfully obtained. When acting on milk fat, the mutant lipase works well on short chain fatty acids (C 4 -C 6 ) and works best on C 4 fatty acids.
  • variant 3 has a higher short-chain fatty acid specificity than calf sublingual gland-derived lipase.
  • mutant L428F referred to as L413F in the literature
  • Mutant L428F has a relatively high release of long chain fatty acids.
  • amino acid sequence of each variant and the sequence of the gene encoding it are shown below.
  • the mutant lipase (G429M) gene was introduced into the plasmid pCold-TF. Escherichia coli Origami B (DE3) was expressed in the host. The obtained transformant was cultured for 40 hours under conditions of LB medium and 15 ° C. to obtain bacterial cells. The cells were crushed with a bead shocker, and the activity of the resulting extract was measured. As a result, the activity of the cell extract was 3.95 ⁇ u / mL for the lipase kit S and 0 ⁇ u / mL for the LMAP method.
  • G429M mutant lipase specific to short-chain fatty acids
  • G429M mutant lipase specific to short-chain fatty acids
  • the activity of the culture supernatant of Aspergillus oryzae expressing mutant lipase was 39 u / mL in the FCCIII method and 0 u / mL in the LMAP method.
  • G429M mutant lipase specific to short-chain fatty acids
  • G429M mutant lipase specific to short-chain fatty acids
  • the modified lipase of the present invention exhibits short chain or medium chain fatty acid selectivity.
  • the utility value of the modified lipase of the present invention is high in the production of dairy products exhibiting cheese flavor such as cheese or processed cheese products.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Nutrition Science (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Seasonings (AREA)
  • Dairy Products (AREA)
  • General Preparation And Processing Of Foods (AREA)

Abstract

 短鎖ないし中鎖脂肪酸選択性を有する、微生物由来のリパーゼを提供することを課題とする。カンジダ シリンドラッセ由来のリパーゼのアミノ酸配列において、(1)配列番号1に示すアミノ酸配列の428位アミノ酸に相当するアミノ酸に対する、アスパラギンへの置換又は、(2)配列番号1に示すアミノ酸配列の429位アミノ酸に相当するアミノ酸に対する、フェニルアラニン、メチオニン又はイソロイシンへの置換を行い、改変型リパーゼを得る。

Description

改変型リパーゼ及びその用途
 本発明は改変型リパーゼに関する。詳しくは、改変型リパーゼ、及び改変型リパーゼを利用した乳製品の製造方法等が提供される。本出願は、2013年12月10日に出願された日本国特許出願第2013-255419号に基づく優先権を主張するものであり、当該特許出願の全内容は参照により援用される。
 リパーゼは乳製品の風味生成や風味増強に利用されている。伝統的に仔ヤギ、仔牛又は仔羊に由来するリパーゼ製剤が使用されてきた。これら反芻動物由来リパーゼは、乳脂肪から短鎖脂肪酸(C4、C6)を遊離するという特異性を有し、乳製品の風味生成に適している。
 しかし、食品加工へ利用する酵素製剤へのコーシャ、ハラール品質の要求のため、動物由来リパーゼの代替品に対する強い産業的要求がある。この要求に応えるべく、微生物由来酵素の利用(例えば特許文献1)や組換え酵素の利用(例えば特許文献2)等が提案されている。また、特定の用途への適用のために、リパーゼを遺伝子工学的に改変する試みもある(例えば特許文献3~5)。
特開昭61-135541号公報 米国特許出願公開第2004/0001819号明細書 特表2011-512809号公報 特表2003-524386号公報 特表2004-517639号公報
J. Schmitt et al., Protein Engineering, vol.15, no.7, pp.595-601, 2002
 微生物由来リパーゼは短鎖脂肪酸よりも長鎖脂肪酸に選択性を有することから、乳脂肪に作用させた場合の遊離脂肪酸プロフィールも長鎖が多いものとなる。長鎖の脂肪酸は石鹸臭の要因となることから、乳製品、特にチーズの風味として好ましくない。
 以上の背景の下、本発明は、短鎖ないし中鎖脂肪酸選択性を有する、微生物由来のリパーゼ及びその用途を提供することを課題とする。
 上記課題を解決すべく検討を進める中で、本発明者らは、カンジダ シリンドラッセ(Candida cylindracea)由来のリパーゼ(カンジダ ルゴーサ(Candida rugosa)由来のリパーゼと以前に呼称されていたものを使用した。)に着目し、その改変を試みた。試行錯誤の末、基質ポケットを構成するアミノ酸の中から、目的を達成し得る、極めて有効な変異位置を見出すことに成功した。当該変異位置に対して特定のアミノ酸置換を施した変異体は、乳脂肪を加水分解し、動物由来リパーゼと同様に短鎖ないし中鎖脂肪酸(C4~C8)を選択的に遊離した。変異体は短鎖脂肪酸(C4~C6)によく作用し、C4の脂肪酸に最もよく作用した。このように、変異の結果、基質特異性を動物由来リパーゼに近づけることに成功した。尚、カンジダ シリンドラッセ(Candida cylindracea)由来のリパーゼについては、その基質特異性に有効とされる変異(アミノ酸置換)が報告されているが(非特許文献1)、新たに見出された変異の方が基質特異性(短鎖脂肪酸に対する選択性)の改変に効果的であった。
 ここで、アミノ酸配列の同一性の高い酵素(典型的にはアイソザイム)については、立体構造(特に活性部位や基質ポケットなどの活性に関与する部位)の類似性が高く、同様の変異が同様の効果を生む蓋然性が高いという技術常識に鑑みれば、実施例で使用したLIP1とアミノ酸の同一性の高い他の酵素についても同様の変異手法を適用可能といえる。
 以下の発明は、主として以上の成果及び考察に基づく。
 [1]カンジダ シリンドラッセ由来のリパーゼのアミノ酸配列において、以下の(1)又は(2)の置換が行われたアミノ酸配列からなる改変型リパーゼ:
 (1)配列番号1に示すアミノ酸配列の428位アミノ酸に相当するアミノ酸に対する、アスパラギンへの置換;
 (2)配列番号1に示すアミノ酸配列の429位アミノ酸に相当するアミノ酸に対する、フェニルアラニン、メチオニン又はイソロイシンへの置換。
 [2]前記カンジダ シリンドラッセ由来のリパーゼのアミノ酸配列が、配列番号2のアミノ酸配列と70%以上同一のアミノ酸配列であり、前記(1)の置換が行われる、[1]に記載の改変型リパーゼ。
 [3]前記カンジダ シリンドラッセ由来のリパーゼのアミノ酸配列が、配列番号2のアミノ酸配列と90%以上同一のアミノ酸配列であり、前記(2)の置換が行われる、[1]に記載の改変型リパーゼ。
 [4]前記カンジダ シリンドラッセ由来のリパーゼのアミノ酸配列が、配列番号2~7のいずれかのアミノ酸配列である、[2]又は[3]に記載の改変型リパーゼ。
 [5]配列番号8~11のいずれかのアミノ配列からなる、[1]に記載の改変型リパーゼ。
 [6][1]~[5]のいずれか一項に記載の改変型リパーゼをコードする遺伝子。
 [7]配列番号12~19のいずれかの塩基配列を含む、[6]に記載の遺伝子。
 [8][6]又は[7]に記載の遺伝子を含む組換えDNA。
 [9][8]に記載の組換えDNAを保有する微生物。
 [10]宿主が、エシェリヒア コリ、カンジダ シリンドラッセ、アスペルギルス オリゼ、バチルス サチルス又はピキア パストリスである、[9]に記載の微生物。
 [11][1]~[5]のいずれか一項に記載の改変型リパーゼを含む酵素剤。
 [12][1]~[5]のいずれか一項に記載の酵素又は[11]に記載の酵素剤を食品又は食品原料に作用させることを特徴とする、食品又は食品原料の風味改善方法。
 [13][1]~[5]のいずれか一項に記載の酵素又は[11]に記載の酵素剤を食品原料又は中間生成物に作用させることを特徴とする、食品の製造方法。
 [14]食品が乳製品である[12]又は[13]に記載の方法。
 [15][1]~[5]のいずれか一項に記載の酵素又は[11]に記載の酵素剤を含む、食品又は食品原料に作用させるための、風味改善剤。
 [16][1]~[5]のいずれか一項に記載の酵素又は[11]に記載の酵素剤を作用させて得られた、食品又は食品原料。
酵素処理後の遊離脂肪酸組成。チーズ(基質)にカンジダ シリンドラッセ由来の野生型リパーゼLIP1を作用させ、遊離脂肪酸組成を分析した。 酵素処理後の遊離脂肪酸組成。チーズ(基質)に各種改変型リパーゼ(変異体)を作用させ、遊離脂肪酸組成を比較した。左上:仔牛舌下腺由来リパーゼを使用。下:改変型リパーゼ(変異体1:L428N、変異体2:G429F、変異体3:G429M、変異体4:G429I)を使用。右上:既報の改変型リパーゼ(L428F)を使用。 カンジダ シリンドラッセ由来の野生型リパーゼLIP1(配列番号2)、LIP1'(配列番号3)、LIP2(配列番号4)、LIP3(配列番号5)、LIP4(配列番号6)、LIP5(配列番号7)の配列の比較。 図3の続き。 図4の続き。
 説明の便宜上、本発明に関して使用する用語の一部について以下で定義する。
(用語)
 用語「改変型リパーゼ」とは、特定のリパーゼ(説明の便宜上、「基準リパーゼ」と呼ぶ)を改変ないし変異して得られる酵素である。基準リパーゼは、カンジダ シリンドラッセ(Candida cylindracea)由来のリパーゼ又はカンジダ ルゴーサ(Candida rugosa)由来のリパーゼである。用語「カンジダ シリンドラッセ(Candida cylindracea)由来のリパーゼ」と用語「カンジダ ルゴーサ(Candida rugosa)由来のリパーゼ」とは交換可能に使用される。
 用語「カンジダ シリンドラッセ由来のリパーゼ」とは、その起源がカンジダ シリンドラッセであるリパーゼのことであり、カンジダ シリンドラッセが産生するリパーゼ、カンジダ シリンドラッセを変異処理したもの(変異株)が産生するリパーゼ、或いはこれらの酵素の遺伝情報を利用して他の微生物等で発現させたリパーゼなどを含む。同様に、用語「カンジダ ルゴーサ由来のリパーゼ」とは、その起源がカンジダ ルゴーサであるリパーゼのことであり、カンジダ ルゴーサが産生するリパーゼ、カンジダ ルゴーサを変異処理したもの(変異株)が産生するリパーゼ、或いはこれらの酵素の遺伝情報を利用して他の微生物等で発現させたリパーゼなどを含む。
 本発明では、改変ないし変異として「アミノ酸の置換」が行われる。従って、改変型リパーゼと基準リパーゼを比較すると、一部のアミノ酸残基に相違が認められる。尚、本明細書では、改変型リパーゼのことを改変型酵素又は変異体とも呼ぶ。
 本明細書では慣例に従い、以下の通り、各アミノ酸を1文字で表記する。
 メチオニン:M、セリン:S、アラニン:A、トレオニン:T、バリン:V、チロシン:Y、ロイシン:L、アスパラギン:N、イソロイシン:I、グルタミン:Q、プロリン:P、アスパラギン酸:D、フェニルアラニン:F、グルタミン酸:E、トリプトファン:W、リジン:K、システイン:C、アルギニン:R、グリシン:G、ヒスチジン:H
 本明細書では、慣例に従い、翻訳開始点に対応するメチオニンを1番目としてN末端からC末端に向かって付けた番号によって各アミノ酸の位置を特定する。従って、シグナルペプチドが切断された成熟体では、シグナルペプチドの分だけアミノ酸番号が繰り上がることになる。
 本明細書では、変異点のアミノ酸残基(置換の対象となるアミノ酸残基)を、アミノ酸の種類を表す上記1文字とアミノ酸の位置を表す数字との組合せで表現する。例えば、428位のグリシンが変異点であれば「G428」と表現される。
1.改変型リパーゼ
 本発明の第1の局面は改変型リパーゼ(改変型酵素)に関する。本発明の改変型酵素は、カンジダ シリンドラッセ由来のリパーゼのアミノ酸配列において、以下の(1)又は(2)の置換が行われたアミノ酸配列を有する。
 (1)配列番号1に示すアミノ酸配列の428位アミノ酸に相当するアミノ酸に対する、アスパラギンへの置換
 (2)配列番号1に示すアミノ酸配列の429位アミノ酸に相当するアミノ酸に対する、フェニルアラニン、メチオニン又はイソロイシンへの置換
 配列番号1の配列は、カンジダ シリンドラッセ由来のリパーゼLIP1のアミノ酸配列(シグナルペプチドを含む)である。(1)の置換では、当該アミノ酸配列の428位アミノ酸に相当するアミノ酸が置換対象となり、当該アミノ酸をアスパラギンへと置換させることによってリパーゼの基質特異性を変化させる。(2)の置換では、配列番号1の配列の429位アミノ酸に相当するアミノ酸が置換対象となり、当該アミノ酸をフェニルアラニン、メチオニン又はイソロイシンへと置換させることによってリパーゼの基質特異性を変化させる。アミノ酸置換後のリパーゼ、即ち改変型酵素は短鎖ないし中鎖脂肪酸(C4~C8)に対する選択性が高く、それを乳脂肪に作用させると、典型的には、仔牛舌下腺由来リパーゼ類似の遊離脂肪酸組成を示す。好ましくは、改変型酵素は短鎖脂肪酸(C4~C6)によく作用し、C4の脂肪酸に最もよく作用する。
 ここで、本明細書においてアミノ酸残基について使用する場合の用語「相当する」とは、比較されるタンパク質(酵素)間においてその機能の発揮に同等の貢献をしていることを意味する。例えば、基準リパーゼのアミノ酸配列(配列番号1のアミノ酸配列)に対して比較対象のアミノ酸配列を、一次構造(アミノ酸配列)の部分的な相同性を考慮しつつ、最適な比較ができるように並べたときに(このときに必要に応じてギャップを導入し、アライメントを最適化してもよい)、基準のアミノ酸配列中の特定のアミノ酸に対応する位置のアミノ酸を「相当するアミノ酸」として特定することができる。一次構造同士の比較に代えて、又はこれに加えて立体構造(三次元構造)同士の比較によって「相当するアミノ酸」を特定することもできる。立体構造情報を利用することによって信頼性の高い比較結果が得られる。この場合は、複数の酵素の立体構造の原子座標を比較しながらアライメントを行っていく手法を採用できる。変異対象酵素の立体構造情報は例えばProtein Data Bank(http://www.pdbj.org/index_j.html)より取得することができる。
 X線結晶構造解析によるタンパク質立体構造の決定方法の一例を以下に示す。
(1)タンパク質を結晶化する。結晶化は、立体構造決定のためには欠かせないが、それ以外にも、タンパク質の高純度の精製法、高密度で安定な保存法として産業上の有用性もある。この場合、リガンドとして基質もしくはそのアナログ化合物を結合したタンパク質を結晶化すると良い。
(2)作製した結晶にX線を照射して回折データを収集する。なお、タンパク質結晶はX線照射によりダメージを受け回折能が劣化するケースが多々ある。その場合、結晶を急激に-173℃程度に冷却し、その状態で回折データを収集する低温測定技術が最近普及してきた。なお、最終的に、構造決定に利用する高分解能データを収集するために、輝度の高いシンクロトロン放射光が利用される。
(3)結晶構造解析を行うには、回折データに加えて、位相情報が必要になる。目的のタンパク質に対して、類縁のタンパク質の結晶構造が未知の場合、分子置換法で構造決定することは不可能であり、重原子同型置換法により位相問題が解決されなくてはならない。重原子同型置換法は、水銀や白金等原子番号が大きな金属原子を結晶に導入し、金属原子の大きなX線散乱能のX線回折データへの寄与を利用して位相情報を得る方法である。決定された位相は、結晶中の溶媒領域の電子密度を平滑化することにより改善することが可能である。溶媒領域の水分子は揺らぎが大きいために電子密度がほとんど観測されないので、この領域の電子密度を0に近似することにより、真の電子密度に近づくことができ、ひいては位相が改善されるのである。また、非対称単位に複数の分子が含まれている場合、これらの分子の電子密度を平均化することにより位相が更に大幅に改善される。このようにして改善された位相を用いて計算した電子密度図にタンパク質のモデルをフィットさせる。このプロセスは、コンピューターグラフィックス上で、MSI社(アメリカ)のQUANTA等のプログラムを用いて行われる。この後、MSI社のX-PLOR等のプログラムを用いて、構造精密化を行い、構造解析は完了する。目的のタンパク質に対して、類縁のタンパク質の結晶構造が既知の場合は、既知タンパク質の原子座標を用いて分子置換法により決定できる。分子置換と構造精密化はプログラム CNS_SOLVE ver.11などを用いて行うことができる。
 カンジダ シリンドラッセ由来のリパーゼとして、5種類の酵素(LIP1、LIP2、LIP3、LIP4、LIP5)が知られている。また、本出願人はリパーゼ生産菌の変異株からLIP1に高い相同性を示す酵素(LIP1'と呼ぶ)を見出している。これら6種類の酵素について、シグナルペプチドを除いたアミノ酸配列(即ち、成熟体のアミノ酸配列)を配列番号2(LIP1)、配列番号3(LIP1')、配列番号4(LIP2)、配列番号5(LIP3)、配列番号6(LIP4)、配列番号7(LIP5)に示す。典型的には、これらの酵素のいずれが基準リパーゼ(それに置換を施すことによって改変型酵素が得られるもの)となる。即ち、基準リパーゼのアミノ酸配列の具体例は配列番号2~7のアミノ酸配列である。カンジダ シリンドラッセ由来のリパーゼLIP1のアミノ酸配列(配列番号2)との同一性は、配列番号3のアミノ酸配列では99%、配列番号4のアミノ酸配列では79%、配列番号5のアミノ酸配列では        88%、配列番号6のアミノ酸配列では81%、配列番号7のアミノ酸配列では82%である(図3~5)。
 (1)の置換(配列番号1のアミノ酸配列の428位アミノ酸に相当するアミノ酸に対する置換)については、配列番号2のアミノ酸配列と70%以上同一のアミノ酸配列からなる酵素を基準リパーゼにしてもよい。例えば、LIP1、LIP1'、LIP2、LIP3、LIP4及びLIP5は当該基準リパーゼに該当する。好ましくは、配列番号2のアミノ酸配列と80%以上同一であるアミノ酸配列を有する酵素(但し、リパーゼ活性を示すものに限る)、より好ましくは配列番号2のアミノ酸配列と90%以上同一であるアミノ酸配列を有する酵素(但し、リパーゼ活性を示すものに限る)、より一層好ましくは配列番号2のアミノ酸配列と95%以上同一であるアミノ酸配列を有する酵素(但し、リパーゼ活性を示すものに限る)、最も好ましくは配列番号2のアミノ酸配列と99%以上同一であるアミノ酸配列を有する酵素(但し、リパーゼ活性を示すものに限る)を基準リパーゼとして用いる。
 配列番号2のアミノ酸配列を有するLIP1では、配列番号1のアミノ酸配列の428位アミノ酸に相当するアミノ酸は413番目のロイシン(L)である。従って、配列番号2のアミノ酸配列を有するLIP1を基準リパーゼとしたときには当該アミノ酸が置換対象になる。一方、配列番号3のアミノ酸配列を有するLIP1'を基準リパーゼとしたとき、置換対象のアミノ酸は配列番号3の413番目のアミノ酸であるロイシン(L)となる。配列番号4のアミノ酸配列を有するLIP2を基準リパーゼとしたとき、置換対象のアミノ酸は配列番号4のアミノ酸配列の413番目のアミノ酸であるロイシン(L)となる。配列番号5のアミノ酸配列を有するLIP3を基準リパーゼとしたとき、置換対象のアミノ酸は配列番号5の413番目のアミノ酸であるロイシン(L)となる。配列番号6のアミノ酸配列を有するLIP4を基準リパーゼとしたとき、置換対象のアミノ酸は配列番号6のアミノ酸配列の413番目のアミノ酸であるロイシン(L)となる。配列番号7のアミノ酸配列を有するLIP5を基準リパーゼとしたとき、置換対象のアミノ酸は配列番号7のアミノ酸配列の413番目のアミノ酸であるロイシン(L)となる。
 一方、(2)の置換(配列番号1のアミノ酸配列の429位アミノ酸に相当するアミノ酸に対する置換)については、配列番号2のアミノ酸配列と90%以上同一のアミノ酸配列からなる酵素を基準リパーゼにしてもよい。例えば、LIP1及びLIP1'は当該基準リパーゼに該当する。好ましくは、配列番号2のアミノ酸配列と95%以上同一であるアミノ酸配列を有する酵素(但し、リパーゼ活性を示すものに限る)、より好ましくは配列番号2のアミノ酸配列と98%以上同一であるアミノ酸配列を有する酵素(但し、リパーゼ活性を示すものに限る)、最も好ましくは配列番号2のアミノ酸配列と99%以上同一であるアミノ酸配列を有する酵素(但し、リパーゼ活性を示すものに限る)を基準リパーゼとして用いる。
 配列番号2のアミノ酸配列を有するLIP1では、配列番号1のアミノ酸配列の429位アミノ酸に相当するアミノ酸は414番目のグリシン(G)である。従って、配列番号2のアミノ酸配列を有するLIP1を基準リパーゼとしたときには、当該アミノ酸が置換対象になる。一方、配列番号3のアミノ酸配列を有するLIP1'を基準リパーゼとしたとき、置換対象のアミノ酸は配列番号3の414番目のアミノ酸であるグリシン(G)となる。
 ここで、改変型酵素のアミノ酸配列の具体例を配列番号8~11に示す。配列番号8のアミノ酸配列を有する改変型酵素(変異体1)は、配列番号2のアミノ酸配列を有するLIP1に対し、413番目のアミノ酸のアスパラギンへの置換(即ち(1)の置換)を施して得られたもの、配列番号9のアミノ酸配列を有する改変型酵素(変異体2)は、配列番号2のアミノ酸配列を有するLIP1に対し、414番目のアミノ酸のフェニルアラニンへの置換(即ち(2)の置換の一つ)を施して得られたもの、配列番号10のアミノ酸配列を有する改変型酵素(変異体3)は、配列番号2のアミノ酸配列を有するLIP1に対し、414番目のアミノ酸のメチオニンへの置換(即ち(2)の置換の一つ)を施して得られたもの、配列番号11のアミノ酸配列を有する改変型酵素(変異体4)は、配列番号2のアミノ酸配列を有するLIP1に対し、414番目のアミノ酸のイソロイシンへの置換(即ち(2)の置換の一つ)を施して得られたものである。
 ところで、一般に、あるタンパク質のアミノ酸配列の一部を変異させた場合において変異後のタンパク質が変異前のタンパク質と同等の機能を有することがある。即ちアミノ酸配列の変異がタンパク質の機能に対して実質的な影響を与えず、タンパク質の機能が変異前後において維持されることがある。この技術常識を考慮すれば、上記改変型酵素(変異体1~4のいずれか)と比較した場合に、アミノ酸配列の僅かな相違が認められるものの(但し、アミノ酸配列の相違は上記アミノ酸置換が施された位置以外の位置で生ずることとする)、特性に実質的な差が認められないものは、上記改変型酵素と実質同一の酵素とみなすことができる。ここでの「アミノ酸配列の僅かな相違」とは、典型的には、アミノ酸配列を構成する1~数個(上限は例えば3個、5個、7個、10個)のアミノ酸の欠失、置換、若しくは1~数個(上限は例えば3個、5個、7個、10個)のアミノ酸の付加、挿入、又はこれらの組合せによりアミノ酸配列に変異(変化)が生じていることをいう。「実質同一の酵素」のアミノ酸配列と、基準となる上記改変型酵素のアミノ酸配列との同一性(%)は、例えば90%以上であり、好ましくは95%以上であり、より好ましくは98%以上であり、最も好ましくは99%以上である。尚、アミノ酸配列の相違は複数の位置で生じていてもよい。「アミノ酸配列の僅かな相違」は、好ましくは保存的アミノ酸置換により生じている。
2.改変型リパーゼをコードする核酸等
 本発明の第2の局面は本発明の改変型酵素に関連する核酸を提供する。即ち、改変型酵素をコードする遺伝子、改変型酵素をコードする核酸を同定するためのプローブとして用いることができる核酸、改変型酵素をコードする核酸を増幅又は突然変異等させるためのプライマーとして用いることができる核酸が提供される。
 改変型酵素をコードする遺伝子は典型的には改変型酵素の調製に利用される。改変型酵素をコードする遺伝子を用いた遺伝子工学的調製法によれば、より均質な状態の改変型酵素を得ることが可能である。また、当該方法は大量の改変型酵素を調製する場合にも好適な方法といえる。尚、改変型酵素をコードする遺伝子の用途は改変型酵素の調製に限られない。例えば、改変型酵素の作用機構の解明などを目的とした実験用のツールとして、或いは酵素の更なる改変体をデザイン又は作製するためのツールとして、当該核酸を利用することもできる。
 本明細書において「改変型酵素をコードする遺伝子」とは、それを発現させた場合に当該改変型酵素が得られる核酸のことをいい、当該改変型酵素のアミノ酸配列に対応する塩基配列を有する核酸は勿論のこと、そのような核酸にアミノ酸配列をコードしない配列が付加されてなる核酸をも含む。また、コドンの縮重も考慮される。
 改変型酵素をコードする遺伝子の配列(塩基配列)の例を配列番号12~15に示す。これらの配列は、下記の通り、後述の実施例に示した変異体をコードする。
 配列番号12:変異体1(L428N)
 配列番号13:変異体2(G429F)
 配列番号14:変異体3(G429M)
 配列番号15:変異体4(G429I)
 ところで、カンジダ シリンドラッセではCTGコドンがセリンをコードする。他の酵母等を宿主として発現させる場合には、使用する宿主に合わせ、CTGコドンを、セリンをコードする他のコドン(TCT、TCC、TCA、AGT又はAGC)に変更する必要がある。本発明は、異種発現用の遺伝子の配列として、配列番号12~15のいずれかの配列に対してこのようなコドンの置換を施した配列も提供する。コドンの置換を施した配列の例を以下に示す。
 配列番号16(配列番号12の配列においてコドンの置換をしたもの)
 配列番号17(配列番号13の配列においてコドンの置換をしたもの)
 配列番号18(配列番号14の配列においてコドンの置換をしたもの)
 配列番号19(配列番号15の配列においてコドンの置換をしたもの)
 本発明の遺伝子を宿主内で発現させる場合には、通常、上記の配列(配列番号5'末端側にシグナルペプチドをコードする配列(シグナル配列)を付加した遺伝子コンストラクトで宿主に導入することになる。野生型のLIP1のシグナル配列を配列番号21に示す。当該配列がコードするアミノ酸配列(即ちシグナルペプチド)を配列番号22に示す。シグナル配列は宿主に応じて選択すればよい。目的とする変異体を発現可能なシグナル配列である限り、本発明に使用できる。利用可能なシグナル配列の例は、α-因子のシグナルペプチドをコードする配列(Protein Engineering, 1996, vol9, p.1055-1061)、α-因子受容体のシグナルペプチドをコードする配列、SUC2タンパク質のシグナルペプチドをコードする配列、PHO5タンパク質のシグナルペプチドをコードする配列、BGL2タンパク質のシグナルペプチドをコードする配列、AGA2タンパク質のシグナルペプチドをコードする配列、TorA(トリメチルアミンN-オキシドレダクターゼ)のシグナルペプチドをコードする配列、バチルス ズブチリス由来のPhoD(ホスホエステラーゼ)のシグナルペプチドをコードする配列、バチルス ズブチリス由来のLipA(リパーゼ)のシグナルペプチドをコードする配列、アスペルギルス オリゼ由来タカアミラーゼのシグナルペプチドをコードする配列(特開2009-60804号公報)、バチルス アミロリケファシエンス由来のα-アミラーゼのシグナルペプチドをコードする配列(Eur. J. Biochem. 155, 577-581 (1986))、バチルス ズブチリス由来の中性プロテアーゼのシグナルペプチドをコードする配列(APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Apr. 1995, p. 1610-1613 Vol. 61, No. 4)、Bacillus属細菌由来セルラーゼのシグナルペプチドをコードする配列(特開2007-130012号公報)を例示することができる。
 本発明の核酸は、本明細書又は添付の配列表が開示する配列情報を参考にし、標準的な遺伝子工学的手法、分子生物学的手法、生化学的手法などを用いることによって、単離された状態に調製することができる。
 本発明の他の態様では、本発明の改変型酵素をコードする遺伝子の塩基配列と比較した場合にそれがコードするタンパク質の機能は同等であるものの一部において塩基配列が相違する核酸(以下、「相同核酸」ともいう。また、相同核酸を規定する塩基配列を「相同塩基配列」ともいう)が提供される。相同核酸の例として、本発明の改変型酵素をコードする核酸の塩基配列を基準として1若しくは複数の塩基の置換、欠失、挿入、付加、又は逆位を含む塩基配列からなり、改変型酵素に特徴的な酵素活性(即ちリパーゼ活性)を有するタンパク質をコードするDNAを挙げることができる。塩基の置換や欠失などは複数の部位に生じていてもよい。ここでの「複数」とは、当該核酸がコードするタンパク質の立体構造におけるアミノ酸残基の位置や種類によっても異なるが例えば2~40塩基、好ましくは2~20塩基、より好ましくは2~10塩基である。
 以上のような相同核酸は例えば、制限酵素処理、エキソヌクレアーゼやDNAリガーゼ等による処理、位置指定突然変異導入法(Molecular Cloning, Third Edition, Chapter 13 ,Cold Spring Harbor Laboratory Press, New York)やランダム突然変異導入法(Molecular Cloning, Third Edition, Chapter 13 ,Cold Spring Harbor Laboratory Press, New York)による変異の導入などによって得られる。また、紫外線照射など他の方法によっても相同核酸を得ることができる。
 本発明の他の態様は、本発明の改変型酵素をコードする遺伝子の塩基配列に対して相補的な塩基配列を有する核酸に関する。本発明の更に他の態様は、本発明の改変型酵素をコードする遺伝子の塩基配列、或いはそれに相補的な塩基配列に対して少なくとも約60%、70%、80%、90%、95%、99%、99.9%同一な塩基配列を有する核酸を提供する。
 本発明の更に別の態様は、本発明の改変型酵素をコードする遺伝子の塩基配列又はその相同塩基配列に相補的な塩基配列に対してストリンジェントな条件下でハイブリダイズする塩基配列を有する核酸に関する。ここでの「ストリンジェントな条件」とは、いわゆる特異的なハイブリッドが形成され、非特異的なハイブリッドが形成されない条件をいう。このようなストリンジェントな条件は当業者に公知であって例えばMolecular Cloning(Third Edition, Cold Spring Harbor Laboratory Press, New York)やCurrent protocols in molecular biology(edited by Frederick M. Ausubel et al., 1987)を参照して設定することができる。ストリンジェントな条件として例えば、ハイブリダイゼーション液(50%ホルムアミド、10×SSC(0.15M NaCl, 15mM sodium citrate, pH 7.0)、5×Denhardt溶液、1% SDS、10% デキストラン硫酸、10μg/mlの変性サケ精子DNA、50mMリン酸バッファー(pH7.5))を用いて約42℃~約50℃でインキュベーションし、その後0.1×SSC、0.1% SDSを用いて約65℃~約70℃で洗浄する条件を挙げることができる。更に好ましいストリンジェントな条件として例えば、ハイブリダイゼーション液として50%ホルムアミド、5×SSC(0.15M NaCl, 15mM sodium citrate, pH 7.0)、1×Denhardt溶液、1%SDS、10%デキストラン硫酸、10μg/mlの変性サケ精子DNA、50mMリン酸バッファー(pH7.5))を用いる条件を挙げることができる。
 本発明の更に他の態様は、本発明の改変型酵素をコードする遺伝子の塩基配列、或いはそれに相補的な塩基配列の一部を有する核酸(核酸断片)を提供する。このような核酸断片は、本発明の改変型酵素をコードする遺伝子の塩基配列を有する核酸などを検出、同定、及び/又は増幅することなどに用いることができる。核酸断片は例えば、本発明の改変型酵素をコードする遺伝子の塩基配列において連続するヌクレオチド部分(例えば約10~約100塩基長、好ましくは約20~約100塩基長、更に好ましくは約30~約100塩基長)にハイブリダイズする部分を少なくとも含むように設計される。プローブとして利用される場合には核酸断片を標識化することができる。標識化には例えば、蛍光物質、酵素、放射性同位元素を用いることができる。
 本発明のさらに他の局面は、本発明の遺伝子(改変型酵素をコードする遺伝子)を含む組換えDNAに関する。本発明の組換えDNAは例えばベクターの形態で提供される。本明細書において用語「ベクター」は、それに挿入された核酸を細胞等のターゲット内へと輸送することができる核酸性分子をいう。
 使用目的(クローニング、タンパク質の発現)に応じて、また宿主細胞の種類を考慮して適当なベクターが選択される。大腸菌を宿主とするベクターとしてはM13ファージ又はその改変体、λファージ又はその改変体、pBR322又はその改変体(pB325、pAT153、pUC8など)等、酵母を宿主とするベクターとしてはpYepSec1、pMFa、pYES2等、昆虫細胞を宿主とするベクターとしてはpAc、pVL等、哺乳類細胞を宿主とするベクターとしてはpCDM8、pMT2PC等を例示することができる。
 本発明のベクターは好ましくは発現ベクターである。「発現ベクター」とは、それに挿入された核酸を目的の細胞(宿主細胞)内に導入することができ、且つ当該細胞内において発現させることが可能なベクターをいう。発現ベクターは通常、挿入された核酸の発現に必要なプロモーター配列や、発現を促進させるエンハンサー配列等を含む。選択マーカーを含む発現ベクターを使用することもできる。かかる発現ベクターを用いた場合には、選択マーカーを利用して発現ベクターの導入の有無(及びその程度)を確認することができる。
 本発明の核酸のベクターへの挿入、選択マーカー遺伝子の挿入(必要な場合)、プロモーターの挿入(必要な場合)等は標準的な組換えDNA技術(例えば、Molecular Cloning, Third Edition, 1.84, Cold Spring Harbor Laboratory Press, New Yorkを参照することができる、制限酵素及びDNAリガーゼを用いた周知の方法)を用いて行うことができる。
 宿主細胞としては、取り扱いの容易さの点から、麹菌(例えばアスペルギルス オリゼ)、バチルス属細菌(例えばバチルス ズブチリス)、大腸菌(エシェリヒア コリ)、出芽酵母(サッカロマイセス セレビシエ)などの微生物を用いることができるが、組換えDNAが複製可能で且つ改変型酵素の遺伝子が発現可能な宿主細胞であれば利用可能である。好ましくは大腸菌(エシェリヒア コリ)、出芽酵母(サッカロマイセス セレビシエ)を用いることができる。カンジダ属酵母(例えばカンジダ シリンドラッセ)を宿主にすることもできる。また、ピキア属酵母(例えばピキア パストリス)を宿主にすることもできる。大腸菌の例としてT7系プロモーターを利用する場合は大腸菌BL21(DE3)pLysS、そうでない場合は大腸菌JM109を挙げることができる。また、出芽酵母の例として出芽酵母SHY2、出芽酵母AH22あるいは出芽酵母INVSc1(インビトロジェン社)を挙げることができる。
 本発明の他の局面は、本発明の組換えDNAを保有する微生物(即ち形質転換体)に関する。本発明の微生物は、上記本発明のベクターを用いたトランスフェクション乃至はトランスフォーメーションによって得ることができる。例えば、塩化カルシウム法(ジャーナル オブ モレキュラー バイオロジー(J.Mol. Biol.)、第53巻、第159頁 (1970))、ハナハン(Hanahan)法(ジャーナル オブ モレキュラー バイオロジー、第166巻、第557頁 (1983))、SEM法(ジーン(Gene)、第96巻、第23頁(1990))、チャング(Chung)らの方法(プロシーディングズ オブ ザ ナショナル アカデミー オブ サイエンシーズ オブ ザ USA、第86巻、第2172頁(1989))、リン酸カルシウム共沈降法、エレクトロポーレーション(Potter,H. et al., Proc. Natl. Acad. Sci. U.S.A. 81, 7161-7165(1984))、リポフェクション(Felgner, P.L. et al.,  Proc. Natl. Acad. Sci. U.S.A. 84,7413-7417(1984))等によって実施することができる。尚、本発明の微生物は、本発明の改変型酵素を生産することに利用することができる。
3.改変型リパーゼを含む酵素剤
 本発明の改変型酵素は例えば酵素剤の形態で提供される。酵素剤は、有効成分(本発明の改変型酵素)の他、賦形剤、緩衝剤、懸濁剤、安定剤、保存剤、防腐剤、生理食塩水などを含有していてもよい。賦形剤としてはデンプン、デキストリン、マルトース、トレハロース、乳糖、D-グルコース、ソルビトール、D-マンニトール、白糖、グリセロール等を用いることができる。緩衝剤としてはリン酸塩、クエン酸塩、酢酸塩等を用いることができる。安定剤としてはプロピレングリコール、アスコルビン酸等を用いることができる。保存剤としてはフェノール、塩化ベンザルコニウム、ベンジルアルコール、クロロブタノール、メチルパラベン等を用いることができる。防腐剤としてはエタノール、塩化ベンザルコニウム、パラオキシ安息香酸、クロロブタノール等と用いることができる。
4.改変型リパーゼの用途
 本発明の更なる局面は改変型酵素及び酵素剤の用途に関する。本発明の改変型酵素は、動物由来リパーゼに近似した基質特異性、即ち、短鎖ないし中鎖脂肪酸選択性を有する。本発明では、この特性を活かし、食品や食品原料などの風味改善に改変型酵素又は酵素剤を利用する。「風味改善」とは、特定の風味成分を増強又は付与することによって、本来の風味(即ち、本発明を適用しない場合の風味)よりも好ましい風味をもたせることをいう。典型的には、風味改善の結果、その食品又は食品原料に特徴的な風味が増強される。好ましくない風味成分がマスクされることによって風味が改善する場合もある。
 本発明を適用可能な食品又は食品原料として、乳製品、マーガリン類(マーガリン、ファットスプレッド)、ショートニング、アイスクリーム類(アイスクリーム、ジェラート、フローズンヨーグルト、サンデー、スムージー、ソフトクリームなど)、氷菓、ムース、ババロア、スナック菓子、ドレッシング、スープ、各種植物油(大豆油、なたね油、コーン油、パーム油、パーム核油、ヤシ油、ひまわり油、綿実油など)を例示することができる。
 例えば、食品又は食品原料に本発明の改変型酵素又は酵素剤を作用させることによって風味の改善を図ることができる。一方、食品の製造工程中において原料又は中間生成物に本発明の改変型酵素又は酵素剤を添加、混合等することににすれば、風味が改善した食品を製造することができる。或いは、本発明の改変型酵素又は酵素剤を利用して得られた組成物を添加、混合等することによって、食品又は食品原料の風味を改善させることにしてもよい。
 本発明の改変型酵素又は酵素剤は、特に、乳製品の製造に好適である。本発明の改変型酵素又は酵素剤を適用することにより、乳製品の風味(特にチーズ風味)を増強ないし改善させることができる。
 本発明の改変型酵素又は酵素剤を適用可能な乳製品の例として、チーズ(チェスター、チェダー、エダム、ゴーダ、エメンタール、パルメザン、ペコリーノ等)、加工チーズ(プロセスチーズ)、EMC(Enzyme modified cheese)、チーズフード(一種以上のナチュラルチーズ又はプロセスチーズを加工して製造されるものであって、製品中のチーズ分の重量が51%以上のものをいう)、バター、ヨーグルト、クリーム、スプレッド、調製粉乳、調味料(例えば、スナック菓子、ドレッシング、スープなどに使用されるもの)、を挙げることができる。乳製品の主原料となる乳は、例えば、牛、ヒツジ、ヤギ等の乳である。
 本発明の改変型酵素又は酵素剤は、例えば、乳製品の製造過程において原料又は中間生成物に添加される。これによって、原料又は中間生成物中の乳脂肪に対する酵素作用が発揮され、脂肪酸の遊離が生ずる。本発明の改変型酵素又は酵素剤は、乳製品の製造過程において、様々な段階で添加され得る。使用する酵素量(酵素濃度)、温度条件、反応時間などは、予備実験を通して決定すればよい。
A.新規リパーゼの創出
 新規リパーゼの創出を目指し、以下の検討を行った。
1.目標・検討方針
 以下の点に着目して検討を進めることにした。
(1)チーズに作用させた場合に仔牛舌下腺由来リパーゼ類似の遊離脂肪酸組成をもたらす微生物リパーゼの取得を目指す。具体的には、脂肪酸特異性を長鎖から短鎖に変更することを試みる。
(2)酵素タンパク質の基質ポケットを狭くすることにより基質特異性を変更する。
(3)基質ポケット内のアミノ酸を、よりかさ高いものに変更することによりポケットを狭くする。
2.方法
(1)変異点の選択
 カンジダ シリンドラッセ由来リパーゼLIP1の配列(シグナルペプチドを含むアミノ酸配列を配列番号1に、当該アミノ酸配列をコードする遺伝子の配列を配列番号20に、シグナルペプチドを含まない成熟体のアミノ酸配列を配列番号2に示す)及び公共のデータベースに登録された立体構造から、基質と相互作用しているアミノ酸を選択した。具体的には、261位プロリン(P261)、319位ロイシン(L319)、428位ロイシン(L428)を選択した。尚、これらのアミノ酸残基は、Schmittらの文献(非特許文献1:J. Schmitt et al., Protein Engineering, vol.15, no.7, pp.595-601, 2002)におけるP246、L304及びL413にそれぞれ対応する。
 一方、ポケット内の疎水性を高めることでエステル合成能を向上させることに着目しつつコンピュータ解析によって変異点を検索し、中性アミノ酸である380位セリン(S380)と429位グリシン(G429)を選択した。
(2)変異アミノ酸配列をコードするDNA配列の取得
 ピキア パストリス(Pichia pastoris)宿主発現系(Invitrogen, Pichia Expression Kit)を使用した。プラスミドはpPIC3.5Kを使用し、テンプレートであるカンジダ シリンドラッセ由来LIP1遺伝子には出芽酵母(Saccharomyces cerevisiae)に最適化されたコドン配列を使用した。Inverse PCR法による変異導入を行い(TOYOBO, KOD-Plus-Mutagenesis Kit)、選択した変異点にアミノ酸置換が生じた各種変異体をコードする遺伝子を調製した。変異体LIP1遺伝子を含むプラスミドをE. coli DH5αに形質転換した。続いて、変異体LIP1遺伝子を含むプラスミドを形質転換したE. coliより抽出した。
(3)変異体アミノ酸配列を発現する形質転換体の取得
 変異体LIP1遺伝子を含むプラスミドをピキア パストリスGS115に形質転換した(Invitrogen, Pichia Expression Kit)。得られたピキア パストリス形質転換体を培養し、培養上清から酵素(変異体リパーゼ)を回収した。
(4)変異体リパーゼを用いた乳脂肪分解
 基質にはナチュラルチーズ(ヤングチェダーチーズ)をリン酸バッファー(pH 6.8)に重量比で1:1になるように懸濁・分散させたものを使用した。反応条件は50℃、16時間とした。各変異体リパーゼの添加量はチーズ1gに対しタンパク量0.1mgとした。反応終了後、チーズ中の遊離脂肪酸をジエチルエーテルにより抽出し、ガスクロマトグラフィーに供した。
 10種を超える変異体リパーゼについて評価した結果、野生型リパーゼ(図1)と異なり、仔牛舌下腺由来リパーゼと類似した脂肪酸組成を示す変異体リパーゼ(変異体1:L428N、変異体2:G429F、変異体3:G429M、変異体4:G429I)が見出された(図2)。即ち、短鎖ないし中鎖脂肪酸(C4~C8)を選択的に遊離する変異体リパーゼの取得に成功した。乳脂肪に作用させた場合、変異体リパーゼは短鎖脂肪酸(C4~C6)によく作用し、C4の脂肪酸に最もよく作用する。ここで、変異体3は、仔牛舌下腺由来リパーゼよりも短鎖脂肪酸特異性が高い点は注目に値する。比較のために、上掲の文献で報告された変異体L428F(文献中ではL413Fと呼称される)についての結果(図2の右上)を示した。変異体L428Fでは長鎖脂肪酸の遊離が比較的多い。尚、各変異体のアミノ酸配列とそれをコードする遺伝子の配列(野生型に対応するようにカンジダ酵母に特有のコドンを使用している)を以下に示す。
<変異体1>
 アミノ酸配列:配列番号8
 遺伝子配列:配列番号12
<変異体2>
 アミノ酸配列:配列番号9
 遺伝子配列:配列番号13
<変異体3>
 アミノ酸配列:配列番号10
 遺伝子配列:配列番号14
<変異体4>
 アミノ酸配列:配列番号11
 遺伝子配列:配列番号15
B.変異体リパーゼの各種宿主での発現
(1)大腸菌(エシェリヒア コリ)での発現
 プラスミドpET20bに変異体リパーゼ(G429M)遺伝子を導入した。エシェリヒア コリOrigami B(DE3)を宿主に発現させた。得られた形質転換体を15℃の条件下で40時間培養し、菌体を得た。菌体をビーズショッカーで破砕し、得られた抽出液の活性を測定した。短鎖脂肪酸に対する活性を測定するためにリパーゼキットS(DSバイオファーマメディカル)を用いた。長鎖脂肪酸への活性を測定するために脂肪消化力LMAP法を用いた。結果、細胞抽出液の活性は、リパーゼキットSの場合に1.85 u/mL、LMAP法の場合に0 u/mLであった。
 プラスミドpCold-TFに変異体リパーゼ(G429M)遺伝子を導入した。エシェリヒア コリOrigami B(DE3)を宿主に発現させた。得られた形質転換体をLB培地、15℃の条件下で40時間培養し、菌体を得た。菌体をビーズショッカーで破砕し、得られた抽出液の活性を測定した。結果、細胞抽出液の活性は、リパーゼキットSの場合に3.95 u/mL、LMAP法の場合に0 u/mLであった。
 以上の通り、短鎖脂肪酸特異的な変異体リパーゼ(G429M)を発現することが出来た。
(2)酵母(カンジダ シリンドラッセ)での発現
 変異により栄養要求性を付与したカンジダ シリンドラッセを宿主に、変異体リパーゼ(G429M)を発現させた。得られた形質転換体を25℃の条件下で48時間培養し、培養上清の活性を測定した。短鎖脂肪酸への活性を測定するためにFCCIII法を用いた。長鎖脂肪酸への活性を測定するために脂肪消化力LMAP法を用いた。結果、変異体リパーゼ(G429M)を発現させたカンジダ シリンドラッセの培養上清の活性は、FCCIII法の場合に470 u/mL、LMAP法の場合に155 u/mLであった(短鎖:長鎖 = 3:1)。比較のために、変異体リパーゼ遺伝子を導入していない宿主の培養上清の活性を測定したところ、FCCIII法の場合に267 u/mL、LMAP法の場合に599 u/mLであった(短鎖:長鎖 = 2:5)。
 以上の通り、短鎖脂肪酸特異的な変異体リパーゼ(G429M)を発現することが出来た。
(3)糸状菌(アスペルギルス オリゼ)での発現
 変異により栄養要求性を付与したアスペルギルス オリゼを宿主に、アミラーゼプロモーターを用いて変異体リパーゼ(G429M)を発現させた。得られた形質転換体を30℃の条件下で76時間培養し、培養上清の活性を測定した。短鎖脂肪酸への活性を測定するためにFCCIII法を用いた。長鎖脂肪酸への活性を測定するために脂肪消化力LMAP法を用いた。結果、変異型リパーゼ(G429M)を発現させたアスペルギルス オリゼの培養上清の活性は、FCCIII法の場合に39 u/mL、LMAP法の場合に0 u/mLであった。
 以上の通り、短鎖脂肪酸特異的な変異体リパーゼ(G429M)を発現することが出来た。
(4)枯草菌(バチルス サチルス)での発現
 プルラナーゼプロモーターを付与した変異体リパーゼ(G429M)遺伝子をプラスミドpHY300PLKに導入した。バチルス サチルスを宿主に発現させた。得られた形質転換体の培養液の活性を測定した。短鎖脂肪酸に対する活性を測定するためにリパーゼキットS(DSバイオファーマメディカル)を用いた。長鎖脂肪酸への活性を測定するために脂肪消化力LMAP法を用いた。結果、培養液の活性は、リパーゼキットSの場合に0.3 u/mL(空ベクターで形質転換したコントロールは0.1u/mL)、LMAP法の場合に0 u/mLであった。
 以上の通り、短鎖脂肪酸特異的な変異体リパーゼ(G429M)を発現することが出来た。
 本発明の改変型リパーゼは短鎖ないし中鎖脂肪酸選択性を示す。特に、チーズ又はチーズ加工品等、チーズの風味を呈する乳製品の製造において本発明の改変型リパーゼの利用価値は高い。
 この発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。本明細書の中で明示した論文、公開特許公報、及び特許公報などの内容は、その全ての内容を援用によって引用することとする。

Claims (16)

  1.  カンジダ シリンドラッセ由来のリパーゼのアミノ酸配列において、以下の(1)又は(2)の置換が行われたアミノ酸配列からなる改変型リパーゼ:
     (1)配列番号1に示すアミノ酸配列の428位アミノ酸に相当するアミノ酸に対する、アスパラギンへの置換;
     (2)配列番号1に示すアミノ酸配列の429位アミノ酸に相当するアミノ酸に対する、フェニルアラニン、メチオニン又はイソロイシンへの置換。
  2.  前記カンジダ シリンドラッセ由来のリパーゼのアミノ酸配列が、配列番号2のアミノ酸配列と70%以上同一のアミノ酸配列であり、前記(1)の置換が行われる、請求項1に記載の改変型リパーゼ。
  3.  前記カンジダ シリンドラッセ由来のリパーゼのアミノ酸配列が、配列番号2のアミノ酸配列と90%以上同一のアミノ酸配列であり、前記(2)の置換が行われる、請求項1に記載の改変型リパーゼ。
  4.  前記カンジダ シリンドラッセ由来のリパーゼのアミノ酸配列が、配列番号2~7のいずれかのアミノ酸配列である、請求項2又は3に記載の改変型リパーゼ。
  5.  配列番号8~11のいずれかのアミノ配列からなる、請求項1に記載の改変型リパーゼ。
  6.  請求項1~5のいずれか一項に記載の改変型リパーゼをコードする遺伝子。
  7.  配列番号12~19のいずれかの塩基配列を含む、請求項6に記載の遺伝子。
  8.  請求項6又は7に記載の遺伝子を含む組換えDNA。
  9.  請求項8に記載の組換えDNAを保有する微生物。
  10.  宿主が、エシェリヒア コリ、カンジダ シリンドラッセ、アスペルギルス オリゼ、バチルス サチルス又はピキア パストリスである、請求項9に記載の微生物。
  11.  請求項1~5のいずれか一項に記載の改変型リパーゼを含む酵素剤。
  12.  請求項1~5のいずれか一項に記載の酵素又は請求項11に記載の酵素剤を食品又は食品原料に作用させることを特徴とする、食品又は食品原料の風味改善方法。
  13.  請求項1~5のいずれか一項に記載の酵素又は請求項11に記載の酵素剤を食品原料又は中間生成物に作用させることを特徴とする、食品の製造方法。
  14.  食品が乳製品である請求項12又は13に記載の方法。
  15.  請求項1~5のいずれか一項に記載の酵素又は請求項11に記載の酵素剤を含む、食品又は食品原料に作用させるための風味改善剤。
  16.  請求項1~5のいずれか一項に記載の酵素又は請求項11に記載の酵素剤を作用させて得られた、食品又は食品原料。
PCT/JP2014/082415 2013-12-10 2014-12-08 改変型リパーゼ及びその用途 WO2015087833A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DK14869024.1T DK3081644T3 (en) 2013-12-10 2014-12-08 MODIFIED LIPASE AND APPLICATION THEREOF
EP14869024.1A EP3081644B1 (en) 2013-12-10 2014-12-08 Modified lipase and use thereof
US15/102,324 US10415023B2 (en) 2013-12-10 2014-12-08 Modified lipase and use thereof
JP2015552440A JP6787668B2 (ja) 2013-12-10 2014-12-08 改変型リパーゼ及びその用途
CN201480066933.9A CN105814199B (zh) 2013-12-10 2014-12-08 修饰型脂肪酶及其用途
US16/522,803 US10870840B2 (en) 2013-12-10 2019-07-26 Modified lipase and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-255419 2013-12-10
JP2013255419 2013-12-10

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/102,324 A-371-Of-International US10415023B2 (en) 2013-12-10 2014-12-08 Modified lipase and use thereof
US16/522,803 Division US10870840B2 (en) 2013-12-10 2019-07-26 Modified lipase and use thereof

Publications (1)

Publication Number Publication Date
WO2015087833A1 true WO2015087833A1 (ja) 2015-06-18

Family

ID=53371138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082415 WO2015087833A1 (ja) 2013-12-10 2014-12-08 改変型リパーゼ及びその用途

Country Status (6)

Country Link
US (2) US10415023B2 (ja)
EP (1) EP3081644B1 (ja)
JP (2) JP6787668B2 (ja)
CN (1) CN105814199B (ja)
DK (1) DK3081644T3 (ja)
WO (1) WO2015087833A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017115322A3 (en) * 2015-12-30 2017-08-10 Dsm Ip Assets B.V. Partial enzymatic hydrolysis of triacylglycerols
WO2017211930A1 (en) 2016-06-10 2017-12-14 Dsm Ip Assets B.V. Mutant lipase and use thereof
WO2019044531A1 (ja) * 2017-09-01 2019-03-07 天野エンザイム株式会社 改変型リパーゼ及びその用途
JP2019193640A (ja) * 2013-12-10 2019-11-07 天野エンザイム株式会社 改変型リパーゼ及びその用途
CN113564144A (zh) * 2020-04-29 2021-10-29 上海奥博生物医药技术有限公司 脂肪酶突变体及其应用
JP2022001062A (ja) * 2015-12-30 2022-01-06 ディーエスエム アイピー アセッツ ビー.ブイ.Dsm Ip Assets B.V. トリアシルグリセロールの部分的酵素加水分解
WO2022168954A1 (ja) 2021-02-04 2022-08-11 アマノ エンザイム ユーエスエー カンパニー,リミテッド ナチュラルチーズの製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3794115A2 (en) * 2018-05-18 2021-03-24 DSM IP Assets B.V. Mutant lipase and use thereof
CN112574973A (zh) * 2019-09-30 2021-03-30 东莞泛亚太生物科技有限公司 具提升耐热性的脂肪酶
US20230098388A1 (en) 2020-02-28 2023-03-30 Chr. Hansen A/S Lipases, compositions, methods and uses thereof
WO2023031266A1 (en) 2021-09-01 2023-03-09 Chr. Hansen A/S Yarrowia lipolytica and its use for producing lipases specifically liberating short chain fatty acids

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61135541A (ja) 1984-12-05 1986-06-23 ヘキスト・アクチエンゲゼルシヤフト チーズフレーバー
EP1130100A1 (en) * 2000-02-14 2001-09-05 Unilever N.V. Modified lipolytic enzymes and their use
JP2003524386A (ja) 1998-11-27 2003-08-19 ノボザイムス アクティーゼルスカブ 脂質分解酵素変異体
US20040001819A1 (en) 1998-11-05 2004-01-01 Bolen Paul L. Recombinant kid pregastric esterase and methods for its production and use
JP2004517639A (ja) 2001-02-07 2004-06-17 ノボザイムス アクティーゼルスカブ リパーゼ変異体
JP2007130012A (ja) 2005-10-12 2007-05-31 Kao Corp 組換え微生物
JP2009060804A (ja) 2007-09-04 2009-03-26 National Research Inst Of Brewing ピヒア属酵母において異種タンパク質を高分泌させる方法
JP2011512809A (ja) 2008-02-29 2011-04-28 ディーエスエム アイピー アセッツ ビー.ブイ. 短鎖脂肪に対して特異性の高いリパーゼおよびその使用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7052879B2 (en) * 2001-08-31 2006-05-30 Academia Sinica Recombinant Candida rugosa lipases
JP4604524B2 (ja) * 2004-03-16 2011-01-05 味の素株式会社 変異型アルドラーゼ、並びにこれを用いた光学活性ihog及び光学活性モナティンの製造方法
US7662602B2 (en) * 2004-10-21 2010-02-16 Debbie Yaver Polypeptides having lipase activity and polynucleotides encoding same
WO2009036404A2 (en) * 2007-09-13 2009-03-19 Codexis, Inc. Ketoreductase polypeptides for the reduction of acetophenones
US8703463B2 (en) * 2009-03-10 2014-04-22 Dsm Ip Assets B.V. Pregastric esterase and derivatives thereof
DK3081644T3 (en) * 2013-12-10 2019-04-29 Amano Enzyme Inc MODIFIED LIPASE AND APPLICATION THEREOF

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61135541A (ja) 1984-12-05 1986-06-23 ヘキスト・アクチエンゲゼルシヤフト チーズフレーバー
US20040001819A1 (en) 1998-11-05 2004-01-01 Bolen Paul L. Recombinant kid pregastric esterase and methods for its production and use
JP2003524386A (ja) 1998-11-27 2003-08-19 ノボザイムス アクティーゼルスカブ 脂質分解酵素変異体
EP1130100A1 (en) * 2000-02-14 2001-09-05 Unilever N.V. Modified lipolytic enzymes and their use
JP2004517639A (ja) 2001-02-07 2004-06-17 ノボザイムス アクティーゼルスカブ リパーゼ変異体
JP2007130012A (ja) 2005-10-12 2007-05-31 Kao Corp 組換え微生物
JP2009060804A (ja) 2007-09-04 2009-03-26 National Research Inst Of Brewing ピヒア属酵母において異種タンパク質を高分泌させる方法
JP2011512809A (ja) 2008-02-29 2011-04-28 ディーエスエム アイピー アセッツ ビー.ブイ. 短鎖脂肪に対して特異性の高いリパーゼおよびその使用

Non-Patent Citations (23)

* Cited by examiner, † Cited by third party
Title
"Molecular Cloning, Third Edition,", COLD SPRING HARBOR LABORATORY PRESS, article "Chapter 13,"
"Molecular Cloning, Third Edition,", vol. 1.84, COLD SPRING HARBOR LABORATORY PRESS
AKOH, C.C. ET AL.: "Protein Engineering and Applications of Candida rugosa Lipase Isoforms", LIPIDS, vol. 39, no. 6, 1 June 2004 (2004-06-01), pages 513 - 526, XP008050889, DOI: 10.1007/S11745-004-1258-7 *
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 61, no. 4, April 1995 (1995-04-01), pages 1610 - 1613
CHUNG ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 86, 1989, pages 2172
EUR. J. BIOCHEM., vol. 155, 1986, pages 577 - 581
FEIGNER, P.L. ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 84, 1984, pages 7413 - 7417
FREDERICK M. AUSUBEL ET AL.,: "Current protocols in molecular biology", 1987
GENE, vol. 96, 1990, pages 23
GHOSH, D. ET AL.: "Structure of uncomplexed and linoleate-bound Candida cylindracea cholesterol esterase", STRUCTURE, vol. 3, no. 3, 1 March 1995 (1995-03-01), pages 279 - 288, XP004587841, DOI: 10.1016/S0969-2126(01)00158-7 *
J. MOL. BIOL., vol. 166, 1983, pages 557
J. MOL. BIOL., vol. 53, 1970, pages 159
J. SCHMITT ET AL., PROTEIN ENGINEERING, vol. 15, no. 7, 2002, pages 595 - 601
LEE, G.-C.: "Multiple mutagenesis of non- universal serine codons of the Candida rugosa LIP2 gene and biochemical characterization of purified recombinant LIP2 lipase overexpressed in Pichia pastoris", BIOCHEM. J., vol. 366, no. 2, 1 September 2002 (2002-09-01), pages 603 - 611, XP001117787, DOI: 10.1042/BJ20020404 *
LEE, L.-C. ET AL.: "Altering the Substrate Specificity of Candida rugosa LIP4 by Engineering the Substrate-Binding Sites", J. AGRIC. FOOD CHEM., vol. 55, no. 13, 1 June 2007 (2007-06-01), pages 5103 - 5108, XP055339783, DOI: 10.1021/JF0702949 *
LONGHI, S. ET AL.: "CLONING AND NUCLEOTIDE SEQUENCES OF TWO LIPASE GENES FROM CANDIDA CYLINDRACEA 92", BIOCHIM. BIOPHYS. ACTA, vol. 1131, no. 2, 15 June 1992 (1992-06-15), pages 227 - 232, XP023467778, DOI: 10.1016/0167-4781(92)90085-E *
LOTTI, M. ET AL.: "Cloning and analysis of Candida cylindracea lipase sequences", GENE, vol. 124, 14 February 1993 (1993-02-14), pages 45 - 55, XP023540677, DOI: 10.1016/0378-1119(93)90760-Z *
MANCHENO, J.M. ET AL.: "Structural Insights into the Lipase/esterase Behavior in the Candida rugosa Lipases Family: Crystal Structure of the Lipase 2 Isoenzyme at 1.97Å Resolution", J. MOL. BIOL., vol. 332, no. 5, 3 October 2003 (2003-10-03), pages 1059 - 1069, XP004456072, DOI: 10.1016/J.JMB.2003.08.005 *
PIAMTONGKAM, R. ET AL.: "Enantioselectivity of Candida rugosa Lipases (Lipl, Lip3, and Lip4) Towards 2-Bromo Phenylacetic Acid Octyl Esters Controlled by a Single Amino Acid", BIOTECHNOL. BIOENG., vol. 108, no. 8, 1 August 2011 (2011-08-01), pages 1749 - 1756, XP055348836, DOI: 10.1002/BIT.23124 *
POTTER, H. ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 81, 1984, pages 7161 - 7165
PROTEIN ENGINEERING, vol. 9, 1996, pages 1055 - 1061
SCHMITT, J. ET AL.: "Blocking the tunnel: engineering of Candida rugosa lipase mutants with short chain length specificity", PROTEIN ENG., vol. 15, no. 7, 1 July 2002 (2002-07-01), pages 595 - 601, XP008142588, DOI: 10.1093/PROTEIN/15.7.595 *
YEN, C.-C. ET AL.: "Site-Specific Saturation Mutagenesis on Residues 132 and 450 of Candida rugosa LIP2 Enhances Catalytic Efficiency and Alters Substrate Specificity in Various Chain Lengths of Triglycerides and Esters", J. AGRIC. FOOD CHEM., vol. 58, 1 January 2010 (2010-01-01), pages 10899 - 10905, XP055348837, DOI: 10.1021/JF1004034 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019193640A (ja) * 2013-12-10 2019-11-07 天野エンザイム株式会社 改変型リパーゼ及びその用途
JP2022001062A (ja) * 2015-12-30 2022-01-06 ディーエスエム アイピー アセッツ ビー.ブイ.Dsm Ip Assets B.V. トリアシルグリセロールの部分的酵素加水分解
JP2019500042A (ja) * 2015-12-30 2019-01-10 ディーエスエム アイピー アセッツ ビー.ブイ.Dsm Ip Assets B.V. トリアシルグリセロールの部分的酵素加水分解
US11535875B2 (en) 2015-12-30 2022-12-27 Dsm Ip Assets B.V. Partial enzymatic hydrolysis of triacylglycerols to produce long-chain polyunsaturated fatty acid
US11441099B2 (en) 2015-12-30 2022-09-13 Dsm Ip Assets B.V. Partial enzymatic hydrolysis of triacylglycerols
JP2022046487A (ja) * 2015-12-30 2022-03-23 ディーエスエム アイピー アセッツ ビー.ブイ. トリアシルグリセロールの部分的酵素加水分解
WO2017115322A3 (en) * 2015-12-30 2017-08-10 Dsm Ip Assets B.V. Partial enzymatic hydrolysis of triacylglycerols
WO2017211930A1 (en) 2016-06-10 2017-12-14 Dsm Ip Assets B.V. Mutant lipase and use thereof
US10829748B2 (en) 2016-06-10 2020-11-10 Dsm Ip Assets B.V. Mutant lipase and use thereof
EP3677682A4 (en) * 2017-09-01 2021-05-05 Amano Enzyme Inc. MODIFIED LIPASE AND USE OF IT
JPWO2019044531A1 (ja) * 2017-09-01 2020-12-03 天野エンザイム株式会社 改変型リパーゼ及びその用途
US11299722B2 (en) 2017-09-01 2022-04-12 Amano Enzyme Inc. Modified lipase and use thereof
CN111032872A (zh) * 2017-09-01 2020-04-17 天野酶制品株式会社 修饰型脂肪酶及其用途
JP7165136B2 (ja) 2017-09-01 2022-11-02 天野エンザイム株式会社 改変型リパーゼ及びその用途
WO2019044531A1 (ja) * 2017-09-01 2019-03-07 天野エンザイム株式会社 改変型リパーゼ及びその用途
EP4282960A3 (en) * 2017-09-01 2024-01-24 Amano Enzyme Inc. Modified lipase and use thereof
CN113564144A (zh) * 2020-04-29 2021-10-29 上海奥博生物医药技术有限公司 脂肪酶突变体及其应用
WO2022168954A1 (ja) 2021-02-04 2022-08-11 アマノ エンザイム ユーエスエー カンパニー,リミテッド ナチュラルチーズの製造方法

Also Published As

Publication number Publication date
EP3081644A1 (en) 2016-10-19
CN105814199B (zh) 2019-12-13
JP2019193640A (ja) 2019-11-07
JPWO2015087833A1 (ja) 2017-03-16
US20160319259A1 (en) 2016-11-03
JP6787668B2 (ja) 2020-11-18
EP3081644A4 (en) 2017-05-24
US10415023B2 (en) 2019-09-17
US10870840B2 (en) 2020-12-22
DK3081644T3 (en) 2019-04-29
EP3081644B1 (en) 2019-03-27
CN105814199A (zh) 2016-07-27
US20190345465A1 (en) 2019-11-14

Similar Documents

Publication Publication Date Title
JP2019193640A (ja) 改変型リパーゼ及びその用途
JP5189130B2 (ja) ホスホリパーゼおよびそれを製造する方法
US11859222B2 (en) Beta-galactosidase enzymes
JP6888043B2 (ja) 改変型β−ガラクトシダーゼ
JPWO2012124520A1 (ja) 改変型α−グルコシダーゼ及びその用途
JP2024016188A (ja) 改変型菊酸エステラーゼ
US11299722B2 (en) Modified lipase and use thereof
Seo et al. Characterization of a Bifidobacterium longum BORI dipeptidase belonging to the U34 family
CN106811449B (zh) 一种脂肪酶bm19
Delabre et al. Cloning and characterisation of the main intracellular esterase from Lactobacillus rhamnosus HN001

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14869024

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015552440

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15102324

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014869024

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014869024

Country of ref document: EP