WO2015080295A1 - 研磨処理用キャリア、研磨処理用キャリアの製造方法、及び磁気ディスク用基板の製造方法 - Google Patents

研磨処理用キャリア、研磨処理用キャリアの製造方法、及び磁気ディスク用基板の製造方法 Download PDF

Info

Publication number
WO2015080295A1
WO2015080295A1 PCT/JP2014/081800 JP2014081800W WO2015080295A1 WO 2015080295 A1 WO2015080295 A1 WO 2015080295A1 JP 2014081800 W JP2014081800 W JP 2014081800W WO 2015080295 A1 WO2015080295 A1 WO 2015080295A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
carrier
polishing
holding hole
glass
Prior art date
Application number
PCT/JP2014/081800
Other languages
English (en)
French (fr)
Inventor
将徳 玉置
裕樹 中川
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to JP2015551038A priority Critical patent/JP6371310B2/ja
Priority to SG11201604185PA priority patent/SG11201604185PA/en
Priority to CN201480064905.3A priority patent/CN105792988B/zh
Publication of WO2015080295A1 publication Critical patent/WO2015080295A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/27Work carriers
    • B24B37/28Work carriers for double side lapping of plane surfaces

Definitions

  • the present invention relates to a polishing carrier used for polishing a substrate, a method for manufacturing a polishing carrier, and a method for manufacturing a magnetic disk substrate.
  • a glass substrate is suitably used for a magnetic disk used as one of information recording media.
  • the density of magnetic recording has been increased.
  • the magnetic recording information area is miniaturized by extremely shortening the flying distance from the magnetic recording surface of the magnetic head. It is preferable that the size and shape of the glass substrate used for such a magnetic disk be manufactured with high accuracy as intended.
  • the surface of the glass substrate is ground and polished.
  • a plate-like grinding or polishing carrier for holding a glass substrate to be ground or polished by being sandwiched between two surface plates during grinding or polishing is used.
  • the carrier is provided with a holding hole for holding the glass substrate.
  • a resin-impregnated material obtained by impregnating a resin material into a glass cloth in which glass fibers are oriented in two different directions has been widely used as this carrier in terms of mechanical strength and cost.
  • a carrier having a configuration in which a plurality of layers in which a glass cloth is impregnated with an epoxy resin is laminated is preferably used.
  • a defect for example, a concave scratch may occur on the end surface (outer peripheral side wall surface) of the glass substrate.
  • the depth of the scratch is deeper and longer than other scratches formed on the end face.
  • abrasive grains in the polishing slurry adhere to the concave portion of the scratch, and a glass chip generated by the scratch adheres to the end surface to become a dust generation source.
  • the abrasive grains in the polishing slurry used in the final polishing are sandwiched between the end face and the carrier, and are attached as fine particles in the concave wound and further fixed.
  • the fine particles attached in this way may be detached from the end face of the glass substrate during sputtering performed when forming the magnetic layer on the glass substrate and get on the main surface to create a defect in the magnetic layer. For this reason, the scratches cause a decrease in the yield of glass substrate manufacturing or magnetic disk manufacturing.
  • Patent Document 1 a carrier that protects a glass substrate from fibers such as glass fibers constituting the carrier is known (Patent Document 1).
  • a plurality of recesses are arranged on the inner peripheral wall surface of the holding hole of the glass substrate, a holding hole buffering region formed by only a resin material on the outer side from the inner peripheral wall surface, and a composite material on the outer side of the holding hole buffering region And a holding hole reinforcing region formed by the above. That is, since fibers do not protrude from the inner peripheral wall surface of the formed glass substrate holding hole, it is possible to prevent damage to the outer peripheral side wall surface of the glass substrate inserted into the holding hole during the polishing step.
  • a polishing carrier that can prevent scratches caused by sliding between the inner peripheral surface of the holding hole of the polishing carrier and the outer peripheral side surface of the object to be polished from occurring on the outer peripheral side surface of the object to be polished.
  • Patent Document 2 a plurality of protrusions that contact the outer peripheral side surface of the object to be polished and support the object to be polished are provided on the inner peripheral surface of the holding hole, and the interval between these protrusions is set on the inner peripheral surface of the holding hole It is set larger than the circumferential width of the protrusion.
  • the inner peripheral wall surface of the holding hole of the glass substrate is a holding hole buffer region formed only of the resin material, the mechanical strength of the original carrier cannot be obtained, and the durability is improved.
  • the corners of the outer peripheral side surface and the main surface of the glass substrate may come into contact with each other and a part of the resin material constituting the holding hole buffer region may be lost.
  • a part of the resin material separated from the holding hole buffering region at this time is likely to cause the above-described scratches, and may adhere to the main surface of the glass substrate to form a convex portion and become a defect.
  • the present invention can suppress the occurrence of scratches on the end face of the substrate, and can further suppress the formation of defects due to adhesion of fine particles or the like to the main surface of the substrate (adverse effects on the main surface of the substrate can be avoided).
  • One embodiment of the present invention is a carrier for polishing treatment.
  • the carrier has the following form.
  • a carrier for polishing treatment The substrate is formed when a pair of main surfaces of the substrate is polished by sandwiching a disk-shaped substrate between an upper surface plate and a lower surface plate, which is formed of a composite material including fibers oriented in at least one direction and a resin material.
  • Has a holding hole to hold The holding hole includes a first wall portion configured to contact the fiber in a state where the substrate is held in the holding hole on a circumference of an inner peripheral wall surface of the holding hole, and the substrate.
  • a second wall portion configured to prevent contact with the fibers, The said 2nd wall part is formed in the part which faces the orientation direction of the said fiber including the said one direction among the said inner peripheral wall surfaces,
  • polishing processing characterized by the above-mentioned.
  • Form 2 The carrier for polishing treatment according to mode 1, wherein the second wall portion is located more radially outside the holding hole than the first wall portion.
  • the carrier of form 2 holds the glass substrate when the glass main surface of the glass substrate is polished by sandwiching the disk-shaped glass substrate between the upper surface plate and the lower surface plate.
  • a carrier for polishing treatment having holes The carrier for polishing treatment is composed of a plate formed by impregnating a resin material into a glass cloth in which glass fibers are oriented in two different directions, Of the inner circumferential wall surface of the holding hole, the orientation direction wall surface portions facing the two orientation directions in which the glass fibers are oriented are both outside the inscribed circle inscribed in the outline of the inner circumferential wall surface of the holding hole.
  • a carrier for polishing treatment, wherein the outline of the holding hole is defined so as to be positioned.
  • the first wall portion has a convex first curved surface or plane that faces inward in the radial direction of the holding hole, or a radius of curvature of an inscribed circle inscribed in the outline of the inner peripheral wall surface of the holding hole.
  • a second curved surface that is convex with respect to the outside in the radial direction of the holding hole having a large radius of curvature, and an outer peripheral side wall surface of the substrate is the first curved surface, the flat surface, or the second curved surface.
  • the carrier for polishing treatment according to aspect 2 which abuts on a curved surface.
  • the carrier of the third aspect has a convex first wall surface on both sides along the circumferential direction of the holding hole of the wall surface portion in the orientation direction of the holding hole.
  • a curved surface, a flat surface, or a second curved surface convex to the outside of the holding hole having a radius of curvature larger than the radius of curvature of the inscribed circle, and the outer peripheral side wall surface of the glass substrate is the first curved surface.
  • the carrier for polishing treatment according to the second aspect which is different from the above, which contacts the curved surface, the flat surface, or the second curved surface.
  • the carrier of the form 2 or 3 in another way, there is no tip of the glass fiber of the glass cloth on the first curved surface, the flat surface, or the second curved surface of the holding hole,
  • the tip of the glass fiber may be located outside the contour with respect to the contour of the holding hole.
  • Form 4 The carrier for polishing treatment according to mode 3, wherein the first curved surface, the flat surface, or the second curved surface is provided at four or more locations on the circumference of the holding hole.
  • the carrier of the form 4 is provided with four or more places on the circumference of the holding hole in the first curved surface, the flat surface, or the second curved surface.
  • Another aspect of the present invention is a method for manufacturing a magnetic disk substrate.
  • the manufacturing method has the following forms.
  • Form 7 A method for manufacturing a magnetic disk substrate, comprising: Creating a disk-shaped substrate; The substrate is sandwiched between an upper surface plate and a lower surface plate while the substrate is held in a holding hole provided in the polishing carrier according to any one of forms 2 to 6, and the main glass surface and the upper surface plate are sandwiched between the upper surface plate and the lower surface plate.
  • the manufacturing method of aspect 7 is a state in which the glass substrate is held in the holding hole provided in the carrier for polishing treatment according to any one of aspects 2 to 6 described above.
  • (Form 8) 8 The method for manufacturing a magnetic disk substrate according to mode 7, wherein an outer peripheral side wall surface of the substrate does not contact the second wall portion but contacts both sides of the second wall portion during the polishing process.
  • the outer peripheral side wall surface of the glass substrate is not in contact with the orientation direction wall surface portion and is in contact with both sides of the orientation direction wall surface portion during the polishing process. It is the manufacturing method of the glass substrate for magnetic discs of the form 7 which stated another way.
  • the carrier for polishing treatment is produced by forming a holding hole in a plate material made of a composite material including fibers and resin materials oriented in at least one direction, and etching the plate material after forming the holding hole.
  • the carrier has the following form.
  • Fibers are provided in the annular region extending from the inner peripheral wall surface of the holding hole to the outer side in the radial direction of the holding hole, on the outer side in the radial direction of the holding hole with respect to the second wall portion, and in the orientation direction.
  • the carrier for polishing treatment according to the first aspect in which a fiber-free region where no is present is arranged.
  • the carrier of the form 10 has a holding hole for holding the glass substrate when the main surface of the glass substrate is polished by sandwiching the plate-like glass substrate between the upper surface plate and the lower surface plate.
  • a carrier having The carrier comprises a resin-impregnated substrate in which a plurality of glass fibers are reinforced by a glass cloth arranged to face one of two orientation directions, and the glass cloth is impregnated with a resin material, A first reinforcing region reinforced only by the first glass fiber facing one direction among the orientation directions in an annular region extending outward from the inner wall surface of the holding hole, and the other of the orientation directions
  • the second reinforcing regions reinforced only with the second glass fibers facing the direction are alternately arranged in the circumferential direction apart from each other,
  • the first reinforcing region is provided on the outer side of the first inner wall portion facing the orientation direction of the second glass fiber in the inner wall surface of the holding hole, and the second reinforcing region is formed on the inner wall surface.
  • the carrier is provided on the outer side of the second inner wall portion facing the orientation direction of the first glass fiber.
  • Form 11 The carrier for polishing treatment according to mode 10, wherein the fiber absence region is formed by a tip of the fiber facing the second wall portion not reaching an inner peripheral wall surface of the holding hole.
  • the first reinforcing region is formed so that the tip of the second glass fiber does not reach the inner wall surface of the holding hole, and the second reinforcing region is The carrier according to the above-described another form 10, wherein the tip of the first glass fiber is formed so as not to reach the inner wall surface of the holding hole.
  • Another aspect of the present invention is a method for manufacturing a carrier for polishing treatment.
  • the manufacturing method has the following forms.
  • Form 12 A method for manufacturing a carrier for polishing treatment having a holding hole for holding the substrate when the main surface of the substrate is polished by sandwiching a disk-shaped substrate between an upper surface plate and a lower surface plate, A first step of forming the holding hole in a plate made of a composite material including at least a fiber oriented in one direction and a resin material; A second step of producing the carrier by performing at least etching on the plate material on which the holding hole is formed, and In the second step, the fiber is etched in a portion of the inner peripheral wall face that faces the orientation direction of the fiber including the one direction.
  • the manufacturing method of aspect 12 is a holding for holding the glass substrate when the main surface of the glass substrate is polished by sandwiching a disk-shaped glass substrate between an upper surface plate and a lower surface plate.
  • a method of manufacturing a carrier having a hole A first step in which a plurality of glass fibers are reinforced by a glass cloth arranged to face one of two orientation directions, and the holding hole is formed in a resin-impregnated substrate in which the glass cloth is impregnated with a resin material; , A second step of producing the carrier by etching the resin-impregnated substrate in which the holding hole is formed, and In the second step, by etching the glass fiber exposed to face the orientation direction on the inner wall portion facing one of the orientation directions of the glass fiber in the inner wall surface of the holding hole, Manufacturing a carrier characterized by forming a reinforcing region reinforced only with glass fibers having an orientation direction different from the orientation direction of the etched glass fibers in an annular region extending outward from the inner wall surface of the holding hole.
  • a masking material is provided on a portion of the plate material that constitutes a portion other than the portion of the inner peripheral wall surface facing the orientation direction, and the masking material is removed after the etching.
  • a method for producing a carrier for polishing treatment according to claim 12. in the manufacturing method of aspect 13, in the second step, prior to the etching, a masking material is provided in a portion other than the reinforcing region in the annular region, and after the etching, The manufacturing method of the carrier according to the above-described form 12, wherein the masking material is removed.
  • the etching is performed by applying an etching agent for etching the fiber to the portion of the plate member that constitutes the portion of the inner peripheral wall surface facing the orientation direction.
  • an etching agent for etching the glass fiber is applied to a portion of the annular region of the resin-impregnated substrate that becomes the reinforcing region.
  • Form 15 In the second step, prior to the etching, the plate material and one or a plurality of other substrates in which holding holes are formed at positions corresponding to the positions where the holding holes are formed in the plate material are plated. 15. The method for producing a carrier for polishing treatment according to any one of forms 12 to 14, wherein the polishing treatment carrier is disposed so as to overlap in a thickness direction. In other words, in the manufacturing method of the form 15, in the second step, prior to the etching, the resin-impregnated substrate and a position corresponding to the position where the holding hole of the resin-impregnated substrate is formed. The carrier manufacturing method according to any one of the forms 12 to 14 described above in another form, in which one or a plurality of other substrates in which holding holes are formed are arranged so as to overlap each other in the thickness direction.
  • the other substrate is made of a composite material including at least fibers oriented in one direction and a resin material
  • the plate member is referred to as a first plate member and the other substrate is referred to as a second plate member
  • the plate member is disposed when the first plate member and the second plate member are stacked.
  • polishing processing of the form 15 which matches the direction where the said fiber orientated between.
  • the manufacturing method of mode 16 is reinforced by a glass cloth in which a plurality of glass fibers are oriented in one of two orientation directions, and a resin material is provided on the glass cloth.
  • Impregnated When the resin-impregnated substrate is referred to as a first resin-impregnated substrate and the other substrate is referred to as a second resin-impregnated substrate, in the second step, the first resin-impregnated substrate and the second resin-impregnated substrate.
  • the other substrate is made of a composite material including at least fibers oriented in one direction and a resin material
  • the plate material is referred to as a first plate material and the other substrate is referred to as a second plate material
  • polishing processing of the form 15 which forms the said holding hole so that the direction in which the said fiber aligns in between.
  • the manufacturing method of form 17 is reinforced by a glass cloth in which a plurality of glass fibers are oriented in one of two orientation directions, and a resin material is provided on the glass cloth.
  • the first step includes the first resin-impregnated substrate and the second resin-impregnated substrate.
  • the holding hole is formed so that the orientation directions coincide between the resin-impregnated substrates when the two are arranged in layers.
  • Another aspect of the present invention is a method for manufacturing a magnetic disk substrate.
  • the manufacturing method has the following forms.
  • a method for manufacturing a magnetic disk substrate comprising: The substrate was held on the polishing carrier according to any one of Forms 10 and 11 or the polishing carrier produced by the method for producing a polishing carrier according to any one of Forms 12 to 17.
  • a method for manufacturing a magnetic disk substrate comprising: polishing a main surface of the substrate in a state.
  • the manufacturing method of the form 18 is a manufacturing method of a glass substrate for a magnetic disk, A state in which the glass substrate is held by the carrier manufactured by the method for manufacturing the carrier according to any one of the forms 10 to 11 described above or the carrier according to any one of the forms 12 to 17 described above differently.
  • the method for producing a glass substrate for a magnetic disk comprising: a polishing process for polishing the main surface of the glass substrate.
  • the method for manufacturing a magnetic disk substrate and the carrier for polishing treatment of the present invention it is possible to suppress the occurrence of scratches on the end face of the substrate and to further suppress the formation of defects on the main surface of the substrate.
  • the carrier for polishing treatment of the present invention in the vicinity of the inner wall portion facing the orientation direction of the fiber (facing the orientation direction), there is no fiber facing the orientation direction, for example, an orientation different from that of the fiber. Reinforced only by directional fibers. As a result, when the substrate is polished, the occurrence of scratches on the end face of the substrate is prevented, and the carrier strength in the vicinity of the inner wall surface of the holding hole is ensured to prevent contamination from the resin material (foreign matter). ) Is suppressed.
  • a carrier for polishing treatment of the present invention such a carrier can be obtained.
  • the method for manufacturing a magnetic disk substrate of the present invention it is possible to prevent the occurrence of scratches on the end face of the substrate when the polishing process is performed, and to suppress the occurrence of contamination derived from the resin material. The occurrence of surface contamination or scratches is suppressed.
  • FIG. 2 is a perspective view showing the carrier shown in FIG. 1 while paying attention to one of holding holes. It is a figure explaining the contact state of the inner peripheral wall surface of the holding hole of the carrier of 1st Embodiment, and a glass substrate.
  • FIG. 1 is a diagram showing the carrier of FIG. 1 while paying attention to an annular region.
  • FIG. 2 is a diagram showing the carrier of FIG. 1 while paying attention to an annular region.
  • the polishing treatment includes grinding of the glass substrate and polishing of the glass substrate to reduce the roughness of the glass main surface of the glass substrate after the grinding. Therefore, the polishing carrier is a carrier that can be used for grinding and polishing a glass substrate. Although the carrier of the embodiment described below is used for polishing, it can also be used for grinding.
  • the carrier is composed of a plate (plate material) formed by impregnating a resin material into a glass cloth in which glass fibers are oriented in two different directions, for example, two directions orthogonal to each other.
  • a plurality of glass cloths are laminated, and the glass fibers are oriented in the same direction in each glass cloth.
  • the tip of the glass fiber is the glass substrate.
  • the tip of the glass fiber slightly protrudes (jumps out) when the resin material is in contact with the outer peripheral side wall surface, and the tip of the glass fiber bumps against the outer peripheral side wall surface of the glass substrate, or
  • the inventor has inferred that the glass fiber protruding from the surface of the resin material rubs against the outer peripheral side wall surface of the glass substrate, and the outer peripheral side wall surface of the glass substrate is damaged.
  • Patent Document 2 the above-mentioned known (Patent Document 2) polishing carrier has protrusions, the inventor has noticed that the orientation direction of the glass fibers is not taken into consideration.
  • the inventor has found that the glass fiber at the tip of the protrusion protruding in parallel with the orientation direction of the glass fiber causes a scratch on the outer peripheral end surface of the glass substrate. Since the force tends to concentrate particularly on the tip of the protrusion protruding parallel to the glass fiber orientation direction, the outer peripheral end face of the glass substrate is likely to be damaged. And as a result of repeating experiment, it came to invent the manufacturing method of the carrier for grinding
  • the substrate includes a glass substrate, an aluminum substrate, a silicon wafer, and the like.
  • a glass substrate will be described as an example.
  • the aluminum substrate includes a substrate made of an aluminum alloy containing other metal elements such as magnesium in addition to pure aluminum.
  • a NiP (nickel nitride) plating film or the like may be provided on the surface of the aluminum substrate or the like.
  • the fibers include metal fibers in addition to glass fibers, but in the following description, glass fibers will be described as an example.
  • the term “fiber” means a plurality of fibers unless otherwise specified.
  • the number of orientation directions of the fiber may be only one, or may be a plurality of two, three, or the like, but in the following description, a case where the number is representative is two as an example.
  • the inside of the holding hole means the outside of the holding hole in the radial direction from the center of the holding hole, or the direction in which the holding hole narrows, and the outside of the holding hole means that it is held from the center of the holding hole.
  • FIG. 1 is an exploded perspective view of a polishing apparatus (double-side polishing apparatus).
  • FIG. 2 is a sectional view of the polishing apparatus. Since the grinding apparatus has the same configuration as the polishing apparatus, description of the grinding apparatus is omitted.
  • the polishing apparatus has a pair of upper and lower surface plates, that is, an upper surface plate 40 and a lower surface plate 60.
  • An annular glass substrate G is held between the upper surface plate 40 and the lower surface plate 60, and either one or both of the upper surface plate 40 and the lower surface plate 60 are moved to operate the glass substrate G and each By moving the surface plate relative to each other, both main surfaces of the glass substrate G can be polished.
  • a polishing slurry containing abrasive grains is supplied between the glass substrate and the surface plate.
  • the upper surface plate 40 and the lower surface plate 60 are collectively described, they are simply referred to as a surface plate.
  • the polishing pad 10 is attached to the upper surface of the lower surface plate 60 and the lower surface of the upper surface plate 40.
  • the polishing pad 10 is shown in a sheet form.
  • foamed urethane resin or the like can be used for the polishing pad 10.
  • the carrier 30 has a holding hole for holding the glass substrate G when the main surface of the glass substrate G is polished by sandwiching the disk-shaped glass substrate G between the upper surface plate 40 and the lower surface plate 60.
  • the carrier 30 includes a tooth portion 31 provided on the outer peripheral portion and meshing with the sun gear 61 and the internal gear 62, and one or a plurality of holding holes 32 for receiving and holding the glass substrate G.
  • the sun gear 61, the internal gear 62 provided on the outer edge, and the disk-shaped carrier 30 constitute a planetary gear mechanism centered on the central axis CTR as a whole.
  • the disc-shaped carrier 30 meshes with the sun gear 61 on the inner peripheral side and meshes with the internal gear 62 on the outer peripheral side, and accommodates and holds one or more glass substrates G.
  • the carrier 30 revolves while rotating as a planetary gear, and the glass substrate G and the lower surface plate 60 are relatively moved.
  • the carrier 30 rotates in the clockwise direction
  • the internal gear 62 rotates in the counterclockwise direction.
  • a relative motion occurs between the lower surface plate 60 and the glass substrate G.
  • the glass substrate G and the upper surface plate 40 may be moved relatively.
  • the upper surface plate 40 is pressed against the glass substrate G held by the carrier 30 (that is, in the vertical direction) with a predetermined pressure, and thereby the polishing pad is pressed against the glass substrate G. 10 is pressed. Further, as shown in FIG. 2, a polishing slurry is supplied between the glass substrate G and the polishing pad 10 from a supply tank 71 via one or a plurality of pipes 72 by a pump (not shown).
  • the carrier 30 has a laminated structure in which a plurality of glass cloths (JIS R3414: 2012) are laminated.
  • the carrier 30 having a laminated structure using a glass cloth causes bending deformation or shear deformation due to the force received from the sun gear 61 and the internal gear 62 during the polishing of the carrier 30, and as a result, the glass substrate G is damaged. This is to ensure bending rigidity, shear rigidity, and mechanical strength so as not to occur.
  • the glass cloth is produced by weaving glass yarn made of glass fiber (JIS R3413: 2012, hereinafter also referred to as glass yarn).
  • the carrier 30 is formed by laminating the glass cloth impregnated with a resin material and press-bonding the layers.
  • the carrier 30 is composed of a plate material (hereinafter also referred to as a resin-impregnated substrate) in which a glass cloth in which glass fibers are oriented in two different directions is arranged in a resin material.
  • a resin material a thermoplastic resin such as an epoxy resin or a phenol resin is used.
  • FIG. 3 is a diagram illustrating an example of the relationship between the inner peripheral wall surface 36 of the holding hole 32 of the holding hole 32 of the carrier 30 and the two orientation directions in which the glass fibers are oriented in the present embodiment.
  • the contour shape of the inner peripheral wall surface 36 shown in FIG. 3 is shown in a circular shape for convenience, but has an unevenness along the circumference of the holding hole 32 as will be described later.
  • the carrier 30 is composed of a plate formed by impregnating a resin material into a glass cloth in which glass fibers are oriented in two different directions (X and Y directions).
  • the orientation directions of the glass fibers in each layer of the glass cloth are both the X direction and the Y direction.
  • the glass cloth is a woven fabric in which, for example, glass fibers 33 and 34 having a filament diameter of several ⁇ m are arranged at a density of, for example, 200 to 800 per unit.
  • FIG. 4 is a diagram illustrating an example of the contour shape of the holding hole 32 of the carrier 30.
  • FIG. 5 is a perspective view showing the carrier 30 shown in FIG. 1 while paying attention to one of the holding holes 32.
  • FIG. 6 is a diagram for explaining a contact state between the inner peripheral wall surface 36 of the holding hole 32 of the carrier 30 and the glass substrate G.
  • the carrier 30 of the present embodiment is formed of a composite material including glass fibers oriented in at least one direction and a resin material. A pair of main surfaces of the substrate is sandwiched between an upper surface plate and a lower surface plate. A holding hole 32 is provided for holding the substrate during the polishing process.
  • the holding hole 32 is a first wall portion (a first curved surface 37 to be described later) configured to contact the fiber with the substrate held in the holding hole 32 on the circumference of the inner peripheral wall surface of the holding hole.
  • a portion of the flat surface 38 and the second curved surface 39 excluding the second wall portion, and a second wall portion (orientation direction wall surface portion 35 described later) configured so that the substrate does not contact the fiber. have.
  • the second wall portion is formed in a portion of the inner peripheral wall surface of the holding hole 32 that faces the fiber orientation direction including one direction.
  • the carrier 30 of 1st Embodiment is located in the radial direction outer side of a holding hole rather than the 1st wall part, and the 2nd wall part is characterized by the above-mentioned.
  • the orientation direction of the fiber including one direction means all directions in which the fibers contained in the carrier are oriented. Therefore, the second wall portion is formed on the inner peripheral wall surface of the holding hole so as to correspond to all the orientation directions of the fibers. Specifically, the second wall portion is twice the number of the orientation directions of the fibers. Two wall portions are formed on the inner peripheral wall surface. For example, when the number of fiber orientation directions is 2, the second wall portion is formed at four locations on the inner peripheral wall surface. This is the same in the second embodiment described later.
  • the orientation direction wall surface portions 35 facing the two orientation directions (X direction and Y direction) in which the glass fibers are oriented are both of the inner peripheral wall surface of the holding hole 32.
  • the outline of the holding hole 32 is determined so as to be located outside the inscribed circle inscribed in the outline.
  • the outer peripheral side wall surface of the glass substrate G during the polishing process does not contact the alignment direction wall surface portion 35 but contacts both sides of the alignment direction wall surface portion 35.
  • the orientation direction wall surface portion 35 is assumed to be an inscribed circle C inscribed in the outline of the inner circumferential wall surface of the holding hole 32 as shown in FIG.
  • the portion on the inscribed circle whose direction is perpendicular to the tangent line of the glass fiber 33 and 34 coincides with the orientation direction of the glass fibers This refers to the portion of the inner peripheral wall surface (the portion indicated by the thick solid line in FIG. 3).
  • the wall surface portion within the range is set as the allowable range of the orientation direction wall surface portion 35.
  • a convex first curved surface 37 facing the inside of the holding hole 32 is formed on both wall surfaces of the orientation direction wall portion 35 along the circumferential direction of the holding hole 32. is doing.
  • the convex first curved surface 37 is in contact with the inscribed circle. Therefore, as shown in FIG. 6, the outer peripheral side wall surface of the glass substrate G is not in contact with the alignment direction wall surface portion 35 but is in contact with both sides of the alignment direction wall surface portion 35.
  • the orientation direction wall surface portion 35 facing the orientation direction of the glass fibers 33 and 34 is located outside the inscribed circle inscribed in the outline of the inner peripheral wall surface of the holding hole 32, and the outer peripheral side wall surface of the glass substrate G Does not touch.
  • the ends of the glass fibers 33 and 34 do not come into contact with the outer peripheral side wall surface of the glass substrate G. It is possible to prevent the outer peripheral side wall surface from being damaged. Thereby, it can suppress that microparticles
  • the end surfaces on the inner and outer peripheral sides of the glass substrate G are chamfered to form a side wall surface orthogonal to the main surface and a chamfered surface (intervening surface) connecting the side wall surface and the main surface.
  • the shape of the holding hole 32 is a simple circle as in the prior art, the contact is made at one place, so that the force is concentrated and the scratch is likely to occur.
  • the first curved surface 37 having a convex shape facing the inside of the holding holes 32 is formed in consideration of the orientation direction of the glass fibers in all the holding holes 32. It is preferable to provide it.
  • the convex first curved surface 37 needs to be formed in consideration of the orientation of the glass fibers contained in the carrier 30 in all the holding holes 32 formed in one carrier 30.
  • the maximum protrusion amount of the convex first curved surface 37 in the radial direction of the virtual circle from the virtual circle formed by a part of the wall surface portion 35 of the orientation direction to the center of the virtual circle is 0.3 to 5 mm. It is preferably 1 to 3 mm.
  • the convex first curved surface 37 only needs to have a curved surface. As shown in the figure, the convex first curved surface 37 has a curved surface that curves so as to bulge outward from the inner portion of the convex first curved surface 37. Alternatively, as shown in FIG. 1 of Patent Document 2, it may have a curved surface or a flat surface that bulges from the outside to the inside of the convex first curved surface.
  • the curvature radius R of the curved surface is 5 to 150 mm. Is preferably 10 to 50 mm.
  • the number of convex first curved surfaces is preferably 4 or more, and more preferably 8 or more.
  • first curved surfaces 37 having a convex shape facing the inside of the holding hole 32 are provided, but the number of arrangement of the first curved surfaces 37 on the circumference is not limited to eight.
  • 7A and 7B are diagrams showing another example of the contour shape of the holding hole 32 of the carrier 30.
  • the number of arrangements may be 6, 10 or the like.
  • the convex-shaped first curved surface 37 is provided on the wall surfaces on both sides of the alignment direction wall portion 35 facing the two alignment directions (X direction and Y direction) in which the glass fibers 33 and 34 are aligned.
  • the number of arrangements is not limited.
  • FIGS. 8A to 8C are diagrams showing still another example of the contour shape of the holding hole 32 of the carrier 30.
  • the flat surfaces 38 may be provided on the wall surfaces on both sides of the orientation direction wall surface portion 35 facing the two orientation directions (X direction and Y direction) in which the glass fibers 33 and 34 are oriented.
  • the plane 38 is in contact with the inscribed circle C.
  • the outline shape of the holding hole 32 may be a regular polygon such as a regular hexagon, a regular octagon, or a regular decagon, or a polygon.
  • the orientation direction as shown in FIG. 8A The direction of the regular hexagon with respect to the two orientation directions (X direction and Y direction) in which the glass fibers 33 and 34 are oriented is adjusted so that the position of the wall surface portion 35 is shifted from the position of the apex of the regular hexagon.
  • a regular decagon as shown in FIG.
  • the four positions of the alignment direction wall surface portion 35 cannot correspond to the positions of the vertexes of the regular decagon, so the alignment direction wall surface portion
  • the orientation of the regular decagon with respect to the two orientation directions (X direction and Y direction) in which the glass fibers 33 and 34 are oriented is adjusted so that the position of 35 is shifted from the position of the apex of the regular decagon.
  • the four positions of the alignment direction wall surface portion 35 can be made to correspond to the positions of the apexes of the regular octagon, and therefore the alignment direction wall surface portion 35 has a regular octagonal position.
  • the orientation of the regular octagon with respect to the two orientation directions (X direction and Y direction) in which the glass fibers 33 and 34 are oriented is adjusted so as to come to the position of the apex.
  • the plane 38 of the inner peripheral wall surface of the holding hole 32 is in contact with the inscribed circle C.
  • the glass substrate G being polished is processed.
  • the outer peripheral side wall surfaces of the first and second outer peripheral side walls are not in contact with the orientation direction wall surface portion 35 but can be in contact with both sides of the orientation direction wall surface portion 35.
  • the wall surfaces on both sides along the circumferential direction of the holding hole 32 of the orientation direction wall surface portion 35 of the holding hole 32 are flat surfaces 38, and the outer peripheral side wall surface of the glass substrate G being polished is a portion of the flat surface 38. Abut. Therefore, even if the glass fibers 33 and 34 are exposed from the resin material in the orientation direction wall surface portion 35, the ends of the glass fibers 33 and 34 do not come into contact with the outer peripheral side wall surface of the glass substrate G. It is possible to prevent the side wall surface from being damaged. Thereby, it can suppress that microparticles
  • FIG. 9 is a diagram showing still another example of the contour shape of the holding hole of the carrier 30.
  • a second curved surface 39 having a radius of curvature larger than the radius of curvature of the inscribed circle C inscribed in the outline of the inner peripheral wall surface of the holding hole 30 can be used.
  • the second curved surface 39 has a convex shape with respect to the outside of the holding hole 32 (concave shape with respect to the inside of the holding hole 32).
  • the second curved surface 39 is in contact with the inscribed circle C.
  • the tips of the glass fibers 33 and 34 are preferably located on the inner peripheral wall surface 36 of the holding hole 32. That is, it is preferable that the tips of the glass fibers 33 and 34 are located on the surface of the first curved surface 37, the flat surface 38, or the second curved surface 39. However, in order to further prevent the outer peripheral side wall surface of the glass substrate G from being damaged, the first curved surface 37, the flat surface 38, or the second curved surface 39 located on both sides of the orientation direction wall surface portion 35 is provided on the second curved surface 39.
  • the glass fibers 33 and 34 of the glass cloth have no tip, and the tips of the glass fibers 33 and 34 are located outside the contour with respect to the contour of the holding hole 32. Since the first curved surface 37, the flat surface 38, or the second curved surface 39 located on both sides of the orientation direction wall surface portion 35 is not the orientation direction wall surface portion 35, the tips of the glass fibers 33, 34 are the first curved surface 37. Even on the flat surface 38 or the second curved surface 39, the outer peripheral side wall surface of the glass substrate G is hardly damaged. However, even if the glass fibers 33 and 34 are not exposed from the resin material in the orientation direction wall surface portion 35, the resin material surrounding the glass fibers 33 and 34 is slightly in contact with the glass substrate G during polishing.
  • the glass fibers 33 and 34 may protrude from the resin material due to compression. Further, during the polishing process, the glass fibers 33 and 34 may be exposed when the resin material is rubbed against the glass substrate G and the resin material is worn. Even in such a case, in order to prevent the outer peripheral side wall surface of the glass substrate G from being damaged, the tips of the glass fibers 33 and 34 are outside the outline of the holding hole 32 with respect to the outline of the holding hole 32. Preferably it is located. In this case, from the viewpoint of ensuring the mechanical strength of the carrier 30, the distance between the tips of the glass fibers 33 and 34 and the outline of the holding hole 32 is preferably less than 2 ⁇ m.
  • the glass fibers 33 and 34 whose tips do not reach the inner peripheral wall surface 36 of the holding hole 32 are formed using the first curved surface 37, the flat surface 38, or the second curved surface of the carrier 30 using an etching solution containing hydrofluoric acid. It is obtained by etching the glass fibers 33 and 34 exposed to 39. That is, a plurality of glass fibers are reinforced by a glass cloth arranged so as to face one of two orientation directions, and a holding hole 32 is formed in a resin-impregnated substrate in which the glass cloth is impregnated with a resin material. It is preferable that the resin-impregnated substrate is fabricated by etching after the formation of 32.
  • the first curved surface 37, the flat surface 38, or the second curved surface 39 is etched with the glass fibers 33 and 34 with an etching solution containing hydrofluoric acid.
  • a removal treatment may be performed in which the alkali fluoride fluoroaluminate generated by the etching treatment is removed with an acidic electrolyte solution containing metal ions.
  • the fine particles of the alkali fluorinated aluminate remaining on the carrier 30 are removed, so that during polishing, the glass substrate G and the upper surface plate 40 or the lower surface plate 60
  • alkali fluoride fluoroaluminate fine particles enter the surface of the glass substrate G to scratch the main surface of the glass substrate G, or during the sputtering performed when the fine particles form a magnetic layer on the glass substrate G. It is possible to prevent the magnetic layer from being defective on the main surface.
  • the inner peripheral wall surface of the holding hole 32 is that four or more first curved surfaces 37, flat surfaces 38, or second curved surfaces 39 on both sides of the orientation direction wall surface portion 35 are provided on the periphery of the holding hole 32. It is preferable at the point which disperse
  • the diameter of the inscribed circle C inscribed in the outline of the inner peripheral wall surface of the holding hole 32 is substantially equal to or slightly larger than the disk shape of the glass substrate G to be polished. 1.002 to 1.031 times the diameter of the glass substrate G does not contact the outer peripheral side wall surface of the glass substrate G with the alignment direction wall surface portion 35, but reliably contacts the wall surfaces on both sides of the alignment direction wall surface portion 35. This is preferable. If it is smaller than this range, it may be difficult to hold the glass substrate in the holding hole or to remove the glass substrate from the holding hole. On the other hand, if it is larger than this range, the glass substrate tends to hit the inner peripheral wall surface of the holding hole with force during processing, and end face scratches are likely to occur.
  • the polishing pad is attached to the upper surface plate 40 or the lower surface plate 60.
  • the upper surface plate 40 or the lower surface plate 60 is provided with fixed abrasive grains, and the glass substrate G and A coolant may be supplied between the upper surface plate 40 or the lower surface plate 60.
  • the carrier 30 can also be used in a grinding device for grinding the glass substrate G in addition to the polishing device.
  • Such a carrier 30 can be suitably used for manufacturing a glass substrate for a magnetic disk as described below by using it in a polishing apparatus and further in a grinding apparatus having a configuration substantially similar to this polishing apparatus. In grinding using a glass substrate grinding apparatus, the roughness Ra of the main surface of the glass substrate after grinding is larger than in grinding.
  • the main surface of the glass substrate may be ground by supplying a grinding liquid between each of the upper surface plate and the lower surface plate and the glass substrate.
  • fixed abrasive grains may be provided on each of the upper surface plate and the lower surface plate, and a lubricating liquid may be supplied between the fixed abrasive particles and the glass substrate to grind the main surface of the glass substrate.
  • a glass blank that is a material for a plate-shaped magnetic disk glass substrate having a pair of main surfaces is formed.
  • the rough grinding process of this glass blank is performed.
  • the glass blank is subjected to a shape processing treatment and an end surface polishing treatment.
  • the precise grinding process which uses a fixed abrasive for the glass substrate obtained from the glass blank is performed.
  • a first polishing process, a chemical strengthening process, and a second polishing process are performed on the glass substrate.
  • the above-described process is performed. However, it is not necessary that all the processes are performed, and these processes may not be performed as appropriate. The order of processing can be changed as appropriate. Hereinafter, each process will be described.
  • a molding of glass blank for example, a press molding method can be used.
  • a circular glass blank can be obtained by the press molding method.
  • it can manufacture using well-known manufacturing methods, such as a downdraw method, a redraw method, a fusion method, and a float method.
  • a disk-shaped glass substrate serving as a base of the magnetic disk glass substrate can be obtained by appropriately performing shape processing on the plate-shaped glass blanks produced by these known production methods.
  • (B) Rough grinding In rough grinding, specifically, a glass blank is provided on a holding member (carrier) attached to a well-known double-side grinding apparatus having a planetary gear mechanism similar to the apparatus shown in FIGS. The main surfaces on both sides of the glass blank are ground while being held in the holding holes. At this time, the carrier 30 described above can be used. For example, loose abrasive grains are used as the abrasive. In rough grinding, the glass blank is ground so as to approximate the target plate thickness and the flatness of the main surface. In addition, rough grinding is performed according to the dimensional accuracy or surface roughness of the formed glass blank, and may not be performed depending on the case.
  • end surface polishing of the glass substrate is performed.
  • the end surface polishing is a process for performing polishing by supplying a polishing liquid containing loose abrasive grains between the polishing brush and the end surface of the glass substrate and moving the polishing brush and the glass substrate relatively, for example.
  • the inner peripheral side wall surface and the outer peripheral side wall surface of the glass substrate are to be polished, and the inner peripheral side wall surface and the outer peripheral side wall surface are mirror-finished.
  • the main surface of the glass substrate is ground using a surface plate with fixed abrasive grains and a double-side grinding device with a planetary gear mechanism similar to the polishing device shown in FIGS. Is preferred.
  • grinding of the main surfaces on both sides of the glass substrate is performed with fixed abrasive grains while holding the glass substrate in the holding holes provided in the carrier 30 described above, which is a holding member of the double-side grinding apparatus.
  • the machining allowance by grinding is, for example, about 10 ⁇ m to 200 ⁇ m.
  • the load applied to the substrate by the surface plate is preferably 100 to 250 g / cm 2 .
  • the grinding surface containing fixed abrasive grains and the main surface of the glass substrate are brought into contact with each other to grind the main surface of the glass substrate.
  • grinding using loose abrasive grains may be performed.
  • polishing is given to the main surface of a glass substrate. Specifically, the main surface on both sides of the glass substrate G is polished while holding the outer peripheral side wall surface of the glass substrate in the holding hole 32 provided in the carrier 30 of the polishing apparatus shown in FIGS. .
  • the first polishing uses a polishing pad attached to a surface plate using loose abrasive grains. The first polishing removes cracks and distortions remaining on the main surface when, for example, grinding with fixed abrasive grains is performed.
  • the free abrasive grains used for the first polishing are not particularly limited.
  • cerium oxide abrasive grains or zirconia abrasive grains are used.
  • the kind in particular of a polishing pad is not restrict
  • the glass substrate can be appropriately chemically strengthened using a known method.
  • the timing for performing chemical strengthening can be determined as appropriate. Chemical strengthening may be performed as necessary and may not be performed.
  • the free abrasive grains used for the second polishing for example, fine particles such as colloidal silica are used.
  • a glass substrate for a magnetic disk can be obtained.
  • polishing is not necessarily essential, it is preferable to implement by the point which can make the level of the surface unevenness
  • the glass substrate subjected to the second polishing becomes a glass substrate for a magnetic disk.
  • an upper surface plate and a lower surface plate that sandwich the glass substrate G from above and below are used.
  • the orientation-direction wall surface portion 35 is positioned outside the circular arc shape inscribed in the outline of the inner peripheral wall surface of the holding hole 32.
  • the wall surfaces on both sides of the orientation-direction wall surface portion 35 of the holding hole 32 along the circumferential direction of the holding hole 32 are convex first curved surfaces 37 as shown in FIG. It is a flat surface 38 as shown in (c) or a second curved surface 39 as shown in FIG.
  • the outer peripheral side wall surface of the glass substrate G that is being polished is in contact with the first curved surface 37, the flat surface 38, or the second curved surface 39, and is not in contact with the orientation direction wall surface portion 35. For this reason, generation
  • polishing carrier the polishing carrier manufacturing method, and the magnetic disk substrate manufacturing method of the second embodiment will be described in detail.
  • the cause is that the glass fiber has been completely removed in the annular region outside the inner wall surface of the holding hole, and the reinforcing effect of the glass cloth has been lost.
  • the strength near the inner wall surface of the holding hole is reduced, and the glass substrate repeatedly collides with or presses against the holding hole buffering area of the carrier during the polishing process, so that a part of the resin material constituting the holding hole buffering area falls off.
  • the contamination may enter between the glass substrate and the surface plate to contaminate the main surface of the glass substrate or cause scratches.
  • the inventors have invented a carrier for polishing treatment, a method for manufacturing a carrier for polishing processing, and a method for manufacturing a substrate for a magnetic disk according to the embodiments described below.
  • FIG. 10 shows the carrier 1 of the present embodiment.
  • the carrier 1 holds a glass substrate to be ground or polished in a grinding process (rough grinding process and fine grinding process) and a polishing process (first polishing process and second polishing process) described later.
  • the term “polishing process” is understood as a concept including a grinding process.
  • the carrier 1 has a plurality of holding holes 3 for holding the glass substrate.
  • the carrier 1 includes a resin-impregnated substrate in which a plurality of glass fibers are arranged so as to face one of two orientation directions, and the glass cloth reinforces the carrier 1 and a resin material impregnated in the glass cloth.
  • Any known glass cloth can be used without any particular limitation.
  • a plain cloth using a plurality of glass yarns, which are bundles of glass fibers, is used.
  • a plurality of glass yarns are oriented in two orientation directions orthogonal to each other.
  • the two orientation directions form 90 °, approximately 90 ° (for example, 70 to 110 °, 78.75 to 101.25 °, 80 to 100).
  • the two alignment directions may be alignment directions orthogonal to each other, or may be alignment directions that are not orthogonal to each other (for example, directions that form 60 ° or 120 ° to each other).
  • the material of the glass fiber is not particularly limited, but for example, aluminosilicate glass is used.
  • the resin material is considered to be impregnated in the glass cloth so as to surround each of the glass fibers, but the glass fiber portions may be in direct contact with each other.
  • the resin material is not particularly limited.
  • a thermosetting resin such as an epoxy resin or a phenol resin is used.
  • the resin-impregnated substrate is produced by a known method. For example, a plurality of (for example, five) prepregs obtained by impregnating a glass cloth with a resin material and then drying the resin material, and the orientation direction between the prepregs is different. It is obtained by laminating and pressing to match.
  • the diameter of the glass fiber is not particularly limited, but is, for example, 5 to 10 ⁇ m.
  • the thickness of the glass yarn (the width of the glass yarn along the plane direction of the carrier) is, for example, 200 to 700 ⁇ m, and the thickness of the glass yarn (the thickness direction of the carrier)
  • the width of the glass yarns is 40 to 90 ⁇ m
  • the distance (pitch) between the glass yarns is 300 to 700 ⁇ m.
  • the carrier 1 of the present embodiment is formed from a composite material including glass fibers oriented in at least one direction and a resin material.
  • a holding hole 3 is provided for holding the substrate when the pair of main surfaces of the substrate is polished between the lower surface plates.
  • the holding hole 3 has a first wall portion configured on the circumference of the inner wall surface (inner circumferential wall surface) 5 of the holding hole 3 so that the substrate comes into contact with the fiber while the substrate is held in the holding hole 3; And a second wall portion (a first inner wall surface 5a and a second inner wall surface 5b described later) configured such that the substrate does not come into contact with the fiber.
  • the second wall portion is formed in a portion of the inner peripheral wall surface of the holding hole 3 that faces the fiber orientation direction including one direction.
  • the carrier 30 of 2nd Embodiment is the radial direction of a holding hole with respect to the 2nd wall part in the cyclic
  • a fiber non-existing region (a first reinforcing region 11 and a second reinforcing region 13 described later) in which fibers are not present in the orientation direction is provided.
  • the carrier 1 has a first reinforcing region 11 and a second reinforcing region 13 separated from each other in an annular region 7 extending outward from the inner wall surface 5 of the holding hole 3.
  • the holding holes 3 are alternately arranged in the circumferential direction.
  • FIG. 12 is a view showing the holding hole 3 of the carrier 1 while paying attention to the annular region 7.
  • the inner wall surface of the holding hole means an inner wall surface that defines the holding hole unless otherwise specified.
  • the term “extending outward from the inner wall surface or from the inner wall surface” refers to a direction from the inner wall surface toward the outer side in the radial direction of the holding hole 3 from the inner wall surface of the composite material constituting the carrier. It means that it extends along the plane direction of the carrier 1 in the part of the composite material, in other words, it exists over a predetermined width from the inner wall surface to the outside in the radial direction of the holding hole 3.
  • the width of the annular region 7 (the length along the radial direction of the holding hole 3) is not particularly limited, but is, for example, 2 to 10 ⁇ m.
  • region 11 is reinforced only with the 1st glass fiber 21 which faces one direction (X direction) among two orientation directions (X direction and Y direction shown in FIG. 12).
  • region 13 is reinforced only with the 2nd glass fiber which faces the other direction (Y direction) of an orientation direction. In other words, in the 1st reinforcement area
  • region 11 and 13 are not restrict
  • the second glass fiber 23 is removed, so that a large number of recesses (non-extending shape) extending in an orientation direction (a direction substantially perpendicular to the inner wall surface) facing the second glass fiber 23. A portion made of a resin material having (shown) is formed.
  • the part which consists of a resin material which similarly has many recessed parts (not shown) is formed by the 1st glass fiber 21 being removed.
  • the case where the second glass fiber is reinforced only with the second glass fiber includes the case where the second glass fiber is present in a partially missing state in the first reinforcing region.
  • the case of being reinforced only with the first glass fiber includes the case where the first glass fiber is partially missing in the second reinforcing region.
  • the positions of the first reinforcing region 11 and the second reinforcing region 13 in the annular region 7 are preferably arranged at substantially equal intervals in the circumferential direction. 11 or 13, and the direction of 0 °, 90 °, 180 °, 270 ° is included around the center of the holding hole 3 (around the center). It is preferable to be set within a range of ⁇ 20 ° (for example, ⁇ 11.25 °, ⁇ 10 °) with respect to directions that form 0 °, 90 °, 180 °, and 270 ° around the center.
  • FIG. 13 is a view showing the holding hole 3 of the carrier 1 while paying attention to the annular region 7.
  • the first reinforcing region 11 and the second reinforcing region 13 are included in the annular region 7 by two, but the number of the first reinforcing region and the second reinforcing region is as follows: It is determined by the angle formed by the two orientation directions.
  • the portion 15 of the annular region 7 excluding the first reinforcing region 11 and the second reinforcing region 13 included in one annular region 7 is the same as the portion of the carrier 3 outside the annular region 7. Reinforced by both one glass yarn and a second glass yarn.
  • region 11 is provided in the outer side of the 1st inner wall part 5a which faces the orientation direction of the 2nd glass fiber 23 among the inner wall surfaces 5 of the holding hole 3 (it faces an orientation direction).
  • region 13 is provided in the outer side of the 2nd inner wall part 5b which faces the orientation direction of the 1st glass fiber 21 among the inner wall surfaces 5 (facing the orientation direction).
  • the portion of the inner wall surface 5 of the holding hole 3 excluding the first inner wall portion 5a and the second inner wall portion 5b (both are second wall portions) is the first wall portion.
  • the portion excluding the first inner wall portion 5a and the second inner wall portion 5b is a fiber contact surface configured so that the glass substrate contacts the glass fiber in the above state. is there.
  • the inner wall portion faces the orientation direction means that the inner wall portion faces the orientation direction, in other words, the inner wall portion faces the orientation direction, or the normal direction of the inner wall portion is oriented. It means that the fiber is exposed in the vertical direction or protrudes (protrudes out) in the vertical direction from the inner wall portion of the plate material in the carrier manufacturing process.
  • the vertical direction here refers to a direction in a range of ⁇ 20 ° (for example, ⁇ 11.25 °, ⁇ 10 °) in the plane direction of the carrier with respect to the normal direction of the inner wall portion.
  • ⁇ 20 ° for example, ⁇ 11.25 °, ⁇ 10 °
  • the tangential direction of the inner wall part at the position of the inner wall part intersecting the orientation direction is perpendicular to the orientation direction (center line), and the perpendicular direction.
  • a case where the alignment direction intersects with an orientation direction over an angular range of ⁇ 20 ° (for example, ⁇ 11.25 °) centered on is also included.
  • the orientation direction of the glass fiber which an inner wall part faces means the direction in which a glass fiber protrudes substantially perpendicular
  • the first reinforcing region 11 is formed so that the tip of the second glass fiber 23 does not reach the inner wall surface 5 of the holding hole 3, and the second reinforcing region 13 is formed of the first glass fiber 21.
  • the tip is formed so as not to reach the inner wall surface 5 of the holding hole 3.
  • a part of the range of the first reinforcing region 11 is defined by the tip of the second glass fiber 23, and a part of the range of the second reinforcing region 13 is defined by the tip of the first glass fiber 21.
  • the first reinforcing region 11 and the second reinforcing region 13 have glass fibers facing in a direction different from the glass fibers facing in a direction substantially perpendicular to the inner wall surface 5, so that The strength in the vicinity of the inner wall surface 5 is ensured. For this reason, a portion in the vicinity of the inner wall surface 5 made of a resin material having a large number of recesses may be peeled off due to an external force (collision, pressure contact, rubbing, etc.
  • the glass fibers existing in the first reinforcing region and the second reinforcing region are oriented in a direction substantially perpendicular to the inner wall surface (for example, a direction substantially parallel to the inner wall surface), Even if the end faces come into contact with each other, the glass substrate rotates while coming into contact so that the end face of the glass fiber slides, so that scratches are hardly generated.
  • the first reinforcing region 11 and the second reinforcing region 13 may not be provided on the inner wall surface 5 of all the holding holes 3 included in the carrier 1. It may be provided on the wall surface 5. In this case, it is possible to perform the polishing process by holding the glass substrate only in the holding hole 3 provided with the first reinforcing region 11 and the second reinforcing region 13.
  • the manufacturing method of the carrier for polishing treatment of the present embodiment includes a cutting process (first step) and an etching process (second step).
  • the cutting process the holding hole 3 is formed in the resin-impregnated substrate.
  • the resin-impregnated substrate is cut by an end mill to create the outer peripheral shape of the carrier and the holding hole as shown in FIG.
  • FIG. 11 is a perspective view showing the carrier shown in FIG. 10 while paying attention to one of the holding holes.
  • the outer shape of the carrier is shown in a different form from FIG. 11 for convenience of explanation.
  • the glass fiber of the glass cloth is cut along the outer peripheral shape of the carrier and the holding hole.
  • the orientation direction of the glass fibers between the resin-impregnated substrates can be easily provided by applying a masking material to be described later or applying an etching agent. It is preferable to form the holding hole 3 so that they match.
  • the holding holes may be formed so as to penetrate through the plurality of resin-impregnated substrates. This can improve productivity. Deburring may be performed after the cutting process.
  • the carrier is manufactured by performing at least etching on the resin-impregnated substrate in which the holding hole 3 is formed.
  • the carrier may be manufactured by performing cleaning, drying, and the like after the etching.
  • the inner wall portion (the portion of the inner wall surface indicated by reference numerals 5a and 5b in the carrier shown in FIG. 12) of the inner wall surface 5 of the holding hole 3 that faces one of the orientation directions of the glass fibers,
  • an alignment direction different from the alignment direction of the etched glass fiber is formed in the annular region 7 extending outward from the inner wall surface 5 of the carrier holding hole 3.
  • a reinforced region reinforced with only glass fiber is formed.
  • the first glass fiber 21 is exposed.
  • a reinforcing region 11 and a second reinforcing region 13 are formed.
  • tip of glass fiber is located in the inner wall surface and the case where it protrudes inward from an inner wall surface are also included.
  • the resin-impregnated substrate subjected to the cutting process is immersed in, for example, an etching agent, and the glass fiber exposed by the cutting process is etched.
  • an etching agent for example, an etching agent
  • Most of the fibers are knitted, that is, the fibers facing in any orientation direction are left in a state where the strength of the carrier can be prevented from being lowered.
  • the etching agent in the case of performing the etching treatment by dipping is not particularly limited as long as it has an etching property to the fiber.
  • hydrofluoric acid or a fluorine compound When glass fibers are etched, for example, those containing hydrofluoric acid or a fluorine compound are suitable.
  • those containing hydrofluoric acid include hydrofluoric acid and silicic hydrofluoric acid.
  • the fluorine compound include ammonium fluoride (NH 4 F) and ammonium hydrogen fluoride (NH 5 F 2 ).
  • a mixed acid obtained by mixing hydrofluoric acid with a strong acid such as sulfuric acid or nitric acid may be used as an etching agent, and may further contain a viscosity modifier, a solvent, or the like.
  • the above substances may be mixed as appropriate and used.
  • etching is performed by immersing the resin-impregnated material in an etching agent, for example, an etching agent containing hydrofluoric acid and sulfuric acid is used.
  • an etching agent containing hydrofluoric acid and sulfuric acid is used.
  • the concentration of hydrofluoric acid is preferably about 0.01 to 2.0%
  • the concentration of sulfuric acid is preferably about 0.02 to 4.0%.
  • % means mass percentage.
  • the dipping time may be appropriately determined according to the etching amount of the glass fiber (the length in the radial direction of the first reinforcing region 11 and the second reinforcing region 13) and the concentration of the etching agent, but for example, less than 60 minutes. It is preferable.
  • the concentration of the etchant is too high, or if the standing time is too long, excessive fibers will be removed, or the resin part will be damaged by etching.
  • the resin on the inner wall surface may be easily peeled off during polishing or grinding.
  • the etching treatment is not limited to being performed by immersion, and for example, etching may be performed by applying an etching agent to a resin-impregnated material.
  • coating may be performed using application means, such as a brush, and may be performed by spraying by a spray.
  • an aqueous solution such as hydrofluoric acid, ammonium hydrogen fluoride, or sodium hydrogen fluoride is used.
  • the concentration of the etching agent and the standing time of the resin-impregnated material after application may be appropriately determined. From the viewpoint of maintaining the strength of the inner wall surface of the holding hole, for example, the concentration of the etching agent is 0.1 to 20 wt. % Is preferable. Further, the standing time after coating is preferably less than 60 minutes.
  • the etching process may be performed by showering or the like in addition to the above-described immersion and coating.
  • a masking material (not shown) may be provided in a portion 15 (see FIG. 12) other than the portion serving as the reinforcing region in the annular region 7, and the masking material may be removed after the etching.
  • the masking agent for example, the carrier 1 can be produced by dipping or showering.
  • the masking material for example, a tape or a resin layer is used.
  • the resin of the resin layer polytetrafluoroethylene, epoxy resin, or the like is used.
  • the position on the inner wall surface where the masking material is provided usually can be determined by confirming these directions by visual inspection since the main surface of the carrier has streaks corresponding to the orientation direction of the glass fibers. it can.
  • a resin or the like it is preferable to mask the main surface of the carrier with a resin or the like.
  • another composite material plate resin-impregnated substrate
  • Lamination makes it possible to improve carrier manufacturing efficiency and reduce costs.
  • etching may be performed by applying the etching agent to a portion of the annular region 7 of the resin-impregnated substrate that serves as a reinforcing region instead of being immersed in the etching agent.
  • a glass fiber can be etched only in the part which wants to make it a reinforcement area
  • coats an etching agent can be defined by confirming the orientation direction of glass fiber visually by the streak which has appeared on the main surface of a carrier similarly to confirmation of the position which provides a masking material.
  • the other substrate may be a resin-impregnated substrate (second plate member) for making the same carrier as the carrier 1, and is a dummy substrate used for the purpose of protecting the main surface of the first plate member.
  • the dummy substrate may be arranged on both sides of the first plate material so as to sandwich the first plate material, and the first plate material may be arranged on both sides.
  • the other substrate and the first plate material may be bonded together by a temporary adhesive or the like for temporarily fixing each other during the etching.
  • the polishing carrier or the carrier manufactured by the manufacturing method of the polishing carrier of the above embodiment is used, for example, in a method of manufacturing a magnetic disk substrate to be described later.
  • a method of manufacturing a magnetic disk substrate to be described later For example, an aluminum substrate, a silicon wafer, or a glass substrate. It may be used in the manufacture of a substrate other than the above.
  • the polishing carrier or the carrier manufactured by the method for manufacturing a polishing carrier described above may be used not only for the polishing process but also for the grinding process.
  • it can be used in all processes for grinding or polishing the main surface by planetary gear movement, such as rough grinding, fine grinding, first grinding, and second grinding.
  • This manufacturing method includes a polishing process in which the main surface of the substrate is polished in a state where the glass substrate is held on the polishing process carrier manufactured by the above-described polishing process carrier or the polishing process carrier manufacturing method.
  • carrier refers to a carrier manufactured by the above-described method for manufacturing a polishing carrier or a polishing carrier.
  • the outline of the manufacturing process performed in this embodiment will be described.
  • a forming process for forming a plate-shaped glass blank having a pair of main surfaces is performed.
  • the glass blank is a material for a glass substrate for a magnetic disk.
  • this glass blank is subjected to a rough grinding process.
  • the glass blank is subjected to shape processing to form a glass substrate, and further subjected to end face polishing.
  • the glass substrate is subjected to a precision grinding process using fixed abrasive grains.
  • a first polishing process and a second polishing process are performed on the glass substrate.
  • the flow is performed according to the above flow, but the flow and the type of processing are not limited, and the above processing can be appropriately omitted as necessary.
  • each process described above will be described.
  • a molding process of glass blank In a molding process, it shape
  • a disk-shaped glass blank can be obtained by the press molding method.
  • a glass blank may be manufactured using a known forming method such as a downdraw method, a redraw method, or a fusion method.
  • a disk-shaped glass substrate that is a base of the magnetic disk glass substrate can be obtained by appropriately performing the shape processing described later on the plate-shaped glass blank made by these methods.
  • a rough grinding process is performed.
  • the main surfaces on both sides of the glass blank are ground while the glass blank is held by a carrier of a double-side grinding apparatus.
  • the glass blank is held in a holding hole provided in the carrier, and is sandwiched between an upper surface plate and a lower surface plate, and an upper surface plate or a lower surface plate is supplied while supplying a grinding liquid containing an abrasive.
  • the glass substrate and each surface plate are relatively moved, and both main surfaces of the glass substrate are ground.
  • loose abrasive grains are used as the abrasive.
  • the glass blank is ground so as to approximate the target plate thickness dimension and the flatness of the main surface.
  • the rough grinding process is performed according to the dimensional accuracy or surface roughness of the molded glass blank, but can be omitted as appropriate.
  • shape processing processing is performed.
  • shape processing by forming a circular hole in a glass blank using a known processing method, a disk-shaped glass substrate having a circular hole is obtained. Thereafter, the end surface of the glass substrate is chamfered. Chamfering is performed on both the inner and outer end faces of the glass substrate. By performing chamfering, a side wall surface orthogonal to the main surface and a chamfered surface (intervening surface) connecting the side wall surface and the main surface are formed on the end surface of the glass substrate.
  • (D) End surface polishing process Next, the end surface polishing process of a glass substrate is performed.
  • a polishing liquid containing free abrasive grains is supplied between the polishing brush and the end surface of the glass substrate, and polishing is performed by relatively moving the polishing brush and the glass substrate in the thickness direction of the glass substrate. Do.
  • the end surfaces on the inner peripheral side and the outer peripheral side of the glass substrate are polished into a mirror state.
  • (E) Fine grinding process a fine grinding process is performed on the main surface of the glass substrate.
  • the fine grinding process it is preferable to perform grinding on the main surface of the glass substrate using a double-side grinding apparatus in which fixed abrasive grains are attached to a surface plate.
  • both main surfaces of the glass substrate are ground in substantially the same manner as the rough grinding process except that the fixed abrasive is used instead of the loose abrasive.
  • the glass substrate is held by the carrier of the above embodiment and is ground while being moved by the planetary gear in the double-side grinding apparatus.
  • the carrier In this carrier, there is no glass fiber facing the orientation direction in the vicinity of the inner wall portion facing the orientation direction of the glass fiber, so that the end face of the glass substrate is prevented from being damaged in the fine grinding process.
  • the carrier is reinforced with glass fibers in an orientation direction different from that of the glass fibers, the strength in the vicinity of the inner wall surface of the holding hole is secured, thereby suppressing the occurrence of contamination derived from the resin material. It has been.
  • the main surface of the glass substrate is ground by bringing the ground surface of the surface plate to which the fixed abrasive particles are adhered and the main surface of the glass substrate into contact with each other, but instead of this, loose abrasive grains were used. Grinding may be performed.
  • a first polishing treatment is performed on the main surface of the glass substrate.
  • the main surface on both sides of the glass substrate is polished by holding the glass substrate on a carrier using a well-known double-side polishing apparatus.
  • polishing is performed by using the free abrasive grains so that the polishing pad attached to the surface plate is brought into contact with the main surface of the glass substrate.
  • the loose abrasive is not particularly limited, and for example, cerium oxide abrasive or zirconia abrasive is used.
  • the first polishing process for example, removal of cracks and distortions remaining on the main surface when grinding with fixed abrasive grains is performed, or minute surface irregularities generated on the main surface by the crystallization process are removed.
  • the machining allowance it is possible to reduce the surface roughness of the main surface, for example, the arithmetic average roughness Ra, while preventing the shape of the end of the main surface from excessively dropping or protruding.
  • the second polishing treatment aims at mirror polishing of the main surface.
  • the second polishing process may use the same double-side polishing apparatus and polishing method as used in the first polishing process, but the size of the polishing abrasive grains should be smaller than the polishing abrasive grains used in the first polishing process. Is preferred. Thereby, the roughness of the main surface can be reduced while preventing the shape of the end portion of the main surface from excessively dropping or protruding.
  • a well-known apparatus can be used for the double-side polishing apparatus for performing the second polishing process.
  • the apparatus includes a pair of upper and lower surface plates, an internal gear sandwiched between the upper and lower surface plates, a sun gear provided on the lower surface plate, and a plurality of carriers engaged with the internal gear and the sun gear. Yes.
  • a polishing pad is affixed to each surface plate.
  • the glass substrate is sandwiched between the upper and lower surface plates, and the upper and lower surface plates are rotated in the opposite directions, so that the carrier holding the glass substrate revolves while rotating and performs planetary gear motion. .
  • the glass substrate and the polishing pad move relative to each other, and the main surface of the glass substrate is polished.
  • said processing apparatus and processing mechanism can be used similarly in the grinding
  • the glass substrate is taken out from the double-side polishing apparatus together with the carrier, washed, and the manufacturing process is completed. While the manufacturing process described above is repeated, the same polishing liquid is used in the second polishing process.
  • the polishing process is performed using the carrier described above, the occurrence of scratches on the end surface of the glass substrate when the polishing process is performed is prevented, and the resin material is used. By suppressing the occurrence of contamination from the origin, the contamination of the main surface of the glass substrate and the generation of scratches are suppressed.
  • Carriers having the same specifications as those described in the first embodiment were produced except that the specifications of the first wall were as follows (Examples 1 to 4, Comparative Examples 1 and 2).
  • Example 1 As shown in FIG. 4, one holding hole includes eight convex first curved surfaces (notches)
  • Example 2 one holding hole includes six notches
  • Example 3 As shown in FIG. 6 (a), one holding hole includes 10 notches
  • Example 4 As shown in FIG.
  • one holding hole includes 8 planes
  • Comparison Example 1 No first wall part (a simple circular holding hole is produced without performing an etching process)
  • Comparative Example 2 In Comparative Example 1, the glass material is not present over the entire circumference of the holding hole by etching the plate material of the portion serving as the holding hole over the entire circumference.
  • the maximum protrusion The amount is 2 mm
  • the radius of curvature R is 30 mm
  • the maximum protrusion amount of the plane of Example 4 in the radial direction of the virtual circle from the virtual circle in which the wall portion of the orientation direction wall portion forms a part toward the center of the virtual circle
  • the protrusion amount was 2 mm.
  • the etching process of Comparative Example 2 was performed in the same manner as Comparative Example 5 described later.
  • the laser surface inspection apparatus After performing the second polishing treatment, after cleaning and drying, the laser surface inspection apparatus is used to detect defects on the main surface of the glass substrate, and about 20 defects per substrate selected at random from there. Furthermore, SEM observation and elemental analysis were performed, and the number of resin-based foreign matters (number of defects) was measured. If the number of resin foreign matters is 1 or less per substrate, it is considered that there is no practical problem.
  • the scratches (concave defect) on the side wall surface of the end face were visually and microscopically observed using a condenser lamp in a dark screen. When there is a scratch on the end face, it is observed as a series of bright spots over the entire circumference at regular intervals of about 1 mm or less. The results are shown in Table 1.
  • Epoxy resin is impregnated into a plain-woven glass cloth, dried and cured, 0.1 mm prepreg obtained by laminating 5 sheets so that the orientation directions of the glass fibers coincide, and 0.5 mm obtained by pressing.
  • a resin-impregnated substrate having a thickness was prepared. This resin-impregnated substrate was cut using an end mill, deburred, and then shaped as shown in FIG. A portion of the circumferential region that becomes the first reinforcing region 11 and the second reinforcing region 13 on the inner wall surface of the holding hole of the resin-impregnated substrate that has been cut is around the center of the holding hole 3 with reference to any one reinforcing region.
  • ammonium hydrogen fluoride with a concentration of 20% and glycerin for viscosity adjustment
  • the compounded liquid (etching agent) was applied and allowed to stand for 10 minutes, so that the glass was etched only at the coated part.
  • the resin-impregnated substrate was washed with water to obtain a carrier (Example 9).
  • a carrier was prepared in the same manner as in Example 9 except that the standing time (etching time) after application was 20 minutes (Example 10).
  • a double-side polishing apparatus equipped with a planetary gear mechanism, a load on the substrate of 100 g / cm 2 , a platen rotational speed of 25 rpm, and a polishing condition of 60 minutes
  • a glass substrate for a magnetic disk was manufactured based on the second embodiment except that the glass substrate was subjected to the second polishing process of the second embodiment.
  • an aluminosilicate glass substrate with an outer diameter of 2.5 inches was used so that the final thickness was 0.653 mm.
  • the laser surface inspection apparatus After performing the second polishing treatment, after cleaning and drying, the laser surface inspection apparatus is used to detect defects on the main surface of the glass substrate, and about 20 defects per substrate selected at random from there. Furthermore, SEM observation and elemental analysis were performed, and the number of resin-based foreign matters (number of defects) was measured. If the number of resin foreign matters is 1 or less per substrate, it is considered that there is no practical problem.
  • the scratches (concave defect) on the side wall surface of the end face were visually and microscopically observed using a condenser lamp in a dark screen. When there is a scratch on the end face, it is observed as a series of bright spots over the entire circumference at regular intervals of about 1 mm or less. The results are shown in Table 3.
  • the polishing carrier As described above, the polishing carrier, the manufacturing method of the polishing carrier, and the manufacturing method of the magnetic disk substrate of the present invention have been described in detail. However, the present invention is not limited to the above-described embodiment, and departs from the gist of the present invention. Of course, various improvements and changes may be made within the range not to be performed.

Abstract

 研磨処理用キャリアは、少なくとも一方向に配向した繊維と樹脂材料とを含む複合材料から形成され、円板状の基板を上定盤及び下定盤で挟んで前記基板の一対の主表面を研磨処理する際に前記基板を保持するための保持穴を有している。前記保持穴は、前記保持穴の内周壁面の周上に、前記保持穴に前記基板が保持された状態で前記基板が前記繊維と接触するよう構成された第1の壁部と、当該基板が前記繊維と接触しないように構成された第2の壁部と、を有している。前記第2の壁部は、前記内周壁面のうち、前記一方向を含む前記繊維の配向方向を向く部分に形成されている。

Description

研磨処理用キャリア、研磨処理用キャリアの製造方法、及び磁気ディスク用基板の製造方法
 本発明は、基板の研磨処理に用いる研磨処理用キャリア、研磨処理用キャリアの製造方法、及び磁気ディスク用基板の製造方法に関する。
 情報記録媒体の1つとして用いられる磁気ディスクには、従来より、ガラス基板が好適に用いられている。今日、ハードディスクドライブ装置における記憶容量の増大の要請を受けて、磁気記録の高密度化が図られている。これに伴って、磁気ヘッドの磁気記録面からの浮上距離を極めて短くして磁気記録情報エリアを微細化することが行われている。このような磁気ディスクに用いるガラス基板の寸法及び形状は目標通り精度高く作製されていることが好ましい。
 ガラス基板の寸法及び形状を精度高く作製するために、ガラス基板の表面を研削及び研磨を行う。ガラス基板の研削及び研磨では、2つの定盤間に挟まれて研削あるいは研磨されるガラス基板を、研削あるいは研磨中保持するための板状の研削用あるいは研磨用のキャリアが用いられる。このキャリアには、ガラス基板を保持するための保持穴が設けられている。
 従来、このキャリアとして、機械的強度及びコストの点から、ガラス繊維を異なる2方向に配向したガラスクロスに樹脂材料を含浸させた樹脂含浸材料が広く用いられている。特に、ガラスクロスにエポキシ樹脂を含浸させた層を複数層積層させた構成のキャリアが好適に用いられる。しかし、このキャリアでは、ガラス基板が研削あるいは研磨されるとき、ガラス基板の端面(外周側壁面)に欠陥、例えば凹んだ傷が生じる場合がある。この傷の深さは端面に形成される他の傷に比べて深くかつ長い。この傷の凹んだ部分に研磨スラリ中の砥粒が付着し、また、傷により発生したガラスチップが端面に付着して発塵源となる場合もある。特に、最終研磨で用いる研磨スラリ中の砥粒が端面とキャリアとの間に挟まれて微粒子として凹状の傷内に付着しさらには固着する。このように付着した微粒子は、ガラス基板に磁性層を形成するときに行うスパッタリング中にガラス基板の端面から離脱して主表面上に乗って磁性層に欠陥をつくる場合もある。このため、上記傷は、ガラス基板の製造あるいは磁気ディスクの製造の歩留まりを下げる原因となっている。
 このような状況下、上記キャリアを構成するガラス繊維等の繊維からガラス基板を保護するキャリアが知られている(特許文献1)。このキャリアは、ガラス基板の保持穴の内周壁面に複数の凹部が配され、この内周壁面から外側に樹脂材料のみにより形成された保持穴緩衝領域と、保持穴緩衝領域の外側に複合材料により形成された保持穴補強領域と、を有する構成を有する。すなわち、形成されたガラス基板の保持穴の内周壁面から繊維がはみ出すことがないので、研磨工程時に保持穴に挿入されたガラス基板の外周側壁面が損傷することを防止できるとされている。
 また、研磨用キャリアの保持孔の内周面と被研磨体の外周側面との摺動に起因する傷が被研磨体の外周側面に生ずることを防止可能とする研磨用キャリアが知られている(特許文献2)。この研磨用キャリアでは、保持孔の内周面に、被研磨体の外周側面に接触して該被研磨体を支持する複数個の突起を設け、これら突起の間隔を保持孔の内周面における突起の周方向の幅よりも大きく設定している。
特開2012-218103号公報 特開2000-288921号公報
 しかし、特許文献1のキャリアでは、ガラス基板の保持穴の内周壁面が樹脂材料のみにより形成された保持穴緩衝領域となっているので、本来のキャリアの機械強度が得られず、耐久性に欠けるため、例えば連続加工を行った場合に、ガラス基板の外周側面と主表面との角が当接して保持穴緩衝領域を構成する樹脂材料の一部が欠ける場合が生じる虞がある。このときの保持穴緩衝領域から離脱した樹脂材料の一部は、上記傷の原因となり易く、またガラス基板の主表面に付着して凸部をつくり欠陥となる場合もある。
 また、特許文献2に記載される研磨用キャリアでは、被研磨体としてガラス基板を用いて研磨を行ったとき、ガラス基板の外周側面(外周端面)の傷を十分に抑制することはできなかった。
 そこで、本発明は、基板の端面の傷の発生を抑制し、さらに、基板の主表面に微粒子等が付着して欠陥が形成されることを抑制できる(基板の主表面への悪影響を回避できる)、研磨処理用キャリア、研磨処理用キャリアの製造方法、及び磁気ディスク用基板の製造方法を提供することを目的とする。
 本発明の一態様は、研磨処理用キャリアである。当該キャリアは、以下の形態を有する。
(形態1)
 研磨処理用キャリアであって、
 少なくとも一方向に配向した繊維と樹脂材料とを含む複合材料から形成され、円板状の基板を上定盤及び下定盤で挟んで前記基板の一対の主表面を研磨処理する際に前記基板を保持するための保持穴を有し、
 前記保持穴は、前記保持穴の内周壁面の周上に、前記保持穴に前記基板が保持された状態で前記基板が前記繊維と接触するよう構成された第1の壁部と、当該基板が前記繊維と接触しないように構成された第2の壁部と、を有し、
 前記第2の壁部は、前記内周壁面のうち、前記一方向を含む前記繊維の配向方向を向く部分に形成されていることを特徴とする研磨処理用キャリア。
(形態2)
 前記第2の壁部は、前記第1の壁部よりも、前記保持穴の半径方向の外側に位置している、形態1に記載の研磨処理用キャリア。
 形態2のキャリアは、別の言い方をすると、円板状のガラス基板を上定盤及び下定盤で挟んで前記ガラス基板のガラス主表面を研摩処理する際に前記ガラス基板を保持するための保持穴を有する研磨処理用キャリアであって、
 前記研磨処理用キャリアは、互いに異なる2方向にガラス繊維を配向させたガラスクロスに樹脂材料を含浸させてなる板により構成され、
 前記保持穴の内周壁面のうち、前記ガラス繊維の配向する2つの配向方向に面する配向方向壁面部分が、いずれも、前記保持穴の内周壁面の輪郭に内接する内接円の外側に位置するように前記保持穴の輪郭を定めたことを特徴とする研磨処理用キャリアである。
(形態3)
 前記第1の壁部は、前記保持穴の半径方向の内側に向く凸形状の第1の曲面、平面、あるいは、前記保持穴の内周壁面の輪郭に内接する内接円の曲率半径よりも大きな曲率半径を有する前記保持穴の半径方向の外側に対して凸形状の第2の曲面、であり、前記基板の外周側壁面は、前記第1の曲面、前記平面、あるいは、前記第2の曲面と当接する、形態2に記載の研磨処理用キャリア。
 形態3のキャリアは、別の言い方をすると、前記保持穴の前記配向方向壁面部分の、前記保持穴の周方向に沿った両側の壁面は、前記保持穴の内側に向く凸形状の第1の曲面、平面、あるいは、前記内接円の曲率半径よりも大きな曲率半径を有する前記保持穴の外側に対して凸形状の第2の曲面であり、前記ガラス基板の外周側壁面は、前記第1の曲面、前記平面、あるいは前記第2の曲面と当接する、上記別の言い方をした形態2に記載の研磨処理用キャリアである。
 なお、上記別の言い方をした形態2または3のキャリアにおいて、前記保持穴の前記第1の曲面、前記平面、あるいは、前記第2の曲面には、前記ガラスクロスのガラス繊維の先端がなく、前記ガラス繊維の先端が、前記保持穴の輪郭に対して前記輪郭の外側に位置していてもよい。
(形態4)
 前記第1の曲面、前記平面、あるいは、前記第2の曲面は、前記保持穴の周上に4箇所以上設けられている、形態3に記載の研磨処理用キャリア。
 形態4のキャリアは、別の言い方をすると、前記第1の曲面、前記平面、あるいは、前記第2の曲面は、前記保持穴の周上に4箇所以上設けられている、上記別の言い方をした形態2または3に記載の研磨処理用キャリアである。
(形態5)
 前記保持穴の内周壁面の輪郭に内接する内接円の直径は、前記基板の円板形状の直径より大きい、形態2~4のいずれか1つに記載の研磨処理用キャリア。
(形態6)
 前記内接円の直径は、前記基板の円板形状の直径の1.002~1.031倍である、形態5に記載の研磨処理用キャリア。
 形態6のキャリアは、別の言い方をすると、前記内接円の直径は、前記ガラス基板の円板形状の直径の1.002~1.031倍である、上記別の言い方をした形態2~5のいずれか1つに記載の研磨処理用キャリアである。
 本発明の他の一態様は、磁気ディスク用基板の製造方法である。当該製造方法は、以下の形態を有する。
(形態7)
 磁気ディスク用基板の製造方法であって、
 円板形状の基板をつくるステップと、
 形態2~6のいずれか1つに記載の研磨処理用キャリアに設けられた保持穴に基板を保持した状態で前記基板を上定盤と下定盤とで挟み、前記ガラス主表面と前記上定盤及び前記下定盤とを相対的に移動させることで、前記基板の主表面に研磨処理を行うステップと、含むことを特徴とする磁気ディスク用基板の製造方法。
 形態7の製造方法は、別の言い方をすると、ガラス基板を、上記別の言い方をした形態2~6のいずれか1つに記載の研磨処理用キャリアに設けられた保持孔に保持した状態で前記ガラス基板を上定盤と下定盤とで挟み、前記ガラス主表面と前記上定盤及び前記下定盤とを相対的に移動させることで、前記ガラス基板の主表面を研磨する研磨処理を含む、ことを特徴とする磁気ディスク用ガラス基板の製造方法である。
(形態8)
 前記研磨処理中、前記基板の外周側壁面が、前記第2の壁部と当接せず、前記第2の壁部の両側において当接する、形態7に記載の磁気ディスク用基板の製造方法。
 形態8の製造方法は、別の言い方をすると、前記研磨処理中、前記ガラス基板の外周側壁面が、前記配向方向壁面部分と当接せず、前記配向方向壁面部分の両側において当接する、上記別の言い方をした形態7に記載の磁気ディスク用ガラス基板の製造方法である。
(形態9)
 前記研磨処理用キャリアは、少なくとも一方向に配向した繊維と樹脂材料とを含む複合材料からなる板材に保持穴を形成し、前記保持穴の形成後、前記板材にエッチングを行うことにより、作製される、形態7または8に記載の磁気ディスク用基板の製造方法。
 本発明の他の一態様は、研磨処理用キャリアである。当該キャリアは、以下の形態を有する。
(形態10)
 前記保持穴の内周壁面から前記保持穴の半径方向の外側に延在する環状の領域に、前記第2の壁部に対し前記保持穴の半径方向の外側に設けられるとともに前記配向方向に繊維が存在しない繊維不存在領域が配されている、形態1に記載の研磨処理用キャリア。
 形態10のキャリアは、別の言い方をすると、板状のガラス基板を上定盤および下定盤で挟んで前記ガラス基板の主表面を研磨処理する際に前記ガラス基板を保持するための保持穴を有するキャリアであって、
 前記キャリアは、複数のガラス繊維が2つの配向方向のいずれかを向くよう配されたガラスクロスによって補強され、前記ガラスクロスに樹脂材料が含浸されてなる樹脂含浸基板からなり、
 前記保持穴の内壁面から外側に延在する環状の領域に、前記配向方向のうち一方の方向を向く第1のガラス繊維のみで補強された第1の補強領域と、前記配向方向の他方の方向を向く第2のガラス繊維のみで補強された第2の補強領域とが互いに離間して周方向に交互に配され、
 前記第1の補強領域は、前記保持穴の内壁面のうち前記第2のガラス繊維の配向方向に面する第1の内壁部の外側に設けられ、前記第2の補強領域は、前記内壁面のうち前記第1のガラス繊維の配向方向に面する第2の内壁部の外側に設けられていることを特徴とするキャリアである。
(形態11)
 前記繊維不存在領域は、前記第2の壁部を向く前記繊維の先端が前記保持穴の内周壁面に達しないことで形成されている、形態10に記載の研磨処理用キャリア。
 形態11のキャリアは、別の言い方をすると、前記第1の補強領域は、前記第2のガラス繊維の先端が前記保持穴の内壁面に達しないように形成され、前記第2の補強領域は、前記第1のガラス繊維の先端が前記保持穴の内壁面に達しないように形成されている、上記別の言い方をした形態10に記載のキャリアである。
 本発明の他の一態様は、研磨処理用キャリアの製造方法である。当該製造方法は、以下の形態を有する。
(形態12)
 円板状の基板を上定盤および下定盤で挟んで前記基板の主表面を研磨処理する際に前記基板を保持するための保持穴を有する研磨処理用キャリアの製造方法であって、
 少なくとも一方向に配向した繊維と樹脂材料とを含む複合材料からなる板材に前記保持穴を形成する第1のステップと、
 前記保持穴が形成された板材に少なくともエッチングを行うことによって、前記キャリアを作製する第2のステップと、を備え、
 前記第2のステップでは、前記一方向を含む前記繊維の配向方向を向く前記内周壁面の部分において前記繊維をエッチングすることを特徴とする研磨処理用キャリアの製造方法。
 形態12の製造方法は、別の言い方をすると、円板状のガラス基板を上定盤および下定盤で挟んで前記ガラス基板の主表面を研磨処理する際に前記ガラス基板を保持するための保持穴を有するキャリアの製造方法であって、
 複数のガラス繊維が2つの配向方向のいずれかを向くよう配されたガラスクロスによって補強され、前記ガラスクロスに樹脂材料が含浸されてなる樹脂含浸基板に前記保持穴を形成する第1のステップと、
 前記保持穴が形成された樹脂含浸基板にエッチングを行って前記キャリアを作製する第2のステップと、を備え、
 前記第2のステップでは、前記保持穴の内壁面のうち前記ガラス繊維の配向方向のいずれかに面する内壁部に当該配向方向を向くよう露出する当該ガラス繊維をエッチングすることにより、前記キャリアの保持穴の内壁面から外側に延在する環状の領域に、前記エッチングされたガラス繊維の配向方向と異なる配向方向のガラス繊維のみで補強された補強領域を形成することを特徴とするキャリアの製造方法である。
(形態13)
 前記第2のステップでは、前記エッチングに先立って、前記配向方向を向く前記内周壁面の部分以外の部分を構成する板材の部分にマスキング材を設け、前記エッチングの後、前記マスキング材を除去する、形態12に記載の研磨処理用キャリアの製造方法。
 形態13の製造方法は、別の言い方をすると、前記第2のステップでは、前記エッチングに先立って、前記環状の領域のうち前記補強領域以外の部分にマスキング材を設け、前記エッチングの後、前記マスキング材を除去する、上記別の言い方をした形態12に記載のキャリアの製造方法。
(形態14)
 前記第2のステップにおいて、前記配向方向を向く前記内周壁面の部分を構成する前記板材の部分に、前記繊維をエッチングするためのエッチング剤を塗布することで前記エッチングを行う、形態12または13に記載の研磨処理用キャリアの製造方法。
 形態14の製造方法は、別の言い方をすると、前記第2のステップにおいて、前記樹脂含浸基板の環状の領域のうち前記補強領域となる部分に、前記ガラス繊維をエッチングするためのエッチング剤を塗布することで前記エッチングを行う、上記別の言い方をした形態12または13に記載のキャリアの製造方法である。
(形態15)
 前記第2のステップでは、前記エッチングに先立って、前記板材と、前記板材において前記保持穴が形成された位置と対応する位置に保持穴が形成された1又は複数の他の基板と、を板厚方向に重ねて配置する、形態12から14のいずれか1項に記載の研磨処理用キャリアの製造方法。
 形態15の製造方法は、別の言い方をすると、前記第2のステップでは、前記エッチングに先立って、前記樹脂含浸基板と、前記樹脂含浸基板の前記保持穴が形成された位置と対応する位置に保持穴が形成された1又は複数の他の基板と、を板厚方向に重ねて配置する、上記別の言い方をした形態12から14のいずれか1つに記載のキャリアの製造方法である。
(形態16)
 前記他の基板は、少なくとも一方向に配向した繊維と樹脂材料とを含む複合材料からなり、
 前記板材を第1の板材といい、前記他の基板を第2の板材というとき、前記第2のステップでは、前記第1の板材および前記第2の板材を重ねて配置する際に、前記板材の間で前記繊維が配向した方向を一致させる、形態15に記載の研磨処理用キャリアの製造方法。
 形態16の製造方法は、別の言い方をすると、前記他の基板は、複数のガラス繊維が2つの配向方向のいずれかを向くよう配されたガラスクロスによって補強され、前記ガラスクロスに樹脂材料が含浸されてなり、
 前記樹脂含浸基板を第1の樹脂含浸基板といい、前記他の基板を第2の樹脂含浸基板というとき、前記第2のステップでは、前記第1の樹脂含浸基板および前記第2の樹脂含浸基板を重ねて配置する際に、前記樹脂含浸基板の間で前記配向方向を一致させる、上記別の言い方をした形態15に記載のキャリアの製造方法である。
(形態17)
 前記他の基板は、少なくとも一方向に配向した繊維と樹脂材料とを含む複合材料からなり、
 前記板材を第1の板材といい、前記他の基板を第2の板材というとき、前記第1のステップでは、前記第1の板材及び前記第2の板材を重ねて配置した場合に前記板材の間で前記繊維の配向する方向が一致するよう前記保持穴を形成する、形態15に記載の研磨処理用キャリアの製造方法。
 形態17の製造方法は、別の言い方をすると、前記他の基板は、複数のガラス繊維が2つの配向方向のいずれかを向くよう配されたガラスクロスによって補強され、前記ガラスクロスに樹脂材料が含浸されてなり、
 前記樹脂含浸基板を第1の樹脂含浸基板といい、前記他の基板を第2の樹脂含浸基板というとき、前記第1のステップでは、前記第1の樹脂含浸基板及び前記第2の樹脂含浸基板を重ねて配置した場合に前記樹脂含浸基板の間で前記配向方向が一致するよう前記保持穴を形成する、上記別の言い方をした形態15に記載のキャリアの製造方法である。
 本発明の他の一態様は、磁気ディスク用基板の製造方法である。当該製造方法は、以下の形態を有する。
(形態18)
 磁気ディスク用基板の製造方法であって、
 形態10および11のいずれか1つに記載の研磨処理用キャリアあるいは形態12から17のいずれか1つに記載の研磨処理用キャリアの製造方法により製造された研磨処理用キャリアに基板を保持させた状態で、前記基板の主表面を研磨する研磨処理を有することを特徴とする磁気ディスク用基板の製造方法。
 形態18の製造方法は、別の言い方をすると、磁気ディスク用ガラス基板の製造方法であって、
 上記別の言い方をした形態10または11に記載のキャリアあるいは上記別の言い方をした形態12から17のいずれか1つに記載のキャリアの製造方法により製造されたキャリアにガラス基板を保持させた状態で、前記ガラス基板の主表面を研磨する研磨処理を有することを特徴とする磁気ディスク用ガラス基板の製造方法である。
 本発明の磁気ディスク用基板の製造方法および研磨処理用キャリアによれば、基板の端面への傷の発生を抑制し、さらに、基板の主表面に欠陥が形成されることを抑制できる。
 また、本発明の研磨処理用キャリアによれば、繊維の配向方向に面する(配向方向を向く)内壁部の近傍では、当該配向方向を向く繊維が存在せず、例えば、当該繊維と異なる配向方向の繊維のみによって補強されている。これにより、基板の研磨処理を行った場合に、基板の端面における傷の発生が防止されるとともに、保持穴の内壁面近傍におけるキャリアの強度が確保されることで樹脂材料由来のコンタミネーション(異物)の発生が抑えられる。本発明の研磨処理用キャリアの製造方法によれば、そのようなキャリアを得ることができる。本発明の磁気ディスク用基板の製造方法によれば、研磨処理を行ったときの基板端面での傷の発生が防止されるとともに、樹脂材料由来のコンタミネーションの発生が抑えられることで基板の主表面の汚染またはスクラッチの発生が抑制される。
第1の実施形態のキャリアを用いる研削装置(両面研磨装置)の一例の分解斜視図である。 図1に示す研削装置の一例の断面図である。 第1の実施形態における保持穴の内周壁面とガラス繊維の配向する2つの配向方向との関係の一例を説明する図である。 第1の実施形態のキャリアの保持穴の輪郭形状の一例を示す図である。 図1に示すキャリアを、保持穴の1つに注目して示す斜視図である。 第1の実施形態のキャリアの保持穴の内周壁面とガラス基板との当接状態を説明する図である。 (a),(b)は、第1の実施形態のキャリアの保持穴の輪郭形状の他の例を示す図である。 (a)~(c)は、第1の実施形態のキャリアの保持穴の輪郭形状のさらに他の例を示す図である。 第1の実施形態のキャリアの保持穴の輪郭形状のさらに他の例を示す図である。 第2の実施形態のキャリアの平面図である。 図10に示すキャリアを、保持穴の1つに注目して示す斜視図である。 図1のキャリアを環状の領域に注目して示す図である。 図1のキャリアを環状の領域に注目して示す図である。
第1の実施形態
 以下、第1の実施形態の研磨処理用キャリア及び磁気ディスク用基板の製造方法について詳細に説明する。本実施形態において、研磨処理とは、ガラス基板の研削と、この研削後のガラス基板のガラス主表面の粗さを小さくするガラス基板の研磨と、を含む。したがって、研磨処理用キャリアとは、ガラス基板の研削および研磨に用いることができるキャリアである。以下で説明する実施形態のキャリアは研磨に用いる場合を説明するが、研削に用いることもできる。
 本願発明者は、従来の問題を解決するために、キャリアと、基板として例えばガラス基板について鋭意検討した。キャリアは、互いに異なる2方向、例えば直交する2方向にガラス繊維を配向させたガラスクロスに樹脂材料を含浸させてなる板(板材)で構成されている。このキャリアには、ガラスクロスが複数層積層されており、しかも、各ガラスクロスにおけるガラス繊維の配向方向は同じである。そして、ガラス基板の保持穴の内周壁面のうち、ガラス繊維の配向する2つの配向方向のそれぞれに面する配向方向壁面部分(後述する第2の壁部)では、ガラス繊維の先端がガラス基板の外周側壁面と当接するとき、樹脂材料がわずかに撓むことによりガラス繊維の先端がわずかに突出し(飛び出し)、このガラス繊維の先端がガラス基板の外周側壁面を突っつき擦れることで、あるいは、樹脂材料の面から突出したガラス繊維がガラス基板の外周側壁面を突っつき擦れることで、ガラス基板の外周側壁面に傷がつくのではないか、と発明者は推察した。
 一方、上述した公知(特許文献2)の研磨用キャリアでは、突起を設けてはいるものの、ガラス繊維の配向方向を考慮していないことに発明者は気がついた。さらに、ガラス繊維の配向方向と平行に突出した突起の先端のガラス繊維がガラス基板の外周端面に傷を生じさせていることを、発明者は見出した。ガラス繊維の配向方向と平行に突出した突起の先端には、特に力が集中しやすいため、ガラス基板の外周端面に傷を付け易い。そして、実験を重ねた結果、下記に示す態様の研磨処理用キャリア及び基板の製造方法を発明するに至った。
 本明細書において、基板には、ガラス基板のほか、アルミニウム基板、シリコンウエハ等が含まれるが、以降の説明では、代表してガラス基板を例に説明する。なお、アルミニウム基板には、純アルミニウムのほか、マグネシウム等の他の金属元素を含むアルミニウム合金からなる基板も含まれる。アルミニウム基板等の表面には、例えば、NiP(ニッケル窒化物)のメッキ膜等が設けられていてもよい。
 本明細書において、繊維には、ガラス繊維のほか、金属繊維等も含まれるが、以降の説明では、代表してガラス繊維を例に説明する。また、単に繊維という場合は、特に断った場合を除いて、複数の繊維を意味する。さらに、繊維の配向方向の数は、1つのみであってもよく、2つ、3つ等の複数であってもよいが、以降の説明では、代表して2つである場合を例に説明する。
 本明細書において、保持穴の内側という場合、保持穴の中心部から保持穴の半径方向の外側、あるいは、保持穴が狭まる方向をいい、保持穴の外側という場合、保持穴の中心部から保持穴の半径方向の内側、あるいは、保持穴が広がる方向をいう。
(研磨装置)
 本実施形態の研磨処理用キャリアを用いるガラス基板の研磨装置について図1及び図2を参照して説明する。研磨処理用キャリアは、円板状のガラス基板を上定盤及び下定盤で挟んでガラス基板のガラス主表面を研磨処理する際にガラス基板を保持するための保持穴を有する。図1は、研磨装置(両面研磨装置)の分解斜視図である。図2は、研磨装置の断面図である。研削装置についても研磨装置と同様の構成を有するので、研削装置の説明は省略する。
 図1に示すように、研磨装置は、上下一対の定盤、すなわち上定盤40および下定盤60を有している。上定盤40および下定盤60の間に円環状のガラス基板Gが狭持され、上定盤40または下定盤60のいずれか一方、または、双方を移動操作することにより、ガラス基板Gと各定盤とを相対的に移動させることで、このガラス基板Gの両主表面を研磨することができる。なお、ガラス基板と定盤との間には、研磨砥粒を含んだ研磨スラリが供給される。以降、上定盤40及び下定盤60を総称して説明するとき、単に定盤という。
 図1及び図2を参照して研磨装置の構成をさらに具体的に説明する。
 研磨装置において、下定盤60の上面および上定盤40の下面には、研磨パッド10が貼り付けられている。図1では、研磨パッド10はシート状に記されている。研磨パッド10には、例えば、発泡ウレタン樹脂等を用いることができる。
 キャリア30は、円板状のガラス基板Gを上定盤40と下定盤60で挟んでガラス基板Gの主表面を研磨処理する際に、ガラス基板Gを保持するための保持穴を有する。具体的には、キャリア30は、外周部に設けられて太陽歯車61及び内歯車62に噛合する歯部31と、ガラス基板Gを収容し保持するための1または複数の保持穴32とを有する。太陽歯車61、外縁に設けられた内歯車62および円板状のキャリア30は全体として、中心軸CTRを中心とする遊星歯車機構を構成する。円板状のキャリア30は、内周側で太陽歯車61に噛合し、かつ外周側で内歯車62に噛合するとともに、ガラス基板Gを1または複数を収容し保持する。下定盤60上では、キャリア30が遊星歯車として自転しながら公転し、ガラス基板Gと下定盤60とが相対的に移動させられる。例えば、太陽歯車61が反時計回りの方向に回転すれば、キャリア30は時計回りの方向に回転し、内歯車62は反時計回りの方向に回転する。その結果、下定盤60とガラス基板Gの間に相対運動が生じる。同様にして、ガラス基板Gと上定盤40とを相対的に移動させてもよい。
 上記相対運動の動作中には、上定盤40がキャリア30に保持されたガラス基板Gに対して(つまり、鉛直方向に)所定の圧力で押圧し、これによりガラス基板Gに対して研磨パッド10が押圧される。また、図2に示すように、ポンプ(不図示)によって研磨スラリが、供給タンク71から1または複数の配管72を経由してガラス基板Gと研磨パッド10との間に供給される。
(キャリア)
 キャリア30は、複数のガラスクロス(JIS R3414:2012)を積層させた積層構造を有している。キャリア30を、ガラスクロスを用いた積層構造とするのは、キャリア30が研磨中に太陽歯車61及び内歯車62からうける力によっての曲げ変形やせん断変形を引き起こし、その結果、ガラス基板Gが破損することが生じないように、曲げ剛性、せん断剛性、及び機械的強度を確保するためである。ガラスクロスは、ガラス繊維からなるガラス糸(JIS R3413:2012。以降、ガラスヤーンともいう)を織り上げて製造したものである。キャリア30は、上記ガラスクロスに樹脂材料を含浸させた層を重ねて圧着したものである。すなわち、キャリア30は、樹脂材料内に、互いに異なる2方向にガラス繊維を配向させたガラスクロスが配された板材(以降、樹脂含浸基板ともいう)で構成されている。樹脂材料としては、エポキシ樹脂やフェノール樹脂等の熱可塑性樹脂が用いられる。
 図3は、本実施形態におけるキャリア30の保持穴32の保持穴32の内周壁面36とガラス繊維の配向する2つの配向方向との関係の一例を説明する図である。図3に示す内周壁面36の輪郭形状は、便宜的に円形状で示しているが、後述するように、保持穴32の周上に沿って凹凸を有する。キャリア30は、互いに異なる2方向(X,Y方向)にガラス繊維を配向させたガラスクロスに樹脂材料を含浸させてなる板で構成されている。ガラスクロスの各層におけるガラス繊維の配向方向は、いずれもX方向、Y方向である。ガラスクロスは、例えばフィラメント径が数μmのガラス繊維33,34が、例えば単位当たり200本~800本の密度で配列して構成された織り布である。
 図4は、キャリア30の保持穴32の輪郭形状の一例を示す図である。図5は、図1に示すキャリア30を、保持穴32の1つに注目して示す斜視図である。図6は、キャリア30の保持穴32の内周壁面36とガラス基板Gとの当接状態を説明する図である。
 本実施形態のキャリア30は、少なくとも一方向に配向したガラス繊維と樹脂材料とを含む複合材料から形成され、円板状の基板を上定盤及び下定盤で挟んで基板の一対の主表面を研磨処理する際に基板を保持するための保持穴32を有している。保持穴32は、保持穴の内周壁面の周上に、保持穴32に基板が保持された状態で基板が繊維と接触するよう構成された第1の壁部(後述する第1の曲面37、平面38、第2の曲面39のうち、第2の壁部を除く部分)と、当該基板が繊維と接触しないように構成された第2の壁部(後述する配向方向壁面部分35)と、を有している。第2の壁部は、保持穴32の内周壁面のうち、一方向を含む繊維の配向方向を向く部分に形成されている。そして、第1の実施形態のキャリア30は、第2の壁部は、第1の壁部よりも、保持穴の半径方向の外側に位置していることを特徴とする。なお、一方向を含む繊維の配向方向とは、キャリアに含まれる繊維が配向する全ての方向を意味する。したがって、保持穴の内周壁面には、繊維の全ての配向方向に対応して第2の壁部が形成されており、具体的には、繊維の配向方向の数の2倍の数の第2の壁部が内周壁面に形成されている。例えば、繊維の配向方向の数が2である場合は、第2の壁部は内周壁面の4箇所に形成される。この点は、後述する第2の実施形態でも同様である。
 図4に示す保持穴32の側壁面のうち、ガラス繊維の配向する2つの配向方向(X方向、Y方向)に面する配向方向壁面部分35が、いずれも、保持穴32の内周壁面の輪郭に内接する内接円の外側に位置するように保持穴32の輪郭が定められている。これにより、研磨処理中のガラス基板Gの外周側壁面が、配向方向壁面部分35と当接せず、配向方向壁面部分35の両側において当接するようになっている。
 ここで、配向方向壁面部分35とは、図3に示すように、保持穴32の内周壁面の輪郭に内接する内接円Cを想定したとき、内接円の法線方向(内接円の接線に対して直交する方向)が、ガラス繊維33,34の配向方向に一致するような内接円上の部分を、内接円の中心点から見た方位方向に位置する保持穴32の内周壁面の部分(図3において、太い実線で示す部分)をいう。このとき、法線方向が配向方向と一致するとは、図3に示すように、方向が完全に一致する部分を中心にして、θ=40°(図の中心線に対して±20°)の範囲内の壁面部分を配向方向壁面部分35の許容範囲とする。そのような許容範囲には、例えばθ=22.5°(図の中心線に対して±11.25°)の範囲が挙げられる。保持穴32は、概略円形状に設けられているので、配向方向壁面部分は4つ、X方向の方位角を0度として、θ=0°、90°、180°、270°のそれぞれを中心とした配向方向壁面部分35がある。図4に示す保持穴32の内周壁面36のうち、配向方向壁面部分35は、保持穴32の内周壁面の輪郭に内接する内接円(図4では点線で示されている)の外側に位置している。具体的には、図4に示す例では、配向方向壁面部分35の、保持穴32の周方向に沿った両側の壁面において、保持穴32の内側に向く凸形状の第1の曲面37を成している。凸形状の第1の曲面37は、内接円に接している。したがって、ガラス基板Gの外周側壁面は、図6に示すように、配向方向壁面部分35と当接せず、配向方向壁面部分35の両側において当接する。このように、ガラス繊維33,34の配向方向に面する配向方向壁面部分35は、保持穴32の内周壁面の輪郭に内接する内接円の外側に位置し、ガラス基板Gの外周側壁面と当接しない。このため、配向方向壁面部分35においてガラス繊維33,34が樹脂材料から露出したとしても、ガラス繊維33,34の端がガラス基板Gの外周側壁面と接触することがないので、ガラス基板Gの外周側壁面に傷がつくことを防止できる。これにより、ガラス基板Gの主表面に微粒子等が付着して欠陥が形成されることを抑制できる。なお、ガラス基板Gの内周側および外周側の端面には、面取りが施されることによって、主表面と直交する側壁面と、側壁面と主表面を繋ぐ面取り面(介在面)とが形成されていてもよく、この場合、ガラス基板Gの外周側の端面(外周側壁面)のうち、特に側壁面に傷がつくことが防止される。
 また、配向方向壁面部分35に対して保持穴32の内周壁面の周方向の両側に位置する、保持穴32の内側に向く凸形状の2つの第1の曲面37がガラス基板Gと当接し、ガラス基板Gの外周側壁面に加える力を分散するので、凸形状の2つの第1の曲面37がガラス基板Gの外周側壁面と当接して傷をつくることを抑制できる。一方、保持穴32の形状が、従来のような単純な円形の場合、1箇所で接触するため、力が集中して傷が入り易い。
 なお、1つのキャリア30には複数の保持穴32が設けられる場合、全ての保持穴32においてガラス繊維の配向方向を考慮して、保持穴32の内側に向く凸形状の第1の曲面37を設けることが好ましい。凸形状の第1の曲面37は、1つのキャリア30に形成された全ての保持穴32において、キャリア30に含まれるガラス繊維の向きを考慮して形成されている必要がある。凸形状の突起(ノッチ)を有する従来の研磨用キャリアでは、例えば特許文献2において図示されるように、ノッチの向きに注意が払われていなかったため、1つのキャリアに複数の保持穴が形成されている場合、ノッチ先端部の基板支持部においてガラス繊維が垂直方向に突出する場合があった。このため、複数の保持穴を有するキャリアを用いて研磨または処理を行った場合に、バッチ内の全ての基板について、垂直方向に突出するガラス繊維との接触を防止することができていなかった。
 配向方向壁面部分35の壁面部分が一部をなす仮想円から当該仮想円の中心方向への仮想円の半径方向における凸形状の第1の曲面37の最大突き出し量は0.3~5mmであることが好ましく、1~3mmがより好ましい。なお、凸形状の第1の曲面37は、曲面を有するものであればよく、図示されるように、凸形状の第1の曲面37の内側の部分から外側に膨らむように湾曲する曲面を有していていもよく、特許文献2の図1に示されるように、凸形状の第1の曲面の外側から内側に膨らむように湾曲する曲面、または、平面を有していていもよい。凸形状の第1の曲面37が凸形状の第1の曲面37の内側の部分から外側に膨らむように湾曲する曲面を有している場合、その曲面の曲率半径Rは5~150mmであることが好ましく、10~50mmであることがより好ましい。凸形状の第1の曲面の数は、4つ以上であることが好ましく、8以上であることがより好ましい。
 図4に示す例では、保持穴32の内側に向く凸形状の第1の曲面37が8つ設けられているが、第1の曲面37の周上の配置数は8つに限られない。図7(a),(b)は、キャリア30の保持穴32の輪郭形状の他の例を示す図である。図7(a),(b)に示すように、配置数は6、10等であってもよい。このように、ガラス繊維33,34の配向する2つの配向方向(X方向、Y方向)に面する配向方向壁面部分35の両側の壁面において、凸形状の第1の曲面37が設けられる限りにおいて、上記配置数は制限されない。
 さらには、配向方向壁面部分35の両側の壁面において、凸形状の第1の曲面37が設けられる代わりに、平面38が設けられてもよい。図8(a)~(c)は、キャリア30の保持穴32の輪郭形状のさらに他の例を示す図である。ガラス基板Gの外周側壁面が、配向方向壁面部分35と当接せず、配向方向壁面部分35の両側において当接する限りにおいて、図8(a)~(c)に示すように、保持穴32の輪郭形状において、ガラス繊維33,34の配向する2つの配向方向(X方向、Y方向)に面する配向方向壁面部分35の両側の壁面において、平面38であってもよい。平面38は、内接円Cに接している。すなわち、保持穴32の輪郭形状は、正六角形、正八角形、正十角形等の正多角形あるいは多角形とすることもできる。図8(a)に示す正六角形の例では、配向方向壁面部分35の4つの位置を、正六角形の頂点の位置に対応させることができないため、図8(a)に示すように、配向方向壁面部分35の位置が正六角形の頂点の位置からずれた位置にくるように、ガラス繊維33,34の配向する2つの配向方向(X方向、Y方向)に対する正六角形の向きが調節される。同様に、図8(c)に示すような正十角形の例においても、配向方向壁面部分35の4つの位置を、正十角形の頂点の位置に対応させることができないため、配向方向壁面部分35の位置が正十角形の頂点の位置からずれ位置にくるように、ガラス繊維33,34の配向する2つの配向方向(X方向、Y方向)に対する正十角形の向きを調節される。
 なお、図8(b)に示す正八角形の例では、配向方向壁面部分35の4つの位置を正八角形の頂点の位置に対応させることができるので、配向方向壁面部分35の位置が正八角形の頂点の位置に来るように、ガラス繊維33,34の配向する2つの配向方向(X方向、Y方向)に対する正八角形の向きが調節される。
 図8(a)~(c)に示す例においても、保持穴32の内周壁面のうち、平面38は、内接円Cに接している。配向方向壁面部分35が、いずれも、保持穴32の内周壁面の輪郭に内接する内接円Cの外側に位置するように保持穴32の輪郭を定めることにより、研磨処理中のガラス基板Gの外周側壁面が、配向方向壁面部分35と当接せず、配向方向壁面部分35の両側において当接することができる。すなわち、保持穴32の配向方向壁面部分35の、保持穴32の周方向に沿った両側の壁面は、平面38であり、研磨処理中のガラス基板Gの外周側壁面は、上記平面38の部分と当接する。したがって、配向方向壁面部分35においてガラス繊維33,34が樹脂材料から露出したとしても、ガラス繊維33,34の端がガラス基板Gの外周側壁面と接触することがないので、ガラス基板Gの外周側壁面に傷がつくことを防止できる。これにより、ガラス基板Gの主表面に微粒子等が付着して欠陥が形成されることを抑制できる。
 また、保持穴32の配向方向壁面部分35の、保持穴32の周方向に沿った両側の壁面は平面38でなくてもよい。図9は、キャリア30の保持穴の輪郭形状のさらに他の例を示す図である。平面38の代わりに、保持穴30の内周壁面の輪郭に内接する内接円Cの曲率半径よりも大きな曲率半径を有する第2の曲面39を用いることができる。第2の曲面39は、保持穴32の外側に対して凸形状(保持穴32の内側に対して凹形状)である。第2の曲面39は、内接円Cと接している。この場合、図示されるように、保持穴32の内周壁面のうち、配向方向壁面部分35が、いずれも、保持穴32の内周壁面の輪郭に内接する内接円Cの外側に位置するように保持穴32の輪郭が定められている。これにより、研磨処理中のガラス基板Gの外周側壁面が、配向方向壁面部分35と当接せず、配向方向壁面部分35の両側の第2の曲面39において当接する。したがって、配向方向壁面部分35においてガラス繊維33,34が樹脂材料から露出したとしても、ガラス繊維33,34の端がガラス基板Gの外周側壁面と接触することがないので、ガラス基板Gの外周側壁面に傷がつくことを防止できる。これにより、ガラス基板Gの主表面に微粒子等が付着して欠陥が形成されることを抑制できる。
 キャリア30の機械的強度を高める点から、ガラス繊維33,34の先端は、保持穴32の内周壁面36に位置することが好ましい。すなわち、第1の曲面37、平面38、あるいは、第2の曲面39の面上に、ガラス繊維33,34の先端が位置することが好ましい。
 しかし、ガラス基板Gの外周側壁面に傷がつくことをより一層防止する点から、配向方向壁面部分35の両側に位置する第1の曲面37、平面38、あるいは、第2の曲面39には、ガラスクロスのガラス繊維33,34の先端がなく、ガラス繊維33,34の先端は、保持穴32の輪郭に対してこの輪郭の外側に位置することが好ましい。配向方向壁面部分35の両側に位置する第1の曲面37、平面38、あるいは、第2の曲面39は、配向方向壁面部分35ではないので、ガラス繊維33,34の先端が第1の曲面37、平面38、あるいは、第2の曲面39上に位置しても、ガラス基板Gの外周側壁面に傷がつき難い。しかし、配向方向壁面部分35においてガラス繊維33,34が樹脂材料から露出していなくても、研磨中、ガラス繊維33,34の周りを囲む樹脂材料は、ガラス基板Gと当接したとき、わずかに圧縮を受けてガラス繊維33,34が樹脂材料から突き出す場合がある。また研磨処理中、上記樹脂材料がガラス基板Gと擦れて樹脂材料が摩耗することにより、ガラス繊維33,34が露出する場合がある。このような場合においても、ガラス基板Gの外周側壁面に傷がつくことを抑制するために、ガラス繊維33,34の先端が、保持穴32の輪郭に対して保持穴32の輪郭の外側に位置することが好ましい。この場合、キャリア30の機械的強度を確保する観点から、ガラス繊維33,34の先端と保持穴32の輪郭との距離は2μm未満であることが好ましい。このように先端が保持穴32の内周壁面36に到達しないガラス繊維33,34は、フッ酸を含むエッチング溶液を用いてキャリア30の第1の曲面37、平面38、あるいは、第2の曲面39に露出したガラス繊維33,34をエッチング処理することにより得られる。すなわち、複数のガラス繊維が2つの配向方向のいずれかを向くよう配されたガラスクロスによって補強され、このガラスクロスに樹脂材料が含浸されてなる樹脂含浸基板に保持穴32を形成し、保持穴32の形成後、この樹脂含浸基板にエッチングを行うことにより作製されること、が好ましい。
 なお、キャリア30の保持穴32の内周壁面のうち、第1の曲面37、平面38、あるいは、第2の曲面39には、ガラス繊維33,34を、フッ酸を含むエッチング液でエッチングするエッチング処理後、エッチング処理により生成されたフッ化アルミン酸アルカリ塩を、金属イオンを含む酸性の電解質溶液で除去する除去処理を施してもよい。まず、このエッチング処理を行うことにより、ガラス基板Gの外周端面に傷が入る確率をさらに低減することが可能となる。さらに、エッチング処理後に上記の除去処理を施すことにより、キャリア30に残存するフッ化アルミン酸アルカリ塩の微粒子が除去されるので、研磨中、ガラス基板Gと上定盤40あるいは下定盤60との間にフッ化アルミン酸アルカリ塩の微粒子が入り込んで、ガラス基板Gの主表面に傷をつけること、あるいは、上記微粒子が、ガラス基板Gに磁性層を形成するときに行うスパッタリング中にガラス基板Gの主表面上に乗って磁性層に欠陥をつくることを防止できる。
 配向方向壁面部分35の両側の第1の曲面37、平面38、あるいは、第2の曲面39は、保持穴32の周上に4箇所以上設けられていることが、保持穴32の内周壁面36とガラス基板Gの外周側壁面とが当接するときの力を分散させる点で好ましい。上記当接する力が分散せず集中した場合、キャリア30は局部的な大きな力を受けて局部変形し、キャリア30が破損し、あるいは、キャリア30が変形して撓んだ隙間にガラス基板Gが進入して、研磨中にガラス基板Gや研磨パッドの破損が生じる虞がある。
 また、保持穴32の内周壁面の輪郭に内接する内接円Cの直径は、研磨しようとするガラス基板Gの円板形状と略同等か、それよりやや大きく、ガラス基板Gの円板形状の直径の1.002~1.031倍であることが、ガラス基板Gの外周側壁面を、配向方向壁面部分35と当接させず、配向方向壁面部分35の両側の壁面において確実に当接させる点で、好ましい。この範囲より小さいと、ガラス基板を保持穴に保持させたり、保持穴からガラス基板を取り外す作業が困難になる場合がある。また、この範囲より大きいと、加工中にガラス基板が勢い良く保持穴の内周壁面に当たりやすくなり、端面傷が出やすくなる場合がある。
 図1,2に示す研磨装置では、研磨パッドを上定盤40あるいは下定盤60に貼り付けたものであるが、上定盤40あるいは下定盤60に固定砥粒を設けて、ガラス基板Gと上定盤40あるいは下定盤60との間にクーラントを供給してもよい。また、キャリア30は研磨装置の他に、ガラス基板Gを研削する研削装置に用いることもできる。
 このようなキャリア30を、研磨装置、さらには、この研磨装置と略同様の構成をした研削装置に用いて、以下に示すような磁気ディスク用ガラス基板の製造に好適に用いることができる。ガラス基板の研削装置を用いた研削では、研磨に比べて研削後のガラス基板の主表面の粗さRaは大きい。このような研削において、上定盤及び下定盤のそれぞれとガラス基板との間に研削液を供給してガラス基板の主表面を研削してもよい。あるいは、上定盤及び下定盤のそれぞれに固定砥粒を設け、この固定砥粒とガラス基板との間に潤滑液を供給してガラス基板の主表面を研削してもよい。
(磁気ディスク用基板の製造方法)
 本実施形態の製造方法では、まず、一対の主表面を有する板状の磁気ディスク用ガラス基板の素材となるガラスブランクの成形処理が行われる。次に、このガラスブランクの粗研削処理が行われる。この後、ガラスブランクに形状加工処理及び端面研磨処理が施される。この後、ガラスブランクから得られたガラス基板に固定砥粒を用いた精研削処理が行われる。この後、第1研磨処理、化学強化処理、及び、第2研磨処理がガラス基板に施される。なお、本実施形態では、上記流れで行うが、上記処理が全てある必要はなく、これらの処理は適宜行われなくてもよい。また、処理の順番は適宜変更することができる。以下、各処理について、説明する。
 (a)ガラスブランクの成形
 ガラスブランクの成形では、例えばプレス成形法を用いることができる。プレス成形法により、円形状のガラスブランクを得ることができる。さらに、ダウンドロー法、リドロー法、フュージョン法、フロート法などの公知の製造方法を用いて製造することができる。これらの公知の製造方法で作られた板状ガラスブランクに対し、適宜形状加工を行うことによって磁気ディスク用ガラス基板の元となる円板状のガラス基板が得られる。
 (b)粗研削
 粗研削では、具体的には、ガラスブランクを、図1,2に示す装置と同様の遊星歯車機構を備える周知の両面研削装置に装着される保持部材(キャリア)に設けられた保持穴内に保持しながらガラスブランクの両側の主表面の研削が行われる。この時、上述のキャリア30を用いることができる。研削剤として、例えば遊離砥粒が用いられる。粗研削では、ガラスブランクが目標とする板厚寸法及び主表面の平坦度に略近づくように研削される。なお、粗研削は、成形されたガラスブランクの寸法精度あるいは表面粗さに応じて行われるものであり、場合によっては行われなくてもよい。
 (c)形状加工
 次に、形状加工が行われる。形状加工では、ガラスブランクの成形後、公知の加工方法を用いてガラスブランクの中心に円孔を形成することにより、円孔があいた円板形状のガラス基板を得る。その後、ガラス基板の端面の面取りを実施する。すなわち、(a)~(c)の加工をガラスブランクに施すことにより、円板形状のガラス基板がつくられる。
 (d)端面研磨
 次にガラス基板の端面研磨が行われる。端面研磨は、例えば研磨ブラシとガラス基板の端面との間に遊離砥粒を含む研磨液を供給して研磨ブラシとガラス基板とを相対的に移動させることにより研磨を行う処理である。端面研磨では、ガラス基板の内周側壁面及び外周側壁面を研磨対象とし、内周側壁面及び外周側壁面を鏡面状態にする。
 (e)精研削
 次に、ガラス基板の主表面に精研削が施される。精研削では固定砥粒を貼り付けた定盤を用い、図1,2に示した研磨装置と同様の遊星歯車機構の両面研削装置を用いて、ガラス基板の主表面に対して研削を行うことが好ましい。この場合、遊離砥粒と研磨パッドの組み合わせの代わりに、固定砥粒を設けた定盤とクーラントの組み合わせを用いることが好ましい。具体的には、ガラス基板を、両面研削装置の保持部材である上述したキャリア30に設けられた保持穴内に保持しながらガラス基板の両側の主表面の研削を固定砥粒で行う。研削による取代量は、例えば10μm~200μm程度である。定盤により基板にかける荷重は、100~250g/cmであることが好ましい。
 本実施形態の精研削では、固定砥粒を含んだ研削面とガラス基板の主表面とを接触させてガラス基板の主表面を研削するが、遊離砥粒を用いた研削を行ってもよい。
 (f)第1研磨
 次に、ガラス基板の主表面に第1研磨が施される。具体的には、ガラス基板の外周側壁面を、図1、2に示される研磨装置のキャリア30に設けられた保持穴32内に保持しながらガラス基板Gの両側の主表面の研磨が行われる。第1研磨は、遊離砥粒を用いて、定盤に貼り付けられた研磨パッドを用いる。第1研磨は、例えば固定砥粒による研削を行った場合に主表面に残留したクラックや歪みの除去をする。第1研磨では、主表面端部の形状が過度に落ち込んだり突出したりすることを防止しつつ、主表面の表面粗さ、例えば算術平均粗さRaを低減することができる。そして、主表面は鏡面となる。
 第1研磨に用いる遊離砥粒は特に制限されないが、例えば、酸化セリウム砥粒、あるいはジルコニア砥粒などが用いられる。
 研磨パッドの種類は特に制限されないが、例えば、硬質発泡ウレタン樹脂ポリッシャが用いられる。
 (g)化学強化
 ガラス基板は公知の方法を用いて適宜化学強化することができる。化学強化を行うタイミングは、適宜決定することができる。化学強化は、必要に応じて行われればよく、行われなくてもよい。
 (h)第2研磨(最終研磨)
 次に、化学強化後のガラス基板に第2研磨が施される。第2研磨は、主表面のさらなる低粗さ化、低うねり化を目的とする。第2研磨においても、第1研磨に用いる両面研磨装置と同様の構成を有する遊星歯車機構の両面研磨装置が用いられる。具体的には、ガラス基板の外周側壁面を、図1~3に示される研磨装置のキャリア30に設けられた保持穴32内に保持しながらガラス基板Gの両側の主表面の研磨が行われる。こうすることで主表面の端部の形状が過度に落ち込んだり突出したりすることを防止しつつ、主表面の粗さを低減することができる。第2研磨では第1研磨と比べて、遊離砥粒の種類、粒子サイズ、及び、研磨パッドの樹脂ポリッシャの硬度が異なる。
 第2研磨に用いる遊離砥粒として、例えばコロイダルシリカ等の微粒子が用いられる。研磨されたガラス基板を洗浄することで、磁気ディスク用ガラス基板が得られる。
 第2研磨は、必ずしも必須ではないが、ガラス基板の主表面の表面凹凸のレベルをさらに良好なものとすることができる点で実施することが好ましい。このようにして、第2研磨の施されたガラス基板は磁気ディスク用ガラス基板となる。
 研削装置あるいは研磨装置で行う粗研削、精研削、第1研磨及び第2研磨の少なくとも1つの研磨処理では、ガラス基板Gを上下方向から挟む上定盤と下定盤が用いられる。研磨処理で用いるガラス基板Gを保持する保持穴32の側壁面のうち、配向方向壁面部分35が、いずれも、保持穴32の内周壁面の輪郭に内接する円弧形状の外側に位置するように保持穴32の輪郭を定めることにより、研磨処理中のガラス基板Gの外周側壁面が、配向方向壁面部分35と当接せず、配向方向壁面部分35の、保持穴32の周方向に沿った両側において当接するように構成されている。好ましい形態として、保持穴32の配向方向壁面部分35の、保持穴32の周方向に沿った両側の壁面は、図4に示すような凸形状の第1の曲面37、図8(a)~(c)に示すような平面38、あるいは、図9に示すような第2の曲面39となっている。研磨処理中のガラス基板Gの外周側壁面は、第1の曲面37、平面38、あるいは第2の曲面39と当接し、配向方向壁面部分35と当接しない。このため、ガラス基板Gの外周側壁面への傷の発生を抑制し、さらに、ガラス基板Gの主表面に欠陥が形成されることを抑制することができる。
第2の実施形態
 次に、第2の実施形態の研磨処理用キャリア、研磨処理用キャリアの製造方法、および磁気ディスク用基板の製造方法について詳細に説明する。
 本発明者の研究によれば、特許文献1に記載のキャリアを用いて研磨処理を行った場合、ガラス基板の主表面に、異物が付着して汚染されたり、スクラッチ(微小な傷)が生じたりすることが分かった。具体的には、上記保持穴緩衝領域が形成されたキャリアを用いて研磨処理を行ったところ、保持穴の内壁面近傍の強度が低下することにより、キャリアを構成する樹脂材料の一部が脱落(欠落)し、研磨処理後のガラス基板の主表面に異物が付着して汚染される場合があることが分かった。また、ガラス基板の主表面にスクラッチが生じる場合もあることが分かった。そして、本発明者が鋭意検討を行ったところ、この原因は、保持穴の内壁面の外側の環状の領域において、ガラス繊維が完全に除去されてしまったことで、ガラスクロスによる補強効果が失われて保持穴の内壁面近傍の強度が低下し、研磨処理中に、ガラス基板がキャリアの保持穴緩衝領域に繰り返し衝突又は圧接することで、保持穴緩衝領域を構成する樹脂材料が一部脱落し、コンタミネーションとなってガラス基板と定盤との間に入り込み、ガラス基板の主表面を汚染するあるいはスクラッチを生じさせることにあることが明らかにされた。そして、実験を重ねた結果、下記に示す態様の研磨処理用キャリア、研磨処理用キャリアの製造方法、及び磁気ディスク用基板の製造方法を発明するに至った。
(研磨処理用キャリア)
 図10に、本実施形態のキャリア1を示す。
 キャリア1は、後述する研削処理(粗研削処理及び精研削処理)および研磨処理(第1研磨処理、第2研磨処理)において、研削対象または研磨対象であるガラス基板を保持するものである。なお、本実施形態において、単に研磨処理という場合は、研削処理も含む概念として理解される。キャリア1は、ガラス基板を保持するための複数の保持穴3を有する。
 キャリア1は、複数のガラス繊維が2つの配向方向のいずれかを向くよう配され、キャリア1を補強するガラスクロスと、当該ガラスクロスに含浸される樹脂材料と、を有する樹脂含浸基板を含む。
 ガラスクロスは、特に制限されることなく公知のものを用いることができ、例えば、ガラス繊維の束であるガラスヤーンを複数用いて平織したものが用いられる。平織されたガラスクロスでは、複数のガラスヤーンが互いに直交する2つの配向方向を向いている。なお、本実施形態において、直交するという場合には、2つの配向方向が90°をなす場合のほか、略90°(例えば、70~110°、78.75~101.25°、80~100°)をなしている場合も含まれる。また、2つの配向方向は、互いに直交する配向方向であってもよく、互いに直交しない配向方向(例えば互いに60°または120°をなす方向)であってもよい。ガラス繊維の材質には、特に制限されないが、例えばアルミノシリケートガラスが用いられる。
 樹脂含浸基板において、樹脂材料は、ガラス繊維のそれぞれを取り囲むように、ガラスクロスに含浸されていると考えられるが、ガラス繊維の部分同士が直接接していてもよい。樹脂材料は、特に制限されないが、例えばエポキシ樹脂、フェノール樹脂等の熱硬化性樹脂が用いられる。樹脂含浸基板は、公知の方法により作製され、例えば、ガラスクロスに樹脂材料を含浸させた後、樹脂材料を乾燥させることで得られるプリプレグを複数枚(例えば5枚)、プリプレグ間で配向方向が一致するよう積層し、圧着させることで得られる。ガラス繊維の径は、特に制限されないが、例えば5~10μmである。平織りされたガラスクロスにおいて、特に制限されないが、ガラスヤーンの太さ(キャリアの平面方向に沿ったガラスヤーンの幅)は、例えば200~700μmであり、ガラスヤーンの太さ(キャリアの板厚方向に沿ったガラスヤーン幅)は、例えば40~90μmであり、ガラスヤーン同士の間隔(ピッチ)は、例えば300~700μmである。
 本実施形態のキャリア1は、第1の実施形態のキャリア30と同様に、少なくとも一方向に配向したガラス繊維と樹脂材料とを含む複合材料から形成され、円板状の基板を上定盤及び下定盤で挟んで基板の一対の主表面を研磨処理する際に基板を保持するための保持穴3を有している。保持穴3は、保持穴3の内壁面(内周壁面)5の周上に、保持穴3に基板が保持された状態で基板が繊維と接触するよう構成された第1の壁部と、当該基板が繊維と接触しないように構成された第2の壁部(後述する第1の内壁面5a、第2の内壁面5b)と、を有している。第2の壁部は、保持穴3の内周壁面のうち、一方向を含む繊維の配向方向を向く部分に形成されている。そして、第2の実施形態のキャリア30は、保持穴3の内周壁面から保持穴3の半径方向の外側に延在する環状の領域7に、第2の壁部に対し保持穴の半径方向の外側に設けられるとともに配向方向に繊維が存在しない繊維不存在領域(後述する第1の補強領域11,第2の補強領域13)が配されていることを特徴とする。
 キャリア1は、図12に示されるように、保持穴3の内壁面5から外側に延在する環状の領域7に、第1の補強領域11と第2の補強領域13とが互いに離間して保持穴3の周方向に交互に配されている。図12は、キャリア1の保持穴3を環状の領域7に注目して示す図である。なお、図12では、説明の便宜のため、ガラスクロスを構成するガラスヤーンを表す代わりに、1本のガラスヤーンに見立てた1本のガラス繊維を表すとともに、環状の領域7の幅(保持穴3の径方向長さに沿った長さ)を誇張して大きく示している。本実施形態において、保持穴の内壁面とは、特に断った場合を除いて、保持穴を画定する内壁面を意味する。また、内壁面の外側または内壁面から外側に延在するとは、キャリアを構成する複合材料のうち、内壁面から、保持穴3の中心部から保持穴3の半径方向の外側に向かう方向にある複合材料の部分に、キャリア1の平面方向に沿って延在すること、言い換えると、内壁面から保持穴3の半径方向の外側に所定の幅にわたって存在することを意味する。
 環状の領域7の幅(保持穴3の半径方向に沿った長さ)は、特に制限されないが、例えば2~10μmである。第1の補強領域11は、2つの配向方向(図12に示すX方向およびY方向)のうち一方の方向(X方向)を向く第1のガラス繊維21のみで補強されている。一方、第2の補強領域13は、配向方向の他方の方向(Y方向)を向く第2のガラス繊維のみで補強されている。言い換えると、第1の補強領域11では、第2のガラス繊維23のみが除去され、第2の補強領域13では、第1のガラス繊維21のみが除去されている。なお、各補強領域11,13を補強するガラス繊維21,23は、補強領域11,13のそれぞれにおいて、図12に示される態様に制限されることなく、当該ガラス繊維の径に応じて1本または複数本存在する。第1の補強領域11では、第2のガラス繊維23が除去されていることにより、第2のガラス繊維23が向く配向方向(内壁面に略垂直な方向)に延びる形状の多数の凹部(不図示)を有する樹脂材料からなる部分が形成されている。また、第2の補強領域13では、第1のガラス繊維21が除去されていることにより、同様に多数の凹部(不図示)を有する樹脂材料からなる部分が形成されている。なお、本実施形態において、第2のガラス繊維のみで補強されという場合は、第1の補強領域において、第2のガラス繊維が一部欠落した状態で存在する場合も含まれる。同様に、第1のガラス繊維のみで補強されという場合は、第2の補強領域において、第1のガラス繊維が一部欠落した状態で存在する場合も含まれる。ガラス繊維は、数十本から数千本束ねられてヤーンを形成している。本実施形態では、内壁面の表面に横方向(ガラス繊維の配向方向と略垂直な方向)を向くヤーンが存在した場合、その表面の一部のフィラメント(1本のガラス繊維)がエッチングされても、大部分のフィラメントは残る。したがって、キャリアの強度はほぼ維持される。
 第1の補強領域11および第2の補強領域13の環状の領域7における位置は、図13に示されるように、周方向に互いに略等間隔で配置されていることが好ましく、4つの補強領域11,13のいずれか1つを基準にして、保持穴3の中心周り(中心部の周り)に0°、90°、180°、270°をなす方向を含むよう定められ、保持穴3の中心周りに0°、90°、180°、270°をなす方向に対してそれぞれ±20°(例えば、±11.25°、±10°)の範囲に定められることが好ましい。これにより、保持穴3の内壁面5に略直交するガラス繊維を確実に補強領域11,13から除去できるとともに、他の環状の領域7(環状の領域7のうち、補強領域11,13を除く領域)ではガラス繊維を確保できる。図13は、キャリア1の保持穴3を、環状の領域7に注目して示す図である。
 本実施形態では、第1の補強領域11および第2の補強領域13は、環状の領域7に、2つずつ含まれているが、第1の補強領域および第2の補強領域の数は、2つの配向方向のなす角度によって、定められる。なお、1つの環状の領域7に含まれる第1の補強領域11および第2の補強領域13を除く環状の領域7の部分15は、環状の領域7の外側のキャリア3の部分と同じく、第1のガラスヤーンおよび第2のガラスヤーンの両方によって補強されている。
 第1の補強領域11は、保持穴3の内壁面5のうち第2のガラス繊維23の配向方向に面する(配向方向を向く)第1の内壁部5aの外側に設けられている。一方、第2の補強領域13は、内壁面5のうち第1のガラス繊維21の配向方向に面する(配向方向を向く)第2の内壁部5bの外側に設けられている。なお、第1の内壁部5aおよび第2の内壁部5b(いずれも第2の壁部)を除く、保持穴3の内壁面5の部分は、第1の壁部である。別の言い方をすると、保持穴3の内壁面5のうち、第1の内壁部5aおよび第2の内壁部5bは、ガラス基板が保持穴3に保持された状態でガラス基板がガラス繊維に接触しないよう構成された繊維接触面であり、一方、第1の内壁部5aおよび第2の内壁部5bを除く部分は、上記状態でガラス基板がガラス繊維に接触するよう構成された繊維接触面である。
 本実施形態において、内壁部が配向方向に面するとは、内壁部が配向方向を向いていること、言い換えると、内壁部が配向方向を向いていること、あるいは、内壁部の法線方向が配向方向を向いていること、あるいは、キャリアの製造過程において、板材の内壁部から繊維が垂直方向を向いて露出していることまたは垂直方向に突出し(飛び出し)ていることをいう。ここでいう垂直方向とは、内壁部の法線方向に対してキャリアの平面方向において±20°(例えば、±11.25°、±10°)の範囲の方向をいう。内壁部が配向方向に面するという場合には、配向方向と交差する内壁部の位置における内壁部の接線方向が、当該配向方向(中心線)と直交している場合のほか、当該直交する方向を中心とする±20°(例えば±11.25°)の角度範囲にわたる配向方向と交差している場合も含まれる。言い換えると、配向方向と交差する内壁部の位置における内壁部の法線方向が、当該配向方向と一致している場合のほか、当該配向方向を中心とする上記角度範囲にわたる配向方向と一致している場合も含まれる。また、内壁部が面するガラス繊維の配向方向は、内壁部の接線方向に対してガラス繊維が略垂直に突き出す方向を意味する。
 キャリア1において、第1の補強領域11は、第2のガラス繊維23の先端が保持穴3の内壁面5に達しないよう形成され、第2の補強領域13は、第1のガラス繊維21の先端が保持穴3の内壁面5に達しないよう形成されている。言い換えると、第2のガラス繊維23の先端によって第1の補強領域11の範囲の一部が定められ、第1のガラス繊維21の先端によって第2の補強領域13の範囲の一部が定められている。
 以上のキャリア1を用いて、ガラス基板の研磨処理を行うと、保持穴3の内壁面5から略垂直な方向に突出する(飛び出す)ガラス繊維が存在しないため、研磨処理中にガラス基板の端面に傷が発生することが防止される。一方、第1の補強領域11および第2の補強領域13は、内壁面5に対し略垂直な方向を向くガラス繊維とは異なる方向を向くガラス繊維が存在していることで、保持穴3の内壁面5近傍の強度が確保されている。このため、多数の凹部を有する樹脂材料からなる内壁面5近傍の部分が研磨処理中に外力(ガラス基板の内壁面に対する衝突、圧接、擦れ等)を受けて剥がれ、キャリアから脱離することが防止される。したがって、樹脂材料がコンタミネーションとなってガラス基板と定盤との間に入り込み、ガラス基板の主表面に付着したり、ガラス基板の主表面にスクラッチを生じさせたりすることが抑えられる。
 また、第1の補強領域および第2の補強領域に存在するガラス繊維は、内壁面に対して略垂直な方向(例えば、略平行な方向)を向いているため、研磨処理中にガラス基板の端面が接触しても、ガラス基板の端面が当該ガラス繊維に対して滑るように、接触しながら回転し、このため、傷が発生しにくい。
 キャリア1において、第1の補強領域11および第2の補強領域13は、キャリア1に含まれる全ての保持穴3の内壁面5に設けられていなくてもよく、一部の保持穴3の内壁面5に設けられてもよい。この場合、第1の補強領域11および第2の補強領域13が設けられた保持穴3にだけガラス基板を保持させて研磨処理を行うことができる。
(研磨処理用キャリアの製造方法)
 次に、研磨処理用キャリアの製造方法について説明する。
 本実施形態の研磨処理用キャリアの製造方法は、切削処理(第1のステップ)と、エッチング処理(第2のステップ)とを備える。
 切削処理では、上記樹脂含浸基板に保持穴3を形成する。具体的には、エンドミルにより樹脂含浸基板を切削加工し、図10に示すようなキャリアの外周形状および保持穴を作成する。図11は、図10に示すキャリアを、保持穴の1つに注目して示す斜視図である。なお、図10において、キャリアの外形形状は、説明の便宜のため、図11とは異なる形態で示している。このとき、樹脂含浸基板において、ガラスクロスのガラス繊維が、キャリアの外周形状、保持穴に沿って切断される。切削処理では、エッチング処理において複数の樹脂含浸基板を重ねて配置した場合に、後述するマスキング材を設けることやエッチング剤の塗布を容易に行える理由から、樹脂含浸基板の間でガラス繊維の配向方向が一致するよう、保持穴3を形成することが好ましい。例えば、配向方向を揃えて樹脂含浸基板(板材)を重ねた後、保持穴が複数の樹脂含浸基板に亘って貫通するように形成すればよい。こうすることで生産性も向上できる。切削処理の後、バリ取り加工を行ってもよい。
 エッチング処理では、保持穴3が形成された樹脂含浸基板に少なくともエッチングを行うことで、キャリアを作製する。例えば、エッチングの後、洗浄、乾燥等を行うことで、キャリアが作製されてもよい。エッチング処理では、具体的には、保持穴3の内壁面5のうちガラス繊維の配向方向のいずれかを向く内壁部(図12に示すキャリアにおいて符号5a、5bで示す内壁面の部分)に、当該配向方向を向くよう露出するガラス繊維をエッチングすることにより、キャリアの保持穴3の内壁面5から外側に延在する環状の領域7に、エッチングされたガラス繊維の配向方向とは異なる配向方向のガラス繊維のみで補強された補強領域を形成する。要するに、図12に示されるように、第1の内壁部5aに露出する第2のガラス繊維23および第2の内壁部5bに露出する第1のガラス繊維21をエッチングすることにより、第1の補強領域11および第2の補強領域13を形成する。なお、本実施形態において、単に露出するという場合、ガラス繊維の先端が内壁面に位置している場合のほか、内壁面から内側に突出している場合も含まれる。
 エッチング処理では、切削処理された樹脂含浸基板を、例えばエッチング剤に浸漬し、切削加工により露出したガラス繊維のエッチングを行う。本実施形態では、樹脂含浸基板に含まれる繊維のうち、内壁面の一部(第2の壁部となる部分)において垂直方向に突出し(飛び出し)ている繊維のみを除去するため、内壁面の大部分には繊維が編まれ、すなわち、いずれの配向方向を向く繊維も残された状態で残されており、キャリアの強度が低下するのを防止できる。浸漬によりエッチング処理を行う場合のエッチング剤は、繊維に対するエッチング性を有するものであれば特に限定されない。ガラス繊維をエッチングする場合、例えばフッ酸やフッ素化合物を含むものが好適である。フッ酸を含むものの例としては、フッ酸のほか、ケイフッ酸等が挙げられる。フッ素化合物の例としては、フッ化アンモニウム(NHF)やフッ化水素アンモニウム(NH)等があげられる。また、フッ酸と、硫酸、硝酸等の強酸を混合した混酸をエッチング剤に用いてもよく、さらに粘度調整剤、溶媒等を含んでいてもよい。また、上記の物質を適宜混合して使用してもよい。樹脂含浸材料をエッチング剤に浸漬してエッチングを行う場合は、例えば、フッ酸および硫酸を含むエッチング剤が用いられる。この場合、フッ酸の濃度は0.01~2.0%、硫酸の濃度は0.02~4.0%程度とすることが好ましい。なお、本実施形態において、%は質量百分率を意味する。浸漬時間は、ガラス繊維のエッチング量(第1の補強領域11、第2の補強領域13の径方向長さ)やエッチング剤の濃度に応じて適宜定めればよいが、例えば60分未満とすることが好ましい。エッチング剤の濃度が高すぎたり、放置時間が長すぎたりすると、必要以上の繊維を除去してしまったり、樹脂部分にもエッチングによるダメージが発生するなどして、保持穴の内壁面の強度が低下して研磨や研削加工中に内壁面の樹脂が剥がれ易くなる場合がある。
 エッチング処理は、浸漬により行うことに制限されず、例えば、樹脂含浸材料にエッチング剤を塗布してエッチングを行ってもよい。塗布は、刷毛等の塗布手段を用いて行ってもよく、スプレーによる噴霧等によって行ってもよい。この場合のエッチング剤としては、例えば、フッ酸、フッ化水素アンモニウム、またはフッ化水素ナトリウム等の水溶液が用いられる。エッチング剤の濃度や、塗布後の樹脂含浸材料の放置時間は、適宜定めればよいが、上述の保持穴の内壁面の強度維持の観点から、例えば、エッチング剤の濃度は0.1~20wt%とすることが好ましい。また、塗布後の放置時間は60分未満とすることが好ましい。
 エッチング処理は、上記した浸漬、塗布のほか、シャワリング等によって行ってもよい。
 エッチング処理では、エッチングに先立って、環状の領域7のうち補強領域となる部分以外の部分15(図12参照)に図示されないマスキング材を設け、エッチングの後、マスキング材を除去してもよい。これにより、補強領域となる部分以外の部分を、エッチング剤から保護し、当該部分でガラス繊維がエッチングされるのを防止できる。また、マスキング剤を用いることで、例えば、浸漬、シャワリングによってキャリア1を作製することができる。マスキング材は、例えば、テープ、樹脂層が用いられる。樹脂層の樹脂には、ポリテトラフルオロエチレン、エポキシ樹脂等が用いられる。なお、マスキング材を設ける内壁面上の位置は、通常、キャリアの主表面にガラス繊維の配向方向に対応する筋目が現れていることから、目視によりこれらの方向を確認することで、定めることができる。浸漬する場合、キャリアの主表面を樹脂等でマスキングしておくことが好ましい。また、マスキングとして、他の複合材料の板材(樹脂含浸基板)を積層してもよい。積層することによってキャリア製造効率向上とコスト低減が可能となる。
 エッチング処理において、上記したエッチング剤への浸漬を行う代わりに、樹脂含浸基板の環状の領域7のうち補強領域となる部分に、上記エッチング剤を塗布することでエッチングを行ってもよい。これにより、キャリアの環状の領域7のうち補強領域としたい部分でのみガラス繊維をエッチングすることができる。なお、エッチング剤を塗布する位置は、マスキング材を設ける位置の確認と同様に、キャリアの主表面に現れている筋目を目視によりガラス繊維の配向方向を確認することで、定めることができる。
 エッチング処理では、エッチングに先立って、樹脂含浸基板(第1の板材)と、当該樹脂含浸基板の保持穴3が形成された位置と対応する位置に保持穴が形成された1又は複数の他の基板と、を板厚方向に重ねて配置することが好ましい。これにより、エッチング中に、樹脂含浸基板の主表面がエッチング剤に曝されるのを防いで、樹脂含浸基板の主表面のガラス繊維がエッチングされることによってキャリアの強度が低下するのを回避できる。他の基板は、上記キャリア1と同様のキャリアを作るための樹脂含浸基板(第2の板材)であってもよく、第1の板材の主表面の保護を目的として使用されるダミーの基板であってもよい。ダミーの基板は、第1の板材を挟持するよう第1の板材の両側に配してもよく、第1の板材が両側に配されてもよい。他の基板と第1の板材とは、エッチングの間、互いに一時的に固定されるための仮着剤等によって接着されてもよい。
 複数の樹脂含浸基板(第1の板材および第2の板材)を重ねて配置する際は、樹脂含浸基板の間でガラス繊維の配向方向を一致させることが好ましい。複数の樹脂含浸基板の間で、ガラス繊維の配向方向に対する保持穴3の形成位置が同様である場合は、積層した状態での、上記したマスキング材を設けること、およびエッチング剤の塗布を簡単に行える。
 上記実施形態の研磨処理用キャリアあるいは研磨処理用キャリアの製造方法により製造されたキャリアは、例えば、後述する磁気ディスク用基板の製造方法において用いられるが、例えば、アルミニウム基板、シリコンウエハ等、ガラス基板以外の基板の製造において用いられてもよい。
 また、以上説明した研磨処理用キャリアあるいは研磨処理用キャリアの製造方法により製造されたキャリアは、研磨処理のみでなく、研削処理に用いられてもよい。例えば、後述する磁気ディスク用基板の製造方法において、粗研削、精研削、第1研磨、第2研磨等、遊星歯車運動によって主表面を研削または研磨する処理の全てにおいて用いることができる。
(磁気ディスク用基板の製造方法)
 次に、本実施形態の磁気ディスク用基板の製造方法について説明する。
 本製造方法は、上記説明した研磨処理用キャリアあるいは研磨処理用キャリアの製造方法により製造された研磨処理用キャリアにガラス基板を保持させた状態で、基板の主表面を研磨する研磨処理を有する。以下の説明において、キャリアという場合は、上記説明した研磨処理用キャリアあるいは研磨処理用キャリアの製造方法により製造されたキャリアを指す。
 本実施形態で行われる製造プロセスの概略を説明すると、まず、一対の主表面を有する板状のガラスブランクを形成する成形処理が行われる。ガラスブランクは、磁気ディスク用ガラス基板の素材となる。次に、このガラスブランクに粗研削処理が施される。この後、ガラスブランクに形状加工処理が施されてガラス基板が形成され、さらに端面研磨処理が施される。この後、ガラス基板に固定砥粒を用いた精研削処理が施される。この後、第1研磨処理、および第2研磨処理がガラス基板に施される。なお、本実施形態では、上記流れで行うが、上記流れ、処理の種類に制限されず、また、上記処理は、必要に応じて適宜省略できる。以下、上記した各処理について、説明する。
 (a)ガラスブランクの成形処理
 成形処理では、例えばプレス成形法を用いて成形を行う。プレス成形法により、円板状のガラスブランクを得ることができる。プレス法に代えて、ダウンドロー法、リドロー法、フュージョン法などの公知の成形方法を用いて、ガラスブランクを製造してもよい。これらの方法で作られた板状ガラスブランクに対し、後述する形状加工処理を適宜施すことによって、磁気ディスク用ガラス基板の元となる円板状のガラス基板が得られる。
 (b)粗研削処理
 次に、粗研削処理が行われる。粗研削処理では、上記ガラスブランクを、両面研削装置のキャリアに保持させながら、ガラスブランクの両側の主表面の研削を行う。具体的には、ガラスブランクを、キャリアに設けられた保持穴に保持させるとともに、上定盤と下定盤の間に挟持し、研削剤を含む研削液を供給しつつ、上定盤または下定盤のいずれか一方、または、双方を移動操作させることで、ガラス基板と各定盤とを相対的に移動させて、ガラス基板の両主表面を研削する。研削剤として、例えば遊離砥粒が用いられる。粗研削処理では、ガラスブランクが目標とする板厚寸法及び主表面の平坦度に略近づくように研削される。なお、粗研削処理は、成形されたガラスブランクの寸法精度あるいは表面粗さに応じて行われるが、適宜省略できる。
 (c)形状加工処理
 次に、形状加工処理が行われる。形状加工処理では、ガラスブランクに、公知の加工方法を用いて円孔を形成することにより、円孔を有する円板状のガラス基板を得る。その後、ガラス基板の端面の面取りを行う。面取りは、ガラス基板の内周側および外周側の両方の端面に対して行われる。面取りが行われることで、ガラス基板の端面には、主表面と直交する側壁面と、側壁面と主表面を繋ぐ面取り面(介在面)とが形成される。
 (d)端面研磨処理
 次に、ガラス基板の端面研磨処理が行われる。端面研磨処理では、研磨ブラシとガラス基板の端面との間に遊離砥粒を含む研磨液を供給して、研磨ブラシとガラス基板とをガラス基板の厚み方向に相対的に移動させることにより研磨を行う。端面研磨処理によって、ガラス基板の内周側及び外周側の端面が研磨され、鏡面状態にされる。
 (e)精研削処理
 次に、ガラス基板の主表面に精研削処理が施される。精研削処理では、定盤に固定砥粒を貼り付けた両面研削装置を用いて、ガラス基板の主表面に対して研削を行うことが好ましい。具体的には、上記遊離砥粒の代わりに固定砥粒を用いて研削を行う点以外は、上記粗研削処理とほぼ同様にガラス基板の両主表面を研削する。ガラス基板は、上記実施形態のキャリアに保持されて、両面研削装置内で遊星歯車運動されながら研削される。このキャリアには、ガラス繊維の配向方向に面する内壁部の近傍では、当該配向方向を向くガラス繊維が存在しないため、精研削処理においてガラス基板の端面に傷が発生することが防止される。また、当該キャリアは、当該ガラス繊維と異なる配向方向のガラス繊維によって補強されているため、保持穴の内壁面近傍の強度が確保されており、これにより樹脂材料に由来するコンタミネーションの発生が抑えられている。精研削処理では、固定砥粒が貼り付けられた定盤の研削面とガラス基板の主表面とを接触させてガラス基板の主表面を研削するが、これに代えて、遊離砥粒を用いた研削を行ってもよい。
 (f)第1研磨処理
 次に、ガラス基板の主表面に第1研磨処理が施される。第1研磨処理は、周知の両面研磨装置を用いて、ガラス基板を、キャリアに保持させてガラス基板の両側の主表面の研磨を行う。第1研磨処理では、遊離砥粒を用いて、定盤に貼り付けられた研磨パッドをガラス基板の主表面と接触させて研磨を行う。遊離砥粒は特に限定されないが、例えば、酸化セリウム砥粒、あるいはジルコニア砥粒などが用いられる。第1研磨処理では、例えば固定砥粒による研削を行った場合に主表面に残留するクラックや歪みの除去、あるいは、結晶化処理により主表面に生じた微小な表面凹凸の除去をする。取代量を適宜調整することで、主表面の端部の形状が過度に落ち込んだり突出したりすることを防止しつつ、主表面の表面粗さ、例えば算術平均粗さRaを低減することができる。
 (g)第2研磨(鏡面研磨)処理
 次に、第2研磨処理が施される。第2研磨処理は、主表面の鏡面研磨を目的とする。第2研磨処理は、第1研磨処理で用いたのと同様の両面研磨装置及び研磨方法を用いてよいが、第1研磨処理で用いた研磨砥粒よりも研磨砥粒のサイズを小さくすることが好ましい。これにより、主表面の端部の形状が過度に落ち込んだり突出したりすることを防止しつつ、主表面の粗さを低減することができる。
 第2研磨処理を行うための両面研磨装置には、周知の装置を用いることできる。当該装置は、一対の上下の定盤と、上下の定盤の間に挟まれるインターナルギアと、下定盤に設けられたサンギアと、インターナルギアおよびサンギアと係合する複数のキャリアと、を備えている。各定盤には、研磨パッドが貼り付けられている。この装置では、上下の定盤の間にガラス基板を挟み、上下の定盤を相対的に逆向きに回転させることで、ガラス基板を保持するキャリアが自転しながら公転し、遊星歯車運動を行う。これにより、ガラス基板と研磨パッドとが相対移動し、ガラス基板の主表面が研磨される。なお、上記の加工装置や加工機構は、上述した研削や研磨において同様に用いることができる。
 第2研磨処理後、ガラス基板は、キャリアごと両面研磨装置から取り出され、洗浄されて、製造プロセスが終了する。以上説明した製造プロセスを繰り返す間、第2研磨処理では、同じ研磨液が使用される。
 本実施形態の磁気ディスク用基板の製造方法では、上記説明したキャリアを用いて研磨処理を行うため、研磨処理を行ったときのガラス基板の端面での傷の発生が防止されるとともに、樹脂材料由来のコンタミネーションの発生が抑えられることでガラス基板の主表面の汚染やスクラッチの発生が抑制される。
(第1の実施形態に対応する実施例)
 第1の壁部の仕様が下記の通りであることを除いて、第1の実施形態で説明した仕様を共通して有するキャリアを作製した(実施例1~4、比較例1,2)。
   実施例1:図4に示されるように、1つの保持穴に凸形状の第1の曲面(ノッチ)を8個含むもの
   実施例2:1つの保持穴にノッチを6個含むもの
   実施例3:図6(a)に示されるように、1つの保持穴にノッチを10個含むもの
   実施例4:図8(b)に示されるように、1つの保持穴に平面を8個含むもの
   比較例1:第1の壁部を有しないもの(エッチング処理を行うことなく単純な円形の保持穴を作製したもの)
   比較例2:比較例1において、保持穴となる部分の板材を全周にわたってエッチング処理することによって、保持穴の全周にわたってガラス繊維が存在しないもの
 実施例1~3のノッチに関しては、最大突き出し量を2mm、曲率半径Rを30mmとし、実施例4の平面の最大突き出し量(配向方向壁面部分の壁面部分が一部をなす仮想円から当該仮想円の中心方向への仮想円の半径方向における突き出し量)を2mmとした。比較例2のエッチング処理は、後述する比較例5と同様に行った。
<研磨実験>
 実施例1~4、比較例1,2のキャリアを用いて、遊星歯車機構を備える両面研磨装置を用い、基板への荷重100g/cm、定盤回転数25rpm、研磨時間60分の研磨条件にて、ガラス基板に対し上記第1の実施形態の第2研磨処理を行ったこと以外については上記第1の実施形態に基づいて磁気ディスク用ガラス基板を製造した。ガラス基板には、外径2.5インチのアルミノシリケートガラス基板を用い、最終的な板厚が0.653mmとなるようにした。
 第2研磨処理を行った後、洗浄、乾燥後、レーザー式の表面検査装置を用いてガラス基板の主表面の欠陥を検出し、そこからランダムに選んだ基板1枚あたり20個の欠陥について、さらにSEM観察と元素分析を実施して、樹脂系異物の数(欠陥数)を計測した。樹脂異物の数が基板1枚あたり1個以下であれば実用上問題はないと考えられる。また、端面の側壁面の傷(凹欠陥)について、暗幕中で集光ランプを用いて目視及び顕微鏡による観察を行なった。端面の傷が存在する場合、1mm以下程度の一定間隔で全周に亘る輝点の連続のように観察される。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、第1の実施形態で説明した第1の壁部を有するキャリア(実施例1~4)を用いて研磨処理を行った場合は、そのような第1の壁部を有しないキャリア(比較例1,2)を用いて研磨処理を行った場合と比べて、主表面における欠陥数が少ないことが分かった。
 また、側壁面の目視観察の結果、キャリアとの擦れに起因すると思われる傷は、比較例1を除いて、いずれのガラス基板においても認められなかった。
<研削実験>
 次に、実施例1~4および比較例1,2のキャリアを用いて、遊星歯車機構を備える両面研削装置を用いて精研削を実施した他は上記第1の実施形態に基づいて磁気ディスク用ガラス基板を製造した。定盤には固定砥粒の研削パッドを貼り付けたものを用い、基板への荷重150g/cm、定盤回転数25rpm、加工時間60分の条件にてキャリアは取り替えずに基板は新しいものに取り替えながら100バッチ行い(それぞれ実施例5~8および比較例3,4)、1バッチ目と100バッチ目のガラス基板について洗浄後に側壁面の傷の調査を行った。なお、1バッチで100枚の加工を行い、1バッチでは20枚保持可能なキャリアを5つ使用したので、各実験例毎に合計10000枚のガラス基板が製造された。
Figure JPOXMLDOC01-appb-T000002
 比較例3,4では、100バッチ目では傷が観察された。また、100バッチの加工後のキャリアの保持穴内壁面を調査した結果、垂直に突出したガラス繊維が観察された。すなわち、保持穴の内壁を含む部分において樹脂材料のみで構成された部分が研削の間に剥がれて、垂直に突出したガラス繊維が露出し、ガラス基板の端面を傷つけたと考えられる。これに対し、実施例5~8では、1バッチ目および100バッチ目のいずれにおいても、ガラス基板の側壁面に傷は見られなかった。
(第2の実施形態に対応する実施例)
 エポキシ樹脂を、平織りされたガラスクロスに含浸させ、乾燥、硬化して得られる0.1mmのプリプレグを、ガラス繊維の配向方向を一致させるよう5枚積層し、圧着して得られる0.5mmの厚みの樹脂含浸基板を用意した。この樹脂含浸基板をエンドミルを用いて切削加工し、バリ取り加工した後、図10に示すような形状とした。切削加工した樹脂含浸基板の保持穴内壁面の第1の補強領域11及び第2の補強領域13となる周方向領域の部分が、いずれか1つの補強領域を基準にして、保持穴3の中心周りに0°、90°、180°、270°をなす周方向位置を含むそれぞれ±11.25°の範囲の領域に形成されるよう、濃度20%のフッ化水素アンモニウムと粘度調整用にグリセリンを配合した液(エッチング剤)を塗布し、10分放置することにより、塗布部分のみガラスのエッチング処理を行った。エッチング処理後は、樹脂含浸基板を水で洗浄して、キャリアを得た(実施例9)。また、塗布後の放置時間(エッチング時間)を20分とした点を除いて、実施例9と同様に、キャリアを作製した(実施例10)。
(比較例)
 一方、エッチング処理において、切削加工した樹脂含浸基板を、濃度1.3%のフッ酸および濃度2.6%の硫酸からなるエッチング剤に15分間浸漬した点を除いて実施例9と同様にして、キャリアを得た(比較例5)。また、保持穴内壁面の周方向の全ての領域にエッチング剤を塗布した他は実施例9と同様にして、キャリアを得た(比較例6)。
<環状の領域の観察>
 実施例9および比較例5,6のキャリアの保持穴の内壁面を、光学顕微鏡及びレーザー顕微鏡を用いて観察したところ、実施例9のキャリアの環状の領域には、内壁面に周方向に略90°間隔で、第1のガラス繊維のみが除去され第2のガラス繊維が残存する領域と、第2のガラス繊維のみが除去され第1のガラス繊維が残存する領域と、が周方向に互いに離間して交互に形成されていた。一方、比較例5,6のキャリアの環状の領域には、第1のガラス繊維および第2のガラス繊維のいずれも除去された領域が、全周に亘って形成されていた。
<研磨実験>
 実施例9、10および比較例5,6のキャリアを用いて、遊星歯車機構を備える両面研磨装置を用い、基板への荷重100g/cm、定盤回転数25rpm、研磨時間60分の研磨条件にて、ガラス基板に対し上記第2の実施形態の第2研磨処理を行ったこと以外については上記第2の実施形態に基づいて磁気ディスク用ガラス基板を製造した。ガラス基板には、外径2.5インチのアルミノシリケートガラス基板を用い、最終的な板厚が0.653mmとなるようにした。
 第2研磨処理を行った後、洗浄、乾燥後、レーザー式の表面検査装置を用いてガラス基板の主表面の欠陥を検出し、そこからランダムに選んだ基板1枚あたり20個の欠陥について、さらにSEM観察と元素分析を実施して、樹脂系異物の数(欠陥数)を計測した。樹脂異物の数が基板1枚あたり1個以下であれば実用上問題はないと考えられる。また、端面の側壁面の傷(凹欠陥)について、暗幕中で集光ランプを用いて目視及び顕微鏡による観察を行なった。端面の傷が存在する場合、1mm以下程度の一定間隔で全周に亘る輝点の連続のように観察される。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示されるように、2つの配向方向を向くガラス繊維のうち一方のガラス繊維のみで補強された補強領域を有するキャリア(実施例9,10)を用いて研磨処理を行った場合は、2つの配向方向を向くガラス繊維のいずれもが除去された領域を有するキャリア(比較例5,6)を用いて研磨処理を行った場合と比べて、主表面における欠陥数が少なく、ガラス基板の主表面への悪影響が回避できることが分かった。
 また、側壁面の目視観察の結果、キャリアとの擦れに起因すると思われる傷はいずれのガラス基板においても認められなかったが、レーザー式の表面検査装置を用いて側壁面を観察した結果、実施例9、10のキャリアを用いて研磨処理を行った場合は、側壁面に傷が見られなかったのに対し、比較例5,6のキャリアを用いて研磨処理を行った場合は、側壁面に傷が確認された。
 なお、実施例10のキャリアを、レーザー顕微鏡を用いて、第1の補強領域および第2の補強領域を観察した結果、それぞれ第1のガラス繊維、第2のガラス繊維も一部がエッチングされていた。なお、実施例10のキャリアを用いて上記条件で研磨処理を行ったところ、側壁面および主表面における欠陥数は少なく、ガラス基板への悪影響が回避できることが分かった。
<研削実験>
 次に、実施例9,10および比較例5,6のキャリアを用いて、遊星歯車機構を備える両面研削装置を用いて精研削を実施した他は上記第2の実施形態に基づいて磁気ディスク用ガラス基板を製造した。定盤には固定砥粒の研削パッドを貼り付けたものを用い、基板への荷重150g/cm、定盤回転数25rpm、加工時間60分の条件にてキャリアは取り替えずに基板は新しいものに取り替えながら100バッチ行い(それぞれ実施例11,12および比較例7,8)、1バッチ目と100バッチ目のガラス基板について洗浄後に側壁面の傷の調査を行った。なお、1バッチで100枚の加工を行い、1バッチでは20枚保持可能なキャリアを5つ使用したので、各実験例毎に合計10000枚のガラス基板が製造された。
Figure JPOXMLDOC01-appb-T000004
 比較例7,8では、1バッチ目ではガラス基板の側壁面に傷は観察されなかったが、100バッチ目では傷が観察された。また、100バッチの加工後のキャリアの保持穴内壁面を調査した結果、垂直に突出したガラス繊維が観察された。すなわち、保持穴の内壁を含む部分において樹脂材料のみで構成された部分が研削の間に剥がれて、垂直に突出したガラス繊維が露出し、ガラス基板の端面を傷つけたと考えられる。これに対し、実施例11,12では、1バッチ目および100バッチ目のいずれにおいても、ガラス基板の側壁面に傷は見られなかった。
 ガラス基板の主表面のレーザー顕微鏡による評価は、基板表面の粗さが大きく、困難だったため実施しなかった。なお、加工荷重が高いため、比較例7,8における側壁面の傷は、比較例5,6よりもはっきりと観察された。
 以上、本発明の研磨処理用キャリア、研磨処理用キャリアの製造方法、および磁気ディスク用基板の製造方法について詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。
1,30 キャリア
3,32 保持穴
5,36 内壁面(内周壁面)
5a 第1の内壁面
5b 第2の内壁面
7 環状の領域
10 研磨パッド
11 第1の補強領域
13 第2の補強領域
15 環状の領域の他の部分
21 第1のガラス繊維
23 第2のガラス繊維
31 歯部
33,34 ガラス繊維
35 配向方向壁面部分
37 第1の曲面
38 平面
39 第2の曲面
40 上定盤
60 下定盤
61 太陽歯車
62 内歯車
71 供給タンク
72 配管

Claims (18)

  1.  研磨処理用キャリアであって、
     少なくとも一方向に配向した繊維と樹脂材料とを含む複合材料から形成され、円板状の基板を上定盤及び下定盤で挟んで前記基板の一対の主表面を研磨処理する際に前記基板を保持するための保持穴を有し、
     前記保持穴は、前記保持穴の内周壁面の周上に、前記保持穴に前記基板が保持された状態で前記基板が前記繊維と接触するよう構成された第1の壁部と、当該基板が前記繊維と接触しないように構成された第2の壁部と、を有し、
     前記第2の壁部は、前記内周壁面のうち、前記一方向を含む前記繊維の配向方向を向く部分に形成されていることを特徴とする研磨処理用キャリア。
  2.  前記第2の壁部は、前記第1の壁部よりも、前記保持穴の半径方向の外側に位置している、請求項1に記載の研磨処理用キャリア。
  3.  前記第1の壁部は、前記保持穴の半径方向の内側に向く凸形状の第1の曲面、平面、あるいは、前記保持穴の内周壁面の輪郭に内接する内接円の曲率半径よりも大きな曲率半径を有する前記保持穴の半径方向の外側に対して凸形状の第2の曲面、であり、前記基板の外周側壁面は、前記第1の曲面、前記平面、あるいは、前記第2の曲面と当接する、請求項2に記載の研磨処理用キャリア。
  4.  前記第1の曲面、前記平面、あるいは、前記第2の曲面は、前記保持穴の周上に4箇所以上設けられている、請求項3に記載の研磨処理用キャリア。
  5.  前記保持穴の内周壁面の輪郭に内接する内接円の直径は、前記基板の円板形状の直径より大きい、請求項2~4のいずれか1項に記載の研磨処理用キャリア。
  6.  前記内接円の直径は、前記基板の円板形状の直径の1.002~1.031倍である、請求項5に記載の研磨処理用キャリア。
  7.  磁気ディスク用基板の製造方法であって、
     円板形状の基板をつくるステップと、
     請求項2~6のいずれか1項に記載の研磨処理用キャリアに設けられた保持穴に基板を保持した状態で前記基板を上定盤と下定盤とで挟み、前記ガラス主表面と前記上定盤及び前記下定盤とを相対的に移動させることで、前記基板の主表面に研磨処理を行うステップと、含むことを特徴とする磁気ディスク用基板の製造方法。
  8.  前記研磨処理中、前記基板の外周側壁面が、前記第2の壁部と当接せず、前記第2の壁部の両側において当接する、請求項7に記載の磁気ディスク用基板の製造方法。
  9.  前記研磨処理用キャリアは、少なくとも一方向に配向した繊維と樹脂材料とを含む複合材料からなる板材に保持穴を形成し、前記保持穴の形成後、前記板材にエッチングを行うことにより、作製される、請求項7または8に記載の磁気ディスク用基板の製造方法。
  10.  前記保持穴の内周壁面から前記保持穴の半径方向の外側に延在する環状の領域に、前記第2の壁部に対し前記保持穴の半径方向の外側に設けられるとともに前記配向方向に繊維が存在しない繊維不存在領域が配されている、請求項1に記載の研磨処理用キャリア。
  11.  前記繊維不存在領域は、前記第2の壁部を向く前記繊維の先端が前記保持穴の内周壁面に達しないことで形成されている、請求項10に記載の研磨処理用キャリア。
  12.  円板状の基板を上定盤および下定盤で挟んで前記基板の主表面を研磨処理する際に前記基板を保持するための保持穴を有する研磨処理用キャリアの製造方法であって、
     少なくとも一方向に配向した繊維と樹脂材料とを含む複合材料からなる板材に前記保持穴を形成する第1のステップと、
     前記保持穴が形成された板材に少なくともエッチングを行うことによって、前記キャリアを作製する第2のステップと、を備え、
     前記第2のステップでは、前記一方向を含む前記繊維の配向方向を向く前記内周壁面の部分において前記繊維をエッチングすることを特徴とする研磨処理用キャリアの製造方法。
  13.  前記第2のステップでは、前記エッチングに先立って、前記配向方向を向く前記内周壁面の部分以外の部分を構成する板材の部分にマスキング材を設け、前記エッチングの後、前記マスキング材を除去する、請求項12に記載の研磨処理用キャリアの製造方法。
  14.  前記第2のステップにおいて、前記配向方向を向く前記内周壁面の部分を構成する前記板材の部分に、前記繊維をエッチングするためのエッチング剤を塗布することで前記エッチングを行う、請求項12または13に記載の研磨処理用キャリアの製造方法。
  15.  前記第2のステップでは、前記エッチングに先立って、前記板材と、前記板材において前記保持穴が形成された位置と対応する位置に保持穴が形成された1又は複数の他の基板と、を板厚方向に重ねて配置する、請求項12から14のいずれか1項に記載の研磨処理用キャリアの製造方法。
  16.  前記他の基板は、少なくとも一方向に配向した繊維と樹脂材料とを含む複合材料からなり、
     前記板材を第1の板材といい、前記他の基板を第2の板材というとき、前記第2のステップでは、前記第1の板材および前記第2の板材を重ねて配置する際に、前記板材の間で前記繊維が配向した方向を一致させる、請求項15に記載の研磨処理用キャリアの製造方法。
  17.  前記他の基板は、少なくとも一方向に配向した繊維と樹脂材料とを含む複合材料からなり、
     前記板材を第1の板材といい、前記他の基板を第2の板材というとき、前記第1のステップでは、前記第1の板材及び前記第2の板材を重ねて配置した場合に前記板材の間で前記繊維の配向する方向が一致するよう前記保持穴を形成する、請求項15に記載の研磨処理用キャリアの製造方法。
  18.  磁気ディスク用基板の製造方法であって、
     請求項10および11のいずれか1項に記載の研磨処理用キャリアあるいは請求項12から17のいずれか1項に記載の研磨処理用キャリアの製造方法により製造された研磨処理用キャリアに基板を保持させた状態で、前記基板の主表面を研磨する研磨処理を有することを特徴とする磁気ディスク用基板の製造方法。
PCT/JP2014/081800 2013-11-29 2014-12-01 研磨処理用キャリア、研磨処理用キャリアの製造方法、及び磁気ディスク用基板の製造方法 WO2015080295A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015551038A JP6371310B2 (ja) 2013-11-29 2014-12-01 研削又は研磨処理用キャリア、研削又は研磨処理用キャリアの製造方法、及び磁気ディスク用基板の製造方法
SG11201604185PA SG11201604185PA (en) 2013-11-29 2014-12-01 Carrier for polishing processing, method for manufacturing carrier for polishing processing, and method for manufacturingmagnetic-disk substrate
CN201480064905.3A CN105792988B (zh) 2013-11-29 2014-12-01 磨削或研磨处理用载体、磨削或研磨处理用载体的制造方法及磁盘用基板的制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013248291 2013-11-29
JP2013248263 2013-11-29
JP2013-248291 2013-11-29
JP2013-248263 2013-11-29

Publications (1)

Publication Number Publication Date
WO2015080295A1 true WO2015080295A1 (ja) 2015-06-04

Family

ID=53199229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081800 WO2015080295A1 (ja) 2013-11-29 2014-12-01 研磨処理用キャリア、研磨処理用キャリアの製造方法、及び磁気ディスク用基板の製造方法

Country Status (4)

Country Link
JP (2) JP6371310B2 (ja)
CN (2) CN108857869B (ja)
SG (1) SG11201604185PA (ja)
WO (1) WO2015080295A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020198761A1 (en) * 2019-03-26 2020-10-01 Hoya Corporation Method for producing substrate, method for producing magnetic disk, and polishing apparatus
TWI723256B (zh) * 2017-03-30 2021-04-01 日商創技股份有限公司 工件遊星輪及工件遊星輪的製造方法
JPWO2021065897A1 (ja) * 2019-10-01 2021-04-08

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7444050B2 (ja) 2020-12-24 2024-03-06 株式会社Sumco 両面研磨用キャリア及びウェーハの研磨方法
KR102434418B1 (ko) * 2022-03-10 2022-08-22 (주)뉴이스트 반도체 웨이퍼의 연마 공정에 사용되는 캐리어 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11309665A (ja) * 1998-04-30 1999-11-09 Toshiba Corp 酸化物単結晶基板の製造方法
JP2000301451A (ja) * 1999-04-21 2000-10-31 Super Silicon Kenkyusho:Kk 研磨機用キャリア及びその製造方法
JP2001138221A (ja) * 1999-11-12 2001-05-22 Toshiba Ceramics Co Ltd 半導体ウエハラッピング用キャリア
JP2002326156A (ja) * 2001-04-27 2002-11-12 Nippon Sheet Glass Co Ltd ガラス基板研磨用キャリア及びガラス基板研磨装置
JP2008044083A (ja) * 2006-08-18 2008-02-28 Kyocera Chemical Corp 研磨用保持材

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63221968A (ja) * 1987-03-11 1988-09-14 Fujitsu Ltd キヤリア
JP3439726B2 (ja) * 2000-07-10 2003-08-25 住友ベークライト株式会社 被研磨物保持材及びその製造方法
US6454635B1 (en) * 2000-08-08 2002-09-24 Memc Electronic Materials, Inc. Method and apparatus for a wafer carrier having an insert
JP2004303280A (ja) * 2003-03-28 2004-10-28 Hoya Corp 情報記録媒体用ガラス基板の製造方法
JP2008000823A (ja) * 2006-06-20 2008-01-10 Konica Minolta Opto Inc 研磨キャリア
DE102009015878A1 (de) * 2009-04-01 2010-10-07 Peter Wolters Gmbh Verfahren zum materialabtragenden Bearbeiten von flachen Werkstücken
JP5741157B2 (ja) * 2011-04-07 2015-07-01 旭硝子株式会社 研磨用キャリア及び該キャリアを用いたガラス基板の研磨方法及びガラス基板の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11309665A (ja) * 1998-04-30 1999-11-09 Toshiba Corp 酸化物単結晶基板の製造方法
JP2000301451A (ja) * 1999-04-21 2000-10-31 Super Silicon Kenkyusho:Kk 研磨機用キャリア及びその製造方法
JP2001138221A (ja) * 1999-11-12 2001-05-22 Toshiba Ceramics Co Ltd 半導体ウエハラッピング用キャリア
JP2002326156A (ja) * 2001-04-27 2002-11-12 Nippon Sheet Glass Co Ltd ガラス基板研磨用キャリア及びガラス基板研磨装置
JP2008044083A (ja) * 2006-08-18 2008-02-28 Kyocera Chemical Corp 研磨用保持材

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI723256B (zh) * 2017-03-30 2021-04-01 日商創技股份有限公司 工件遊星輪及工件遊星輪的製造方法
WO2020198761A1 (en) * 2019-03-26 2020-10-01 Hoya Corporation Method for producing substrate, method for producing magnetic disk, and polishing apparatus
JP2022536014A (ja) * 2019-03-26 2022-08-12 Hoya株式会社 基板の製造方法、磁気ディスクの製造方法、及び研磨装置
JP7165832B2 (ja) 2019-03-26 2022-11-04 Hoya株式会社 基板の製造方法、磁気ディスクの製造方法、及び研磨装置
JPWO2021065897A1 (ja) * 2019-10-01 2021-04-08
JP7037707B2 (ja) 2019-10-01 2022-03-16 フドー株式会社 保持具および製造方法

Also Published As

Publication number Publication date
JP6371310B2 (ja) 2018-08-08
CN105792988B (zh) 2018-07-20
CN105792988A (zh) 2016-07-20
JP6577636B2 (ja) 2019-09-18
SG11201604185PA (en) 2016-07-28
JP2018196926A (ja) 2018-12-13
JPWO2015080295A1 (ja) 2017-03-16
CN108857869B (zh) 2021-04-27
CN108857869A (zh) 2018-11-23

Similar Documents

Publication Publication Date Title
JP6577636B2 (ja) 研磨又は研削処理用キャリアの製造方法、研磨又は研削処理用キャリア、及び基板の製造方法
US20100247977A1 (en) Subastrate for a magnetic disk and method of manufacturing the same
JP5741157B2 (ja) 研磨用キャリア及び該キャリアを用いたガラス基板の研磨方法及びガラス基板の製造方法
JP6280355B2 (ja) 磁気ディスク用基板の製造方法及び研磨処理用キャリア
JP2006324006A (ja) 情報記録媒体用ガラス基板の製造方法及び情報記録媒体用ガラス基板
US20100247978A1 (en) Method of manufacturing a substrate for a magnetic disk
US9202505B2 (en) Method for manufacturing glass substrate for magnetic recording medium
KR20190124728A (ko) 웨이퍼의 제조방법
JP6177603B2 (ja) 研削/研磨用キャリア及び基板の製造方法
JP5102261B2 (ja) 情報記録媒体用ガラス基板の製造方法
JP6152340B2 (ja) 円板形状の基板の製造方法、及び研削又は研磨用キャリア
JP4723341B2 (ja) 磁気記録媒体用ガラス基板および磁気ディスクの製造方法
JP6063044B2 (ja) キャリア、磁気ディスク用基板の製造方法及び磁気ディスクの製造方法
JP2015181082A (ja) 磁気記録媒体用ガラス基板
JP6208565B2 (ja) 研磨用キャリアの製造方法、磁気ディスク用基板の製造方法、および磁気ディスク用ガラス基板の製造方法
CN112091811B (zh) 载体及使用该载体的基板的制造方法
WO2021193970A1 (ja) キャリア及び基板の製造方法
JP2003187424A (ja) 情報記録媒体用ガラス基板の製造方法及び情報記録媒体用ガラス基板
CN102825534A (zh) 支撑夹具和制造磁性记录介质用玻璃基板的方法
JP5701938B2 (ja) 磁気ディスク用ガラス基板の製造方法
JP2010231841A (ja) ガラス基板の製造方法、ガラス基板及び磁気記録媒体
WO2012132073A1 (ja) 情報記録媒体用ガラス基板の製造方法および情報記録媒体
JP2014180709A (ja) 回転砥石及び磁気ディスク用ガラス基板の製造方法
JP5864823B2 (ja) 半導体ウエハ保持用冶具、半導体ウエハ研磨装置、及びワーク保持用冶具
JP6088534B2 (ja) 情報記録媒体用ガラス基板の製造方法、情報記録媒体の製造方法、および、円盤状のガラス基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14866673

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015551038

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14866673

Country of ref document: EP

Kind code of ref document: A1