JP2015230841A - 面発光ユニット - Google Patents

面発光ユニット Download PDF

Info

Publication number
JP2015230841A
JP2015230841A JP2014116846A JP2014116846A JP2015230841A JP 2015230841 A JP2015230841 A JP 2015230841A JP 2014116846 A JP2014116846 A JP 2014116846A JP 2014116846 A JP2014116846 A JP 2014116846A JP 2015230841 A JP2015230841 A JP 2015230841A
Authority
JP
Japan
Prior art keywords
light emitting
light
optical adjustment
distribution
adjustment member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014116846A
Other languages
English (en)
Inventor
祐亮 平尾
Yuusuke Hirao
祐亮 平尾
木村 直樹
Naoki Kimura
直樹 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2014116846A priority Critical patent/JP2015230841A/ja
Publication of JP2015230841A publication Critical patent/JP2015230841A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】輝度ムラを低減する。【解決手段】面発光ユニット1は、発光面13A,13Bおよび反射面14A,14Bを有する複数の面発光パネル10A,10Bと、発光面13A,13Bにまたがり且つ発光面13A,13Bに接する透過部材20と、透過部材の表面21または表面21に間隔を空けて対向し、透過部材からの光を透過および反射する光学調整部材30と、光学調整部材30の表面31または表面31に間隔を空けて対向する拡散部材40とを備える。発光面13A,13Bは、発光領域HA,HBおよび非発光領域NA,NBを含む。非発光領域NA,NBと透過部材の裏面22との間には、透過部材の内部で伝搬した光を反射する反射部材50が設けられる。光学調整部材30は、透過率に分布を持っており、透過率は、面発光パネル10A,10Bから出射される光の輝度に合わせて連続的に変化する分布を有している。【選択図】図2

Description

本発明は、面状に並べられた複数の面発光パネルを備える面発光ユニットに関する。
面発光パネルにおいては、発光部(発光層または発光素子など)を封止したり、発光部に配線を接続したりする必要がある。したがって、面発光パネルのうちの光が出射される側の面(発光面)には、光が実際に放射される発光領域だけでなく、光がほとんど放射されない非発光領域が、発光領域の外周に形成される。面発光パネルを備えた面発光ユニットを構成する場合には、発光面のうちの非発光領域およびその近傍における輝度を向上させ、面発光ユニットから出射される光に輝度ムラが生じないようにすることが求められる。
特開2010−92866号公報(特許文献1)は、光取り出し領域の光散乱能に高低差を設けることによって、取り出し効率の最適化を図るという発光素子を開示している。特開2013−84466号公報(特許文献2)は、透明基板の屈折率と発光素子の透明電極の屈折率との間に特定の関係を持たせることによって、輝度ムラを防止するとともに、輝度の面内均一性の向上を図るという面状発光体を開示している。
特開2010−92866号公報 特開2013−84466号公報
本発明は、輝度ムラを従来に比して低減することが可能な面発光ユニットを提供することを目的とする。
本発明に基づく面発光ユニットは、発光部と、上記発光部から見て一方側に位置する発光面と、上記発光部から見て他方側に位置する反射面とを有し、各々の上記発光面が面状に並ぶように配列された複数の面発光パネルと、表面および裏面を有し、隣り合う上記面発光パネルの各々の上記発光面に上記裏面がまたがるように延在し、且つ各々の上記発光面に上記裏面が接するように配置された透過部材と、上記透過部材の上記表面上または上記透過部材の上記表面に間隔を空けて対向するように設けられ、上記透過部材の上記表面からの光を透過および反射する光学調整部材と、上記光学調整部材の上記透過部材の側とは反対側の面上または上記反対側の面に間隔を空けて対向するように設けられた第1拡散部材と、を備え、複数の上記面発光パネルの各々の上記発光面は、光を放射する発光領域と、上記発光領域の外周に位置し光を放射しない非発光領域とを含み、隣り合う上記発光領域の間に位置する上記非発光領域と上記透過部材の上記裏面との間には、上記透過部材の内部で伝搬した光を反射する反射部材が設けられており、上記光学調整部材は、透過率に分布を持っており、上記透過率は、複数の上記面発光パネルから出射される光の輝度に合わせて連続的に変化する分布を有している。
好ましくは、上記面発光パネルの内部、または、上記透過部材のうちの上記発光面に接している部分には、第2拡散部材が設けられており、上記光学調整部材の上記透過率の分布は、上記光学調整部材のうちの上記非発光領域に対応する部分の平均透過率の方が、上記光学調整部材のうちの上記発光領域に対応する部分の平均透過率に比べて高くなる分布を有しており、上記光学調整部材のうちの上記発光領域に対応する部分の平均反射率をR(%)と定義し、上記非発光領域を含む、隣り合う上記発光領域の間に挟まれた非発光部の所定方向における幅の半分の値をL1と定義し、1つの上記発光領域の上記所定方向における幅をL2と定義した場合に、
90>R>L1/(L1+L2)×100
の条件を満足している。
好ましくは、上記面発光パネルの上記反射面は、60%以上の反射率を有する金属鏡面である。
好ましくは、上記光学調整部材は、散乱材料を含む部材により構成される。
好ましくは、複数の上記面発光パネルの各々について、上記面発光パネルから放射される光の上記発光面と垂直な平面における配光曲線を描いた場合に、上記発光面の法線方向に延在する光軸に沿った正面側の輝度を1とし、上記平面内において上記光軸との間で形成される角がθである方向の輝度をLとすると、上記配光曲線が、L>cosθの条件を満たす部分を少なくとも有している。
上記の構成によれば、輝度ムラを従来に比して低減することが可能な面発光ユニットを得ることができる。
実施の形態1における面発光ユニットを示す斜視図である。 図1中のII−II線における矢視断面図である。 実施の形態1における面発光ユニットに備えられた面発光パネル(有機EL素子)を示す断面図である。 実施の形態1における面発光ユニットが動作している様子を示す断面図である。 実施の形態1の変形例に関して、実施の形態1における面発光パネルに具備されることが可能な有機EL素子の第1配光特性から第4配光特性における垂直面内配光分布を示す図である。 図5に示す第1配光特性から第4配光特性における有機EL素子を実現する具体的な膜構成の条件例を示す表である。 実施の形態2における面発光ユニットを示す断面図である。 実施例1〜12における面発光ユニットの構成を示す表である。 実施例1〜5における面発光ユニットに備えられた光学調整部材の透過率分布を示すグラフである。 実施例6〜12における面発光ユニットに備えられた光学調整部材の所定断面における透過率分布を示すグラフである。 実施例1〜12における面発光ユニットに備えられた光学調整部材の所定断面における透過率分布を示すグラフである。 実施例1〜12における面発光ユニットに備えられた光学調整部材の所定断面における反射率分布を示すグラフである。 実施例1〜5における面発光ユニットの所定断面における規格化正面輝度プロファイルを示すグラフである。 実施例6〜9における面発光ユニットの所定断面における規格化正面輝度プロファイルを示すグラフである。 実施例10〜12における面発光ユニットの所定断面における規格化正面輝度プロファイルを示すグラフである。 比較例1〜5における面発光ユニットの構成を示す表である。 比較例1〜5における面発光ユニットの所定断面における規格化正面輝度プロファイルを示すグラフである。 参考例1〜8における面発光ユニットの構成を示す表である。 参考例1,2,4,5における面発光ユニットを示す断面図である。 参考例3,6,7,8における面発光ユニットを示す断面図である。 参考例1,2,3における面発光ユニットの所定断面における規格化正面輝度プロファイルを示すグラフである。 参考例1,4,5における面発光ユニットの所定断面における規格化正面輝度プロファイルを示すグラフである。 参考例3,6,7,8における面発光ユニットの所定断面における規格化正面輝度プロファイルを示すグラフである。
実施の形態について、以下、図面を参照しながら説明する。同一の部品および相当部品には同一の参照番号を付し、重複する説明は繰り返さない場合がある。
[実施の形態1]
(面発光ユニット1)
図1〜図4を参照して、実施の形態1における面発光ユニット1について説明する。図1は、面発光ユニット1を示す斜視図である。図2は、図1中のII−II線における矢視断面図である。図3は、面発光ユニット1に備えられた面発光パネル10A(有機EL素子)を示す断面図である。図4は、面発光ユニット1が動作している様子を示す断面図である。
図1および図2に示すように、面発光ユニット1は、面発光パネル10A,10B、透過部材20、光学調整部材30、拡散部材40(第1拡散部材)、および反射部材50を備える。以下、これらの各構成の詳細について順に説明する。
(面発光パネル10A,10B)
図1および図2を参照して、面発光パネル10A,10Bは、平板状の形状を有する。詳細は後述されるが、面発光パネル10A,10Bは、発光部としての有機電界発光層120(図3)と、有機電界発光層120から見て一方側(図2,図3紙面内の上側)に位置する発光面13A,13B(図1〜図3)と、有機電界発光層120から見て他方側(図2,図3紙面内の下側)に位置する反射面14A,14B(図2,図3)とを有する。面発光パネル10A,10Bは、各々の発光面13A,13Bが略同一平面上に位置するように面状に配列される。
面発光パネル10A,10Bは、透明基板11A,11Bおよび発光体12A,12Bをそれぞれ含み、透明基板11A,11Bが、後述する透過部材20の側に位置している(図2参照)。面発光パネル10A,10Bは、いわゆるボトムエミッション型の有機EL素子からなる面発光パネルである。面発光パネル10A,10Bは、いわゆるトップエミッション型の有機EL素子からなる面発光パネルであってもよいし、複数の発光ダイオードとこれら複数の発光ダイオードの光出射面側(正面側)に配置された拡散板とからなる面発光パネルであってもよいし、冷陰極管等を用いた面発光パネルであってもよい。
本実施の形態の面発光パネル10A,10Bは、図2紙面左右方向において間隔を空けて離れて配置され、面発光パネル10A,10Bの間には隙間Sが設けられる。隙間Sを設けることにより、面発光パネル10A,10Bを相互に接触させる場合に比べて、少ないパネル枚数にて光源の大面積化を図れる。面発光パネル10A,10Bは、隙間Sを設けずに相互に接触させて配置させても構わない。
面発光パネル10A,10Bの発光面13A,13Bは、発光体12A,12Bが位置する側とは反対側に位置する透明基板11A,11Bの外表面によって構成される。面発光パネル10A,10Bの反射面14A,14Bは、反射電極層130(図3)の有機電界発光層120(図3)の側に位置する内表面によって構成される(図3参照)。
発光体12A,12Bの有機電界発光層120で発生した光は、そのまま透明基板11A,11Bに向かって進行したり、反射面14A,14Bによる反射を経て透明基板11A,11Bに向かって進行したりしたのちに、透明基板11A,11Bを透過する。光は、透明基板11A,11Bを透過することにより、発光面13A,13Bを介して透過部材20の側(正面側)に向けて放射される(図1中に示す矢印AR参照)。
発光面13A,13Bは、光を放射する発光領域HA,HBと、発光領域HA,HBの外周に位置し、光を実質的にほとんど放射しない非発光領域NA,NBとを含む。本実施の形態の発光領域HA,HBは、略正方形の形状を有し、非発光領域NA,NBは、矩形環状の形状を有する。非発光領域NA,NBは、発光体12A,12Bに含まれる有機EL素子を封止したり、有機EL素子に配線を接続したりするための部位を設けることで形成される部位である。
面発光ユニット1においては、隣り合う面発光パネル10A,10B間に設けられた隙間Sと、隙間Sに隣接して位置する面発光パネル10A,10Bの非発光領域NA,NBとを含む部分が、非発光部Tを構成する。非発光部Tは、何ら対策を施していない場合には暗部を生じさせ、輝度ムラの原因となり得る部位である。隙間Sが設けられていない場合、非発光部Tは、隣り合う面発光パネル10A,10Bの非発光領域NA,NBに対応する部分に形成される。一例として、本実施の形態では、所定方向における非発光部Tの幅LF(図2)は10mmであり、同方向における発光領域HA,HBの幅L1はそれぞれ90mmである。
図3は、面発光パネル10Aに具備された有機EL素子を示す断面図である。図3においては、発光面13A上に設けられる透過部材20は、便宜上のため図示されていない。以下、面発光パネル10A,10Bに具備された有機EL素子の構成について説明する。面発光パネル10A,10Bは、いずれも同一の構成を有するため、以下においては、これらのうちの面発光パネル10Aに着目してその説明を行なう。
面発光パネル10Aに具備された有機EL素子は、透明基板11Aに加え、発光体12Aとして、透明電極層110、有機電界発光層120および反射電極層130を含む。透明電極層110、有機電界発光層120および反射電極層130は、この順で透明基板11Aの主表面上に積層される。透明電極層110は陽極に該当し、反射電極層130は陰極に該当する。
透明基板11Aは、その主表面(発光面13Aとは反対側の面)上に上述した各種の層が形成される基材であり、可視光領域の光を良好に透過する絶縁性の部材にて構成される。透明基板11Aは、リジッド基板であってもよいし、フレキシブル基板であってもよい。透明基板11Aとしては、光透過性の観点から、たとえばガラス板、プラスチック板、高分子フィルム、シリコン板またはこれらの積層板等にて構成される。
透明電極層110は、透明基板11Aの一方の主表面(発光面13Aとは反対側の面)上に設けられ、可視光領域の光を良好に透過しかつ良好な電気導電性を有する膜にて構成される。透明電極層110としては、たとえばITO(インジウム酸化物と錫酸化物との混合体)膜やIZO(インジウム酸化物と亜鉛酸化膜との混合体)膜、ZnO膜、CuI膜、SnO膜等の無機導電膜や、PEDOT/PSS(ポリエチレンジオキシチオフェンとポリスチレンスルフォン酸の混合体)膜等の有機導電膜、高分子材料に銀ナノワイヤーやカーボンナノチューブ等を分散させた複合導電膜等にて構成される。
有機電界発光層120(発光部)は、透明電極層110の透明基板11Aが位置する側とは反対側の主表面上に設けられ、少なくとも蛍光発光性化合物または燐光発光性化合物からなる発光層121を含み、可視光領域の光を良好に透過する膜にて構成される。有機電界発光層120は、発光層121よりも透明電極層110側に位置する正孔輸送層122と、発光層121よりも反射電極層130側に位置する電子輸送層123とをさらに有する。有機電界発光層120としては、たとえばAlq3(トリス(8−キノリノラト)アルミニウム)、α−NPD(4,4’−ビス〔N−(1−ナフチル)−N−フェニルアミノ〕ビフェニル)に代表される有機材料の積層膜や、これら有機材料からなる膜とMgAg合金等に代表される金属膜等を含む積層膜が好適に利用できる。
反射電極層130は、有機電界発光層120の透明電極層110が位置する側とは反対側の主表面上に設けられ、可視光領域の光を良好に反射しかつ良好な電気導電性を有する膜にて構成される。具体的には、反射電極層130としては、たとえばAl、Ag、Ni、Ti、Na、Caまたはこれらのいずれかを含む合金等からなる金属膜にて構成される。反射電極層130は、たとえば蒸着法やスパッタリング法等が採用されることで有機電界発光層120上に設けられる。
上述の通り、面発光パネル10A,10Bの反射面14A,14Bは、反射電極層130(図3)の有機電界発光層120(図3)の側に位置する内表面によって構成される。ここでいう反射面とは、金属や誘電体多層膜等により形成される光沢面のことをいい、たとえば銀やアルミ等の金属、またはこれらの合金等により構成される。有機EL光源を面光源に選ぶ場合、反射面を構成する部材は、給電部材としての役割も担うことができる。
反射面の反射という機能には、反射面に到達した光を全反射させるものに限られず、誘電体多層膜等によって為される反射も含まれる。反射面は、より高い反射率を有している方が、非発光領域NA,NBの側に光を伝搬しやすくなる。ここでいう反射率とは、面発光光源の単体に対して光出射面側から測定可視光を垂直に入射させ、その反射光の光が戻ってくる割合によって導出される値である。本実施の形態では、反射面14A,14Bは、たとえば、60%以上の反射率を有するAL金属から構成されることができる。反射率は、70%以上であるとより実用的であり、80%以上である場合には発光効率をより一層向上させることが可能となる。
(透過部材20)
図1および図2を再び参照して、透過部材20は、表面21(図2)および裏面22(図2)を有する厚さTH(図2)の平板状の部材から構成される。透過部材20の厚さTHは、たとえば5mmである。透過部材20は、隣り合う面発光パネル10A,10Bの各々の発光面13A,13Bの双方に、透過部材20の裏面22がまたがるように延在する。透過部材20の裏面22は、面発光パネル10A,10Bの発光面13A,13Bに接している。透過部材20は、透明基板11A,11B(発光面13A,13B)上において、光学系の透明な接着剤(図示せず)等を介してこれらに固定される。
透過部材20としては、透過率が高く(たとえば、JIS K 7361−1:1997に準拠した方法で測定した可視光波長領域における全光線透過率が80%以上)、且つフレキシブル性に優れた材質が用いられることが好ましい。透過部材20を構成する部材としては、たとえば、アクリルやポリカーボネートなどの透明性を有する樹脂基板、ポリエチレンテレフタレート(PET)などの透明樹脂フィルム、シリコーンゴムなどの高い可撓性を有する材料、またはガラス板が挙げられる。有機EL素子を面発光パネル10A,10Bに用いる場合には、光を有効的に透過部材20へ取り込むために、透過部材20を構成する部材としては、可視光に対してより高い屈折率を有するものを選ぶことが望ましい。
発光体12A,12Bの有機電界発光層120(図3)で生成された光は、透明基板11A,11Bの内部を通過して発光面13A,13Bから放射された後、透過部材20の内部に入射する。入射した光は、透過部材20の内部を透過してそのまま透過部材20の正面側(視認側)に出射されたり、透過部材20と光学調整部材30との間の界面や、面発光パネル10A,10Bと透過部材20との間の界面で反射して透過部材20の内部において面内方向に伝搬された後に、透過部材20から正面側(視認側)に出射されたりする。これらに限られず、透過部材20の裏面22の側から出射された光は、面発光パネル10A,10Bの反射面14A,14Bで反射して再び裏面22の側から透過部材20の内部に入射する場合もある。
(光学調整部材30)
光学調整部材30は、たとえば、透過部材20の表面21に白インクをインクジェット塗布することによって、透過部材20の表面21上に設けられる。光学調整部材30は、0.5mmの厚さを有するPET基材の表面に、白インクをインクジェット塗布することによって構成されてもよい。この場合、白インクが塗布されたPET基材が光学調整部材30として透過部材20の表面21に貼り付けられる。
光学調整部材30は、透過部材20の表面21からの光を透過および反射させる機能を有する。具体的には、光学調整部材30は、透過部材20の表面21から光学調整部材30の裏面32に到達した光の一部を透過させたり、透過部材20の表面21から光学調整部材30の裏面32に到達した光の他の一部を反射させたりする。光学調整部材30で反射した光の一部は、再び透過部材20の内部において面内方向(図2紙面左右方向)に伝搬する。
光学調整部材30は、散乱材料を含む部材により構成されることが好ましい。ここでいう散乱材料の具体例としては、たとえば、酸化チタン、硫酸バリウム、硫酸マグネシウム、炭酸マグネシウム、炭酸カルシウム、シリカ等の無機微粒子が挙げられる。これらの他には、アクリル樹脂、有機シリコーン樹脂、ポリスチレン樹脂、尿素樹脂、ホルムアルデヒド縮合物、フッ素樹脂等の有機(架橋)微粒子も挙げられる。これらの他にも、島状に分散したポリメチルペンテン、ポリプロピレン、ポリエチレン、脂環式オレフィン等に代表されるポリオレフィン系樹脂、ポリエチレンテレフタレート、ポリエチレン−2、6−ナフタレート等に代表されるポリエステル系樹脂、ポリメチルメタクリレート等に代表されるアクリル系樹脂、等からなる熱可塑性樹脂(各種共重合体を含む)も挙げられる。さらには、中空粒子または気泡等を挙げられる。粒子としては、1種類単独で用いてもよいし、2種類以上組み合わせて用いてもよい。
光学調整部材30は、透過部材20の表面21からの光を透過および反射させる機能を有するものであれば、シート状の部材またはフィルム状の部材であってもよい。これらの部材は、透過部材20の表面21に透明性を有する光学系の接着剤などを用いて貼り付けられていてもよいし、透過部材20の表面21にわずかな間隔を空けて対向するように設けられていてもよい。間隔を設ける場合には、光学調整部材30の裏面32は、透過部材20の表面21に対して平行であることが好ましい。
光学調整部材30は、透過率に分布を持っており、光学調整部材30の透過率は、面発光パネル10A,10Bから出射される光の輝度に合わせて連続的に変化する分布を有している。光学調整部材30の透過率に面内方向において分布(大小関係)を持たせるためには、白インクのドットパターンに密度変化を持たせることで、容易に実現可能である。白インクが高密度に塗布されるほど透過率が小さくなり、白インクが低密度に塗布されるほど透過率が大きくなる。透過率に面内方向において分布(大小関係)を持たせるためには、光学調整部材30を構成している部材そのものの材料の構成(組成など)を、部分的に異ならせることでも容易に実現可能である。
光学調整部材30の透過率が面発光パネル10A,10Bから出射される光の輝度に合わせて連続的に変化するという特徴に関して、一般的には、非発光領域NA,NBに比べて発光領域HA,HBの方が明るくなる。このような場合には、光学調整部材30のうちの発光領域HA,HBに対応する部分D1(図2)の透過率よりも、光学調整部材30のうちの非発光領域NA,NBに対応する部分D2(図2)の透過率の方が高くなるように光学調整部材30を構成する。
一方で、面発光パネル10A,10Bの配光特性によっては、発光領域HA,HBに比べて非発光領域NA,NBの方が明るくなる場合もある。このような場合には、光学調整部材30のうちの発光領域HA,HBに対応する部分D1(図2)の透過率よりも、光学調整部材30のうちの非発光領域NA,NBに対応する部分D2(図2)の透過率が低くなるように光学調整部材30を構成する。
ここで、光学調整部材30のうちの発光領域HA,HBに対応する部分D1とは、発光領域HA,HBを発光領域HA,HBの法線方向に沿って光学調整部材30に向かって投影した際に、その投影像が光学調整部材30に重なる部分である。光学調整部材30のうちの非発光領域NA,NBに対応する部分D2とは、非発光領域NA,NBを非発光領域NA,NBの法線方向に沿って光学調整部材30に向かって投影した際に、その投影像が光学調整部材30に重なる部分である。
(拡散部材40)
第1拡散部材としての拡散部材40は、光学調整部材30の透過部材20の側とは反対側の面(表面31)上、または、表面31に間隔を空けて対向するように設けられる。拡散部材40は、光学調整部材30の表面31から出射され拡散部材40に到達した光を拡散させる機能を有する。拡散部材40も、たとえば、シート状の部材またはフィルム状の部材から構成されることができる。具体的には、拡散部材40としては、アクリルやポリカーボネートといった樹脂部材の表面に微小な凹凸加工を施したもの(すなわち界面反射作用を利用するもの)や、母材の中に酸化チタンに代表される白色散乱粒子を含む散乱材料を均一に分散させたもの(すなわち内部散乱作用を利用するもの)などを用いることができる。
ここでいう散乱材料の具体例としては、上記の場合と同様に、たとえば、酸化チタン、硫酸バリウム、硫酸マグネシウム、炭酸マグネシウム、炭酸カルシウム、シリカ等の無機微粒子が挙げられる。これらの他には、アクリル樹脂、有機シリコーン樹脂、ポリスチレン樹脂、尿素樹脂、ホルムアルデヒド縮合物、フッ素樹脂等の有機(架橋)微粒子も挙げられる。これらの他にも、島状に分散したポリメチルペンテン、ポリプロピレン、ポリエチレン、脂環式オレフィン等に代表されるポリオレフィン系樹脂、ポリエチレンテレフタレート、ポリエチレン−2、6−ナフタレート等に代表されるポリエステル系樹脂、ポリメチルメタクリレート等に代表されるアクリル系樹脂、等からなる熱可塑性樹脂(各種共重合体を含む)も挙げられる。さらには、中空粒子または気泡等を挙げられる。粒子としては、1種類単独で用いてもよいし、2種類以上組み合わせて用いてもよい。拡散部材40としては、たとえば、株式会社きもと製のレフホワイト(登録商標)(RW125)を用いることができる。
本実施の形態における拡散部材40は、光学調整部材30の表面31の全面に配置するという構成を採用しているが、いわゆる内照式看板等のように、拡散部材40は部分的に設けられるものであってもよい。
(反射部材50)
反射部材50は、隣り合う発光領域HA,HBの間に位置する非発光領域NA,NBと透過部材20の裏面22との間に設けられる。反射部材50は、面発光パネル10A,10Bの発光面13A,13Bから放射されて透過部材20の内部で伝搬する光の一部を正面側(視認側)に向けて散乱反射する。反射部材50は、光を透過させることなく散乱反射させるものであることが好ましい。反射部材50としては、たとえば、株式会社きもと製のレフホワイト(登録商標)(RW125)を用いることができる。
本実施の形態における反射部材50は、隣り合う面発光パネル10A,10Bの発光面13A,13Bの外縁に沿って、正面(発光面)側から見た場合に非発光領域NA,NBおよび隙間Sに重なるように配置されている。より具体的には、反射部材50は、隣り合う面発光パネル10A,10Bの発光面13A,13Bの外縁に跨りかつこれら外縁に沿って延在するように面発光パネル10A,10Bの発光面13A,13B上に設けられている。
反射部材50は、面発光パネル10Aの発光面13Aおよび面発光パネル10Bの発光面13B上に位置し、発光領域HA,HB間に挟まれた非発光部Tに対向している。より詳細には、反射部材50は、面発光パネル10Aの発光面13Aの面発光パネル10B側の外縁に位置する非発光領域NAと、面発光パネル10Bの発光面13Bの面発光パネル10A側の外縁に位置する非発光領域NBとに跨り(すなわち、反射部材50は、正面側から見た場合にこれら部分の非発光領域NA,NBに重なっている)、かつ、これら非発光領域NA,NBに沿って延在するように、面発光パネル10Aおよび面発光パネル10B上に設けられている。
反射部材50が有する散乱機能の付与の方法としては、透過部材20の裏面22の一部を予め荒らしておく方法や、反射部材50の表面を粗面化する方法、および樹脂バインダーに散乱用の粒子を混ぜた散乱層を平滑な反射金属膜の上に設ける方法等がある。反射部材50は、散乱粒子を分散した有機溶剤系の白インクから構成されていてもよい。この場合には、反射部材50による散乱反射面は、たとえば、透過部材20の裏面22に白インクをインクジェット塗布することで形成することが可能である。
反射部材50の反射率は可視光波長域において70%以上であることが好ましく、反射部材50はHaze値の高い材料から構成されていることが好ましい。ここでいうHaze値とは、ASTM(米国試験材料協会)規格のD1003−97で規定される値、具体的には、たとえば市販のヘーズメータや、分光測色計CM−3600A(KONICA MINOLTA)により測定し、色彩管理ソフトウェアCMS−100W(KONICA MINOLTA)により算出できる値である。
反射部材50の反射率を鏡面反射が可能な程度にまで上げることで、反射部材50の反射面によるロスを軽減し、光の利用効率を高める事ができ、ひいては正面側(視認側)へ光を効率的に取り出すことが可能となる。反射部材50の反射面を白色散乱反射面等によって構成することにより反射率を上げた場合には、反射面によるロスを軽減できるだけでなく、伝搬する光の向きを散乱によって効果的に変えることが可能となり、透過部材20の非発光部Tに対応する部分において光を視認側へ効率的に反射する事ができる。
(作用および効果)
図4は、面発光ユニット1が動作している様子を示す断面図である。図4に示すように、面発光ユニット1においては、有機電界発光層120(図3)で生成された光は、発光面13A,13Bからそのまま出射されたり、面発光パネル10A,10Bの裏面側に形成された反射面14A,14Bによる反射(たとえば鏡面反射)を経て発光面13A,13Bから出射されたりする。発光面13A,13Bから出射された光は、透過部材20の内部に入射する。透過部材20の裏面22が発光面13A,13Bに密着していることによって、発光面13A,13Bと透過部材20の裏面22との間の屈折率差が小さくなり、これらの間の界面で生じ得るロスを減らすことができる。透過部材20の裏面22の側から光が出射されることもある。この場合、透過部材20の裏面22の側から出射された光は、面発光パネル10A,10Bの反射面14A,14Bで反射して再び裏面22の側から透過部材20の内部に入射する。
透過部材20の内部に入射した光は、光学調整部材30による反射(たとえば散乱反射)、および反射部材50による反射の作用によって面内方向において伝搬し、透過部材20の内部で繰り返し反射を繰り返したのちに、非発光部Tおよびその周囲部に対応する透過部材20の光射出面側の部分を通じて正面側(視認側)に取り出される。面発光ユニット1においては、面発光パネル10A,10Bの裏面側にも反射面14A,14Bが形成されているため、光を非発光領域NA,NBへ導きやすくなっており、発光領域HA,HBに対応する透過部材20の光射出面側の部分と、非発光領域NA,NBに対応する透過部材20の光射出面側の部分とで、輝度差を効果的に軽減することが可能となっている。したがって、面発光ユニット1のうちの非発光部Tおよびその周囲部に対応する部分の正面方向における輝度が向上することになり、ひいては輝度の不均一性が低減されて非発光部Tをより目立たなくすることができる。
面発光パネル10A,10Bの裏面側に形成された反射面14A,14Bの反射機能については、反射率がより高いほど非発光領域NA,NBの側へ光を導きやすくなる。反射面14A,14Bが60%以上の反射率を有する金属鏡面であるという構成を採用することによって、光学調整部材30で反射された光のうち、全反射角度よりも鋭角に入射した光を反射することができ、より多くの光を非発光領域NA,NBの側に伝搬させることが可能となる。光学調整部材30に鋭角に入射する光の成分が多くなり、光学調整部材30からの反射光も鋭角になる程光量が多くなるため、非発光領域NA,NBの側へ有効に光を伝搬できることとなる。尚、部分的に給電や電気抵抗を低下させるためにグリッドを配置する場合もあり得るが、反射面14A,14Bを散乱面や乱反射面として構成した場合には、光の伝搬方向が変わってしまい、非発光領域NA,NBへ光を導くことが難しくなる。グリッドを配置する場合であっても、より高い反射率を実現できる構成を採用することが好ましい。
さらには、本実施の形態で用いられる光学調整部材30は、透過率に分布を持っている。光学調整部材30の透過率は、面発光パネル10A,10Bから出射される光の輝度に合わせて連続的に変化する分布を有している。光学調整部材30の透過率に面内方向において大小関係を持たせ、輝度を向上させる必要がある部分については透過率を高くし、輝度を抑える必要がある部分については透過率を低くする。たとえば、非発光領域NA,NBに比べて発光領域HA,HBの方が明るい場合には、光学調整部材30のうちの発光領域HA,HBに対応する部分D1の透過率よりも、光学調整部材30のうちの非発光領域NA,NBに対応する部分D2の透過率の方が高くなるように光学調整部材30を構成する。当該構成によれば、透過部材20の内部で伝搬する光は、透過部材20から正面側(視認側)に取り出される際に、より輝度の均一化が図られた状態で出射されることが可能になる。
光学調整部材30の透過率を面内方向で異ならせた場合には、正面側(視認側)から光学調整部材30を単独で観察した場合に、その濃淡が視認されやすくなる。このことは、消灯時において、光学調整部材30のパターンが認識されやすくなることを招く。これに対して本実施の形態では、光学調整部材30の正面側(視認側)に拡散部材40が設けられ、拡散部材40は、光学調整部材30の透過率分布を効果的に視認しにくくしている。したがって本実施の形態の面発光ユニット1は、点灯時のみならず消灯時においても高い意匠性を発揮でき、従来に比して、面発光ユニット1の非発光部Tおよびその周囲部に該当する部分の正面方向の輝度を向上させることができ、輝度の不均一性が低減されて非発光部が目立たなくすることが可能となっている。
上述の通り、本実施の形態における光学調整部材30は、透過部材20の表面21に白インクをインクジェット塗布することによって、透過部材20の表面21上に設けられる。すなわち、光学調整部材30は、透過部材20のうちの発光領域HA,HBに対応する部分だけでなく、透過部材20のうちの非発光領域NA,NBに対応する部分においても透過部材20に接している。光学調整部材30が散乱材料を含む部材により構成される場合には、透過部材20の内部を面内方向に伝搬する光の一部は、光学調整部材30によって散乱を受け、透過部材20から正面側(視認側)へ向けて出射される。したがって、光学調整部材30が散乱材料を含む部材により構成される場合には、光学調整部材30の散乱作用という思想を活用し、非発光領域NA,NBに対応する部分においては透過部材20を光学調整部材30に密着させ、発光領域HA,HBに対応する部分においては透過部材20を光学調整部材30に密着させないという構成が採用されてもよい。透過部材20を光学調整部材30に密着させないという構成とは、たとえばこれらの間に空気層を設けることなどで実現できる。当該構成によれば、輝度の不均一性がより一層低減され、非発光部が目立たなくすることが可能となる。
[変形例]
(垂直面内配光分布)
図5は、上述の実施の形態1における面発光ユニット1に具備されることが可能な有機EL素子の第1配光特性から第4配光特性における垂直面内配光分布を示す図である。図6は、図5に示す第1配光特性から第4配光特性における有機EL素子を実現する具体的な膜構成の条件例を示す表である。
図5および図6を参照して、上述の実施の形態1における面発光パネル10A,10Bには、第1配光特性から第4配光特性のいずれかの垂直面内配光分布を有する有機EL素子をそれぞれ用いることができる。なお、本変形例で述べる第1配光特性から第4配光特性は、あくまで例示であって、面発光ユニット1に適用できる配光特性がこれらに限定されるものではない。
図5に示すように、第1配光特性における有機EL素子は、通常の有機EL素子が有する垂直面内配光分布であるランバーシャン分布(当該ランバーシャン分布は、−90°<θ<90°の範囲においてL=cosθ=1の条件を満たす)の配光特性を有している。
第2配光特性(ET50)、第3配光特性(ET100)および第4配光特性(ET300)における有機EL素子は、面発光パネルから放射される光の発光面と垂直な平面における配光曲線を描いた場合に、発光面の法線方向に延在する光軸に沿った正面側の輝度(すなわち、図中に示すθ=0°における輝度)を1とし、当該平面内において上記光軸との間で形成される角がθである方向の輝度(すなわち、−90°<θ<90°であってθ≠0°の範囲における輝度)をLとすると、当該配光曲線が、いずれもL>cosθの条件を満たす部分を少なくとも有している。
すなわち、第2配光特性における有機EL素子は、概ね−70°≦θ≦70°(但し、θ≠0°)の範囲においてL>cosθの条件が満たされており、第3配光特性における有機EL素子は、概ね−65°≦θ≦65°(但し、θ≠0°)の範囲においてL>cosθの条件が満たされており、第4配光特性における有機EL素子は、概ね−80°<θ≦−50°および50°≦θ<80°の範囲においてL>cosθの条件が満たされている。
図6を参照して、第1配光特性から第4配光特性における垂直面内配光分布を有する有機EL素子は、電子輸送層の厚さを調整することで実現が可能である。透明電極層としてITO膜を用い、電子輸送層としてMgAg膜を用い、発光層としてAlq3膜を用い、正孔輸送層としてα−NPD膜を用い、反射電極層としてAg膜を用い、このうちの透明電極層/正孔輸送層/発光層の厚さをそれぞれ150nm/50nm/20nmとした場合において、電子輸送層の厚さを20nm以下とすれば、概ねランバーシャン分布が得られる。
電子輸送層の厚さを50nmとすれば、第2配光特性における垂直面内配光分布が得られることになり、電子輸送層の厚さを100nmとすれば、第3配光特性における垂直面内配光分布が得られることになり、電子輸送層の厚さを300nmとすれば、第4配光特性における垂直面内配光分布が得られることになる。図6においては、参考として、当該膜構成を採用した場合に有機EL素子から放射される発光波長のピーク値をあわせて示している。
第2〜第4配光特性における有機EL素子が有する垂直面内配光分布は、発光面から射出される光の角度依存性が、通常の光源が持つランバーシャン分布と異なっていることを意味しており、特に、正面側の斜め方向に向けて射出される光の量が正面方向に向けて射出される光の量よりも多いことを意味している。
このような垂直面内配光分布を有する有機EL素子を具備した面発光パネルを用いることにより、ランバーシャン分布を有する有機EL素子を具備した面発光パネルを用いる場合に比較して、透過部材20の内部で全反射して面内方向に伝搬される光の量が多くなることから、非発光部Tに対向して設けられている反射部材50で散乱反射されて正面側に射出される光の量も多くなる。
すなわち、第2〜第4配光特性における有機EL素子を面発光パネル10A,10Bとして採用することによって、有機EL素子から発光される光のうちのより多くの光を非発光部Tおよびその周囲部に対応する部分の透過部材20の光射出面に導くことが可能になるため、面発光ユニット1における当該部分の正面方向における輝度が向上することになり、ひいては輝度の不均一性が低減されて非発光部がより目立たなくなる。L>cosθの条件に関して、任意方向θが全反射の角度範囲にわたってこの条件式が満足されるようにすることがより好ましい。
なお上述では、有機EL素子の電子輸送層の厚さを調整することで所望の配光特性が得られるようにした場合を例示したが、所望の配光特性を得る方法としてはこれに限定されるものではなく、たとえば有機EL素子の膜構成を変更するといったような他の方法の適用も可能である。また、面発光パネルとして有機EL素子以外の光源を具備したものを使用する場合にも、当該光源の構成等を種々調整することにより、上述した如くの所望の配光特性を得ることができる。
[実施の形態2]
図7を参照して、実施の形態2における面発光ユニット2について説明する。ここでは、主として面発光ユニット2と上述の実施の形態1における面発光ユニット1との相違点について説明する。面発光ユニット2においては、透過部材20が、拡散部材60A,60B(第2拡散部材)を含んでおり、透過部材20のうちの面発光パネル10A,10Bに接している部分にこれら拡散部材60A,60B(第2拡散部材)が設けられる。
拡散部材60A,60Bは、面発光パネル10A,10Bの発光領域HA,HBから出射され拡散部材60A,60Bに到達した光を拡散させる機能を有する。拡散部材60A,60Bは、たとえば、シート状の部材またはフィルム状の部材から構成されることができる。具体的には、拡散部材60A,60Bとしては、アクリルやポリカーボネートといった樹脂部材の表面に微小な凹凸加工を施したもの(すなわち界面反射作用を利用するもの)や、母材の中に酸化チタンに代表される白色散乱粒子を含む散乱材料を均一に分散させたもの(すなわち内部散乱作用を利用するもの)などを用いることができる。
本実施の形態においては、光学調整部材30の透過率の分布は、光学調整部材30のうちの非発光領域NA,NBに対応する部分D2の平均透過率の方が、光学調整部材30のうちの発光領域HA,HBに対応する部分D1の平均透過率に比べて高くなる分布を有している。ここで、光学調整部材30のうちの発光領域HA,HBに対応する部分D1の平均反射率をRと定義する。
発光領域HA,HBに対応する部分D1の平均反射率R(%)とは、発光領域HA,HB上における面積平均反射率のことをいう。たとえば、発光領域の中央付近の平均反射率が40%、発光領域の中央を除く外周領域の平均反射率が10%、発光領域の中央付近の面積率が81%、発光領域の中央を除く外周領域の面積率が19%である場合には、発光領域上の平均反射率は34.3%となる。同様に、上記の平均透過率とは、面積平均透過率のことをいい、平均反射率の場合と同様に面積の割合に応じた平均値に基づいて算出されるものである。
さらに、非発光領域NA,NBを含む、隣り合う発光領域HA,HBの間に挟まれた非発光部Tの所定方向における幅LF(図7)の半分の値をL1と定義する。換言すると、値L1は、任意の断面方向において隣り合う発光領域HA,HBの合間にできる非発光部Tの幅の半分の値である。1つの発光領域HA(または発光領域HB)の所定方向における幅をL2と定義する。値L2は、値L1を導出した断面と同じ断面における発光領域HAの幅(または発光領域HBの幅)である。本実施の形態の面発光ユニット2は、次の式(1)を満足している。
90>R>L1/(L1+L2)×100 ・・・式(1)
(作用および効果)
拡散部材60A,60Bを、透過部材20のうちの面発光パネル10A,10Bに接している部分に設けることによって、拡散部材60A,60Bを通過する光を散乱でき、発光効率を向上させることができる。この拡散部材60A,60Bを設けるという構成のみを採用した場合、透過部材20の内部で面内方向に伝搬する光は、拡散部材60A,60Bによる散乱作用を受けるため、非発光領域NA,NBの側へ届きにくくなる。ここでいう透過部材20の内部で面内方向に伝搬する光とは、面発光パネル10A,10Bの裏面側に形成された反射面14A,14Bの反射作用と透過部材20の表面21側に設けられた光学調整部材30の反射作用とによって伝搬する光である。
これに対して本実施の形態では、光学調整部材30の透過率の分布を、光学調整部材30のうちの非発光領域NA,NBに対応する部分D2の平均透過率の方が、光学調整部材30のうちの発光領域HA,HBに対応する部分D1の平均透過率に比べて高くなるように構成し、非発光領域NA,NBに対応する部分から光をより取り出しやすくしている。
さらには、光学調整部材30のうちの発光領域HA,HBに対応する部分D1の平均透過率を低く設定した分については、発光領域HA,HBに対応する部分D1の平均反射率Rが上記の式(1)の条件を満足するように構成することによって、より多くの光を非発光領域NA,NBの側へ導く事を可能とするものである。この式(1)を満足するように面発光ユニット2を構成することで、輝度の均一化に必要な分の光を非発光部T(非発光領域NA,NB)の側へ導き、輝度差を改善する事ができる。これらの透過率および反射率は、材料の選択または白インク等の密度により容易に調節可能であり、最適な値を実験などに基づいて算出し、算出結果に基づいて面発光ユニットを設計することでより均一な輝度を実現できるものである。
光学調整部材30の透過率の分布に関して、本実施の形態では、光学調整部材30のうちの非発光領域NA,NBに対応する部分D2の平均透過率の方が、光学調整部材30のうちの発光領域HA,HBに対応する部分D1の平均透過率に比べて高くなる分布を有している。透過率の差、すなわち、光学調整部材30のうちの非発光領域NA,NBに対応する部分D2の平均透過率と、光学調整部材30のうちの発光領域HA,HBに対応する部分D1の平均透過率との差は、10%以上であることが好ましい。面発光パネル10A,10Bの配光特性によっては、発光領域HA,HBに対する非発光領域NA,NBの輝度が相対的に極端に低くなる場合があるが、この透過率差を適切に調節する事で、面発光ユニットから出射される光の輝度差を十分に改善できるものである。
上記の式(1)では、断面方向における全領域(L1+L2)に占めるL1(=LF/2)の割合を高くすることで、非発光領域NA,NBの側へ配分する光量を増やしている。実際には、部材同士の間の界面で発生するロスや、反射面での反射損失によって非発光領域NA,NBの側へ配分される光量が理論値よりも低くなる場合があるが、こうした場合には光学調整部材30の吸収率によりその光量をコントロールすることができる。
上記の式(1)に関して、平均反射率Rは、10%以上であることが好ましく、20%以上であることがより好ましい。また、平均反射率Rは、80%以下であることが好ましい。上記の式(1)は、面発光ユニットをある断面(1次元)で見た場合に成立し得るものである。この構成に限られず、発光領域の周囲に2次元的に非発光部Tが存在するとした場合には、平均反射率Rは、以下の式(2)を満足するものであるとよい。
90>R>S1/(S1+S2)×100・・・式(2)
この式(2)において、値S1は、非発光領域NA,NBを含む、隣り合う発光領域HA,HBの間に挟まれた非発光部Tの面積の半分の値である。値S2は、1つの発光領域(発光領域HAまたは発光領域HB)の面積である。面発光ユニット2が式(2)を満足するような構成であっても、面発光ユニット2が式(1)を満足するような構成を採用した場合と同様の作用および効果が得られる。
本実施の形態では、透過部材20のうちの面発光パネル10A,10Bに接している部分に、拡散部材60A,60B(第2拡散部材)を設けるという構成を採用している。この構成に限られず、第2拡散部材は、面発光パネル10A,10Bの内部に設けられていてもよい。この場合には、第2拡散部材は、たとえば、透明基板と透明電極層との間に配置される。当該構成によっても、第2拡散部材を通過する光を散乱でき、発光効率を向上させることができる。透過率および反射率を上記と同様に設定し、式(1)または式(2)を満足するような構成を採用することによって、均一な輝度を実現できる。
[実施例]
図8〜図15を参照して、以下、上述の実施の形態1,2に基づく実施例1〜12について説明する。ここでは、実施例1〜12のそれぞれにおける面発光ユニットの正面輝度プロファイルをシミュレーションした結果について説明する。
実施例1〜5における面発光ユニットは、いずれも上述の実施の形態1における面発光ユニット1に対応しており、透過率に分布を持つ光学調整部材30を備えており(図9参照)、一方で、第2拡散部材としての拡散部材60A,60Bを備えていない。実施例6〜12における面発光ユニットは、いずれも上述の実施の形態2における面発光ユニット2に対応しており、透過率に分布を持つ光学調整部材30を備えており(図10参照)、さらに、第2拡散部材としての拡散部材60A,60Bを備えている。
(実施例1〜12に共通する構成)
実施例1〜12における面発光ユニットは、以下の構成を共通して備える。すなわち、面発光パネルの発光領域HA,HB(図1,図2)の大きさは90mm×90mmである(図2に示す幅L2は90mmである)。非発光領域NA,NBおよび隙間Sを含む非発光部Tの幅LF(図2)は10mmである。面発光パネル10A,10Bに用いられる有機EL素子は、上述した図3に示すものと同じ層構成を有しており、反射電極層130の有機電界発光層120の側に位置する内表面には反射面14A,14Bが形成されている。
透過部材20は、アクリル板から構成されており、隣り合う面発光パネル10A,10Bの各々の発光面13A,13Bの双方に透過部材20の裏面22がまたがるように延在している。透過部材20の裏面22は、面発光パネル10A,10Bの発光面13A,13Bに密着している。面発光パネル10A,10Bからの光のうちの全反射条件を満たす光は、透過部材20(アクリル板)の内部を面内方向に伝搬する。
面発光パネル10A,10Bの隣り合う発光領域HA,HBの間に位置する非発光領域NA,NBと透過部材20の裏面22との間には、反射部材50が設けられる。反射部材50は、株式会社きもと製のレフホワイト(登録商標)(RW125)から構成され、透過部材20(アクリル板)の裏面22に密着している。透過部材20の内部で伝搬する光は、反射部材50によって散乱され、一部の光は非発光部Tおよびその周囲部に対応する透過部材20の光射出面側の部分を通じて正面側(視認側)に取り出される。
透過部材20の表面21上には、光学調整部材30が設けられる。光学調整部材30は、0.5mmの厚さを有するPET基材の表面に、白インクをインクジェット塗布することによって構成される。さらに、光学調整部材30の表面31の側には、第1拡散部材としての拡散部材40が貼り付けられる。拡散部材40は、白色であり、2mmの厚さを有するシート状の部材から構成される。白色シート状の部材は、透過率が45%であり、Haze値は98%である。
(実施例6〜12に共通する構成)
実施例6〜12における面発光ユニットは、上述の通り、第2拡散部材としての拡散部材60A,60Bをさらに備えている。これらの拡散部材60A,60Bは、透過部材20のうちの面発光パネル10A,10Bに接している部分に設けられる(図7参照)。拡散部材60A,60Bは、拡散シートから構成され、透過率が90%であり、Haze値が98%である。
実施例6〜10は、いずれも上述の式(1)および式(2)の条件を満足している。すなわち、実施例6〜10においては、式(1)に関しては、L1=LF/2=5[mm]であり、L2=90[mm]であり、平均反射率Rは、5/(5+90)×100=5.26[%]よりも大きな値とされている。また、式(2)に関しては、S1=9.5[mm]であり、S2=90.5[mm]であり、平均反射率Rは、9.5/(100)×100=9.5[%]よりも大きな値とされている。条件式(1)を満足することで、発光領域と非発光領域の輝度差がより改善される。なお、実施例11および実施例12は、上記式(1)の条件を具備していないが、比較例に比べると輝度差を改善している。
(実施例1〜12の個別構成)
図8は、実施例1〜12における面発光ユニットの構成を示す表である。
実施の形態1に基づく実施例1〜5における面発光ユニットの配光パターン(垂直面内配光分布)は、それぞれ、上述の図5で述べた第1配光特性(ランバーシャン分布)、第2配光特性(ET50)、第3配光特性(ET100)、第4配光特性(ET300)、および第1配光特性(ランバーシャン分布)である。
実施の形態2に基づく実施例6〜12における面発光ユニットの配光パターン(垂直面内配光分布)は、それぞれ、上述の図5で述べた第1配光特性(ランバーシャン分布)、第2配光特性(ET50)、第3配光特性(ET100)、第4配光特性(ET300)、第1配光特性(ランバーシャン分布)、第2配光特性(ET50)、および第4配光特性(ET300)である。
実施例1〜12のそれぞれにおいて、面発光ユニットの発光部の裏面(反射面14A,14B)の反射率、光学調整部材30の透過率、光学調整部材30の吸収率、光学調整部材30の反射率、光学調整部材30の発光領域HA,HBに対応する部分D1の平均反射率R、および、透過部材20の厚さTHは、図8に記載のとおりである。なお、光学調整部材30の透過率、吸収率、反射率の総和は100%となる。
図9は、実施例1〜5における面発光ユニットに備えられた光学調整部材30の所定断面における透過率分布を示すグラフである。図9に示す横軸の位置(mm)は、2枚並べた面発光パネルの間に生じる非発光部Tの中央を0mmとし、±5mm以下の範囲に非発光部Tが存在し、±50mmが面発光パネルの略中央となるものである。これは、後述する図10〜15,17,21〜23においても共通する。
実施例1〜5における面発光ユニットに備えられた光学調整部材30の所定断面における透過率分布は、図9に示されるとおりである。図10は、実施例6〜12における面発光ユニットに備えられた光学調整部材30の所定断面における透過率分布を示すグラフである。実施例6〜12における面発光ユニットに備えられた光学調整部材30の所定断面における透過率分布は、図10に示されるとおりである。
図11は、実施例1〜12における面発光ユニットに備えられた光学調整部材30の所定断面における透過率分布を示すグラフである。実施例1〜12における面発光ユニットに備えられた光学調整部材30の所定断面における透過率分布は、図11に示されるとおりである。図12は、実施例1〜12における面発光ユニットに備えられた光学調整部材の所定断面における反射率分布を示すグラフである。実施例1〜12における面発光ユニットに備えられた光学調整部材の所定断面における反射率分布は、図12に示されるとおりである。
図13は、実施例1〜5における面発光ユニットの規格化正面輝度プロファイルを示すグラフである。図14は、実施例6〜9における面発光ユニットの規格化正面輝度プロファイルを示すグラフである。図15は、実施例10〜12における面発光ユニットの規格化正面輝度プロファイルを示すグラフである。図13〜図15においては、面発光パネルの中央(発光領域の中央)の値が1000になるように規格化したグラフを示している。
(シミュレーション結果)
(実施例1)
図8に示すように、実施例1では、光源(面発光パネル10A,10B)の配光はランバーシャン分布であり、面発光ユニットの発光部の裏面(反射面14A,14B)の反射率は60%と低い値となっている。光学調整部材30としては、反射率が50%であり吸収率が5%である材料に、透過率の分布を持たせて配置している。分布を考慮した光学調整部材30の平均反射率は39.1%である。図13に示されるとおり、実施例1における規格化輝度は、おおよそ1000〜940の範囲内である。後述する比較例の場合に比べて(図17参照)、非発光部Tへ十分な光を導くことができており、良好な輝度プロファイルが得られていることがわかる。
(実施例2〜4)
図8に示すように、実施例2〜4では、光源(面発光パネル10A,10B)の配光は、それぞれ、第2配光特性(ET50)、第3配光特性(ET100)、第4配光特性(ET300)であり、光源の配光はいずれもL>cosθの条件を満たす部分を少なくとも有している。光学調整部材30の透過率分布(図9)は異なるが、図8に示すように、反射率および吸収率は、実施例1と同じ構成を有している。分布を考慮した光学調整部材30の平均反射率は実施例2〜4に対して、それぞれ8.2%、31.9%、14.6%である。図13に示されるとおり、実施例2〜4では、非発光部Tへ導く光の量が配光の作用によって増加しており、光を効率的に利用できる構成となっており、実施例1よりも光の利用効率は高いといえる。
(実施例5)
図8に示すように、実施例5では、光源(面発光パネル10A,10B)の配光はランバーシャン分布である。透過部材20の厚さTHは、2.5mmであり、実施例5では、他の実施例に比べて薄い透過部材20が採用されている。光学調整部材30としては、反射率が32.3%であり吸収率が5%である材料に、透過率の分布を持たせて配置している。分布を考慮した光学調整部材30の平均反射率は60.5%である。図13に示されるとおり、実施例5における規格化輝度は、おおよそ1000〜950の範囲内である。後述する比較例の場合に比べて(図17参照)、非発光部Tへ十分な光を導くことができており、良好な輝度プロファイルが得られていることがわかる。さらに、他の実施例に比べて薄い透過部材20を採用することによって、他の実施例に比べて薄型化を実現できている。
(実施例6)
図8に示すように、実施例6では、光源(面発光パネル10A,10B)の配光はランバーシャン分布であり、面発光ユニットの発光部の裏面(反射面14A,14B)の反射率は80%と高い値となっている。光学調整部材30としては、反射率が15%であり吸収率が50%である材料に、透過率の分布を持たせて配置している。分布を考慮した光学調整部材30の平均反射率は32.2%である。図14を参照して、反射率を高くすることによって、後述する比較例の場合に比べて(図17参照)、非発光部Tへ十分な光を導くことができており、良好な輝度プロファイルが得られていることがわかる。
(実施例7〜9)
図8に示すように、実施例7〜9では、光源(面発光パネル10A,10B)の配光は、それぞれ、第2配光特性(ET50)、第3配光特性(ET100)、第4配光特性(ET300)であり、光源の配光はいずれもL>cosθの条件を満たす部分を少なくとも有している。面発光ユニットの発光部の裏面(反射面14A,14B)の反射率は80%と高い値となっている。光学調整部材30としては、反射率が実施例7〜9でそれぞれ32.5%、20%、32.5%であり、吸収率が実施例7〜9でいずれも50%である材料に、透過率の分布を持たせて配置している。分布を考慮した光学調整部材30の平均反射率は実施例7〜9はそれぞれ16.1%、29.0%、16.0%である。図14に示されるとおり、実施例7〜9では、非発光部Tへ導く光の量が配光の作用によって増加しており、光を効率的に利用できる構成となっており、良好な輝度プロファイルが得られていることがわかる。
(実施例10)
図8に示すように、実施例10では、光源(面発光パネル10A,10B)の配光はランバーシャン分布であり、面発光ユニットの発光部の裏面(反射面14A,14B)の反射率は80%と高い値となっている。光学調整部材30としては、反射率が32.5%であり吸収率が50%である材料に、透過率の分布を持たせて配置している。分布を考慮した光学調整部材30の平均反射率は17.4%である。図15を参照して、実施例10における規格化輝度は、おおよそ1000〜800の範囲内である。実施例1〜9に比べると輝度の均一性は低いが、後述する比較例の場合に比べると(図17参照)、非発光部Tへ十分な光を導くことができており、良好な輝度プロファイルが得られていることがわかる。
(実施例11,12)
図8に示すように、実施例11,12では、光源(面発光パネル10A,10B)の配光は、それぞれ、第2配光特性(ET50)および第4配光特性(ET300)であり、光源の配光はいずれもL>cosθの条件を満たす部分を少なくとも有している。面発光ユニットの発光部の裏面(反射面14A,14B)の反射率は80%と高い値となっている。光学調整部材30としては、反射率が45%であり吸収率が50%である材料に、透過率の分布を持たせて配置している。分布を考慮した光学調整部材30の平均反射率は、実施例11,12に対して、それぞれ4.7%、4.7%である。図15を参照して、実施例11,12における規格化輝度は、おおよそ1000〜850の範囲内である。実施例1〜9に比べると輝度の均一性は低いが、後述する比較例の場合に比べると(図17参照)、非発光部Tへ十分な光を導くことができており、良好な輝度プロファイルが得られていることがわかる。
[比較例]
図16および図17を参照して、実施例1〜12の比較のために、上述した実施の形態1,2に基づいていない比較例について説明する。ここでは、比較例1〜5のそれぞれにおける面発光ユニットの正面輝度プロファイルをシミュレーションした結果について説明する。
図16を参照して、比較例1〜5における面発光ユニットは、それぞれ、実施例1、4、5、7、8に対応する。ただし、比較例1〜5における面発光ユニットは、透過率に分布を有さない光学調整部材30が採用されている。その他の条件は、図16に示すとおりである。
図17を参照して、比較例1〜5における規格化輝度は、おおよそ1000〜650の範囲内である。上述した実施例1〜12の場合に比べて、良好な輝度プロファイルが得られていないことがわかる。したがって、上述の実施例1〜12に基づく面発光ユニットによれば、輝度の不均一性が従来に比して低減され、非発光部が目立たなくすることが可能となることがわかる。
[参考例]
図18〜図23を参照して、以下、参考例1〜8について説明する。ここでは、参考例1〜8のそれぞれにおける面発光ユニットの正面輝度プロファイルをシミュレーションした結果について説明する。図18は、参考例1〜8における面発光ユニットの構成を示す表である。
(参考例1〜3)
参考例1〜3を比較検証すると、面発光パネル10A,10Bの反射面14A,14Bの反射率に、面発光ユニットの正面輝度プロファイルがどのように依存するかを読み取ることができる。
図18および図19を参照して、参考例1,2では、光学調整部材30を備えていない面発光ユニットSA1(図19)を採用した。参考例3では、光学調整部材30を備えていない面発光ユニットSA2(図20)を採用した。面発光ユニットSA2は、面発光ユニットSA1(図19)の構成に加えて、拡散部材60A,60Bを備えるものである。参考例1〜3では、面発光パネル10A,10Bの反射面14A,14Bの反射率をそれぞれ異ならせたものを採用した。
図21を参照して、反射面14A,14Bの反射率が60%である参考例1の構成においては、非発光領域NA,NBの輝度に比べて、発光領域HA,HBの輝度の方が高くなっていることがわかる。反射面14A,14Bの反射率が80%である参考例2の構成においては、非発光領域NA,NBの輝度に比べて、発光領域HA,HBの輝度の方が低くなっていることがわかる。透過部材20のうちの面発光パネル10A,10Bに接している部分に拡散部材60A,60Bを設けたという参考例3の構成においては、参考例1の場合よりも、非発光領域NA,NBの輝度が低くなっていることがわかる。
(参考例1,4,5)
参考例1,4,5を比較検証すると、面発光パネル10A,10Bの配光特性に、面発光ユニットの正面輝度プロファイルがどのように依存するかを読み取ることができる。
図18および図19を参照して、参考例1,4,5では、いずれも光学調整部材30を備えていない面発光ユニットSA1(図19)を採用した。参考例1,4,5では、反射面14A,14Bの反射率は60%で共通しているが、光源(面発光パネル10A,10B)の配光は、それぞれ、第1配光特性(ランバーシャン分布)、第2配光特性(ET50)、および第4配光特性(ET300)である。
図22を参照して、光源の配光が第1配光特性(ランバーシャン分布)である参考例1の構成においては、非発光領域NA,NBの輝度に比べて、発光領域HA,HBの輝度の方が高くなっていることがわかる。光源の配光がそれぞれ第2配光特性(ET50)および第4配光特性(ET300)である参考例4,5の構成においては、非発光領域NA,NBの輝度に比べて、発光領域HA,HBの輝度の方が低くなっていることがわかる。
(参考例3,6,7,8)
参考例3,6,7,8を比較検証すると、拡散部材60A,60Bを備えるという構成を採用した場合において、面発光パネル10A,10Bの配光特性に、面発光ユニットの正面輝度プロファイルがどのように依存するかを読み取ることができる。
図18および図20を参照して、参考例3,6,7,8では、いずれも光学調整部材30を備える面発光ユニットSA2(図20)を採用した。参考例3,6,7,8では、反射面14A,14Bの反射率は60%で共通しているが、光源(面発光パネル10A,10B)の配光は、それぞれ、第1配光特性(ランバーシャン分布)、第2配光特性(ET50)、第3配光特性(ET100)および第4配光特性(ET300)である。
図23を参照して、光源の配光がL>cosθの条件を満たす参考例6,7,8は、光源の配光が第1配光特性(ランバーシャン分布)である参考例3に比べて、輝度の均一化が図られていることがわかる。
以上、本発明に基づいた実施の形態、実施例、比較例および参考例について説明したが、上記の開示内容はすべての点で例示であって制限的なものではない。本発明の技術的範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1,2,SA1,SA2 面発光ユニット、10A,10B 面発光パネル、11A,11B 透明基板、12A,12B 発光体、13A,13B 発光面、14A,14B 反射面、20 透過部材、21,31 表面、22,32 裏面、30 光学調整部材、40 拡散部材(第1拡散部材)、50 反射部材、60A,60B 拡散部材(第2拡散部材)、110 透明電極層、120 有機電界発光層、121 発光層、122 正孔輸送層、123 電子輸送層、130 反射電極層、D1,D2 部分、HA,HB 発光領域、L1,L2,LF 幅(値)、S1,S2 値、NA,NB 非発光領域、S 隙間、T 非発光部、TH 厚さ。

Claims (5)

  1. 発光部と、前記発光部から見て一方側に位置する発光面と、前記発光部から見て他方側に位置する反射面とを有し、各々の前記発光面が面状に並ぶように配列された複数の面発光パネルと、
    表面および裏面を有し、隣り合う前記面発光パネルの各々の前記発光面に前記裏面がまたがるように延在し、且つ各々の前記発光面に前記裏面が接するように配置された透過部材と、
    前記透過部材の前記表面上または前記透過部材の前記表面に間隔を空けて対向するように設けられ、前記透過部材の前記表面からの光を透過および反射する光学調整部材と、
    前記光学調整部材の前記透過部材の側とは反対側の面上または前記反対側の面に間隔を空けて対向するように設けられた第1拡散部材と、を備え、
    複数の前記面発光パネルの各々の前記発光面は、光を放射する発光領域と、前記発光領域の外周に位置し光を放射しない非発光領域とを含み、
    隣り合う前記発光領域の間に位置する前記非発光領域と前記透過部材の前記裏面との間には、前記透過部材の内部で伝搬した光を反射する反射部材が設けられており、
    前記光学調整部材は、透過率に分布を持っており、前記透過率は、複数の前記面発光パネルから出射される光の輝度に合わせて連続的に変化する分布を有している、
    面発光ユニット。
  2. 前記面発光パネルの内部、または、前記透過部材のうちの前記発光面に接している部分には、第2拡散部材が設けられており、
    前記光学調整部材の前記透過率の分布は、前記光学調整部材のうちの前記非発光領域に対応する部分の平均透過率の方が、前記光学調整部材のうちの前記発光領域に対応する部分の平均透過率に比べて高くなる分布を有しており、
    前記光学調整部材のうちの前記発光領域に対応する部分の平均反射率をR(%)と定義し、
    前記非発光領域を含む、隣り合う前記発光領域の間に挟まれた非発光部の所定方向における幅の半分の値をL1と定義し、
    1つの前記発光領域の前記所定方向における幅をL2と定義した場合に、
    90>R>L1/(L1+L2)×100
    の条件を満足している、
    請求項1に記載の面発光ユニット。
  3. 前記面発光パネルの前記反射面は、60%以上の反射率を有する金属鏡面である、
    請求項1または2に記載の面発光ユニット。
  4. 前記光学調整部材は、散乱材料を含む部材により構成される、
    請求項1から3のいずれか1項に記載の面発光ユニット。
  5. 複数の前記面発光パネルの各々について、前記面発光パネルから放射される光の前記発光面と垂直な平面における配光曲線を描いた場合に、前記発光面の法線方向に延在する光軸に沿った正面側の輝度を1とし、前記平面内において前記光軸との間で形成される角がθである方向の輝度をLとすると、前記配光曲線が、L>cosθの条件を満たす部分を少なくとも有している、
    請求項1から4のいずれか1項に記載の面発光ユニット。
JP2014116846A 2014-06-05 2014-06-05 面発光ユニット Pending JP2015230841A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014116846A JP2015230841A (ja) 2014-06-05 2014-06-05 面発光ユニット

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014116846A JP2015230841A (ja) 2014-06-05 2014-06-05 面発光ユニット

Publications (1)

Publication Number Publication Date
JP2015230841A true JP2015230841A (ja) 2015-12-21

Family

ID=54887516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014116846A Pending JP2015230841A (ja) 2014-06-05 2014-06-05 面発光ユニット

Country Status (1)

Country Link
JP (1) JP2015230841A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017212852A1 (ja) * 2016-06-06 2017-12-14 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子及び車両用灯具
WO2017217111A1 (ja) * 2016-06-14 2017-12-21 コニカミノルタ株式会社 発光モジュール

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017212852A1 (ja) * 2016-06-06 2017-12-14 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子及び車両用灯具
JPWO2017212852A1 (ja) * 2016-06-06 2019-04-11 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子及び車両用灯具
WO2017217111A1 (ja) * 2016-06-14 2017-12-21 コニカミノルタ株式会社 発光モジュール

Similar Documents

Publication Publication Date Title
JP2012504253A (ja) 導光装置
WO2004076917A1 (ja) 面光源装置
JP2009150981A (ja) 光学シート、バックライトユニット及びディスプレイ装置
JP2000323272A (ja) 平面光源
JP2003100444A (ja) 面照明装置
JP5104459B2 (ja) 光学部材とそれを用いたバックライト・ユニット、ディスプレイ
JP5854173B2 (ja) 面発光ユニット
JP6477493B2 (ja) 面発光ユニット
JP2010205511A (ja) El素子、並びにそれを用いた表示装置、ディスプレイ装置、及び液晶ディスプレイ装置
JP5846345B1 (ja) 面状発光ユニット
JP2015230841A (ja) 面発光ユニット
CN111862788B (zh) 显示面板及应用该显示面板的电子装置
JP2010218839A (ja) El素子、液晶ディスプレイ用バックライト装置、照明装置、電子看板装置、ディスプレイ装置及び光取り出しフィルム
WO2015079912A1 (ja) 面状発光ユニット
JP2017069167A (ja) 有機el素子およびその製造方法、有機el照明、有機el光源、有機el表示装置
WO2017166489A1 (zh) 一种自发光导光板、背光模组及显示设备
WO2014180103A1 (zh) 反射膜、背光模组和显示装置
WO2016080169A1 (ja) 面発光ユニット
JP2016178021A (ja) 面発光装置
JP6167883B2 (ja) 面発光ユニット
JP6507588B2 (ja) 面発光ユニット
KR102582503B1 (ko) 액정 표시 장치
JP6167884B2 (ja) 面発光ユニット
JP2008225228A (ja) 光学シートとそれを用いたバックライト・ユニットおよびディスプレイ
JP2017123247A (ja) 面発光ユニット