WO2015083483A1 - 面発光ユニット - Google Patents

面発光ユニット Download PDF

Info

Publication number
WO2015083483A1
WO2015083483A1 PCT/JP2014/079478 JP2014079478W WO2015083483A1 WO 2015083483 A1 WO2015083483 A1 WO 2015083483A1 JP 2014079478 W JP2014079478 W JP 2014079478W WO 2015083483 A1 WO2015083483 A1 WO 2015083483A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light emitting
emitting
panels
region
Prior art date
Application number
PCT/JP2014/079478
Other languages
English (en)
French (fr)
Inventor
祐亮 平尾
孝二郎 関根
耕 大澤
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2015551437A priority Critical patent/JP6477493B2/ja
Priority to US15/102,206 priority patent/US20160312964A1/en
Publication of WO2015083483A1 publication Critical patent/WO2015083483A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/28Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/61Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K19/00Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00
    • H10K19/901Assemblies of multiple devices comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/18Tiled displays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • F21Y2115/15Organic light-emitting diodes [OLED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/20Electroluminescent [EL] light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0051Diffusing sheet or layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes

Definitions

  • the present disclosure relates to a surface light-emitting unit, and more particularly, to a surface light-emitting unit including a plurality of surface light-emitting panels arranged so that each light-emitting surface is arranged in a plane.
  • the surface light emitting unit is not limited to a lighting device, and is also used as a backlight for outdoor advertisements such as a liquid crystal display, a computer monitor, or digital signage.
  • a surface light emitting panel such as an organic EL (electroluminescence) element is used for the surface light emitting panel.
  • the organic EL element can obtain high luminance with low power consumption, and exhibits excellent performance in terms of responsiveness and life.
  • a non-light-emitting region is located on the outer edge of the light-emitting surface of the surface light-emitting panel.
  • a reduction in luminance in the front direction of these non-light emitting portions and portions corresponding to the surrounding portions is inevitable. Therefore, when no countermeasure is taken, this appears as luminance unevenness, and a dark portion is generated along the non-light emitting portion.
  • Patent Document 1 discloses an invention related to a lighting device.
  • This illumination device includes a surface light emitting device and an optical member.
  • the publication states that according to this lighting device, it is possible to make it difficult to recognize dark parts due to non-light emitting parts.
  • Patent Document 2 discloses an invention related to a lighting device.
  • This illumination device includes an optical member and a plurality of light emitting elements.
  • This publication states that according to this optical member and the illumination device, illumination light can be irradiated in a state where there is little luminance unevenness over an area larger than the front surface of each light emitting element by using a plurality of light emitting elements.
  • This disclosure is intended to provide a surface light emitting unit that improves the luminance in the front direction of a portion corresponding to a non-light emitting portion and a peripheral portion thereof.
  • a surface emitting unit includes a plurality of surface emitting panels that emit light toward the front side, and a plurality of adjacent surface emitting panels that are arranged so that the light emitting surfaces are arranged in a plane.
  • the transmissive member is disposed opposite to the light emitting surface, and reflects and propagates light emitted from the surface light emitting panel, and a light scattering portion that scatters the light propagated by the transmissive member toward the front side.
  • Each light emitting surface of the plurality of surface light emitting panels has a light emitting region that emits light and a non-light emitting region that is located on the outer periphery of the light emitting region and does not emit light.
  • the light scattering portion is provided on the surface light emitting panel so as to overlap the non-light emitting region when viewed from the front side.
  • the surface emitting unit extends in the normal direction of the light emitting surface when a light distribution curve in a plane perpendicular to the light emitting surface of the light emitted from the surface emitting panel is drawn for each of the plurality of surface emitting panels.
  • the portion of the light distribution curve that satisfies the condition of L> cos ⁇ Have at least.
  • FIG. 2 is a schematic cross-sectional view taken along the line II-II shown in FIG. It is a perspective view which shows the surface emitting panel used for the surface emitting unit according to Embodiment 1, a transmissive member, and a reflecting member.
  • 3 is a cross-sectional view showing an organic EL element provided in the surface light emitting panel according to Embodiment 1.
  • FIG. It is a figure which shows the vertical in-plane light distribution according to the 3rd structural example of the organic EL element with which the surface emitting panel shown in FIG. 1 was equipped.
  • FIG. 6 is a conceptual partial enlarged view showing a dimming pattern density distribution of an optical filter in Example 4.
  • 10 is a cross-sectional density profile along line XX in FIG. It is sectional drawing which shows the surface emitting unit in other embodiment.
  • FIG. 1 is a plan view showing the surface light emitting unit 1.
  • FIG. 1 shows a state in which a later-described transmission member 16 is removed from the surface light emitting unit 1.
  • 2 is a schematic cross-sectional view of the surface light emitting unit shown in FIG. 1 taken along the line II-II shown in FIG.
  • FIG. 3 is a perspective view showing the surface emitting panels 10A and 10B, the transmissive member 16, and the reflecting member 20 used in the surface emitting unit 1.
  • FIG. 1 is a plan view showing the surface light emitting unit 1.
  • FIG. 1 shows a state in which a later-described transmission member 16 is removed from the surface light emitting unit 1.
  • 2 is a schematic cross-sectional view of the surface light emitting unit shown in FIG. 1 taken along the line II-II shown in FIG.
  • FIG. 3 is a perspective view showing the surface emitting panels 10A and 10B, the transmissive member 16, and the reflecting member 20 used in the surface emitting unit 1.
  • the surface light emitting unit 1 has a flat, substantially rectangular parallelepiped outer shape as a whole.
  • the surface light emitting unit 1 includes surface light emitting panels 10A to 10D, a transmissive member 16, and a reflective member 20.
  • the surface light emitting unit 1 may include a base plate and a frame plate (not shown) as a housing for housing the surface light emitting panels 10A to 10D, the transmission member 16, and the reflection member 20.
  • the base plate constitutes the back surface of the housing and is a member for holding the surface light emitting panels 10A to 10D.
  • the frame plate is a member constituting the side surface of the housing and is disposed along the outer periphery of the surface light emitting unit 1. Is done.
  • Each of the surface light emitting panels 10A to 10D has a flat shape extending along the surface direction.
  • the surface emitting panels 10A to 10D are arranged so that the light emitting surfaces 13A to 13D are arranged in a plane.
  • the surface light emitting panels 10A to 10D are configured by a laminate of transparent substrates 11A to 11D and light emitters 12A to 12D including organic EL elements, and the transparent substrates 11A to 11D are positioned on the transmissive member 16 side. Yes.
  • the surface light emitting panels 10A to 10D having the configuration are surface light emitting panels made of so-called bottom emission type organic EL elements.
  • the surface light emitting panels 10A to 10D are not limited to the above, and may be a surface light emitting panel made of a top emission type organic EL element, or a plurality of light emitting diodes and emission surface sides of these light emitting diodes ( It may be a surface light-emitting panel composed of a diffusion plate arranged on the front side), or a surface light-emitting panel using a cold cathode tube or the like.
  • Surface emitting panels 10A to 10D are arranged in an array.
  • the surface emitting panels 10A to 10D are arranged with a space therebetween, and a gap 30 is formed between adjacent surface emitting panels.
  • a total of four gaps 30 are formed between adjacent surface light emitting panels among the surface light emitting panels 10A to 10D.
  • the gap 30 By providing the gap 30, it is possible to increase the area of the light source with a smaller number of panels than when the surface emitting panels 10A to 10D are arranged in contact with each other. If it is not necessary to increase the area of the light source, the surface emitting panels 10A to 10D may be arranged in contact with each other without providing the gap 30.
  • the surface light emitting panels 10A to 10D have light emitting surfaces 13A to 13D.
  • the light emitting surfaces 13A to 13D are configured by the outer surfaces of the transparent substrates 11A to 11D located on the side opposite to the side where the light emitters 12A to 12D are located.
  • the light generated by the light emitters 12A to 12D passes through the transparent substrates 11A to 11D, and is emitted toward the transmissive member 16 side (front side) through the light emitting surfaces 13A to 13D (in FIG. 3). (See arrow AR shown).
  • the surface emitting panels 10A to 10D are arranged so that the light emitting surfaces 13A to 13D are arranged in a plane.
  • Surface emitting panels 10A to 10D according to the present embodiment are arranged so that light emitting surfaces 13A to 13D are located on the same plane.
  • the light emitting surfaces 13A to 13D have light emitting regions 14A to 14D that emit light and non-light emitting regions 15A to 15D located on the outer periphery of the light emitting regions 14A to 14D.
  • the light emitting areas 14A to 14D have a rectangular shape.
  • the non-light emitting regions 15A to 15D have a rectangular annular shape.
  • the non-light emitting regions 15A to 15D are formed by providing portions for sealing the organic EL elements included in the light emitters 12A to 12D and connecting wirings to the organic EL elements.
  • a portion including the gap 30 formed between adjacent surface emitting panels and the non-light emitting area of the surface emitting panel located adjacent to the gap 30 constitutes the non-light emitting portion 40.
  • the non-light emitting part 40 is a part that causes a dark part when no measures are taken, and a total of four non-light emitting parts 40 are formed between adjacent surface emitting panels.
  • the gap 30 is not formed, the non-light emitting area of the adjacent surface light emitting panel corresponds to the non-light emitting portion 40.
  • FIG. 4 is a cross-sectional view showing an organic EL element provided in the surface light emitting panel 10A.
  • the transmissive member 16 provided on the light emitting surface 13A is not shown for convenience.
  • FIG. 4 the structure of the organic EL element provided in the surface light emitting panels 10A to 10D will be described. Since the surface light emitting panels 10A to 10D all have the same configuration, the following description will be made focusing on the surface light emitting panel 10A.
  • the organic EL element provided in the surface light emitting panel 10A includes a transparent electrode layer 110, an organic electroluminescent layer 120, and a reflective electrode layer 130 as the light emitter 12A in addition to the transparent substrate 11A.
  • the transparent electrode layer 110, the organic electroluminescent layer 120, and the reflective electrode layer 130 are laminated on the main surface of the transparent substrate 11A in this order.
  • the transparent electrode layer 110 corresponds to an anode
  • the reflective electrode layer 130 corresponds to a cathode.
  • the transparent substrate 11A serves as a base material on which the above-described various layers are formed on the main surface (the surface opposite to the light emitting surface 13A), and has an insulating property that transmits light in the visible light region satisfactorily. It is comprised by the member of.
  • the transparent substrate 11A may be a rigid substrate or a flexible substrate.
  • the transparent substrate 11A is configured by, for example, a glass plate, a plastic plate, a polymer film, a silicon plate, or a laminate of these from the above-described light-transmitting viewpoint.
  • the transparent electrode layer 110 is provided on one main surface (surface opposite to the light emitting surface 13A) of the transparent substrate 11A, and transmits light in the visible light region and has good electrical conductivity. It is composed of a film.
  • examples of the transparent electrode layer 110 include an ITO (mixture of indium oxide and tin oxide) film, an IZO (mixture of indium oxide and zinc oxide film) film, a ZnO film, and a CuI film.
  • Inorganic conductive films such as SnO2 films, organic conductive films such as PEDOT / PSS (polyethylenedioxythiophene and polystyrene sulfonic acid) films, and composite conductive materials in which silver nanowires and carbon nanotubes are dispersed in polymer materials Consists of a film or the like.
  • the transparent electrode layer 110 is provided on the transparent substrate 11A by employing, for example, any one of a vapor deposition method, a spin coating method, a casting method, an ink jet method, a printing method, and the like.
  • the spin coating method, the ink jet method, and the printing method can be particularly preferably used because a homogeneous film can be easily obtained and the generation of pinholes can be suppressed.
  • the organic electroluminescent layer 120 is provided on the main surface of the transparent electrode layer 110 opposite to the side where the transparent substrate 11A is located, and includes at least a light emitting layer 121 made of a fluorescent compound or a phosphorescent compound. It is composed of a film that transmits light in the visible light region satisfactorily.
  • the organic electroluminescent layer 120 further includes a hole transport layer 122 located closer to the transparent electrode layer 110 than the light emitting layer 121 and an electron transport layer 123 located closer to the reflective electrode layer 130 than the light emitting layer 121. Yes.
  • a lithium fluoride film, an inorganic metal salt film, or the like may be formed at any position in the thickness direction in the organic electroluminescent layer 120.
  • Examples of the organic electroluminescent layer 120 include Alq3 (tris (8-quinolinolato) aluminum) and ⁇ -NPD (4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl).
  • a laminated film including an organic material laminated film or a film made of these organic materials and a metal film represented by an MgAg alloy or the like can be suitably used.
  • an organic metal complex may be used from the viewpoint of improving the external quantum efficiency of the organic EL element and extending the light emission lifetime.
  • the metal element that follows the formation of the complex is preferably any one metal belonging to Group VIII, Group IX, and Group X of the periodic table, or Al, Zn, and particularly Ir, Pt, Al, Zn It is preferable that
  • the organic electroluminescent layer 120 is provided on the transparent electrode layer 110 by employing, for example, any one of a vapor deposition method, a spin coating method, a casting method, an ink jet method, a printing method, and the like.
  • the spin coating method, the ink jet method, and the printing method can be particularly preferably used because a homogeneous film can be easily obtained and the generation of pinholes can be suppressed.
  • the reflective electrode layer 130 is provided on the main surface of the organic electroluminescent layer 120 opposite to the side on which the transparent electrode layer 110 is located, and reflects the light in the visible light region well and has good electrical conductivity. It is comprised with the film
  • the reflective electrode layer 130 is made of, for example, a metal film made of Al, Ag, Ni, Ti, Na, Ca, or an alloy containing any of these.
  • the reflective electrode layer 130 is provided on the organic electroluminescent layer 120 by employing, for example, a vapor deposition method or a sputtering method.
  • the transmissive member 16 is disposed so as to face the light emitting surfaces 13A to 13D of the surface light emitting panels 10A to 10D, and is located on the front side when viewed from the transparent substrates 11A to 11D. Yes.
  • the transmissive member 16 according to the present embodiment is provided on the surface emitting panels 10A to 10D so as to straddle the gap 30.
  • the transmissive member 16 is fixed on the transparent substrates 11A to 11D (light emitting surfaces 13A to 13D) using an optical transparent adhesive (not shown) or the like.
  • the transmissive member 16 is made of a material having a high transmittance (for example, a total light transmittance in the visible light wavelength region measured by a method based on JIS K 7361-1: 1997 is 80% or more) and having excellent flexibility. It is preferable.
  • Examples of the transmissive member 16 include a transparent resin substrate such as an acrylic resin, a transparent resin film such as polyethylene terephthalate (PET), and the like.
  • the transmissive member 16 and the transparent substrates 11A to 11D are formed as separate members.
  • the light emitters 12A to 12D function as a light emitter, and the transmissive member 16 and the transparent substrates 11A to 11D function as a light guide that guides the light generated by the light emitters 12A to 12D.
  • the light generated by the light emitters 12A to 12D passes through the transparent substrates 11A to 11D, is emitted from the light emitting surfaces 13A to 13D, and then enters the transmission member 16.
  • the incident light passes through the inside of the transmissive member 16 and is emitted as it is, or is reflected and propagated inside the transmissive member 16 and emitted.
  • the reflecting member 20 has a function as a light scattering portion, and scatters and reflects a part of the light emitted from the light emitting surfaces 13A to 13D of the surface emitting panels 10A to 10D and propagated inside the transmitting member 16. To do.
  • the reflecting member 20 is a cross-shaped member (see FIG. 1) having a total of four rod-like portions extending from the central portion of the surface emitting unit 1 corresponding to the four non-light emitting portions 40 (see FIG. 1). Consists of. Note that the reflecting member 20 is preferably one that scatters and reflects light without transmitting it.
  • Each portion of the reflecting member 20 extending in a bar shape is arranged along the outer edge of the light emitting surface of the adjacent surface light emitting panel so as to overlap the non-light emitting region when viewed from the front (light emitting surface) side. More specifically, the reflecting member 20 is provided on the light emitting surface of the surface light emitting panel so as to straddle and extend along the outer edges of the light emitting surfaces of the adjacent surface light emitting panels.
  • the reflecting member 20 will be described in more detail. Since the four portions extending in the rod shape of the reflecting member 20 all have the same shape, in the following, among the surface light emitting panels 10A to 10D, the surface light emitting panel 10A and the surface light emitting panel 10B will be described below. The description will be given focusing only on the part in between.
  • the reflecting member 20 is positioned on the light emitting surface 13A of the first surface light emitting panel 10A and the light emitting surface 13B of the second surface light emitting panel 10B so as to face the non-light emitting portion 40. ing.
  • the reflecting member 20 includes a non-light emitting region 15A located on an outer edge of the light emitting surface 13A of the first surface light emitting panel 10A on the second surface light emitting panel 10B side, and a light emitting surface 13B of the second surface light emitting panel 10B. Straddling the non-light emitting region 15B located at the outer edge on the first surface-emitting panel 10A side (that is, the reflecting member 20 overlaps the non-light emitting regions 15A and 15B of these portions when viewed from the front side), and The first surface light emitting panel 10A and the second surface light emitting panel 10B are provided so as to extend along the non-light emitting regions 15A and 15B.
  • the reflecting member 20 may be composed of an organic solvent-based white ink in which scattering particles are dispersed.
  • the scattering reflection surface by the reflection member 20 can be formed by, for example, applying white ink to the surface of the transmission member 16 by inkjet.
  • FIG. 5 is a diagram illustrating a vertical in-plane light distribution according to the first to third configuration examples of the organic EL element included in the surface light emitting panel illustrated in FIG. 1.
  • FIG. 6 is a table showing a specific example of film configuration conditions for realizing the organic EL elements according to the first to third configuration examples.
  • the first to third configuration examples of the organic EL element provided in the surface light-emitting panel of the surface light-emitting unit according to the present embodiment will be described in detail.
  • the organic EL element according to the first to third configuration examples draws a light distribution curve in a plane perpendicular to the light emitting surface of the light emitted from the surface light emitting panel
  • the luminance in the direction in which the angle formed with the axis is ⁇ (that is, the luminance in the range of ⁇ 90 ° ⁇ ⁇ 90 ° and ⁇ ⁇ 0 °) is L
  • the light distribution curve is Both include portions that satisfy the condition of L> cos ⁇ .
  • the organic EL element according to the first configuration example satisfies the condition of L> cos ⁇ in the range of ⁇ 70 ° ⁇ ⁇ ⁇ 70 ° (where ⁇ ⁇ 0 °), and the organic EL device according to the second configuration example.
  • the element satisfies the condition of L> cos ⁇ in the range of ⁇ 65 ° ⁇ ⁇ ⁇ 65 ° (where ⁇ ⁇ 0 °)
  • the organic EL element according to the third configuration example has approximately ⁇ 80 ° ⁇ . In the range of ⁇ ⁇ 50 ° and 50 ° ⁇ ⁇ ⁇ 80 °, the condition of L> cos ⁇ is satisfied.
  • the organic EL elements according to the first to third configuration examples having the above-described vertical in-plane light distribution can be realized by adjusting the thickness of the electron transport layer, for example, as shown in FIG. is there.
  • An ITO film is used as the transparent electrode layer
  • an MgAg film is used as the electron transport layer
  • an Alq3 film is used as the light emitting layer
  • an ⁇ -NPD film is used as the hole transport layer
  • an Ag film is used as the reflective electrode layer
  • FIG. As shown, when the thickness of the transparent electrode layer / hole transport layer / light emitting layer is 150 nm / 50 nm / 20 nm, the Lambertian distribution is generally obtained if the thickness of the electron transport layer is 20 nm or less. It is done.
  • the vertical in-plane light distribution is obtained in the first configuration example. If the thickness of the electron transport layer is 100 nm, the vertical configuration in the second configuration example is obtained. An in-plane light distribution is obtained. If the thickness of the electron transport layer is 300 nm, the vertical in-plane light distribution in the third configuration example is obtained.
  • the vertical in-plane light distribution of the organic EL elements according to the first to third configuration examples is different from the Lambertian distribution of a normal light source in the angle dependency of light emitted from the light emitting surface. In particular, it means that the amount of light emitted toward the oblique direction on the front side is larger than the amount of light emitted toward the front direction.
  • a surface light emitting panel including an organic EL element having such a vertical in-plane light distribution it is possible to transmit light more than when using a surface light emitting panel including an organic EL element having a Lambertian distribution. Since the amount of light that is totally reflected and propagated inside the member 16 increases, the amount of light that is scattered and reflected by the reflecting member 20 provided facing the non-light emitting portion 40 and emitted to the front side. Will also increase.
  • surface emitting unit 1 guides more light out of the light emitted from the organic EL element to the light emitting surface of transmissive member 16 corresponding to the non-light emitting portion and the surrounding portion. As a result, the luminance in the front direction of the portion is improved. As a result, the non-uniformity of the luminance is reduced, and the non-light emitting portion becomes less noticeable.
  • the surface light emitting unit 1 by adopting the configuration of the surface light emitting unit 1 according to the present embodiment, the surface light emitting unit in which the luminance in the front direction of the non-light emitting portion 40 and the portion corresponding to the peripheral portion is improved as compared with the conventional case. In addition, it is possible to obtain a surface light emitting unit in which nonuniformity of luminance is reduced and the non-light emitting portion becomes inconspicuous.
  • FIG. 7 is a cross-sectional view showing the surface light emitting unit in the second embodiment.
  • the configuration of the surface light emitting unit 1 ⁇ / b> A corresponds to a configuration in which the optical filter 17 and the scattering sheet 18 are added to the configuration of the surface light emitting unit 1, and other configurations are the same as the configuration of the surface light emitting unit 1.
  • the optical filter 17 is disposed in parallel to the light emitting side surface of the transmission member 16 and is provided between the scattering sheet 18 and the transmission member 16.
  • the optical filter 17 is in optical contact with the transmission member 16.
  • the optical filter 17 may be bonded to the light emitting side surface of the transmissive member 16 using an optical adhesive having transparency.
  • the optical filter 17 functions as a light reducing member, and reduces the amount of light emitted from the light emitting surface of the transmissive member 16.
  • the optical filter 17 reduces the light incident on the optical filter 17 by a predetermined amount and emits it.
  • the optical filter 17 is printed with a pattern having a circular light reduction region that reduces the amount of light using an inkjet. This pattern adjusts the transmittance of the optical filter 17.
  • the scattering sheet 18 functions as a scattering member, scatters (diffuses) the light emitted from the surface light emitting panels 10A to 10D and transmits the light toward the outside, and faces the light emission surface of the transmission member 16. Is provided. Specifically, the scattering sheet 18 is affixed to the optical filter 17 with air interposed on the surface of the optical filter 17.
  • the boundary between the formation region of the scattering reflection surface facing the non-light emitting portion and the light emitting region can be made inconspicuous.
  • a surface emitting unit that further reduces non-uniformity can be realized.
  • the scattering sheet 18 there are those that scatter light by using the internal scattering action by including fine particles inside, and those that scatter the light by using the interface reflection action by having irregularities on the surface. Is available.
  • the light generated by the light emitters 12A and 12B passes through the transparent substrates 11A and 11B, is emitted from the light emitting surfaces 13A and 13B, and then enters the transmission member 16.
  • the incident light passes through the inside of the transmission member 16 and is emitted to the scattering sheet 18 side through the optical filter 17, or is reflected and propagated inside the transmission member 16 to propagate through the optical filter 17. Or injected to the side.
  • the luminance on the front side along the optical axis extending in the normal direction of the light emitting surface is 1, and the angle formed between the optical axis in the plane is ⁇ If the luminance in a certain direction is L, the light distribution curve includes a portion satisfying the condition of L> cos ⁇ .
  • the vertical in-plane light distribution shown in the light distribution curve of the present embodiment also means that the angle dependency of the light emitted from the light emitting surface is different from the normal Lambertian distribution, In particular, it means that the amount of light emitted in the oblique direction with respect to the front side is larger than the amount of light emitted in the front direction.
  • the surface light emitting panels 10A and 10B having such a vertical in-plane light distribution By using the surface light emitting panels 10A and 10B having such a vertical in-plane light distribution, more of the light emitted from the surface light emitting panels 10A and 10B is totally reflected inside the transmission member 16. The amount of light that is propagated and scattered and reflected by the reflecting member 20 provided to face the non-light emitting portion 40 and emitted to the front side also increases.
  • the surface emitting unit 1A it is possible to guide more light out of the light emitted from the organic EL element to the non-light emitting part and the part of the scattering sheet 18 corresponding to the surrounding part. Therefore, the luminance in the front direction of the portion is improved.
  • surface emitting unit 1A it is possible to adjust the transmittance of the light emitted to the front side by optical filter 17, and the portion corresponding to non-light emitting portion 40 and its peripheral portion.
  • the light incident on the scattering sheet 18 is further scattered by the scattering sheet 18 and is emitted toward the outside, so that the non-uniformity of luminance is further reduced and the non-light emitting portion becomes less noticeable.
  • the surface light emitting unit 1A according to the present embodiment can also be a surface light emitting unit in which the luminance in the front direction of the non-light emitting portion 40 and the portion corresponding to the peripheral portion is improved as compared with the conventional case. Furthermore, it is possible to obtain a surface light emitting unit in which the non-uniformity of luminance is reduced and the non-light emitting portion is less noticeable.
  • the surface emitting units according to Example 1 to Example 3 each include a surface emitting panel including the organic EL elements according to the first to third configuration examples described in the first embodiment.
  • the surface emitting unit according to Example 4 is the surface emitting unit according to the second embodiment, and includes a surface emitting panel including the organic EL element according to the first configuration example shown in FIG. And the surface emitting unit according to Example 4 is provided with the optical filter shown by FIG. 9 and FIG. 10 mentioned later as an optical filter mentioned above.
  • the width of the surface light-emitting panel is 90 mm
  • the width of the non-light-emitting portion is 10 mm
  • an acrylic plate (refractive index 1) 5) is 3 mm in thickness
  • a white reflective film is used as the reflective member.
  • a light attenuation region having a transmittance of about 70% and a haze of 90% or more is configured according to the density distribution.
  • FIG. 8 is a graph showing normalized front luminance profiles of the surface emitting units according to Examples 1 to 4 and the comparative example.
  • FIG. 9 is a conceptual partial enlarged view showing the density distribution of the dimming region of the optical filter in the fourth embodiment.
  • FIG. 10 is a cross-sectional density profile along the line XX in FIG. 8 and 10, the horizontal axis position (mm) is set to 0 mm at the center of the non-light emitting portion generated between the two planar light emitting panels arranged, and the non-light emitting portion exists at ⁇ 5 mm. 50 mm is the approximate center of the surface emitting panel. Note that the normalized front luminance shown in FIG. 8 is normalized so that the value of the center of the surface light emitting panel (the center of the light emitting area) is 1000.
  • the normalized front luminance on the light emitting surface of the planar light emitting unit in the comparative example is a region corresponding to a non-light emitting portion generated between two planar light emitting panels arranged side by side. It can be confirmed.
  • the surface emitting unit according to Example 1 and Example 3 it can be seen that the front luminance is significantly improved in the region corresponding to the non-light emitting part as compared with the surface light emitting units according to the comparative example.
  • the surface emitting unit according to Example 1 (corresponding to the first configuration example) and Example 3 (corresponding to the third configuration example) is acrylic. This is because there is a lot of light emitted toward the critical angle (42 °) between the plate and air, or emitted toward an angle exceeding the critical angle.
  • the amount of light radiated at an angle near the critical angle propagates while reflecting inside the transmission member and reaches the reflection member (scattering reflection surface).
  • the incident angle with respect to the scattering reflection surface is small (the angle formed with the normal line standing on the scattering reflection surface is small), so that light is easily scattered in the front direction. Therefore, in the case where the surface light emitting panel has a light distribution with a large amount of light emitted toward the vicinity of the critical angle, the luminance can be efficiently improved in a region corresponding to the non-light emitting portion.
  • the light emitted from the peripheral area of the surface light emitting panel propagates inside the transmissive member, and the number of reflections until reaching the reflecting member (scattering reflecting surface) is small.
  • the amount of light emitted is reduced. Therefore, in particular, the luminance can be efficiently improved in the region corresponding to the non-light emitting portion by adopting a configuration having a light distribution that satisfies the condition of L> cos ⁇ in the peripheral region of the surface light emitting panel.
  • the front luminance is improved in the region corresponding to the non-light emitting part as compared with the surface light emitting unit according to the comparative example.
  • this is the critical angle (42 ° between the acrylic plate and the air) in the surface emitting unit according to the second embodiment (corresponding to the second configuration example).
  • the light emitted toward the vicinity or the light emitted toward the angle exceeding the critical angle is small as compared with the surface light emitting units according to the first and third embodiments, but is emitted toward the critical angle. This is because the amount of light is larger than that of the surface emitting unit according to the comparative example.
  • Example 1 and Example 3 it can be seen that the front luminance of the region corresponding to the non-light emitting portion is higher than the front luminance of the region corresponding to the light emitting region.
  • the nonuniformity of luminance can be reduced by adjusting the transmittance of light emitted to the front side by the optical filter.
  • the optical filter used in Example 4 has a pattern having a plurality of dimming regions, and adjustment of the light transmittance distribution of these optical filters is performed by changing the arrangement position and size of the plurality of dimming regions. It is done by adjusting.
  • the optical filter applied in Example 4 has a circular reduction in the region facing the non-light emitting portion in the plane thereof, rather than the region facing the light emitting region. It can be seen that the density of the light region (black dot portion in FIG. 9) is high. In other words, the optical filter has a light transmittance distribution in which the light transmittance of the region facing the light emitting region is higher than the light transmittance of the region facing the non-light emitting portion. In addition, the diameter of the circular attenuation
  • the surface light emitting unit according to the fourth embodiment includes the surface light emitting panel including the organic EL element according to the same first configuration example as the first embodiment.
  • the front luminance of the non-light emitting portion is reduced as compared with the surface light emitting unit according to the first embodiment, and the front luminance distribution is more uniform as a whole. It turns out that it is.
  • the optical filter is used as follows. What is necessary is just composition. That is, the optical filter is configured to have a light transmittance distribution in which the region facing the light emitting region has higher transmittance than the region facing the non-light emitting region (or the non-light emitting portion) in the plane. Thus, a more uniform front luminance distribution can be realized.
  • Example 4 in which the optical filter is applied to the surface light emitting unit according to Example 1 is shown, but the surface light emitting unit according to Example 3 is applied more uniformly by applying the optical filter having the same configuration. Can be realized.
  • the luminance in the front direction of the non-light emitting portion and the portion corresponding to the peripheral portion is improved as compared with the conventional case.
  • a front luminance distribution is obtained.
  • the configuration in which the optical filter and the scattering sheet are added to the surface emitting unit according to the first embodiment has been described as the configuration of the surface emitting unit according to the second embodiment.
  • the surface light emitting unit according to the embodiment may be a surface light emitting unit obtained by adding only the scattering sheet 18 to the surface light emitting unit 1 according to the first embodiment.
  • FIG. 11 is a cross-sectional view showing a surface light emitting unit 1B according to another embodiment.
  • the configuration of the surface light emitting unit 1 ⁇ / b> B corresponds to a configuration in which the scattering sheet 18 is added to the configuration of the surface light emitting unit 1, and the other configurations are the same as the configuration of the surface light emitting unit 1.
  • the scattering sheet 18 is attached to the transmissive member 16 with air interposed on the surface of the transmissive member 16. Note that the scattering sheet 18 may be in optical contact with the transmissive member 16 without interposing air on the surface of the transmissive member 16.
  • a surface light emitting unit in which the luminance in the front direction of the non-light emitting portion and the portion corresponding to the non-light emitting portion is improved can be obtained.
  • a reflecting member having an integrated cross shape is arranged in the gap so as to match the shape of the gap formed between adjacent surface emitting panels is illustrated.
  • it may be configured by four reflecting members in which each of the portions extending in a bar shape is independently formed.
  • the width of the non-light-emitting portion and the width of the reflecting member are substantially illustrated has been described. However, these need not necessarily match. One of them may be larger than the other.
  • the present invention is not limited to this, and other methods such as changing the film configuration of the organic EL element can naturally be applied.
  • the desired light distribution characteristic as mentioned above can be acquired by variously adjusting the structure of the said light source.
  • the surface light emitting unit including four surface light emitting panels in an array has been described as an example.
  • the number of surface light emitting panels and the layout of the surface light emitting panels are described here.
  • the present invention is not limited to the above, and any surface emitting unit may be used as long as it is provided with two or more surface emitting panels and these surface emitting panels are arranged side by side so as to be adjacent to each other. Is possible.
  • the surface light emitting unit to which this embodiment is applied is not limited to a illuminating device in a narrow sense used for indoor or outdoor lighting applications.
  • the surface light emitting unit includes a display, a display device, and an electric display type.
  • a lighting device in a broad sense included in a signboard or an advertisement is included.
  • Embodiment 2 described above the case where the scattering sheet is attached to the optical filter in a state in which air is interposed on the surface of the optical filter is exemplified, but the present invention is not limited to this.
  • the case where the sheet is optically adhered to the optical filter without interposing air on the surface of the optical filter may be used.
  • the reflecting member is made of a reflecting film, white ink, and the like, and the scattering reflecting surface and the light emitting surface are relatively flat has been described.
  • the reflective surface may have an inclination angle. Thereby, the amount of light emitted to the front side in the non-light emitting portion is increased, and the luminance in the non-light emitting portion can be improved.
  • the configuration in which the reflecting member is provided in the portion facing the light emitting surface of the transmitting member is illustrated.
  • a semi-transparent scatterer for example, scattering transmittance: 50%
  • scattering transmittance 50%
  • a reflecting member that scatters and reflects
  • the surface emitting units described above are arranged so that the respective light emitting surfaces are arranged in a plane, and face a plurality of surface emitting panels that emit light toward the front side, and light emitting surfaces of a plurality of adjacent surface emitting panels.
  • a transmissive member that is arranged and reflects and propagates the light emitted from the surface light emitting panel, and a light scatterer that scatters the light propagated by the transmissive member toward the front side.
  • Each light emitting surface of the plurality of surface light emitting panels has a light emitting region that emits light and a non-light emitting region that is located on the outer periphery of the light emitting region and does not emit light.
  • the light scattering portion is provided on the surface light emitting panel so as to overlap the non-light emitting region when viewed from the front side.
  • the surface emitting unit extends in the normal direction of the light emitting surface when a light distribution curve in a plane perpendicular to the light emitting surface of the light emitted from the surface emitting panel is drawn for each of the plurality of surface emitting panels.
  • the angle ⁇ in the portion satisfying the condition of L> cos ⁇ is an angle near the critical angle between the transmission member and the outside.
  • the light scattering portion is provided in a portion facing the light emitting surface of the transmission member, and is configured by a reflection member that scatters and reflects a part of the light propagated by the transmission member toward the front side.
  • the surface light emitting unit further includes a scattering member that is provided to face the light emission surface of the transmissive member and scatters light emitted from the plurality of surface light emitting panels.
  • the surface light emitting unit further includes a light reducing member provided between the transmitting member and the scattering member.
  • the light reducing member has a light transmittance distribution in which the light transmittance of the region facing the light emitting region is higher than the light transmittance of the region facing the non-light emitting region.
  • 1, 1A, 1B surface light emitting unit 10A, 10B, 10C, 10D surface light emitting panel, 11A, 11B, 11C, 11D transparent substrate, 12A, 12B, 12C, 12D light emitter, 13A, 13B, 13C, 13D light emitting surface, 14A, 14B, 14C, 14D light emitting area, 15A, 15B, 15C, 15D non-light emitting area, 16 transmitting member, 17 optical filter, 18 scattering sheet, 20 reflecting member, 30 gap, 40 non-light emitting part, 110 transparent electrode layer, 120 organic electroluminescent layer, 121 light emitting layer, 122 hole transport layer, 123 electron transport layer, 130 reflective electrode layer.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Planar Illumination Modules (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 非発光部およびその周囲部に該当する部分の正面方向の輝度を向上させることが可能な面発光ユニットを提供する。面発光ユニット(1)は、光を放射する面発光パネル(10A,10B)と、発光面に対向配置され、これらの面発光パネルから放射された光を伝搬する透過部材(16)と、伝搬された光を散乱する反射部材(20)とを備える。これらの発光面は、発光領域(14A,14B)と、非発光領域(15A,15B)とを有する。反射部材は、非発光領域に重なるように面発光パネル上に設けられる。面発光パネルの各々について、発光面と垂直な平面における配光曲線を描いた場合に、発光面の法線方向に延在する軸に沿った正面側の輝度を1とし、平面内において軸との間で形成される角がθである方向の輝度をLとすると、配光曲線が、L>cosθの条件を満たす部分を少なくとも有する。

Description

面発光ユニット
 本開示は、面発光ユニットに関し、特に、各々の発光面が面状に並ぶように配列された複数の面発光パネルを備えてなる面発光ユニットに関する。
 近年、面発光パネルを光源として備える面発光ユニットが注目されている。面発光ユニットは、照明装置に限られず、液晶ディスプレイ、計算機モニター、またはデジタルサイネージ等の屋外広告などのバックライトとしても用いられている。一般的に、面発光パネルには、有機EL(electro luminescence)素子などの面発光素子が用いられる。有機EL素子は、低消費電力で高い輝度を得ることができるものであり、応答性、寿命等においても優れた性能を発揮する。
 面発光パネルにおいては、面発光素子を封止したり、面発光素子に配線を接続したりする必要があるため、面発光パネルの発光面の外縁に非発光領域が位置する。また、少ないパネル枚数で光源の大面積化を図るためには、面発光パネル同士を接触配置させない方が好ましい。その場合には、これら面発光パネル間に隙間が生じることになり、この隙間も光を発光しない部位となる。
 そのため、複数の面発光パネルを備えた面発光ユニットにおいては、これら非発光部およびその周囲部に該当する部分の正面方向における輝度の低下が避けられない。よって、何ら対策を施していない場合には、これが輝度むらとなって現れ、当該非発光部に沿って暗部が生じてしまうことになる。
 特開2005-353564号公報(特許文献1)には、照明装置に関する発明が開示されている。この照明装置は、面発光装置と光学部材とを備えている。同公報は、この照明装置によれば、非発光部による暗部を認識されにくくすることができると述べている。
 特開2005-158369号公報(特許文献2)には、照明装置に関する発明が開示されている。この照明装置は、光学部材および複数の発光素子を備えている。同公報は、この光学部材および照明装置によれば、複数の発光素子を使用して各発光素子の正面より広い面積に輝度ムラの少ない状態で照明光を照射できると述べている。
特開2005-353564号公報 特開2005-158369号公報
 本開示は、非発光部およびその周囲部に該当する部分の正面方向の輝度を向上させる面発光ユニットを提供することを目的とする。
 本開示のある実施の形態に従う面発光ユニットは、各々の発光面が面状に並ぶように配列され、正面側に向けて光を放射する複数の面発光パネルと、隣り合う複数の面発光パネルの発光面に対向配置され、面発光パネルから放射された光を内部で反射して伝搬する透過部材と、透過部材により伝搬された光を正面側に向けて散乱する光散乱部とを備える。
 複数の面発光パネルの各々の発光面は、光を放射する発光領域と、発光領域の外周に位置し、光を放射しない非発光領域とを有する。光散乱部は、正面側から見た場合に非発光領域に重なるように、面発光パネル上に設けられる。面発光ユニットは、複数の面発光パネルの各々について、当該面発光パネルから放射される光の発光面と垂直な平面における配光曲線を描いた場合に、発光面の法線方向に延在する軸に沿った正面側の輝度を1とし、平面内において軸との間で形成される角がθである方向の輝度をLとすると、配光曲線が、L>cosθの条件を満たす部分を少なくとも有している。
実施の形態1に従う面発光ユニットを示す平面図である。 図1中に示すII-II線に沿った模式断面図である。 実施の形態1に従う面発光ユニットに用いられる面発光パネル、透過部材、および反射部材を示す斜視図である。 実施の形態1に従う面発光パネルに具備された有機EL素子を示す断面図である。 図1に示す面発光パネルに具備された有機EL素子の第1構成例から第3構成例に従う垂直面内配光分布を示す図である。 第1構成例から第3構成例に従う有機EL素子を実現する具体的な膜構成の条件例を示す表である。 実施の形態2における面発光ユニットを示す断面図である。 実施例1から4および比較例に従う面発光ユニットの規格化正面輝度プロファイルを示すグラフである。 実施例4における光学フィルタの減光パターン密度分布を示す概念部分拡大図である。 図9中X-X線の断面密度プロファイルである。 その他の実施の形態における面発光ユニットを示す断面図である。
 本発明に基づいた各実施の形態および各実施例について、以下、図面を参照しながら説明する。各実施の形態および各実施例の説明において、個数および量などに言及する場合、特に記載がある場合を除き、本発明の範囲は必ずしもその個数およびその量などに限定されない。各実施の形態および各実施例の説明において、同一の部品および相当部品に対しては、同一の参照番号を付し、重複する説明は繰り返さない場合がある。
 [実施の形態1]
 図1~図6を参照して、実施の形態1に従う面発光ユニット1について説明する。図1は、面発光ユニット1を示す平面図である。図1は、面発光ユニット1から後述する透過部材16を取り除いた状態を示している。図2は、図1に示す面発光ユニットの図1中に示すII-II線に沿った模式断面図である。図3は、面発光ユニット1に用いられる面発光パネル10A,10B、透過部材16、および反射部材20を示す斜視図である。
 (面発光ユニット1)
 図1~図3に示すように、面発光ユニット1は、全体として扁平な略直方体形状の外形を有する。面発光ユニット1は、面発光パネル10A~10Dと、透過部材16と、反射部材20とを備える。
 なお、面発光ユニット1は、面発光パネル10A~10D、透過部材16および反射部材20を収容するための筺体として、ベース板および枠板(図示しない)を備えていてもよい。ベース板は、筺体の背面を構成し、面発光パネル10A~10Dを保持するための部材であり、枠板は、筺体の側面を構成する部材であり、面発光ユニット1の外周に沿って配置される。
 (面発光パネル10A~10D)
 面発光パネル10A~10Dの各々は、面方向に沿って延在する平板状の形状を有している。面発光パネル10A~10Dは、各々の発光面13A~13Dが面状に並ぶように配列されている。面発光パネル10A~10Dは、透明基板11A~11Dと、有機EL素子を含む発光体12A~12Dとの積層体にて構成されており、透明基板11A~11Dが透過部材16側に位置している。当該構成の面発光パネル10A~10Dは、いわゆるボトムエミッション型の有機EL素子からなる面発光パネルである。
 面発光パネル10A~10Dとしては、上記のものに限られず、トップエミッション型の有機EL素子からなる面発光パネルであってもよいし、複数の発光ダイオードおよびこれら複数の発光ダイオードの射出面側(正面側)に配置された拡散板とからなる面発光パネルであってもよいし、冷陰極管等を用いた面発光パネルであってもよい。
 面発光パネル10A~10Dは、アレイ状に配置されている。面発光パネル10A~10Dは、相互に間隔を隔てて配置されており、隣り合う面発光パネル間には、隙間30が形成されている。面発光パネル10A~10Dのうちの隣り合う面発光パネル間に、合計4つの隙間30が形成されている。
 隙間30を設けることにより、面発光パネル10A~10Dを相互に接触させて配置した場合に比べ、少ないパネル枚数にて光源の大面積化を図ることができる。なお、特に光源の大面積化を図る必要がない場合には、面発光パネル10A~10Dは、隙間30を設けずに相互に接触させて配置させても構わない。
 面発光パネル10A~10Dは、発光面13A~13Dを有している。発光面13A~13Dは、発光体12A~12Dが位置する側とは反対側に位置する透明基板11A~11Dの外表面によって構成されている。発光体12A~12Dで発生した光は、透明基板11A~11Dを透過することにより、当該発光面13A~13Dを介して透過部材16側(正面側)に向けて放射される(図3中に示す矢印AR参照)。
 上述したように、面発光パネル10A~10Dは、発光面13A~13Dが面状に並ぶように配列されている。本実施の形態に従う面発光パネル10A~10Dは、発光面13A~13Dが同一平面上に位置するように配列されている。
 発光面13A~13Dは、光を放射する発光領域14A~14Dと、発光領域14A~14Dの外周に位置する非発光領域15A~15Dとを有している。発光領域14A~14Dは、矩形状の形状を有している。非発光領域15A~15Dは、矩形環状の形状を有している。非発光領域15A~15Dは、発光体12A~12Dに含まれる有機EL素子を封止したり、有機EL素子に配線を接続したりするための部位を設けることで形成される。
 面発光ユニット1においては、隣り合う面発光パネル間に形成された隙間30と、隙間30に隣接して位置する面発光パネルの非発光領域とを含む部分が、非発光部40を構成している。非発光部40は、何ら対策を施していない場合に、暗部を生じさせてしまう原因となる部位であり、隣り合う面発光パネル間に合計4つ形成されている。なお、隙間30が形成されていない場合には、隣り合う面発光パネルの非発光領域が非発光部40に対応する。
 図4は、面発光パネル10Aに具備された有機EL素子を示す断面図である。図4においては、発光面13A上に設けられる透過部材16は便宜上のため図示されていない。図4を参照して、面発光パネル10A~10Dに具備された有機EL素子の構成について説明する。面発光パネル10A~10Dは、いずれも同一の構成を有しているため、以下においては、このうちの面発光パネル10Aに着目してその説明を行なう。
 面発光パネル10Aに具備された有機EL素子は、透明基板11Aに加え、発光体12Aとして、透明電極層110、有機電界発光層120および反射電極層130を含む。透明電極層110、有機電界発光層120および反射電極層130は、この順で透明基板11Aの主表面上に積層されている。透明電極層110は陽極に該当し、反射電極層130は陰極に該当する。
 透明基板11Aは、その主表面(発光面13Aとは反対側の面)上に上述した各種の層が形成される基材となるものであり、可視光領域の光を良好に透過する絶縁性の部材にて構成されている。透明基板11Aは、リジッド基板であってもよいし、フレキシブル基板であってもよい。透明基板11Aとしては、上述した光透過性の観点から、たとえばガラス板、プラスチック板、高分子フィルム、シリコン板またはこれらの積層板等にて構成される。
 透明電極層110は、透明基板11Aの一方の主表面(発光面13Aとは反対側の面)上に設けられており、可視光領域の光を良好に透過しかつ良好な電気導電性を有する膜にて構成されている。
 具体的には、透明電極層110としては、たとえばITO(インジウム酸化物と錫酸化物との混合体)膜やIZO(インジウム酸化物と亜鉛酸化膜との混合体)膜、ZnO膜、CuI膜、SnO2膜等の無機導電膜や、PEDOT/PSS(ポリエチレンジオキシチオフェンとポリスチレンスルフォン酸の混合体)膜等の有機導電膜、高分子材料に銀ナノワイヤーやカーボンナノチューブ等を分散させた複合導電膜等にて構成される。
 透明電極層110は、たとえば蒸着法、スピンコート法、キャスト法、インクジェット法、印刷法等のいずれかが採用されることで透明基板11A上に設けられる。特に、スピンコート法、インクジェット法、印刷法は、均質な膜が得られ易くかつピンホールの発生が抑制できるため、特に好適に利用できる。
 有機電界発光層120は、透明電極層110の透明基板11Aが位置する側とは反対側の主表面上に設けられており、少なくとも蛍光発光性化合物または燐光発光性化合物からなる発光層121を含み、可視光領域の光を良好に透過する膜にて構成されている。有機電界発光層120は、発光層121よりも透明電極層110側に位置する正孔輸送層122と、発光層121よりも反射電極層130側に位置する電子輸送層123とをさらに有している。フッ化リチウム膜や無機金属塩膜等が、有機電界発光層120中の厚み方向における任意の位置に形成されていてもよい。
 有機電界発光層120としては、たとえばAlq3(トリス(8-キノリノラト)アルミニウム)、α-NPD(4,4’-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル)に代表される有機材料の積層膜や、これら有機材料からなる膜とMgAg合金等に代表される金属膜等を含む積層膜が好適に利用できる。
 有機電界発光層120の材料としては、有機EL素子の外部量子効率の向上や発光寿命の長寿命化等の観点から、有機金属錯体を用いてもよい。ここで、錯体の形成に従う金属元素としては、元素周期表のVIII族、IX族およびX族に属するいずれか1種の金属またはAl、Znであることが好ましく、特にIrまたはPt、Al、Znであることが好ましい。
 有機電界発光層120は、たとえば蒸着法、スピンコート法、キャスト法、インクジェット法、印刷法等のいずれかが採用されることで透明電極層110上に設けられる。特に、スピンコート法、インクジェット法、印刷法は、均質な膜が得られ易くかつピンホールの発生が抑制できるため、特に好適に利用できる。
 反射電極層130は、有機電界発光層120の透明電極層110が位置する側とは反対側の主表面上に設けられており、可視光領域の光を良好に反射しかつ良好な電気導電性を有する膜にて構成されている。具体的には、反射電極層130としては、たとえばAl、Ag、Ni、Ti、Na、Caまたはこれらのいずれかを含む合金等からなる金属膜にて構成される。反射電極層130は、たとえば蒸着法やスパッタリング法等が採用されることで有機電界発光層120上に設けられる。
 (透過部材16)
 図2および図3を再び参照して、透過部材16は、面発光パネル10A~10Dの発光面13A~13Dに対向するように配置され、透明基板11A~11Dから見て正面側に位置している。本実施の形態に従う透過部材16は、隙間30を跨ぐように面発光パネル10A~10D上に設けられている。透過部材16は、透明基板11A~11D(発光面13A~13D)上において、光学系の透明な接着剤(図示せず)等を用いてこれらに固定されている。
 透過部材16は、透過率が高く(たとえば、JIS K 7361-1:1997に準拠した方法で測定した可視光波長領域における全光線透過率が80%以上)、フレキシブル性に優れた材質が用いられることが好ましい。透過部材16は、アクリル樹脂などの透明性を有する樹脂基板、ポリエチレンテレフタレート(PET)などの透明樹脂フィルム等が挙げられる。
 本実施の形態においては、透過部材16および透明基板11A~11Dは互いに別部材として形成されている。発光体12A~12Dは、発光部として機能し、透過部材16および透明基板11A~11Dは、発光体12A~12Dで生成された光を導く導光部として機能している。
 発光体12A~12Dで生成された光は、透明基板11A~11Dの内部を通過して発光面13A~13Dから放射された後、透過部材16の内部に入射する。入射した光は、透過部材16の内部を透過してそのまま射出されたり、透過部材16の内部で反射して伝搬されて射出されたりする。
 (反射部材20)
 反射部材20は、光散乱部としての機能を有しており、面発光パネル10A~10Dの発光面13A~13Dから放射されて、透過部材16の内部で伝搬された光の一部を散乱反射するものである。反射部材20は、4つの非発光部40(図1参照)に対応して面発光ユニット1の中央部から延設された合計4つの棒状に延びる部位を有する十字形状の部材(図1参照)からなる。なお、反射部材20は、光を透過させることなく散乱反射させるものが好ましい。
 反射部材20の棒状に延びる部位の各々は、隣り合う面発光パネルの発光面の外縁に沿って、正面(発光面)側から見た場合に非発光領域に重なるように配置されている。より具体的には、反射部材20は、隣り合う面発光パネルの発光面の外縁に跨りかつこれら外縁に沿って延在するように面発光パネルの発光面上に設けられている。
 図2および図3を参照して、反射部材20についてより詳細に説明する。反射部材20の棒状に延びる4つの部位は、いずれも同一の形状を有するものであるため、以下においては、上述した面発光パネル10A~10Dのうち、面発光パネル10Aと面発光パネル10Bとの間の部分のみに着目してその説明を行なう。
 図2および図3に示すように、反射部材20は、非発光部40に対向するように、第1面発光パネル10Aの発光面13Aおよび第2面発光パネル10Bの発光面13B上に位置している。
 より詳細には、反射部材20は、第1面発光パネル10Aの発光面13Aの第2面発光パネル10B側の外縁に位置する非発光領域15Aと、第2面発光パネル10Bの発光面13Bの第1面発光パネル10A側の外縁に位置する非発光領域15Bとに跨り(すなわち、反射部材20は、正面側から見た場合にこれら部分の非発光領域15A,15Bに重なっている)、かつ、これら非発光領域15A,15Bに沿って延在するように、第1面発光パネル10Aおよび第2面発光パネル10B上に設けられている。
 反射部材20が有する散乱機能の付与の方法としては、透過部材16の表面を予め荒らしておく方法や、反射部材20の表面を粗面化する方法、および樹脂バインダーに散乱用の粒子を混ぜた散乱層を平滑な反射金属膜の上に設ける方法等がある。また、反射部材20は、散乱粒子を分散した有機溶剤系の白インクから構成されていてもよい。この場合、反射部材20による散乱反射面は、たとえば、透過部材16の表面に白インクをインクジェット塗布することで形成することが可能である。
 (垂直面内配光分布)
 図5は、図1に示す面発光パネルに具備された有機EL素子の第1構成例から第3構成例に従う垂直面内配光分布を示す図である。また、図6は、第1構成例から第3構成例に従う有機EL素子を実現する具体的な膜構成の条件例を示す表である。図5および図6を参照して、本実施の形態に従う面発光ユニットの面発光パネルに具備された有機EL素子の第1構成例から第3構成例について詳細に説明する。
 図5に示すように、第1構成例から第3構成例に従う有機EL素子は、面発光パネルから放射される光の発光面と垂直な平面における配光曲線を描いた場合に、発光面の法線方向に延在する基準軸(本明細書において光軸とも呼ぶ)に沿った正面側の輝度(すなわち、図中に示すθ=0°における輝度)を1とし、当該平面内において上記光軸との間で形成される角がθである方向の輝度(すなわち、-90°<θ<90°であってθ≠0°の範囲における輝度)をLとすると、当該配光曲線が、いずれもL>cosθの条件を満たす部分を含んでいる。
 すなわち、第1構成例に従う有機EL素子は、概ね-70°≦θ≦70°(但し、θ≠0°)の範囲においてL>cosθの条件が満たされており、第2構成例に従う有機EL素子は、概ね-65°≦θ≦65°(但し、θ≠0°)の範囲においてL>cosθの条件が満たされており、第3構成例に従う有機EL素子は、概ね-80°<θ≦-50°および50°≦θ<80°の範囲においてL>cosθの条件が満たされている。
 なお、図5においては、通常の有機EL素子が有する垂直面内配光分布であるランバーシャン分布(当該ランバーシャン分布は、-90°<θ<90°の範囲においてL=cosθ=1の条件を満たす)を比較として図示している。
 ここで、上述した垂直面内配光分布を有する第1構成例から第3構成例に従う有機EL素子は、たとえば図6に示すように、電子輸送層の厚みを調整することで実現が可能である。
 透明電極層としてITO膜を用い、電子輸送層としてMgAg膜を用い、発光層としてAlq3膜を用い、正孔輸送層としてα-NPD膜を用い、反射電極層としてAg膜を用い、図6に示すように、このうちの透明電極層/正孔輸送層/発光層の厚みをそれぞれ150nm/50nm/20nmとした場合において、電子輸送層の厚みを20nm以下とすれば、概ねランバーシャン分布が得られる。
 そして、当該電子輸送層の厚みを50nmとすれば、第1構成例における垂直面内配光分布が得られることになり、当該電子輸送層の厚みを100nmとすれば、第2構成例における垂直面内配光分布が得られることになり、当該電子輸送層の厚みを300nmとすれば、第3構成例における垂直面内配光分布が得られることになる。
 なお、図6においては、参考として当該膜構成を採用した場合に有機EL素子から放射される発光波長のピーク値をあわせて示している。
 上記第1構成例から第3構成例に従う有機EL素子が有する垂直面内配光分布は、発光面から射出される光の角度依存性が、通常の光源が持つランバーシャン分布と異なっていることを意味しており、特に、正面側の斜め方向に向けて射出される光の量が正面方向に向けて射出される光の量よりも多いことを意味している。
 そのため、このような垂直面内配光分布を有する有機EL素子を具備した面発光パネルを用いることにより、ランバーシャン分布を有する有機EL素子を具備した面発光パネルを用いる場合に比較して、透過部材16の内部で全反射して伝搬される光の量が多くなることから、非発光部40に対向して設けられている反射部材20で散乱反射されて正面側に射出される光の量も多くなる。
 すなわち、本実施の形態に従う面発光ユニット1は、有機EL素子から発光される光のうちのより多くの光を非発光部およびその周囲部に対応する部分の透過部材16の光射出面に導くことが可能になるため、当該部分の正面方向における輝度が向上することになり、ひいては輝度の不均一性が低減されて非発光部がより目立たなくなる。
 したがって、本実施の形態に従う面発光ユニット1の構成を採用することで、従来に比して非発光部40およびその周囲部に該当する部分の正面方向の輝度が向上した面発光ユニットとすることが可能になり、さらには、輝度の不均一性が低減されて非発光部が目立たなくなった面発光ユニットとすることができる。
 [実施の形態2]
 図7を参照して、実施の形態2に従う面発光ユニット1Aについて説明する。図7は、実施の形態2における面発光ユニットを示す断面図である。ここでは、面発光ユニット1Aと面発光ユニット1(図2参照)との相違点について説明する。面発光ユニット1Aの構成は、面発光ユニット1の構成に光学フィルタ17と散乱シート18とを追加したものに相当し、その他の構成については面発光ユニット1の構成と同様である。
 光学フィルタ17は、透過部材16の光射出側の面に平行に配置され、散乱シート18と透過部材16との間に設けられる。なお、光学フィルタ17は、透過部材16に光学的に密着している。光学フィルタ17は、透明性を有する光学系の接着剤などを用いて、透過部材16の光射出側の面にそれぞれ接合されるとよい。
 光学フィルタ17は、減光部材として機能し、透過部材16の光射出面から射出された光の光量を減少させる。光学フィルタ17は、光学フィルタ17に入射した光を所定の光量だけ減少させて射出する。具体的には、光学フィルタ17には、インクジェットを用いて光量を減少させる円形の減光領域を有するパターンが印刷されている。このパターンは、光学フィルタ17の透過率を調整する。
 散乱シート18は、散乱部材として機能し、面発光パネル10A~10Dから放射された光を散乱(拡散)させて外部に向けて透過するものであり、透過部材16の光射出面に対向するように設けられている。具体的には、散乱シート18は、光学フィルタ17の表面に空気を介在させた状態で、光学フィルタ17に貼り付けられている。
 このような構成とすることで、正面側から面発光パネル10を視認した際に、非発光部に対向する散乱反射面の形成領域と発光領域との境界を目立たなくすることができ、輝度の不均一性をより低減する面発光ユニットを実現できる。なお、散乱シート18としては、内部に微粒子を含むことで内部散乱作用を利用して光を散乱するものや、表面に凹凸を有することで界面反射作用を利用して光を散乱するもの等が利用可能である。
 発光体12A,12Bで生成された光は、透明基板11A,11Bの内部を通過して発光面13A,13Bから放射された後、透過部材16の内部に入射する。入射した光は、透過部材16の内部を透過して光学フィルタ17を介して散乱シート18側に射出されたり、透過部材16の内部で反射して伝搬されて光学フィルタ17を介して散乱シート18側に射出されたりする。
 本実施の形態の配光曲線についても、発光面の法線方向に延在する光軸に沿った正面側の輝度を1とし、平面内において上記光軸との間で形成される角がθである方向の輝度をLとすると、その配光曲線は、L>cosθの条件を満たす部分を含んでいる。
 すなわち、本実施の形態の配光曲線に示される垂直面内配光分布も、発光面から射出される光の角度依存性が、通常のランバーシャン分布と異なっていることを意味しており、特に、正面側に対して斜め方向に向けて射出される光の量が、正面方向に向けて射出される光の量よりも多いことを意味している。
 このような垂直面内配光分布を有する面発光パネル10A,10Bを用いることにより、面発光パネル10A,10Bから発光される光のうちのより多くの光が透過部材16の内部で全反射して伝搬され、非発光部40に対向して設けられている反射部材20で散乱反射されて正面側に射出される光の量も多くなる。
 すなわち、本実施の形態に従う面発光ユニット1Aにおいても、有機EL素子から発光される光のうちのより多くの光を非発光部およびその周囲部に対応する部分の散乱シート18に導くことが可能になるため、当該部分の正面方向における輝度が向上することになる。
 また、本実施の形態に従う面発光ユニット1Aでは、光学フィルタ17により正面側に射出される光の透過率を調整することが可能であるとともに、非発光部40およびその周囲部に対応する部分の散乱シート18に入射された光は、当該散乱シート18によってさらに散乱されて外部に向けて放射されることになるため、輝度の不均一性がより低減されて非発光部がより目立たなくなる。
 したがって、本実施の形態における面発光ユニット1Aとすることによっても、従来に比して非発光部40およびその周囲部に該当する部分の正面方向の輝度が向上した面発光ユニットすることが可能になり、さらには、輝度の不均一性が低減されて非発光部がより目立たなくなった面発光ユニットとすることができる。
 [実施例]
 以下、上述した実施の形態に基づいた実施例1から4に従う面発光ユニットの正面輝度プロファイルをシミュレーションした結果について説明する。なお、比較のために、上述した実施の形態に基づいていない比較例に従う面発光ユニットの正面輝度プロファイルをシミュレーションした結果についてもあわせて示す。
 ここで、実施例1から実施例3に従う面発光ユニットは、それぞれ上述した実施の形態1において説明した第1構成例から第3構成例に従う有機EL素子を具備した面発光パネルを備えている。
 実施例4に従う面発光ユニットは、実施の形態2に従う面発光ユニットにおいて、図6に示す第1構成例に従う有機EL素子を具備した面発光パネルを備えている。そして、実施例4に従う面発光ユニットは、上述した光学フィルタとして、後述する図9および図10で示される光学フィルタを備えている。
 実施例1から4および比較例に従う面発光ユニットにおいては、面発光パネルの幅を90mmとし、非発光部(非発光領域および隙間)の幅を10mmとし、透過部材としてのアクリル板(屈折率1.5)の厚みを3mmとし、反射部材として白色の反射フィルムを用いている。実施例4に従う面発光ユニットにおける光学フィルタは、透過率70%程度でHaze90%以上の減光領域が密度分布に従って構成されている。
 図8は、実施例1から4および比較例に従う面発光ユニットの規格化正面輝度プロファイルを示すグラフである。図9は、実施例4における光学フィルタの減光領域の密度分布を示す概念部分拡大図である。図10は、図9中X-X線の断面密度プロファイルである。なお、図8、図10に示す横軸の位置(mm)は、2枚並べた面状発光パネルの間に生じる非発光部の中央を0mmとし、±5mmに非発光部が存在し、±50mmが面発光パネルの略中央となる。なお、図8に示す規格化正面輝度は、面発光パネルの中央(発光領域の中央)の値が1000になるように規格化している。
 図8を参照して、比較例における面状発光ユニットの発光面における規格化正面輝度は、2枚並べた面状発光パネルの間に生じる非発光部に対応する領域で、輝度が低下していることが確認できる。
 一方、実施例1および実施例3に従う面発光ユニットにおいては、非発光部に対応する領域で、比較例に従う面発光ユニットよりも正面輝度が大幅に向上していることが分かる。これは、図5に示した配光分布に示されているように、実施例1(第1構成例に対応)および実施例3(第3構成例に対応)に従う面発光ユニットにおいては、アクリル板と空気との間の臨界角度(42°)付近に向けて放射される光、または臨界角度を超える角度に向けて放射される光が多いためである。
 具体的には、臨界角近傍の角度(たとえば、臨界角度±10°)で放射される光は、透過部材の内部で反射しながら伝搬して反射部材(散乱反射面)まで到達する光の量が多く、散乱反射面に対する入射角が小さい(散乱反射面に立てた法線となす角が小さい)ことから、正面方向に光が散乱されやすくなる。そのため、面発光パネルが臨界角付近に向けて放射される光が多い配光分布を有する場合には、非発光部に対応する領域で効率的に輝度を向上させることができる。
 また、面発光パネルの周辺領域(非発光部の近傍領域)から放射される光は、透過部材の内部で伝搬して反射部材(散乱反射面)に到達するまでの反射回数が少ないため、減光される光の量が小さくなる。そのため、特に、面発光パネルの周辺領域についてL>cosθの条件を満たすような配光分布を有する構成とすることで、非発光部に対応する領域で効率的に輝度を向上させることができる。
 実施例2に従う面発光ユニットにおいては、実施例1および実施例3に従う面発光ユニットほどではないものの、非発光部に対応する領域で、比較例に従う面発光ユニットよりも正面輝度が向上していることが分かる。これは、図5に示した配光分布に示されているように、実施例2(第2構成例に対応)に従う面発光ユニットにおいては、アクリル板と空気との間の臨界角度(42°)付近に向けて放射される光あるいは臨界角度を超える角度に向けて放射される光が実施例1および実施例3に従う面発光ユニットと比較すれば少ないが、臨界角度付近に向けて放射される光が比較例に従う面発光ユニットと比較すればより多いためである。
 ここで、図8を参照すると、実施例1および実施例3においては、非発光部に対応する領域の正面輝度が、発光領域に対応する領域の正面輝度よりも高くなっていることが分かる。このような場合には、実施例4のように、光学フィルタにより、正面側に射出される光の透過率を調整することで、輝度の不均一性を低減することができる。実施例4で用いられた光学フィルタは、複数の減光領域を有するパターンを有しており、これらの光学フィルタの光透過率分布の調整は、複数の減光領域の配置位置および大きさを調整することにより行なわれている。
 図9および図10に示されているように、実施例4で適用された光学フィルタは、その面内において、発光領域に対向する領域よりも非発光部に対向する領域の方が円形の減光領域(図9中の黒点部分)の密度が高いことが分かる。すなわち、光学フィルタは、その面内において、発光領域に対向する領域の光の透過率が、非発光部に対向する領域の光の透過率に比べて高くなる光透過率分布を有する。なお、光学フィルタに設けられた円形の減光領域の直径は、0.6mmである。
 上述したように、実施例4に従う面発光ユニットおいては、実施例1と同じ第1構成例に従う有機EL素子を具備した面発光パネルを備えている。ここで、再び、図8を参照すると、実施例4に従う面発光ユニットは、実施例1に従う面発光ユニットに比べて非発光部の正面輝度が減少しており、全体としてより均一な正面輝度分布となっていることが分かる。
 このことから、面状発光パネルが、その面内において、発光領域の中央部正面輝度よりも周辺部正面輝度が強くなる光源輝度分布を有している場合には、光学フィルタを次のような構成とすればよい。すなわち、光学フィルタを、その面内において、非発光領域(あるいは非発光部)に対向する領域よりも発光領域に対向する領域の方が透過率が高くなる光透過率分布を有するように構成することで、より均一な正面輝度分布を実現することができる。
 ここでは、実施例1に従う面発光ユニットについて光学フィルタを適用する実施例(実施例4)を示したが、実施例3に従う面発光ユニットについても同様の構成の光学フィルタを適用することでより均一な正面輝度分布を実現することができる。
 発光体の膜厚などを調整することで正面輝度をより均一にすることも可能であるが、製造誤差等を考慮すると、面内の透過率調整が可能な光学フィルタを適用することで誤差制御が容易となる。また、実施例1および実施例3のように非発光領域(あるいは非発光部)の正面輝度が高くなった場合であっても、光学フィルタにより非発光領域に対応する領域の光の量を減じて正面輝度を均一にする方が、非発光領域よりも面積が大きい発光領域に対応する領域の光の量を減じて正面輝度を均一にするよりも、光量の損失が小さくて済む。
 このように、シミュレーション結果からも、上述した実施の形態における面発光ユニットの構成とすることにより、概して、従来に比して非発光部およびその周囲部に該当する部分の正面方向の輝度が向上した正面輝度分布が得られる。これにより、輝度の不均一性が低減されて非発光部がより目立たなくなる面発光ユニットとなることが確認された。
 なお、上述した実施の形態においては、実施の形態2に従う面発光ユニットの構成として、実施の形態1に従う面発光ユニットに光学フィルタおよび散乱シートを追加する構成について説明したが、その他の実施の形態に従う面発光ユニットとして、図11に示すように、実施の形態1に従う面発光ユニット1に散乱シート18のみを追加した面発光ユニットとしてもよい。
 図11は、その他の実施の形態における面発光ユニット1Bを示す断面図である。面発光ユニット1Bの構成は、面発光ユニット1の構成に散乱シート18を追加したものに相当し、その他の構成については面発光ユニット1の構成と同様である。具体的には、面発光ユニット1Bでは、散乱シート18が、透過部材16の表面に空気を介在させた状態で透過部材16に貼り付けられている。なお、散乱シート18が、透過部材16の表面に空気を介在させずに透過部材16に光学的に密着している場合であってもよい。
 その他の実施の形態に従う面発光ユニット1Bによっても、非発光部およびその周囲部に該当する部分の正面方向の輝度が向上した面発光ユニットとすることが可能になる。
 上述した各実施の形態においては、隣り合う面発光パネル間に形成される隙間の形状に適合するように、一体化された十字状の形状を有する反射部材を当該隙間に配置した場合を例示して説明を行なったが、これを棒状に延びる部位の各々が独立して形成された4つの反射部材にて構成することとしてもよい。
 また、上述した各実施の形態においては、非発光部の幅と反射部材の幅とが略一致するように構成した場合を例示して説明を行なったが、これらは必ずしも合致している必要はなく、いずれか一方が他方より大きくても構わない。
 また、上述した各実施の形態においては、有機EL素子の電子輸送層の厚みを調整することで所望の配光特性が得られるようにした場合を例示したが、所望の配光特性を得る方法としてはこれに限定されるものではなく、たとえば有機EL素子の膜構成を変更するといったような他の方法の適用も当然に可能である。また、面発光パネルとして有機EL素子以外の光源を具備したものを使用する場合にも、当該光源の構成等を種々調整することにより、上述した如くの所望の配光特性を得ることができる。
 また、上述した各実施の形態においては、面発光パネルをアレイ状に4つ具備してなる面発光ユニットを例示して説明を行なったが、面発光パネルの数や面発光パネルのレイアウトはこれに限定されるものではなく、面発光パネルが2つ以上具備されかつこれら面発光パネルが面状に隣り合うように並べて配列される面発光ユニットであれば、どのような構成のものにも適用が可能である。
 本実施の形態が適用される面発光ユニットは、室内や室外における照明の用途に供される狭義の意味の照明装置に限られず、面発光ユニットには、たとえばディスプレイや表示デバイス、電光表示式の看板や広告等に具備される広義の意味の照明装置が含まれる。
 上述した実施の形態2においては、散乱シートが、光学フィルタの表面に空気を介在させた状態で光学フィルタに貼り付けてられている場合を例示したが、これに限定されるものではなく、散乱シートが、光学フィルタの表面に空気を介在させずに光学フィルタに光学的に密着している場合であってもよい。
 上述した各実施の形態においては、反射部材が、反射フィルム、白インク等で構成されており、散乱反射面と発光面とが比較的フラットである場合について説明したが、これに限られず、散乱反射面が傾斜角度を有していてもよい。これにより、非発光部において正面側に射出される光の量が多くなり、非発光部における輝度を向上させることができる。
 上述した各実施の形態においては、透過部材における発光面と対向する部分に反射部材を設ける構成について例示した。なお、正面側から見た場合に非発光領域に重なるように、透過部材の内部であって、かつ透過部材における発光面と対向する部分に反射散乱体を設けるように構成してもよい。
 また、光散乱部として、散乱反射する反射部材の代わりに散乱透過する半透過散乱体(たとえば、散乱透過率:50%)を、正面側から見た場合に非発光領域に重なるように、透過部材の射出面側に設ける構成としてもよい。これによっても、非発光部およびその周囲部に該当する部分の正面方向の輝度が向上した面発光ユニットとすることが可能になる。
 以上説明した面発光ユニットは、各々の発光面が面状に並ぶように配列され、正面側に向けて光を放射する複数の面発光パネルと、隣り合う複数の面発光パネルの発光面に対向配置され、面発光パネルから放射された光を内部で反射して伝搬する透過部材と、透過部材により伝搬された光を正面側に向けて散乱する光散乱部とを備える。
 複数の面発光パネルの各々の発光面は、光を放射する発光領域と、発光領域の外周に位置し、光を放射しない非発光領域とを有する。光散乱部は、正面側から見た場合に非発光領域に重なるように、面発光パネル上に設けられる。面発光ユニットは、複数の面発光パネルの各々について、当該面発光パネルから放射される光の発光面と垂直な平面における配光曲線を描いた場合に、発光面の法線方向に延在する軸に沿った正面側の輝度を1とし、平面内において軸との間で形成される角θである方向の輝度をLとすると、配光曲線が、L>cosθの条件を満たす部分を少なくとも有している。
 好ましくは、L>cosθの条件を満たす部分における角θは、透過部材と外部との間の臨界角近傍の角度である。
 好ましくは、光散乱部は、透過部材における発光面と対向する部分に設けられており、透過部材により伝搬された光の一部を正面側に向けて散乱反射する反射部材で構成されている。
 好ましくは、面発光ユニットは、透過部材の光射出面に対向するように設けられ、複数の面発光パネルから放射された光を散乱する散乱部材をさらに備える。
 好ましくは、面発光ユニットは、透過部材と散乱部材との間に設けられた減光部材をさらに備える。減光部材は、その面内において、発光領域に対向する領域の光の透過率が、非発光領域に対向する領域の光の透過率に比べて高くなる光透過率分布を有する。
 上述の構成を採用することにより、非発光部およびその周囲部に該当する部分の正面方向の輝度を向上させることができる。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1,1A,1B 面発光ユニット、10A,10B,10C,10D 面発光パネル、11A,11B,11C,11D 透明基板、12A,12B,12C,12D 発光体、13A,13B,13C,13D 発光面、14A,14B,14C,14D 発光領域、15A,15B,15C,15D 非発光領域、16 透過部材、17 光学フィルタ、18 散乱シート、20 反射部材、30 隙間、40 非発光部、110 透明電極層、120 有機電界発光層、121 発光層、122 正孔輸送層、123 電子輸送層、130 反射電極層。

Claims (5)

  1.  各々の発光面が面状に並ぶように配列され、正面側に向けて光を放射する複数の面発光パネルと、
     隣り合う複数の前記面発光パネルの前記発光面に対向配置され、前記面発光パネルから放射された光を内部で反射して伝搬する透過部材と、
     前記透過部材により伝搬された光を正面側に向けて散乱する光散乱部とを備え、
     複数の前記面発光パネルの各々の発光面は、光を放射する発光領域と、前記発光領域の外周に位置し、光を放射しない非発光領域とを有し、
     前記光散乱部は、正面側から見た場合に前記非発光領域に重なるように、前記面発光パネル上に設けられ、
     複数の前記面発光パネルの各々について、当該面発光パネルから放射される光の前記発光面と垂直な平面における配光曲線を描いた場合に、前記発光面の法線方向に延在する軸に沿った正面側の輝度を1とし、前記平面内において前記軸との間で形成される角がθである方向の輝度をLとすると、前記配光曲線が、L>cosθの条件を満たす部分を少なくとも有している、面発光ユニット。
  2.  前記L>cosθの条件を満たす部分における角θは、前記透過部材と外部との間の臨界角近傍の角度である、請求項1に記載の面発光ユニット。
  3.  前記光散乱部は、前記透過部材における前記発光面と対向する部分に設けられており、前記透過部材により伝搬された光の一部を正面側に向けて散乱反射する反射部材で構成されている、請求項1または2に記載の面発光ユニット。
  4.  前記透過部材の光射出面に対向するように設けられ、複数の前記面発光パネルから放射された光を散乱する散乱部材をさらに備える、請求項1~3のいずれか1項に記載の面発光ユニット。
  5.  前記透過部材と前記散乱部材との間に設けられた減光部材をさらに備え、
     前記減光部材は、その面内において、前記発光領域に対向する領域の光の透過率が、前記非発光領域に対向する領域の光の透過率に比べて高くなる光透過率分布を有する、請求項4に記載の面発光ユニット。
PCT/JP2014/079478 2013-12-06 2014-11-06 面発光ユニット WO2015083483A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015551437A JP6477493B2 (ja) 2013-12-06 2014-11-06 面発光ユニット
US15/102,206 US20160312964A1 (en) 2013-12-06 2014-11-06 Surface Emitting Unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-253296 2013-12-06
JP2013253296 2013-12-06

Publications (1)

Publication Number Publication Date
WO2015083483A1 true WO2015083483A1 (ja) 2015-06-11

Family

ID=53273255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079478 WO2015083483A1 (ja) 2013-12-06 2014-11-06 面発光ユニット

Country Status (3)

Country Link
US (1) US20160312964A1 (ja)
JP (1) JP6477493B2 (ja)
WO (1) WO2015083483A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017076667A1 (de) * 2015-11-02 2017-05-11 Osram Oled Gmbh Optoelektronisches bauelement und verfahren zum herstellen eines optoelektronischen bauelements
EP3336424A4 (en) * 2016-08-08 2019-03-06 Kaneka Corporation CONSTRUCTION MATERIAL WITH INTEGRATED LIGHT EMITTING DEVICE

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10094534B2 (en) * 2013-12-06 2018-10-09 Konica Minolta, Inc. Surface-emitting unit having dimming regions

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005183352A (ja) * 2003-11-24 2005-07-07 Toyota Industries Corp 照明装置
JP2009048943A (ja) * 2007-08-22 2009-03-05 Panasonic Electric Works Co Ltd 面状発光装置
JP2009152147A (ja) * 2007-12-21 2009-07-09 Rohm Co Ltd 有機発光装置
JP2009211885A (ja) * 2008-03-03 2009-09-17 Rohm Co Ltd 有機el装置
JP2010016496A (ja) * 2008-07-01 2010-01-21 Canon Finetech Inc 画像読取装置及びそれを備えた画像形成装置
JP2011082192A (ja) * 2009-07-21 2011-04-21 Showa Denko Kk 発光素子、発光素子の製造方法、画像表示装置および照明装置
JP2012044025A (ja) * 2010-08-20 2012-03-01 Toshiba Lighting & Technology Corp 有機elモジュールおよび有機el照明装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006015437A1 (de) * 2006-03-31 2007-10-04 Merck Patent Gmbh Leuchtfliese
JP2010164976A (ja) * 2010-01-29 2010-07-29 Panasonic Corp 映像表示装置
DE112012004123T5 (de) * 2011-10-04 2014-07-10 Panasonic Corp. Lichtemissionsvorrichtung
US20140328052A1 (en) * 2012-06-01 2014-11-06 Revolution Display Light-emitting assembly and light-emitting floor system containing the same
US20150309247A1 (en) * 2012-11-28 2015-10-29 Konica Minolta, Inc. Illumination apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005183352A (ja) * 2003-11-24 2005-07-07 Toyota Industries Corp 照明装置
JP2009048943A (ja) * 2007-08-22 2009-03-05 Panasonic Electric Works Co Ltd 面状発光装置
JP2009152147A (ja) * 2007-12-21 2009-07-09 Rohm Co Ltd 有機発光装置
JP2009211885A (ja) * 2008-03-03 2009-09-17 Rohm Co Ltd 有機el装置
JP2010016496A (ja) * 2008-07-01 2010-01-21 Canon Finetech Inc 画像読取装置及びそれを備えた画像形成装置
JP2011082192A (ja) * 2009-07-21 2011-04-21 Showa Denko Kk 発光素子、発光素子の製造方法、画像表示装置および照明装置
JP2012044025A (ja) * 2010-08-20 2012-03-01 Toshiba Lighting & Technology Corp 有機elモジュールおよび有機el照明装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017076667A1 (de) * 2015-11-02 2017-05-11 Osram Oled Gmbh Optoelektronisches bauelement und verfahren zum herstellen eines optoelektronischen bauelements
EP3336424A4 (en) * 2016-08-08 2019-03-06 Kaneka Corporation CONSTRUCTION MATERIAL WITH INTEGRATED LIGHT EMITTING DEVICE

Also Published As

Publication number Publication date
JP6477493B2 (ja) 2019-03-06
US20160312964A1 (en) 2016-10-27
JPWO2015083483A1 (ja) 2017-03-16

Similar Documents

Publication Publication Date Title
JP5125717B2 (ja) 有機エレクトロルミネッセンス発光装置および液晶表示装置
JP2004363040A (ja) 補助電極を用いた面状発光装置
JP5598633B1 (ja) 照明装置
JP6171317B2 (ja) 面発光ユニット
JP2014157796A (ja) 有機エレクトロルミネッセンスパネル及び有機elパネル複合体
JP6477493B2 (ja) 面発光ユニット
JP5854173B2 (ja) 面発光ユニット
KR20080018652A (ko) 발광 소자 및 이를 이용한 표시 장치
JP5846345B1 (ja) 面状発光ユニット
WO2015079912A1 (ja) 面状発光ユニット
JP5700185B1 (ja) 面状発光ユニット
JP2015230841A (ja) 面発光ユニット
JP6167883B2 (ja) 面発光ユニット
WO2016084472A1 (ja) 面発光モジュール
JP2017091868A (ja) 面発光モジュールおよび照明装置
JP6414468B2 (ja) 面発光ユニット
JP6167884B2 (ja) 面発光ユニット
JP6528513B2 (ja) 面発光モジュール
JP6676872B2 (ja) El素子、照明装置、ディスプレイ装置、および液晶ディスプレイ装置
JP5888072B2 (ja) 発光装置
JP2014229547A (ja) 発光装置
JP2015135727A (ja) 面発光ユニット
JP2013187140A (ja) 有機elモジュール
WO2013077232A1 (ja) 照明器具
JP2016162555A (ja) 有機エレクトロルミネッセンスパネル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14867485

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015551437

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15102206

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14867485

Country of ref document: EP

Kind code of ref document: A1