WO2015087472A1 - 太陽電池の製造方法及び該製造方法によって得られた太陽電池 - Google Patents

太陽電池の製造方法及び該製造方法によって得られた太陽電池 Download PDF

Info

Publication number
WO2015087472A1
WO2015087472A1 PCT/JP2014/005278 JP2014005278W WO2015087472A1 WO 2015087472 A1 WO2015087472 A1 WO 2015087472A1 JP 2014005278 W JP2014005278 W JP 2014005278W WO 2015087472 A1 WO2015087472 A1 WO 2015087472A1
Authority
WO
WIPO (PCT)
Prior art keywords
concentration
solar cell
diffusion layer
diffusing agent
conductivity type
Prior art date
Application number
PCT/JP2014/005278
Other languages
English (en)
French (fr)
Inventor
信太郎 月形
大塚 寛之
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to JP2015552291A priority Critical patent/JP6144778B2/ja
Publication of WO2015087472A1 publication Critical patent/WO2015087472A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2254Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
    • H01L21/2257Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer being silicon or silicide or SIPOS, e.g. polysilicon, porous silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solar cell manufacturing method and a solar cell obtained by the manufacturing method.
  • a p-type silicon substrate obtained by slicing a single crystal silicon ingot produced by a Czochralski (CZ) method or a polycrystalline silicon ingot produced by a cast method by a multi-wire method is prepared.
  • fine irregularities (textures) having a maximum height of about 10 ⁇ m are formed on both the light receiving surface and the back surface.
  • a dopant having a different conductivity type is thermally diffused on both surfaces of the substrate by using a photomask method using an organic resist or the like, and an n-type phosphorous having a conductivity type opposite to that of the substrate is formed on the first main surface serving as the light receiving surface.
  • a dopant is vapor-phase diffused using POCl 3 gas to form an n-type diffusion layer, and a p-type boron dopant having the same conductivity type as the substrate is formed on the second main surface serving as a back surface using BBr 3 gas. Diffusion is performed by a diffusion method so that ohmic contact with the electrode can be obtained.
  • a TiO 2 or SiNx on the light receiving surface and the back surface is deposited to a thickness of about 80 nm, to form an antireflection film.
  • a back electrode paste mainly composed of silver is printed in a comb shape on the back surface and dried.
  • the light-receiving surface electrode is formed by printing and drying a light-receiving surface electrode paste mainly composed of silver in a comb shape having a width of about 100 ⁇ m.
  • the light-receiving surface electrode and the back-surface electrode are baked to form an ohmic contact with the electrode, thereby completing a double-sided light-receiving solar cell.
  • the double-sided light-receiving solar cell made in this way can suppress surface recombination of the aluminum electrode region on the back side of the substrate, compared to crystalline silicon having a general back side aluminum electrode, and further a boron diffusion layer High photoelectric conversion characteristics due to the BSF (back surface field) effect.
  • the double-sided light-receiving solar cell has less warpage of the substrate and less cracking when being modularized, compared to crystalline silicon having a general backside aluminum electrode.
  • a diffusing agent is partially applied by screen printing and heat-treated, so that the region immediately below the diffusing agent becomes a high-concentration diffusion layer.
  • a technique has been reported in which a region other than the above is a low-concentration diffusion layer (eg, Patent Document 1).
  • the power generation amount can be increased by using the light-receiving surface as a low-concentration diffusion layer while keeping the contact resistance low by the high-concentration diffusion layer directly under the electrode, and a solar cell with high conversion efficiency can be manufactured. .
  • simultaneous diffusion in which impurities of different conductivity types are diffused by a single heat treatment diffuses impurities of different conductivity types in the same heat treatment furnace, so the cost is reduced by shortening the process, and a highly competitive solar cell can be obtained. It can be produced.
  • the present invention has been made in view of the above problems, and is a method for manufacturing a solar cell that can solve the problem of auto-doping while simplifying the manufacturing process and can manufacture a solar cell with excellent electrical characteristics.
  • the purpose is to provide.
  • a high concentration second diffusion in which a dopant of a second conductivity type opposite to the first conductivity type is diffused on a first main surface of a semiconductor substrate of a first conductivity type.
  • a low-concentration second diffusion layer in which the dopant is diffused at a lower concentration than the high-concentration second diffusion layer, and the first conductivity type dopant is diffused on the second main surface of the semiconductor substrate.
  • a method of manufacturing a solar cell for forming a first diffusion layer (A) preparing a second diffusing agent containing the second conductivity type dopant and a first diffusing agent containing the first conductivity type dopant; (B) applying the first diffusing agent to the second main surface; (C) partially applying the second diffusing agent to the first main surface; (D) Forming the high-concentration second diffusion layer, the low-concentration second diffusion layer, and the first diffusion layer by heat-treating the semiconductor substrate coated with the first diffusing agent and the second diffusing agent. And a process of And (e) providing a thermal oxide film on the semiconductor substrate on which the diffusion layer is formed.
  • Such a method for manufacturing a solar cell can simplify the manufacturing process and reduce the manufacturing cost by diffusing impurities of different conductivity types by a single heat treatment. Further, the first conductivity type dopant auto-doped in the low-concentration second diffusion layer by the heat treatment performed in the step (d) can be reduced by forming the thermal oxide film in the step (e). As a result, a solar battery cell having excellent electrical characteristics can be manufactured.
  • the semiconductor substrate is a p-type silicon substrate
  • the second diffusing agent is a phosphorus diffusing agent that vitrifies by the heat treatment
  • the first diffusing agent is a boron diffusing agent that is vitrified by the heat treatment.
  • a diffusing agent that vitrifies by heat treatment By using a diffusing agent that vitrifies by heat treatment, a high-concentration second diffusion layer can be easily formed. Further, such a diffusing agent can be easily removed.
  • Such a solar cell manufacturing method can further reduce the manufacturing process.
  • step (f) a step of removing the heat-treated first diffusing agent and second diffusing agent is further provided.
  • Such a method of manufacturing a solar cell can manufacture a solar cell with more excellent electrical characteristics.
  • the thermal oxide film formed in the step (e) has a thickness of 10 to 20 nm.
  • the peak concentration of the first conductivity type dopant in the low concentration second diffusion layer is 5.0 ⁇ 10 17 atoms / cm 3 or less.
  • the sheet resistance of the obtained solar cell can be lowered.
  • the peak concentration of the second conductivity type dopant in the low concentration second diffusion layer is 1.0 ⁇ 10 18 atoms / cm 3 or more.
  • the peak concentration ratio of the second conductivity type dopant and the first conductivity type dopant in the low concentration second diffusion layer is 10.0 or more.
  • the conversion efficiency of the obtained solar cell can be further improved.
  • step (e) a step of forming a passivation film on the first main surface and the second main surface; (H) applying an electrode material to the first main surface and the second main surface on which the passivation film is formed; (I) It is preferable to have a step of firing the applied electrode material.
  • Such a solar cell manufacturing method can provide a solar cell with higher conversion efficiency.
  • the present invention provides a solar cell that is manufactured by the method for manufacturing a solar cell of the present invention.
  • Such a solar cell can be made inexpensive and excellent in conversion efficiency.
  • the 1st diffused layer of the same conductivity type as the semiconductor substrate of the 1st conductivity type is made into the 2nd main surface, the high concentration 2nd diffused layer and the low concentration of the opposite conductivity type
  • the second diffusion layer is simultaneously formed on the first main surface, the first conductivity type impurity auto-doped into the low concentration second diffusion layer can be reduced in concentration.
  • a solar cell with excellent electrical characteristics can be manufactured with a high yield.
  • the manufacturing process can be simplified and the manufacturing cost can be reduced.
  • FIG. It is a flowchart which shows the manufacturing method (when performing a diffused layer formation and thermal oxide film formation in the same heat processing batch) of the solar cell of Example 1.
  • FIG. It is a flowchart which shows the manufacturing method of the solar cell of Example 3 (when the vitrified diffusing agent is removed from the substrate surface after heat treatment, and then a thermal oxide film is formed and removed).
  • FIG. It is a flowchart which shows the manufacturing method of the solar cell of Example 2 (when removing the vitrified diffusing agent from the substrate surface after heat treatment, and then forming a thermal oxide film).
  • It is the schematic which shows an example of the solar cell obtained by the manufacturing method of the solar cell of this invention.
  • FIG. 1 It is an application schematic diagram of the 1st diffusing agent and the 2nd diffusing agent before simultaneous diffusion. It is an image figure of a high concentration 2nd diffusion layer, a low concentration 2nd diffusion layer, and a 1st diffusion layer formed after dopant simultaneous diffusion. It is an image figure of the auto dope area
  • a second conductivity type dopant opposite to the first conductivity type is present on the first main surface of the first conductivity type semiconductor substrate.
  • a diffused high-concentration second diffusion layer and a low-concentration second diffusion layer in which a dopant is diffused at a lower concentration than the high-concentration second diffusion layer are formed, and the first main surface of the semiconductor substrate is formed with the first
  • a method for manufacturing a solar cell which forms a first diffusion layer in which a conductive dopant is diffused, (A) preparing a second diffusing agent containing the second conductivity type dopant and a first diffusing agent containing the first conductivity type dopant; (B) applying the first diffusing agent to the second main surface; (C) partially applying the second diffusing agent to the first main surface; (D) Forming the high-concentration second diffusion layer, the low-concentration second diffusion layer, and the first diffusion layer by heat-treating the semiconductor substrate coated with the first diffusing agent
  • FIG. 4 and 5 are schematic views showing an example of a solar cell obtained by the method for manufacturing a solar cell of the present invention.
  • the solar cell obtained by the manufacturing method of the solar cell of this invention is the 2nd opposite to a 1st conductivity type on the 1st main surface of the semiconductor substrate 1 of a 1st conductivity type.
  • a high-concentration second diffusion layer 2 in which a conductive dopant is diffused and a low-concentration second diffusion layer 3 in which the dopant is diffused at a lower concentration than the high-concentration second diffusion layer are formed, and is formed on the second main surface.
  • a first diffusion layer 4 in which a dopant of the first conductivity type is diffused is formed, and an electrode (back comb electrode) 7 and an electrode (light receiving surface comb electrode) are formed on the first main surface and the second main surface. ) 8 is formed.
  • a passivation film 6 is formed on the first main surface and the second main surface.
  • the first conductivity type semiconductor substrate include a p-type substrate such as a boron-doped p-type single crystal silicon substrate.
  • p-type dopants such as B (boron) and Ga (gallium) can be used as the first conductivity type dopant.
  • n-type dopants such as P (phosphorus), Sb (antimony), and As (arsenic) can be used.
  • the high concentration second diffusion layer is an n ++ layer
  • the low concentration second diffusion layer is an n + layer
  • the first diffusion layer is a p + layer.
  • the passivation film examples include a silicon nitride film.
  • the passivation film may be laminated on a thermal oxide film 5 such as a silicon oxide film as shown in FIG.
  • the present invention is not limited to this.
  • the semiconductor substrate is a p-type silicon substrate
  • the first conductivity type dopant is a boron dopant
  • the second conductivity type dopant is a phosphorus dopant
  • the high-concentration second diffusion layer is also referred to as an n ++ layer
  • the low-concentration second diffusion layer as an n + layer
  • the first diffusion layer as a p + layer.
  • the 1st main surface is described as a light-receiving surface and the 2nd main surface is described as a back surface, it is possible to receive light also from the 2nd main surface (back surface).
  • a semiconductor substrate such as a boron-doped p-type single crystal silicon substrate is prepared.
  • This silicon single crystal substrate can be obtained by slicing an ingot produced by a method such as the Czochralski (CZ) method or the floating zone (FZ) method.
  • the specific resistance of the substrate is preferably, for example, 0.1 to 20 ⁇ ⁇ cm, and in particular 0.5 to 2.0 ⁇ ⁇ cm is suitable for producing a high-performance solar cell.
  • the prepared substrate is immersed in an aqueous sodium hydroxide solution, and the damaged layer is removed by etching.
  • a strong alkaline aqueous solution such as potassium hydroxide may be used.
  • an aqueous acid solution such as hydrofluoric acid.
  • a random texture is formed on the substrate subjected to damage etching.
  • a solar cell preferably has an uneven shape on the surface. The reason is that in order to reduce the reflectance in the visible light region, it is necessary to cause the light receiving surface to perform reflection at least twice as much as possible. The size of each of these peaks may be about 1 to 20 ⁇ m.
  • Typical surface uneven structures include V-grooves and U-grooves. These can be formed using a grinding machine. In order to create a random concavo-convex structure, it is possible to use wet etching by dipping in an aqueous solution of sodium hydroxide and isopropyl alcohol, or to use acid etching or reactive ion etching. .
  • a second diffusing agent containing a second conductivity type dopant and a first diffusing agent containing a first conductivity type dopant are prepared.
  • the first diffusing agent and the second diffusing agent are preferably those that vitrify by heat treatment.
  • the second diffusing agent is preferably a phosphorus diffusing agent that is vitrified by heat treatment
  • the first diffusing agent is preferably a boron diffusing agent that is vitrified by heat treatment.
  • a phosphorus diffusing agent that vitrifies by heat treatment can be obtained by mixing P 2 O 5 , pure water, PVA (polyvinyl alcohol), and TEOS (tetraethylorthosilicate).
  • the boron diffusing agent that vitrifies by heat treatment can be obtained by mixing B 2 O 3 , pure water, and PVA (polyvinyl alcohol).
  • FIG. 6 is a schematic diagram of application of the first diffusing agent and the second diffusing agent before simultaneous diffusion.
  • a second diffusing agent for example, phosphorus diffusing agent
  • the first diffusing agent for example, boron
  • a boron diffusing agent as a p-type impurity is applied to the entire back surface and dried.
  • a spin coating method, an inkjet method, a screen printing method, or the like is appropriately used.
  • a phosphorus diffusing agent which is an n-type impurity is partially applied to the light receiving surface and dried.
  • screen printing, an inkjet method, a spray coating method, or the like is appropriately used.
  • the second diffusing agent When the second diffusing agent is partially applied to the first main surface, it is preferably applied to a region where an electrode is formed (a region directly below the electrode).
  • the high-concentration second diffusion layer, the low-concentration second diffusion layer, and the first diffusion layer are simultaneously formed by heat-treating the semiconductor substrate coated with the first diffusing agent and the second diffusing agent. Specifically, it is placed on a quartz boat with the surfaces coated with the first diffusing agent such as boron diffusing agent facing each other and heat-treated at 900 to 1000 ° C. for 10 to 60 minutes.
  • the treatment atmosphere is performed in an inert gas such as nitrogen or argon, but oxygen may be included at a concentration of 5% or less.
  • FIG. 7 is an image diagram of the high-concentration second diffusion layer, the low-concentration second diffusion layer, and the first diffusion layer formed after the dopant simultaneous diffusion.
  • the high-concentration second diffusion layer 2 is formed in the region where the second diffusing agent is applied on the first main surface of the substrate 1, and the low-concentration second diffusing layer 2 is formed in the region where the second diffusing agent is not applied.
  • the two diffusion layers 3 are formed.
  • the first diffusion layer 4 is formed on the second main surface.
  • the heat-treated second diffusing agent 11 is formed in the region of the first main surface where the diffusing agent is applied, and the heat-treated first diffusing agent 12 is formed on the second main surface.
  • the first diffusing agent and the second diffusing agent are vitrified by heat treatment.
  • the first diffusing agent and the second diffusing agent are vitrified by the heat treatment.
  • the second diffusing agent is a phosphorus diffusing agent that vitrifies by heat treatment
  • the first diffusing agent is a boron diffusing agent that vitrifies by heat treatment
  • the diffusion layer becomes an n-type diffusion layer.
  • the region where the phosphorus diffusing agent is applied becomes the high concentration phosphorus diffusion layer (n ++ layer), and the region where the phosphorus diffusion agent is not applied becomes the low concentration phosphorus diffusion layer (n ++ layer).
  • the first diffusion layer (p-type diffusion layer) becomes a boron diffusion layer (p + layer).
  • the above phosphorus diffusing agent and boron diffusing agent are vitrified by heat treatment.
  • phosphorous glass 11 is formed in the region where the diffusing agent is applied on the first main surface, and boron glass 12 is formed on the second main surface.
  • FIG. 8 is an image diagram of the auto-doped region of the low-concentration second diffusion layer formed after the dopant simultaneous diffusion.
  • the high-concentration second diffusion layer 2 is formed, and in the region where the heat-treated second diffusing agent 11 is not formed, A low-concentration second diffusion layer 15 is formed.
  • the low-concentration second diffusion layer 15 includes an auto-doped layer 14 having a high concentration of the first conductivity type dopant and an auto-doping layer 13 having a high concentration of the second conductivity type dopant.
  • the concentration ratio (peak concentration of the second conductivity type dopant / peak concentration of the first conductivity type dopant) is small. Thereafter, by performing a step of forming a thermal oxide film, the peak concentration ratio can be increased, that is, the peak concentration of the first conductivity type dopant in the low concentration second diffusion layer can be decreased.
  • the pn junction is separated using a plasma etcher.
  • the sample is stacked so that plasma and radicals do not enter the light-receiving surface and back surface, and in this state, the end surface is cut by several microns.
  • This pn separation by plasma etching may be performed before or after the removal of boron glass and phosphorus glass.
  • groove formation by a laser may be performed.
  • This step is a step for reducing the concentration of the first conductivity type dopant auto-doped in the low-concentration second diffusion layer by the heat treatment.
  • a step of removing the heat-treated first diffusing agent and the second diffusing agent may be performed.
  • the heat-treated diffusing agent phosphorus glass and boron glass attached to the substrate
  • the substrate is cleaned.
  • the substrate from which the heat-treated diffusing agent (glass or the like) has been removed is heat-treated in a 100% oxygen atmosphere at 850 to 950 ° C. for a treatment time of 10 to 60 minutes to form an oxide film. If it is the manufacturing method of such a solar cell, the photovoltaic cell with the more excellent electrical property can be manufactured.
  • the thermal oxide film is formed after removing the heat-treated diffusing agent (phosphorus glass and boron glass), but the heat treatment step and the thermal oxide film forming step can be performed in the same heat treatment batch.
  • the substrate is put into a heat treatment furnace, for example, heat treatment is performed at 900 to 1000 ° C. in an inert atmosphere to form a high concentration second diffusion layer, a low concentration second diffusion layer, and a first diffusion layer
  • a thermal oxide film is formed by switching to a 100% oxygen atmosphere and performing heat treatment at 850 to 950 ° C. for a processing time of 10 to 60 minutes. If it is a manufacturing method of such a solar cell, a manufacturing process can be reduced.
  • the thickness of the thermal oxide film to be formed is preferably 10 to 20 nm.
  • the peak concentration of the first conductivity type dopant (p-type impurity) in the low-concentration second diffusion layer (n + layer) can be adjusted.
  • the film thickness is 10 nm or more, it is easy to reduce the concentration of the first conductivity type dopant auto-doped in the low concentration second diffusion layer. In the case of 20 nm or less, re-diffusion of the second conductivity type dopant can be suppressed.
  • the peak concentration of the (type impurities) is preferably 1.0 ⁇ 10 18 atoms / cm 3 or more. If the peak concentration of the first conductivity type dopant is 5.0 ⁇ 10 17 atoms / cm 3 or less, the sheet resistance can be lowered. If the peak concentration of the second conductivity type dopant is 1.0 ⁇ 10 18 atoms / cm 3 or more, the short circuit current is unlikely to decrease.
  • the upper limit of the peak concentration of the second conductivity type dopant in the low-concentration second diffusion layer is not particularly limited, and can be, for example, 1.0 ⁇ 10 19 atoms / cm 3 .
  • concentration of the 2nd conductivity type dopant in a high concentration 2nd diffused layer is not specifically limited, For example, it can be 1.0 * 10 ⁇ 20 > atom / cm ⁇ 3 >.
  • the peak concentration ratio of the second conductivity type dopant and the first conductivity type dopant in the low concentration second diffusion layer is 10.0 or more. If the peak concentration ratio is 10.0 or more, the conversion efficiency of the obtained solar cell can be improved more reliably.
  • the above peak concentration can be measured by SIMS (secondary ion mass spectrometry).
  • a silicon nitride film as a passivation film is deposited on the light receiving surface and the back surface.
  • a passivation film 6 may be deposited on the thermal oxide film 5 as shown in FIG.
  • the thickness of the passivation film is adjusted so that the film thickness including the oxide film is 80 nm to 100 nm on each surface in order to also serve as an antireflection film.
  • Other antireflection films include a silicon dioxide film, a titanium dioxide film, a zinc oxide film, a tin oxide film, an aluminum oxide film, and the like, which can be used as an alternative or a stack structure.
  • the film forming method includes a remote plasma CVD method, a coating method, a vacuum evaporation method, an ALD (atomic layer deposition) method, and the like, which can be used as appropriate.
  • the passivation film after removing the heat-treated diffusing agent (phosphorus glass and boron glass).
  • a paste made of, for example, silver is applied to the light-receiving surface side and the back surface side in a comb-like electrode pattern and dried. Finally, firing is performed in a firing furnace to obtain a desired solar cell.
  • a solar cell By producing a solar cell by the above method, resistance increase due to auto-doping of p-type impurities into the n + diffusion layer, which occurs during the simultaneous diffusion treatment, and formation of a high concentration p-type diffusion layer are suppressed, and excellent electrical characteristics are achieved.
  • a solar cell can be produced.
  • Example 1 The solar cell of FIG. 4 was manufactured by performing heat treatment by simultaneous diffusion of phosphoboron. In that case, the solar cell was manufactured according to the flowchart shown in FIG. FIG. 1 is a flow chart showing a method for manufacturing a solar cell of Example 1 (when a diffusion layer and a thermal oxide film are formed in the same heat treatment batch).
  • the prepared substrate was a crystal plane orientation (100), a 15.6 cm square 200 ⁇ m thickness, an as-slice specific resistance 2 ⁇ ⁇ cm (dopant concentration 7.2 ⁇ 10 15 cm ⁇ 3 ) boron-doped p-type single crystal silicon substrate. is there.
  • the substrate surface was RCA cleaned to form a texture structure on the substrate surface.
  • the substrate thickness was 180 ⁇ m (FIGS. 1 (1) and (2)).
  • P 2 O 5 pure water, PVA (polyvinyl alcohol), and TEOS (tetraethyl orthosilicate) are mixed to produce a phosphorus diffusing agent, and screen printing is performed on the region directly below the electrode on the light receiving surface side.
  • the pattern was applied and dried at 100 ° C. for 20 minutes (FIG. 1 (3)).
  • B 2 O 3 , pure water, and PVA polyvinyl alcohol
  • PVA polyvinyl alcohol
  • the boron surfaces were placed facing each other and placed on a quartz boat, and heat treatment was performed at 950 ° C. for 30 minutes. Further, after this step, a step of forming a thermal oxide film at 900 ° C. for 40 minutes was provided by switching to a 100% oxygen atmosphere, and then the temperature was lowered and the substrate was taken out from the heat treatment furnace (FIG. 1 (5)).
  • the phosphorous glass and boron glass formed on the substrate surface by simultaneous diffusion were removed with a hydrofluoric acid aqueous solution and washed (FIG. 1 (7)).
  • a silicon nitride film as a passivation film was formed with a thickness of 85 nm on the light receiving surface and the back surface using a plasma CVD apparatus (FIG. 1 (8)).
  • Silver paste was formed on each of the light-receiving surface side and the back surface by screen printing, and dried and baked at 800 ° C. for 20 minutes (FIGS. 1 (9), (10), and (11)).
  • Example 2 The solar cell shown in FIG. 5 was produced in which the thermal oxide film formation of Example 1 was performed after removing the phosphorus glass and boron glass. In that case, the solar cell was manufactured according to the flowchart shown in FIG. FIG. 3 is a flowchart showing a method for manufacturing the solar cell of Example 2 (in the case where the vitrified diffusing agent is removed from the substrate surface after heat treatment, and then a thermal oxide film is formed).
  • thermal oxide film is not formed in the same batch, and the substrate is taken out and pn-separated (FIGS. 3 (5) and (6)).
  • a thermal oxide film of 15 nm was formed again by performing a treatment at 900 ° C. for 40 minutes in a heat treatment furnace in a 100% oxygen atmosphere (FIG. (8)).
  • the CVD film in the post-process was deposited to 70 nm for each of the light receiving surface and the back surface, and the total thickness of the oxide film and the nitride film on the light receiving surface and the back surface was set to 85 nm (FIG. 3 (9)). Other than that was carried out similarly to Example 1, and produced the solar cell.
  • Example 3 The solar cell shown in FIG. 4 was produced by removing the thermal oxide film after forming the thermal oxide film of Example 2. In that case, the solar cell was manufactured according to the flowchart shown in FIG. FIG. 2 is a flowchart showing a method for manufacturing the solar cell of Example 3 (when the vitrified diffusing agent is removed from the substrate surface after heat treatment, and then a thermal oxide film is formed and removed).
  • Example 2 After the formation of the thermal oxide film in Example 2, the substrate was immersed in a hydrofluoric acid aqueous solution to remove the thermal oxide film formed on the substrate surface (FIG. 2 (9)). Further, the CVD film in the post-process was deposited to 85 nm on each of the light receiving surface and the back surface (FIG. 2 (10)). Other than that was carried out similarly to Example 2, and produced the solar cell.
  • Example 4 A solar cell having a thermal oxide film of 5 nm formed in Example 1 was produced.
  • the thermal oxide film formation step at the time of phosphorus boron simultaneous diffusion heat treatment in Example 1 was set to 850 ° C. for 40 minutes, and an oxide film was formed to 5 nm.
  • the taken-out substrate was stacked, pn junction separation was performed by plasma etching, and boron glass and phosphorous glass were removed using hydrofluoric acid, and then a CVD film on the light-receiving surface and the back surface was deposited to 85 nm. Other than that was carried out similarly to Example 1, and produced the solar cell.
  • Example 5 A solar cell having a thermal oxide film of 25 nm formed in Example 1 was produced.
  • the thermal oxide film formation step at the time of phosphorus boron simultaneous diffusion heat treatment in Example 1 was set at 950 ° C. for 40 minutes, and an oxide film was formed to a thickness of 25 nm.
  • the taken-out substrate was stacked, pn junction separation was performed by plasma etching, and boron glass and phosphorous glass were removed using hydrofluoric acid, and then a CVD film on the light-receiving surface and the back surface was deposited to 85 nm. Other than that was carried out similarly to Example 1, and produced the solar cell.
  • Example 6 A solar cell having a thermal oxide film of 5 nm formed in Example 2 was produced.
  • Example 2 the thermal oxide film formation in Example 2 was performed at 850 ° C. for 40 minutes, and a thermal oxide film was formed to 5 nm. A CVD film on each of the light receiving surface and the back surface was deposited to 80 nm. Other than that was carried out similarly to Example 2, and produced the solar cell.
  • Example 7 A solar cell having a thermal oxide film of 25 nm formed in Example 2 was produced.
  • Example 2 the thermal oxide film formation in Example 2 was performed at 950 ° C. for 40 minutes, and a thermal oxide film was formed to a thickness of 25 nm.
  • a CVD film on the light-receiving surface and the back surface was deposited to 60 nm. Other than that was carried out similarly to Example 2, and produced the solar cell.
  • Example 8 A solar cell having a thermal oxide film of 5 nm formed in Example 3 was produced.
  • thermal oxide film formation in Example 3 was performed at 850 ° C. for 40 minutes, and a thermal oxide film was formed to 5 nm. After being immersed in a hydrofluoric acid aqueous solution to remove the thermal oxide film, a CVD film on the light-receiving surface and the back surface was deposited to 85 nm. Other than that was carried out similarly to Example 3, and produced the solar cell.
  • Example 9 A solar cell having a thermal oxide film of 25 nm formed in Example 3 was produced.
  • Example 3 the thermal oxide film formation in Example 3 was performed at 950 ° C. for 40 minutes, and an oxide film was formed to 25 nm. After being immersed in a hydrofluoric acid aqueous solution to remove the thermal oxide film, a CVD film on the light-receiving surface and the back surface was deposited to 85 nm. Other than that was carried out similarly to Example 3, and produced the solar cell.
  • Example 1 For comparison, a solar cell in which no thermal oxide film was formed in Example 1 was produced. In that case, the solar cell was manufactured according to the flowchart shown in FIG. FIG. 9 is a flowchart of the solar cell manufacturing method of Comparative Example 1.
  • a thermal oxide film formation step is not provided at the time of phosphorus boron simultaneous diffusion heat treatment (FIG. 9 (5)), the taken out substrate is stacked, and pn junction separation is performed by plasma etching (FIG. 9 (6)).
  • pn junction separation is performed by plasma etching (FIG. 9 (6)).
  • a CVD film on the light-receiving surface and the back surface was deposited by 85 nm (FIG. 9 (8)).
  • FIG. 9 (8) Other than that was carried out similarly to Example 1, and produced the solar cell.
  • Table 1 shows the conditions of the examples and comparative examples.
  • the peak concentration of boron dopant in the n + layer is 5.0 ⁇ 10 17 atoms / cm 3 or less and the peak concentration of phosphorus dopant is 1.
  • 0 is a ⁇ 10 18 atoms / cm 3 or more
  • the phosphorus and the peak concentration ratio of boron dopant in the n + layer (phosphorus / boron) is in the above 10.0. It can be seen that these conditions are favorable conditions for obtaining high conversion efficiency.
  • Examples 1 to 3 compared with Examples 4, 6, and 8 in which the thickness of the thermal oxide film is small, the boron dopant is sufficiently reduced in concentration, and the sheet resistance of the n + layer is reduced. High conversion efficiency.
  • the thermal oxide film is thickened, since the thermal oxide film is not excessively formed in the n + layer, the boron dopant is reduced in concentration and the phosphorus dopant is re-diffused. Can be prevented. As a result, the peak concentration of the phosphorus dopant in the n + layer does not decrease and the diffusion depth does not increase, so that the recombination rate in the vicinity of the light receiving surface decreases.
  • Examples 4, 6, and 8 are cases where the thickness of the thermal oxide film is smaller than that of Example 1, but even in this case, a solar cell having higher conversion efficiency than that of Comparative Example 1 could be obtained. .
  • Comparative Example 1 since the thermal oxide film formation for reducing the boron dopant concentration is not performed, the peak concentration ratio (phosphorus / boron) of phosphorus and boron dopant in the n + layer becomes small, and the conversion efficiency becomes low. It was.
  • concentration differs are formed simultaneously by one heat processing.
  • the present invention is not limited to the above embodiment.
  • a p-type substrate solar cell is shown.
  • the above effect can be implemented even when phosphoboron simultaneous diffusion using an n-type substrate is performed, and a solar cell having high conversion efficiency is manufactured. Is possible.
  • the above-described embodiment is an exemplification, and the present invention has any configuration substantially the same as the technical idea described in the claims of the present invention and exhibits the same function and effect. It is included in the technical scope.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 本発明は、第二導電型のドーパントを含む第二拡散剤及び第一導電型のドーパントを含む第一拡散剤を準備する工程と、第一拡散剤を第一導電型の半導体基板の第二の主面に塗布する工程と、第二拡散剤を第一の主面に部分的に塗布する工程と、第一拡散剤及び第二拡散剤が塗布された半導体基板を熱処理することによって、高濃度第二拡散層、低濃度第二拡散層、及び第一拡散層を形成する工程と、拡散層が形成された半導体基板に熱酸化膜を形成する工程を有する太陽電池の製造方法である。これにより、製造工程を簡略化しつつ、オートドープの問題を解消でき、電気特性の優れた太陽電池を製造することができる太陽電池の製造方法が提供される。

Description

太陽電池の製造方法及び該製造方法によって得られた太陽電池
 本発明は、太陽電池の製造方法及び該製造方法によって得られた太陽電池に関する。
 現在、民生用の太陽電池を製造するにあたって、高効率化および製造コストの低減が重要課題となっており、両面受光型太陽電池の研究が広く行われている。その詳細は例えば次の通りである。
 まず、チョクラルスキー(CZ)法により作製した単結晶シリコンインゴットやキャスト法により作製した多結晶シリコンインゴットをマルチワイヤー法でスライスすることにより得られたp型シリコン基板を用意する。次に、アルカリ溶液で基板表面のスライスによるダメージを取り除いた後、最大高さ10μm程度の微細凹凸(テクスチャ)を受光面と裏面との両面に形成する。続いて、有機レジストなどを使用するフォトマスク法を用いて基板の両面に異なる導電型のドーパントを熱拡散させ、受光面となる第1主面に基板とは逆導電型となるn型のリンドーパントをPOClガスを用いて気相拡散させてn型拡散層を形成し、裏面となる第2主面に基板と同導電型であるp型のボロンドーパントをBBrガスを用いた気相拡散法で拡散させ、電極とのオーミックコンタクトを取れるようにする。次に、受光面および裏面にはTiO又はSiNxを、例えば、80nm程度の膜厚で堆積させて、反射防止膜を形成する。次に銀を主成分とする裏面電極用ペーストを裏面に櫛形状に印刷し、乾燥させる。一方、受光面電極は、銀を主成分とする受光面電極用ペーストを例えば幅100μm程度の櫛形状に印刷、乾燥させる。最後に、受光面電極および裏面電極を焼成することにより電極とオーミックコンタクトを形成し両面受光型太陽電池が完成する。
 このようにして作られた両面受光型太陽電池は、一般的な裏面アルミ電極を有する結晶シリコンに比べて、基板裏面側のアルミ電極領域の表面再結合を抑制することができ、さらにボロン拡散層のBSF(back surface field)効果により高い光電変換特性を有する。また、両面受光型太陽電池は、一般的な裏面アルミ電極を有する結晶シリコンに比べて、基板の反りが小さく、モジュール化の際の割れが少ない。
 しかしながら、上記記載の異なる導電型の拡散層、さらに同じ導電型でも異なる濃度を有する拡散層を、フォトレジストなどのマスク法を用いて形成すると、マスク形成やマスク除去の工程が多く、拡散熱処理の回数も増えて、製造コストが高くなる。
 そこで、同じ導電型の不純物を、一度の熱処理で異なる濃度で拡散させる手法として、拡散剤をスクリーン印刷で部分的に塗布して熱処理することで、拡散剤直下領域を高濃度拡散層に、それ以外の領域を低濃度拡散層とする技術が報告されている(例:特許文献1)。
 この手法では、電極直下の高濃度拡散層によりコンタクト抵抗を低く抑えたまま、受光面を低濃度拡散層として、発電量を増加させることができ、変換効率の高い太陽電池の作製が可能となる。
特開2007-235174号公報
 さらに、異なる導電型の不純物を、一度の熱処理で拡散させる同時拡散は、導電型の異なる不純物を同一の熱処理炉内で熱拡散させるため、工程短縮によってコスト減となり、競争力の高い太陽電池を作製することが可能となる。
 しかしながら、n型不純物源であるリン拡散剤を第1の主面に部分的に塗布し、p型不純物源であるボロン拡散剤を第2の主面全面に塗布して同時拡散を行うと、第1の主面において電極直下以外となる表面の低濃度リン拡散層(n層)に、第2の主面のボロン拡散剤からアウトディフュージョンしたボロンドーパントがオートドープしてしまい、コンタミネーションを引き起こして太陽電池の電気特性が低下してしまうといった問題があった。
 本発明は、上記問題点に鑑みてなされたものであって、製造工程を簡略化しつつ、オートドープの問題を解消でき、電気特性の優れた太陽電池を製造することができる太陽電池の製造方法を提供することを目的とする。
 上記目的を達成するために、本発明では、第一導電型の半導体基板の第一の主面に、前記第一導電型と反対の第二導電型のドーパントが拡散された高濃度第二拡散層及び該高濃度第二拡散層よりも低濃度にドーパントが拡散された低濃度第二拡散層を形成し、前記半導体基板の第二の主面に前記第一導電型のドーパントが拡散された第一拡散層を形成する太陽電池の製造方法であって、
(a)前記第二導電型のドーパントを含む第二拡散剤及び前記第一導電型のドーパントを含む第一拡散剤を準備する工程と、
(b)前記第一拡散剤を前記第二の主面に塗布する工程と、
(c)前記第二拡散剤を前記第一の主面に部分的に塗布する工程と、
(d)前記第一拡散剤及び前記第二拡散剤が塗布された半導体基板を熱処理することによって、前記高濃度第二拡散層、前記低濃度第二拡散層、及び前記第一拡散層を形成する工程と、
(e)前記拡散層が形成された半導体基板に熱酸化膜を形成する工程と
を有することを特徴とする太陽電池の製造方法を提供する。
 このような太陽電池の製造方法であれば、異なる導電型の不純物を、一度の熱処理で拡散させることによって、製造工程を簡略化し、製造コストを減らすことができる。また、工程(d)で行った熱処理によって、低濃度第二拡散層にオートドープした第一導電型のドーパントを、工程(e)の熱酸化膜の形成によって、低濃度化することができる。その結果、電気特性の優れた太陽電池セルを製造することができる。
 また、前記半導体基板をp型シリコン基板とし、前記第二拡散剤を前記熱処理によってガラス化するリン拡散剤とし、前記第一拡散剤を前記熱処理によってガラス化するボロン拡散剤とすることが好ましい。
 熱処理によってガラス化する拡散剤を用いることによって、高濃度第二拡散層を容易に形成することができる。また、このような拡散剤であれば、除去することも容易である。
 また、前記工程(d)及び(e)を、同一熱処理バッチで行うことが好ましい。
 このような太陽電池の製造方法であれば、製造工程を更に減らすことができる。
 また、前記工程(d)の後、かつ前記工程(e)の前に、更に(f)前記熱処理された第一拡散剤及び第二拡散剤を除去する工程を有することが好ましい。
 このような太陽電池の製造方法であれば、より電気特性の優れた太陽電池セルを製造することができる。
 また、前記工程(e)で形成する前記熱酸化膜の膜厚を10~20nmとすることが好ましい。
 このような膜厚であれば、低濃度第二拡散層にオートドープした第一導電型のドーパントを低濃度化しやすい。
 また、前記低濃度第二拡散層における前記第一導電型のドーパントのピーク濃度を5.0×1017atom/cm以下とすることが好ましい。
 このような条件であれば、得られる太陽電池のシート抵抗を低くすることができる。
 また、前記低濃度第二拡散層における前記第二導電型のドーパントのピーク濃度を1.0×1018atom/cm以上とすることが好ましい。
 このような条件であれば、得られる太陽電池の短絡電流が低下しにくい。
 また、前記低濃度第二拡散層における前記第二導電型のドーパントと前記第一導電型のドーパントのピーク濃度比を10.0以上とすることが好ましい。
 このような条件であれば、得られる太陽電池の変換効率をより向上することができる。
 また、前記工程(e)の後に、更に(g)前記第一の主面及び前記第二の主面にパッシベーション膜を形成する工程と、
(h)前記パッシベーション膜が形成された第一の主面及び第二の主面に電極材料を塗布する工程と、
(i)前記塗布した電極材料を焼成する工程と
を有することが好ましい。
 このような太陽電池の製造方法であれば、より変換効率の高い太陽電池を得ることができる。
 更に、本発明では、上記本発明の太陽電池の製造方法によって製造されたものであることを特徴とする太陽電池を提供する。
 このような太陽電池であれば、安価でありながら変換効率に優れたものとすることができる。
 本発明の太陽電池の製造方法であれば、第一導電型の半導体基板と同じ導電型の第一拡散層を第二の主面に、反対の導電型の高濃度第二拡散層及び低濃度第二拡散層を第一の主面に同時に形成する際、低濃度第二拡散層へオートドープした第一導電型不純物を低濃度化することができる。その結果、電気特性の優れた太陽電池を高い歩留まりで製造することができる。更に、異なる導電型の不純物を、一度の熱処理で拡散させることによって、製造工程を簡略化し、製造コストを減らすことができる。
実施例1の太陽電池の製造方法(同一熱処理バッチで、拡散層形成と熱酸化膜形成を行う場合)を示すフロー図である。 実施例3の太陽電池の製造方法(熱処理後に、ガラス化した拡散剤を基板表面から除去し、その後熱酸化膜の形成及び除去を行う場合)を示すフロー図である。 実施例2の太陽電池の製造方法(熱処理後に、ガラス化した拡散剤を基板表面から除去し、その後熱酸化膜の形成を行う場合)を示すフロー図である。 本発明の太陽電池の製造方法によって得られる太陽電池の一例を示す概略図である。 本発明の太陽電池の製造方法によって得られる太陽電池の別の例を示す概略図である。 同時拡散前の第一拡散剤および第二拡散剤の塗布模式図である。 ドーパント同時拡散後に形成される、高濃度第二拡散層、低濃度第二拡散層、及び第一拡散層のイメージ図である。 ドーパント同時拡散後に形成される低濃度第二拡散層のオートドープ領域のイメージ図である。 比較例1の太陽電池作製方法のフロー図である。
 以下、本発明をより詳細に説明する。
 上記のように、製造工程を簡略化しつつ、オートドープの問題を解消でき、電気特性の優れた太陽電池を製造することができる太陽電池の製造方法が求められている。
 本発明者らは、上記目的を達成するために鋭意検討を行った結果、第一導電型の半導体基板の第一の主面に、前記第一導電型と反対の第二導電型のドーパントが拡散された高濃度第二拡散層及び該高濃度第二拡散層よりも低濃度にドーパントが拡散された低濃度第二拡散層を形成し、前記半導体基板の第二の主面に前記第一導電型のドーパントが拡散された第一拡散層を形成する太陽電池の製造方法であって、
(a)前記第二導電型のドーパントを含む第二拡散剤及び前記第一導電型のドーパントを含む第一拡散剤を準備する工程と、
(b)前記第一拡散剤を前記第二の主面に塗布する工程と、
(c)前記第二拡散剤を前記第一の主面に部分的に塗布する工程と、
(d)前記第一拡散剤及び前記第二拡散剤が塗布された半導体基板を熱処理することによって、前記高濃度第二拡散層、前記低濃度第二拡散層、及び前記第一拡散層を形成する工程と、
(e)前記拡散層が形成された半導体基板に熱酸化膜を形成する工程と
を有する太陽電池の製造方法が、上記課題を解決できることを見出し、本発明を完成させた。
 以下、本発明の実施の形態について図面を参照して具体的に説明するが、本発明はこれらに限定されるものではない。
[太陽電池]
 まず、本発明の太陽電池の製造方法によって得られる太陽電池について、図4、図5を参照して説明する。
 図4及び図5は、本発明の太陽電池の製造方法によって得られる太陽電池の一例を示す概略図である。図4及び図5に示すように、本発明の太陽電池の製造方法によって得られる太陽電池は、第一導電型の半導体基板1の第一の主面に、第一導電型と反対の第二導電型のドーパントが拡散された高濃度第二拡散層2及びこの高濃度第二拡散層よりも低濃度にドーパントが拡散された低濃度第二拡散層3が形成され、第二の主面に、第一導電型のドーパントが拡散された第一拡散層4が形成されており、第一の主面及び第二の主面には、電極(裏面櫛形電極)7、電極(受光面櫛形電極)8が形成されている。通常、第一の主面及び第二の主面には、パッシベーション膜6が形成されている。
 第一導電型の半導体基板の具体例としては、ボロンドープp型単結晶シリコン基板等のp型基板を挙げることができる。基板がp型の場合、第一導電型のドーパントとしては、B(ボロン)、Ga(ガリウム)等のp型ドーパントを使用することができる。第二導電型のドーパントとしては、P(リン)、Sb(アンチモン)、As(ヒ素)等のn型ドーパントを使用することができる。
 この場合、高濃度第二拡散層はn++層、低濃度第二拡散層はn層、第一拡散層はp層となる。
 パッシベーション膜としては、例えば、シリコン窒化膜等を挙げることができる。パッシベーション膜は、図5に示すように、シリコン酸化膜等の熱酸化膜5上に積層されていてもよい。
[太陽電池の製造方法]
 以下に、本発明の太陽電池の製造方法の一例を、p型基板の場合を例にとって説明するが、本発明はこれに限定されるものではない。また、以下では、半導体基板がp型シリコン基板であり、第一導電型のドーパントがボロンドーパントであり、第二導電型のドーパントがリンドーパントである場合を例に説明する。そのため、高濃度第二拡散層をn++層、低濃度第二拡散層をn層、第一拡散層をp層とも記載する。また、第一の主面を受光面、第二の主面を裏面とも記載するが、第二の主面(裏面)からも光を受光することは可能である。
 まず、ボロンドープp型単結晶シリコン基板等の半導体基板を用意する。このシリコン単結晶基板はチョクラルスキー(CZ)法あるいはフローティングゾーン(FZ)法等の方法によって作製されたインゴットをスライスすることによって得られる。基板の比抵抗は例えば0.1~20Ω・cmが好ましく、特に0.5~2.0Ω・cmであることが高い性能の太陽電池を作る上で好適である。
 次に、用意した基板を水酸化ナトリウム水溶液に浸し、ダメージ層をエッチングで取り除く。この基板のダメージ除去は、水酸化カリウム等強アルカリ水溶液を用いても構わない。また、フッ硝酸等の酸水溶液でも同様の目的を達成することが可能である。
 ダメージエッチングを行った基板にランダムテクスチャを形成する。
 太陽電池は通常、表面に凹凸形状を形成するのが好ましい。その理由は,可視光域の反射率を低減させるために、できる限り2回以上の反射を受光面で行わせる必要があるためである。これら一つ一つの山のサイズは1~20μm程度でよい。代表的な表面凹凸構造としてはV溝,U溝が挙げられる。これらは、研削機を利用して形成可能である。また、ランダムな凹凸構造を作るには、水酸化ナトリウムにイソプロピルアルコールを加えた水溶液に浸してウェットエッチングしたり、他には、酸エッチングやリアクティブ・イオン・エッチング等を用いることが可能である。
 次に、第二導電型のドーパントを含む第二拡散剤及び第一導電型のドーパントを含む第一拡散剤を準備する。第一拡散剤及び第二拡散剤は、熱処理によってガラス化するものであることが好ましい。特に、p型シリコン基板を用いる場合、第二拡散剤を熱処理によってガラス化するリン拡散剤とし、第一拡散剤を熱処理によってガラス化するボロン拡散剤とすることが好ましい。
 熱処理によってガラス化するリン拡散剤は、P、純水、PVA(ポリビニルアルコール)、TEOS(テトラエチルオルソシリケート)を混合することによって、得ることができる。熱処理によってガラス化するボロン拡散剤は、B、純水、PVA(ポリビニルアルコール)を混合することによって、得ることができる。
 次に、第一拡散剤を第二の主面に塗布し、第二拡散剤を第一の主面に部分的に塗布する。第一拡散剤、第二拡散剤を基板に塗布する順番は特に限定されない。図6は、同時拡散前の第一拡散剤および第二拡散剤の塗布模式図である。図6に示すように、基板1の第一の主面に、第二拡散剤(例えば、リン拡散剤)9が部分的に塗布され、第二の主面に第一拡散剤(例えば、ボロン拡散剤)10が塗布される。
 上記塗布する工程の具体例としては、まず、裏面全面に、p型不純物であるボロン拡散剤を塗布し、乾燥させる。この塗布方法は、スピン塗布法やインクジェット法、スクリーン印刷法など適宜用いられる。続いて受光面に部分的にn型不純物であるリン拡散剤を塗布し、乾燥させる。拡散剤の塗布方法は、スクリーン印刷、インクジェット法、スプレー塗布法など適宜用いられる。
 第二拡散剤を第一の主面に部分的に塗布する際には、電極が形成される領域(電極直下となる領域)に塗布することが好ましい。
 次に、第一拡散剤及び第二拡散剤が塗布された半導体基板を熱処理することによって、高濃度第二拡散層、低濃度第二拡散層、及び第一拡散層を同時に形成する。具体的には、ボロン拡散剤等の第一拡散剤を塗布した面どうしを向かい合わせた状態で石英ボートに載置して900~1000℃で10~60分熱処理する。処理雰囲気としては、窒素またはアルゴンなどの不活性ガス中で行われるが、酸素を5%以下の濃度で含ませてもよい。この熱処理によって、受光面側に高濃度第二拡散層及び低濃度第二拡散層が、裏面側に均一な第一拡散層が同時に形成される。
 図7は、ドーパント同時拡散後に形成される、高濃度第二拡散層、低濃度第二拡散層、及び第一拡散層のイメージ図である。図7に示すように、基板1の第一の主面の第二拡散剤を塗布した領域に高濃度第二拡散層2が形成され、第二拡散剤を塗布していない領域に低濃度第二拡散層3が形成される。第二の主面には、第一拡散層4が形成される。また、第一の主面の拡散剤が塗布された領域に熱処理された第二拡散剤11が形成され、第二の主面に熱処理された第一拡散剤12が形成される。
 このとき、第一拡散剤及び第二拡散剤は、熱処理によってガラス化するものであることが好ましい。この場合、第一拡散剤及び第二拡散剤は、上記の熱処理によってガラス化する。
 ここで、基板1の導電型がp型であり、第二拡散剤が、熱処理によってガラス化するリン拡散剤であり、第一拡散剤が熱処理によってガラス化するボロン拡散剤である場合、第二拡散層は、n型拡散層となる。このとき、リン拡散剤を塗布した領域が高濃度リン拡散層(n++層)、塗布していない領域が低濃度リン拡散層(n層)となる。一方、第一拡散層(p型拡散層)は、ボロン拡散層(p層)となる。
 この場合、上記のリン拡散剤及びボロン拡散剤は、熱処理によって、ガラス化する。その結果、第一の主面の拡散剤が塗布された領域にリンガラス11が形成され、第二の主面にボロンガラス12が形成される。
 図8は、ドーパント同時拡散後に形成される低濃度第二拡散層のオートドープ領域のイメージ図である。図8に示すように、熱処理された第二拡散剤11が形成された領域には、高濃度第二拡散層2が形成され、熱処理された第二拡散剤11が形成されていない領域には、低濃度第二拡散層15が形成されている。ここで、低濃度第二拡散層15は、第一導電型のドーパントの濃度が高いオートドープ層14と、第二導電型のドーパントの濃度が高いオートドープ層13からなる。
 上記の熱処理によって低濃度第二拡散層に第一導電型のドーパントがオートドープしているため、この時点では低濃度第二拡散層における第二導電型のドーパントと第一導電型のドーパントのピーク濃度比(第二導電型のドーパントのピーク濃度/第一導電型のドーパントのピーク濃度)は、小さい。その後、熱酸化膜を形成する工程を行うことによって、上記ピーク濃度比を大きくする、すなわち低濃度第二拡散層における第一導電型のドーパントのピーク濃度を低下させることができる。
 次に、プラズマエッチャーを用い、pn接合の分離を行う。このプロセスではプラズマやラジカルが受光面や裏面に侵入しないよう、サンプルをスタックし、その状態で、端面を数ミクロン削る。このプラズマエッチングによるpn分離は、ボロンガラスおよびリンガラスの除去前に行ってもよいし、除去後に行ってもよい。pn分離の代替手法としては、レーザーによる溝形成を行ってもよい。
 次に、高濃度第二拡散層、低濃度第二拡散層、及び第一拡散層が形成された半導体基板に熱酸化膜を形成する。この工程は、上記熱処理によって、低濃度第二拡散層にオートドープした第一導電型のドーパントの濃度を低下させるための工程である。
 上記熱処理工程の後、かつ熱酸化膜を形成する工程の前に、熱処理された第一拡散剤及び第二拡散剤を除去する工程を行ってもよい。この場合、高濃度フッ酸溶液等により、熱処理された拡散剤(基板に付いたリンガラス及びボロンガラス)を除去することができる。その後、基板を洗浄する。
 続いて、熱処理された拡散剤(ガラス等)を除去した基板を、例えば100%酸素雰囲気の下、850~950℃、処理時間10~60分で熱処理し、酸化膜を形成する。このような太陽電池の製造方法であれば、より電気特性の優れた太陽電池セルを製造することができる。
 ここで、熱酸化膜の形成を熱処理された拡散剤(リンガラス及びボロンガラス)除去後としたが、上記熱処理工程と、熱酸化膜を形成する工程とを、同一熱処理バッチで行うこともできる。この場合、基板を熱処理炉に投入し、例えば不活性雰囲気下で900~1000℃の熱処理を行い、高濃度第二拡散層、低濃度第二拡散層、及び第一拡散層を形成した後、100%酸素雰囲気に切り替えて850~950℃、処理時間10~60分で熱処理し、熱酸化膜を形成させる。このような太陽電池の製造方法であれば、製造工程を減らすことができる。
 上記熱酸化膜を形成する工程において、形成する熱酸化膜の膜厚を10~20nmとすることが好ましい。酸化膜厚を調整することによって、低濃度第二拡散層(n層)における第一導電型のドーパント(p型不純物)のピーク濃度を調整することができる。
膜厚が10nm以上の場合、低濃度第二拡散層にオートドープした第一導電型のドーパントを低濃度化しやすい。20nm以下の場合、第二導電型のドーパントの再拡散を抑制することができる。
 また、低濃度第二拡散層(n層)における第一導電型のドーパント(p型不純物)のピーク濃度を5.0×1017atom/cm以下とし、第二導電型のドーパント(n型不純物)のピーク濃度を1.0×1018atom/cm以上とすることが好ましい。第一導電型のドーパントのピーク濃度が5.0×1017atom/cm以下であれば、シート抵抗を低くすることができる。第二導電型のドーパントのピーク濃度が1.0×1018atom/cm以上であれば、短絡電流が低下しにくい。なお、低濃度第二拡散層における第二導電型のドーパントのピーク濃度の上限は特に限定されないが、例えば、1.0×1019atom/cmとすることができる。高濃度第二拡散層における第二導電型のドーパントのピーク濃度の下限は特に限定されないが、例えば、1.0×1020atom/cmとすることができる。
 更に、低濃度第二拡散層における第二導電型のドーパントと第一導電型のドーパントのピーク濃度比を10.0以上とすることが好ましい。ピーク濃度比が10.0以上であれば、得られる太陽電池の変換効率をより確実に向上することができる。
 上記のピーク濃度はSIMS(二次イオン質量分析)により測定することができる。
 次に、ダイレクトプラズマCVD装置を用い、受光面および裏面にパッシベーション膜であるシリコン窒化膜を堆積する。このとき、図5に示すように、熱酸化膜5上にパッシベーション膜6を堆積させてもよい。パッシベーション膜の膜厚は、反射防止膜も兼ねさせるため酸化膜を含めた膜厚がそれぞれの面において、80nmから100nmとなるように調整する。他の反射防止膜として二酸化ケイ素膜、二酸化チタン膜、酸化亜鉛膜、酸化スズ膜、酸化アルミ膜等があり、代替として使用可能であるし、スタック構造とすることも可能である。また、膜形成法も上記以外にリモートプラズマCVD法、コーティング法、真空蒸着法、ALD(原子層堆積)法等があり、適宜使用することができる。
 熱処理工程と、熱酸化膜を形成する工程とを、同一熱処理バッチで行った場合、熱処理された拡散剤(リンガラス及びボロンガラス)を除去してから、パッシベーション膜を形成することが好ましい。
 次に、スクリーン印刷装置を用い、受光面側および裏面側に例えば銀からなるペーストを櫛形電極パターン状に塗布し、乾燥させる。最後に、焼成炉において焼成を行い、所望の太陽電池を得る。
 上記方法によって太陽電池を作製することで、同時拡散処理中に起こるn拡散層へのp型不純物のオートドープによる抵抗増大、および高濃度p型拡散層形成を抑制し、電気特性の優れた太陽電池を作製することができる。
 以上、p型基板の場合を例に説明したが、n型基板の場合でも、上記のドーパント材料を逆に使用すればよく、何ら問題はない。
 以下、実施例及び比較例を挙げて本発明をさらに具体的に説明するが、これらは本発明を限定するものではない。
[太陽電池の製造]
(実施例1)
 リンボロン同時拡散による熱処理を行って、図4の太陽電池を製造した。その際、図1に示すフロー図に従って太陽電池を製造した。図1は実施例1の太陽電池の製造方法(同一熱処理バッチで、拡散層形成と熱酸化膜形成を行う場合)を示すフロー図である。
 このとき、用意した基板は、結晶面方位(100)、15.6cm角200μm厚、アズスライス比抵抗2Ω・cm(ドーパント濃度7.2×1015cm-3)ボロンドープp型単結晶シリコン基板である。NaOH水溶液でダメージエッチングおよびテクスチャエッチング後に基板表面をRCA洗浄して、基板表面にテクスチャ構造を形成した。基板厚は180μmとなった(図1(1)(2))。
 次に、P、純水、PVA(ポリビニルアルコール)、TEOS(テトラエチルオルソシリケート)を混合して、リン拡散剤を作製し、受光面側の電極直下となる領域にスクリーン印刷を用いてパターン塗布し、100℃、20分で乾燥させた(図1(3))。
 また、B、純水、PVA(ポリビニルアルコール)を混合してボロン拡散剤を作製し、裏面側にスピン塗布して80℃、1分で乾燥させ、ボロン拡散剤の膜を均一に形成した(図1(4))。
 次に、ボロン面どうしを向かい合わせて石英ボートに載置し、950℃30分の熱処理を行った。さらに、このステップの後に100%酸素雰囲気に切り替えて900℃40分の熱酸化膜形成のステップを設け、その後降温して基板を熱処理炉から取り出した(図1(5))。
 次に、プラズマエッチング装置を用い、pn接合の分離を行った。エッチングガスはCFガスを使用し、プラズマやラジカルが受光面や裏面に侵入しないよう、サンプルをスタックし、その状態で、端面を数ミクロン削った(図1(6))。
 同時拡散で基板表面に形成されたリンガラスおよびボロンガラスをフッ酸水溶液で除去し、洗浄を行った(図1(7))。
 次に、パッシベーション膜であるシリコン窒化膜をプラズマCVD装置を用いて受光面および裏面に85nmの厚みで形成した(図1(8))。
 受光面側および裏面側にそれぞれ銀ペーストをスクリーン印刷により形成し、乾燥後800℃で20分焼成を行った(図1(9)(10)(11))。
(実施例2)
 実施例1の熱酸化膜形成をリンガラスおよびボロンガラスを除去した後に行った図5に示される太陽電池を作製した。その際、図3に示すフロー図に従って太陽電池を製造した。図3は、実施例2の太陽電池の製造方法(熱処理後に、ガラス化した拡散剤を基板表面から除去し、その後熱酸化膜の形成を行う場合)を示すフロー図である。
 具体的には、実施例1におけるリンボロン同時拡散の後に同一バッチ内で熱酸化膜形成を行わず、基板を取り出してpn分離を行い(図3(5)(6))、基板表面のリンガラスおよびボロンガラスをフッ酸水溶液に浸漬して除去した後に(図3(7))、再度100%酸素雰囲気の熱処理炉で900℃40分の処理を行い、熱酸化膜15nmを形成した(図3(8))。さらに、後工程におけるCVD膜は受光面および裏面それぞれ70nm堆積させ、受光面および裏面における酸化膜と窒化膜の総厚を85nmとした(図3(9))。それ以外は実施例1と同様にして、太陽電池を作製した。
(実施例3)
 実施例2の熱酸化膜形成後に熱酸化膜を除去した図4に示される太陽電池を作製した。その際、図2に示すフロー図に従って太陽電池を製造した。図2は、実施例3の太陽電池の製造方法(熱処理後に、ガラス化した拡散剤を基板表面から除去し、その後熱酸化膜の形成及び除去を行う場合)を示すフロー図である。
 具体的には、実施例2における熱酸化膜形成後に、基板をフッ酸水溶液に浸漬させ、基板表面に形成された熱酸化膜を除去した(図2(9))。さらに、後工程におけるCVD膜は受光面および裏面それぞれ85nm堆積させた(図2(10))。それ以外は実施例2と同様にして、太陽電池を作製した。
(実施例4)
 実施例1において熱酸化膜を5nm形成した太陽電池を作製した。
 具体的には、実施例1におけるリンボロン同時拡散熱処理時の熱酸化膜形成ステップを850℃40分とし、酸化膜を5nm形成した。取り出した基板をスタックして、プラズマエッチングによるpn接合分離を行い、フッ酸を用いてボロンガラスおよびリンガラスを除去した後に、受光面および裏面のCVD膜をそれぞれ85nm堆積させた。それ以外は実施例1と同様にして、太陽電池を作製した。
(実施例5)
 実施例1において熱酸化膜を25nm形成した太陽電池を作製した。
 具体的には、実施例1におけるリンボロン同時拡散熱処理時の熱酸化膜形成ステップを950℃40分とし、酸化膜を25nm形成した。取り出した基板をスタックして、プラズマエッチングによるpn接合分離を行い、フッ酸を用いてボロンガラスおよびリンガラスを除去した後に、受光面および裏面のCVD膜をそれぞれ85nm堆積させた。それ以外は実施例1と同様にして、太陽電池を作製した。
(実施例6)
 実施例2において熱酸化膜を5nm形成した太陽電池を作製した。
 具体的には、実施例2における熱酸化膜形成を850℃40分とし、熱酸化膜を5nm形成した。受光面および裏面のCVD膜をそれぞれ80nm堆積させた。それ以外は実施例2と同様にして、太陽電池を作製した。
(実施例7)
 実施例2において熱酸化膜を25nm形成した太陽電池を作製した。
 具体的には、実施例2における熱酸化膜形成を950℃40分とし、熱酸化膜を25nm形成した。受光面および裏面のCVD膜をそれぞれ60nm堆積させた。それ以外は実施例2と同様にして、太陽電池を作製した。
(実施例8)
 実施例3において熱酸化膜を5nm形成した太陽電池を作製した。
 具体的には、実施例3における熱酸化膜形成を850℃40分とし、熱酸化膜を5nm形成した。フッ酸水溶液に浸漬させて熱酸化膜を除去した後に、受光面および裏面のCVD膜をそれぞれ85nm堆積させた。それ以外は実施例3と同様にして、太陽電池を作製した。
(実施例9)
 実施例3において熱酸化膜を25nm形成した太陽電池を作製した。
 具体的には、実施例3における熱酸化膜形成を950℃40分とし、酸化膜を25nm形成した。フッ酸水溶液に浸漬させて熱酸化膜を除去した後に、受光面および裏面のCVD膜をそれぞれ85nm堆積させた。それ以外は実施例3と同様にして、太陽電池を作製した。
(比較例1)
 比較のため、実施例1において熱酸化膜を形成していない太陽電池を作製した。その際、図9に示すフロー図に従って太陽電池を製造した。図9は、比較例1の太陽電池作製方法のフロー図である。
 具体的には、リンボロン同時拡散熱処理時に熱酸化膜形成ステップを設けず(図9(5))、取り出した基板をスタックして、プラズマエッチングによるpn接合分離を行い(図9(6))、フッ酸を用いてボロンガラスおよびリンガラスを除去した後に(図9(7))、受光面および裏面のCVD膜をそれぞれ85nm堆積させた(図9(8))。それ以外は実施例1と同様にして、太陽電池を作製した。
 実施例および比較例の条件表を表1に示す。
Figure JPOXMLDOC01-appb-T000001
[ピーク濃度比]
 それぞれの条件のCVD膜成膜前の基板に対して、n層のボロンドーパントおよびリンドーパントのピーク濃度をSIMSにより測定し、ピーク濃度比を算出した。その結果を表2に示す。
[シート抵抗測定]
 さらに四探針法のシート抵抗測定機を用いてn層のシート抵抗測定を行った。その結果を表2に示す。
[電流電圧特性]
 それぞれの条件で作製した太陽電池を25℃の雰囲気の中、ソーラーシミュレータ(光強度:1kW/m,スペクトル:AM1.5グローバル)の下で電流電圧特性を測定した結果、表2のような結果となった。尚、表中の変換効率は実施例および比較例で試作したセル50枚の平均値である。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、高い変換効率が得られる実施例1~3では、n層におけるボロンドーパントのピーク濃度が5.0×1017atoms/cm以下かつリンドーパントのピーク濃度が1.0×1018atoms/cm以上であり、n層におけるリンおよびボロンドーパントのピーク濃度比(リン/ボロン)が10.0以上となっている。これらの条件が高い変換効率を得るのに好ましい条件となっていることが分かる。
 これは、熱酸化膜形成によって、n拡散層にオートドープしたボロンドーパントが低濃度化され、n層のシート抵抗が低下し、横流れ抵抗を減少させる効果による。
 更に、実施例1~3は、熱酸化膜の厚みが少ない実施例4、6、8に比べて、ボロンドーパントの低濃度化が十分となり、n層のシート抵抗が低くなったために、より高い変換効率となった。
 また、熱酸化膜を厚くした実施例5、7、9に比べて、n層において、熱酸化膜が過剰に形成されていないため、ボロンドーパントを低濃度化し、かつリンドーパントの再拡散も防ぐことができる。これにより、n層のリンドーパントのピーク濃度が低下することはなく、拡散深さが深くならないので、受光面近傍の再結合速度が低下している。
 また、実施例4、6、8は実施例1よりも熱酸化膜の厚みが少ない場合であるが、この場合でも、比較例1に比べて、高い変換効率の太陽電池を得ることができた。
 一方、熱酸化膜を厚くした実施例5、7、9は、実施例1~3に比べて、短絡電流がわずかに低下したが、この場合でも、比較例1に比べて、高い変換効率の太陽電池を得ることができた。
 一方、比較例1は、ボロンドーパントを低濃度化する熱酸化膜形成を行っていないため、n層におけるリンおよびボロンドーパントのピーク濃度比(リン/ボロン)が小さくなり、低い変換効率となった。
 本発明の太陽電池の製造方法であれば、ボロン拡散層(第一拡散層)および濃度の異なるリン拡散層(高濃度第二拡散層、低濃度第二拡散層)を一度の熱処理で同時に形成した場合でも、熱酸化膜を形成することによって、n拡散層(低濃度第二拡散層)にオートドープしたボロンドーパント(第一導電型のドーパント)とリンドーパント(第二導電型のドーパント)のピーク濃度を制御することができ、高い変換効率を有する太陽電池が作製可能であることが分かる。
 さらに、本発明は上記実施形態に限定されるものではない。例えば、本実施例では、p型基板の太陽電池を示したが、n型基板を用いたリンボロン同時拡散を行う場合においても、上記効果が実施可能であり、高い変換効率を有する太陽電池を作製することが可能である。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、如何なるものであっても本発明の技術範囲に包含される。

Claims (10)

  1.  第一導電型の半導体基板の第一の主面に、前記第一導電型と反対の第二導電型のドーパントが拡散された高濃度第二拡散層及び該高濃度第二拡散層よりも低濃度にドーパントが拡散された低濃度第二拡散層を形成し、前記半導体基板の第二の主面に前記第一導電型のドーパントが拡散された第一拡散層を形成する太陽電池の製造方法であって、
    (a)前記第二導電型のドーパントを含む第二拡散剤及び前記第一導電型のドーパントを含む第一拡散剤を準備する工程と、
    (b)前記第一拡散剤を前記第二の主面に塗布する工程と、
    (c)前記第二拡散剤を前記第一の主面に部分的に塗布する工程と、
    (d)前記第一拡散剤及び前記第二拡散剤が塗布された半導体基板を熱処理することによって、前記高濃度第二拡散層、前記低濃度第二拡散層、及び前記第一拡散層を形成する工程と、
    (e)前記拡散層が形成された半導体基板に熱酸化膜を形成する工程と
    を有することを特徴とする太陽電池の製造方法。
  2.  前記半導体基板をp型シリコン基板とし、前記第二拡散剤を前記熱処理によってガラス化するリン拡散剤とし、前記第一拡散剤を前記熱処理によってガラス化するボロン拡散剤とすることを特徴とする請求項1に記載の太陽電池の製造方法。
  3.  前記工程(d)及び(e)を、同一熱処理バッチで行うことを特徴とする請求項1又は請求項2に記載の太陽電池の製造方法。
  4.  前記工程(d)の後、かつ前記工程(e)の前に、更に(f)前記熱処理された第一拡散剤及び第二拡散剤を除去する工程を有することを特徴とする請求項1又は請求項2に記載の太陽電池の製造方法。
  5.  前記工程(e)で形成する前記熱酸化膜の膜厚を10~20nmとすることを特徴とする請求項1から請求項4のいずれか1項に記載の太陽電池の製造方法。
  6.  前記低濃度第二拡散層における前記第一導電型のドーパントのピーク濃度を5.0×1017atom/cm以下とすることを特徴とする請求項1から請求項5のいずれか1項に記載の太陽電池の製造方法。
  7.  前記低濃度第二拡散層における前記第二導電型のドーパントのピーク濃度を1.0×1018atom/cm以上とすることを特徴とする請求項1から請求項6のいずれか1項に記載の太陽電池の製造方法。
  8.  前記低濃度第二拡散層における前記第二導電型のドーパントと前記第一導電型のドーパントのピーク濃度比を10.0以上とすることを特徴とする請求項1から請求項7のいずれか1項に記載の太陽電池の製造方法。
  9.  前記工程(e)の後に、更に(g)前記第一の主面及び前記第二の主面にパッシベーション膜を形成する工程と、
    (h)前記パッシベーション膜が形成された第一の主面及び第二の主面に電極材料を塗布する工程と、
    (i)前記塗布した電極材料を焼成する工程と
    を有することを特徴とする請求項1から請求項8のいずれか1項に記載の太陽電池の製造方法。
  10.  請求項1から請求項9のいずれか1項に記載の太陽電池の製造方法によって製造されたものであることを特徴とする太陽電池。
PCT/JP2014/005278 2013-12-13 2014-10-17 太陽電池の製造方法及び該製造方法によって得られた太陽電池 WO2015087472A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015552291A JP6144778B2 (ja) 2013-12-13 2014-10-17 太陽電池の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-258216 2013-12-13
JP2013258216 2013-12-13

Publications (1)

Publication Number Publication Date
WO2015087472A1 true WO2015087472A1 (ja) 2015-06-18

Family

ID=53370809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005278 WO2015087472A1 (ja) 2013-12-13 2014-10-17 太陽電池の製造方法及び該製造方法によって得られた太陽電池

Country Status (3)

Country Link
JP (1) JP6144778B2 (ja)
TW (1) TWI656655B (ja)
WO (1) WO2015087472A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017042862A1 (ja) * 2015-09-07 2017-03-16 三菱電機株式会社 太陽電池の製造方法および太陽電池
JPWO2017037803A1 (ja) * 2015-08-28 2017-11-24 三菱電機株式会社 太陽電池セルおよび太陽電池セルの製造方法
WO2018012547A1 (ja) * 2016-07-14 2018-01-18 日立化成株式会社 p型拡散層付き半導体基板の製造方法、p型拡散層付き半導体基板、太陽電池素子の製造方法、及び太陽電池素子

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7142461B2 (ja) * 2018-05-14 2022-09-27 東京エレクトロン株式会社 基板処理方法、基板処理装置および基板処理システム
CN109301031B (zh) * 2018-09-12 2021-08-31 江苏林洋光伏科技有限公司 N型双面电池的制作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09283779A (ja) * 1996-03-25 1997-10-31 Hitachi Ltd 太陽電池
JP2010157654A (ja) * 2009-01-05 2010-07-15 Sharp Corp 半導体装置の製造方法
JP2013026523A (ja) * 2011-07-22 2013-02-04 Hitachi Chem Co Ltd インクジェット用不純物拡散層形成組成物、不純物拡散層の製造方法、並びに、太陽電池素子及び太陽電池
JP2013089955A (ja) * 2011-10-13 2013-05-13 Samsung Sdi Co Ltd 光電素子の製造方法
JP2013526049A (ja) * 2010-04-26 2013-06-20 イーデーエフ・イーエヌアール・ピーダブリュティー シリコンウェハ上にn+pp+型又はp+nn+型の構造を作製する方法
JP2013161818A (ja) * 2012-02-01 2013-08-19 Mitsubishi Electric Corp 太陽電池の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6552414B1 (en) * 1996-12-24 2003-04-22 Imec Vzw Semiconductor device with selectively diffused regions
JP4660642B2 (ja) * 2003-10-17 2011-03-30 信越化学工業株式会社 太陽電池及びその製造方法
JP4481869B2 (ja) * 2005-04-26 2010-06-16 信越半導体株式会社 太陽電池の製造方法及び太陽電池並びに半導体装置の製造方法
WO2010050936A1 (en) * 2008-10-29 2010-05-06 Innovalight, Inc. Methods of forming multi-doped junctions on a substrate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09283779A (ja) * 1996-03-25 1997-10-31 Hitachi Ltd 太陽電池
JP2010157654A (ja) * 2009-01-05 2010-07-15 Sharp Corp 半導体装置の製造方法
JP2013526049A (ja) * 2010-04-26 2013-06-20 イーデーエフ・イーエヌアール・ピーダブリュティー シリコンウェハ上にn+pp+型又はp+nn+型の構造を作製する方法
JP2013026523A (ja) * 2011-07-22 2013-02-04 Hitachi Chem Co Ltd インクジェット用不純物拡散層形成組成物、不純物拡散層の製造方法、並びに、太陽電池素子及び太陽電池
JP2013089955A (ja) * 2011-10-13 2013-05-13 Samsung Sdi Co Ltd 光電素子の製造方法
JP2013161818A (ja) * 2012-02-01 2013-08-19 Mitsubishi Electric Corp 太陽電池の製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017037803A1 (ja) * 2015-08-28 2017-11-24 三菱電機株式会社 太陽電池セルおよび太陽電池セルの製造方法
WO2017042862A1 (ja) * 2015-09-07 2017-03-16 三菱電機株式会社 太陽電池の製造方法および太陽電池
JPWO2017042862A1 (ja) * 2015-09-07 2018-01-25 三菱電機株式会社 太陽電池の製造方法および太陽電池
CN107851681A (zh) * 2015-09-07 2018-03-27 三菱电机株式会社 太阳能电池的制造方法以及太阳能电池
WO2018012547A1 (ja) * 2016-07-14 2018-01-18 日立化成株式会社 p型拡散層付き半導体基板の製造方法、p型拡散層付き半導体基板、太陽電池素子の製造方法、及び太陽電池素子

Also Published As

Publication number Publication date
TWI656655B (zh) 2019-04-11
JP6144778B2 (ja) 2017-06-07
JPWO2015087472A1 (ja) 2017-03-16
TW201535768A (zh) 2015-09-16

Similar Documents

Publication Publication Date Title
US7402448B2 (en) Photovoltaic cell and production thereof
US20100032012A1 (en) Solar cell and method of manufacturing the same
JP5737204B2 (ja) 太陽電池及びその製造方法
WO2006117975A1 (ja) 太陽電池の製造方法及び太陽電池
JP6144778B2 (ja) 太陽電池の製造方法
JP2010186900A (ja) 太陽電池及びその製造方法
JP6199727B2 (ja) 太陽電池の製造方法
JP5338702B2 (ja) 太陽電池の製造方法
Singh et al. Fabrication of c-Si solar cells using boric acid as a spin-on dopant for back surface field
WO2013100085A1 (ja) 太陽電池素子、太陽電池素子の製造方法および太陽電池モジュール
JP5830143B1 (ja) 太陽電池セルの製造方法
JP2013225619A (ja) 太陽電池用ウェーハの製造方法および太陽電池セルの製造方法
JP6139466B2 (ja) 太陽電池の製造方法
JP2012256713A (ja) 太陽電池の製造方法
JP6234633B2 (ja) 太陽電池および太陽電池の製造方法
JP2015106624A (ja) 太陽電池の製造方法
US20200176626A1 (en) Solar cell and method for manufacturing the same
JP5745598B2 (ja) 太陽電池用基板の表面処理方法
JP2010027744A (ja) 基板の拡散層形成方法
WO2011048656A1 (ja) 基板の粗面化方法、光起電力装置の製造方法
TWI459575B (zh) 太陽能電池製造方法
JP6092574B2 (ja) 太陽電池素子の製造方法
JP6663492B2 (ja) 太陽電池、太陽電池の製造方法及び太陽電池の製造システム
JP5994895B2 (ja) 太陽電池の製造方法
JP2012160520A (ja) 太陽電池及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14870148

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015552291

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14870148

Country of ref document: EP

Kind code of ref document: A1