WO2015080260A1 - 接着フィルム及びフレキシブル金属積層板 - Google Patents

接着フィルム及びフレキシブル金属積層板 Download PDF

Info

Publication number
WO2015080260A1
WO2015080260A1 PCT/JP2014/081602 JP2014081602W WO2015080260A1 WO 2015080260 A1 WO2015080260 A1 WO 2015080260A1 JP 2014081602 W JP2014081602 W JP 2014081602W WO 2015080260 A1 WO2015080260 A1 WO 2015080260A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
group
adhesive film
copolymer
film
Prior art date
Application number
PCT/JP2014/081602
Other languages
English (en)
French (fr)
Inventor
細田 朋也
西 栄一
佐々木 徹
松岡 康彦
渉 笠井
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to KR1020167011156A priority Critical patent/KR102315479B1/ko
Priority to CN201480065000.8A priority patent/CN105793373B/zh
Priority to JP2015551020A priority patent/JPWO2015080260A1/ja
Publication of WO2015080260A1 publication Critical patent/WO2015080260A1/ja
Priority to US15/140,912 priority patent/US10716203B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0277Bendability or stretchability details
    • H05K1/028Bending or folding regions of flexible printed circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J127/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Adhesives based on derivatives of such polymers
    • C09J127/02Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J127/12Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Adhesives based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09J127/18Homopolymers or copolymers of tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J179/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09J161/00 - C09J177/00
    • C09J179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09J179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P11/00Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
    • H01P11/001Manufacturing waveguides or transmission lines of the waveguide type
    • H01P11/003Manufacturing lines with conductors on a substrate, e.g. strip lines, slot lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines
    • H01P3/081Microstriplines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/386Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4652Adding a circuit layer by laminating a metal foil or a preformed metal foil pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/308Heat stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/10Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet
    • C09J2301/12Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers
    • C09J2301/122Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers the adhesive layer being present only on one side of the carrier, e.g. single-sided adhesive tape
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/10Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet
    • C09J2301/12Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers
    • C09J2301/124Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers the adhesive layer being present on both sides of the carrier, e.g. double-sided adhesive tape
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2427/00Presence of halogenated polymer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2479/00Presence of polyamine or polyimide
    • C09J2479/08Presence of polyamine or polyimide polyimide
    • C09J2479/086Presence of polyamine or polyimide polyimide in the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general

Definitions

  • the present invention relates to an adhesive film and a flexible metal laminate.
  • the flexible metal laminate has a structure in which a circuit made of metal foil is formed on an insulating film.
  • a flexible metal laminate is generally manufactured by a method in which an insulating film made of an insulating material is used as a substrate, and a metal foil is bonded to the surface of the substrate by heating and pressure bonding via an adhesive material. Is done.
  • a polyimide film or the like is preferably used as the insulating film.
  • As the adhesive material an epoxy or acrylic thermosetting adhesive is generally used.
  • Thermosetting adhesives have the advantage that they can be bonded at relatively low temperatures. However, as demanded characteristics such as heat resistance, flexibility and electrical reliability become stricter in the future, it will be difficult to cope with FPC using a thermosetting adhesive.
  • an FPC that does not use a thermosetting adhesive an FPC in which a metal foil is directly bonded to an insulating film and an FPC in which a thermoplastic polyimide is used for an adhesive layer have been proposed (Patent Document 1).
  • a laminate for flexible printed wiring in which a reinforcement layer such as polyimide resin and a conductor layer such as copper foil are laminated via an electrical insulator layer made of a fluorine-containing copolymer having an acid anhydride group.
  • the fluorine-containing copolymer has adhesiveness, and the electric insulator layer functions as an adhesive layer.
  • the fluorine-containing copolymer is a fluorine-containing resin having excellent electrical characteristics, and by using this in a layer in contact with the conductor layer (metal foil), the fluorine-containing copolymer is superior to the case of using thermoplastic polyimide. Electrical reliability can be obtained.
  • JP 2013-67810 A International Publication No. 2006/067970
  • solder reflow process is a process in which a solder paste is printed on a printed circuit board, a component is placed thereon, and then heat is applied to melt the solder.
  • a fluorine-containing resin layer containing a fluorine-containing copolymer as described in Patent Document 2 is directly laminated on one side or both sides of a polyimide film.
  • An object of the present invention is to provide an adhesive film and a flexible metal laminate that can withstand a soldering iron at a high temperature.
  • a fluorine-containing resin layer containing a fluorine-containing copolymer (A) is directly laminated on one side or both sides of a polyimide film,
  • the fluorine-containing copolymer (A) has a melting point of 280 ° C. or higher and 320 ° C. or lower, can be melt-molded, and is at least selected from the group consisting of a carbonyl group-containing group, a hydroxy group, an epoxy group, and an isocyanate group. Having one functional group,
  • An adhesive film, wherein the fluororesin layer has a thickness of 1 to 20 ⁇ m.
  • the fluorine-containing copolymer (A) has at least a carbonyl group-containing group as the functional group, and the carbonyl group-containing group has a carbonyl group between carbon atoms of a hydrocarbon group, a carbonate group
  • the fluorine-containing copolymer (A) is a structural unit (a2) based on a structural unit (a1) based on tetrafluoroethylene and a cyclic hydrocarbon monomer having an acid anhydride residue and a polymerizable unsaturated bond. ) And a structural unit (a3) based on a fluorine-containing monomer (excluding tetrafluoroethylene), the adhesive film according to [1] or [2] above. [4] Any of [1] to [3] above, wherein the content of the functional group is 10 to 60000 with respect to 1 ⁇ 10 6 main chain carbon atoms of the fluorine-containing copolymer (A). The adhesive film of crab.
  • the fluorine-containing copolymer (A) has a melt flow rate of 0.5 to 15 g / 10 min under a load of 372 ° C. and 49 N, and the fluorine-containing copolymer after heat treatment at 370 ° C. or higher.
  • a flexible metal laminate comprising the adhesive film according to any one of [1] to [8] above and a metal foil directly laminated on the fluorine-containing resin layer of the adhesive film.
  • a method for producing a flexible metal laminate comprising heat-treating the flexible metal laminate according to [9] above to 370 ° C. or higher.
  • a flexible printed circuit board comprising a pattern circuit formed by etching a metal foil of the flexible metal laminate according to [9].
  • a microstrip line including a microstrip line formed by etching the metal foil of the flexible metal laminate according to [9] above After adjusting the conditions of [a] and [b] below, the transmission loss measured after adjusting the condition of [a] below was measured under the conditions of a temperature of 20 to 25 ° C. and a humidity of 40 to 60% RH.
  • an adhesive film and a flexible metal laminate in which a polyimide film and a fluorine-containing resin layer are directly laminated, and occurrence of swelling (foaming) in an atmosphere corresponding to solder reflow at high temperature is suppressed. it can.
  • the adhesive film of the present invention is obtained by directly laminating a fluorine-containing resin layer containing a fluorine-containing copolymer (A) on one side or both sides of a polyimide film,
  • the fluorine-containing copolymer (A) has a melting point of 280 ° C. or higher and 320 ° C. or lower, can be melt-molded, and is at least selected from the group consisting of a carbonyl group-containing group, a hydroxy group, an epoxy group, and an isocyanate group. Having one functional group,
  • the fluorine-containing resin layer has a thickness of 1 to 20 ⁇ m.
  • the fluorine-containing resin layer contains a fluorine-containing copolymer (A).
  • the melting point of the fluorinated copolymer (A) is 280 ° C. or higher and 320 ° C. or lower, preferably 295 ° C. or higher and 315 ° C. or lower, particularly preferably 295 ° C. or higher and 310 ° C. or lower.
  • the melting point of the fluorinated copolymer (A) is not less than the lower limit of the above range, the heat resistance is excellent, and when it is not more than the upper limit of the above range, the moldability is excellent.
  • Melting fusing point of a fluorine-containing copolymer (A) can be adjusted with the kind of the structural unit which comprises the said fluorine-containing copolymer (A), a content rate, molecular weight, etc.
  • the melting point tends to increase as the proportion of the structural unit (a1) described later increases.
  • the fluorine-containing copolymer (A) can be melt-molded. “Melting is possible” means exhibiting melt fluidity.
  • a melt flow rate (Melt Flow Rate) at a temperature of 20 ° C. or higher than the melting point of the fluorinated copolymer (A) (usually 372 ° C. is adopted) and a load of 49 N.
  • MFR melt flow rate
  • MFR is preferably 0.1 to 1000 g / 10 minutes, more preferably 0.5 to 100 g / 10 minutes, still more preferably 1 to 30 g / 10 minutes, and 5 to 20 g / 10 minutes. Is most preferred.
  • the fluorinated copolymer (A) is excellent in molding processability, and the fluorinated resin layer formed from the fluorinated copolymer (A) has surface smoothness and appearance. Excellent.
  • the fluorine-containing resin layer containing the fluorine-containing copolymer (A) is excellent in mechanical strength.
  • the fluorine-containing copolymer (A) has a melt flow rate of 0.5 to 15 g / 10 min under a load of 372 ° C. and 49 N, the soldering iron heat resistance tends to be improved.
  • MFR is a measure of the molecular weight of the fluorinated copolymer (A). When the MFR is large, the molecular weight is small, and when the MFR is small, the molecular weight is large.
  • the molecular weight of the fluorinated copolymer (A), and thus the MFR, can be adjusted by the production conditions of the fluorinated copolymer (A). For example, if the polymerization time is shortened during the polymerization of the monomer, the MFR tends to increase.
  • a method of increasing the molecular weight by heat-treating the fluorinated copolymer (A) to form a crosslinked structure use of a radical polymerization initiator in producing the fluorinated copolymer (A) A method of reducing the amount; Further, the melt flow rate of the fluorine-containing copolymer (A) in the adhesive film after being heat-treated at 370 ° C. or more under a load of 372 ° C. and 49 N is preferably 0.1 to 15 g / 10 minutes, and preferably 1 to 15 g. / 10 minutes is more preferable.
  • melt flow rate of the fluorine-containing copolymer (A) in the flexible metal laminate after being heat-treated at 370 ° C. or more under a load of 372 ° C. and 49 N is preferably 0 to 16 g / 10 minutes, and preferably 0 to 15 g / 10 minutes is more preferable.
  • the fluorinated copolymer (A) has at least one functional group (hereinafter referred to as functional group (I)) selected from the group consisting of a carbonyl group-containing group, a hydroxy group, an epoxy group, and an isocyanate group. .
  • functional group (I) selected from the group consisting of a carbonyl group-containing group, a hydroxy group, an epoxy group, and an isocyanate group.
  • the functional group (I) is preferably located at at least one of the main chain terminal and the side chain of the fluorine-containing copolymer (A).
  • the functional group (I) possessed by the fluorinated copolymer (A) may be one type or two or more types.
  • the fluorinated copolymer (A) preferably has at least a carbonyl group-containing group as the functional group (I).
  • the carbonyl group-containing group is a group containing a carbonyl group (—C ( ⁇ O) —) in the structure.
  • the hydrocarbon group include alkylene groups having 2 to 8 carbon atoms.
  • carbon number of this alkylene group is carbon number in the state which does not contain a carbonyl group.
  • the alkylene group may be linear or branched.
  • the haloformyl group is represented by —C ( ⁇ O) —X (where X is a halogen atom).
  • Examples of the halogen atom in the haloformyl group include a fluorine atom and a chlorine atom, and a fluorine atom is preferable. That is, as the haloformyl group, a fluoroformyl group (also referred to as a carbonyl fluoride group) is preferable.
  • the alkoxy group in the alkoxycarbonyl group may be linear or branched and is preferably an alkoxy group having 1 to 8 carbon atoms, particularly preferably a methoxy group or an ethoxy group.
  • the content of the functional group (I) in the fluorinated copolymer (A) is preferably 10 to 60000 per 1 ⁇ 10 6 main chain carbon atoms of the fluorinated copolymer (A), preferably 100 to 50000. Is more preferable, 100 to 10,000 is more preferable, and 300 to 5000 is particularly preferable.
  • the content of the functional group (I) is not less than the lower limit of the above range, the adhesion between the fluorine-containing resin layer containing the fluorine-containing copolymer (A) and the polyimide film becomes more excellent, When the amount is not more than the upper limit of the above range, high adhesion to the polyimide film can be obtained at a low processing temperature.
  • the content of the functional group (I) can be measured by methods such as nuclear magnetic resonance (NMR) analysis and infrared absorption spectrum analysis.
  • NMR nuclear magnetic resonance
  • JP-A-2007-314720 it has a functional group (I) in all the structural units constituting the fluorinated copolymer (A) using a method such as infrared absorption spectrum analysis.
  • the proportion (mol%) of the structural unit is obtained, and the content of the functional group (I) can be calculated from the proportion.
  • a cyclic hydrocarbon having a structural unit (a1) based on tetrafluoroethylene (hereinafter also referred to as “TFE”), an acid anhydride residue, and a polymerizable unsaturated bond As the fluorine-containing copolymer (A), a cyclic hydrocarbon having a structural unit (a1) based on tetrafluoroethylene (hereinafter also referred to as “TFE”), an acid anhydride residue, and a polymerizable unsaturated bond.
  • TFE tetrafluoroethylene
  • a copolymer containing a structural unit (a2) based on a monomer and a structural unit (a3) based on a fluorine-containing monomer (excluding TFE) is preferred.
  • the acid anhydride residue of the structural unit (a2) corresponds to the functional group (I).
  • the fluorine-containing copolymer (A) may have a functional group (I) as a main chain terminal group.
  • an alkoxycarbonyl group, a carbonate group, a hydroxy group, a carboxyl group, a fluoroformyl group, an acid anhydride residue and the like are preferable.
  • These functional groups can be introduced by appropriately selecting a radical polymerization initiator, a chain transfer agent and the like used in the production of the fluorine-containing copolymer (A).
  • Examples of the cyclic hydrocarbon monomer having an acid anhydride residue and a polymerizable unsaturated bond forming the structural unit (a2) include itaconic anhydride (hereinafter also referred to as “IAH”), citraconic anhydride (hereinafter referred to as “IAH”). And 5-norbornene-2,3-dicarboxylic anhydride (hereinafter also referred to as “NAH”), maleic anhydride, and the like. These may be used alone or in combination of two or more. Among the above, one or more selected from the group consisting of IAH, CAH, and NAH is preferable.
  • the fluorine-containing monomer that forms the structural unit (a3) is preferably a fluorine-containing compound having one polymerizable double bond.
  • a fluorine-containing compound having one polymerizable double bond for example, vinyl fluoride, vinylidene fluoride (hereinafter also referred to as “VdF”), tri.
  • Fluoroolefins such as fluoroethylene, chlorotrifluoroethylene (hereinafter also referred to as “CTFE”), hexafluoropropylene (hereinafter also referred to as “HFP”), etc.
  • CF 2 CFOR f1
  • CF 2 CFOCF 2 CF 3
  • CF 2 CFOCF 2 CF 2 CF 3
  • CF 2 CFOCF 2 CF 2 CF 2 CF 3
  • CF 2 CFOCF 2 CF 2 CF 2 CF 3
  • CF 2 CFO (CF 2 ) 8 F, etc.
  • CF 2 CFOCF 2 CF 2 CF 3 (hereinafter also referred to as “PPVE”) is preferable.
  • CH 2 CX 3 (CF 2 ) q X 4
  • CH 2 CH (CF 2 ) 2 F
  • CH 2 CH (CF 2 ) 3 F
  • CH 2 CH (CF 2 ) 4 F
  • CH 2 ⁇ CF (CF 2 ) 3 H CH 2 ⁇ CF (CF 2 ) 4 H and the like
  • CH 2 ⁇ CH (CF 2 ) 4 F or CH 2 ⁇ CH (CF 2 ) 2 F are preferable.
  • the structural unit (a1) is 50 to 99.89 mol% with respect to the total molar amount of the structural unit (a1), the structural unit (a2), and the structural unit (a3).
  • the structural unit (a2) is preferably 0.01 to 5 mol%
  • the structural unit (a3) is preferably 0.1 to 49.99 mol%
  • the structural unit (a1) is preferably 50 to 99.4 mol%. More preferably, the structural unit (a2) is 0.1 to 3 mol%
  • the structural unit (a3) is 0.5 to 49.9 mol%
  • the structural unit (a1) is 50 to 98.9.
  • the structural unit (a2) is 0.1 to 2 mol% and the structural unit (a3) is 1 to 49.9 mol%.
  • the fluorine-containing copolymer (A) is excellent in heat resistance and chemical resistance, and the fluorine-containing resin layer containing the copolymer is excellent in elastic modulus at high temperature.
  • the amount of the acid anhydride residue of the fluorine-containing copolymer (A) becomes an appropriate amount, and the fluorine-containing resin layer includes a polyimide film and It has excellent adhesion between the metal foil and the metal foil laminated on the adhesive film.
  • the fluorine-containing copolymer (A) is excellent in moldability, and the fluorine-containing resin layer containing the copolymer is excellent in mechanical properties such as bending resistance.
  • the content of each structural unit can be calculated by melt NMR analysis, fluorine content analysis infrared absorption spectrum analysis, or the like of the fluorine-containing copolymer (A).
  • the content of the structural unit (a2) is the same as that of the structural unit (a1) and the structural unit.
  • 0.01 mol% with respect to the total molar amount of the unit (a2) and the structural unit (a3) means that the content of the acid anhydride residue in the fluorine-containing copolymer (A) is fluorine-containing copolymer. This corresponds to 100 per 1 ⁇ 10 6 main chain carbon atoms of the polymer (A).
  • the content of the structural unit (a2) is 5 mol% with respect to the total molar amount of the structural unit (a1), the structural unit (a2), and the structural unit (a3), the fluorine-containing copolymer (A) This corresponds to the content of acid anhydride residues in the fluorinated copolymer (A) being 50,000 with respect to 1 ⁇ 10 6 main chain carbon atoms.
  • a cyclic hydrocarbon monomer having an acid anhydride residue and a polymerizable unsaturated bond is partially hydrolyzed, resulting in an acid anhydride residue.
  • Constituent units based on dicarboxylic acids corresponding to the groups may be included.
  • content of this structural unit shall be contained in a structural unit (a2).
  • the fluorinated copolymer (A) is a non-fluorinated monomer (however, a cyclic hydrocarbon monomer having an acid anhydride residue and a polymerizable unsaturated bond) in addition to the structural units (a1) to (a3).
  • the structural unit (a4) based on the above may be included.
  • the non-fluorinated monomer is preferably a non-fluorinated compound having one polymerizable double bond, and examples thereof include olefins having 3 or less carbon atoms such as ethylene and propylene, and vinyl esters such as vinyl acetate. These may be used alone or in combination of two or more.
  • the fluorine-containing copolymer (A) has the structural unit (a4)
  • the content of the structural unit (a4) is the total molar amount of the structural unit (a1), the structural unit (a2), and the structural unit (a3). Is preferably from 5 to 90 mol, more preferably from 5 to 80 mol, most preferably from 10 to 65 mol.
  • the total molar amount of all the structural units of the fluorinated copolymer (A) is 100 mol%
  • the total molar amount of the structural units (a1) to (a3) is preferably 60 mol% or more, and 65 mol% or more. Is more preferable, and 68 mol% or more is most preferable.
  • a preferable upper limit is 100 mol%.
  • fluorinated copolymer (A) examples include TFE / PPVE / NAH copolymer, TFE / PPVE / IAH copolymer, TFE / PPVE / CAH copolymer, TFE / HFP / IAH copolymer.
  • TFE / HFP / CAH copolymer TFE / VdF / IAH copolymer
  • TFE / VdF / CAH copolymer TFE / CH 2 ⁇ CH (CF 2 ) 4 F / IAH / ethylene copolymer
  • TFE / CH 2 CH (CF 2) 4 F / CAH / ethylene copolymer
  • TFE / CH 2 CH ( CF 2) 2 F / IAH / ethylene copolymer
  • TFE / CH 2 CH ( CF 2) 2 F / CAH / ethylene copolymer, and the like.
  • the fluorine-containing copolymer (A) can be produced by a conventional method.
  • a manufacturing method of the fluorine-containing copolymer (A) which has a functional group (I) for example, when manufacturing a fluorine-containing copolymer (A) by (1) polymerization reaction, it has a functional group (I).
  • a method of using a monomer (2) a method of producing a fluorinated copolymer (A) by a polymerization reaction using a radical polymerization initiator having a functional group (I) or a chain transfer agent, and (3) a functional group ( A fluorine-containing copolymer having no I) is heated to partially thermally decompose the fluorine-containing copolymer, thereby generating a reactive functional group (for example, a carbonyl group).
  • a method of introducing the functional group (I) into the copolymer As a method for producing the fluoropolymer (A), the method (1) is preferred.
  • the polymerization method is not particularly limited, but for example, a polymerization method using a radical polymerization initiator is preferable.
  • the polymerization method includes bulk polymerization, solution polymerization using an organic solvent such as fluorinated hydrocarbon, chlorohydrocarbon, fluorinated chlorohydrocarbon, alcohol, hydrocarbon, an aqueous medium, and an appropriate organic solvent as necessary. And suspension polymerization using an aqueous medium, and emulsion polymerization using an aqueous medium and an emulsifier. Among these, solution polymerization is preferable.
  • the radical polymerization initiator is preferably an initiator having a half-life of 10 hours at 0 to 100 ° C., more preferably an initiator having a temperature of 20 to 90 ° C.
  • Specific examples include azo compounds such as azobisisobutyronitrile; non-fluorinated diacyl peroxides such as isobutyryl peroxide, octanoyl peroxide, benzoyl peroxide and lauroyl peroxide; peroxydicarbonates such as diisopropyl peroxydicarbonate; tert - butyl peroxypivalate, tert- butylperoxy isobutyrate, peroxy esters such as tert- butylperoxy acetate; (Z (CF 2) r COO) 2 ( wherein, Z is a hydrogen atom, a fluorine atom or a chlorine atom , R is an integer of 1 to 10.) Fluorine-containing diacyl peroxides such as compounds
  • Chain transfer agents include alcohols such as methanol and ethanol, chlorofluorohydrocarbons such as 1,3-dichloro-1,1,2,2,3-pentafluoropropane, 1,1-dichloro-1-fluoroethane, Hydrocarbons such as pentane, hexane, and cyclohexane are listed.
  • a compound having the functional group (I) may be used as described above.
  • functional group (I) can be introduce
  • radical polymerization initiators include di-n-propyl peroxydicarbonate, diisopropyl peroxycarbonate, t-butyl peroxyisopropyl carbonate, bis (4-t-butylcyclohexyl) peroxydicarbonate, di-2-ethylhexyl peroxydi.
  • the chain transfer agent include acetic acid, acetic anhydride, methyl acetate, ethylene glycol, and propylene glycol.
  • perfluorocarbon As the organic solvent used in the solution polymerization, perfluorocarbon, hydrofluorocarbon, chlorohydrofluorocarbon, hydrofluoroether or the like is used.
  • the number of carbon atoms is preferably 4-12.
  • Specific examples of the perfluorocarbon include perfluorocyclobutane, perfluoropentane, perfluorohexane, perfluorocyclopentane, and perfluorocyclohexane.
  • hydrofluorocarbon include 1-hydroperfluorohexane.
  • chlorohydrofluorocarbon include 1,3-dichloro-1,1,2,2,3-pentafluoropropane.
  • Specific examples of the hydrofluoroether include methyl perfluorobutyl ether, 2,2,2-trifluoroethyl 2,2,1,1-tetrafluoroethyl ether, and the like.
  • the polymerization conditions are not particularly limited, and the polymerization temperature is preferably 0 to 100 ° C, more preferably 20 to 90 ° C.
  • the polymerization pressure is preferably from 0.1 to 10 MPa, more preferably from 0.5 to 3 MPa.
  • the polymerization time is preferably 1 to 30 hours.
  • the concentration during polymerization of the cyclic hydrocarbon monomer having an acid anhydride residue and a polymerizable unsaturated bond is based on the total monomers. 0.01 to 5 mol% is preferable, 0.1 to 3 mol% is more preferable, and 0.1 to 2 mol% is most preferable.
  • the concentration of the monomer is in the above range, the polymerization rate during production is moderate, and when the concentration of the monomer is too high, the polymerization rate tends to decrease.
  • the consumed amount is continuously or intermittently supplied into the polymerization tank, It is preferable to maintain the concentration within the above range.
  • the fluorine-containing copolymer (A) contained in the fluorine-containing resin layer may be one type or two or more types.
  • the content of the fluorine-containing copolymer (A) in the fluorine-containing resin layer is 50% by mass with respect to the total mass of the fluorine-containing resin layer in terms of adhesion between the fluorine-containing resin layer, the polyimide film and the metal foil.
  • the above is preferable, and 80% by mass or more is more preferable.
  • the upper limit of this content is not specifically limited, 100 mass% may be sufficient.
  • the fluorine-containing resin layer may contain a resin other than the fluorine-containing copolymer (A) as long as it does not impair the effects of the present invention.
  • the resin other than the fluorine-containing copolymer (A) is not particularly limited as long as it does not impair the electrical reliability characteristics.
  • the fluorine-containing copolymer other than the fluorine-containing copolymer (A) is used. Examples thereof include coalescence, aromatic polyester, polyamideimide, and thermoplastic polyimide.
  • Examples of the fluorine-containing copolymer other than the fluorine-containing copolymer (A) include a tetrafluoroethylene / fluoroalkyl vinyl ether copolymer, a tetrafluoroethylene / hexafluoropropylene copolymer, and an ethylene / tetrafluoroethylene copolymer. Etc.
  • a fluorine-containing copolymer other than the fluorine-containing copolymer (A) is preferable from the viewpoint of electrical reliability. In this case, when the melting point is 280 ° C. or higher and 320 ° C.
  • the content of the resin other than the fluorinated copolymer (A) is 0.01 to 20 mass%, preferably 0.1 to 10 mass%, based on the total mass of the fluorinated resin layer. If it is content of the said range, it is preferable from viewpoints, such as being excellent in the handling at the time of film work.
  • the fluorine-containing resin layer may contain an additive as long as it does not impair the effects of the present invention.
  • an inorganic filler having a low dielectric constant and dielectric loss tangent is preferable.
  • the inorganic filler include silica, clay, talc, calcium carbonate, mica, diatomaceous earth, alumina, zinc oxide, titanium oxide, calcium oxide, magnesium oxide, iron oxide, tin oxide, antimony oxide, calcium hydroxide, magnesium hydroxide, Aluminum hydroxide, basic magnesium carbonate, magnesium carbonate, zinc carbonate, barium carbonate, dosonite, hydrotalcite, calcium sulfate, barium sulfate, calcium silicate, montmorillonite, bentonite, activated clay, sepiolite, imogolite, sericite, glass fiber, Examples thereof include glass beads, silica-based balloons, carbon black, carbon nanotubes, carbon nanohorns, graphite, carbon fibers, glass balloons, carbon burns, wood powder, zinc
  • An inorganic filler may be used individually by 1 type, and may use 2 or more types together.
  • the inorganic filler may be porous or non-porous. A porous material is preferable in that the dielectric constant and dielectric loss tangent are lower.
  • the inorganic filler may be subjected to a surface treatment with a surface treatment agent such as a silane coupling agent or a titanate coupling agent in order to improve dispersibility in the fluorine-containing copolymer (A).
  • a surface treatment agent such as a silane coupling agent or a titanate coupling agent
  • the content of the inorganic filler in the fluorine-containing resin layer is preferably 0.1 to 100 parts by mass, and 0.1 to 60 parts by mass with respect to 100 parts by mass of the fluorine-containing copolymer (A). Part is more preferred.
  • the thickness of the fluorine-containing resin layer is 1 to 20 ⁇ m, preferably 3 to 20 ⁇ m, particularly preferably 3 to 15 ⁇ m.
  • the thickness of an adhesive film can be made thin as the thickness of a fluorine-containing resin layer is below the upper limit of the said range. When it is at least the lower limit of the above range, when the adhesive film is exposed to an atmosphere corresponding to solder reflow at a high temperature, the fluororesin layer is unlikely to be swollen (foamed) by heat. Moreover, the thickness of the whole adhesive film can be made thin. When the thickness of the fluorine-containing resin layer is not less than the lower limit of the above range, the electric insulation is excellent.
  • the thickness of the fluorine-containing resin layer is preferably 6 to 15 ⁇ m from the viewpoint of achieving both a soldering iron resistance at a high temperature and a reduction in transmission loss of the flexible printed circuit board.
  • the thickness of a fluorine-containing resin layer is not the total thickness in both surfaces, but the thickness in one surface.
  • the fluorine-containing resin layer may be laminated only on one side of the polyimide film or on both sides. In terms of suppressing the warpage of the adhesive film and obtaining a double-sided metal flexible laminate having excellent electrical reliability, it is preferable that a fluorine-containing resin layer is laminated on both sides of the polyimide film.
  • the composition (type of fluorine-containing copolymer (A), type and content of optional components, etc.) and thickness of each fluorine-containing resin layer may be the same or different. Good.
  • the composition and thickness of each fluororesin layer are preferably the same.
  • the polyimide film is a film made of polyimide.
  • the polyimide film may contain additives as long as it does not impair the effects of the present invention.
  • the polyimide which comprises a polyimide film is not specifically limited. Polyimide having no thermoplasticity or thermoplastic polyimide may be used. As a polyimide, an aromatic polyimide is mentioned as a preferable example, for example. Among these, wholly aromatic polyimides produced by polycondensation of aromatic polycarboxylic dianhydrides and aromatic diamines are preferred.
  • a polyimide is generally obtained via a polyamic acid (polyimide precursor) by a reaction (polycondensation) between a polyvalent carboxylic dianhydride (or a derivative thereof) and a diamine.
  • Polyimide particularly aromatic polyimide, is insoluble in solvents and the like due to its rigid main chain structure and has an infusible property. Therefore, first, a polyimide precursor (polyamic acid or polyamic acid) soluble in an organic solvent is synthesized by the reaction of polycarboxylic dianhydride and diamine, and molded by various methods at this polyamic acid stage. Processing is performed. Thereafter, the polyamic acid is subjected to a dehydration reaction by heating or a chemical method to be cyclized (imidized) to obtain a polyimide.
  • aromatic polycarboxylic dianhydride examples include, for example, pyromellitic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 2,2 ′, 3, 3'-benzophenonetetracarboxylic dianhydride, 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride, 2,2', 3,3'-biphenyltetracarboxylic dianhydride, 2,2 -Bis (2,3-dicarboxyphenyl) propane dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, 1,1- Bis (2,3-dicarboxyphenyl) ethane dianhydride, bis (2,3-dicarboxyphenyl) methane dianhydride, bis (3,4-dicarboxyphenyphen
  • ethylene tetracarboxylic dianhydride or cyclopentane tetracarboxylic dianhydride which is a non-aromatic polyvalent carboxylic dianhydride, can be used in the same manner as an aromatic one. These are used individually or in mixture of 2 or more types.
  • aromatic diamine examples include, for example, m-phenylenediamine, o-phenylenediamine, p-phenylenediamine, m-aminobenzylamine, p-aminobenzylamine, 4,4′-diaminodiphenyl ether, 3,3 ′.
  • the additive that the polyimide film may contain is preferably an inorganic filler having a low dielectric constant or dielectric loss tangent.
  • an inorganic filler may be used individually by 1 type, and may use 2 or more types together.
  • the inorganic filler may be porous or non-porous. A porous material is preferable in that the dielectric constant and dielectric loss tangent are lower.
  • the inorganic filler may be subjected to a surface treatment with a surface treatment agent such as a silane coupling agent or a titanate coupling agent in order to improve dispersibility in polyimide.
  • the content of the inorganic filler in the polyimide film is preferably 0.1 to 100% by mass, more preferably 0.1 to 60% by mass with respect to the polyimide.
  • the thickness of the polyimide film is preferably 3 to 50 ⁇ m, more preferably 5 to 25 ⁇ m, and particularly preferably 6 to 25 ⁇ m.
  • the thickness of the polyimide film is not less than the lower limit of the above range, the electrical insulation is excellent, and when it is not more than the upper limit of the above range, the entire thickness of the adhesive film can be reduced.
  • the polyimide film is preferably thicker than the fluorine-containing resin layer. That is, the thickness of the fluorine-containing resin layer is preferably thinner than the thickness of the polyimide film. Thereby, the swelling (foaming) of the fluororesin layer when exposed to an atmosphere corresponding to solder reflow at a high temperature is more effectively suppressed.
  • the thickness of the polyimide film is preferably more than 1 times the thickness of the fluororesin layer, more preferably from 1.25 times to 25 times, and from 1.66 times to 8.3 times. Is particularly preferred.
  • the total thickness of the adhesive film is preferably 150 ⁇ m or less. In particular, in applications requiring high flexibility, the thickness is preferably 5 to 75 ⁇ m. As the entire thickness of the adhesive film is thinner, the flexibility is improved. Moreover, the mass per unit area becomes light.
  • the total thickness of the adhesive film, the thickness of the fluorine-containing resin layer, and the thickness of the polyimide film are not particularly limited, but are measured with a micrometer or the like.
  • the adhesive film of the present invention can be produced by laminating a fluorine-containing resin layer on one side or both sides of a polyimide film.
  • the polyimide film one produced by a known production method may be used, or a commercially available product may be used.
  • Surface treatment may be performed on the surface of the polyimide film, for example, the surface laminated with the fluorine-containing resin layer.
  • the surface treatment method is not particularly limited, and can be appropriately selected from known surface treatment methods such as corona discharge treatment and plasma treatment.
  • the method for laminating the fluorine-containing resin layer is not particularly limited as long as it can directly laminate the polyimide film and the fluorine-containing resin layer, but from the viewpoint of improving the electrical properties and heat resistance of the adhesive film, a heat laminating method or extrusion lamination is used.
  • the method is preferred.
  • a preliminarily formed fluorine-containing resin film and a polyimide film are stacked and laminated by hot pressing.
  • a fluorine-containing copolymer (A) or a resin composition containing the same is melted and extruded into a film, and then laminated on a polyimide film.
  • the fluororesin film can be formed by a conventional method.
  • the fluorine-containing copolymer (A) is used as it is, or the fluorine-containing copolymer (A) and an additive are kneaded and kneaded to obtain a resin composition, which is known as extrusion molding, inflation molding, or the like.
  • a fluorine-containing resin film can be obtained by molding into a film by a molding method.
  • Surface treatment may be performed on the surface of the fluorine-containing resin film, for example, the surface laminated with the polyimide film.
  • the surface treatment method is not particularly limited, and can be appropriately selected from known surface treatment methods such as corona discharge treatment and plasma treatment.
  • the temperature is preferably 295 to 420 ° C, more preferably 300 to 400 ° C.
  • the pressure is preferably 0.3 to 30 MPa, more preferably 0.5 to 20 MPa, and most preferably 1 to 10 MPa.
  • the time is preferably 3 to 240 minutes, more preferably 5 to 120 minutes, and most preferably 10 to 80 minutes.
  • Hot pressing can be performed using a press plate, a roll, or the like.
  • the press plate is preferably a stainless steel plate.
  • the flexible metal laminated board of this invention is equipped with the adhesive film of this invention mentioned above, and the metal foil directly laminated
  • the adhesive film is a laminate in which a fluorine-containing resin layer is laminated on both sides of a polyimide film
  • the metal foil may be laminated on one side or both sides of the adhesive film.
  • the metal foil may be copper or copper alloy, stainless steel or alloy thereof, nickel or nickel alloy (including 42 alloy), and aluminum or A foil made of an aluminum alloy can be mentioned.
  • general flexible metal laminates frequently use copper foil such as rolled copper foil and electrolytic copper foil, and can be preferably used in the present invention.
  • An antirust layer for example, an oxide film such as chromate
  • a heat-resistant layer may be formed on the surface of the metal foil.
  • the thickness of metal foil is not specifically limited, What is necessary is just the thickness which can exhibit a sufficient function according to the use of a flexible metal laminated board.
  • the flexible metal laminated board of this invention can be manufactured by bonding metal foil to the fluorine-containing resin layer of the said adhesive film.
  • the bonding of the adhesive film and the metal foil can be performed by a known method.
  • the adhesive film and the metal foil can be bonded together by a continuous process using a hot roll laminating apparatus having a pair of metal rolls or a double belt press (DBP). Since the apparatus configuration is simple and advantageous in terms of maintenance costs, the bonding of the adhesive film and the metal foil is preferably performed by thermal lamination using a thermal roll laminating apparatus having a pair of metal rolls.
  • the “heat roll laminating apparatus having a pair of metal rolls” may be any apparatus having a metal roll for heating and pressurizing a material, and the specific apparatus configuration is not particularly limited. .
  • the specific configuration of the means for carrying out the thermal lamination is not particularly limited, but a protective material is disposed between the pressing surface and the metal foil in order to improve the appearance of the resulting laminate. It is preferable to do.
  • the protective material is not particularly limited as long as it can withstand the heating temperature in the heat laminating step, and preferably a heat-resistant plastic such as a non-thermoplastic polyimide film, a metal foil such as a copper foil, an aluminum foil, or a SUS foil. Can be used.
  • a non-thermoplastic polyimide film is more preferably used from the viewpoint of excellent balance between heat resistance and reusability.
  • the thickness of a non-thermoplastic polyimide film is 75 micrometers or more.
  • the protective material does not necessarily have to be a single layer, and may have a multilayer structure of two or more layers having different characteristics.
  • the heating method of the material to be laminated in the heat laminating means is not particularly limited. For example, heating using a conventionally known method capable of heating at a predetermined temperature, such as a heat circulation method, a hot air heating method, an induction heating method, or the like. Means can be used.
  • the pressurization method of the material to be laminated in the heat laminating means is not particularly limited, and a conventionally known method capable of applying a predetermined pressure such as a hydraulic method, a pneumatic method, a gap pressure method, etc.
  • the pressurizing means adopting can be used.
  • the heating temperature in the thermal laminating step is preferably a glass transition temperature (Tg) of the adhesive film + 50 ° C. or higher, and more preferably Tg + 100 ° C. or higher of the adhesive film. If it is Tg + 50 degreeC or more temperature, an adhesive film and metal foil can be heat-laminated favorably. Moreover, if it is Tg + 100 degreeC or more, the lamination speed
  • the Tg of the adhesive film is a resin (a fluorine-containing copolymer (A) or a fluorine-containing copolymer (A) and another resin constituting the fluorine-containing resin layer to which the metal foil of the adhesive film is bonded.
  • the said heating temperature is 370 degreeC or more and 420 degrees C or less, It is preferable that it is 420 degrees C or less, and 400 degrees C or less is more preferable.
  • the adhesive film of the present invention is provided with the fluororesin layer on one side or both sides of a polyimide film, thereby having adhesion to a metal foil. In the case of a general adhesive film using a thermoplastic polyimide for the adhesive layer, it is necessary to apply a high temperature close to 400 ° C. in some cases in order to exhibit heat-fusibility.
  • the adhesive film of the present invention has a fluorine-containing resin layer having adhesiveness to the metal foil on the surface, the adhesive film and the metal foil are sufficiently adhered even when thermally laminated at a relatively low temperature of 400 ° C. or lower. A flexible metal laminate is obtained. By performing thermal lamination at a low temperature, the dimensional change can be suppressed.
  • the laminating speed in the thermal laminating step is preferably 0.5 m / min or more, and more preferably 1.0 m / min or more. If it is 0.5 m / min or more, sufficient thermal lamination is possible, and if it is 1.0 m / min or more, productivity can be further improved. Usually, the laminating speed is 50 m / min or less. The higher the pressure in the above heat laminating process, that is, the laminating pressure, there is an advantage that the laminating temperature can be lowered and the laminating speed can be increased, but in general, when the laminating pressure is too high, the dimensional change of the resulting laminate is changed. Tend to get worse.
  • the laminating pressure is preferably in the range of 49 to 1764 N / cm (5 to 180 kgf / cm), and more preferably in the range of 98 to 1740 N / cm (10 to 150 kgf / cm). Within this range, the three conditions of the laminating temperature, laminating speed and laminating pressure can be improved, and the productivity can be further improved.
  • a thermal laminating apparatus that continuously press-bonds the material to be laminated while heating it, such as the above-described hot roll laminating apparatus having a pair of metal rolls.
  • a laminated material feeding means for feeding the laminated material may be provided before the thermal laminating means (a pair of metal rolls or the like), or the laminated material is wound after the thermal laminating means. You may provide the laminated material winding means to take. By providing these means, the productivity of the thermal laminating apparatus can be further improved.
  • the specific configuration of the material to be laminated and the material to be laminated is not particularly limited, and for example, a known roll shape that can take up an adhesive film, a metal foil, or a laminate to be obtained. A winder etc. can be mentioned. Furthermore, it is more preferable to provide a protective material winding means and a protective material feeding means for winding and feeding the protective material. If these protective material winding means and protective material feeding means are provided, the protective material can be reused by winding the protective material once used in the thermal laminating step and installing it again on the feeding side. . Further, when winding the protective material, end position detecting means and winding position correcting means may be provided in order to align both ends of the protective material.
  • the end portions of the protective material can be aligned and wound with high accuracy, so that the efficiency of reuse can be increased.
  • the specific configurations of the protective material winding means, the protective material feeding means, the end position detecting means, and the winding position correcting means are not particularly limited, and various conventionally known devices can be used.
  • the flexible printed circuit board in the present invention refers to a substrate in which a conductor layer (conductor circuit layer) is formed on one side or both sides of an adhesive film. If the wiring of a desired pattern is formed by etching the metal foil, it can be used as a flexible wiring board on which various miniaturized and densified components are mounted.
  • the application of the present invention is not limited to this, and it goes without saying that it can be used for various applications as long as it is a laminate including a metal foil.
  • Etching can be performed by chemical etching (wet etching), and a copper chloride solution, nitric acid, or the like can be used as an etchant, or can be performed by a method using another acidic solution, alkaline solution, or the like.
  • the adhesive film of the present invention or the flexible metal laminate tends to lower the MFR of the fluorine-containing resin layer by heat treatment at 370 ° C. or higher by thermal lamination or the like.
  • Such heat treatment improves the heat resistance of the fluorine-containing copolymer (A).
  • the temperature of the heat treatment is 370 ° C. or higher and 420 ° C. or lower, preferably 380 ° C. or higher.
  • the fluorine-containing copolymer tends to decompose to decrease the molecular weight and increase the MFR, but the fluorine-containing copolymer (A) of the present invention or the resin containing the fluorine-containing copolymer (A)
  • the composition is heated at an appropriate temperature (from 370 ° C. to 400 ° C.)
  • unreacted functional groups undergo further polymerization reaction in the initial stage, and increase in molecular weight or increase in viscosity due to cross-linking reaction. It seems that an effect such as accompanied by the occurrence of MFR causes a decrease in MFR, which improves the heat resistance.
  • the fluorine-containing resin layer in the adhesive film of the present invention contains the fluorine-containing copolymer (A) having the functional group (I), the fluorine-containing resin layer adheres well to the polyimide film or the metal foil. Therefore, a polyimide film or a metal foil can be directly laminated on the fluorine-containing resin layer without using an adhesive. This is presumably because the functional group (I) causes some kind of interaction (chemical reaction or the like) between the functional group of the polyimide, for example, a carbonyl group or a metal atom.
  • the polyimide film and the fluorine-containing resin layer are directly laminated with good adhesion, and a metal foil is directly laminated on the fluorine-containing resin layer of the adhesive film to form a flexible metal laminate.
  • the fluorine-containing resin layer functions as an adhesive layer that bonds the polyimide film and the metal foil.
  • the flexible metal laminate of the present invention in which the metal foil is directly laminated on the fluorine-containing resin layer of the adhesive film of the present invention uses a fluorine-containing resin layer as the adhesive layer, a thermosetting adhesive is used for the adhesive layer. Excellent heat resistance, flexibility, electrical reliability, etc.
  • the fluorine-containing copolymer (A) has lower dielectric properties (dielectric constant, dielectric loss tangent, etc.) than thermoplastic polyimide, and the fluorine-containing resin layer containing this has excellent electrical insulation. Since such a fluorine-containing resin layer is used as an adhesive layer, the flexible metal laminate of the present invention has a higher signal transmission speed and lower transmission loss than the conventional flexible metal laminate using thermoplastic polyimide for the adhesive layer. Etc. can be achieved.
  • fever is hard to produce in the fluorine-containing resin layer which is directly in contact with the polyimide film at the time of solder reflow. Therefore, even after the solder reflow process, the shape, electrical characteristics, etc. of the pattern wiring formed on the fluorine-containing resin layer can be maintained as designed values. The following can be considered as the reason why the fluorine-containing resin layer is unlikely to be swollen by heat.
  • the polyimide film has high hygroscopicity, and the fluororesin layer has low hygroscopicity. If the polyimide film contains moisture, the moisture becomes water vapor during solder reflow.
  • the fluorine-containing resin layer exceeds 20 ⁇ m, the fluorine-containing resin layer has a gas barrier property (water vapor barrier property), and high-temperature water vapor generated from the polyimide film remains at the interface between the polyimide film and the fluorine-containing resin layer. As a result, the fluororesin layer is swollen.
  • the thickness of the fluorine-containing resin layer is 20 ⁇ m or less, and water vapor permeates to some extent through the fluorine-containing resin layer. Further, the thickness of the flexible metal laminate of the present invention is 200 ⁇ m or less, preferably 10 to 150 ⁇ m, and particularly 10 to 120 ⁇ m in applications where high bending resistance is required.
  • the present invention includes a flexible printed board comprising a pattern circuit formed by etching a metal foil of a flexible metal laminate.
  • a microstrip line including a microstrip line formed by etching a metal foil of the flexible metal laminate after adjusting the following conditions [a] or [b], a temperature of 20 to 25 ° C., humidity Transmission loss [a] after adjusting the condition [a] below and transmission loss ([b]) after adjusting the condition [b] below, measured under the condition of 40-60% RH And ([b] ⁇ [a]) ⁇ 0.004 dB / mm is preferably satisfied.
  • the measurement conditions are as described in “(6) Transmission loss (dB / mm)” described in the examples.
  • the transmission line in the present invention has excellent dielectric characteristics as described above, it can be effectively used as various electric transmission lines such as a coaxial cable and a strip line. In particular, it can be suitably used as a transmission line that requires bending resistance and low moisture absorption during use. Moreover, even if it is manufacture of a flexible printed circuit board including the process of using a soldering iron on a pattern circuit, a soldering iron can be handled at high temperature. Since the flexible printed circuit board of the present invention exhibits excellent electrical characteristics, it can be suitably used for various electrical devices, electronic devices, communication devices, and the like.
  • the measuring method regarding the physical property of a fluorine-containing copolymer is shown below.
  • the copolymer composition of the fluorine-containing copolymer (A) was determined by melt NMR analysis, fluorine content analysis and infrared absorption spectrum analysis.
  • soldering iron heat resistance test (°C) With respect to the flexible double-sided metal laminate, on one side of the copper foil surface, 2 mm ⁇ sample bat portions were formed in 18 places in length and 18 places in width, a total of 289 places, and the copper foil portions were removed by etching in the other cases.
  • a soldering iron (manufactured by Hakuko Co., Ltd., model HAKKO942) was set to a specific temperature, pressed against the sample pad for 10 seconds, and abnormalities such as swelling and peeling were visually observed. Soldering iron is set at 300 ° C, 310 ° C, 320 ° C, 330 ° C, 340 ° C, and 350 ° C. For example, there is no abnormality at 330 ° C, and there are no abnormalities such as swelling and peeling at 340 ° C. When observed, the soldering iron heat resistance was expressed as 330 ° C.
  • FIG. 1 is a cross-sectional view showing an example of a microstripline.
  • the microstrip line 30 is formed by etching the electrical insulator layer (A) 22 made of an adhesive film and the conductor layer (B) on one surface of the electrical insulator layer (A) 22 and then performing copper plating. It has the ground layer 34 which consists of the formed microstrip line 32 and the conductor layer (B) on the other surface of the electrical insulator layer (A) 22.
  • NAH anhydrous mixed acid, manufactured by Hitachi Chemical Co., Ltd.
  • perfluoropropyl vinyl ether is used as the monomer for forming the structural unit (a3).
  • Manufactured by Asahi Glass Co., Ltd. to produce a fluorinated copolymer (A-1).
  • AK225cb 1,3-dichloro-1,1,2,2,3-pentafluoropropane
  • PPVE 1,3-dichloro-1,1,2,2,3-pentafluoropropane
  • a polymerization initiator solution in which (perfluorobutyryl) peroxide was dissolved in AK225cb at a concentration of 0.36% by mass was prepared, and 3 L of the polymerization initiator solution was added to the polymerization tank at a rate of 6.25 mL per minute. Polymerization was carried out while continuously adding. Further, TFE was continuously charged so that the pressure in the polymerization tank during the polymerization reaction was maintained at 0.89 MPa / G. A solution in which NAH was dissolved in AK225cb at a concentration of 0.3% by mass was continuously charged in an amount corresponding to 0.1 mol% with respect to the number of moles of TFE charged during the polymerization.
  • the fluorine-containing copolymer (A-1) had a melting point of 300 ° C. and an MFR of 17.6 g / 10 minutes.
  • the content of the reactive functional group (acid anhydride group) of the fluorinated copolymer (A-1) is 1 ⁇ 10 6 main chain carbon atoms of the fluorinated copolymer (A-1). It was 1000 pieces.
  • film 2 A fluororesin film having a thickness of 15 ⁇ m (hereinafter referred to as “film 2”) was obtained in the same manner as in Production Example 2 except that the take-up speed was changed.
  • a fluororesin film having a thickness of 6 ⁇ m (hereinafter referred to as “film 3”) was obtained in the same manner as in Production Example 2 except that the take-up speed was changed.
  • a fluororesin film having a thickness of 12.5 ⁇ m (hereinafter referred to as “film 4”) was obtained in the same manner as in Production Example 2 except that the take-up speed was changed.
  • film 5 A fluororesin film having a thickness of 7 ⁇ m (hereinafter referred to as “film 5”) was obtained in the same manner as in Production Example 5 except that the take-up speed was changed.
  • a fluorine-containing copolymer (A-3) was obtained in the same manner as in Production Example 1, except that the polymerization time was increased during the polymerization of the monomers.
  • the specific gravity of the obtained fluorine-containing copolymer (A-3) was 2.15.
  • this fluorinated copolymer (A-3) was 301 ° C., and the MFR was 14.8 g / 10 min.
  • the content of the reactive functional group (acid anhydride group) in the fluorinated copolymer (A-3) is 1 ⁇ 10 6 carbon atoms in the main chain of the fluorinated copolymer (A-3). It was 1000 pieces.
  • Example 1 Film 2 and a polyimide film having a thickness of 25 ⁇ m are laminated in the order of film 2 / polyimide film / film 2 and pressed for 5 minutes under the conditions of a temperature of 360 ° C. and a pressure of 10 MPa.
  • An adhesive film was obtained.
  • three samples cut to a size of 50 mm ⁇ 50 mm were prepared, and each sample was put into an oven controlled at a furnace temperature of 280 ° C. for 1 minute. Thereafter, the sample was taken out and visually observed. As a result, no thermal blistering (foaming) was observed in all three samples.
  • Example 2 Film 3 and a polyimide film having a thickness of 25 ⁇ m (product name “Iupilex” manufactured by Ube Industries, Ltd.) are laminated in the order of film 3 / polyimide film / film 3 and pressed for 5 minutes under conditions of a temperature of 360 ° C. and a pressure of 10 MPa. An adhesive film was obtained. About the obtained adhesive film, three samples cut to a size of 50 mm ⁇ 50 mm were prepared, and each sample was put into an oven controlled at a furnace temperature of 280 ° C. for 1 minute. Thereafter, the sample was taken out and visually observed. As a result, no thermal blistering (foaming) was observed in all three samples.
  • Example 3 Film 3 and a polyimide film with a thickness of 12.5 ⁇ m are laminated in the order of film 3 / polyimide film / film 3 and pressed for 5 minutes under conditions of a temperature of 360 ° C. and a pressure of 10 MPa.
  • an adhesive film was obtained.
  • three samples cut to a size of 50 mm ⁇ 50 mm were prepared, and each sample was put into an oven controlled at a furnace temperature of 280 ° C. for 1 minute. Thereafter, the sample was taken out and visually observed. As a result, no thermal blistering (foaming) was observed in all three samples.
  • Table 1 summarizes the thicknesses of the polyimide films and fluorine-containing resin films (fluorine-containing resin layers) used in Examples 1 to 3 and the evaluation results. As shown in these results, the adhesive films of Examples 1 to 3 in which the fluorine-containing resin layer laminated on the polyimide film has a thickness of 1 to 20 ⁇ m are expanded (foamed) in a high-temperature atmosphere at 280 ° C. ) was suppressed.
  • Example 4 Film 2 and a polyimide film with a thickness of 25 ⁇ m (product name “Upilex”, manufactured by Ube Industries Co., Ltd.) are laminated in the order of film 2 / polyimide film, and pressed for 5 minutes at a temperature of 360 ° C. and a pressure of 10 MPa. Obtained. About the obtained adhesive film, three samples cut to a size of 50 mm ⁇ 50 mm were prepared, and each sample was put into an oven controlled at a furnace temperature of 280 ° C. for 1 minute. Thereafter, the sample was taken out and visually observed. As a result, no thermal blistering (foaming) was observed in all three samples.
  • Example 5 The adhesive film obtained in Example 1 and an electrolytic copper foil having a thickness of 12 ⁇ m (manufactured by Fukuda Metal Foil Powder Co., Ltd., CF-T4X-SVR-12, surface roughness (Rz) 1.2 ⁇ m) were added to copper foil / adhesive film / The copper foils were stacked in this order and vacuum pressed at a temperature of 360 ° C. and a pressure of 3.7 MPa for 10 minutes to obtain a flexible double-sided metal laminate. In the obtained flexible double-sided metal laminate, the copper foil and the adhesive film were sufficiently adhered. Note that the degree of adhesion between the copper foil and the adhesive film was evaluated based on the magnitude of the peel strength obtained as follows.
  • the flexible metal laminate was cut into a size of 150 mm in length and 10 mm in width to produce a test film.
  • the copper foil and the adhesive film were peeled from one end in the length direction of the test film to a position of 50 mm.
  • the copper foil and the adhesive film were separated at 90 degrees at a pulling speed of 50 mm / min, and the maximum load was defined as the peel strength (N / 10 mm). It shows that it is excellent in the adhesiveness of copper foil and an adhesive film, so that peeling strength is large.
  • Example 6 The adhesive film obtained in Example 2 and an electrolytic copper foil having a thickness of 12 ⁇ m (CF-T4X-SVR-12, Rz 1.2 ⁇ m manufactured by Fukuda Metal Foil Powder Co., Ltd.) were stacked in the order of copper foil / adhesive film / copper foil. Vacuum pressing was performed at 360 ° C. and a pressure of 3.7 MPa for 10 minutes to obtain a flexible double-sided metal laminate. In the obtained flexible double-sided metal laminate, the copper foil and the adhesive film were sufficiently adhered.
  • Example 7 The adhesive film obtained in Example 4 and an electrolytic copper foil having a thickness of 12 ⁇ m (CF-T4X-SVR-12, Rz 1.2 ⁇ m manufactured by Fukuda Metal Foil Powder Co., Ltd.) were stacked in the order of copper foil / adhesive film at a temperature of 360 ° C. Vacuum pressing was performed at a pressure of 3.7 MPa for 10 minutes to obtain a flexible single-sided metal laminate. In the obtained flexible single-sided metal laminate, the copper foil and the adhesive film were sufficiently adhered.
  • Example 8 Film 4 and a polyimide film having a thickness of 25 ⁇ m (product name “Kapton 100EN” manufactured by Toray DuPont) and an electrolytic copper foil having a thickness of 12 ⁇ m (CF-T4X-SVR-12, Rz 1.2 ⁇ m manufactured by Fukuda Metal Foil Powder Co., Ltd.)
  • the laminate was laminated in the order of copper foil / film 4 / polyimide film / film 4 / copper foil, and pressed for 10 minutes under the conditions of a temperature of 360 ° C. and a pressure of 1.3 MPa to obtain a flexible double-sided metal laminate.
  • Example 9 A flexible double-sided metal laminate was obtained by the same method as in Example 8 except that the film 5 was used instead of the film 4.
  • Example 10 A flexible double-sided metal laminate was obtained by the same method as in Example 8 except that the film 6 was used instead of the film 4.
  • Example 11 A flexible double-sided metal laminate was obtained in the same manner as in Example 8 except that the film 7 was used instead of the film 4.
  • Example 12 The flexible double-sided metal laminate obtained in Example 8 was heat-treated for 1 minute via a 400 ° C. hot roll. It was 14.4 g / 10min when MFR under a 372 degreeC and 49N load was measured about the fluorine-containing resin layer after heat processing.
  • Example 13 The flexible double-sided metal laminate obtained in Example 8 was heat-treated for 1 minute through a 360 ° C. hot roll. It was 15.9 g / 10min when MFR under a 372 degreeC and 49N load was measured about the fluorine-containing resin layer after heat processing.
  • Comparative Example 2 The flexible double-sided metal laminate obtained in Comparative Example 1 was heat-treated for 1 minute via a 400 ° C. hot roll. It was 14.7 g / 10min when MFR under a 372 degreeC and 49N load was measured about the fluorine-containing resin layer after heat processing.
  • the flexible metal laminate having the adhesive film of the present invention is excellent in heat resistance, and a flexible printed circuit board using the same has excellent electrical characteristics, and can be used for various electric devices, electronic devices, communication devices, and the like. is there. It should be noted that the entire content of the specification, claims, drawings and abstract of Japanese Patent Application No. 2013-247615 filed on November 29, 2013 is cited herein as the disclosure of the specification of the present invention. Incorporated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Laminated Bodies (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

 ポリイミドフィルムと含フッ素樹脂層とが直接積層し、高温でのはんだリフローに相当する雰囲気下での膨れ(発泡)の発生が抑制された接着フィルム及びフレキシブル金属積層板の提供。 ポリイミドフィルムの片面又は両面に、含フッ素共重合体(A)を含む含フッ素樹脂層が直接積層してなり、前記含フッ素共重合体(A)は、融点が280℃以上320℃以下であり、溶融成形可能であり、カルボニル基含有基、ヒドロキシ基、エポキシ基、及びイソシアネート基からなる群から選択される少なくとも1種の官能基を有し、前記含フッ素樹脂層の厚みが1~20μmであることを特徴とする接着フィルム。

Description

接着フィルム及びフレキシブル金属積層板
 本発明は、接着フィルム及びフレキシブル金属積層板に関する。
 近年、エレクトロニクス製品の軽量化、小型化、高密度化に伴い、各種プリント基板の需要が伸びている。中でも、フレキシブル金属積層板(フレキシブルプリント配線板(FPC)等とも称する。)の需要が特に伸びている。フレキシブル金属積層板は、絶縁性フィルム上に金属箔からなる回路が形成された構造を有している。
 フレキシブル金属積層板は、一般に、絶縁材料から形成され、柔軟性を有する絶縁性フィルムを基板とし、この基板の表面に、接着材料を介して金属箔を加熱・圧着することにより貼りあわせる方法により製造される。絶縁性フィルムとしては、ポリイミドフィルム等が好ましく用いられている。接着材料としては、エポキシ系、アクリル系等の熱硬化性接着剤が一般的に用いられている。
 熱硬化性接着剤は比較的低温での接着が可能であるという利点がある。しかし今後、耐熱性、屈曲性、電気的信頼性といった要求特性が厳しくなるに従い、熱硬化性接着剤を用いたFPCでは対応が困難になると考えられる。
 熱硬化性接着剤を用いないFPCとして、絶縁性フィルムに直接金属箔を貼り合わせたFPCや、接着層に熱可塑性ポリイミドを使用したFPCが提案されている(特許文献1)。
 また、ポリイミド樹脂等の補強体層と銅箔等の導電体層とが、酸無水物基を有する含フッ素共重合体からなる電気絶縁体層を介して積層したフレキシブルプリント配線用積層体が提案されている(特許文献2)。前記含フッ素共重合体は接着性を有し、電気絶縁体層が接着層として機能する。また、前記含フッ素共重合体は、電気特性に優れる含フッ素樹脂であり、これを導電体層(金属箔)と接する層に用いることで、熱可塑性ポリイミドを用いる場合と比較して、優れた電気的信頼性が得られる。
特開2013-67810号公報 国際公開第2006/067970号
 プリント基板の表面に電子部品、配線部品等の部品を実装する際には、はんだリフロー工程が行われる。はんだリフロー工程は、プリント基板上にはんだペーストを印刷し、その上に部品を載せてから熱を加えてはんだを溶かす工程である。
 本発明者らの検討によれば、特許文献2に記載されるような含フッ素共重合体を含む含フッ素樹脂層を、ポリイミドフィルムの片面又は両面に直接積層した積層体においては、高温でのはんだリフローに相当する雰囲気に曝されたときに、含フッ素樹脂層に熱による膨れ(発泡)が生じることがある。特に該積層体のフッ素樹脂層に金属層の配線形成が施された上に、実装を目的に、はんだごてを高温で押し付ける工程においては、配線上にはんだごてを押し付けた際に、フッ素樹脂層の膨れやフッ素樹脂層から配線が外れるといった問題が発生する。
 本発明は、上記事情に鑑みなされたものであり、ポリイミドフィルムと含フッ素樹脂層とが直接積層し、高温でのはんだリフローに相当する雰囲気下での膨れ(発泡)の発生が抑制され、更に、高温でのはんだごてに耐えうる接着フィルム及びフレキシブル金属積層板を提供することを目的とする。
 本発明は以下の態様を有する。
 [1]ポリイミドフィルムの片面又は両面に、含フッ素共重合体(A)を含む含フッ素樹脂層が直接積層してなり、
 前記含フッ素共重合体(A)は、融点が280℃以上320℃以下であり、溶融成形可能であり、カルボニル基含有基、ヒドロキシ基、エポキシ基、及びイソシアネート基からなる群から選択される少なくとも1種の官能基を有し、
 前記含フッ素樹脂層の厚みが1~20μmであることを特徴とする接着フィルム。
 [2]前記含フッ素共重合体(A)が、前記官能基として少なくともカルボニル基含有基を有し、該カルボニル基含有基が、炭化水素基の炭素原子間にカルボニル基を有する基、カーボネート基、カルボキシル基、ハロホルミル基、アルコキシカルボニル基、及び酸無水物残基からなる群から選択される少なくとも1種である、上記[1]に記載の接着フィルム。
 [3]前記含フッ素共重合体(A)が、テトラフルオロエチレンに基づく構成単位(a1)と、酸無水物残基と重合性不飽和結合とを有する環状炭化水素モノマーに基づく構成単位(a2)と、含フッ素モノマー(ただし、テトラフルオロエチレンを除く。)に基づく構成単位(a3)を含有する、上記[1]又は[2]に記載の接着フィルム。
 [4]前記官能基の含有量が、前記含フッ素共重合体(A)の主鎖炭素数1×10個に対して10~60000個である、上記[1]~[3]のいずれかに記載の接着フィルム。
 [5]前記含フッ素樹脂層の厚みが3~15μmである、上記[1]~[4]のいずれかに記載の接着フィルム。
 [6]前記ポリイミドフィルムの厚さが3~50μmである、上記[1]~[5]のいずれかに記載の接着フィルム。
 [7]前記含フッ素共重合体(A)の372℃、49N荷重下での溶融流れ速度が、0.5~15g/10分であり、370℃以上で加熱処理した後の含フッ素共重合体(A)の溶融流れ速度が、加熱処理前の前記含フッ素共重合体(A)の溶融流れ速度より小さい、上記[1]~[6]のいずれかに記載の接着フィルム。
 [8]全体の厚さが150μm以下である、上記[1]~[7]のいずれかに記載の接着フィルム。
 [9]上記[1]~[8]のいずれかに記載の接着フィルムと、前記接着フィルムの含フッ素樹脂層に直接積層した金属箔とを備えることを特徴とする、フレキシブル金属積層板。
 [10]上記[1]~[8]のいずれかに記載の接着フィルムを、370℃以上に加熱処理させることを特徴とする、接着フィルムの製造方法。
 [11]上記[9]に記載のフレキシブル金属積層板を、370℃以上に加熱処理させることを特徴とする、フレキシブル金属積層板の製造方法。
 [12]上記[9]に記載のフレキシブル金属積層板の金属箔をエッチングして形成されたパターン回路を備えることを特徴とする、フレキシブルプリント基板。
 [13]上記[9]に記載のフレキシブル金属積層板の金属箔を、エッチングして形成されたマイクロストリップ線路を含むマイクロストリップラインにおいて、
 下記[a]、[b]の状態調整を施した後、温度20~25℃、湿度40~60%RHの条件下で測定した、下記[a]の状態調整を施した後の伝送損失[a]と、下記[b]の状態調整を施した後の伝送損失[b])とが、([b]-[a])<0.004dB/mmを満たすことを特徴とする、フレキシブルプリント基板。
 [a]: 温度105℃にて48時間焼成
 [b]: 温度105℃にて24時間焼成した後、温度60℃、湿度90%RHの条件下で24時間保管
 [14]パターン回路上に、はんだこてを使用してはんだ付けする工程を含むことを特徴とする、上記[12]又は[13]に記載のフレキシブルプリント基板の製造方法。
 本発明によれば、ポリイミドフィルムと含フッ素樹脂層とが直接積層し、高温でのはんだリフローに相当する雰囲気下での膨れ(発泡)の発生が抑制された接着フィルム及びフレキシブル金属積層板を提供できる。
伝送損失の測定に用いたマイクロストリップラインの模式断面図である。
〔接着フィルム〕
 本発明の接着フィルムは、ポリイミドフィルムの片面又は両面に、含フッ素共重合体(A)を含む含フッ素樹脂層が直接積層してなり、
 前記含フッ素共重合体(A)は、融点が280℃以上320℃以下であり、溶融成形可能であり、カルボニル基含有基、ヒドロキシ基、エポキシ基、及びイソシアネート基からなる群から選択される少なくとも1種の官能基を有し、
 前記含フッ素樹脂層の厚みが1~20μmであることを特徴とする。
(含フッ素樹脂層)
 含フッ素樹脂層は、含フッ素共重合体(A)を含む。
 含フッ素共重合体(A)の融点は、280℃以上320℃以下であり、295℃以上315℃以下が好ましく、295℃以上310℃以下が特に好ましい。
 含フッ素共重合体(A)の融点が上記範囲の下限値以上であると耐熱性に優れ、上記範囲の上限値以下であると、成形性に優れる。
 含フッ素共重合体(A)の融点は、当該含フッ素共重合体(A)を構成する構成単位の種類や含有割合、分子量等によって調整できる。例えば、後述する構成単位(a1)の割合が多くなるほど、融点が上がる傾向がある。
 含フッ素共重合体(A)は、溶融成形が可能なものである。「溶融成形が可能」であるとは、溶融流動性を示すことを意味する。
 含フッ素共重合体(A)において、該含フッ素共重合体(A)の融点よりも20℃以上高い温度(通常、372℃が採用される。)、荷重49Nにおける溶融流れ速度(Melt Flow Rate:以下、「MFR」という。)は、0.1~1000g/10分が好ましく、0.5~100g/10分がより好ましく、1~30g/10分がさらに好ましく、5~20g/10分が最も好ましい。
 MFRが上記範囲の下限値以上であると、含フッ素共重合体(A)は成形加工性に優れ、該含フッ素共重合体(A)から形成された含フッ素樹脂層は表面平滑性、外観に優れる。MFRが上記範囲の上限値以下であると、含フッ素共重合体(A)を含む含フッ素樹脂層は機械強度に優れる。
 前記含フッ素共重合体(A)の372℃、49N荷重下での溶融流れ速度が0.5~15g/10分であると、はんだこて耐熱性が向上する傾向がある。
 MFRは、含フッ素共重合体(A)の分子量の目安であり、MFRが大きいと分子量が小さく、MFRが小さいと分子量が大きいことを示す。含フッ素共重合体(A)の分子量、ひいてはMFRは、含フッ素共重合体(A)の製造条件によって調整できる。例えば、モノマーの重合時に重合時間を短縮すると、MFRが大きくなる傾向がある。
 MFRを小さくするためには、含フッ素共重合体(A)を熱処理して架橋構造を形成し、分子量を上げる方法;含フッ素共重合体(A)を製造する際のラジカル重合開始剤の使用量を減らす方法;等が挙げられる。
 また、370℃以上に加熱処理した後の接着フィルムにおける含フッ素共重合体(A)の、372℃、49N荷重下での溶融流れ速度は0.1~15g/10分が好ましく、1~15g/10分がより好ましい。
 さらに、370℃以上に加熱処理した後のフレキシブル金属積層板における含フッ素共重合体(A)の372℃、49N荷重下での溶融流れ速度は0~16g/10分が好ましく、0~15g/10分がより好ましい。
 含フッ素共重合体(A)は、カルボニル基含有基、ヒドロキシ基、エポキシ基、及びイソシアネート基からなる群から選択される少なくとも1種の官能基(以下、官能基(I)という。)を有する。官能基(I)を有することにより、含フッ素共重合体(A)を含む含フッ素樹脂層は、ポリイミドフィルム及び金属箔に対して良好に密着する。
 官能基(I)は、含フッ素共重合体(A)の主鎖末端及び側鎖の少なくとも一方に位置することが好ましい。
 含フッ素共重合体(A)が有する官能基(I)は1種でも2種以上でもよい。
 含フッ素共重合体(A)は、官能基(I)として少なくともカルボニル基含有基を有することが好ましい。
 カルボニル基含有基は、構造中にカルボニル基(-C(=O)-)を含む基であり、例えば、炭化水素基の炭素原子間にカルボニル基を有する基、カーボネート基、カルボキシル基、ハロホルミル基、アルコキシカルボニル基、酸無水物残基、等が挙げられる。
 前記炭化水素基としては、例えば、炭素数2~8のアルキレン基等が挙げられる。なお、該アルキレン基の炭素数は、カルボニル基を含まない状態での炭素数である。アルキレン基は直鎖状でも分岐状でもよい。
 ハロホルミル基は、-C(=O)-X(ただし、Xはハロゲン原子である。)で表される。ハロホルミル基におけるハロゲン原子としては、フッ素原子、塩素原子等が挙げられ、フッ素原子が好ましい。すなわちハロホルミル基としては、フルオロホルミル基(カルボニルフルオリド基ともいう。)が好ましい。
 アルコキシカルボニル基におけるアルコキシ基は、直鎖状でも分岐状でもよく、炭素数1~8のアルコキシ基が好ましく、メトキシ基又はエトキシ基が特に好ましい。
 含フッ素共重合体(A)中の官能基(I)の含有量は、含フッ素共重合体(A)の主鎖炭素数1×10個に対し10~60000個が好ましく、100~50000個がより好ましく、100~10000個がさらに好ましく、300~5000個が特に好ましい。
 官能基(I)の含有量が上記範囲の下限値以上であると、含フッ素共重合体(A)を含む含フッ素樹脂層と、ポリイミドフィルムとの間の密着性がより優れたものとなり、上記範囲の上限値以下であると、低い加工温度でポリイミドフィルムに対する高度の密着性が得られる。
 前記官能基(I)の含有量は、核磁気共鳴(NMR)分析、赤外吸収スペクトル分析等の方法により、測定できる。例えば、特開2007-314720号公報に記載のように、赤外吸収スペクトル分析等の方法を用いて、含フッ素共重合体(A)を構成する全構成単位中の官能基(I)を有する構成単位の割合(モル%)を求め、該割合から、官能基(I)の含有量を算出することができる。
 含フッ素共重合体(A)としては、テトラフルオロエチレン(以下、「TFE」ともいう。)に基づく構成単位(a1)と、酸無水物残基と重合性不飽和結合とを有する環状炭化水素モノマーに基づく構成単位(a2)と、含フッ素モノマー(ただし、TFEを除く。)に基づく構成単位(a3)を含有する共重合体が好ましい。
 ここで、構成単位(a2)の有する酸無水物残基が官能基(I)に相当する。
 含フッ素共重合体(A)は、主鎖末端基として官能基(I)を有していてもよい。主鎖末端基としての官能基(I)としては、アルコキシカルボニル基、カーボネート基、ヒドロキシ基、カルボキシル基、フルオロホルミル基、酸無水物残基等が好ましい。これらの官能基は、含フッ素共重合体(A)の製造時に用いられる、ラジカル重合開始剤、連鎖移動剤等を適宜選定することにより導入できる。
 構成単位(a2)を形成する、酸無水物残基と重合性不飽和結合とを有する環状炭化水素モノマーとしては、無水イタコン酸(以下、「IAH」ともいう。)、無水シトラコン酸(以下、「CAH」ともいう。)、5-ノルボルネン-2,3-ジカルボン酸無水物(以下、「NAH」ともいう。)、無水マレイン酸等が挙げられる。これらは、1種単独で用いても、2種以上用いてもよい。
 上記のなかでも、IAH、CAH、及びNAHからなる群から選ばれる1種以上が好ましい。IAH、CAH、及びNAHからなる群から選ばれる1種以上を用いると、無水マレイン酸を用いた場合に必要となる特殊な重合方法(特開平11-193312号公報参照。)を用いることなく、酸無水物残基を含有する含フッ素共重合体(A)を容易に製造できる。
 IAH、CAH、及びNAHのなかでは、ポリイミドフィルムとの間の密着性がより優れる点から、NAHが好ましい。
 構成単位(a3)を形成する含フッ素モノマーとしては、重合性二重結合を1つ有する含フッ素化合物が好ましく、例えば、フッ化ビニル、フッ化ビニリデン(以下、「VdF」ともいう。)、トリフルオロエチレン、クロロトリフルオロエチレン(以下、「CTFE」ともいう。)、ヘキサフルオロプロピレン(以下、「HFP」ともいう。)等のフルオロオレフィン(ただし、TFEを除く。)、CF=CFORf1(ただし、Rf1は炭素数1~10で炭素原子間に酸素原子を含んでもよいペルフルオロアルキル基である。)、CF=CFORf2SO(ただし、Rf2は炭素数1~10で炭素原子間に酸素原子を含んでもよいペルフルオロアルキレン基であり、Xはハロゲン原子又は水酸基である。)、CF=CFORf3CO(ただし、Rf3は炭素数1~10で炭素原子間に酸素原子を含んでもよいペルフルオロアルキレン基であり、Xは水素原子又は炭素数1~3のアルキル基である。)、CF=CF(CFOCF=CF(ただし、pは1又は2である。)、CH=CX(CF(ただし、Xは水素原子又はフッ素原子であり、qは2から10の整数であり、Xは水素原子又はフッ素原子である。)、ペルフルオロ(2-メチレン-4-メチル-1、3-ジオキソラン)等が挙げられる。
 これら含フッ素モノマーのなかでも、VdF、CTFE、HFP、CF=CFORf1、及びCH=CX(CFからなる群から選ばれる少なくとも1種が好ましく、CF=CFORf1、又はHFPがより好ましい。
 CF=CFORf1としては、CF=CFOCFCF、CF=CFOCFCFCF、CF=CFOCFCFCFCF、CF=CFO(CFF等が挙げられ、CF=CFOCFCFCF(以下、「PPVE」ともいう。)が好ましい。
 CH=CX(CFとしては、CH=CH(CFF、CH=CH(CFF、CH=CH(CFF、CH=CF(CFH、CH=CF(CFH等が挙げられ、CH=CH(CFF、又はCH=CH(CFFが好ましい。
 含フッ素共重合体(A)は、構成単位(a1)と構成単位(a2)と構成単位(a3)との合計モル量に対して、構成単位(a1)が50~99.89モル%で、構成単位(a2)が0.01~5モル%で、構成単位(a3)が0.1~49.99モル%であることが好ましく、構成単位(a1)が50~99.4モル%で、構成単位(a2)が0.1~3モル%で、構成単位(a3)が0.5~49.9モル%であることがより好ましく、構成単位(a1)が50~98.9モル%で、構成単位(a2)が0.1~2モル%で、構成単位(a3)が1~49.9モル%であることが特に好ましい。
 各構成単位の含有量が上記範囲内であると、含フッ素共重合体(A)が耐熱性、耐薬品性に優れ、これを含む含フッ素樹脂層が高温での弾性率に優れる。
 特に、構成単位(a2)の含有量が上記範囲内であると、含フッ素共重合体(A)の有する酸無水物残基の量が適切な量となり、含フッ素樹脂層は、ポリイミドフィルムとの間の密着性、接着フィルムに積層する金属箔との間の密着性に優れる。
 構成単位(a3)の含有量が上記範囲内であると、含フッ素共重合体(A)は成形性に優れ、これを含む含フッ素樹脂層が耐屈曲性等の機械物性により優れる。
 各構成単位の含有量は、含フッ素共重合体(A)の溶融NMR分析、フッ素含有量分析赤外吸収スペクトル分析等により算出できる。
 なお、含フッ素共重合体(A)が構成単位(a1)と構成単位(a2)と構成単位(a3)とからなる場合、構成単位(a2)の含有量が、構成単位(a1)と構成単位(a2)と構成単位(a3)との合計モル量に対して0.01モル%とは、該含フッ素共重合体(A)中の酸無水物残基の含有量が、含フッ素共重合体(A)の主鎖炭素数1×10個に対して100個であることに相当する。構成単位(a2)の含有量が、構成単位(a1)と構成単位(a2)と構成単位(a3)との合計モル量に対して5モル%とは、該含フッ素共重合体(A)中の酸無水物残基の含有量が、含フッ素共重合体(A)の主鎖炭素数1×10個に対して50000個であることに相当する。
 構成単位(a2)を有する含フッ素共重合体(A)には、酸無水物残基と重合性不飽和結合とを有する環状炭化水素モノマーが一部加水分解し、その結果、酸無水物残基に対応するジカルボン酸(イタコン酸、シトラコン酸、5-ノルボルネン-2,3-ジカルボン酸、マレイン酸等。)に基づく構成単位が含まれる場合がある。該ジカルボン酸に基づく構成単位が含まれる場合、該構成単位の含有量は、構成単位(a2)に含まれるものとする。
 含フッ素共重合体(A)は、上述の構成単位(a1)~(a3)に加えて、非含フッ素モノマー(ただし、酸無水物残基と重合性不飽和結合とを有する環状炭化水素モノマーを除く。)に基づく構成単位(a4)を有していてもよい。
 非含フッ素モノマーとしては、重合性二重結合を1つ有する非含フッ素化合物が好ましく、例えば、エチレン、プロピレン等の炭素数3以下のオレフィン、酢酸ビニル等のビニルエステル等が挙げられる。これらは、1種単独で用いても、2種以上用いてもよい。
 上記のなかでも、エチレン、プロピレン、又は酢酸ビニルが好ましく、エチレンが特に好ましい。
 含フッ素共重合体(A)が構成単位(a4)を有する場合、構成単位(a4)の含有量は、構成単位(a1)と構成単位(a2)と構成単位(a3)との合計モル量を100モルとした際に、5~90モルが好ましく、5~80モルがより好ましく、10~65モルが最も好ましい。
 含フッ素共重合体(A)の全構成単位の合計モル量を100モル%とした際に、構成単位(a1)~(a3)の合計モル量は60モル%以上が好ましく、65モル%以上がより好ましく、68モル%以上が最も好ましい。好ましい上限値は、100モル%である。
 含フッ素共重合体(A)の好ましい具体例としては、TFE/PPVE/NAH共重合体、TFE/PPVE/IAH共重合体、TFE/PPVE/CAH共重合体、TFE/HFP/IAH共重合体、TFE/HFP/CAH共重合体、TFE/VdF/IAH共重合体、TFE/VdF/CAH共重合体、TFE/CH=CH(CFF/IAH/エチレン共重合体、TFE/CH=CH(CFF/CAH/エチレン共重合体、TFE/CH=CH(CFF/IAH/エチレン共重合体、TFE/CH=CH(CFF/CAH/エチレン共重合体、等が挙げられる。
 含フッ素共重合体(A)は、常法により製造できる。
 官能基(I)を有する含フッ素共重合体(A)の製造方法としては、例えば、(1)重合反応で含フッ素共重合体(A)を製造する際に、官能基(I)を有するモノマーを使用する方法、(2)官能基(I)を有するラジカル重合開始剤や連鎖移動剤を用いて、重合反応で含フッ素共重合体(A)を製造する方法、(3)官能基(I)を有しない含フッ素共重合体を加熱して、該含フッ素共重合体を部分的に熱分解することで、反応性官能基(例えば、カルボニル基。)を生成させ、官能基(I)を有する含フッ素共重合体(A)を得る方法、(4)官能基(I)を有しない含フッ素共重合体に、官能基(I)を有するモノマーをグラフト重合して、該含フッ素共重合体に官能基(I)を導入する方法、などが挙げられる。
 含フッ素重合体(A)の製造方法としては、(1)の方法が好ましい。
 重合反応で含フッ素共重合体(A)を製造する場合、重合方法としては、特に制限はないが、例えば、ラジカル重合開始剤を用いる重合方法が好ましい。
 該重合方法としては、塊状重合、フッ化炭化水素、塩化炭化水素、フッ化塩化炭化水素、アルコール、炭化水素等の有機溶媒を使用する溶液重合、水性媒体と、必要に応じて適当な有機溶媒とを使用する懸濁重合、水性媒体と乳化剤とを使用する乳化重合等が挙げられ、なかでも溶液重合が好ましい。
 ラジカル重合開始剤としては、その半減期が10時間である温度が、0~100℃である開始剤が好ましく、20~90℃である開始剤がより好ましい。
 具体例としては、アゾビスイソブチロニトリル等のアゾ化合物;イソブチリルペルオキシド、オクタノイルペルオキシド、ベンゾイルペルオキシド、ラウロイルペルオキシド等の非フッ素系ジアシルペルオキシド;ジイソプロピルペルオキシジカ-ボネート等のペルオキシジカーボネート;tert-ブチルペルオキシピバレート、tert-ブチルペルオキシイソブチレート、tert-ブチルペルオキシアセテート等のペルオキシエステル;(Z(CFCOO)(ここで、Zは水素原子、フッ素原子又は塩素原子であり、rは1~10の整数である。)で表される化合物等の含フッ素ジアシルペルオキシド;過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等の無機過酸化物;等が挙げられる。
 重合時には、含フッ素共重合体(A)の溶融粘度を制御するために、連鎖移動剤を使用することも好ましい。
 連鎖移動剤としては、メタノール、エタノール等のアルコール、1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン、1,1-ジクロロ-1-フルオロエタン等のクロロフルオロハイドロカーボン、ペンタン、ヘキサン、シクロヘキサン等のハイドロカーボンが挙げられる。
 ラジカル重合開始剤及び連鎖移動剤の少なくとも一方として、上述したように、官能基(I)を有する化合物を用いてもよい。これにより、製造される含フッ素共重合体(A)の主鎖末端に、官能基(I)を導入することができる。
 このようなラジカル重合開始剤としては、ジ-n-プロピルペルオキシジカーボネート、ジイソプロピルペルオキシカーボネート、t-ブチルペルオキシイソプロピルカーボネート、ビス(4-t-ブチルシクロヘキシル)ペルオキシジカーボネート、ジ-2-エチルヘキシルペルオキシジカーボネートなどが挙げられ、連鎖移動剤としては、酢酸、無水酢酸、酢酸メチル、エチレングリコール、プロピレングリコール等が挙げられる。
 溶液重合で使用される有機溶媒としては、ペルフルオロカーボン、ヒドロフルオロカーボン、クロロヒドロフルオロカーボン、ヒドロフルオロエーテル等が用いられる。炭素数は、4~12が好ましい。
 ペルフルオロカーボンの具体例としては、ペルフルオロシクロブタン、ペルフルオロペンタン、ペルフルオロヘキサン、ペルフルオロシクロペンタン、ペルフルオロシクロヘキサン等が挙げられる。
 ヒドロフルオロカーボンの具体例としては、1-ヒドロペルフルオロヘキサン等が挙げられる。
 クロロヒドロフルオロカーボンの具体例としては、1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン等が挙げられる。
 ヒドロフルオロエーテルの具体例としては、メチルペルフルオロブチルエーテル、2,2,2-トリフルオロエチル2,2,1,1-テトラフルオロエチルエーテル等が挙げられる。
 重合条件は特に限定されず、重合温度は0~100℃が好ましく、20~90℃がより好ましい。重合圧力は0.1~10MPaが好ましく、0.5~3MPaがより好ましい。重合時間は1~30時間が好ましい。
 構成単位(a2)を有する含フッ素共重合体(A)を重合する場合、酸無水物残基と重合性不飽和結合とを有する環状炭化水素モノマーの重合中の濃度は、全モノマーに対して0.01~5モル%が好ましく、0.1~3モル%がより好ましく、0.1~2モル%が最も好ましい。該モノマーの濃度が上記範囲にあると、製造時の重合速度が適度で、該モノマーの濃度が高すぎると、重合速度が低下する傾向がある。
 重合中、酸無水物残基と重合性不飽和結合とを有する環状炭化水素モノマーが重合で消費されるに従って、消費された量を連続的又は断続的に重合槽内に供給し、該モノマーの濃度を上記範囲内に維持することが好ましい。
 含フッ素樹脂層に含まれる含フッ素共重合体(A)は1種でも2種以上でもよい。
 含フッ素樹脂層中の含フッ素共重合体(A)の含有量は、含フッ素樹脂層とポリイミドフィルム及び金属箔との密着性の点で、含フッ素樹脂層の総質量に対し、50質量%以上が好ましく、80質量%以上がより好ましい。該含有量の上限は特に限定されず、100質量%であってもよい。
 含フッ素樹脂層は、必要に応じて、本発明の効果を損なわない範囲で、含フッ素共重合体(A)以外の樹脂を含有してもよい。
 含フッ素共重合体(A)以外の樹脂としては、電気的信頼性の特性を損なわない限り、特に限定されるものではないが、例えば、含フッ素共重合体(A)以外の含フッ素共重合体、芳香族ポリエステル、ポリアミドイミド、熱可塑性ポリイミド等が挙げられる。
 含フッ素共重合体(A)以外の含フッ素共重合体としては、例えば、テトラフルオロエチレン/フルオロアルキルビニルエーテル共重合体、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体、エチレン/テトラフルオロエチレン共重合体等が挙げられる。
 含フッ素共重合体(A)以外の樹脂としては、電気的信頼性の観点から、含フッ素共重合体(A)以外の含フッ素共重合体が好ましい。この場合、融点が280℃以上320℃以下であると、はんだリフローに相当する雰囲気に曝されたときに、含フッ素樹脂層に熱による膨れ(発泡)が抑制できる傾向がある。
 含フッ素共重合体(A)以外の樹脂の含有量は、含フッ素樹脂層の総質量に対し、0.01~20質量%、好ましくは0.1~10質量%である。上記範囲の含有量であれば、フィルム作業時の取り扱いに優れる等の観点から、好ましい。
 含フッ素樹脂層は、必要に応じて、本発明の効果を損なわない範囲で、添加剤を含有してもよい。
 添加剤としては、誘電率や誘電正接が低い無機フィラーが好ましい。該無機フィラーとしては、シリカ、クレー、タルク、炭酸カルシウム、マイカ、珪藻土、アルミナ、酸化亜鉛、酸化チタン、酸化カルシウム、酸化マグネシウム、酸化鉄、酸化錫、酸化アンチモン、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、塩基性炭酸マグネシウム、炭酸マグネシウム、炭酸亜鉛、炭酸バリウム、ドーソナイト、ハイドロタルサイト、硫酸カルシウム、硫酸バリウム、珪酸カルシウム、モンモリロナイト、ベントナイト、活性白土、セピオライト、イモゴライト、セリサイト、ガラス繊維、ガラスビーズ、シリカ系バルーン、カーボンブラック、カーボンナノチューブ、カーボンナノホーン、グラファイト、炭素繊維、ガラスバルーン、炭素バーン、木粉、ホウ酸亜鉛等が挙げられる。無機フィラーは1種単独で用いてもよく、2種以上を併用してもよい。
 無機フィラーは、多孔質でも非多孔質でもよい。誘電率や誘電正接がさらに低い点で、多孔質であることが好ましい。
 無機フィラーは、含フッ素共重合体(A)への分散性の向上のために、シランカップリング剤やチタネートカップリング剤等の表面処理剤による表面処理が施されてもよい。
 無機フィラーを含有する場合、含フッ素樹脂層中の無機フィラーの含有量は、含フッ素共重合体(A)100質量部に対して0.1~100質量部が好ましく、0.1~60質量部がより好ましい。
 含フッ素樹脂層の厚みは1~20μmであり、3~20μmが好ましく、3~15μmが特に好ましい。
 含フッ素樹脂層の厚みが上記範囲の上限値以下であると、接着フィルムの厚みを薄くすることができる。上記範囲の下限値以上であると、接着フィルムが高温でのはんだリフローに対応する雰囲気下に曝されたときに、含フッ素樹脂層に熱による膨れ(発泡)が生じにくい。また、接着フィルム全体の厚みを薄くすることができる。含フッ素樹脂層の厚みが上記範囲の下限値以上であると、電気絶縁性に優れる。
 含フッ素樹脂層の厚みは、高温でのはんだこて耐性とフレキシブルプリント基板の伝送損失低減の両立といった観点からは6~15μmが好ましい。
 なお、ポリイミドフィルムの両面に含フッ素樹脂層が設けられている場合、含フッ素樹脂層の厚みは、両面における合計の厚みではなく片面における厚みである。
 含フッ素樹脂層は、ポリイミドフィルムの片面のみに積層しても両面に積層してもよい。接着フィルムの反りを抑制する、電気的信頼性に優れる両面金属フレキシブル積層体を得る等の点では、ポリイミドフィルムの両面に含フッ素樹脂層が積層していることが好ましい。
 ポリイミドフィルムの両面に含フッ素樹脂層が積層する場合、各含フッ素樹脂層の組成(含フッ素共重合体(A)の種類、任意成分の種類及び含有量等)や厚みは同じでも異なってもよい。接着フィルムの反りの抑制の点では、各含フッ素樹脂層の組成や厚みは同じであることが好ましい。
(ポリイミドフィルム)
 ポリイミドフィルムは、ポリイミドから構成されるフィルムである。
 ポリイミドフィルムは、必要に応じて、本発明の効果を損なわない範囲で、添加剤を含有してもよい。
 ポリイミドフィルムを構成するポリイミドは特に限定されない。熱可塑性を有さないポリイミドでも、熱可塑性ポリイミドでもよい。
 ポリイミドとしては、例えば、芳香族ポリイミドが好ましい例として挙げられる。中でも、芳香族多価カルボン酸二無水物と芳香族ジアミンとの重縮合で製造される全芳香族ポリイミドが好ましい。
 ポリイミドは、一般的に、多価カルボン酸二無水物(又はその誘導体)とジアミンとの反応(重縮合)によって、ポリアミック酸(ポリイミド前駆体)を経由して得られる。
 ポリイミド、特に、芳香族ポリイミドは、その剛直な主鎖構造により溶媒等に対して不溶であり、また不融の性質を有する。そのため、先ず、多価カルボン酸二無水物とジアミンとの反応により、有機溶媒に可溶なポリイミド前駆体(ポリアミック酸、又はポリアミド酸)を合成し、このポリアミック酸の段階で様々な方法で成形加工が行われる。その後、ポリアミック酸を加熱もしくは化学的な方法で、脱水反応させて環化(イミド化)しポリイミドとされる。
 上記芳香族多価カルボン酸二無水物の具体例としては、例えば、ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、2,2-ビス(3,4-ジカルボキシルフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、1,2,3,4-ベンゼンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、2,3,6,7-アントラセンテトラカルボン酸二無水物、1,2,7,8-フェナントレンテトラカルボン酸二無水物等が挙げられる。
 また、非芳香族系の多価カルボン酸二無水物であるエチレンテトラカルボン酸二無水物、又はシクロペンタンテトラカルボン酸二無水物も、芳香族系のものと遜色なく用いることができる。
 これらは単独又は2種以上混合して用いられる。
 芳香族ジアミンの具体例としては、例えば、m-フェニレンジアミン、o-フェニレンジアミン、p-フェニレンジアミン、m-アミノベンジルアミン、p-アミノベンジルアミン、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、ビス(3-アミノフェニル)スルフィド、(3-アミノフェニル)(4-アミノフェニル)スルフィド、ビス(4-アミノフェニル)スルフィド、ビス(3-アミノフェニル)スルフィド、(3-アミノフェニル)(4-アミノフェニル)スルホキシド、ビス(3-アミノフェニル)スルホン、(3-アミノフェニル)(4-アミノフェニル)スルホン、ビス(4-アミノフェニル)スルホン、3,3’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、ビス〔4-(3-アミノフェノキシ)フェニル〕メタン、ビス〔4-(4-アミノフェノキシ)フェニル〕メタン、1,1-ビス〔4-(3-アミノフェノキシ)フェニル〕エタン、1,1-ビス〔4-(4-アミノフェノキシ)フェニル〕-エタン、1,2-ビス〔4-(3-アミノフェノキシ)フェニル〕エタン、1,2-ビス〔4-(4-アミノフェノキシ)フェニル〕エタン、2,2-ビス〔4-(3-アミノフェノキシ)フェニル〕プロパン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン、2,2-ビス〔4-(3-アミノフェノキシ)フェニル〕ブタン、2,2-ビス〔3-(3-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(3-アミノフェノキシ)ビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス〔4-(3-アミノフェノキシ)フェニル〕ケトン、ビス〔4-(4-アミノフェノキシ)フェニル〕ケトン、ビス〔4-(3-アミノフェノキシ)フェニル〕スルフィド、ビス〔4-(4-アミノフェノキシ)フェニル〕スルフィド、ビス〔4-(3-アミノフェノキシ)フェニル〕スルホキシド、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホキシド、ビス〔4-(3-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(3-アミノフェノキシ)フェニル〕エーテル、ビス〔4-(4-アミノフェノキシ)フェニル〕エーテル、1,4-ビス〔4-(3-アミノフェノキシ)ベンゾイル〕ベンゼン、1,3-ビス〔4-(3-アミノフェノキシ)ベンゾイル〕ベンゼン、4,4’-ビス〔3-(4-アミノフェノキシ)ベンゾイル〕ジフェニルエーテル、4,4’-ビス〔3-(3-アミノフェノキシ)ベンゾイル〕ジフェニルエーテル、4,4’-ビス〔4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ〕ベンゾフェノン、4,4’-ビス〔4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ〕ジフェニルスルホン、ビス〔4-{4-(4-アミノフェノキシ)フェノキシ}フェニル〕スルホン、1,4-ビス〔4-(4-アミノフェノキシ)フェノキシ〕-α,α-ジメチルベンジル〕ベンゼン、1,3-ビス〔4-(4-アミノフェノキシ)-α,α-ジメチルベンジル〕ベンゼン等が挙げられる。これらは単独又は2種以上を混合して使用される。
 ポリイミドフィルムが含有してもよい添加剤としては、誘電率や誘電正接が低い無機フィラーが好ましい。該無機フィラーとしては、含フッ素樹脂フィルムの説明で挙げたものと同様のものが挙げられる。無機フィラーは1種単独で用いてもよく、2種以上を併用してもよい。
 無機フィラーは、多孔質でも非多孔質でもよい。誘電率や誘電正接がさらに低い点で、多孔質であることが好ましい。
 無機フィラーは、ポリイミドへの分散性の向上のために、シランカップリング剤やチタネートカップリング剤等の表面処理剤による表面処理が施されてもよい。
 無機フィラーを含有する場合、ポリイミドフィルム中の無機フィラーの含有量は、ポリイミドに対して0.1~100質量%が好ましく、0.1~60質量%がより好ましい。
 ポリイミドフィルムの厚みは、3~50μmが好ましく、5~25μmがより好ましく、6~25μmが特に好ましい。
 ポリイミドフィルムの厚みが上記範囲の下限値以上であると、電気絶縁性に優れ、上記範囲の上限値以下であると、接着フィルムの全体の厚みを薄くすることができる。
 ポリイミドフィルムの厚みは、含フッ素樹脂層の厚みよりも厚いことが好ましい。つまり、含フッ素樹脂層の厚みは、ポリイミドフィルムの厚みよりも薄いことが好ましい。これにより、高温でのはんだリフローに対応する雰囲気下に曝されたときの、含フッ素樹脂層の膨れ(発泡)がより効果的に抑制される。
 ポリイミドフィルムの厚みは、含フッ素樹脂層の厚みの1倍超であることが好ましく、1.25倍以上25倍以下であることがより好ましく、1.66倍以上8.3倍以下であることが特に好ましい。
(接着フィルムの厚み)
 接着フィルムの全体の厚みは、150μm以下であることが好ましい。中でも高屈曲性が要求される用途においては、5~75μmであることが好ましい。
 接着フィルムの全体の厚みが薄いほど、フレキシブル性が向上する。また、単位面積当たりの質量が軽くなる。
 接着フィルムの全体の厚み、含フッ素樹脂層の厚み、ポリイミドフィルムの厚みはそれぞれ、特に限定されるものではないが、マイクロメーター等により測定される。
(接着フィルムの製造方法)
 本発明の接着フィルムは、ポリイミドフィルムの片面又は両面に含フッ素樹脂層を積層することにより製造できる。
 ポリイミドフィルムは、公知の製造方法により製造したものを用いてもよく、市販品を用いてもよい。
 ポリイミドフィルムの表面、例えば、含フッ素樹脂層と積層する面に表面処理が施されてもよい。表面処理方法としては特に限定されず、コロナ放電処理、プラズマ処理等の公知の表面処理方法のなかから適宜選択できる。
 含フッ素樹脂層の積層方法は、ポリイミドフィルムと含フッ素樹脂層とを直接積層できる方法であれば特に限定されないが、接着フィルムの電気特性や耐熱性向上といった観点から、熱ラミネート法、又は押出しラミネート法が好ましい。
 熱ラミネート法では、予め成形された含フッ素樹脂フィルムとポリイミドフィルムとを重ね、熱プレスすることでそれらのフィルムをラミネートする。
 押出しラミネート法では、含フッ素共重合体(A)又はこれを含む樹脂組成物を溶融して、フィルム状に押し出したものを、ポリイミドフィルムにラミネートする。
 含フッ素樹脂フィルムの成形は、常法により実施できる。例えば、含フッ素共重合体(A)をそのまま、又は含フッ素共重合体(A)と添加剤とを配合して混練して樹脂組成物とし、押出成形、インフレーション(Inflation)成形等の公知の成形法によりフィルム状に成形することにより含フッ素樹脂フィルムが得られる。
 含フッ素樹脂フィルムの表面、例えば、ポリイミドフィルムと積層する面に表面処理が施されてもよい。表面処理方法としては特に限定されず、コロナ放電処理、プラズマ処理等の公知の表面処理方法のなかから適宜選択できる。
 熱ラミネート法における熱プレス条件としては、温度は295~420℃が好ましく、300~400℃がより好ましい。圧力は0.3~30MPaが好ましく、0.5~20MPaがより好ましく、1~10MPaが最も好ましい。時間は3~240分が好ましく、5~120分がより好ましく、10~80分が最も好ましい。熱プレスは、プレス板、ロール等を用いて行うことができる。プレス板としては、ステンレス鋼板が好ましい。
〔フレキシブル金属積層板〕
 本発明のフレキシブル金属積層板は、前述した本発明の接着フィルムと、該接着フィルムの含フッ素樹脂層に直接積層した金属箔とを備える。
 接着フィルムが、ポリイミドフィルムの両面に含フッ素樹脂層が積層したものである場合、金属箔が積層するのは、接着フィルムの片面でも両面でもよい。
 金属箔としては、特に限定されず、用途に応じて適宜設定し得る。例えば、電子機器・電気機器用途に本発明のフレキシブル金属積層板を用いる場合、金属箔としては、銅若しくは銅合金、ステンレス鋼若しくはその合金、ニッケル若しくはニッケル合金(42合金も含む)、及びアルミニウム若しくはアルミニウム合金からなる箔を挙げることができる。かかる用途において、一般的なフレキシブル金属積層板では、圧延銅箔、電解銅箔といった銅箔が多用されており、本発明においても好ましく用いることができる。
 金属箔の表面には、防錆層(例えば、クロメート等の酸化物皮膜)や耐熱層が形成されていてもよい。また、含フッ素樹脂層との密着性を向上させる為に、金属箔の表面にカップリング剤処理等を施してもよい。
 金属箔の厚みは、特に限定されず、フレキシブル金属積層板の用途に応じて、十分な機能が発揮できる厚みであればよい。
 本発明のフレキシブル金属積層板は、上記接着フィルムの含フッ素樹脂層に金属箔を貼り合わせることにより製造できる。
 接着フィルムと金属箔との張り合わせは、公知の方法により行うことができる。例えば、一対以上の金属ロールを有する熱ロールラミネート装置或いはダブルベルトプレス(DBP)による連続処理によって、接着フィルムと金属箔とを張り合わせることができる。装置構成が単純であり、保守コストの面で有利であるという点から、接着フィルムと金属箔との張り合わせは、一対以上の金属ロールを有する熱ロールラミネート装置を用いた熱ラミネートにより行うことが好ましい。
 「一対以上の金属ロールを有する熱ロールラミネート装置」とは、材料を加熱加圧するための金属ロールを有している装置であればよく、その具体的な装置構成は特に限定されるものではない。
 上記熱ラミネートを実施する手段の具体的な構成は特に限定されるものではないが、得られる積層板の外観を良好なものとするために、加圧面と金属箔との間に保護材料を配置することが好ましい。
 保護材料としては、熱ラミネート工程の加熱温度に耐え得るものであれば特に限定されず、非熱可塑性ポリイミドフィルム等の耐熱性プラスチック、銅箔、アルミニウム箔、SUS箔等の金属箔等を好適に用いることができる。中でも、耐熱性、再利用性等のバランスが優れる点から、非熱可塑性ポリイミドフィルムがより好ましく用いられる。また、厚みが薄いとラミネート時の緩衝並びに保護の役目を十分に果たさないおそれがあるため、非熱可塑性ポリイミドフィルムの厚みは75μm以上であることが好ましい。また、この保護材料は必ずしも1層である必要はなく、異なる特性を有する2層以上の多層構造でもよい。
 上記熱ラミネート手段における被積層材料の加熱方式は特に限定されるものではなく、例えば、熱循環方式、熱風加熱方式、誘導加熱方式等、所定の温度で加熱し得る従来公知の方式を採用した加熱手段を用いることができる。同様に、上記熱ラミネート手段における被積層材料の加圧方式も特に限定されるものではなく、例えば、油圧方式、空気圧方式、ギャップ間圧力方式等、所定の圧力を加えることができる従来公知の方式を採用した加圧手段を用いることができる。
 上記熱ラミネート工程における加熱温度、すなわちラミネート温度は、接着フィルムのガラス転移温度(Tg)+50℃以上の温度であることが好ましく、接着フィルムのTg+100℃以上がより好ましい。Tg+50℃以上の温度であれば、接着フィルムと金属箔とを良好に熱ラミネートすることができる。またTg+100℃以上であれば、ラミネート速度を上昇させてその生産性をより向上させることができる。
 なお、接着フィルムのTgは、接着フィルムの、金属箔が張り合わされる含フッ素樹脂層を構成する樹脂(含フッ素共重合体(A)、又は含フッ素共重合体(A)と他の樹脂とのブレンド)のTgを示すものとする。
 また、本発明においては、前記の加熱温度は370℃以上420℃以下であり、420℃以下であることが好ましく、400℃以下がより好ましい。
 本発明の接着フィルムは、ポリイミドフィルムの片面又は両面に前記含フッ素樹脂層を設けており、これによって金属箔に対する接着性を有する。接着層に熱可塑性ポリイミドを用いた一般的な接着フィルムの場合、熱融着性を発現させるために、場合によっては400℃近くの高温を加える必要がある。そのため、熱ラミネートされて得られたフレキシブル金属積層板に残留歪みが発生し、エッチングして配線を形成する際、並びに部品を実装するためにはんだリフローを行う際に寸法変化となって現れる場合があった。
 また、本発明の接着フィルムは、金属箔に対する接着性を有する含フッ素樹脂層を表面に有するため、400℃以下の比較的低温で熱ラミネートしても、接着フィルムと金属箔とを充分に密着したフレキシブル金属積層板が得られる。熱ラミネートを低温で行うことで、前記の寸法変化を抑制できる。
 上記熱ラミネート工程におけるラミネート速度は、0.5m/分以上であることが好ましく、1.0m/分以上であることがより好ましい。0.5m/分以上であれば十分な熱ラミネートが可能になり、1.0m/分以上であれば生産性をより一層向上することができる。通常、ラミネート速度は50m/分以下である。
 上記熱ラミネート工程における圧力、すなわちラミネート圧力は、高ければ高いほどラミネート温度を低く、かつラミネート速度を速くすることができる利点があるが、一般にラミネート圧力が高すぎると、得られる積層板の寸法変化が悪化する傾向がある。また、ラミネート圧力が低すぎると、得られる積層板の金属箔の接着強度が低くなる。そのため、ラミネート圧力は、49~1764N/cm(5~180kgf/cm)の範囲であることが好ましく、98~1740N/cm(10~150kgf/cm)の範囲であることがより好ましい。この範囲であれば、ラミネート温度、ラミネート速度及びラミネート圧力の三条件を良好なものにすることができ、生産性をより一層向上することができる。
 本発明のフレキシブル金属積層板の製造においては、前述の一対以上の金属ロールを有する熱ロールラミネート装置のように、連続的に被積層材料を加熱しながら圧着する熱ラミネート装置を用いることが好ましい。この熱ラミネート装置では、熱ラミネート手段(一対以上の金属ロール等)の前段に、被積層材料を繰り出す被積層材料繰出手段を設けてもよいし、熱ラミネート手段の後段に、被積層材料を巻き取る被積層材料巻取手段を設けてもよい。これらの手段を設けることで、上記熱ラミネート装置の生産性をより一層向上させることができる。上記被積層材料繰出手段及び被積層材料巻取手段の具体的な構成は特に限定されるものではなく、例えば、接着フィルムや金属箔、あるいは得られる積層板を巻き取ることのできる公知のロール状巻取機等を挙げることができる。
 さらに、保護材料を巻き取ったり繰り出したりする保護材料巻取手段や保護材料繰出手段を設けると、より好ましい。これら保護材料巻取手段や保護材料繰出手段を備えていれば、熱ラミネート工程で、一度使用された保護材料を巻き取って繰り出し側に再度設置することで、保護材料を再使用することができる。
 また、保護材料を巻き取る際に、保護材料の両端部を揃えるために、端部位置検出手段及び巻取位置修正手段を設けてもよい。これによって、精度よく保護材料の端部を揃えて巻き取ることができるので、再使用の効率を高めることができる。なお、これら保護材料巻取手段、保護材料繰出手段、端部位置検出手段及び巻取位置修正手段の具体的な構成は特に限定されるものではなく、従来公知の各種装置を用いることができる。
 前記のように接着フィルムと金属箔とを貼り合わせた後、金属箔をエッチングして所望のパターンを形成してもよい。
 本発明におけるフレキシブルプリント基板は、接着フィルムの片面又は両面に導体層(導体回路層)が形成されたものをいう。
 金属箔をエッチングして所望のパターンの配線を形成すれば、各種の小型化、高密度化された部品を実装したフレキシブル配線板として用いることができる。もちろん、本発明の用途はこれに限定されるものではなく、金属箔を含む積層体であれば、種々の用途に利用できることはいうまでもない。
 エッチングは、化学エッチング(湿式エッチング)で行うことができ、エッチング液には塩化銅溶液、硝酸などを用いることができ、或いは他の酸性溶液、アルカリ溶液等を用いる方法により行うことができる。
 本発明の接着フィルムや前記フレキシブル金属積層板は、熱ラミネート等により370℃以上に加熱処理することにより、含フッ素樹脂層のMFRを低下させやすい傾向がある。このような加熱処理により、含フッ素共重合体(A)の耐熱性が向上する。加熱処理の温度は370℃以上420℃以下であり、好ましくは380℃以上である。これにより、例えば、フレキシブル金属積層板においては、はんだこて耐熱性が向上するため好ましい。
 通常、含フッ素共重合体は、分解して分子量が小さくなり、MFRが大きくなる傾向にあるが、本発明の含フッ素共重合体(A)、あるいは含フッ素共重合体(A)を含む樹脂組成物は、適度な温度(370℃以上400℃以下)で加熱されることにより、初期の段階で未反応の官能基が、更なる重合反応を起こし、分子量の増加或いは架橋反応による粘性の増加を伴うなどの効果が生じて、MFRの低下が誘発され、これにより耐熱性が向上したものと思われる。
〔作用効果〕
 本発明の接着フィルムにおける含フッ素樹脂層は、官能基(I)を有する含フッ素共重合体(A)を含有するため、ポリイミドフィルムや金属箔に対して良好に密着する。そのため、接着剤を使用せずに直接ポリイミドフィルムや金属箔を含フッ素樹脂層に積層できる。これは、官能基(I)が、ポリイミドが有する官能基、例えば、カルボニル基との間で、又は金属原子との間で、何らかの相互作用(化学反応等)を生じるためと考えられる。
 本発明の接着フィルムにおいては、ポリイミドフィルムと含フッ素樹脂層とが直接、良好な密着性で積層し、また、接着フィルムの含フッ素樹脂層に金属箔を直接積層してフレキシブル金属積層板とすることができる。該フレキシブル金属積層板において、含フッ素樹脂層は、ポリイミドフィルムと金属箔とを接着する接着層として機能する。
 本発明の接着フィルムの含フッ素樹脂層に金属箔を直接積層した、本発明のフレキシブル金属積層板は、接着層として含フッ素樹脂層を用いているため、接着層に熱硬化性接着剤を用いた場合に比べて、耐熱性、屈曲性、電気的信頼性等に優れる。
 また、含フッ素共重合体(A)は、熱可塑性ポリイミドに比べて、誘電特性(誘電率、誘電正接等)が低く、これを含有する含フッ素樹脂層は、優れた電気絶縁性を有する。かかる含フッ素樹脂層を接着層として用いているため、本発明のフレキシブル金属積層板は、接着層に熱可塑性ポリイミドを用いた従来のフレキシブル金属積層板に比べて、速い信号伝送速度、低い伝送損失等を達成し得る。
 また、本発明のフレキシブル金属積層板においては、はんだリフロー時に、ポリイミドフィルムに直接接している含フッ素樹脂層に、熱による膨れ(発泡)が生じにくい。そのため、はんだリフロー工程後にも、含フッ素樹脂層上に形成されたパターン配線の形状、電気特性等を設計値の通りに保持できる。
 含フッ素樹脂層に、熱による膨れが生じにくい理由としては、以下のことが考えられる。ポリイミドフィルムは吸湿性が高く、含フッ素樹脂層は吸湿性が低い。ポリイミドフィルムに水分が含まれていると、該水分がはんだリフロー時に水蒸気となる。
 含フッ素樹脂層の厚みが20μm超である場合、含フッ素樹脂層がガスバリア性(水蒸気バリア性)を有し、ポリイミドフィルムから発生した高温の水蒸気がポリイミドフィルムと含フッ素樹脂層との界面に留まって含フッ素樹脂層に膨れを生じさせる。
 本発明のフレキシブル金属積層板では、含フッ素樹脂層の厚みが20μm以下であり、水蒸気が含フッ素樹脂層をある程度透過するため、上記のような膨れが生じにくいと考えられる。
 また、本発明のフレキシブル金属積層板の厚みは、200μm以下であり、10~150μmが好ましく、特に、高耐屈曲性が要求される用途においては、10~120μmが好ましい。
 本発明は、フレキシブル金属積層板の金属箔をエッチングして形成されたパターン回路を具備することを特徴とするフレキシブルプリント基板を含むものである。
 前記フレキシブル金属積層板の金属箔をエッチングして形成されたマイクロストリップ線路を含むマイクロストリップラインにおいては、下記[a]、又は[b]の状態調整を施した後、温度20~25℃、湿度40~60%RHの条件下で測定した、下記[a]の状態調整を施した後の伝送損失[a]と、下記[b]の状態調整を施した後の伝送損失([b])とが、([b]-[a])<0.004dB/mmを満たすことが好ましい。更に好ましく[b]-[a]<0.003dB/mm、より好ましくは[b]-[a]<0.002dB/mmである。
 [a]: 温度105℃にて48時間焼成
 [b]: 温度105℃にて24時間焼成した後、温度60℃、湿度90%RHの条件下で24時間保管
 なお、本発明において、伝送損失の測定条件は、実施例中に記載の「(6)伝送損失(dB/mm)」のとおりである。
 本発明における伝送線路は、上記のように優れた誘電特性を有するため、同軸ケーブル、ストリップラインなどの各種電気伝送線路として有効に利用することができる。特に、使用の際に耐屈曲性や低吸湿性が求められる伝送線路として、好適に用いることができる。
 また、パターン回路上で、はんだこてを使用する工程を含むフレキシブルプリント基板の製造であっても、はんだこてを高温で取り扱うことができる。
 本発明のフレキシブルプリント基板は、優れた電気特性を示すため、種々の電気機器や、電子機器、通信機器等に好適に用いることができる。
 以下、実施例を示して本発明を詳細に説明する。ただし、本発明は以下の記載によっては限定されない。
 含フッ素共重合体の物性に関する測定方法を以下に示す。
(1)共重合組成
 含フッ素共重合体(A)の共重合組成は、溶融NMR分析、フッ素含有量分析及び赤外吸収スペクトル分析により求めた。
(2)反応性官能基の含有量
 下記の赤外吸収スペクトル分析によって、含フッ素共重合体(A)における、反応性官能基を有するNAHに基づく構成単位の割合を求めた。
 含フッ素共重合体(A)をプレス成形して200μmのフィルムを得た。得られたフィルムの赤外吸収スペクトルにおいて、含フッ素共重合体中のNAHに基づく構成単位における吸収ピークは、いずれも1778cm-1に現れる。該吸収ピークの吸光度を測定し、NAHのモル吸光係数20810mol-1・l・cm-1を用いて、NAHに基づく構成単位の割合(モル%)を求めた。
 前記割合をa(モル%)とすると、主鎖炭素数1×10個に対する反応性官能基(酸無水物基)の個数は、[a×10/100]個と算出される。
(3)融点(℃)
 セイコー電子社製の示差走査熱量計(DSC装置)を用い、含フッ素共重合体(A)を10℃/分の速度で昇温したときの融解ピークを記録し、極大値に対応する温度(℃)を融点(Tm)とした。
(4)MFR(g/10分)
 テクノセブン社製のメルトインデクサーを用い、融点より20℃以上高い温度である372℃、5kg(49N)荷重下で、直径2mm、長さ8mmのノズルから、10分間(単位時間)に流出する含フッ素共重合体(A)の質量(g)を測定した。
(5)はんだこて耐熱試験(℃)
 フレキシブル両面金属積層板について、片面の銅箔面において、エッチングにより2mmφの試料バット部を縦18箇所、横18箇所、合計289箇所形成され、それ以外はエッチングにより銅箔部分を除去した。はんだこて(白光社製、形式HAKKO942)を特定の温度に設定し、試料パット部に10秒間押し当て、膨れ、剥れ等の異常を目視にて観測した。
 はんだこて設定温度を300℃、310℃、320℃、330℃、340℃、及び350℃で行い、例えば、330℃で異常がなく、340℃で膨れ、剥れ等の異常を目視にて観測した場合、はんだこて耐熱を330℃と表記した。
(6)伝送損失(dB/mm)
 伝送損失の測定には、インピーダンスZ=50Ωのマイクロストリップラインを用いた。マイクロストリップラインは、面実装部品の実装に適した構造を有し、かつ作製が容易であることから、伝送損失の測定に広く用いられている。
 図1は、マイクロストリップライン(microstripline)の一例を示す断面図である。マイクロストリップライン30は、接着フィルムからなる電気絶縁体層(A)22と、電気絶縁体層(A)22の一方の面の導電体層(B)をエッチング加工した後、銅メッキすることにより形成されたマイクロストリップ線路32と、電気絶縁体層(A)22の他方の面の導電体層(B)からなるグランド層34を有する。
 マイクロストリップライン30については、測定サンプルとして下記[a]又は[b]の状態調整を行った。
 [a]: 温度105℃にて48時間焼成
 [b]: 温度105℃にて24時間焼成した後、温度60℃、湿度90%RHの条件下で24時間保管
 次いで、マイクロストリップ線路32の両端及びグランド層34を測定機器に接続し、マイクロストリップ線路32への入射波に対する透過量を測定し、下式から、5GHzにおける[a]及び[b]の状態調整した後、それぞれについて、温度23℃、湿度50%RHの条件下で伝送損失を求めた。
  伝送損失(dB/mm)=|S21|/L
 ただし、S21は、マイクロストリップ線路32への入射波に対する、5GHzにおける透過量(dB)を示し、Lは、マイクロストリップ線路32の線路長L(mm)を示す。
 本測定に用いた測定機器を下記に示す。
測定機器:E8363B(Agllent Technologies社製)
測定周波数:10M-40GHz
 なお、[a]、[b]の測定については、上記した条件以外はすべて同じ条件で測定した。
〔製造例1〕
 構成単位(a2)を形成するモノマーとしてNAH(無水ハイミックス酸、日立化成社製)を、構成単位(a3)を形成するモノマーとしてPPVE(CF=CFO(CFF、ペルフルオロプロピルビニルエーテル、旭硝子社製)を用いて、含フッ素共重合体(A-1)を製造した。
 まず、369kgの1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン(AK225cb、旭硝子社製)(以下、「AK225cb」という。)と、30kgのPPVEとを、予め脱気された内容積430Lの撹拌機付き重合槽に仕込んだ。次いで、この重合槽内を加熟して50℃に昇温し、さらに50kgのTFEを仕込んだ後、当該重合槽内の圧力を0.89MPa/Gまで昇圧した。
 さらに、(ペルフルオロブチリル)ペルオキシドを0.36質量%の濃度でAK225cbに溶解した重合開始剤溶液を調製し、重合槽中に当該重合開始剤溶液の3Lを1分間に6.25mLの速度にて連続的に添加しながら重合を行った。また、重合反応中における重合槽内の圧力が0.89MPa/Gを保持するようにTFEを連続的に仕込んだ。また、NAHを0.3質量%の濃度でAK225cbに溶解した溶液を、重合中に仕込むTFEこのモル数に対して0.1モル%に相当する量ずつ連続的に仕込んだ。
 重合開始8時間後、32kgのTFEを仕込んだ時点で、重合槽内の温度を室温まで降温するとともに、圧力を常圧までパージした。得られたスラリをAK225cbと固液分離した後、150℃で15時間乾燥することにより、33kgの含フッ素共重合体(A-1)を得た。得られた含フッ素共重合体(A-1)の比重は2.15であった。
 溶融NMR分析及び赤外吸収スペクトル分析の結果から、この含フッ素共重合体(A-1)の共重合組成は、TFEに基づく構成単位/NAHに基づく構成単位/PPVEに基づく構成単位=97.9/0.1/2.0(モル%)であった。また、この含フッ素共重合体(A-1)の融点は300℃であり、MFRは17.6g/10分であった。 
 また、含フッ素共重合体(A-1)の反応性官能基(酸無水物基)の含有量は、含フッ素共重合体(A-1)の主鎖炭素数1×10個に対して1000個であった。
〔製造例2〕
 含フッ素共重合体(A-1)を、750mm巾コートハンガーダイを有する30mmφ単軸押出機を用いてダイ温度340℃で押出成形し、厚み25μmの含フッ素樹脂フィルム(以下、「フィルム1」という。)を得た。
〔製造例3〕
 引取速度を変更した以外は製造例2と同様の方法により、厚み15μmの含フッ素樹脂フィルム(以下、「フィルム2」という。)を得た。
〔製造例4〕
 引取速度を変更した以外は製造例2と同様の方法により、厚み6μmの含フッ素樹脂フィルム(以下、「フィルム3」という。)を得た。
〔製造例5〕
 引取速度を変更した以外は製造例2と同様の方法により、厚み12.5μmの含フッ素樹脂フィルム(以下、「フィルム4」という。)を得た。
〔製造例6〕
 引取速度を変更した以外は製造例5と同様の方法により、厚み7μmの含フッ素樹脂フィルム(以下、「フィルム5」という。)を得た。
〔製造例7〕
 製造例1で得られた含フッ素共重合体(A-1)を、260℃で24時間熱処理することにより、含フッ素共重合体(A-2)を得た。含フッ素共重合体(A-2)の融点は305℃であり、融点より20℃以上高い372℃、49N荷重下でのMFRは、11.0g/10分であった。
〔製造例8〕
 モノマーの重合時に重合時間を長くせしめた以外は製造例1と同様の方法で、含フッ素共重合体(A-3)を得た。得られた含フッ素共重合体(A-3)の比重は2.15であった。
 溶融NMR分析及び赤外吸収スペクトル分析の結果から、この含フッ素共重合体(A-3)の共重合組成は、TFEに基づく構成単位/NAHに基づく構成単位/PPVEに基づく構成単位=97.9/0.1/2.0(モル%)であった。また、この含フッ素共重合体(A-3)の融点は301℃であり、MFRは14.8g/10分であった。 
 また、含フッ素共重合体(A-3)の反応性官能基(酸無水物基)の含有量は、含フッ素共重合体(A-3)の主鎖炭素数1×10個に対して1000個であった。
〔製造例9〕
 含フッ素共重合体(A-2)を、750mm巾コートハンガーダイを有する30mmφ単軸押出機を用いてダイ温度340℃で押出成形し、厚み12.5μmの含フッ素樹脂フィルム(以下、「フィルム6」という。)を得た。
〔製造例10〕
 含フッ素共重合体(A-3)を、750mm巾コートハンガーダイを有する30mmφ単軸押出機を用いてダイ温度340℃で押出成形し、厚み12.5μmの含フッ素樹脂フィルム(以下、「フィルム7」という。)を得た。
(実施例1)
 フィルム2及び厚み25μmのポリイミドフィルム(宇部興産社製、製品名「ユーピレックス」)を、フィルム2/ポリイミドフィルム/フィルム2の順序で積層し、温度360℃、圧力10MPaの条件で5分間プレスして接着フィルムを得た。
 得られた接着フィルムについて、50mm×50mmのサイズにカットしたサンプルを3枚用意し、各サンプルを炉内温度280℃に制御されたオーブンに1分間投入した。その後、サンプルを取り出し、目視で観察した。その結果、3枚のサンプルのすべてに、熱による膨れ(発泡)は散見されなかった。
(実施例2)
 フィルム3及び厚み25μmのポリイミドフィルム(宇部興産社製、製品名「ユーピレックス」)を、フィルム3/ポリイミドフィルム/フィルム3の順序で積層し、温度360℃、圧力10MPaの条件で5分間プレスして接着フィルムを得た。
 得られた接着フィルムについて、50mm×50mmのサイズにカットしたサンプルを3枚用意し、各サンプルを炉内温度280℃に制御されたオーブンに1分間投入した。その後、サンプルを取り出し、目視で観察した。その結果、3枚のサンプルのすべてに、熱による膨れ(発泡)は散見されなかった。
(実施例3)
 フィルム3及び厚み12.5μmのポリイミドフィルム(宇部興産社製、製品名「ユーピレックス」)を、フィルム3/ポリイミドフィルム/フィルム3の順序で積層し、温度360℃、圧力10MPaの条件で5分間プレスして接着フィルムを得た。
 得られた接着フィルムについて、50mm×50mmのサイズにカットしたサンプルを3枚用意し、各サンプルを炉内温度280℃に制御されたオーブンに1分間投入した。その後、サンプルを取り出し、目視で観察した。その結果、3枚のサンプルのすべてに、熱による膨れ(発泡)は散見されなかった。
 実施例1~3で用いたポリイミドフィルム及び含フッ素樹脂フィルム(含フッ素樹脂層)のそれぞれの厚みと、評価結果をまとめて表1に示す。
 これらの結果に示すとおり、ポリイミドフィルムに積層した含フッ素樹脂層の厚みが1~20μmである実施例1~3の接着フィルムは、280℃の高温雰囲気下での含フッ素樹脂層の膨れ(発泡)が抑制されていた。
Figure JPOXMLDOC01-appb-T000001
(実施例4)
 フィルム2及び厚み25μmのポリイミドフィルム(宇部興産社製、製品名「ユーピレックス」)を、フィルム2/ポリイミドフィルムの順序で積層し、温度360℃、圧力10MPaの条件で5分間プレスして接着フィルムを得た。
 得られた接着フィルムについて、50mm×50mmのサイズにカットしたサンプルを3枚用意し、各サンプルを炉内温度280℃に制御されたオーブンに1分間投入した。その後、サンプルを取り出し、目視で観察した。その結果、3枚のサンプルのすべてに、熱による膨れ(発泡)は散見されなかった。
(実施例5)
 実施例1で得られた接着フィルム及び厚み12μmの電解銅箔(福田金属箔粉社製、CF-T4X-SVR-12、表面粗さ(Rz)1.2μm)を、銅箔/接着フィルム/銅箔の順に重ねて、温度360℃、圧力3.7MPaで10分間真空プレスし、フレキシブル両面金属積層板を得た。得られたフレキシブル両面金属積層板において、銅箔と接着フィルムとは充分に密着していた。
 なお、銅箔と接着フィルムの密着の程度は、以下のようにして求めた剥離強度の大きさにより評価したものである。
 フレキシブル金属積層板を長さ150mm、幅10mmの大きさに切断し、試験フィルムを作製した。該試験フィルムの長さ方向の一端から50mmの位置まで銅箔と接着フィルムとの間を剥離した。ついで、引張り試験機を用いて、引張り速度50mm/分で銅箔と接着フィルムが90度になるように離し、最大荷重を剥離強度(N/10mm)とした。剥離強度が大きいほど銅箔と接着フィルムとの密着性に優れることを示す。
(実施例6)
 実施例2で得られた接着フィルム及び厚み12μmの電解銅箔(福田金属箔粉社製CF-T4X-SVR-12、Rz1.2μm)を、銅箔/接着フィルム/銅箔の順に重ねて温度360℃、圧力3.7MPaで10分間真空プレスし、フレキシブル両面金属積層板を得た。得られたフレキシブル両面金属積層板において、銅箔と接着フィルムとは充分に密着していた。
(実施例7)
 実施例4で得られた接着フィルムと厚み12μmの電解銅箔(福田金属箔粉社製CF-T4X-SVR-12、Rz1.2μm)を、銅箔/接着フィルムの順に重ねて温度360℃、圧力3.7MPaで10分間真空プレスし、フレキシブル片面金属積層板を得た。得られたフレキシブル片面金属積層板において、銅箔と接着フィルムとは充分に密着していた。
(実施例8)
 フィルム4及び厚み25μmのポリイミドフィルム(東レ・デュポン社製、製品名「カプトン100EN」)及び厚み12μmの電解銅箔(福田金属箔粉社製CF-T4X-SVR-12、Rz1.2μm)を、銅箔/フィルム4/ポリイミドフィルム/フィルム4/銅箔の順序で積層し、温度360℃、圧力1.3MPaの条件で10分間プレスして、フレキシブル両面金属積層板を得た。
 得られたフレキシブル両面金属積層板について、50mm×50mmのサイズにカットしたサンプルを3枚用意し、各サンプルを炉内温度280℃に制御されたオーブンに1分間投入した。その後、サンプルを取り出し、目視で観察した。その結果、3枚のサンプルのすべてに、熱による膨れ(発泡)は散見されなかった。
 また得られたフレキシブル両面金属積層板について、はんだこて耐熱試験を実施したところ、330℃であった。これらの結果を表2に取りまとめた。
 また、実施例9~13、比較例1及び2のフレキシブル両面金属積層板についても、実施例8と同様に、280℃での熱による膨れ(発泡)の有無の確認、及びはんだこて耐熱の評価を行った。その結果は、まとめて表2に示した。
(実施例9)
 フィルム4の代わりにフィルム5を使用する以外は、実施例8と同様の方法によりフレキシブル両面金属積層板を得た。
(比較例1)
 フィルム4の代わりにフィルム1を使用する以外は、実施例8と同様の方法によりフレキシブル両面金属積層板を得た。
(実施例10)
 フィルム4の代わりにフィルム6を使用する以外は、実施例8と同様の方法によりフレキシブル両面金属積層板を得た。
(実施例11)
フィルム4の代わりにフィルム7を使用する以外は、実施例8と同様の方法によりフレキシブル両面金属積層板を得た。
(実施例12)
 実施例8で得られたフレキシブル両面金属積層板を、400℃の熱ロールを介して1分間熱処理を実施した。熱処理後の含フッ素樹脂層について、372℃、49N荷重下でのMFRを測定したところ、14.4g/10分であった。
(実施例13)
 実施例8で得られたフレキシブル両面金属積層板を、360℃の熱ロールを介して1分間熱処理を実施した。熱処理後の含フッ素樹脂層について372℃、49N荷重下でのMFRを測定したところ、15.9g/10分であった。
(比較例2)
 比較例1で得られたフレキシブル両面金属積層板を、400℃の熱ロールを介して1分間熱処理を実施した。熱処理後の含フッ素樹脂層について372℃、49N荷重下でのMFRを測定したところ、14.7g/10分であった。
Figure JPOXMLDOC01-appb-T000002
(実施例14)
 実施例10で得られたフレキシブル両面金属積層板を用いて、上記(6)に示した伝送損失の測定方法により、それぞれの5GHzにおける伝送損失を求めた。
 [a]: 伝送損失0.0169dB/mm
 [b]: 伝送損失0.0179dB/mm
 [b]-[a]=0.001dB/mm
(比較例3)
 厚み50μmのカプトンフィルムを主成分としたポリイミドフィルムの両面に、表面粗さ(Rz)が0.8μmで、圧延銅箔(厚み18μm)から構成されるフレキシブル両面金属積層板を用いて、実施例14と同様にして伝送損失を求めた。
 [a]: 伝送損失0.0212dB/mm
 [b]: 伝送損失0.0275dB/mm
 [b]-[a]=0.0063dB/mm
 本発明の接着フィルムを有するフレキシブル金属積層板は、耐熱性に優れ、これを用いたフレキシブルプリント基板は、優れた電気特性を示し、種々の電気機器、電子機器、通信機器等に利用が可能である。
 なお、2013年11月29日に出願された日本特許出願2013-247615号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
 30 マイクロストリップライン
 22 電気絶縁体(A)層
 32 マイクロストリップ線路
 34 グランド層

Claims (14)

  1.  ポリイミドフィルムの片面又は両面に、含フッ素共重合体(A)を含む含フッ素樹脂層が直接積層してなり、
     前記含フッ素共重合体(A)は、融点が280℃以上320℃以下であり、溶融成形が可能であり、カルボニル基含有基、ヒドロキシ基、エポキシ基、及びイソシアネート基からなる群から選択される少なくとも1種の官能基を有し、
     前記含フッ素樹脂層の厚みが1~20μmであることを特徴とする接着フィルム。
  2.  前記含フッ素共重合体(A)が、前記官能基として少なくともカルボニル基含有基を有し、該カルボニル基含有基が、炭化水素基の炭素原子間にカルボニル基を有する基、カーボネート基、カルボキシル基、ハロホルミル基、アルコキシカルボニル基、及び酸無水物残基からなる群から選択される少なくとも1種である、請求項1に記載の接着フィルム。
  3.  前記含フッ素共重合体(A)が、テトラフルオロエチレンに基づく構成単位(a1)と、酸無水物残基と重合性不飽和結合とを有する環状炭化水素モノマーに基づく構成単位(a2)と、含フッ素モノマー(ただし、テトラフルオロエチレンを除く。)に基づく構成単位(a3)を含有する、請求項1又は2に記載の接着フィルム。
  4.  前記官能基の含有量が、前記含フッ素共重合体(A)の主鎖炭素数1×10個に対して10~60000個である、請求項1~3のいずれか一項に記載の接着フィルム。
  5.  前記含フッ素樹脂層の厚みが3~15μmである、請求項1~4のいずれか一項に記載の接着フィルム。
  6.  前記ポリイミドフィルムの厚さが3~50μmである、請求項1~5のいずれか一項に記載の接着フィルム。
  7.  前記含フッ素共重合体(A)の372℃、49N荷重下での溶融流れ速度が、0.5~15g/10分であり、370℃以上で加熱処理した後の含フッ素共重合体(A)の溶融流れ速度が、加熱処理前の前記含フッ素共重合体(A)の溶融流れ速度より小さい、請求項1~6のいずれか一項に記載の接着フィルム。
  8.  全体の厚さが150μm以下である、請求項1~7のいずれか一項に記載の接着フィルム。
  9.  請求項1~8のいずれか一項に記載の接着フィルムと、前記接着フィルムの含フッ素樹脂層に直接積層した金属箔とを備えることを特徴とする、フレキシブル金属積層板。
  10.  請求項1~8のいずれか一項に記載の接着フィルムを、370℃以上に加熱処理させることを特徴とする、接着フィルムの製造方法。
  11.  請求項9に記載のフレキシブル金属積層板を、370℃以上に加熱処理させることを特徴とする、フレキシブル金属積層板の製造方法。
  12.  請求項9に記載のフレキシブル金属積層板の金属箔をエッチングにより形成されたパターン回路を備えることを特徴とする、フレキシブルプリント基板。
  13.  請求項9に記載のフレキシブル金属積層板の金属箔を、エッチングして形成されたマイクロストリップ線路を含むマイクロストリップラインにおいて、
     下記[a]、[b]の状態調整を施した後、温度20~25℃、湿度40~60%RHの条件下で測定した、下記[a]の状態調整を施した後の伝送損失[a]と、下記[b]の状態調整を施した後の伝送損失([b])とが、([b]-[a])<0.004dB/mmを満たすことを特徴とする、フレキシブルプリント基板。
     [a]: 温度105℃にて48時間焼成
     [b]: 温度105℃にて24時間焼成した後、温度60℃、湿度90%RHの条件下で24時間保管
  14.  パターン回路上に、はんだこてを使用してはんだ付けする工程を含むことを特徴とする、請求項12又は13に記載のフレキシブルプリント基板の製造方法。
PCT/JP2014/081602 2013-11-29 2014-11-28 接着フィルム及びフレキシブル金属積層板 WO2015080260A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167011156A KR102315479B1 (ko) 2013-11-29 2014-11-28 접착 필름 및 플렉시블 금속 적층판
CN201480065000.8A CN105793373B (zh) 2013-11-29 2014-11-28 粘接膜以及柔性金属层叠板
JP2015551020A JPWO2015080260A1 (ja) 2013-11-29 2014-11-28 接着フィルム及びフレキシブル金属積層板
US15/140,912 US10716203B2 (en) 2013-11-29 2016-04-28 Adhesive film and flexible metal laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-247615 2013-11-29
JP2013247615 2013-11-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/140,912 Continuation US10716203B2 (en) 2013-11-29 2016-04-28 Adhesive film and flexible metal laminate

Publications (1)

Publication Number Publication Date
WO2015080260A1 true WO2015080260A1 (ja) 2015-06-04

Family

ID=53199195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081602 WO2015080260A1 (ja) 2013-11-29 2014-11-28 接着フィルム及びフレキシブル金属積層板

Country Status (6)

Country Link
US (1) US10716203B2 (ja)
JP (2) JPWO2015080260A1 (ja)
KR (1) KR102315479B1 (ja)
CN (1) CN105793373B (ja)
TW (2) TWI690582B (ja)
WO (1) WO2015080260A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180037137A (ko) 2015-08-04 2018-04-11 아사히 가라스 가부시키가이샤 불소 수지 필름의 제조 방법
WO2019142790A1 (ja) * 2018-01-18 2019-07-25 Agc株式会社 長尺積層体、その製造方法及びプリント配線板
KR20200100592A (ko) 2017-12-19 2020-08-26 에이지씨 가부시키가이샤 처리 회로 기판, 다층 회로 기판 및 커버레이 필름이 형성된 회로 기판의 제조 방법, 그리고 접착제층이 형성된 필름
WO2021200630A1 (ja) * 2020-03-31 2021-10-07 Agc株式会社 多層フィルム、その製造方法、金属張積層体及びプリント配線基板の製造方法
JP2022140517A (ja) * 2016-07-22 2022-09-26 Agc株式会社 液状組成物、並びに該液状組成物を使用した、フィルムおよび積層体の製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018070437A1 (ja) * 2016-10-12 2018-04-19 旭硝子株式会社 積層体およびその製造方法
WO2019087939A1 (ja) * 2017-10-31 2019-05-09 Agc株式会社 成形体、金属張積層体、プリント配線板及びそれらの製造方法
KR20220055462A (ko) * 2019-08-27 2022-05-03 에이지씨 가부시키가이샤 필름, 필름의 제조 방법, 금속 피복 적층체, 및 피복 금속 도체
KR102122938B1 (ko) * 2019-12-30 2020-06-15 (주)아이피아이테크 연성동박적층필름용 본드 플라이층 및 그 제조 방법
JPWO2021166930A1 (ja) * 2020-02-20 2021-08-26
TW202206286A (zh) 2020-07-28 2022-02-16 美商聖高拜塑膠製品公司 介電基板及其形成方法
CN112153825B (zh) * 2020-09-03 2022-09-13 深圳市隆利科技股份有限公司 mini-LED灯板的制备方法
WO2022133402A1 (en) 2020-12-16 2022-06-23 Saint-Gobain Performance Plastics Corporation Dielectric substrate and method of forming the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005023261A (ja) * 2003-07-01 2005-01-27 Asahi Glass Co Ltd フッ素樹脂フィルム及び該フィルムの層を含有する積層体
WO2006067970A1 (ja) * 2004-12-20 2006-06-29 Asahi Glass Company, Limited フレキシブルプリント配線板用積層体

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3885805B2 (ja) 1995-12-08 2007-02-28 ダイキン工業株式会社 含フッ素接着剤ならびにそれを用いた接着性フィルム
CN1183219C (zh) * 1999-09-08 2005-01-05 大金工业株式会社 含氟粘合性材料以及使用它的叠层体
ES2248680T3 (es) * 2002-06-27 2006-03-16 Asahi Glass Company Ltd. Fluorocopolimero.
US7666178B2 (en) * 2004-06-30 2010-02-23 Kimberly-Clark Worldwide, Inc. Retention device for medical components
JP4424246B2 (ja) * 2004-10-28 2010-03-03 旭硝子株式会社 含フッ素共重合体及びその用途
JP5286669B2 (ja) * 2004-12-09 2013-09-11 旭硝子株式会社 プリント配線板用積層体
DE602006007191D1 (de) * 2005-04-19 2009-07-23 Asahi Glass Co Ltd Mehrschichtiges schlauchhaltiges Fluorcopolymer
JP4957079B2 (ja) 2006-05-29 2012-06-20 旭硝子株式会社 プリント回路基板およびその製造方法
JP2008144141A (ja) * 2006-11-15 2008-06-26 Shin Etsu Chem Co Ltd 接着シート
CN101426342B (zh) * 2007-10-31 2011-03-23 富葵精密组件(深圳)有限公司 镂空柔性电路板的制作方法
JP5750424B2 (ja) 2012-11-30 2015-07-22 株式会社カネカ 等方的な接着フィルムおよびその製造方法、接着フィルムを用いたフレキシブル金属積層板
WO2014189017A1 (ja) * 2013-05-23 2014-11-27 旭硝子株式会社 耐熱電線用被覆材料、その製造方法および電線
WO2015002251A1 (ja) * 2013-07-04 2015-01-08 旭硝子株式会社 被覆用絶縁テープ、および構造体の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005023261A (ja) * 2003-07-01 2005-01-27 Asahi Glass Co Ltd フッ素樹脂フィルム及び該フィルムの層を含有する積層体
WO2006067970A1 (ja) * 2004-12-20 2006-06-29 Asahi Glass Company, Limited フレキシブルプリント配線板用積層体

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102443760B1 (ko) 2015-08-04 2022-09-15 에이지씨 가부시키가이샤 불소 수지 필름의 제조 방법
US10730219B2 (en) 2015-08-04 2020-08-04 AGC Inc. Method for producing fluororesin film
KR20180037137A (ko) 2015-08-04 2018-04-11 아사히 가라스 가부시키가이샤 불소 수지 필름의 제조 방법
JP7396403B2 (ja) 2016-07-22 2023-12-12 Agc株式会社 液状組成物、並びに該液状組成物を使用した、フィルムおよび積層体の製造方法
JP2022140517A (ja) * 2016-07-22 2022-09-26 Agc株式会社 液状組成物、並びに該液状組成物を使用した、フィルムおよび積層体の製造方法
KR20200100592A (ko) 2017-12-19 2020-08-26 에이지씨 가부시키가이샤 처리 회로 기판, 다층 회로 기판 및 커버레이 필름이 형성된 회로 기판의 제조 방법, 그리고 접착제층이 형성된 필름
JP7234944B2 (ja) 2018-01-18 2023-03-08 Agc株式会社 長尺積層体、その製造方法及びプリント配線板
JPWO2019142790A1 (ja) * 2018-01-18 2021-01-28 Agc株式会社 長尺積層体、その製造方法及びプリント配線板
KR20200110314A (ko) * 2018-01-18 2020-09-23 에이지씨 가부시키가이샤 장척 적층체, 그 제조 방법 및 프린트 배선판
US11632859B2 (en) 2018-01-18 2023-04-18 AGC Inc. Long laminate, method for its production and printed wiring board
WO2019142790A1 (ja) * 2018-01-18 2019-07-25 Agc株式会社 長尺積層体、その製造方法及びプリント配線板
KR102660542B1 (ko) * 2018-01-18 2024-04-24 에이지씨 가부시키가이샤 장척 적층체, 그 제조 방법 및 프린트 배선판
WO2021200630A1 (ja) * 2020-03-31 2021-10-07 Agc株式会社 多層フィルム、その製造方法、金属張積層体及びプリント配線基板の製造方法

Also Published As

Publication number Publication date
JPWO2015080260A1 (ja) 2017-03-16
JP2019166844A (ja) 2019-10-03
US10716203B2 (en) 2020-07-14
KR20160090797A (ko) 2016-08-01
TWI691576B (zh) 2020-04-21
JP6822523B2 (ja) 2021-01-27
KR102315479B1 (ko) 2021-10-21
TW201927960A (zh) 2019-07-16
US20160242274A1 (en) 2016-08-18
CN105793373A (zh) 2016-07-20
TWI690582B (zh) 2020-04-11
TW201527482A (zh) 2015-07-16
CN105793373B (zh) 2019-06-14

Similar Documents

Publication Publication Date Title
JP6822523B2 (ja) 接着フィルム、フレキシブル金属積層板、接着フィルムの製造方法、フレキシブル金属積層板の製造方法、フレキシブルプリント基板及びフレキシブルプリント基板の製造方法
JP6565936B2 (ja) 積層板およびフレキシブルプリント基板の製造方法
JP4816459B2 (ja) フレキシブルプリント配線板用積層体
JP6977716B2 (ja) 積層体、プリント基板、および積層体の製造方法
JP6819579B2 (ja) プリント基板用材料、金属積層板、それらの製造方法およびプリント基板の製造方法
US10729018B2 (en) Process for producing laminate and process for producing printed board
WO2015002251A1 (ja) 被覆用絶縁テープ、および構造体の製造方法
JP6507607B2 (ja) カバーレイ用接着フィルム、カバーレイ、配線板、及び電子機器の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14865626

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015551020

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167011156

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14865626

Country of ref document: EP

Kind code of ref document: A1