WO2015080271A1 - 酸化物焼結体およびスパッタリングターゲット、並びにその製造方法 - Google Patents

酸化物焼結体およびスパッタリングターゲット、並びにその製造方法 Download PDF

Info

Publication number
WO2015080271A1
WO2015080271A1 PCT/JP2014/081642 JP2014081642W WO2015080271A1 WO 2015080271 A1 WO2015080271 A1 WO 2015080271A1 JP 2014081642 W JP2014081642 W JP 2014081642W WO 2015080271 A1 WO2015080271 A1 WO 2015080271A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered body
oxide sintered
oxide
ingao
atomic
Prior art date
Application number
PCT/JP2014/081642
Other languages
English (en)
French (fr)
Inventor
幸樹 田尾
研太 廣瀬
範洋 慈幸
元隆 越智
Original Assignee
株式会社コベルコ科研
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社コベルコ科研, 株式会社神戸製鋼所 filed Critical 株式会社コベルコ科研
Priority to KR1020157033548A priority Critical patent/KR101622530B1/ko
Priority to CN201480030142.0A priority patent/CN105246855B/zh
Priority to US14/894,718 priority patent/US10515787B2/en
Publication of WO2015080271A1 publication Critical patent/WO2015080271A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3426Material
    • H01J37/3429Plural materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • C04B35/457Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3488Constructional details of particle beam apparatus not otherwise provided for, e.g. arrangement, mounting, housing, environment; special provisions for cleaning or maintenance of the apparatus
    • H01J37/3491Manufacturing of targets
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/407Copper

Definitions

  • the present invention relates to an oxide sintered body used when a thin film transistor (TFT, Thin Film Transistor) oxide semiconductor thin film used for a display device such as a liquid crystal display or an organic EL display is formed by a sputtering method, and a sputtering target. , And its manufacturing method.
  • TFT Thin Film Transistor
  • An amorphous (amorphous) oxide semiconductor used for a TFT has a higher carrier mobility than a general-purpose amorphous silicon (a-Si), has a large optical band gap, and can be formed at a low temperature. Therefore, it is expected to be applied to next-generation displays that require large size, high resolution, and high-speed driving, and resin substrates with low heat resistance.
  • an oxide semiconductor composition suitable for these applications an In-containing amorphous oxide semiconductor has been proposed.
  • an In—Ga—Zn-based oxide semiconductor, an In—Ga—Zn—Sn-based oxide semiconductor, an In—Ga—Sn-based oxide semiconductor, and the like are attracting attention.
  • a sputtering method of sputtering a sputtering target (hereinafter also referred to as “target material”) made of the same material as the thin film is preferably used.
  • the sputtering target is used in a state where the oxide sintered body is bonded to the backing plate, but the oxide sintered body may break in the process of bonding the oxide sintered body to the backing plate. .
  • Patent Document 1 discloses indium element (In) and gallium element (Ga) as oxide semiconductor films suitable for a patterning process in manufacturing a semiconductor element, and oxide sintered bodies that can form the semiconductor films. And tin element (Sn) of 0.10 ⁇ In / (In + Ga + Sn) ⁇ 0.60, 0.10 ⁇ Ga / (In + Ga + Sn) ⁇ 0.55, 0.0001 ⁇ Sn / (In + Ga + Sn) ⁇ 0.60 An oxide sintered body containing an atomic ratio is disclosed.
  • Patent Document 2 includes, as a technique for reducing abnormal discharge during sputtering, indium element (In), gallium element (Ga), zinc element (Zn), and tin element (Sn), and Ga 2 In 6 Sn 2 O.
  • An oxide sintered body containing a compound represented by 16 or (Ga, In) 2 O 3 is disclosed.
  • Patent Document 3 uses a sputtering target and a target material that are excellent in sputtering operability such as an increase in sputtering rate, prevention of nodules, prevention of cracking, etc., and can form a transparent conductive film having a particularly low resistance on a low-temperature substrate.
  • a high density ITO sintered body having a sintered density of 90% to 100% and a sintered particle diameter of 1 ⁇ m to 20 ⁇ m is disclosed.
  • the sputtering target used for manufacturing an oxide semiconductor thin film for a display device and the oxide sintered body that is a material of the sputtering target suppress cracking of the sputtering target in the sputtering process. Needless to say, it is further required to suppress cracking of the oxide sintered body in the bonding process.
  • the present invention has been made in view of the above circumstances, and an object thereof is an oxide sintered body suitably used for manufacturing an oxide semiconductor thin film for a display device, and a sputtering target, which are cracked in a bonding process. It is in providing the oxide sintered compact which can suppress generation
  • the oxide sintered body of the present invention that has solved the above problems is an oxide sintered body obtained by sintering indium oxide, gallium oxide, and tin oxide, and the oxide sintered body.
  • the content of indium, gallium, and tin with respect to all metal elements excluding oxygen is 90% or more and the average crystal grain size of the oxide sintered body is 10 ⁇ m or less.
  • the ratio (atomic%) of [In], [Ga], and [Sn] is satisfied, the following formulas (1) to (3) are satisfied, and the oxide sintered body is subjected to X-ray diffraction
  • the InGaO 3 phase has a gist where it satisfies the following formula (4).
  • [InGaO 3 ] (I (InGaO 3 ) / (I (InGaO 3 ) + I (In 2 O 3 ) + I (SnO 2 ))
  • I (InGaO 3 ), I (In 2 O 3 ), and I (SnO 2 ) are the diffraction intensities of the InGaO 3 phase, In 2 O 3 phase, and SnO 2 phase specified by X-ray diffraction, respectively. It is a measured value.
  • the proportion of coarse crystal grains in which the crystal grain size of the oxide sintered body exceeds 15 ⁇ m is 10% or less.
  • the Ga 3-x n 5 + x Sn 2 O 16 phase is not included.
  • the oxide sintered body when the oxide sintered body is subjected to X-ray diffraction, the (Ga, In) 2 O 3 phase is not included.
  • the sputtering target of the present invention that has solved the above-mentioned problems is a sputtering target obtained using any of the oxide sintered bodies described above, and has a specific resistance of 1 ⁇ ⁇ cm or less.
  • a preferred method for producing the oxide sintered body of the present invention is to mix indium oxide, gallium oxide, and tin oxide, set in a mold, and then raise the sintering temperature to 850 to 1250 ° C.
  • the main point is that sintering is performed at a holding pressure in the temperature range of 0.1 to 5 hours and a pressure of 59 MPa or less.
  • the average rate of temperature rise to the sintering temperature is 600 ° C./hr or less.
  • an oxide sintered body capable of suppressing the occurrence of cracks during bonding work, a sputtering target using the oxide sintered body, and a method for manufacturing the same.
  • FIG. 1 and No. 2 is a photograph showing the presence or absence of a black deposit in FIG.
  • the inventors of the present invention will be described later as an oxide semiconductor thin film excellent in TFT mobility evaluated by high carrier mobility compared to a conventional In—Ga—Zn-based oxide semiconductor thin film (IGZO).
  • IGZO In—Ga—Zn-based oxide semiconductor thin film
  • An In—Ga—Sn-based oxide semiconductor thin film (IGTO) having a specific ratio of metal elements was invented and filed earlier.
  • an oxide sintered body which is a material of a sputtering target used for manufacturing an In—Ga—Sn-based oxide semiconductor thin film (IGTO), is considered to be oxide sintered in the bonding process in consideration of productivity and manufacturing cost. It is also important to further suppress the cracking of the bonded body, and for that purpose, it is necessary to improve the oxide sintered body.
  • IGTO In—Ga—Sn-based oxide semiconductor thin film
  • the present inventors have studied an oxide sintered body, which is a material for an In—Ga—Sn-based sputtering target suitable for forming the oxide semiconductor thin film, in order to suppress cracking during bonding. It has been repeated.
  • the oxide sintered body When the oxide sintered body is diffracted by X-ray diffraction, it has an effect of suppressing cracking of the oxide sintered body during bonding by controlling the proportion of the InGaO 3 phase; The effect of suppressing cracking of the oxide sintered body during bonding can be further improved by increasing the thickness of the oxide sintered body, and (c) the effect of suppressing cracking of the oxide sintered body when the average crystal grain size of the oxide sintered body is made finer. Has been found to be able to be further improved, leading to the present invention.
  • the ratio of the content (atomic%) of each metal element (indium, gallium, tin) to the total metal elements excluding oxygen contained in the oxide sintered body is [In], [Ga], [ Sn], control is performed so as to satisfy the following formulas (1) to (3).
  • [Ga] not only reduces oxygen deficiency, stabilizes the amorphous structure of the oxide semiconductor thin film, but also improves stress resistance (particularly resistance to light + negative bias stress). However, when [Ga] is too high, mobility decreases. Accordingly, [Ga] is 20 atom% or more, preferably 22 atom% or more, more preferably 24 atom% or more, and 30 atom% or less, preferably 29 atom% or less, more preferably 28 atom% or less. .
  • [Sn] Sn / (In + Ga + Sn)) in all metal elements.
  • [Sn] has an effect of improving chemical resistance of the oxide semiconductor thin film such as wet etching. However, since the etching rate becomes slower as the chemical resistance is improved, if [Sn] is too high, the etching processability is lowered. Accordingly, [Sn] is 25 atom% or more, preferably 26 atom% or more, more preferably 27 atom% or more, and 45 atom% or less, preferably 40 atom% or less, more preferably 35 atom% or less. .
  • the metal element is composed of the above-mentioned ratios of In, Ga, and Sn, and does not contain Zn.
  • the compositional deviation between the IGZO target and the IGZO film increases, and the surface of the IGZO target This is because it has been found that a black deposit composed of Zn and O is produced.
  • the black deposit peels off from the target surface during sputtering and becomes particles, which causes arcing and causes a serious problem in film formation.
  • the main reason why the above problem occurs when an IGZO target is used is that the vapor pressure of Zn is higher than that of Ga and In.
  • Zn is reduced during the pre-sputtering, the vapor pressure of Zn is high, so that it easily evaporates and adheres to the target surface, producing a black deposit.
  • compositional deviation between the target and the film is caused, and the atomic ratio of Zn in the film is greatly reduced as compared with the target.
  • the oxide sintered body of the present invention is preferably composed of indium oxide satisfying the above-mentioned predetermined metal element content; gallium oxide; and tin oxide, and the remainder is an oxide that is inevitably produced in production. Impurities such as objects.
  • the InGaO 3 phase detected when the oxide sintered body is X-ray diffracted will be described.
  • the InGaO 3 phase is an oxide formed by combining In and Ga constituting the oxide sintered body of the present invention.
  • the InGaO 3 phase has an effect of suppressing cracking due to stress during bonding in the oxide sintered body of the present invention.
  • ICDD International Center for Diffraction Data
  • ICDD International Center for Diffraction Data cards 21-0334, 71-2194, 77-0447 for diffraction peaks obtained by X-ray diffraction of the oxide sintered body. It has a crystal structure (corresponding to InGaO 3 phase, In 2 O 3 phase, and SnO 2 phase, respectively).
  • the present invention is characterized in that when the oxide sintered body is subjected to X-ray diffraction, the InGaO 3 phase is contained at a predetermined ratio. If the peak intensity ratio ([InGaO 3 ]) of the InGaO 3 phase is small, the oxide sintered body is liable to crack during bonding, so it must be 0.05 or more. Preferably it is 0.06 or more, More preferably, it is 0.07 or more, More preferably, it is 0.1 or more.
  • the upper limit is preferably as high as possible from the above viewpoint, and may be 1, for example, but considering the thermal equilibrium state, it is preferably 0.84 or less, more preferably 0.67 or less, and still more preferably 0.5. It is as follows.
  • the InGaO 3 phase is a unique phase that is produced by manufacturing under predetermined sintering conditions described later, while the content of the metal element is controlled within the above range. Even when the types of metal elements constituting the oxide sintered body are the same, the crystal phases obtained are different when the content of metal elements and the production conditions are different. For example, the Ga 3-x n 5 + x Sn 2 O 16 phase formed in Patent Document 1 (In—Ga—Sn-based oxide sintered body) is not formed in the present invention.
  • the crystal phases obtained also differ when the types of metal elements constituting the oxide sintered body are different.
  • the (Ga, In) 2 O 3 phase formed in Patent Document 2 is similar in notation to the present invention, but is different from the ICDD card. It is a phase with a different crystal structure.
  • the (Ga, In) 2 O 3 phase is not formed.
  • the relative density of the oxide sintered body of the present invention is 90% or more. By increasing the relative density of the oxide sintered body, the effect of suppressing cracking during bonding can be further improved. In order to obtain such an effect, the oxide sintered body of the present invention needs to have a relative density of at least 90% or more, preferably 95% or more, and more preferably 98% or more.
  • the upper limit is not particularly limited and may be 100%, but 99% is preferable in consideration of manufacturing costs.
  • the average crystal grain size of the oxide sintered body crystal grains is refined. Specifically, a scanning electron microscope (SEM, Scanning Electron Microscope) in a fracture surface of an oxide sintered body (an oxide sintered body is cut in the thickness direction at an arbitrary position, and an arbitrary position on the cut surface).
  • SEM Scanning Electron Microscope
  • a preferable average crystal grain size is 8 ⁇ m or less, more preferably 6 ⁇ m or less.
  • the lower limit of the average crystal grain size is not particularly limited, but the preferred lower limit of the average crystal grain size is about 0.05 ⁇ m from the balance between refinement of the average crystal grain size and production cost.
  • the coarse crystal grains having a crystal grain size exceeding 15 ⁇ m cause cracking of the oxide sintered body at the time of bonding. Therefore, it is better that the coarse crystal grains are as small as possible, and the coarse crystal grains are preferably 10% or less, more preferably Is 8% or less, more preferably 6% or less, still more preferably 4% or less, and most preferably 0%.
  • the oxide sintered body of the present invention is obtained by mixing and sintering indium oxide, gallium oxide, and tin oxide.
  • the sputtering target of this invention can be manufactured by processing the said oxide sintered compact.
  • the oxide powder was obtained by sintering by (a) mixing / pulverization ⁇ (b) drying / granulation ⁇ (c) preforming ⁇ (d) degreasing ⁇ (e) hot pressing.
  • the oxide sintered body can be (f) processed ⁇ (g) bonded to obtain a sputtering target.
  • the present invention is characterized in that (e) hot press sintering conditions are appropriately controlled as described in detail below, and other steps are not particularly limited, and usually used steps. It can be selected appropriately.
  • this invention is not the meaning limited to this.
  • indium oxide powder, gallium oxide powder, and tin oxide powder are mixed in a predetermined ratio, mixed and pulverized.
  • the purity of each raw material powder used is preferably about 99.99% or more. This is because the presence of a small amount of an impurity element may impair the semiconductor characteristics of the oxide semiconductor thin film. It is preferable to control the blending ratio of each raw material powder to be within the above range.
  • the mixing / pulverization is preferably performed by using a ball mill or a bead mill and adding the raw material powder together with water.
  • the balls and beads used in these steps are preferably made of materials such as nylon, alumina, zirconia, and the like.
  • a binder or a binder may be mixed in order to ensure the ease of the subsequent molding process.
  • the mixing time is preferably 2 hours or more, more preferably 10 hours or more, and further preferably 20 hours or more.
  • the powder after drying and granulation is filled in a mold having a predetermined size, and preformed by a mold press. This pre-molding is performed for the purpose of improving the handleability when being set in a predetermined mold in the hot press process, and therefore, a compact may be formed by applying a pressing force of about 49 to 98 MPa.
  • the powder may be directly loaded into the mold and pressure-sintered without performing the preforming with a mold press.
  • the heating conditions are not particularly limited as long as the purpose of degreasing can be achieved.
  • the heating conditions may be maintained at about 500 ° C. in the atmosphere for about 5 hours.
  • the molded body After degreasing, the molded body is set in a mold so that a desired shape is obtained.
  • Sintering is performed by hot pressing.
  • the mold during sintering either a mold or a graphite mold can be used depending on the sintering temperature, but it is preferable to use a graphite mold having excellent heat resistance at a high temperature of 900 ° C. or higher.
  • the molded body is heated to a sintering temperature: 850 to 1250 ° C., and then sintered at a holding time at the temperature: 0.1 to 5 hours.
  • a sintering temperature 850 to 1250 ° C.
  • the sintering temperature is 850 ° C. or higher, preferably 875 ° C. or higher, more preferably 900 ° C. or higher, and 1250 ° C. or lower, preferably 1200 ° C. or lower.
  • the holding time at the sintering temperature is too long, the crystal grains grow and become coarse, so that the average crystal grain size of the crystal grains cannot be controlled within a predetermined range.
  • the holding time is too short, the above InGaO 3 phase cannot be formed in the above-mentioned proportion, and it cannot be sufficiently densified. Accordingly, the holding time is 0.1 hour or longer, preferably 0.5 hour or longer, and desirably 5 hours or shorter.
  • the average rate of temperature rise up to the above sintering temperature is 600 ° C./hr or less after preforming.
  • the average heating rate exceeds 600 ° C./hr, abnormal growth of crystal grains occurs, and the ratio of coarse crystal grains increases. Also, the relative density cannot be increased sufficiently.
  • a more preferable average heating rate is 500 ° C./hr or less, and further preferably 400 ° C./hr or less.
  • the lower limit of the average heating rate is not particularly limited, but is preferably 10 ° C./hr or more, more preferably 20 ° C./hr or more from the viewpoint of productivity.
  • the pressurizing condition at the time of hot pressing is not particularly limited, but it is desirable to apply a pressure of 59 MPa or less, for example, a surface pressure (pressurizing pressure). If the pressure is too high, the graphite mold may be damaged, the densification promoting effect is saturated, and the press equipment must be enlarged. On the other hand, if the pressure is too low, densification may not proceed sufficiently.
  • Preferable pressure conditions are 10 MPa or more and 39 MPa or less.
  • the sintering atmosphere is preferably an inert gas atmosphere or a vacuum atmosphere in order to suppress oxidation and disappearance of graphite that is preferably used as a mold.
  • the atmosphere control method is not particularly limited.
  • the atmosphere may be adjusted by introducing Ar gas or N 2 gas into the furnace.
  • the atmospheric gas pressure is preferably atmospheric pressure in order to suppress evaporation of a metal having a high vapor pressure.
  • the oxide sintered body obtained as described above has a relative density of 90% or more.
  • the sputtering target of the present invention is obtained by performing (f) processing ⁇ (g) bonding by a conventional method.
  • the processing method of oxide sinter is not specifically limited, What is necessary is just to process to the shape according to various uses by a well-known method.
  • a sputtering target can be manufactured by joining the processed oxide sintered body to a backing plate with a bonding material.
  • the kind of material of the backing plate is not particularly limited, pure copper or copper alloy having excellent thermal conductivity is preferable.
  • the type of the bonding material is not particularly limited, and various known bonding materials having electrical conductivity can be used. Examples thereof include an In-based solder material and an Sn-based solder material.
  • the bonding method is also not particularly limited. For example, the oxide sintered body and the backing plate are heated and melted at a temperature at which the bonding material dissolves, for example, about 140 to 220 ° C., and the dissolved bonding material is applied to the bonding surface of the backing plate. And after bonding each bonding surface and crimping
  • the sputtering target obtained by using the oxide sintered body of the present invention is free from cracking due to stress generated by impact or thermal history during bonding work, and has a very good specific resistance. Is 1 ⁇ ⁇ cm or less, more preferably 10 ⁇ 1 ⁇ ⁇ cm or less, and further preferably 10 ⁇ 2 ⁇ ⁇ cm or less.
  • the sputtering target of the present invention it becomes possible to form a film that further suppresses abnormal discharge during sputtering and cracking of the sputtering target material, and physical vapor deposition (sputtering method) using the sputtering target is performed on the production line of the display device. It can be done efficiently.
  • the obtained oxide semiconductor thin film also shows good TFT characteristics.
  • Example 1 (Preparation of sputtering target) Table 1 shows indium oxide powder (In 2 O 3 ) having a purity of 99.99%, gallium oxide powder (Ga 2 O 3 ) having a purity of 99.99%, and tin oxide powder (SnO 2 ) having a purity of 99.99%. It mix
  • a dispersing agent polycarboxylic acid ammonium
  • the powder thus obtained was preformed with a die press under the following conditions, then heated to 500 ° C. under atmospheric pressure at atmospheric pressure, and held at that temperature for 5 hours for degreasing. (Preform conditions) Molding pressure: 1.0 ton / cm 2 When the thickness is t, the compact size: ⁇ 110mm x t13mm
  • the obtained molded body was set in a graphite mold and hot pressed under the conditions A to F shown in Table 2. At this time, N 2 gas was introduced into the hot press furnace and sintered in an N 2 atmosphere.
  • the obtained oxide sintered body was machined to finish ⁇ 100 mm ⁇ t5 mm. After heating the oxide sintered body and the Cu backing plate to 180 ° C. over 10 minutes, the oxide sintered body is bonded to the backing plate using a bonding material (indium) to produce a sputtering target. did.
  • the relative density was determined by subtracting the porosity measured as follows. First, a sample was prepared by mirror-polishing the fracture surface of an oxide sintered body (the oxide sintered body was cut in the thickness direction at an arbitrary position, and the arbitrary position on the cut surface). Next, a photograph was taken at 1000 times using a scanning electron microscope (SEM), and the area ratio (%) of pores in a 50 ⁇ m square region was measured to obtain the porosity. About the said sample, the same operation was performed about 20 places in total and the average was made into the average porosity (%) of the said sample. The average relative density was calculated by [100 ⁇ average porosity], and the result is shown as “relative density (%)” in Table 4. In this example, the average relative density thus obtained was evaluated as 90% or more.
  • the “average crystal grain size ( ⁇ m)” described in Table 4 was measured as follows. First, a sample was prepared by mirror-polishing the fracture surface of an oxide sintered body (the oxide sintered body was cut in the thickness direction at an arbitrary position, and the arbitrary position on the cut surface). Next, the structure was photographed with a scanning electron microscope (SEM) at a magnification of 400 times, a straight line having a length of 100 ⁇ m was drawn in an arbitrary direction, and the number of crystal grains contained in the straight line (N) The value calculated from [100 / N] was defined as the “crystal grain size on a straight line”.
  • SEM scanning electron microscope
  • the “ratio of coarse crystal grains (%)” shown in Table 4 was measured as follows. First, similarly to the above average crystal grain size, the fracture surface of the oxide sintered body is observed with an SEM, a straight line having a length of 100 ⁇ m is drawn in an arbitrary direction, and a crystal having a length of 15 ⁇ m or more cut on the straight line is drawn. The grains were coarse crystal grains. The length L of the coarse crystal grains occupying the straight line (when there are a plurality thereof, the sum thereof: ⁇ m) is obtained, and the value calculated from [L / 100] is used as the “ratio of coarse crystal grains on the straight line” ( %).
  • ratio of coarse crystal grains on each straight line was calculated.
  • ratio of coarse crystal grains of oxide sintered body (%).
  • the oxide sintered body obtained in this way was evaluated as passing if the ratio of coarse crystal grains was 10% or less.
  • InGaO 3 phase ratio “InGaO 3 phase (%)” shown in Table 4 was measured as follows. First, the sputtering target obtained by sputtering was removed from the backing plate, a 10 mm square test piece was cut out, and the intensity (diffraction peak) of the diffraction line of the crystal phase was measured and determined by the following X-ray diffraction.
  • Analysis device “X-ray diffractometer RINT-1500” manufactured by Rigaku Corporation Analysis conditions: Target: Cu Monochromatic: Uses a monochrome mate (K ⁇ ) Target output: 40kV-200mA (Continuous firing measurement) ⁇ / 2 ⁇ scanning Slit: Divergence 1/2 °, Scattering 1/2 °, Received light 0.15 mm Monochromator light receiving slit: 0.6mm Scanning speed: 2 ° / min Sampling width: 0.02 ° Measurement angle (2 ⁇ ): 5 to 90 °
  • the [InGaO 3 ] obtained in this way was evaluated as acceptable if it was 0.05 or more.
  • the sputtering targets 1 to 6 were not subject to cracking during the bonding operation as well as during sputtering. Moreover, the relative density and specific resistance of the sputtering target thus obtained were also good.
  • Sample No. 7 is an example using the steel type d of Table 1 which has a high ratio of [Sn] and does not satisfy the provisions of the present invention regarding the composition of the oxide sintered body.
  • Table 4 the average crystal grain size was large, the preferred ratio of coarse crystal grains was high, and the peak intensity ratio of the InGaO 3 phase was also low.
  • the oxide sintered body was cracked during the bonding operation.
  • Sample No. 8 is an example in which the production condition D of Table 2 having a low holding temperature at the time of sintering was adopted, although the steel type a of Table 1 satisfying the provisions of the present invention was used as the composition of the oxide sintered body. As a result, as shown in Table 4, the relative density was lowered and the peak intensity ratio of the InGaO 3 phase was also low. In this example, the oxide sintered body was cracked during the bonding operation.
  • Sample No. 9 the composition of the oxide sintered body used the steel type a in Table 1 that satisfies the provisions of the present invention, but the temperature rising rate to the sintering temperature is fast and the holding temperature during sintering is high.
  • This is an example employing the manufacturing condition E.
  • Table 4 the average crystal grain size was large and the preferable ratio of coarse crystal grains was high.
  • the oxide sintered body was cracked during the bonding operation.
  • Sample No. No. 10 is an example in which the production conditions F in Table 2 having a high holding temperature at the time of sintering were adopted, although the composition of the oxide sintered body used the steel type a in Table 1 that satisfies the provisions of the present invention. As a result, as shown in Table 4, the average crystal grain size was large and the preferable ratio of coarse crystal grains was high. In this example, the oxide sintered body was cracked during the bonding operation.
  • Example 2 in order to demonstrate the usefulness of the In—Ga—Sn oxide sintered body (IGTO) defined in the present invention compared to the conventional In—Ga—Zn oxide sintered body (IGZO), The following experiment was conducted.
  • IGTO In—Ga—Sn oxide sintered body
  • IGZO In—Ga—Zn oxide sintered body
  • DC (direct current) magnetron sputtering substrate temperature room temperature
  • Deposition power density 2.5 W / cm 2
  • Pre-sputtering time 10 minutes
  • Table 1 shows indium oxide powder (In 2 O 3 ) having a purity of 99.99%, gallium oxide powder (Ga 2 O 3 ) having a purity of 99.99%, and zinc oxide powder (ZnO 2 ) having a purity of 99.99%. It mix
  • the powder thus obtained was preformed with a die press under the following conditions, then heated to 500 ° C. under atmospheric pressure at atmospheric pressure, and held at that temperature for 5 hours for degreasing. (Preform conditions) Molding pressure: 1.0 ton / cm 2 When the thickness is t, the compact size: ⁇ 110mm x t13mm
  • the obtained molded body was set in a graphite mold and hot pressed under the condition G shown in Table 2. At this time, N 2 gas was introduced into the hot press furnace and sintered in an N 2 atmosphere.
  • the obtained oxide sintered body was machined to finish ⁇ 100 mm ⁇ t5 mm. After heating the oxide sintered body and the Cu backing plate to 180 ° C. over 10 minutes, the oxide sintered body is bonded to the backing plate using a bonding material (indium) to produce a sputtering target. did.

Abstract

 ボンディング工程での割れの発生を抑制できる酸化物焼結体、および該酸化物焼結体を用いたスパッタリングターゲット、並びにその製造方法を提供する。本発明の酸化物焼結体は、酸化インジウムと;酸化ガリウムと;酸化錫とを焼結して得られる酸化物焼結体であって、酸化物焼結体の相対密度が90%以上、酸化物焼結体の平均結晶粒径が10μm以下であり、酸化物焼結体に含まれる全金属元素に対する、インジウム、ガリウム、錫の含有量の割合(原子%)を夫々、[In]、[Ga]、[Sn]としたとき、30原子%≦[In]≦50原子%、20原子%≦[Ga]≦30原子%、25原子%≦[Sn]≦45原子%を満足すると共に、InGaO相は[InGaO]≧0.05を満足する。

Description

酸化物焼結体およびスパッタリングターゲット、並びにその製造方法
 本発明は、液晶ディスプレイや有機ELディスプレイなどの表示装置に用いられる薄膜トランジスタ(TFT、Thin Film Transistor)の酸化物半導体薄膜をスパッタリング法で成膜するときに用いられる酸化物焼結体、およびスパッタリングターゲット、並びにその製造方法に関するものである。
 TFTに用いられるアモルファス(非晶質)酸化物半導体は、汎用のアモルファスシリコン(a-Si)に比べて高いキャリア移動度を有し、光学バンドギャップが大きく、低温で成膜できる。そのため、大型・高解像度・高速駆動が要求される次世代ディスプレイや、耐熱性の低い樹脂基板などへの適用が期待されている。これらの用途に好適な酸化物半導体の組成として、In含有の非晶質酸化物半導体が提案されている。例えば、In-Ga-Zn系酸化物半導体、In-Ga-Zn-Sn系酸化物半導体、In-Ga-Sn系酸化物半導体などが注目されている。
 上記酸化物半導体薄膜の形成に当たっては、当該薄膜と同じ材料のスパッタリングターゲット(以下、「ターゲット材」ということがある)をスパッタリングするスパッタリング法が好適に用いられている。スパッタリングターゲットは酸化物焼結体をバッキングプレートにボンディングされた状態で使用されているが、酸化物焼結体をバッキングプレートにボンディングする工程において、酸化物焼結体が割れてしまうことがあった。
 例えば特許文献1には、半導体素子の作製の際のパターニング工程に適した酸化物半導体膜、及び前記半導体膜を成膜できる酸化物焼結体として、インジウム元素(In)、ガリウム元素(Ga)及び錫元素(Sn)を、0.10≦In/(In+Ga+Sn)≦0.60、0.10≦Ga/(In+Ga+Sn)≦0.55、0.0001<Sn/(In+Ga+Sn)≦0.60の原子比で含む酸化物焼結体が開示されている。
 特許文献2には、スパッタリング時の異常放電を低減する技術として、インジウム元素(In)、ガリウム元素(Ga)、亜鉛元素(Zn)および錫元素(Sn)を含み、Ga2In6Sn216又は(Ga、In)23で表される化合物を含む酸化物焼結体が開示されている。
 また特許文献3には、スパッタレートの増大、ノジュールの発生防止、割れの防止等のスパッタ操作性に優れ、且つ低温基板において特に低抵抗な透明導電膜を形成可能なスパッタリングターゲット及びターゲット材料に用いられるITO焼結体として、焼結密度90%以上100%以下、焼結粒径1μm以上20μm以下である高密度ITO焼結体が開示されている。
特開2011-174134号公報 特開2008-280216号公報 特開平05-311428号公報
 近年の表示装置の高性能化に伴って、酸化物半導体薄膜の特性の向上や特性の安定化が要求されていると共に、表示装置の生産を一層効率化することが求められている。また生産性や製造コストなどを考慮すると、表示装置用の酸化物半導体薄膜の製造に用いられるスパッタリングターゲットおよびその素材である酸化物焼結体には、スパッタリング工程でのスパッタリングターゲットの割れを抑制することはもちろん、ボンディング工程での酸化物焼結体の割れを抑制することがより一層要求されている。
 本発明は上記事情に鑑みてなされたものであり、その目的は、表示装置用酸化物半導体薄膜の製造に好適に用いられる酸化物焼結体、およびスパッタリングターゲットであって、ボンディング工程での割れの発生を抑制できる酸化物焼結体、および該酸化物焼結体を用いたスパッタリングターゲット、並びにその製造方法を提供することにある。
 上記課題を解決し得た本発明の酸化物焼結体は、酸化インジウムと;酸化ガリウムと;酸化錫とを焼結して得られる酸化物焼結体であって、前記酸化物焼結体の相対密度が90%以上、前記酸化物焼結体の平均結晶粒径が10μm以下であり、前記酸化物焼結体に含まれる酸素を除く全金属元素に対する、インジウム、ガリウム、錫の含有量の割合(原子%)を夫々、[In]、[Ga]、[Sn]としたとき、下記式(1)~(3)を満足すると共に、前記酸化物焼結体をX線回折したとき、InGaO相は下記式(4)を満足するところに要旨を有する。
 30原子%≦[In]≦50原子%・・・(1)
 20原子%≦[Ga]≦30原子%・・・(2)
 25原子%≦[Sn]≦45原子%・・・(3)
 [InGaO3]≧0.05・・・(4)
但し、[InGaO3]=(I(InGaO3)/(I(InGaO3)+I(In23)+I(SnO2))
式中、I(InGaO3)、I(In23)、およびI(SnO2)はそれぞれ、X線回折で特定されたInGaO3相、In23相、SnO2相の回折強度の測定値である。
 本発明の好ましい実施形態において、前記酸化物焼結体の結晶粒径が15μmを超える粗大結晶粒の割合は10%以下である。
 本発明の好ましい実施形態において、前記酸化物焼結体をX線回折したとき、Ga3-x5+xSn216相は含まれないものである。
 本発明の好ましい実施形態において、前記酸化物焼結体をX線回折したとき、(Ga、In)23相は含まれないものである。
 また、上記課題を解決し得た本発明のスパッタリングターゲットは、上記いずれかに記載の酸化物焼結体を用いて得られるスパッタリングターゲットであって、比抵抗が1Ω・cm以下である。
 本発明の前記酸化物焼結体の好ましい製造方法は、酸化インジウムと;酸化ガリウムと;酸化錫とを混合し、成形型にセットした後、焼結温度850~1250℃まで昇温した後、該温度域での保持時間0.1~5時間、加圧圧力59MPa以下で焼結するところに要旨を有する。
 本発明の好ましい実施形態において、前記焼結温度までの平均昇温速度が600℃/hr以下である。
 本発明によれば、ボンディング作業時の割れの発生を抑制できる酸化物焼結体、および該酸化物焼結体を用いたスパッタリングターゲット、並びにその製造方法を提供することが可能である。
図1は、実施例2のNo.1とNo.2における、黒色堆積物の有無を示す写真である。
 本発明者らは、従来のIn-Ga-Zn系酸化物半導体薄膜(IGZO)と比べて、キャリア移動度が高いことによって評価されるTFTの移動度に優れた酸化物半導体薄膜として、後記する特定の比率の金属元素を有するIn-Ga-Sn系酸化物半導体薄膜(IGTO)を発明し、先に出願をした。
 もっとも、In-Ga-Sn系酸化物半導体薄膜(IGTO)の製造に用いられるスパッタリングターゲットの素材である酸化物焼結体は、生産性や製造コストなどを考慮すると、ボンディング工程での酸化物焼結体の割れをより一層抑制することも重要であり、そのためには酸化物焼結体の改善が必要となる。
 そこで本発明者らは、上記酸化物半導体薄膜を成膜するのに適したIn-Ga-Sn系スパッタリングターゲットの素材である酸化物焼結体について、ボンディング時の割れを抑制すべく、検討を重ねてきた。
 その結果、後記式(1)~(3)を満足する特定の金属元素の割合を有する酸化インジウムと;酸化ガリウムと;酸化錫を混合および焼結して得られる酸化物焼結体であって、(ア)酸化物焼結体をX線回折したとき、InGaO相の割合を制御することによって、ボンディング時の酸化物焼結体の割れを抑制する効果があること、(イ)相対密度を高めることによって、ボンディング時の酸化物焼結体の割れの抑制効果を一層向上できること、(ウ)酸化物焼結体の平均結晶粒径を微細化すると酸化物焼結体の割れの抑制効果をより一層向上できること、を突き止め、本発明に至った。
 更に、(エ)上記酸化物焼結体を得るためには、所定の焼結条件で焼結を行えばよいことを見出した。
 まず、本発明に係る酸化物焼結体の構成について、詳しく説明する。
 TFT特性に優れた効果を有する酸化物半導体薄膜を形成するためには、酸化物焼結体に含まれる金属元素の含有量を夫々適切に制御する必要がある。
 具体的には酸化物焼結体に含まれる酸素を除く全金属元素に対する各金属元素(インジウム、ガリウム、錫)の含有量(原子%)の割合をそれぞれ、[In]、[Ga]、[Sn]としたとき、下記式(1)~(3)を満足するように制御する。
  30原子%≦[In]≦50原子%・・・(1)
  20原子%≦[Ga]≦30原子%・・・(2)
  25原子%≦[Sn]≦45原子%・・・(3)
 上記式(1)は、全金属元素中のIn比([In]=In/(In+Ga+Sn))を規定したものである。[In]が低すぎると酸化物焼結体の相対密度向上効果やスパッタリングターゲットの比抵抗の低減を達成できず、また成膜後の酸化物半導体薄膜のキャリア移動度も低くなる。一方、[In]が高すぎると、キャリアが多くなりすぎて導体化するほか、ストレスに対する安定性が低下する。したがって[In]は、30原子%以上、好ましくは35原子%以上、より好ましくは40原子%以上であって、50原子%以下、好ましくは47原子%以下、より好ましくは45原子%以下である。
 上記式(2)は全金属元素中のGa比([Ga]=Ga/(In+Ga+Sn))を規定したものである。[Ga]は、酸素欠損を低減し、酸化物半導体薄膜のアモルファス構造を安定化させるほか、ストレス耐性(特に光+負バイアスストレスに対する耐性)を向上させる作用を有する。但し、[Ga]が高すぎると、移動度が低下する。したがって[Ga]は、20原子%以上、好ましくは22原子%以上、より好ましくは24原子%以上であって、30原子%以下、好ましくは29原子%以下、より好ましくは28原子%以下である。
 上記式(3)は全金属元素中のSn比([Sn]=Sn/(In+Ga+Sn))を規定したものである。[Sn]は、ウェットエッチング性など、酸化物半導体薄膜の薬液耐性を向上させる作用を有する。但し、薬液耐性の向上に伴いエッチングレートは遅くなるので、[Sn]が高すぎると、エッチング加工性が低下する。したがって[Sn]は、25原子%以上、好ましくは26原子%以上、より好ましくは27原子%以上であって、45原子%以下、好ましくは40原子%以下、より好ましくは35原子%以下である。
 本発明の酸化物焼結体では、金属元素が上記比率のInとGaとSnから構成され、Znを含まない。後記する実施例に示すように、InとGaとZnを含む従来のIGZOターゲットを用いて薄膜を成膜すると、IGZOターゲットとIGZO膜との間で組成ずれが大きくなると共に、IGZOターゲットの表面に、ZnとOからなる黒色の堆積物が生成することが判明したからである。上記黒色堆積物は、スパッタ中にターゲット表面から剥離してパーティクルとなり、アーキングの原因となるなど、成膜上、大きな問題を招く。
 ここで、IGZOのターゲットを用いたときに上記の問題が生じる主な理由は、Znの蒸気圧が、GaおよびInに比べて高いことに起因すると考えられる。例えばターゲットを用いて薄膜を成膜する場合、コストを考慮すると、酸素を含まずアルゴンなどの不活性ガスのみでプリスパッタした後、所定分圧の酸素含有不活性雰囲気でスパッタすることが推奨される。しかし、上記プリスパッタ中にZnが還元されると、Znの蒸気圧が高いために蒸発しやすくなってターゲット表面に付着し、黒色堆積物が生成される。その結果、ターゲットと膜の組成ずれを招き、ターゲットに比べて膜中のZnの原子比が大幅に低下する。
 本発明の酸化物焼結体は、好ましくは上記所定の金属元素含有量を満足する酸化インジウムと;酸化ガリウムと;酸化錫で構成されており、残部は、製造上不可避的に生成される酸化物などの不純物である。
 次に上記酸化物焼結体をX線回折したときに検出されるInGaO3相について説明する。InGaO3相は、本発明の酸化物焼結体を構成するInとGaが結合して形成される酸化物である。InGaO3相は、本発明の酸化物焼結体において、ボンディング時の応力による割れを抑制する効果を有する。
 このような効果を有する酸化物焼結体とするためには、X線回折で特定したInGaO3相のピーク強度が下記式(4)を満足する必要がある。
[InGaO3]≧0.05・・・(4)
但し、[InGaO3]=(I(InGaO3)/(I(InGaO3)+I(In23)+I(SnO2))
式中、I(InGaO3)、I(In23)、およびI(SnO2)はそれぞれ、X線回折で特定されたInGaO3相、In23相、SnO2相の回折強度の測定値を意味する。
 これらの化合物相は、酸化物焼結体をX線回折して得られた回折ピークについて、ICDD(International Center for Diffraction Data)カードの21-0334、71-2194、77-0447に記載されている結晶構造(それぞれ、InGaO3相、In23相、SnO2相に対応)を有するものである。
 本発明は上記酸化物焼結体をX線回折したとき、InGaO3相を所定の割合で含むところに特徴がある。InGaO3相のピーク強度比([InGaO3])が小さくなるとボンディング時の酸化物焼結体の割れが生じやすくなるため、0.05以上とする必要がある。好ましくは0.06以上、より好ましくは0.07以上、更に好ましくは0.1以上である。一方、上限については、上記観点からは高いほどよく、例えば1であってもよいが、熱平衡状態を考慮すると、好ましくは0.84以下、より好ましくは0.67以下、更に好ましくは0.5以下である。
 なお、InGaO3相は、金属元素の含有量が上記範囲内に制御されていると共に、後記する所定の焼結条件で製造することによって生成する特異な相である。酸化物焼結体を構成する金属元素の種類が同じであっても金属元素の含有量や製造条件が異なる場合、得られる結晶相が相違する。例えば特許文献1(In-Ga-Sn系酸化物焼結体)で形成されているGa3-x5+xSn216相は本発明では形成されていない。
 また、酸化物焼結体を構成する金属元素の種類が異なる場合にも得られる結晶相は相違する。例えば特許文献2(In-Ga-Zn-Sn-O系酸化物焼結体)で形成される(Ga、In)23相は、本発明と表記が類似しているがICDDカードが異なっており、結晶構造が異なる相である。また本発明では(Ga、In)23相は形成されていない。
 本発明の酸化物焼結体の相対密度は90%以上である。酸化物焼結体の相対密度を高めることによってボンディング時の割れ抑制効果を一層向上できる。このような効果を得るために本発明の酸化物焼結体は相対密度を少なくとも90%以上とする必要があり、好ましくは95%以上であり、より好ましくは98%以上である。上限は特に限定されず100%であってもよいが、製造コストを考慮し、99%が好ましい。
 また、ボンディング時の割れ抑制効果をより一層高めるためには、酸化物焼結体の結晶粒の平均結晶粒径を微細化する必要がある。具体的には酸化物焼結体の破断面(酸化物焼結体を任意の位置で厚み方向に切断し、その切断面表面の任意の位置)において走査型電子顕微鏡(SEM、Scanning Electron Microscope)により観察される結晶粒の平均結晶粒径を10μm以下とすることによって、酸化物焼結体の割れをより一層抑制することができる。好ましい平均結晶粒径は8μm以下、より好ましくは6μm以下である。一方、平均結晶粒径の下限は特に限定されないが、平均結晶粒径の微細化と製造コストのバランスから、平均結晶粒径の好ましい下限は0.05μm程度である。
 また、本発明では酸化物焼結体の平均結晶粒径のみならず、粒度分布を適切に制御することが好ましい。具体的には結晶粒径が15μmを超える粗大結晶粒は、ボンディング時の酸化物焼結体の割れの原因となるため、できるだけ少ない方がよく、粗大結晶粒は好ましくは10%以下、より好ましくは8%以下、さらに好ましくは6%以下、よりさらに好ましくは4%以下、最も好ましくは0%である。
 次に、本発明の酸化物焼結体を製造する方法について説明する。
 本発明の酸化物焼結体は、酸化インジウムと;酸化ガリウムと;酸化錫を混合および焼結して得られるものである。また、本発明のスパッタリングターゲットは上記酸化物焼結体を加工することにより製造できる。具体的には、酸化物の粉末を(a)混合・粉砕→(b)乾燥・造粒→(c)予備成形→(d)脱脂→(e)ホットプレスにて焼結して得られた酸化物焼結体を、(f)加工→(g)ボンディグしてスパッタリングターゲットを得ることができる。上記工程のうち本発明では、以下に詳述するように(e)ホットプレスの焼結条件を適切に制御したところに特徴があり、それ以外の工程は特に限定されず、通常用いられる工程を適宜選択することができる。以下、各工程を説明するが、本発明はこれに限定する趣旨ではない。
 まず、酸化インジウム粉末と;酸化ガリウム粉末と;酸化錫粉末;を所定の割合に配合し、混合・粉砕する。用いられる各原料粉末の純度はそれぞれ、約99.99%以上が好ましい。微量の不純物元素が存在すると、酸化物半導体薄膜の半導体特性を損なう恐れがあるためである。各原料粉末の配合割合は、上記範囲内となるように制御することが好ましい。
 (a)混合・粉砕は、ボールミルまたはビーズミルを使い、原料粉末を水と共に投入して行うことが好ましい。これらの工程に用いられるボールやビーズは、例えばナイロン、アルミナ、ジルコニアなどの材質のものが好ましく用いられる。この際、均一に混合する目的で分散材や、後の成形工程の容易性を確保するためにバインダーを混合してもよい。混合時間は2時間以上とすることが好ましく、より好ましくは10時間以上であり、更に好ましくは20時間以上である。
 次に、上記工程で得られた混合粉末について例えばスプレードライヤなどで(b)乾燥・造粒を行うことが好ましい。
 乾燥・造粒後、(c)予備成形をする。成形に当たっては、乾燥・造粒後の粉末を所定寸法の金型に充填し、金型プレスで予備成形する。この予備成形は、ホットプレス工程で所定の型にセットする際のハンドリング性を向上させる目的で行われるため、49~98MPa程度の加圧力を加えて成形体とすればよい。本発明では金型プレスでの予備成形を行わず、直接成形型内に粉末を装填して加圧焼結してもよい。
 なお、混合粉末に分散材やバインダーを添加した場合には、分散材やバインダーを除去するために成形体を加熱して(d)脱脂を行うことが望ましい。加熱条件は脱脂目的が達成できれば特に限定されないが、例えば大気中、おおむね500℃程度で、5時間程度保持すればよい。
 脱脂後、所望の形状が得られるように成形型に成形体をセットして(e)ホットプレスにて焼結を行う。焼結時の成形型としては焼結温度に応じて金型、黒鉛型のいずれも用いることができるが、900℃以上の高温での耐熱性に優れた黒鉛型を用いることが好ましい。
 本発明では成形体を焼結温度:850~1250℃まで昇温した後、該温度での保持時間:0.1~5時間で焼結を行う。これらの温度範囲および保持時間で焼結することにより、上記式(4)を満足するInGaO相の比率と適切な粒径を有する焼結体が得られる。焼結温度が低いと、上記式(4)を満足するInGaO相を生成できない。また酸化物焼結体を十分に緻密化することができず、所望の相対密度を達成できない。一方、焼結温度が高くなりすぎると、結晶粒が粗大化してしまい、結晶粒の平均結晶粒径を所定の範囲に制御できなくなる。したがって焼結温度は850℃以上、好ましくは875℃以上、より好ましくは900℃以上であって、1250℃以下、好ましくは1200℃以下とする。
 また、上記焼結温度での保持時間が長くなりすぎると結晶粒が成長して粗大化するため、結晶粒の平均結晶粒径を所定の範囲に制御できなくなる。一方、保持時間が短すぎると上記InGaO相を前記割合以上形成することができず、また十分に緻密化することができなくなる。したがって保持時間は0.1時間以上、好ましくは0.5時間以上であって、5時間以下とすることが望ましい。
 また、本発明では予備成形後、上記焼結温度までの平均昇温速度を600℃/hr以下とすることが好ましい。平均昇温速度が600℃/hrを超えると、結晶粒の異常成長が起こり、粗大結晶粒の割合が高くなる。また相対密度を十分に高めることができない。より好ましい平均昇温速度は500℃/hr以下、更に好ましくは400℃/hr以下である。一方、平均昇温速度の下限は特に限定されないが、生産性の観点からは10℃/hr以上とすることが好ましく、より好ましくは20℃/hr以上である。
 上記焼結工程においてホットプレス時の加圧条件は、特に限定されないが、例えば面圧(加圧圧力)59MPa以下の圧力を加えることが望ましい。圧力が高すぎると黒鉛型が破損する恐れがあり、また緻密化促進効果が飽和すると共にプレス設備の大型化が必要となる。一方、圧力が低すぎると緻密化が十分に進まないことがある。好ましい加圧条件は10MPa以上、39MPa以下である。
 焼結工程では、成形型として好ましく用いられる黒鉛の酸化、消失を抑制するために、焼結雰囲気を不活性ガス雰囲気、真空雰囲気とすることが好ましい。雰囲気制御方法は特に限定されず、例えば炉内にArガスやN2ガスを導入することによって雰囲気を調整すればよい。また雰囲気ガスの圧力は、蒸気圧の高い金属の蒸発を抑制するために大気圧とすることが望ましい。上記のようにして得られた酸化物焼結体は相対密度が90%以上である。
 上記のようにして酸化物焼結体を得た後、常法により、(f)加工→(g)ボンディングを行なうと本発明のスパッタリングターゲットが得られる。酸化物焼結体の加工方法は特に限定されず、公知の方法によって各種用途に応じた形状に加工すればよい。
 加工した酸化物焼結体をバッキングプレートにボンディング材によって接合することでスパッタリングターゲットを製造できる。バッキングプレートの素材の種類は特に限定されないが、熱伝導性優れた純銅または銅合金が好ましい。ボンディング材の種類も特に限定されず、導電性を有する各種公知のボンディング材を使用することができ、例えばIn系はんだ材、Sn系はんだ材などが例示される。接合方法も特に限定されず、例えば酸化物焼結体およびバッキングプレートをボンディング材が溶解する温度、例えば140~220℃程度に加熱して溶解させ、バッキングプレートのボンディング面に溶解したボンディング材を塗布し、それぞれのボンディング面を貼り合わせて両者を圧着した後、冷却すればよい。
 本発明の酸化物焼結体を用いて得られるスパッタリングターゲットは、ボンディング作業時の衝撃や熱履歴などで発生した応力などによる割れがなく、また比抵抗も、非常に良好なものであり、好ましくは1Ω・cm以下、より好ましくは10-1Ω・cm以下、さらに好ましくは10-2Ω・cm以下である。本発明のスパッタリングターゲットを用いれば、スパッタリング中での異常放電、およびスパッタリングターゲット材の割れを一層抑制した成膜が可能となり、スパッタリングターゲットを用いた物理蒸着(スパッタリング法)を表示装置の生産ラインで効率よく行うことができる。また得られた酸化物半導体薄膜も良好なTFT特性を示す。
 本願は、2013年11月29日に出願された日本国特許出願第2013-247763号に基づく優先権の利益を主張するものである。2013年11月29日に出願された日本国特許出願第2013-247763号の明細書の全内容が、本願に参考のため援用される。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明は、下記実施例に限定されず、本発明の趣旨に適合し得る範囲で適切に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。
 実施例1
(スパッタリングターゲットの作製)
 純度99.99%の酸化インジウム粉末(In23)、純度99.99%の酸化ガリウム粉末(Ga23)、純度99.99%の酸化錫粉末(SnO2)を表1に示す質量比率および原子比率で配合し、水と分散剤(ポリカルボン酸アンモニウム)を加えてナイロンボールミルで20時間混合した。次に、上記工程で得られた混合粉末を乾燥して造粒を行った。
 このようにして得られた粉末を金型プレスにて下記条件で予備成形した後、常圧にて大気雰囲気下で500℃に昇温し、該温度で5時間保持して脱脂した。
(予備成形の条件)
成形圧力:1.0ton/cm2
厚みをtとしたとき、成形体サイズ:φ110mm×t13mm
 得られた成形体を黒鉛型にセットし、表2に示す条件A~Fでホットプレスを行った。この際、ホットプレス炉内にはN2ガスを導入し、N2雰囲気下で焼結した。
 得られた酸化物焼結体を機械加工してφ100mm×t5mmに仕上げた。該酸化物焼結体と、Cu製バッキングプレートを10分かけて180℃まで昇温させた後、酸化物焼結体をバッキングプレートにボンディング材(インジウム)を用いてボンディングし、スパッタリングターゲットを製作した。
 (相対密度の測定)
 相対密度は、以下のようにして測定した気孔率を引き算することにより求めた。まず、酸化物焼結体の破断面(酸化物焼結体を任意の位置で厚み方向に切断し、その切断面表面の任意の位置)を鏡面研削した試料を用意した。次に、走査型電子顕微鏡(SEM)を用いて1000倍で写真撮影し、50μm角の領域に占める気孔の面積率(%)を測定して気孔率とした。上記試料について、同様の操作を合計20箇所について行い、その平均を当該試料の平均気孔率(%)とした。平均相対密度は、[100-平均気孔率]により算出し、その結果を表4に「相対密度(%)」として記載した。本実施例では、このようにして得られた平均相対密度が90%以上のものを合格と評価した。
 (平均結晶粒径)
 表4に記載の「平均結晶粒径(μm)」は以下のようにして測定した。まず、酸化物焼結体の破断面(酸化物焼結体を任意の位置で厚み方向に切断し、その切断面表面の任意の位置)を鏡面研削した試料を用意した。次に、その組織を走査型電子顕微鏡(SEM)を用いて倍率400倍で写真撮影し、任意の方向で100μmの長さの直線を引き、この直線内に含まれる結晶粒の数(N)を求め、[100/N]から算出される値を当該「直線上での結晶粒径」とした。同様に粗大結晶粒が重複しない間隔(少なくとも20μm以上の間隔)で直線を20本作成して各直線上での結晶粒径を算出した。そして、[各直線上での結晶粒径の合計/20]から算出される値を「酸化物焼結体の平均結晶粒径」とした。本実施例では、このようにして得られた酸化物焼結体の平均結晶粒径が10μm以下のものを合格と評価した。
 (粗大結晶粒の割合)
 表4に記載の「粗大結晶粒の割合(%)」は以下のようにして測定した。まず、上記平均結晶粒径と同様、酸化物焼結体の破断面をSEM観察して、任意の方向に100μmの長さの直線を引き、この直線上で切り取られる長さが15μm以上の結晶粒を粗大な結晶粒とした。この粗大な結晶粒が直線上に占める長さL(複数ある場合はその総和:μm)を求め、[L/100]から算出される値を当該「直線上での粗大結晶粒の割合」(%)とした。同様に粗大結晶粒が重複しない間隔(少なくとも20μm以上の間隔)で直線を20本作成して各直線上での粗大結晶粒の割合を算出した。そして、[各直線上での粗大結晶粒の割合の合計/20]から算出される値を「酸化物焼結体の粗大結晶粒の割合」(%)とした。本実施例では、このようにして得られた酸化物焼結体の粗大結晶粒の割合が10%以下のものを合格と評価した。
 (InGaO3相の比率)
 表4に記載の「InGaO3相(%)」は以下のようにして測定した。まず、スパッタリングして得られたスパッタリングターゲットをバッキングプレートから取り外して10mm角の試験片を切出し、以下のX線回折により、結晶相の回折線の強度(回折ピーク)を測定して求めた。
分析装置:理学電機社製「X線回折装置RINT-1500」
分析条件:
 ターゲット:Cu
 単色化:モノクロメートを使用(Kα)
 ターゲット出力:40kV-200mA
 (連続焼測定)θ/2θ走査
 スリット:発散1/2°、散乱1/2°、受光0.15mm
 モノクロメータ受光スリット:0.6mm
 走査速度:2°/min
 サンプリング幅:0.02°
 測定角度(2θ):5~90°
 このようにして得られた各結晶相の回折ピークについて、ICDD(International Center for Diffraction Data)カードに基づいて表3に示す各結晶相のピークを同定し、回折ピークの高さを測定した。これらのピークは、当該結晶相で回折強度が十分に高く、他の結晶相のピークとの重複がなるべく少ないピークを選択した。InGaO3の(h k l)=(1 1 1)の回折ピークが確認できない場合は、重複のない(h k l)=(-3 1 1)のピークを選択し、(ピーク高さ×2.2)から求まるピーク高さをI(InGaO3)とする。各結晶相の指定ピークでのピーク高さの測定値をそれぞれI(InGaO3)、I(In23)、I(SnO2)とし、下式によって[InGaO3]のピーク強度比率を求めた。
[InGaO3]=I(InGaO3)/(I(InGaO3)+I(In23)+I(SnO2))
 本実施例では、このようにして得られた[InGaO3]が0.05以上のものを合格と評価した。
 (ボンディング時の割れ)
 表4に記載の「ボンディング時の割れ」の有無は以下のようにして測定した。上記機械加工した酸化物焼結体を加熱し、バッキングプレートにボンディングした後、酸化物焼結体表面に割れが生じていないか目視で確認した。酸化物焼結体表面に1mmを超えるクラックが確認された場合を「割れ」があると判断した。ボンディング作業を10回行い、1回でも割れがある場合を不合格と評価して、表4中に「有」と記載した。一方、10回中、1回も割れがない場合を合格と評価して、表4中に「無」と記載した。
 これらの結果を表4に併記する。表4の最右欄には総合評価の欄を設け、上記評価項目のうち全てが合格のものをOK、いずれか一つが不合格のものにNGを付した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 本発明の好ましい組成、および製造条件を満足する試料No.1~6のスパッタリングターゲットは、スパッタリング時はもちろんのこと、ボンディング作業時のターゲットに割れが生じることがなかった。また、このようにして得られたスパッタリングターゲットの相対密度および比抵抗も良好な結果が得られた。
 一方、[Sn]が高く、本発明の組成を満足しない試料No.7、および製造条件を満足しない試料No.8~10は、ボンディング時の加熱条件を高温且つ長時間にすると、表4に示すようにボンディング作業時にスパッタリングターゲットの割れが発生した。そこで、これらの例では、スパッタリングターゲットに割れが生じないようなボンディング条件でボンディングして割れが発生しなかったスパッタリングターゲットを使用して、前述したInGaO3相(%)を測定した。
 具体的には、試料No.7は、酸化物焼結体の組成について[Sn]の比率が高くて本発明の規定を満たさない表1の鋼種dを用いた例である。その結果、表4に示すように平均結晶粒径が大きく、粗大結晶粒の好ましい割合が高く、更にInGaO3相のピーク強度比率も低かった。この例ではボンディング作業時に酸化物焼結体に割れが発生した。
 試料No.8は、酸化物焼結体の組成は本発明の規定を満たす表1の鋼種aを用いたが、焼結時の保持温度が低い表2の製造条件Dを採用した例である。その結果、表4に示すように相対密度が低くなると共に、InGaO3相のピーク強度比率も低かった。この例ではボンディング作業時に酸化物焼結体に割れが発生した。
 試料No.9は、酸化物焼結体の組成は本発明の規定を満たす表1の鋼種aを用いたが、焼結温度までの昇温速度が速く、且つ、焼結時の保持温度が高い表2の製造条件Eを採用した例である。その結果、表4に示すように平均結晶粒径が大きく、粗大結晶粒の好ましい割合が高かった。この例では、ボンディング作業時に酸化物焼結体に割れが発生した。
 試料No.10は、酸化物焼結体の組成は本発明の規定を満たす表1の鋼種aを用いたが、焼結時の保持温度が高い表2の製造条件Fを採用した例である。その結果、表4に示すように平均結晶粒径が大きく、粗大結晶粒の好ましい割合が高かった。この例では、ボンディング作業時に酸化物焼結体に割れが発生した。
 実施例2
 本実施例では、従来のIn-Ga-Zn酸化物焼結体(IGZO)に比べて、本発明で規定するIn-Ga-Sn酸化物焼結体(IGTO)の有用性を実証するため、以下の実験を行った。
 まず、前述した実施例1の表4のNo.1のターゲットを用い、以下の条件で、本成膜前のプリスパッタおよび本成膜であるスパッタを行って、ガラス基板上に酸化物半導体薄膜を成膜した。参考のため、表5のNo.1に、上記表4のNo.1のターゲットの組成(表1の成分No.aと同じ)を併記する。
スパッタリング装置:株式会社アルバック製「CS-200」
DC(直流)マグネトロンスパッタリング法
基板温度:室温
(1)プリスパッタ
ガス圧:1mTorr
酸素分圧:100×O2/(Ar+O2)=0体積%
成膜パワー密度:2.5W/cm2
プリスパッタ時間:10分
(2)本成膜
ガス圧:1mTorr
酸素分圧:100×O2/(Ar+O2)=4体積%
成膜パワー密度:2.5W/cm2
膜厚:40nm
 比較のため、表5のNo.2に記載のIGZOターゲットを用い、上記と同じ条件で酸化物半導体薄膜を成膜した。上記No.2のターゲットにおけるInとGaとZnの原子比は1:1:1である。上記IGZOターゲットの作製方法は以下のとおりである。
(IGZOスパッタリングターゲットの作製)
 純度99.99%の酸化インジウム粉末(In23)、純度99.99%の酸化ガリウム粉末(Ga23)、純度99.99%の酸化亜鉛粉末(ZnO2)を表1に示す質量比率および原子比率で配合し、水と分散剤(ポリカルボン酸アンモニウム)とバインダーを加えてボールミルで20時間混合した。次に、上記工程で得られた混合粉末を乾燥して造粒を行った。
 このようにして得られた粉末を金型プレスにて下記条件で予備成形した後、常圧にて大気雰囲気下で500℃に昇温し、該温度で5時間保持して脱脂した。
(予備成形の条件)
成形圧力:1.0ton/cm2
厚みをtとしたとき、成形体サイズ:φ110mm×t13mm
 得られた成形体を黒鉛型にセットし、表2に示す条件Gでホットプレスを行った。この際、ホットプレス炉内にはN2ガスを導入し、N2雰囲気下で焼結した。
 得られた酸化物焼結体を機械加工してφ100mm×t5mmに仕上げた。該酸化物焼結体と、Cu製バッキングプレートを10分かけて180℃まで昇温させた後、酸化物焼結体をバッキングプレートにボンディング材(インジウム)を用いてボンディングし、スパッタリングターゲットを製作した。
 このようにして得られた各酸化物半導体薄膜について、各薄膜中の各金属元素の比率(原子%)を高周波誘導結合プラズマ(Inductively Coupled Plasma、ICP)法で測定した。表6にこれらの結果を記載する。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表5に示すターゲットの組成(原子%)と表6に示す膜の組成原子(%)を対比すると、本発明の組成を満足するNo.1のIGTOターゲットでは、ターゲットと膜の間の組成ずれは全く見られなかった。
 これに対し、本発明の組成を満足せずSnでなくZnを含むNo.2のIGZOターゲットでは、ターゲットと膜の間の組成ずれが大きくなった。詳細にはNo.2では、ターゲット中のZn比=33.3原子%から、膜中のZn比=26.5原子%と、6.8原子%も減少した。
 よって、本発明のターゲットを用いれば、ターゲットの組成と組成ずれのない膜を成膜できることが実証された。
 更に、上記の各ターゲットを用いて各膜を成膜した後の、各ターゲットの表面状態を目視で観察し、黒色堆積物の有無を評価した。参考のため、これらの写真を図1に示す。
 その結果、本発明例のNo.1のIGTOターゲットを用いたときは、図1の左図に示すように成膜後のターゲット表面に黒色の堆積物は観察されなかったのに対し、従来例のNo.2のIGZOターゲットを用いたときは、図1の右図に示すように成膜後のターゲット表面に黒色の堆積物が観察された。このようにターゲットの表面に黒色堆積物が存在すると、スパッタ中にターゲット表面から剥離してパーティクルとなって、アーキングを招く虞がある。よって、本発明のターゲットを用いれば、組成ずれのない膜を成膜できるのみならず、スパッタリングの際のアーキングを防止できるなど、非常に有用であることが実証された。

Claims (7)

  1. 酸化インジウムと;酸化ガリウムと;酸化錫とを焼結して得られる酸化物焼結体であって、
    前記酸化物焼結体の相対密度が90%以上、
    前記酸化物焼結体の平均結晶粒径が10μm以下であり、
    前記酸化物焼結体に含まれる酸素を除く全金属元素に対する、インジウム、ガリウム、錫の含有量の割合(原子%)を夫々、[In]、[Ga]、[Sn]としたとき、下記式(1)~(3)を満足すると共に、
    前記酸化物焼結体をX線回折したとき、InGaO相は下記式(4)を満足するものであることを特徴とする酸化物焼結体。
    30原子%≦[In]≦50原子%・・・(1)
    20原子%≦[Ga]≦30原子%・・・(2)
    25原子%≦[Sn]≦45原子%・・・(3)
    [InGaO3]≧0.05・・・(4)
    但し、[InGaO3]=(I(InGaO3)/(I(InGaO3)+I(In23)+I(SnO2))
    式中、I(InGaO3)、I(In23)、およびI(SnO2)はそれぞれ、X線回折で特定されたInGaO3相、In23相、SnO2相の回折強度の測定値である。
  2. 前記酸化物焼結体の結晶粒径が15μmを超える粗大結晶粒の割合は10%以下である請求項1に記載の酸化物焼結体。
  3. 前記酸化物焼結体をX線回折したとき、Ga3-x5+xSn216相は含まれないものである請求項1または2に記載の酸化物焼結体。
  4. 前記酸化物焼結体をX線回折したとき、(Ga、In)23相は含まれないものである請求項1または2に記載の酸化物焼結体。
  5. 請求項1または2に記載の酸化物焼結体を用いて得られるスパッタリングターゲットであって、比抵抗が1Ω・cm以下であることを特徴とするスパッタリングターゲット。
  6. 請求項1または2に記載の酸化物焼結体の製造方法であって、酸化インジウムと;酸化ガリウムと;酸化錫とを混合し、成形型にセットした後、焼結温度850~1250℃まで昇温した後、該温度域での保持時間0.1~5時間、加圧圧力59MPa以下で焼結することを特徴とする酸化物焼結体の製造方法。
  7. 前記焼結温度までの平均昇温速度が600℃/hr以下である請求項6に記載の酸化物焼結体の製造方法。
PCT/JP2014/081642 2013-11-29 2014-11-28 酸化物焼結体およびスパッタリングターゲット、並びにその製造方法 WO2015080271A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020157033548A KR101622530B1 (ko) 2013-11-29 2014-11-28 산화물 소결체 및 스퍼터링 타깃, 및 그 제조 방법
CN201480030142.0A CN105246855B (zh) 2013-11-29 2014-11-28 氧化物烧结体和溅射靶、以及其制造方法
US14/894,718 US10515787B2 (en) 2013-11-29 2014-11-28 Oxide sintered body and sputtering target, and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013247763 2013-11-29
JP2013-247763 2013-11-29

Publications (1)

Publication Number Publication Date
WO2015080271A1 true WO2015080271A1 (ja) 2015-06-04

Family

ID=53199206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081642 WO2015080271A1 (ja) 2013-11-29 2014-11-28 酸化物焼結体およびスパッタリングターゲット、並びにその製造方法

Country Status (6)

Country Link
US (1) US10515787B2 (ja)
JP (1) JP5796812B2 (ja)
KR (1) KR101622530B1 (ja)
CN (1) CN105246855B (ja)
TW (1) TWI515167B (ja)
WO (1) WO2015080271A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017019668A (ja) * 2015-07-07 2017-01-26 株式会社コベルコ科研 酸化物焼結体およびスパッタリングターゲット、並びにそれらの製造方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6254308B2 (ja) 2016-04-19 2017-12-27 株式会社コベルコ科研 酸化物焼結体およびスパッタリングターゲット、並びにそれらの製造方法
US11728390B2 (en) * 2017-02-01 2023-08-15 Idemitsu Kosan Co., Ltd. Oxide semiconductor film, thin film transistor, oxide sintered body, and sputtering target
JP6364561B1 (ja) * 2017-05-18 2018-07-25 株式会社コベルコ科研 酸化物焼結体およびスパッタリングターゲット
JP6364562B1 (ja) * 2017-05-19 2018-07-25 株式会社コベルコ科研 酸化物焼結体およびスパッタリングターゲット
CN107623040A (zh) * 2017-09-05 2018-01-23 华南理工大学 一种铟镓锌氧化物薄膜晶体管及其制造方法
JP6724057B2 (ja) * 2018-03-30 2020-07-15 Jx金属株式会社 スパッタリングターゲット部材
JP6722736B2 (ja) * 2018-09-21 2020-07-15 Jx金属株式会社 焼結体および、スパッタリングターゲット
TWI725685B (zh) * 2018-12-28 2021-04-21 日本商出光興產股份有限公司 燒結體
JP7250723B2 (ja) * 2020-03-31 2023-04-03 Jx金属株式会社 スパッタリングターゲット及びスパッタリングターゲットの製造方法
WO2023091330A1 (en) * 2021-11-22 2023-05-25 Corning Incorporated Amorphous transparent conductive oxide films and methods of fabricating the same
CN116813310A (zh) * 2023-06-01 2023-09-29 先导薄膜材料(广东)有限公司 一种稀土元素掺杂氧化铟锡镓靶材及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000077358A (ja) * 1998-08-27 2000-03-14 Asahi Glass Co Ltd 透明導電膜、スパッタリングターゲットおよび透明導電膜付き基体
WO2011105047A1 (ja) * 2010-02-24 2011-09-01 出光興産株式会社 In-Ga-Sn系酸化物焼結体、ターゲット、酸化物半導体膜、及び半導体素子
WO2013027391A1 (ja) * 2011-08-22 2013-02-28 出光興産株式会社 In-Ga-Sn系酸化物焼結体

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3457969B2 (ja) 1992-05-11 2003-10-20 東ソー株式会社 高密度ito焼結体及びスパッタリングターゲット
US6042752A (en) * 1997-02-21 2000-03-28 Asahi Glass Company Ltd. Transparent conductive film, sputtering target and transparent conductive film-bonded substrate
US20040222089A1 (en) * 2001-09-27 2004-11-11 Kazuyoshi Inoue Sputtering target and transparent electroconductive film
JP5522889B2 (ja) 2007-05-11 2014-06-18 出光興産株式会社 In−Ga−Zn−Sn系酸化物焼結体、及び物理成膜用ターゲット
US20120279856A1 (en) * 2009-10-15 2012-11-08 Medvedovski Eugene Tin Oxide Ceramic Sputtering Target and Method of Producing It
JP5883367B2 (ja) * 2012-09-14 2016-03-15 株式会社コベルコ科研 酸化物焼結体およびスパッタリングターゲット、並びにその製造方法
JP5883368B2 (ja) * 2012-09-14 2016-03-15 株式会社コベルコ科研 酸化物焼結体およびスパッタリングターゲット

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000077358A (ja) * 1998-08-27 2000-03-14 Asahi Glass Co Ltd 透明導電膜、スパッタリングターゲットおよび透明導電膜付き基体
WO2011105047A1 (ja) * 2010-02-24 2011-09-01 出光興産株式会社 In-Ga-Sn系酸化物焼結体、ターゲット、酸化物半導体膜、及び半導体素子
WO2013027391A1 (ja) * 2011-08-22 2013-02-28 出光興産株式会社 In-Ga-Sn系酸化物焼結体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017019668A (ja) * 2015-07-07 2017-01-26 株式会社コベルコ科研 酸化物焼結体およびスパッタリングターゲット、並びにそれらの製造方法

Also Published As

Publication number Publication date
KR101622530B1 (ko) 2016-05-18
TW201538431A (zh) 2015-10-16
US20160111264A1 (en) 2016-04-21
TWI515167B (zh) 2016-01-01
US10515787B2 (en) 2019-12-24
CN105246855B (zh) 2017-05-31
CN105246855A (zh) 2016-01-13
KR20150136552A (ko) 2015-12-07
JP2015127293A (ja) 2015-07-09
JP5796812B2 (ja) 2015-10-21

Similar Documents

Publication Publication Date Title
JP5796812B2 (ja) 酸化物焼結体およびスパッタリングターゲット、並びにその製造方法
JP5883367B2 (ja) 酸化物焼結体およびスパッタリングターゲット、並びにその製造方法
JP5952891B2 (ja) 酸化物焼結体、およびスパッタリングターゲットの製造方法
JP5883368B2 (ja) 酸化物焼結体およびスパッタリングターゲット
WO2012118156A1 (ja) 酸化物焼結体およびスパッタリングターゲット
TWI574935B (zh) 氧化物燒結體、濺鍍用靶、及使用其而得之氧化物半導體薄膜
JP2012066968A (ja) 酸化物焼結体およびスパッタリングターゲット
JP6277977B2 (ja) 酸化物焼結体、スパッタリング用ターゲット、及びそれを用いて得られる酸化物半導体薄膜
TWI557246B (zh) An oxide sintered body, a sputtering target, and an oxide semiconductor thin film obtained therefrom
TWI669283B (zh) 氧化物燒結體及濺鍍靶材以及它們的製造方法
WO2013065784A1 (ja) 酸化物焼結体およびスパッタリングターゲット、並びにその製造方法
TWI622568B (zh) 氧化物燒結體及濺鍍用靶
JP6364561B1 (ja) 酸化物焼結体およびスパッタリングターゲット
JP2017019668A (ja) 酸化物焼結体およびスパッタリングターゲット、並びにそれらの製造方法
JP6364562B1 (ja) 酸化物焼結体およびスパッタリングターゲット
JP5750064B2 (ja) 酸化物焼結体およびスパッタリングターゲット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14865778

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157033548

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14894718

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14865778

Country of ref document: EP

Kind code of ref document: A1