WO2015083454A1 - 放射性物質収納用キャスク - Google Patents

放射性物質収納用キャスク Download PDF

Info

Publication number
WO2015083454A1
WO2015083454A1 PCT/JP2014/078044 JP2014078044W WO2015083454A1 WO 2015083454 A1 WO2015083454 A1 WO 2015083454A1 JP 2014078044 W JP2014078044 W JP 2014078044W WO 2015083454 A1 WO2015083454 A1 WO 2015083454A1
Authority
WO
WIPO (PCT)
Prior art keywords
cask
cylinder
lead
inner cylinder
metal
Prior art date
Application number
PCT/JP2014/078044
Other languages
English (en)
French (fr)
Inventor
浩成 荒井
芦田 吏史
幸嗣 北村
岡田 潤
東輝 馬
Original Assignee
日立造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立造船株式会社 filed Critical 日立造船株式会社
Publication of WO2015083454A1 publication Critical patent/WO2015083454A1/ja
Priority to US15/172,806 priority Critical patent/US9779844B2/en

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F5/00Transportable or portable shielded containers
    • G21F5/005Containers for solid radioactive wastes, e.g. for ultimate disposal
    • G21F5/008Containers for fuel elements
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F5/00Transportable or portable shielded containers
    • G21F5/06Details of, or accessories to, the containers
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F5/00Transportable or portable shielded containers
    • G21F5/06Details of, or accessories to, the containers
    • G21F5/10Heat-removal systems, e.g. using circulating fluid or cooling fins
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/34Disposal of solid waste
    • G21F9/36Disposal of solid waste by packaging; by baling

Definitions

  • the present invention relates to a cask (container) that can store radioactive materials such as spent nuclear fuel discharged from a nuclear power plant for storage or transportation purposes.
  • Casks used when transporting radioactive materials such as spent nuclear fuel efficiently dissipate the heat generated from the radioactive materials stored inside the cask to the outside, and scatter gamma rays and neutrons generated from the radioactive materials to the outside.
  • the structure which shields so that it may not do is calculated
  • Patent Literature 1 discloses a radioactive object transport cask in which a lead layer is formed as a gamma ray shielding material between a stainless steel inner cylinder and a steel intermediate cylinder disposed outside the stainless steel inner cylinder. It is disclosed.
  • silicon rubber is filled as a neutron shielding material between the intermediate cylinder and the steel outer cylinder disposed outside the intermediate cylinder.
  • the lead multi-layer cask is usually a triple-layered cylinder (hereinafter, the innermost one is an “inner cylinder”, the outermost one is an “outer cylinder”, an “inner cylinder” and an “outer cylinder”.
  • the lead between the inner cylinder and the intermediate cylinder is cast between the inner cylinder and the intermediate cylinder, and the lead is solidified to provide excellent gamma ray shielding performance between the steel inner cylinder and the intermediate cylinder.
  • the shielding of gamma rays is secured while making the casing as thin as possible.
  • the prior art of Patent Document 1 also forms a lead layer by a method in which molten lead is poured and cast.
  • the boundary between the inner cylinder and the cast lead can be obtained simply by pouring molten lead between the inner cylinder and the intermediate cylinder.
  • a gap is likely to be formed at the boundary between the part or the intermediate cylinder and the cast lead.
  • the inside of this gap may be in a state where a gas or the like is present or in a state almost similar to a vacuum, but in any case, such a gap (hereinafter referred to as a “gap layer” regardless of the presence or absence of gas or the like). ),
  • the heat dissipation effect of the cask is significantly reduced. Therefore, if a cask with such a gap layer left is used, the internal temperature of the cask will rise above the assumed allowable temperature, and will be in a dangerous state.
  • Patent Document 2 describes the adhesion between the lead layer and the steel cylinder before casting molten lead between the inner cylinder and the intermediate cylinder. In order to increase this, it has been proposed to perform a process generally called “homogen treatment”.
  • the homogen treatment of Patent Document 2 includes (1) a cleaning treatment step in which the outer surface of the inner cylinder is degreased to remove deposits, oils and fats, and the like, and (2) a steel plate surface. Is heated to a temperature of about 230 to 270 ° C.
  • meltable material dropping step in which a tin-based meltable material is dropped onto the surface while being melted and spread evenly.
  • the present invention has been made in view of the above-mentioned problems relating to the gap between the inner cylinder and cast lead or the gap layer formed at the boundary between the intermediate cylinder and cast lead.
  • An object of the present invention is to provide a radioactive substance storage cask capable of shortening the production period and reducing the production cost by halving the range in which the homogen treatment is performed even when the treatment is not performed at all or even if it is performed.
  • the problem to be solved by the present invention is that a conventional cask for storing radioactive substances is premised on performing a homogen treatment, so that the cask production period becomes longer and the production cost becomes higher.
  • the cask for radioactive material storage of the present invention is: A metal inner cylinder; a metal intermediate cylinder disposed outside the inner cylinder; and an outer cylinder disposed so as to cover the outer side of the intermediate cylinder.
  • a cask that can store substances for storage or transportation purposes After the molten lead is cast and cooled as a gamma ray shielding material between the inner cylinder and the intermediate cylinder, the first gap layer or the intermediate cylinder generated at the boundary between the inner cylinder and the cast lead.
  • One of the main characteristics is that both or one of the second gap layers formed at the boundary between the lead and the cast lead is filled with a low melting point metal.
  • the gap layer that causes the cask to dissipate heat is filled with a low-melting-point metal that has better thermal conductivity than air, for example, present in the gap layer.
  • the idea of the present invention is to improve the heat dissipation effect of the cask and prevent a high temperature inside the cask by subsequently filling the gap layer once generated with a low melting point metal in a close contact state.
  • the cask for radioactive substance storage of the present invention does not perform any homogen treatment, or even if it is temporarily performed, only one of the outer surface of the inner cylinder or the inner surface of the intermediate cylinder may be used. Production costs can also be reduced.
  • low melting point metal in the present invention includes not only a pure metal composed of a single metal element but also an alloy.
  • an alloy when used, it is not limited to an alloy composed of a plurality of metal elements, but includes a metal-like material composed of a metal element and a non-metal element.
  • cask for carrying out the radioactive substance storage cask of the present invention (hereinafter simply referred to as “cask”) will be described in detail with reference to the accompanying drawings.
  • cask 1 of the first embodiment shown in FIG. 1 has the following configuration.
  • the cask 1 is a cylindrical container that can store radioactive substances such as spent fuel rods for storage or transportation purposes.
  • the cask 1 includes a cylindrical inner cylinder 2, a cylindrical intermediate cylinder 3 disposed to cover the outer side of the inner cylinder 2, and an outer surface disposed to cover the outer side of the intermediate cylinder 3.
  • a cylinder 4 is provided.
  • the inner cylinder 2, the intermediate cylinder 3, and the outer cylinder 4 are arranged so that the centers of the respective cylinders are positioned coaxially.
  • the outer cylinder 4 is provided with heat radiating fins (not shown).
  • a lead layer 5 b is formed as a gamma ray shielding material so that gamma rays emitted from radioactive substances are not scattered outside the cask 1. Further, a space between the intermediate body 3 and the outer cylinder 4 is filled with a neutron shielding material 6 made of, for example, a silicon rubber material.
  • the upper end of the cask 1 is provided with a lid 7 that can be freely opened and closed. Inside the inner cylinder 2, a storage portion 2a capable of storing a radioactive substance is provided. Further, the lower end of the cask 1 is closed by the bottom plate 8.
  • 1B is a cross-sectional view taken along the line AA ′ in the notched portion of FIG. 1A from the side surface direction (this point will be described later with reference to FIG. 3 and FIG. 3). The same applies to 6.
  • FIG. 2 is an enlarged view of a rectangular frame portion indicated by a dotted line B in the cutout portion of FIG. 1B (this is the same for FIGS. 4, 5, and 7 to be described later). *
  • the manufacturing method of the cask 1 of the first embodiment is as described below. That is, the cask 1 of the first embodiment is made of metal (for example, by casting molten lead in the space between the inner cylinder 2 and the intermediate cylinder 3, and cooling and solidifying the cast lead 5a.
  • a lead layer 5b having excellent gamma ray shielding performance is formed between the inner cylinder 2 made of stainless steel such as SUS and an intermediate cylinder 3 made of metal (for example, stainless steel made of SUS).
  • a first gap is formed at the boundary between the inner cylinder 2 and the cast lead 5a.
  • a second gap layer 9b is formed at the boundary between the intermediate cylinder 3 and the cast lead 5a.
  • a gas such as air existing inside the first gap layer 9a and the second gap layer 9b has a lower thermal conductivity than a metal, and this portion becomes a heat insulating layer, so that the heat dissipation effect of the cask 1 is reduced.
  • molten lead is cast as a gamma ray shielding material between the inner cylinder 2 and the intermediate cylinder 3 and cooled, and then the boundary between the inner cylinder 2 and the cast lead 5a.
  • the first gap layer 9a generated in the portion or the second gap layer 9b generated in the boundary portion between the intermediate cylinder 3 and the cast lead 5a is low as shown in FIG.
  • a manufacturing method in which the melting point metal 10 is filled in close contact is employed.
  • both the first gap layer 9a and the second gap layer 9b are not necessarily formed, and only one of them may be formed. In such a case, it is only necessary to fill the low melting point metal 10 in only one of the first gap layer 9a and the second gap layer 9b where the gap is formed.
  • the kind of the low melting point metal 10 is not particularly limited in the present invention, for example, Al, Pb, Sn, Zn, or an alloy containing these metals can be used.
  • the low melting point metal 10 when the low melting point metal 10 is poured into the first gap layer 9a and the second gap layer 9b in a molten state, the lead 5a that has been cooled and solidified after casting is melted again. In order not to return to the above, one having a melting point lower than that of lead should be selected.
  • a metal or alloy having a melting point lower than the melting point of lead 327.5 ° C.
  • the low melting point metal 10 and the first gap layer 9 a are formed at a temperature lower than the melting point of lead. 2 can be poured into the gap layer 9b.
  • a solder alloy can be used as the low melting point metal 10 having a melting point lower than that of lead.
  • the solidus temperature and the liquidus temperature vary depending on the Sn mixing ratio, but both temperatures are lower than the melting point of lead.
  • both the solidus temperature and the liquidus temperature are lower than 280 ° C.
  • eutectic solder for example, Sn63% -Pb378%
  • both the solidus temperature and the liquidus temperature can be set to 183 ° C.
  • the low melting point metal 10 having a melting point lower than the allowable temperature of the cask 1 (usually designed at a temperature of about 150 ° C., for example). If the melting point of the low melting point metal 10 is made lower than the allowable temperature of the cask 1, the portion of the low melting point metal 10 is melted and liquefied in a normal use state where safety is ensured.
  • the portion of the low melting point metal 10 is replaced. It can be in a liquefied state. Therefore, when the low melting point metal 10 having a melting point lower than the allowable temperature of the cask 1 is used, it absorbs even a slight strain caused by the difference in thermal expansion coefficient among the inner cylinder 2, the intermediate cylinder 3, and the lead layer 5. Therefore, the adhesiveness between the inner cylinder 2 and the lead layer 5 or between the intermediate cylinder 3 and the lead layer 5 is further increased, and it is possible to reliably maintain the close contact state. Further, the heat dissipation effect of the cask 1 can be further improved.
  • a low melting point solder can be used as the low melting point metal 10 having a melting point lower than the allowable temperature of the cask 1 (as an example, 150 ° C.
  • a low melting point solder can be used as the low melting point metal 10 having a melting point lower than the allowable temperature of the cask 1 (as an example, 150 ° C.
  • Sn—Pb—Bi based low melting point solder (28.5Sn—Pb-28.5Bi) has a solidus temperature of 99 ° C. and a liquidus temperature of 139 ° C.
  • the low melting point metal 10 is liquid at room temperature, the portion of the low melting point metal 10 is always in a liquid state regardless of whether or not the radioactive material is stored in the storage portion 2a.
  • the adhesion between the layers 5 or between the intermediate cylinder 3 and the lead layer 5 is always high.
  • the slight distortion which arises by the difference in the thermal expansion coefficient among the inner cylinder 2, the intermediate body 3, and the lead layer 5 can be absorbed reliably, the heat dissipation effect of the cask 1 becomes still better.
  • mercury can be used as the low melting point metal 10 that is liquid at room temperature.
  • normal temperature refers to a range of 20 ° C. ⁇ 15 ° C. (that is, 5 ° C. to 35 ° C.) in accordance with the definition of JIS Z 8703.
  • the cask 1 of the first embodiment does not perform any inefficient manual homogen treatment, the cask production period can be shortened and the production cost can be reduced.
  • the cask 21 of the second embodiment includes a cylindrical inner cylinder 22, a cylindrical intermediate cylinder 23 disposed so as to cover the outside of the inner cylinder 22, and the intermediate cylinder 23.
  • the outer cylinder 24 is disposed so as to cover the outer side of the inner cylinder 22, and a storage portion 22 a capable of storing a radioactive substance is provided inside the inner cylinder 22.
  • an openable / closable lid 27 is provided at the upper end of the cask 21, and the lower end is closed by a bottom plate 28.
  • a lead layer 25b is formed as a gamma ray shielding member between the inner cylinder 22 made of metal (for example, made of SUS) and the intermediate cylinder 23 made of metal (for example, made of SUS).
  • a neutron shielding member 26 (for example, silicon rubber) is filled between the intermediate body 23 and the outer cylinder 24.
  • the manufacturing method of the cask 21 of the second embodiment is different from the first embodiment in that the cask 21 of the second embodiment has an inner cylinder before casting molten lead between the inner cylinder 22 and the intermediate cylinder 23.
  • the homogen treatment is performed only on one of the outer surface 22 and the inner surface of the intermediate cylinder 23.
  • FIG. 3 shows an example in which homogen treatment is performed only on the outer surface of the inner cylinder 22.
  • the cask 21 of the second embodiment performs homogen treatment only on one of the outer surface of the inner cylinder 22 or the inner surface of the intermediate cylinder 23, and serves as a gamma ray shielding material between the inner cylinder 22 and the intermediate cylinder 23.
  • the molten lead is cast and cooled, it is cast with the outer surface of the inner cylinder 22 or the inner surface of the intermediate cylinder 23 that has not been subjected to the homogen treatment (in the above example, the inner surface of the intermediate cylinder 23).
  • a manufacturing method is used in which a low melting point metal 30 is filled in the gap layer 29 formed at the boundary between the lead 25a and the lead 25a.
  • the gap layer 29 is formed only at the boundary between the inner cylinder 22 and the cast lead 25a as shown in FIG. Is done. Therefore, in this case, the low melting point metal 30 is filled in a close contact state only with respect to the gap layer 29 generated on the inner cylinder 22 side.
  • the description of the low melting point metal 30 is not particularly different from that of the first embodiment, and will be omitted.
  • the cask 21 of the second embodiment is subjected to a homogen treatment, only one of the outer surface of the inner cylinder 22 and the inner surface of the intermediate cylinder 23 is sufficient. Accordingly, although not as much as the cask 1 of the first embodiment, the cask manufacturing period and manufacturing cost can be reduced to a certain extent.
  • the cask 41 of the third embodiment also has a cylindrical inner cylinder 42, a cylindrical intermediate cylinder 43 disposed so as to cover the outside of the inner cylinder 42, and the intermediate cylinder.
  • 43 has an outer cylinder 44 disposed so as to cover the outer side of 43, and is provided with a storage portion 42a capable of storing a radioactive substance inside the inner cylinder 42, and is opened and closed at the upper end of the cask 41.
  • a free lid 47 is provided, the lower end is closed by a bottom plate 48, and a neutron shielding member 46 (for example, silicon rubber) is filled between the intermediate cylinder 43 and the outer cylinder 44.
  • a neutron shielding member 46 for example, silicon rubber
  • the cask 41 of the third embodiment differs from the first and second embodiments described above in that the cask 41 of the third embodiment is made of metal (for example, made of SUS) instead of casting molten lead. )
  • the inner cylinder 42 in the middle cylinder 43 made of metal (for example, SUS) in that a plurality of lead bodies 45 previously molded into an arbitrary shape and size are packed as a gamma ray shielding material. is there.
  • FIG. 6 the example which stuffs the spherical lead body 45 is shown.
  • the cask 41 of the third embodiment is a gamma ray shielding material between the inner cylinder 42 and the intermediate cylinder 43, and a plurality of lead bodies 45 that have been formed and processed in an arbitrary shape and size in advance are packed in the cask 41.
  • a manufacturing method in which the gap layer 49 formed between the bodies 45 is filled with the low melting point metal 50 in a close contact state is employed. The description of the low melting point metal 50 is omitted since there is no particular difference from the first and second embodiments.
  • the shape of the molded lead body packed between the inner cylinder 42 and the intermediate cylinder 43 is not limited to the spherical lead body 45 shown in FIG. 7, but is, for example, granular, round bar shape, polygonal bar shape, regular hexahedron shape, or the like. A rectangular parallelepiped may be used. Further, when a rod-shaped lead body is used, it may be inserted into the space between the inner cylinder 42 and the intermediate cylinder 43 in a direction parallel to each other, or arranged alternately in an intersecting direction and packed into a block shape. good.
  • the gap layer 49 formed between the lead bodies 45 may be filled with good heat conductive oil instead of the low melting point metal 50.
  • good heat conductive oil for example, grease can be used.
  • the cask 41 of the third embodiment does not perform any inefficient manual homogen treatment, the cask manufacturing time can be shortened and the manufacturing cost can be reduced.
  • the gap layer 49 has a larger volume, but the gap layer 49 only needs to be filled with the low-melting metal 50 or the heat-conductive oil. Therefore, a large volume of the gap layer 49 is not particularly disadvantageous.
  • the heat dissipation is also good for the cask 41 of the third embodiment.
  • Casks 1, 21 and 41 corresponding to the inventions according to the claims described above are in close contact with a low melting point metal or a good thermal conductive oil in a later step to the gap layer once generated in the manufacturing step. By filling in the state, the heat dissipation effect of the cask is improved, and the high temperature inside the cask is prevented.
  • the following manufacturing method is also feasible. That is, contrary to the above-described third embodiment, the space between the inner cylinder 42 and the intermediate cylinder 43 is previously filled with the low-melting metal 50 or the good heat conductive oil, and then the lead body 45 is filled. It is a manufacturing method.
  • the lead body 45 is placed in the space between the inner cylinder 42 and the intermediate cylinder 43 regardless of the viscosity of the low-melting metal 50 or the heat-conductive oil. It is possible to pack Also in the manufacturing method in which this order is reversed, if the low melting metal 50 having a melting point lower than that of lead is used, the lead body 45 can be adhered in the low melting metal 50 without melting.
  • examples of the inner cylinder, the intermediate cylinder, and the outer cylinder made of a cylindrical cylinder have been disclosed.
  • the shapes of the inner cylinder, the intermediate cylinder, and the outer cylinder are not limited thereto, and for example, a rectangular parallelepiped cylinder It may be the body.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

【課題】放射性物質を貯蔵目的であるいは輸送目的で収納可能なキャスクにおいて、ホモゲン処理を使用しないようにする。 【解決手段】内筒2と中間胴3の間にガンマ線遮蔽材として溶融鉛を鋳込んで冷却した後、内筒2と鋳込まれた鉛5aとの間の境界部に生じる第1隙間層9a、あるいは中間胴3と鋳込まれた鉛5aとの間の境界部に生じる第2隙間層9bの例えば双方に、低融点金属10を密着状態で充填する。 【効果】キャスク1の放熱を妨げる原因となる隙間層9a,9bに対し、熱伝導性に優れる低融点金属10を充填することで、キャスク1の放熱効果を良好にする。

Description

放射性物質収納用キャスク
 本発明は、原子力発電所などから排出される使用済核燃料等の放射性物質を、貯蔵目的で、あるいは輸送目的で収納可能なキャスク(容器)に関する。
 使用済核燃料などの放射性物質を例えば輸送する際に用いるキャスクは、キャスク内部に収納した放射性物質から生じる熱については外部に効率的に放熱すると共に、放射性物質から生じるガンマ線や中性子については外部に飛散しないように遮蔽する構造が求められる。
 そこで、従来、例えば特許文献1には、ステンレス鋼製の内胴とその外側に配設された鋼製の中間胴との間に、ガンマ線遮蔽材として鉛層を形成した放射性物体輸送用キャスクが開示されている。また、この特許文献1のキャスクの場合、中間胴とその外側に配設された鋼製の外胴との間には、中性子遮蔽材としてシリコンゴムが充填されている。
 このように通常、鉛多層型キャスクは、三重構造の筒体(以下、最内側にあるものを「内筒」、最外側にあるものを「外筒」、「内筒」と「外筒」の間にあるものを「中間胴」という。)の内筒と中間胴間に溶融鉛を鋳込み、この鉛を凝固させて鋼製の内筒と中間胴の間にガンマ線の遮蔽性能に優れた鉛層を形成することで、筐体の厚みをできる限り薄くしつつ、ガンマ線に対する遮蔽性を確保している。例えば特許文献1の従来技術も溶融鉛を流し込んで鋳込む方法により鉛層を形成するものである。
 しかし、二重構造の鋼製の筒体の間に鉛層を形成する場合、溶融鉛を内筒と中間胴の間に流し込んで鋳込むだけでは、内筒と鋳込まれた鉛との境界部、もしくは、中間胴と鋳込まれた鉛との境界部に隙間が形成されやすい。この隙間の内部は、気体等が存在する場合と、ほぼ真空に近い状態の場合があるが、何れにしても、このような隙間(以下、気体等の有無にかかわらず「隙間層」という。)が存在していると、キャスクの放熱効果は著しく低下してしまう。そのため、このような隙間層を残したままのキャスクを使用すると、キャスクの内部温度が、想定している許容温度よりも上昇し、危険な状態となる。
 そこで、上記のような隙間層の発生を防止するために、特許文献2には、溶融鉛を内筒と中間胴の間に鋳込む前に、鉛層と鋼製の筒体との密着性を高めるために、「ホモゲン処理」と一般に呼ばれている処理を行うことが提案されている。
 すなわち、以前より、鉛をバーナで加熱溶解させて合金層を作りながら、この合金層にさらに鉛層を融着させて順次厚さを増して行くホモゲン処理が利用されていたが、特許文献2の製法は、鉛・錫系の溶可材の薄膜を形成することで、ホモゲン処理における密着性を改善することを目的としている。具体的には、特許文献2のホモゲン処理は、(1)内筒の外面を脱脂洗浄して付着物、油脂分等を除去し、清浄な状態とする洗浄処理工程と、(2)鋼板面をバーナで230~270℃程度の温度に加熱し、表面が所定の温度となった後に濡れ性を改善する溶剤であるフラックスを塗布する溶剤塗布工程と、(3)溶剤塗布後、直ちに鉛・錫系の溶可材を溶解させながら表面に滴下し、均一に広げて塗布する溶可材滴下工程と、(4)溶可材塗布後一旦常温まで冷却し、内筒の内面(放射性物質収納側)をバーナ等で再加熱し、180~250℃まで昇温させて浮き上がる溶可材を耐熱布等で拭き取り、内筒外面に溶可材の薄膜を形成する薄膜形成工程を、順次実施するものである。
 しかし、上記(1)~(4)のような工程を要するホモゲン処理は、その殆どが手作業によるもので、かつ、経験を積んだ熟練工による作業となるため、極めて非効率的で、キャスクの製造期間が長くなり、製作コストも高くなるという課題がある。
 また、上記ホモゲン処理は、隙間層の発生を必ず防止できる訳ではないため、キャスクの製作後に隙間層が存在していないかを検査する必要があり、検査工程が必要という点でも、手間がかかるものであった。
 本発明は、内筒と鋳込まれた鉛との境界部、もしくは、中間胴と鋳込まれた鉛との境界部に生じる隙間層に関わる上述の課題に鑑みてなされたものであり、ホモゲン処理を全く行わないか、あるいは、仮に行う場合でも、ホモゲン処理を行う範囲を半減させることで、製造期間を短縮し、製作コストも低減できる放射性物質収納用キャスクを提供することを目的としている。
特開昭61-198099号公報 特開平7-27896号公報
 本発明が解決しようとする課題は、従来の放射性物質収納用キャスクは、ホモゲン処理を行うことが前提であるため、キャスクの製造期間が長くなり、製作コストも高くなるという点である。
 上記の課題を解決するために、本発明の放射性物質収納用キャスクは、
 金属製の内筒と、この内筒の外側に配設された金属製の中間胴と、この中間胴のさらに外側を覆うように配設された外筒を備え、前記内筒の内部に放射性物質を貯蔵目的で、あるいは輸送目的で収納可能なキャスクであって、
 前記内筒と前記中間胴の間にガンマ線遮蔽材として溶融鉛を鋳込んで冷却した後、前記内筒と鋳込まれた鉛との間の境界部に生じる第1隙間層あるいは前記中間胴と鋳込まれた鉛との間の境界部に生じる第2隙間層の、双方または何れか一方に、低融点金属を充填したことを主要な特徴の一つとしている。
 上記本発明の構成によれば、キャスクの放熱を妨げる原因となる隙間層に対し、隙間層に存在する例えば空気よりも熱伝導性に優れる低融点金属が充填される。つまり、本発明の着想は、一旦生じた隙間層に対し事後的に低融点金属を密着状態で充填することで、キャスクの放熱効果を良好にし、キャスク内部の高温化を防止する点にある。
 本発明の放射性物質収納用キャスクは、ホモゲン処理を一切行わないか、仮に行うとしても内筒の外面または中間胴の内面の何れか一方の面のみで良いため、キャスクの製造期間を短縮でき、製作コストも低減できる。
 なお、本発明にいう「低融点金属」という用語は、単一の金属元素からなる純金属のみならず、合金を含むものとする。また、合金を用いる場合は、複数の金属元素からなる合金に限らず、金属元素と非金属元素からなる金属様のものも含むものとする。
第1実施例のキャスクの構成を示す図であり、(a)は平面方向から見た一部切り欠き図、(b)は側面方向から見た一部切り欠き図である。 第1実施例の特徴的部分を示す拡大図であり、(a)は内筒と中間胴の間に鋳込まれた鉛が凝固した直後の状態の図、(b)は第1隙間層と第2隙間層に低融点金属を充填した状態の図である。 第2実施例のキャスクの構成を示す図であり、(a)は平面方向から見た一部切り欠き図、(b)は側面方向から見た一部切り欠き図である。 第2実施例の特徴的部分を示す拡大図であり、(a)は内筒と中間胴の間に鋳込まれた鉛が凝固した直後の状態の図、(b)はホモゲン処理部が存在しない中間胴側に生じる隙間層に低融点金属を充填した状態の図である。 第2実施例の他の構成の特徴的部分を示す拡大図であり、(a)は内筒と中間胴の間に鋳込まれた鉛が凝固した直後の状態の図、(b)はホモゲン処理部が存在しない内筒側に生じる隙間層に低融点金属を充填した状態の図である。 第3実施例のキャスクの構成を示す図であり、(a)は平面方向から見た一部切り欠き図、(b)は側面方向から見た一部切り欠き図である。 第3実施例の特徴的部分を示す拡大図であり、(a)は成形加工された鉛体を内筒と中間胴の間の空間に詰め込んだ直後の状態の図、(b)は隙間層に低融点金属を充填した状態の図である。
 以下、本発明の放射性物質収納用キャスク(以下、単に「キャスク」という。)を実施するための幾つかの形態を、添付図面を用いて詳細に説明する。図1に示した第1実施例のキャスク1は、以下のような構成である。
 キャスク1は、例えば使用済燃料棒などの放射性物質を貯蔵目的で、あるいは輸送目的で収納可能な円筒状の容器である。キャスク1は、円筒状の内筒2と、この内筒2の外側を覆うように配設された円筒状の中間胴3と、この中間胴3のさらに外側を覆うように配設された外筒4を備えている。内筒2、中間胴3、外筒4は、各筒体の中心が同軸上に位置するように配置されている。また、外筒4には、放熱フィン(図示は省略)が取り付けられている。
 内筒2と中間胴3の間の空間には、放射性物質から放出されるガンマ線がキャスク1の外部に飛散しないように、ガンマ線遮蔽材として鉛層5bが形成されている。また、中間胴3と外筒4との間には、例えばシリコンゴム系の素材からなる中性子遮蔽材6が充填されている。
 キャスク1の上端は開閉自在な蓋7が設けられている。内筒2の内部には、放射性物質を収納可能な収納部2aが設けられている。また、キャスク1の下端は底板8で閉塞されている。
 上記の構成を有したキャスク1によれば、収納部2aに収納された放射性物質から生じるガンマ線や中性子は、鉛層5bと中性子遮蔽部材6とで遮蔽される。なお、図1(b)の切り欠き部分は、図1(a)の切り欠き部分におけるA-A’線の断面を側面方向から見た図である(この点は、後記する図3及び図6についても同じ。)。
 次に、図2を用いて、本発明の特徴的部分の構成を説明する。図2は、図1(b)の切り欠き部分における点線Bで示した四角枠の部分を拡大した図である(この点は、後記する図4、図5及び図7についても同じ。)。 
 第1実施例のキャスク1の製造方法は、以下に説明するとおりである。すなわち、第1実施例のキャスク1は、内筒2と中間胴3の間の空間に溶融鉛を鋳込んで、この鋳込まれた鉛5aを冷却して凝固させることで、金属製(例えばSUS等のステンレス製)の内筒2と、同じく金属製(例えばSUS等のステンレス製)の中間胴3の間に、ガンマ線の遮蔽性能に優れた鉛層5bを形成している。
 そのため、図2(a)に示すように、鋳込まれた鉛5aが冷却されて凝固した直後の状態のときは、内筒2と鋳込まれた鉛5aとの境界部には第1隙間層9aが、中間胴3と鋳込まれた鉛5aとの境界部には第2隙間層9bが形成されている。
 この第1隙間層9aと第2隙間層9bの内部に存在する例えば空気等の気体は、金属よりも熱伝導性が悪く、この部分が断熱層となるため、キャスク1の放熱効果を低下させる原因となる。
 そこで、第1実施例のキャスク1は、内筒2と中間胴3の間にガンマ線遮蔽材として溶融鉛を鋳込んで冷却した後、内筒2と鋳込まれた鉛5aとの間の境界部に生じる第1隙間層9a、あるいは、中間胴3と鋳込まれた鉛5aとの間の境界部に生じる第2隙間層9bの、双方に、図2(b)に示すように、低融点金属10を密着状態で充填する製造方法を採用したのである。
 なお、図2の例では、溶融鉛を鋳込んで冷却したときに、第1隙間層9aのみならず、第2隙間層9bも発生したために、第1隙間層9aと第2隙間層9bの双方に低融点金属10を充填している。しかし、溶融鉛を鋳込んで冷却したときに、必ず第1隙間層9aと第2隙間層9bが共に生じるとは限らず、何れか一方のみが形成される場合もある。そのような場合は、第1隙間層9aと第2隙間層9bのうち、隙間が形成された何れか一方にのみ低融点金属10を充填すれば良い。
 低融点金属10の種類は、本発明においては特に限定されないが、例えばAl、Pb、Sn、Znや、これらの金属を含む合金を用いることができる。
 もっとも、低融点金属10は、第1隙間層9aや第2隙間層9bに低融点金属10を溶融状態で流し込んだときに、鋳込み後に冷却されて既に固体化している鉛5aを、再び溶融状態に戻さないようにするために、鉛よりも低融点のものを選択するべきである。低融点金属10として、鉛の融点(327.5℃)よりも融点が低い金属や合金を用いた場合は、鉛の融点よりも低い温度で、低融点金属10を第1隙間層9aと第2隙間層9bに流し込むことができる。
 鉛の融点よりも融点が低い低融点金属10としては、例えば、はんだ合金を用いることができる。例えばSn-Pb系のはんだ合金では、Snの配合割合によって固相線温度と液相線温度が変化するが、いずれの温度も鉛の融点よりは低いものとなる。特に、Snの配合割合が20%以上のSn-Pb系はんだ合金であれば、固相線温度と液相線温度は共に280℃よりも低くなる。また、共晶はんだ(例えばSn63%-Pb37%)を用いた場合は、固相線温度と液相線温度を共に183℃とすることができる。
 また、本発明では、低融点金属10は、キャスク1の許容温度(通常、例えば150℃程度の温度に設計されることが多い。)よりも融点が低いものを選択することがより好ましい。低融点金属10の融点をキャスク1の許容温度よりも低くすれば、通常の安全性が確保されている使用状態において、低融点金属10の部分は溶融化し、液状化することになる。
 このように、キャスク1の許容温度よりも低融点の低融点金属10を用いた場合は、収納部2aに放射性物質を収納しキャスク1の使用を開始した時点で、低融点金属10の部分を液状化した状態にすることができる。そのため、キャスク1の許容温度よりも低融点の低融点金属10を用いた場合は、内筒2、中間胴3、鉛層5の間の熱膨張率の違いによって生じる僅かなひずみも吸収することが可能となり、内筒2と鉛層5の間、あるいは中間胴3と鉛層5の間の密着性は、より高まり、確実に密着した状態を維持できる。また、キャスク1の放熱効果も、より一層向上させることができる。
 具体的には、キャスク1の許容温度(一例として150℃)よりも融点が低い低融点金属10としては、例えば、低融点はんだを用いることができる。例えばSn-Pb-Bi系の低融点はんだ(28.5Sn-Pb-28.5Bi)では、固相線温度は99℃、液相線温度は139℃である。
 また、低融点金属10は、常温において液体の金属又は合金を用いることも好ましい。低融点金属10が常温において液体であれば、低融点金属10の部分は、収納部2aに放射性物質を収納しているか否かにかかわらず、常に液体の状態となるので、内筒2と鉛層5の間、あるいは中間胴3と鉛層5の間は、常に密着性が高いものとなる。また、内筒2、中間胴3、鉛層5の間の熱膨張率の違いによって生じる僅かなひずみも確実に吸収することができるので、キャスク1の放熱効果もより一層良好となる。
 具体的には、常温において液体の低融点金属10としては、例えば、水銀を用いることができる。なお、ここで、「常温」という用語は、JIS Z 8703の定義に従い、20℃±15℃(つまり5℃~35℃)の範囲をいうものとする。
 このように、第1実施例のキャスク1は、非効率的な手作業によるホモゲン処理を一切行わないので、キャスクの製造期間を短縮でき、製作コストも低減できる。
 次に、図3に示す第2実施例のキャスク21の構成を、第1実施例とは異なる点を中心に説明する。
 図3に示すように、第2実施例のキャスク21は、円筒状の内筒22と、この内筒22の外側を覆うように配設された円筒状の中間胴23と、この中間胴23のさらに外側を覆うように配設された外筒24を有し、内筒22の内部には、放射性物質を収納可能な収納部22aが設けられている。また、キャスク21の上端には、開閉自在な蓋27が設けられており、下端は底板28で閉塞されている。
 金属製(例えばSUS製)の内筒22と、同じく金属製(例えばSUS製)の中間胴23との間には、ガンマ線遮蔽部材として鉛層25bが形成されている。また、中間胴23と、外筒24との間には、中性子遮蔽部材26(例えばシリコンゴム)が充填されている。以上の点は、第1実施例のキャスク1と同じである。
 第2実施例のキャスク21の製造方法が、第1実施例と異なる点は、第2実施例のキャスク21では、内筒22と中間胴23の間に溶融鉛を鋳込む前に、内筒22の外面または中間胴23の内面の、何れか一方の面にのみ、ホモゲン処理を実施する点である。なお、図3では、内筒22の外面にのみホモゲン処理を実施する場合の例を示している。
 そのため、上記の例では、図4(a)に示すように、鋳込まれた鉛25aが凝固したときに、内筒22と鋳込まれた鉛25aの境界部については、ホモゲン処理部31の作用により密着性が高まっているので隙間層は存在しないが、中間胴23と鋳込まれた鉛25aの境界部の方には隙間層29が形成された状態となる。
 そこで、第2実施例のキャスク21は、内筒22の外面または中間胴23の内面の、何れか一方の面にのみホモゲン処理を行い、内筒22と中間胴23の間にガンマ線遮蔽材として溶融鉛を鋳込んで冷却した後、内筒22の外面または中間胴23の内面のうち、前記ホモゲン処理を行わなかった方の面(上記の例では、中間胴23の内面)と鋳込まれた鉛25aとの間の境界部に生じた隙間層29に、図4(b)に示すように、低融点金属30を密着状態で充填する製造方法を採用したのである。
 上記の例とは逆に、中間胴23の内面にのみホモゲン処理を実施した場合は、図5に示すように、内筒22と鋳込まれた鉛25aの境界部にのみ隙間層29が形成される。よって、この場合は、この内筒22側に生じた隙間層29に対してのみ、低融点金属30を密着状態で充填する。なお、低融点金属30に関する説明は、第1実施例と特に変わる点はないので省略する。
 第2実施例のキャスク21は、ホモゲン処理を行うとしても、内筒22の外面または中間胴23の内面の何れか一方の面のみで良くなる。従って、第1実施例のキャスク1ほどではないが、キャスクの製造期間と製作コストを一定程度は低減できる。
 更に、図6に示す第3実施例のキャスク41の構成を、前述の第1及び第2実施例とは異なる点を中心に説明する。
 図6に示すように、第3実施例のキャスク41についても、円筒状の内筒42と、この内筒42の外側を覆うように配設された円筒状の中間胴43と、この中間胴43のさらに外側を覆うように配設された外筒44を有しており、内筒42の内部に放射性物質を収納可能な収納部42aが設けられている点、キャスク41の上端には開閉自在な蓋47が設けられており、下端は底板48で閉塞されている点、また、中間胴43と外筒44との間には、中性子遮蔽部材46(例えばシリコンゴム)が充填されている点は、第1及び第2実施例と同じである。
 第3実施例のキャスク41の製造方法が、前述の第1及び第2実施例と異なる点は、第3実施例のキャスク41は、溶融鉛を鋳込むのではなく、金属製(例えばSUS製)の内筒42と同じく金属製(例えばSUS製)の中間胴43との間の空間に、ガンマ線遮蔽材として、あらかじめ任意の形状及びサイズに成形加工された複数の鉛体45を詰め込む点である。なお、図6では、球状の鉛体45を詰め込む例を示している。
 そのため、上記の例では、図7(a)に示すように、内筒42と中間胴43の間の空間に球状の鉛体45を詰め込んだ直後の状態においては、鉛体45同士の間に隙間層49が存在している。
 そこで、第3実施例のキャスク41は、内筒42と中間胴43の間にガンマ線遮蔽材として、あらかじめ任意の形状及びサイズに成形加工されている複数の鉛体45を詰め込んだ後、前記鉛体45同士の間に生じる隙間層49に、低融点金属50を密着状態で充填する製造方法を採用したのである。なお、低融点金属50に関する説明は、第1及び第2実施例と特に変わる点はないので省略する。
 この内筒42と中間胴43の間に詰め込まれる成形加工された鉛体の形状は、図7に示した球状の鉛体45に限らず、例えば、粒状、丸棒状、多角棒状、正六面体状、直方体状などでも良い。また、棒状の鉛体を用いる場合は、内筒42と中間胴43の間の空間に互いに平行となる向きに挿入しても良いし、交互に交差する向きに配置してブロック状に詰め込んでも良い。
 また、この第3実施例では、鉛体45同士の間に生じる隙間層49に、低融点金属50に代えて、良熱伝導性油を充填しても良い。良熱伝導性油としては、例えばグリースを用いることができる。
 第3実施例のキャスク41は、非効率的な手作業によるホモゲン処理を一切行わないので、キャスクの製造時間を短縮でき、製作コストも低減できる。なお、前述の第1実施例や第2実施例と比較すると、隙間層49の体積は大きなものとなるが、隙間層49には低溶融金属50か良熱伝導性油を充填するだけで良いので、隙間層49の体積が大きいことが特にデメリットとなることはない。また、第3実施例のキャスク41についても放熱性は良好である。
 以上に説明した請求項に係る各発明に対応したキャスク1,21,41は、製造工程で一旦生じた隙間層に対し、後の工程で事後的に低融点金属又は良熱伝導性油を密着状態で充填することで、キャスクの放熱効果を良好にし、キャスク内部の高温化を防止するものである。
 もっとも、他の構成として、次のような製法も実現可能と考えられる。すなわち、上述の第3実施例とは逆に、内筒42と中間胴43の間の空間に、あらかじめ低溶融金属50か良熱伝導性油を充填しておき、その後に鉛体45を詰め込む製造方法である。
 この順序を逆転させた製造方法でも、鉛は比重が大きいことから、低溶融金属50や良熱伝導性油の粘度等によらず、内筒42と中間胴43の間の空間に鉛体45を詰め込むことは可能と考えられる。また、この順序を逆転させた製造方法においても、鉛よりも融点が低い低溶融金属50を用いれば、鉛体45を溶融させずに低溶融金属50中で密着させることができる。
 本発明は上記の例に限らず、各請求項に記載された技術的思想の範疇であれば、適宜実施の形態を変更しても良いことは言うまでもない。
 例えば、上記実施例では、円筒状の筒体からなる内筒、中間胴及び外筒の例を開示したが、内筒、中間胴、外筒の形状はこれに限らず、例えば直方体状の筒体であっても良い。
1,21,41 キャスク
2,22,42 内筒
3,23,43 中間胴
4,24,44 外筒
5a,25a 鋳込まれた鉛
5b,25b 鉛層
45 鉛体
9a 第1隙間層
9b 第2隙間層
29,49 隙間層
10,30,50 低融点金属

Claims (7)

  1.  金属製の内筒と、この内筒の外側に配設された金属製の中間胴と、この中間胴のさらに外側を覆うように配設された外筒を備え、前記内筒の内部に放射性物質を貯蔵目的で、あるいは輸送目的で収納可能なキャスクであって、
     前記内筒と前記中間胴の間にガンマ線遮蔽材として溶融鉛を鋳込んで冷却した後、前記内筒と鋳込まれた鉛との間の境界部に生じる第1隙間層あるいは前記中間胴と鋳込まれた鉛との間の境界部に生じる第2隙間層の、双方または何れか一方に、低融点金属を充填したことを特徴とする放射性物質収納用キャスク。
  2.  金属製の内筒と、この内筒の外側に配設された金属製の中間胴と、この中間胴のさらに外側を覆うように配設された外筒を備え、前記内筒の内部に放射性物質を貯蔵目的で、あるいは輸送目的で収納可能なキャスクであって、
     前記内筒の外面または前記中間胴の内面の、何れか一方の面にのみホモゲン処理を行い、前記内筒と前記中間胴の間にガンマ線遮蔽材として溶融鉛を鋳込んで冷却した後、前記内筒の外面または前記中間胴の内面のうち、前記ホモゲン処理を行わなかった方の面と鋳込まれた鉛との間の境界部に生じた隙間層に、低融点金属を充填したことを特徴とする放射性物質収納用キャスク。
  3.  金属製の内筒と、この内筒の外側に配設された金属製の中間胴と、この中間胴のさらに外側を覆うように配設された外筒を備え、前記内筒の内部に放射性物質を貯蔵目的で、あるいは輸送目的で収納可能なキャスクであって、
     前記内筒と前記中間胴の間にガンマ線遮蔽材として、あらかじめ任意の形状及びサイズに成形加工されている複数の鉛体を詰め込んだ後、前記鉛体同士の間に生じる隙間層に、低融点金属を充填したことを特徴とする放射性物質収納用キャスク。
  4.  前記低融点金属は、鉛よりも低融点であることを特徴とする請求項1~3の何れかに記載の放射性物質収納用キャスク。
  5.  前記低融点金属は、放射性物質収納用キャスクの許容温度よりも融点が低いものであることを特徴とする請求項1~3の何れかに記載の放射性物質収納用キャスク。
  6.  前記低融点金属は、常温において液体の金属又は合金であることを特徴とする請求項1~3の何れかに記載の放射性物質収納用キャスク。
  7.  前記鉛体同士の間に生じる隙間層に、低融点金属に代えて、良熱伝導性油を充填することを特徴とする請求項3に記載の放射性物質収納用キャスク。
PCT/JP2014/078044 2013-12-06 2014-10-22 放射性物質収納用キャスク WO2015083454A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/172,806 US9779844B2 (en) 2013-12-06 2016-06-03 Containment cask for radioactive material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-253450 2013-12-06
JP2013253450A JP6310244B2 (ja) 2013-12-06 2013-12-06 放射性物質収納用キャスクの製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/172,806 Continuation US9779844B2 (en) 2013-12-06 2016-06-03 Containment cask for radioactive material

Publications (1)

Publication Number Publication Date
WO2015083454A1 true WO2015083454A1 (ja) 2015-06-11

Family

ID=53273230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078044 WO2015083454A1 (ja) 2013-12-06 2014-10-22 放射性物質収納用キャスク

Country Status (3)

Country Link
US (1) US9779844B2 (ja)
JP (1) JP6310244B2 (ja)
WO (1) WO2015083454A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3045143B1 (fr) * 2015-12-14 2017-12-22 Tn Int Structure amelioree de dissipation de chaleur par convection naturelle, pour emballage de transport et/ou d'entreposage de matieres radioactives
CN107680702A (zh) * 2017-10-18 2018-02-09 上海阿波罗机械股份有限公司 一种向乏燃料贮存容器屏蔽腔内灌铅的系统及方法
JP6688816B2 (ja) * 2018-02-06 2020-04-28 太平電業株式会社 鉛板の切断方法および装置
JP6688817B2 (ja) * 2018-02-06 2020-04-28 太平電業株式会社 鉛板の切断方法および装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57179798A (en) * 1981-04-30 1982-11-05 Kimura Kakoki Co Ltd Method of forming lead shielding material in cask for nuclear fuel, radioactive material
JPH0675093A (ja) * 1991-09-11 1994-03-18 Kobe Steel Ltd 放射線遮蔽容器及びその製造方法
JP2008076270A (ja) * 2006-09-22 2008-04-03 Kobe Steel Ltd 放射性物質の輸送兼貯蔵容器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3732423A (en) * 1971-05-24 1973-05-08 Nat Lead Co Shipping container for radioactive material
JPS56110395U (ja) * 1980-01-25 1981-08-26
JPS59143999A (ja) * 1983-02-08 1984-08-17 三菱重工業株式会社 核燃料物質格納容器の製作法
JPS6168598A (ja) * 1984-09-13 1986-04-08 三菱重工業株式会社 核燃料物質格納容器の製作法
JPS61198099A (ja) * 1985-02-28 1986-09-02 三菱重工業株式会社 放射性物体用輸送容器
JPH0727896A (ja) 1993-07-12 1995-01-31 Mitsubishi Heavy Ind Ltd 放射性物質等収納容器及びその製造方法
US5786611A (en) * 1995-01-23 1998-07-28 Lockheed Idaho Technologies Company Radiation shielding composition
JP2761716B2 (ja) * 1995-06-29 1998-06-04 木村化工機株式会社 放射性物質収納容器の製造方法
JP2720325B2 (ja) * 1995-07-14 1998-03-04 木村化工機株式会社 放射性物質収納容器の製造方法
JP3342994B2 (ja) * 1995-08-04 2002-11-11 株式会社神戸製鋼所 放射性物質の輸送兼貯蔵用容器
JPH1039091A (ja) * 1996-07-25 1998-02-13 Kobe Steel Ltd 放射性物質の収納容器及び放射線遮蔽材
EP2938389B1 (en) * 2012-12-27 2018-02-21 Medi-Physics, Inc. Transportation container

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57179798A (en) * 1981-04-30 1982-11-05 Kimura Kakoki Co Ltd Method of forming lead shielding material in cask for nuclear fuel, radioactive material
JPH0675093A (ja) * 1991-09-11 1994-03-18 Kobe Steel Ltd 放射線遮蔽容器及びその製造方法
JP2008076270A (ja) * 2006-09-22 2008-04-03 Kobe Steel Ltd 放射性物質の輸送兼貯蔵容器

Also Published As

Publication number Publication date
US20160284431A1 (en) 2016-09-29
JP2015111083A (ja) 2015-06-18
JP6310244B2 (ja) 2018-04-11
US9779844B2 (en) 2017-10-03

Similar Documents

Publication Publication Date Title
WO2015083454A1 (ja) 放射性物質収納用キャスク
US9826662B2 (en) Reusable phase-change thermal interface structures
JP6127833B2 (ja) 接合体の製造方法及びパワーモジュール用基板の製造方法
US20100272225A1 (en) Cask apparatus, system and method for transporting and/or storing high level waste
TWI683083B (zh) 熱管
US20090133855A1 (en) Heat dissipation device and assembly method thereof
JP2018059676A5 (ja) 蓄熱方法、蓄熱装置、及び蓄熱装置の製造方法
CN105932004B (zh) 半导体元件,半导体封装结构及其制造方法
US20130048248A1 (en) Heat pipe manufacturing method and heat pipe thereof
KR20140021668A (ko) 열전달 물질 및 그 처리 방법
JP2009268647A (ja) 真空構造体の封止方法
JP6928841B2 (ja) ヒートパイプ
WO2020195787A1 (ja) 円筒型スパッタリングターゲットの製造方法
JP6018175B2 (ja) 放射性物質を輸送および/または格納するパッケージの製造を改良するための熱伝導要素、パッケージ、製造方法
KR102567921B1 (ko) 패키지로부터 열을 방출하기 위한 베이스를 가진 냉각 요소
JPH0727896A (ja) 放射性物質等収納容器及びその製造方法
JP7172580B2 (ja) 円筒型スパッタリングターゲットの製造方法
JP6805081B2 (ja) 発光装置用蓋体
JP6599695B2 (ja) 使用済み核燃料用容器の製造方法
JP5113997B2 (ja) レーザロッド冷却保持構造の製造方法
JP6691629B2 (ja) 使用済み核燃料用容器、及び、使用済み核燃料用容器の製造方法
JP2015088683A (ja) 熱接合シート、及びプロセッサ
TWI725584B (zh) 封裝用蓋材之製造方法及封裝之製造方法
JP2024516035A (ja) 埋込型抵抗ヒータを有する金属ヒータアセンブリ
TWI530578B (zh) Self - cooled mobile coated bearing tray

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14867364

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14867364

Country of ref document: EP

Kind code of ref document: A1