WO2015002251A1 - 被覆用絶縁テープ、および構造体の製造方法 - Google Patents

被覆用絶縁テープ、および構造体の製造方法 Download PDF

Info

Publication number
WO2015002251A1
WO2015002251A1 PCT/JP2014/067704 JP2014067704W WO2015002251A1 WO 2015002251 A1 WO2015002251 A1 WO 2015002251A1 JP 2014067704 W JP2014067704 W JP 2014067704W WO 2015002251 A1 WO2015002251 A1 WO 2015002251A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
group
coating layer
coating
copolymer
Prior art date
Application number
PCT/JP2014/067704
Other languages
English (en)
French (fr)
Inventor
細田 朋也
松岡 康彦
佐々木 徹
渉 笠井
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2015525264A priority Critical patent/JP6332271B2/ja
Publication of WO2015002251A1 publication Critical patent/WO2015002251A1/ja
Priority to US14/944,657 priority patent/US10304583B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/306Polyimides or polyesterimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/022Particular heating or welding methods not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/532Joining single elements to the wall of tubular articles, hollow articles or bars
    • B29C66/5326Joining single elements to the wall of tubular articles, hollow articles or bars said single elements being substantially flat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/262Tetrafluoroethene with fluorinated vinyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/12Bonding of a preformed macromolecular material to the same or other solid material such as metal, glass, leather, e.g. using adhesives
    • C08J5/121Bonding of a preformed macromolecular material to the same or other solid material such as metal, glass, leather, e.g. using adhesives by heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/08Insulating conductors or cables by winding
    • H01B13/0891After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/443Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from vinylhalogenides or other halogenoethylenic compounds
    • H01B3/445Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from vinylhalogenides or other halogenoethylenic compounds from vinylfluorides or other fluoroethylenic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/0065Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/02Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2627/00Use of polyvinylhalogenides or derivatives thereof for preformed parts, e.g. for inserts
    • B29K2627/12Use of polyvinylhalogenides or derivatives thereof for preformed parts, e.g. for inserts containing fluorine
    • B29K2627/18PTFE, i.e. polytetrafluorethene, e.g. ePTFE, i.e. expanded polytetrafluorethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2679/00Use of polymers having nitrogen, with or without oxygen or carbon only, in the main chain not provided for in groups B29K2661/00 - B29K2677/00, for preformed parts, e.g. for inserts
    • B29K2679/08PI, i.e. polyimides or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3412Insulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3462Cables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/712Weather resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/04Insulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/18Aircraft
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a covering insulating tape and a method for manufacturing a structure in which a conductor is covered with the covering insulating tape.
  • a conductor is covered with an insulating material.
  • an insulating tape obtained by processing a laminated body provided with a fluorine-containing resin layer on one side or both sides of a polyimide film into a tape shape is wound around the surface of a conductor to coat the surface.
  • the conductor is covered with an insulating tape, and then the fluorine-containing resin layer is thermally fused by heat treatment.
  • the insulating tape is preferably used for aerospace applications because polyimide is excellent in characteristics such as heat resistance, and the fluorine-containing resin is excellent in characteristics such as electrical insulation, heat resistance, chemical resistance, and weather resistance.
  • polyimide is excellent in characteristics such as heat resistance
  • fluorine-containing resin is excellent in characteristics such as electrical insulation, heat resistance, chemical resistance, and weather resistance.
  • the performance and functionality of electrical devices have been improved, and electric wires used in these electrical devices have been exposed to high temperature and high humidity environments. Furthermore, the amount of electric current in the electric wire also increases, and there are many cases where the electric wire is exposed to a higher temperature as it generates heat.
  • the insulating tape is expected to be applied to these uses.
  • PTFE polytetrafluoroethylene
  • FEP tetrafluoroethylene / hexafluoropropylene copolymer
  • the outermost layer is often provided with a PTFE layer from the viewpoint of electrical insulation and weather resistance.
  • a method for producing the insulating tape a method of applying a dispersion of a fluorine-containing resin to a polyimide film is generally used.
  • this method has problems such as poor productivity. For example, in order to make the fluororesin layer have a certain thickness, it is necessary to repeat application and drying of the dispersion, which takes time and effort.
  • heat treatment at a high temperature is required at the time of manufacturing the insulating tape and at the time of manufacturing the electric wire using the same.
  • the insulating tape is usually wound around a conductor in a spiral shape so as to overlap itself, and then the insulating tape is fused to seal the gap between the insulating tapes.
  • Heat treatment for stopping is performed.
  • the heat treatment at this time also serves as a sintering step.
  • PTFE it is necessary to wrap an insulating tape provided with an unsintered PTFE layer around a conductor and then heat it to 360 ° C. or higher.
  • the heat treatment is to be completed in a short time (for example, about 1 hour), it is necessary to heat to 400 ° C. or higher.
  • a method for producing a laminate having a fluorine-containing resin layer there is a method in which a fluorine-containing resin film and another film are laminated by heat lamination, extrusion lamination, or the like.
  • an insulating tape in which a PTFE film and a polyimide film are laminated has a problem that adhesion between films is low.
  • the adhesion between the PTFE film and the polyimide film is not limited even if the heat treatment as described above is performed after being wound around a conductor.
  • the present invention has been made in view of the above circumstances, and an insulating tape for coating in which a polyimide film and a fluorine-containing resin film are laminated with excellent adhesion, and a conductor is coated using the insulating tape for coating.
  • An object is to provide a method of manufacturing a structure by heat treatment.
  • the present invention has the following configurations [1] to [13] and provides a covering insulating tape and a method for producing a structure.
  • a fluorine-containing resin film is directly laminated on one side or both sides of a polyimide film,
  • the fluororesin film has a melting point of 220 to 320 ° C., can be melt-molded, and has at least one functional group selected from the group consisting of a carbonyl group-containing group, a hydroxy group, an epoxy group, and an isocyanate group.
  • cover characterized by including the fluorine-containing copolymer (A) which has.
  • the carbonyl group-containing group is at least selected from the group consisting of a group containing a carbonyl group between carbon atoms of a hydrocarbon group, a carbonate group, a carboxyl group, a haloformyl group, an alkoxycarbonyl group, and an acid anhydride residue.
  • the fluorine-containing resin film has at least one functional group selected from the group consisting of a carbonyl group-containing group, a hydroxy group, an epoxy group, and an isocyanate group, has a melting point of 220 to 320 ° C., and can be melt-molded
  • a fluorine-containing copolymer (A) The method for producing a structure, wherein the heat treatment is performed at a temperature equal to or higher than a melting point of the fluorine-containing copolymer (A).
  • Each of the fluororesin films forming the first coating layer and the third coating layer has at least one functional group selected from the group consisting of a carbonyl group-containing group, a hydroxy group, an epoxy group, and an isocyanate group.
  • a melting point of 220 to 320 ° C., and a fluorine-containing copolymer (A) that can be melt-molded The method for producing a structure, wherein the heat treatment is performed at a temperature equal to or higher than a melting point of the fluorine-containing copolymer (A).
  • a coating insulating tape in which a polyimide film and a fluorine-containing resin film are laminated with excellent adhesion is provided, and a conductor is coated with the coating insulating tape having high mechanical strength and excellent heat resistance. And a method for producing a useful structure by heat treatment can be provided.
  • the insulating tape for coating of the present invention (hereinafter also referred to as “insulating tape”) is obtained by directly laminating a fluororesin film on one or both sides of a polyimide film.
  • the fluorine-containing resin film is preferably laminated on both sides of the polyimide film.
  • the thickness of the insulating tape of the present invention is preferably 3 to 3,000 ⁇ m, more preferably 15 to 1,500 ⁇ m, and particularly preferably 25 to 750 ⁇ m. When the thickness of the insulating tape is not less than the lower limit of the above range, the electrical insulation is excellent, and when it is not more than the upper limit of the above range, the flexibility is excellent.
  • the fluorine-containing resin film contains the fluorine-containing copolymer (A).
  • the fluorine-containing copolymer (A) has a melting point of 220 to 320 ° C., can be melt-molded, and is at least one selected from the group consisting of a carbonyl group-containing group, a hydroxy group, an epoxy group, and an isocyanate group. It has a functional group (hereinafter also referred to as “functional group (I)”).
  • the adhesion between the fluorine-containing resin film containing the fluorine-containing copolymer (A) and the polyimide film is improved. This is presumably because the functional group (I) causes some kind of interaction (chemical reaction or the like) with the functional group of the polyimide, such as a carbonyl group. Furthermore, by having the functional group (I), the adhesion between the fluorine-containing resin film and the conductor (copper, aluminum, etc.) covered with the insulating tape, as well as the adhesion between the insulating tape and the conductor can be improved. improves.
  • the functional group (I) is located at least one of the main chain terminal and the side chain of the fluorine-containing copolymer (A).
  • the functional group (I) possessed by the fluorinated copolymer (A) may be one type or two or more types.
  • the fluorinated copolymer (A) preferably has at least a carbonyl group-containing group as the functional group (I).
  • the carbonyl group-containing group is a group containing a carbonyl group (—C ( ⁇ O) —) in the structure.
  • the hydrocarbon group include alkylene groups having 2 to 8 carbon atoms.
  • carbon number of this alkylene group is carbon number in the state which does not contain a carbonyl group.
  • the alkylene group may be linear or branched.
  • the haloformyl group is represented by —C ( ⁇ O) —X (where X is a halogen atom).
  • Examples of the halogen atom in the haloformyl group include a fluorine atom and a chlorine atom, and a fluorine atom is preferable. That is, the haloformyl group is preferably a fluoroformyl group (also referred to as “carbonyl fluoride group”).
  • the alkoxy group in the alkoxycarbonyl group may be linear or branched and is preferably an alkoxy group having 1 to 8 carbon atoms, particularly preferably a methoxy group or an ethoxy group.
  • the content of the functional group (I) in the fluorinated copolymer (A) is preferably 10 to 60,000 with respect to 1 ⁇ 10 6 main chain carbon atoms of the fluorinated copolymer (A). Is more preferably 50,000, more preferably 100 to 10,000, and particularly preferably 300 to 5,000.
  • the content of the functional group (I) is not less than the lower limit of the above range, the adhesion between the fluorine-containing resin film and the polyimide film and the adhesion between the fluorine-containing resin film and the conductor are more excellent.
  • it is below the upper limit of the above range high adhesion to the polyimide film can be obtained at a low processing temperature.
  • the content of the functional group (I) can be measured by methods such as nuclear magnetic resonance (NMR) analysis and infrared absorption spectrum analysis.
  • NMR nuclear magnetic resonance
  • a structure having a functional group (I) in all the structural units constituting the fluorine-containing copolymer (A) using a method such as infrared absorption spectrum analysis as described in JP-A-2007-314720 The unit ratio (mol%) is obtained, and the content of the functional group (I) can be calculated from the ratio.
  • the fluorine-containing copolymer (A) includes a structural unit (a) based on tetrafluoroethylene (hereinafter also referred to as “TFE”) and / or chlorotrifluoroethylene (hereinafter also referred to as “CTFE”), and A structural unit (b) based on a cyclic hydrocarbon monomer having a dicarboxylic anhydride group and having a polymerizable unsaturated group in the ring, and other monomers (however, having TFE, CTFE and dicarboxylic anhydride groups) And a copolymer containing a structural unit (c) based on a cyclic hydrocarbon monomer having a polymerizable unsaturated group in the ring.
  • TFE tetrafluoroethylene
  • CTFE chlorotrifluoroethylene
  • the fluorine-containing copolymer (A) may have a functional group (I) as a main chain terminal group.
  • a functional group (I) as the main chain terminal group an alkoxycarbonyl group, a carbonate group, a hydroxy group, a carboxyl group, a fluoroformyl group, an acid anhydride residue and the like are preferable.
  • These functional groups can be introduced by appropriately selecting a radical polymerization initiator, a chain transfer agent and the like used in the production of the fluorine-containing copolymer (A).
  • a cyclic hydrocarbon monomer having a dicarboxylic anhydride group and having a polymerizable unsaturated group in the ring is one or more five-membered rings.
  • cyclic hydrocarbon monomer refers to a polymerizable compound which is a cyclic hydrocarbon composed of a 6-membered ring and further has a dicarboxylic anhydride group and an intra-ring polymerizable unsaturated group.
  • the cyclic hydrocarbon is preferably a cyclic hydrocarbon having one or more bridged polycyclic hydrocarbons.
  • a cyclic hydrocarbon composed of a bridged polycyclic hydrocarbon, a cyclic hydrocarbon condensed with two or more of the bridged polycyclic hydrocarbon, or a cyclic hydrocarbon condensed with a bridged polycyclic hydrocarbon and another cyclic hydrocarbon Preferably there is.
  • the cyclic hydrocarbon monomer has one or more endocyclic polymerizable unsaturated groups, that is, polymerizable unsaturated groups existing between carbon atoms constituting the hydrocarbon ring.
  • the cyclic hydrocarbon monomer further has a dicarboxylic anhydride group (—CO—O—CO—).
  • the dicarboxylic anhydride group may be bonded to two carbon atoms constituting the hydrocarbon ring, or may be bonded to two carbon atoms outside the ring.
  • the dicarboxylic anhydride group is a carbon atom constituting the ring of the cyclic hydrocarbon and bonded to two adjacent carbon atoms.
  • a halogen atom, an alkyl group, a halogenated alkyl group, or other substituents may be bonded to the carbon atom constituting the ring of the cyclic hydrocarbon instead of the hydrogen atom.
  • cyclic hydrocarbon monomer examples include compounds represented by any one of formulas (1) to (8), maleic anhydride, and the like.
  • R in the formulas (2) and (5) to (8) is a lower alkyl group having 1 to 6 carbon atoms, a halogen atom selected from a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, or the lower A halogenated alkyl group in which a hydrogen atom in an alkyl group is substituted with a halogen atom. Any one of these cyclic hydrocarbon monomers may be used alone, or two or more thereof may be used in combination.
  • cyclic hydrocarbon monomers of the above formulas (1) to (8) are known compounds per se, such as a method of heating cyclopentadiene and maleic anhydride without a catalyst, a method described in JP-A-6-73043, etc. Can be manufactured more easily. Commercially available cyclic hydrocarbon monomers can also be used.
  • IAH itaconic anhydride
  • CAH citraconic anhydride
  • NASH 5-norbornene-2,3-dicarboxylic acid
  • IAH itaconic anhydride
  • CAH citraconic anhydride
  • NAH 5-norbornene-2,3-dicarboxylic acid
  • IAH itaconic anhydride
  • CAH citraconic anhydride
  • NAH 5-norbornene-2,3-dicarboxylic acid
  • NAH anhydrides
  • the acid can be used without using a special polymerization method required when maleic anhydride is used (see JP-A-11-19312).
  • the fluorine-containing copolymer (A) containing an anhydride residue can be easily produced.
  • IAH, CAH, and NAH IAH or NAH is preferable because adhesion to the polyimide film is more excellent.
  • the other monomer forming the structural unit (c) may be a fluorinated monomer (excluding TFE and CTFE) or a non-fluorinated monomer (provided that , Except for the cyclic hydrocarbon monomer.) Or a mixture thereof.
  • the fluorine-containing monomer that forms the structural unit (c) is preferably a fluorine-containing compound having one polymerizable double bond.
  • a fluorine-containing compound having one polymerizable double bond for example, vinyl fluoride, vinylidene fluoride (hereinafter also referred to as “VdF”), trifluoro.
  • Fluoroolefins such as ethylene and hexafluoropropylene (hereinafter also referred to as “HFP”)
  • CF 2 CFOR f1 (where R f1 is a carbon atom having 1 to 10 carbon atoms, A perfluoroalkyl group which may contain an oxygen atom.)
  • CF 2 CFOR f2 SO 2 X 1 (where R f2 is a perfluoroalkylene group having 1 to 10 carbon atoms and may contain an oxygen atom between carbon atoms, and X 1 is a halogen atom) atoms or a hydroxyl group.)
  • CF 2 CFOCF 2 CF 2 CF 3 (hereinafter also referred to as “PPVE”) is preferable.
  • CH 2 CX 3 (CF 2 ) q X 4
  • CH 2 CH (CF 2 ) 2 F
  • CH 2 CH (CF 2 ) 3 F
  • CH 2 CH (CF 2 ) 4 F
  • CH 2 CF (CF 2) 3 H
  • CH 2 CF (CF 2) 4 H
  • the non-fluorine-containing monomer (excluding the cyclic hydrocarbon monomer) forming the structural unit (c) is preferably a non-fluorine-containing compound having one polymerizable double bond, such as carbon such as ethylene and propylene.
  • a non-fluorine-containing compound having one polymerizable double bond such as carbon such as ethylene and propylene.
  • examples thereof include olefins having a number of 3 or less and vinyl esters such as vinyl acetate. These may be used alone or in combination of two or more.
  • ethylene, propylene or vinyl acetate is preferable, and ethylene is particularly preferable.
  • fluorine-containing copolymer (A) the following fluorine-containing copolymer (A1) or fluorine-containing copolymer (A2) is preferable.
  • Fluorinated copolymer (A1) structural unit (a) based on TFE and / or CTFE, structural unit (b) based on the cyclic hydrocarbon monomer, and fluorinated monomer (excluding TFE and CTFE).
  • the fluorine-containing copolymer (A1) may further have other structural units other than the structural unit (a), the structural unit (b), and the structural unit (c1).
  • the other structural unit include a structural unit (c2) based on a non-fluorinated monomer (excluding the cyclic hydrocarbon monomer).
  • the fluorine-containing copolymer (A1) the structural unit (a) has at least a structural unit based on TFE, and the fluorine-containing monomer (c1) has at least a structural unit based on CF 2 ⁇ CFOR f1 Alkyl vinyl ether) copolymer (PFA) is particularly preferred.
  • fluorine-containing copolymer (A1) examples include TFE / PPVE / NAH copolymer, TFE / PPVE / IAH copolymer, TFE / PPVE / CAH copolymer, TFE / HFP / NAH copolymer. , TFE / HFP / IAH copolymer, TFE / HFP / CAH copolymer, TFE / VdF / IAH copolymer, TFE / VdF / CAH copolymer, TFE / PPVE / HFP / NAH copolymer, etc. It is done.
  • the fluorine-containing copolymer (A2) may further have other structural units other than the structural unit (a), the structural unit (b), and the structural unit (c2).
  • the other structural unit include a structural unit (c1) based on a fluorine-containing monomer (excluding TFE and CTFE).
  • a TFE / ethylene copolymer having at least a structural unit based on TFE as the structural unit (a) and at least a structural unit based on ethylene as the non-fluorinated monomer (c2) ( ETFE) is particularly preferred.
  • fluorine-containing copolymer (A2) examples include TFE / CH 2 ⁇ CH (CF 2 ) 4 F / NAH / ethylene copolymer, TFE / CH 2 ⁇ CH (CF 2 ) 4 F / IAH / Ethylene copolymer, TFE / CH 2 ⁇ CH (CF 2 ) 4 F / CAH / ethylene copolymer, TFE / CH 2 ⁇ CH (CF 2 ) 2 F / NAH / ethylene copolymer, TFE / CH 2 ⁇ CH (CF 2 ) 2 F / IAH / ethylene copolymer, TFE / CH 2 ⁇ CH (CF 2 ) 2 F / CAH / ethylene copolymer, CTFE / CH 2 ⁇ CH (CF 2 ) 4 F / NAH / ethylene copolymer, CTFE / CH 2 ⁇ CH (CF 2 ) 4 F / IAH / ethylene copolymer, CTFE / CH 2
  • the fluorine-containing copolymer (A) contains the structural unit (a), the structural unit (b), and the structural unit (c), and the structural unit (a), the structural unit (b), and the structural unit (c).
  • the proportion of the structural unit (b) with respect to the total molar amount is preferably 0.01 to 5 mol%, more preferably 0.1 to 3 mol%, and particularly preferably 0.1 to 2 mol%.
  • the amount of the dicarboxylic acid anhydride residue of the fluorine-containing copolymer (A) becomes an appropriate amount, and adhesion between the polyimide film and Excellent adhesion between the fluorine-containing resin film and the conductor.
  • a fluorine-containing copolymer (A) consists of a structural unit (a), a structural unit (b), and a structural unit (c)
  • content of a structural unit (b) is structural unit (a) and a structural unit.
  • 0.01 mol% with respect to the total molar amount of the unit (b) and the structural unit (c) means that the content of the dicarboxylic acid anhydride residue in the fluorine-containing copolymer (A) is the fluorine-containing copolymer. This corresponds to 100 per 1 ⁇ 10 6 main chain carbon atoms of the polymer (A).
  • the content of the structural unit (b) is 5 mol% with respect to the total molar amount of the structural unit (a), the structural unit (b), and the structural unit (c), the fluorine-containing copolymer (A) This corresponds to the content of the dicarboxylic anhydride residue in the fluorine-containing copolymer (A) being 50,000 with respect to 1 ⁇ 10 6 main chain carbon atoms.
  • the fluorine-containing copolymer (A) having the structural unit (b) the cyclic hydrocarbon monomer is partially hydrolyzed.
  • a dicarboxylic acid (itaconic acid, citraconic acid) corresponding to the dicarboxylic acid anhydride residue is obtained. , 5-norbornene-2,3-dicarboxylic acid, maleic acid, etc.).
  • content of this structural unit shall be contained in a structural unit (b).
  • the structural unit (a) is 50 to 99.89 mol% with respect to the total molar amount of the structural unit (a), the structural unit (b), and the structural unit (c1).
  • the structural unit (b) is preferably 0.01 to 5 mol%
  • the structural unit (c1) is preferably 0.1 to 49.99 mol%
  • the structural unit (a) is preferably 50 to 99.4 mol%. More preferably, the structural unit (b) is 0.1 to 3 mol%
  • the structural unit (c1) is 0.5 to 49.9 mol%
  • the structural unit (a) is 50 to 98.9.
  • the structural unit (b) is 0.1 to 2 mol% and the structural unit (c1) is 1 to 49.9 mol%.
  • the fluorinated copolymer (A1) is excellent in heat resistance and chemical resistance, and the fluorinated resin film containing this is excellent in elastic modulus at high temperature.
  • the adhesion between the polyimide film and the adhesion between the fluororesin film and the conductor are excellent.
  • the fluorinated copolymer (A) is excellent in moldability, and the fluorinated resin film containing the copolymer is excellent in mechanical properties such as stress crack resistance.
  • the content of the structural unit (c2) is the total molar amount of the structural unit (a), the structural unit (b), and the structural unit (c1). Is preferably from 5 to 90 mol, more preferably from 5 to 80 mol, particularly preferably from 10 to 65 mol.
  • the total molar amount of all the structural units of the fluorinated copolymer (A1) is 100 mol%
  • the total molar amount of the structural unit (a), the structural unit (b), and the structural unit (c1) is 60 mol%.
  • the above is preferable, 65 mol% or more is more preferable, and 68 mol% or more is particularly preferable.
  • a preferable upper limit is 100 mol%.
  • the fluorine-containing copolymer (A2) has a constitutional unit (a) of 30 to 70 mol% with respect to the total molar amount of the constitutional unit (a), constitutional unit (b) and constitutional unit (c2).
  • the unit (b) is 0.3 to 4.0 mol%
  • the structural unit (c2) is 70 to 30 mol%
  • the structural unit (a) is 40 to 60 mol%
  • the structural unit (b ) Is 0.5 to 3.5 mol%
  • the structural unit (c2) is more preferably 40 to 60 mol%
  • the structural unit (a) is 50 to 60 mol%
  • the structural unit (b) is It is particularly preferable that the structural unit (c2) is 0.5 to 2.5 mol% and the structural unit (c2) is 40 to 50 mol%.
  • the fluorinated copolymer (A2) is excellent in heat resistance and chemical resistance, and the fluorinated resin film containing this is excellent in elastic modulus at high temperature.
  • the content of the structural unit (b) is within the above range, as described above, the adhesion between the polyimide film and the adhesion between the fluororesin film and the conductor are excellent.
  • the fluorine-containing copolymer (A) is excellent in moldability, and the fluorine-containing resin film containing the copolymer is excellent in flexibility and toughness.
  • the content of the structural unit (c1) is the total molar amount of the structural unit (a), the structural unit (b), and the structural unit (c2). Is preferably from 0.3 to 4.0 mol, more preferably from 0.5 to 3.5 mol, particularly preferably from 0.7 to 3.0 mol.
  • the total molar amount of all the structural units of the fluorinated copolymer (A2) is 100 mol%
  • the total molar amount of the structural unit (a), the structural unit (b), and the structural unit (c2) is 96 mol%.
  • the above is preferable, 97 mol% or more is more preferable, and 98 mol% or more is particularly preferable.
  • a preferable upper limit is 100 mol%.
  • the content of each structural unit can be calculated by melting NMR analysis, fluorine content analysis, infrared absorption spectrum analysis, etc. of the fluorine-containing copolymer (A).
  • the melting point of the fluorinated copolymer (A) is 220 to 320 ° C., preferably 230 to 320 ° C., more preferably 260 to 320 ° C.
  • the melting point thereof is preferably 260 to 320 ° C, more preferably 265 to 320 ° C, and particularly preferably 280 to 315 ° C.
  • the melting point of the fluorinated copolymer (A1) is not less than the lower limit of the above range, the heat resistance is excellent, and when it is not more than the upper limit of the above range, the moldability is excellent.
  • the melting point is preferably 230 to 280 ° C, particularly preferably 240 to 270 ° C.
  • the melting point of the fluorinated copolymer (A2) is not less than the lower limit of the above range, the heat resistance is excellent, and when it is not more than the upper limit of the above range, the moldability is excellent.
  • fusing point of a fluorine-containing copolymer (A) can be adjusted with the kind of the structural unit which comprises the said fluorine-containing copolymer (A), a content rate, molecular weight, etc.
  • the melting point tends to increase as the proportion of the structural unit (a) described later increases.
  • the fluorine-containing copolymer (A) includes both the fluorine-containing copolymer (A1) and the fluorine-containing copolymer (A2).
  • the fluorine-containing copolymer (A) can be melt-molded. “Melting is possible” means exhibiting melt fluidity.
  • the flow rate (hereinafter also referred to as “MFR”) is preferably 0.1 to 1,000 g / 10 minutes, more preferably 0.5 to 100 g / 10 minutes, and 1 to 30 g / 10 minutes. Is more preferably 5 to 25 g / 10 min, most preferably 5 to 20 g / 10 min.
  • the moldability of the fluorinated copolymer (A) and the fluorinated resin film formed from the fluorinated copolymer (A) have surface smoothness and appearance. And the fluorine-containing resin film containing the fluorine-containing copolymer (A) is excellent in mechanical strength when it is not more than the upper limit of the above range.
  • the MFR measured under a load of 49 N at a temperature 20 ° C. or more higher than the melting point of the fluorine-containing copolymer (A1) of the fluorine-containing copolymer (A1) is: 0.5 to 15 g / 10 min is preferable, 1 to 15 g / 10 min is more preferable, 5 to 12 g / 10 min is further preferable, 5 to 11 g / 10 min is particularly preferable, and 5 to 10 g / 10 min is most preferable. .
  • the melting point of the fluorine-containing copolymer (A2) of the fluorine-containing copolymer (A2) is 0.5 to 25 g / 10 minutes. It is preferably 1 to 25 g / 10 minutes, more preferably 5 to 25 g / 10 minutes, and particularly preferably 10 to 25 g / 10 minutes.
  • the measurement temperature of the MFR is usually 372 ° C.
  • the fluorine-containing copolymer (A) is the fluorine-containing copolymer (A2)
  • 297 ° C. is usually adopted.
  • MFR is a measure of the molecular weight of the fluorinated copolymer (A).
  • MFR is a measure of the molecular weight of the fluorinated copolymer (A).
  • the MFR tends to increase.
  • the fluorine-containing copolymer obtained by the polymerization reaction is heat-treated, a crosslinked structure is formed, the molecular weight tends to increase, and the MFR tends to decrease.
  • the fluorine-containing copolymer (A) can be produced by a conventional method.
  • a method for producing the fluorine-containing copolymer (A) having the functional group (I) for example, (1) A method of using a monomer having a functional group (I) when producing a fluorinated copolymer (A) by a polymerization reaction, (2) A method for producing a fluorinated copolymer (A) by a polymerization reaction using a radical polymerization initiator having a functional group (I) or a chain transfer agent, (3) A fluorine-containing copolymer having no functional group (I) is heated, and the fluorine-containing copolymer is partially thermally decomposed to generate a reactive functional group (for example, a carbonyl group).
  • a reactive functional group for example, a carbonyl group
  • a method for obtaining a fluorine-containing copolymer (A) having a functional group (I) (4) A method in which a monomer having a functional group (I) is graft-polymerized to a fluorine-containing copolymer having no functional group (I), and the functional group (I) is introduced into the fluorine-containing copolymer, etc. Is mentioned.
  • the method (1) is preferred.
  • the polymerization method is not particularly limited, but for example, a polymerization method using a radical polymerization initiator is preferable.
  • the polymerization method include bulk polymerization, solution polymerization using an organic solvent such as fluorinated hydrocarbon, chlorinated hydrocarbon, fluorinated chlorohydrocarbon, alcohol, hydrocarbon, an aqueous medium and an appropriate organic solvent as necessary.
  • suspension polymerization using an aqueous medium, and emulsion polymerization using an aqueous medium and an emulsifier are preferable.
  • an initiator whose half-life is 10 hours is preferably 0 to 100 ° C., and an initiator whose temperature is 20 to 90 ° C. is particularly preferable.
  • Specific examples include azo compounds such as azobisisobutyronitrile, non-fluorine diacyl peroxides such as isobutyryl peroxide, octanoyl peroxide, benzoyl peroxide, lauroyl peroxide, peroxydicarbonates such as diisopropylperoxydicarbonate, tert - butyl peroxypivalate, tert- butylperoxy isobutyrate, tert- butyl peroxy ester peroxy acetate, etc., 2 (where (Z (CF 2) r COO ), Z represents a hydrogen atom, a fluorine atom or a chlorine atom , R is an integer of 1 to 10.) Fluorine-containing diacyl peroxide such as a compound represented
  • Chain transfer agents include alcohols such as methanol and ethanol, chlorofluorohydrocarbons such as 1,3-dichloro-1,1,2,2,3-pentafluoropropane, 1,1-dichloro-1-fluoroethane, Hydrocarbons such as pentane, hexane, and cyclohexane are listed.
  • a compound having the functional group (I) may be used as at least one of the radical polymerization initiator and the chain transfer agent, as described above.
  • functional group (I) can be introduce
  • radical polymerization initiators include di-n-propyl peroxydicarbonate, diisopropyl peroxycarbonate, t-butyl peroxyisopropyl carbonate, bis (4-t-butylcyclohexyl) peroxydicarbonate, di-2-ethylhexyl peroxydi.
  • the chain transfer agent include acetic acid, acetic anhydride, methyl acetate, ethylene glycol, and propylene glycol.
  • perfluorocarbon As the solvent used in the solution polymerization, perfluorocarbon, hydrofluorocarbon, chlorohydrofluorocarbon, hydrofluoroether or the like is used.
  • the number of carbon atoms is preferably 4-12.
  • Specific examples of the perfluorocarbon include perfluorocyclobutane, perfluoropentane, perfluorohexane, perfluorocyclopentane, and perfluorocyclohexane.
  • hydrofluorocarbon include 1-hydroperfluorohexane.
  • chlorohydrofluorocarbon include 1,3-dichloro-1,1,2,2,3-pentafluoropropane.
  • Specific examples of the hydrofluoroether include methyl perfluorobutyl ether, 2,2,2-trifluoroethyl 2,2,1,1-tetrafluoroethyl ether, and the like.
  • the polymerization conditions are not particularly limited, and the polymerization temperature is preferably 0 to 100 ° C, particularly preferably 20 to 90 ° C.
  • the polymerization pressure is preferably from 0.1 to 10 MPa, particularly preferably from 0.5 to 3 MPa.
  • the polymerization time is preferably 1 to 30 hours.
  • the concentration of the cyclic hydrocarbon monomer during polymerization is preferably 0.01 to 5 mol% with respect to the total monomers, 0.1% -3 mol% is more preferable, and 0.1-2 mol% is particularly preferable.
  • the concentration of the monomer is in the above range, the polymerization rate during production is moderate, and when the concentration of the monomer is too high, the polymerization rate tends to decrease.
  • the consumed amount is continuously or intermittently supplied into the polymerization tank, and the concentration of the cyclic hydrocarbon monomer is maintained within the above range. preferable.
  • the fluorine-containing resin film may contain other resins other than the fluorine-containing copolymer (A) as long as it does not impair the effects of the present invention.
  • a fluorine-containing resin excluding the fluorine-containing copolymer (A)
  • fluorinated resin (B) examples include the structural unit (a) and the structural unit (c), and the structural unit. Examples include copolymers not containing (b).
  • fluorine-containing resin (B) examples include, for example, TFE / perfluoro (alkyl vinyl ether) copolymer (PFA), TFE / HFP copolymer (FEP), ethylene / TFE copolymer (ETFE), and polyfluoride.
  • PFA TFE / perfluoro (alkyl vinyl ether) copolymer
  • FEP TFE / HFP copolymer
  • ETFE ethylene / TFE copolymer
  • polyfluoride Vinylidene (PVDF), polychlorotrifluoroethylene (hereinafter also referred to as “PCTFE”), ethylene / CTFE copolymer (ECTFE), and the like can be given.
  • PVDF polychlorotrifluoroethylene
  • ECTFE ethylene / CTFE copolymer
  • the content of the fluorine-containing resin (B) in the fluorine-containing resin film is such that the fluorine-containing copolymer (A) and the fluorine-containing resin (B) 10 to 90% by mass is preferable and 20 to 80% by mass is more preferable with respect to the total amount (100% by mass).
  • the content of the fluororesin (B) is not less than the lower limit of the above range, the heat resistance is excellent, and when it is not more than the upper limit of the above range, the adhesion is excellent.
  • the fluorine-containing resin film may contain an additive as long as it does not impair the effects of the present invention.
  • an inorganic filler having a low dielectric constant and dielectric loss tangent is preferable.
  • the inorganic filler include silica, clay, talc, calcium carbonate, mica, diatomaceous earth, alumina, zinc oxide, titanium oxide, calcium oxide, magnesium oxide, iron oxide, tin oxide, antimony oxide, calcium hydroxide, magnesium hydroxide, Aluminum hydroxide, basic magnesium carbonate, magnesium carbonate, zinc carbonate, barium carbonate, dosonite, hydrotalcite, calcium sulfate, barium sulfate, calcium silicate, montmorillonite, bentonite, activated clay, sepiolite, imogolite, sericite, glass fiber, Examples thereof include glass beads, silica-based balloons, carbon black, carbon nanotubes, carbon nanohorns, graphite, carbon fibers, glass balloons, carbon burns, wood powder, zinc
  • An inorganic filler may be used individually by 1 type, and may use 2 or more types together.
  • the inorganic filler may be porous or non-porous. A porous material is preferable in that the dielectric constant and dielectric loss tangent are lower.
  • the inorganic filler may be subjected to a surface treatment with a surface treatment agent such as a silane coupling agent or a titanate coupling agent in order to improve dispersibility in the fluorine-containing copolymer (A).
  • a surface treatment agent such as a silane coupling agent or a titanate coupling agent
  • the content of the inorganic filler in the fluorine-containing resin film is preferably 0.1 to 100% by mass, more preferably 0.1 to 60% by mass with respect to the fluorine-containing copolymer (A). preferable.
  • the fluorine-containing resin film can be produced by a conventional method.
  • the fluorine-containing copolymer (A) is used as it is, or the fluorine-containing copolymer (A) and an additive are blended and kneaded to obtain a resin composition, and a film is formed by a known molding method such as extrusion molding or inflation molding. It can be manufactured by molding into a shape.
  • Surface treatment may be performed on the surface of the fluorine-containing resin film, for example, the surface laminated with the polyimide film.
  • the surface treatment method is not particularly limited, and can be appropriately selected from known surface treatment methods such as corona discharge treatment and plasma treatment.
  • the thickness of the fluororesin film is preferably 1 to 1,000 ⁇ m, more preferably 5 to 500 ⁇ m, and particularly preferably 10 to 250 ⁇ m.
  • the thickness of the fluorine-containing resin film is not less than the lower limit of the above range, the electrical insulation is excellent, and when it is not more than the upper limit of the above range, the flexibility is excellent.
  • the polyimide film is a film made of polyimide.
  • the polyimide which comprises a polyimide film is not specifically limited. Polyimide having no thermoplasticity or thermoplastic polyimide may be used. Examples of the polyimide include aromatic polyimide. Among these, wholly aromatic polyimides produced by condensation polymerization of aromatic polycarboxylic dianhydrides and aromatic diamines are preferred.
  • a polyimide is generally obtained via a polyamic acid (polyimide precursor) by a reaction (polycondensation) between a polycarboxylic dianhydride (or a derivative thereof) and a diamine.
  • Polyimide particularly aromatic polyimide, is insoluble in solvents and the like due to its rigid main chain structure and has an infusible property. Therefore, first, a polyimide precursor (polyamic acid or polyamic acid) that is soluble in an organic solvent is synthesized by a reaction between a polycarboxylic dianhydride and a diamine, and then molded by various methods at the polyamic acid stage. Processing is performed. Thereafter, the polyamic acid is subjected to a dehydration reaction by heating or a chemical method to be cyclized (imidized) to obtain a polyimide.
  • aromatic polycarboxylic dianhydride examples include, for example, pyromellitic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 2,2 ′, 3, 3'-benzophenonetetracarboxylic dianhydride, 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride, 2,2', 3,3'-biphenyltetracarboxylic dianhydride, 2,2 -Bis (2,3-dicarboxyphenyl) propane dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, 1,1- Bis (2,3-dicarboxyphenyl) ethane dianhydride, bis (2,3-dicarboxyphenyl) methane dianhydride, bis (3,4-dicarboxyphenyphen
  • ethylene tetracarboxylic dianhydride and cyclopentane tetracarboxylic dianhydride which are non-aromatic polyvalent carboxylic dianhydrides, can be used as well as aromatic ones. These may be used alone or in combination of two or more.
  • aromatic diamine examples include, for example, m-phenylenediamine, o-phenylenediamine, p-phenylenediamine, m-aminobenzylamine, p-aminobenzylamine, 4,4′-diaminodiphenyl ether, 3,3 ′.
  • the polyimide film may contain additives as long as it does not impair the effects of the present invention.
  • an inorganic filler having a low dielectric constant and dielectric loss tangent is preferable.
  • An inorganic filler may be used individually by 1 type, and may use 2 or more types together.
  • the inorganic filler may be porous or non-porous. A porous material is preferable in that the dielectric constant and dielectric loss tangent are lower.
  • the inorganic filler may be subjected to a surface treatment with a surface treatment agent such as a silane coupling agent or a titanate coupling agent in order to improve dispersibility in polyimide.
  • a surface treatment agent such as a silane coupling agent or a titanate coupling agent
  • the content of the inorganic filler in the polyimide film is preferably 0.1 to 100% by mass and particularly preferably 0.1 to 60% by mass with respect to the polyimide.
  • the polyimide film one produced by a known production method may be used, or a commercially available product may be used.
  • Surface treatment may be performed on the surface of the polyimide film, for example, the surface laminated with the fluorine-containing resin film.
  • the surface treatment method is not particularly limited, and can be appropriately selected from known surface treatment methods such as corona discharge treatment and plasma treatment.
  • the thickness of the polyimide film is preferably 1 to 1,000 ⁇ m, more preferably 5 to 500 ⁇ m, and particularly preferably 5 to 250 ⁇ m.
  • the thickness of the polyimide film is not less than the lower limit of the above range, the electrical insulation is excellent, and when it is not more than the upper limit of the above range, the flexibility is excellent.
  • the insulating tape of the present invention can be produced by laminating a fluorine-containing resin film on one side or both sides of a polyimide film. After the lamination, when the obtained laminate is not in a tape shape, a step of processing the laminate into a tape shape may be performed.
  • the method for laminating the polyimide film and the fluororesin film is not particularly limited as long as these films can be directly laminated, but from the viewpoint of improving the electrical properties and heat resistance of the insulating tape, the thermal laminating method and the extrusion laminating method are used. preferable.
  • a preliminarily formed fluorine-containing resin film and a polyimide film are stacked and laminated by hot pressing.
  • the temperature is preferably 260 to 420 ° C, particularly preferably 300 to 400 ° C.
  • the pressure is preferably 0.3 to 30 MPa, more preferably 0.5 to 20 MPa, and particularly preferably 1 to 10 MPa.
  • the time is preferably 3 to 240 minutes, more preferably 5 to 120 minutes, and particularly preferably 10 to 80 minutes.
  • Hot pressing can be performed using a press plate, a roll, or the like.
  • the press plate is preferably a stainless steel plate.
  • a fluorine-containing copolymer (A) or a resin composition containing the same is melted and extruded into a film, and then laminated on a polyimide film.
  • the insulating tape of the present invention is used for covering a conductor.
  • the conductor By covering the surface of the conductor with the insulating tape of the present invention, the conductor can be insulated.
  • the surface of the conductor having a width wider than that of the insulating tape is coated so that the insulating tapes overlap each other, and then heat treatment is performed to improve the adhesion between the overlapping insulating tapes, Insulation can be performed more reliably.
  • the heat treatment can heat-bond the overlapping fluorine-containing resin films to each other, and the above effects are more excellent It becomes.
  • the surface of the conductor is coated with the insulating tape for coating of the present invention to form a coating layer, and the conductor coated with the coating layer is And a step of obtaining a structure by heat treatment at a temperature equal to or higher than the melting point of the fluorinated copolymer (A).
  • the conductor is basically not limited as long as it has a good electrical conductivity.
  • a wire such as anodized copper, hard copper, oxygen-free copper, chromium ore, aluminum, rod-like or plate-like A body material or the like is used.
  • mechanical strength required of these, magnesium, silicon, iron, etc. may be added to the said material.
  • the conductor coating method is not particularly limited, and a known coating method using an insulating tape can be employed according to the shape of the conductor to be coated.
  • a known coating method using an insulating tape can be employed according to the shape of the conductor to be coated.
  • an electric wire a linear conductor covered with an insulating tape
  • the width of the overlapping portion can be changed depending on the angle at the time of winding.
  • the width of the overlapping portion (overlap width) is preferably about 50% of the tape width.
  • the tension applied to the insulating tape during wrapping is strong enough to pull the insulating tape and cause a neck down from enough tension to avoid wrinkling. Can be widely changed up to the range. Even if the tension is low, the insulating tape contracts to some extent due to the influence of heat during the subsequent heat treatment, and as a result, it is wrapped perfectly.
  • the insulating tape for coating of the present invention is a film in which a fluorine-containing resin film is laminated on one side of a polyimide film, it is preferable to perform coating so that the fluorine-containing resin film side is a conductor side.
  • the heat treatment after coating is performed at a temperature equal to or higher than the melting point of the fluorine-containing copolymer (A) contained in the fluorine-containing resin film of the insulating tape.
  • the fluorine-containing resin film contains a plurality of fluorine-containing copolymers (A)
  • it is performed at a temperature equal to or higher than the melting point of the fluorine-containing copolymer (A) having the highest melting point.
  • the fluororesin film is heat-sealed to the surface (conductor surface, polyimide film or fluororesin film surface) in contact with the fluororesin film, and the wound insulating tape is sealed.
  • the heat treatment conditions are not particularly limited as long as the temperature and time are sufficient for heat fusion of the fluorine-containing resin film, but the heat treatment temperature is preferably not less than the melting point of the fluorine-containing copolymer (A) and less than 400 ° C., 400
  • the melting point of the fluorine-containing copolymer (A) + 20 ° C. to 100 ° C. for example, 280 ° C. to 360 ° C. if the melting point of the fluorine-containing copolymer (A) is 260 ° C.
  • the melting point of the fluorine-containing copolymer (A) + 20 ° C. to 80 ° C. is particularly preferable.
  • the heat treatment time depends on the thickness of the coating layer on the conductor surface, the gauge of the conductor, the speed of the production line and the length of the sealing oven.
  • the layer formed by heat-treating the coating layer functions as an insulating layer.
  • the second aspect of the method for producing a structure of the present invention includes a step of coating the surface of a conductor with the insulating tape for coating of the present invention to form a first coating layer, and a surface of the first coating layer.
  • a 1st coating layer is a coating layer which is arrange
  • the second coating layer is a second coating layer counted from the conductor side among the plurality of coating layers.
  • the third and subsequent coating layers are also referred to.
  • the step of forming the first coating layer can be performed in the same manner as the step of forming the coating layer in the first aspect.
  • the tape containing polytetrafluoroethylene a non-sintered tape is usually used.
  • the subsequent heat treatment may also serve as a step of sintering the tape containing polytetrafluoroethylene.
  • the formation of the second coating layer with the tape containing polytetrafluoroethylene can be performed in the same manner as the formation of the first coating layer.
  • the heat treatment after forming the second coating layer can be performed in the same manner as the heat treatment in the first embodiment.
  • the layer formed by heat-treating the first coating layer and the second coating layer functions as an insulating layer.
  • the surface of the conductor is coated with a tape-like fluororesin film to form a first coating layer, and the surface of the first coating layer Forming a second coating layer by coating with a tape-shaped polyimide film, and a step of obtaining a structure by heat-treating the conductor coated with the first coating layer and the second coating layer.
  • the fluorine-containing resin film has at least one functional group selected from the group consisting of a carbonyl group-containing group, a hydroxy group, an epoxy group, and an isocyanate group, and has a melting point of 230 to 320 ° C.
  • a possible fluorine-containing copolymer (A) is included, and the heat treatment is performed at a temperature equal to or higher than the melting point of the fluorine-containing copolymer (A).
  • Examples of the fluorine-containing resin film and the polyimide film are the same as those described in the description of the insulating tape of the present invention.
  • the formation of the first coating layer to the second coating layer with these films can be carried out in the same manner as in the step of forming the coating layer in the first embodiment.
  • the heat treatment after forming the second coating layer can be performed in the same manner as the heat treatment in the first embodiment.
  • the surface of the second coating layer may be coated with a tape containing polytetrafluoroethylene to form a third coating layer. .
  • the layer formed by heat-treating the first coating layer and the second coating layer functions as an insulating layer.
  • the fourth aspect of the method for producing a structure according to the present invention includes a step of coating the surface of a conductor with a tape-like fluororesin film to form a first coating layer, and a surface of the first coating layer. Coating a tape-shaped polyimide film to form a second coating layer, and coating the surface of the second coating layer with a tape-shaped fluororesin film to form a third coating layer And a step of heat-treating the conductor coated with the first coating layer, the second coating layer, and the third coating layer to obtain a structure,
  • the fluorine-containing resin films forming the first coating layer and the third coating layer are each at least one functional group selected from the group consisting of a carbonyl group-containing group, a hydroxy group, an epoxy group, and an isocyanate group.
  • a fluorine-containing copolymer (A) having a melting point of 230 to 320 ° C. and capable of melt molding The heat treatment is performed at a temperature equal to or higher than the melting point of the fluorine-containing copolymer (A).
  • the formation of the first coating layer to the third coating layer with these films can be carried out in the same manner as in the step of forming the coating layer in the first embodiment.
  • the heat treatment after forming the third coating layer can be performed in the same manner as the heat treatment in the first embodiment.
  • the surface of the third coating layer may be coated with a tape containing polytetrafluoroethylene to form a fourth coating layer. .
  • the layer formed by heat-treating the first coating layer, the second coating layer, and the third coating layer (optionally the fourth coating layer) functions as an insulating layer.
  • any of the structures obtained by the production methods of the first to fourth aspects includes a structure in which a polyimide film and a fluorine-containing resin film are directly laminated in an insulating layer.
  • the fluorine-containing resin film used in the present invention has high adhesion to the polyimide film by including the fluorine-containing copolymer (A), and peeling between these films is unlikely to occur during or after the production of the structure. . Therefore, it is difficult for the insulating property to be lowered due to peeling between films. Further, by including the fluorinated copolymer (A), the adhesion between the fluorinated resin film and the conductor (copper, aluminum, etc.) covered with the insulating tape, and consequently the insulation formed from the insulating tape. The adhesion between the layer and the conductor is also high, and peeling between them is difficult to occur during or after the structure is manufactured.
  • an insulating layer can be formed with sufficient adhesion even to an aluminum conductor.
  • a polyimide film is used together with the fluorine-containing resin film containing a fluorine-containing copolymer (A), the intensity
  • Examples 1 to 21 described later examples 1 to 4 and 10 to 14 are examples, and Examples 5 to 9 and 15 to 19 are comparative examples.
  • Examples 20 to 21 are test examples. The materials and measurement methods used in each example are shown below.
  • Fluorine-containing copolymer (A1-1) TFE / NAH / PPVE copolymer (melting point 300 ° C., MFR 17.6 g / 10 min) obtained in Production Example 1 described later.
  • PFA-1 TFE / perfluoro (alkyl vinyl ether) copolymer (melting point 305 ° C., MFR 13.6 g / 10 min), manufactured by Asahi Glass Co., Ltd., product name “Fluon PFA 73PT”.
  • Fluorocopolymer (AB-3) Compound of fluorinated copolymer (A2-1) and (B-2) obtained in Production Example 4 described later (melting point: 235 ° C., MFR: 21.3 g) / 10 minutes).
  • ETFE-1 TFE / ethylene copolymer (melting point 255 ° C., MFR 10.9 g / 10 min), manufactured by Asahi Glass Co., Ltd., product name “Fluon ETFE C-88AX”.
  • ⁇ Measuring method ⁇ (Copolymer composition of fluorine-containing copolymer) The copolymer composition was determined by melt NMR analysis, fluorine content analysis and infrared absorption spectrum analysis.
  • the ratio of the structural unit based on the monomer (NAH or IAH) having the functional group (I) in the fluorine-containing copolymer was determined by the following infrared absorption spectrum analysis.
  • the fluorine-containing copolymer was press-molded to obtain a film having a thickness of 200 ⁇ m.
  • the absorption peak in the structural unit based on NAH and IAH in the fluorine-containing copolymer both appears at 1,778 cm ⁇ 1 .
  • L is the absorbance at 1,778 cm ⁇ 1 and a is a coefficient.
  • a 0.87 determined using IAH as a model compound was used.
  • the M (mol%), the number of the fluorine-containing copolymer backbone number 1 ⁇ 10 6 cells for functional group carbon (I) (acid anhydride group) is, [a ⁇ 10 6/100 ] Pieces and calculation Is done.
  • melting point of fluorine-containing copolymer (°C)) Using a differential scanning calorimeter (DSC apparatus) manufactured by Seiko Electronics Co., Ltd., the melting peak when the fluorine-containing copolymer (A) was heated at a rate of 10 ° C./min was recorded, and the temperature corresponding to the maximum value ( ° C.) was defined as the melting point (Tm).
  • MFR of fluorine-containing copolymer (g / 10 min) Using a melt indexer manufactured by Techno Seven, under the following conditions, the mass (g) of the fluorine-containing copolymer flowing out from a nozzle having a diameter of 2 mm and a length of 8 mm in 10 minutes (unit time) was measured. It was set as MFR (g / 10min).
  • Fluorinated copolymers A1-1, A1-2 and PFA-1 372 ° C. under 5 kg (49 N) load.
  • Fluorine-containing copolymers A2-1, AB-3, B-2 and ETFE-1 297 ° C. under 5 kg (49 N) load.
  • the insulating tape was cut into a size of 150 mm in length and 10 mm in width to produce a test film.
  • the fluororesin film and the polyimide film were peeled from one end in the length direction of the test film to a position of 50 mm.
  • the position of 50 mm from one end in the length direction of the test film was set at the center, and the tensile tester was used to peel 180 degrees at a tensile speed of 50 mm / min, and the maximum load was defined as peel strength (N / 10 mm). It shows that the adhesiveness between a fluorine-containing resin film and a polyimide film is excellent, so that peeling strength is large.
  • the peel strength was 0.2 N / 10 mm or less, the measured values varied greatly, and the results of the peel strength in this case were all expressed as 0.2 N / 10 mm or less.
  • a peeling film (length) is formed between a terminal portion of an insulating tape (width 10 mm) wound in a spiral on a conductor and an insulating tape in contact with the inner surface (conductor side) of the terminal portion.
  • the maximum load when the end portion of the insulating tape was peeled off starting from the peeling film portion was peel strength (N / 10 mm).
  • peel strength N / 10 mm.
  • the peel strength measured is the peel strength between the fluorine-containing resin film and the polyimide film, and the greater the peel strength, the better the adhesion between the fluorine-containing resin film and the polyimide film. .
  • the peel strength was 0.2 N / 10 mm or less, the measured values varied greatly, and the results of the peel strength in this case were all expressed as 0.2 N / 10 mm or less.
  • AK225cb 1,3-dichloro-1,1,2,2,3-pentafluoropropane
  • PPVE 1,3-dichloro-1,1,2,2,3-pentafluoropropane
  • a polymerization initiator solution in which (perfluorobutyryl) peroxide was dissolved in AK225cb at a concentration of 0.36% by mass was prepared, and 3 L of the polymerization initiator solution was added to the polymerization tank at a rate of 6.25 mL per minute. Polymerization was carried out while continuously adding. Further, TFE was continuously charged so that the pressure in the polymerization tank during the polymerization reaction was maintained at 0.89 MPa / G. Further, a solution in which NAH was dissolved in AK225cb at a concentration of 0.3% by mass was continuously charged in an amount corresponding to 0.1 mol% with respect to the number of moles of TFE charged during the polymerization.
  • the obtained slurry was put into a 300 L granulation tank charged with 100 kg of water, heated to 105 ° C. with stirring, and the solvent was distilled off and granulated.
  • the obtained granulated product was dried at 135 ° C. for 3 hours to obtain 12.2 kg of the granulated product of the fluorinated copolymer (A2-1).
  • the copolymer composition of this fluorinated copolymer (A2-1) is TFE-based structural unit / E-based structural unit / CH 2 ⁇ CH (CF 2 ).
  • the structural unit based on 2 F / the structural unit based on IAH 58.2 / 38.4 / 3.1 / 0.3 (molar ratio).
  • the structural unit based on 2 F was 53.7 / 45.6 / 0.7 (molar ratio).
  • a fluorine-containing resin film (hereinafter also referred to as “film 4”) was produced under the same conditions as in Production Example 9 except that ETFE-1 was used instead of the fluorine-containing copolymer (AB-3).
  • Example 1 Film 1 and polyimide film were laminated in the order of film 1 / polyimide film / film 1 and pressed for 5 minutes under the conditions of a temperature of 320 ° C. and a pressure of 10 MPa to obtain an insulating tape. The peel strength between the fluorine-containing resin film and the polyimide film was measured, and the results are shown in Table 1.
  • Example 2 An insulating tape was obtained in the same manner as in Example 1 except that the type of film to be laminated, the order of lamination, and the press temperature were as shown in Table 1. The peel strength between the fluorine-containing resin film and the polyimide film was measured, and the results are shown in Table 1.
  • the insulating tapes of Examples 1 to 4 and Example 10 using the film 1, film 3 or film 5 as the fluorine-containing resin film are excellent in adhesion between the fluorine-containing resin film and the polyimide film. It was.
  • the insulating tapes of Examples 5 to 9 using film 2 (PFA film), film 4 (ETFE film) or PTFE tape as the fluorine-containing resin film have poor adhesion between the fluorine-containing resin film and the polyimide film. It was enough.
  • Example 11 The insulating tape (film 1 / polyimide film / film 1) produced in Example 2 was spirally wound around the conductor for the electric wire (core wire diameter ⁇ 1.8 mm, material: tin-plated annealed copper), and the tape width 50 of the insulating tape. % Wrapped around itself. This was put into an oven and heated for 1 hour under conditions of a furnace temperature of 360 ° C. to produce an electric wire. The peel strength between the fluorine-containing resin film and the polyimide film was measured for this electric wire. The results are shown in Table 2.
  • Example 12 The insulating tape (film 1 / polyimide film / film 1) produced in Example 2 was spirally wound around the conductor for the electric wire (core wire diameter ⁇ 1.8 mm, material: tin-plated annealed copper), and the tape width 50 of the insulating tape. % Wrapped around itself. Then, a PTFE tape was spirally wound thereon so as to overlap on itself. This was put into an oven and heated for 1 hour under conditions of a furnace temperature of 360 ° C. to produce an electric wire. The peel strength between the fluorine-containing resin film and the polyimide film was measured for this electric wire. In addition, peeling during mandrel winding (copper wire) and peeling during mandrel winding (aluminum wire) were confirmed. The results are shown in Table 2.
  • Example 14-15 and 18-19 An electric wire was produced in the same manner as in Example 11 except that the type of insulating tape and the temperature in the furnace when heated in the oven were changed. The peel strength between the fluorine-containing resin film and the polyimide film was measured for this electric wire. In addition, peeling during mandrel winding (copper wire) and peeling during mandrel winding (aluminum wire) were confirmed. The results are shown in Table 2. However, in Examples 18 to 19, the peeling strength could not be measured because the fluororesin films were not in close contact with each other at the overlapping portions of the insulating tape under the above heating conditions.
  • Example 13 and 16-17 An electric wire was produced in the same manner as in Example 12 except that the furnace temperature when heating in the oven or the type of insulating tape was changed. The peel strength between the fluorine-containing resin film and the polyimide film was measured for this electric wire. In addition, peeling during mandrel winding (copper wire) and peeling during mandrel winding (aluminum wire) were confirmed. The results are shown in Table 2.
  • Example 11 to 14 where the conductor was covered with the insulating tape of Example 2 or Example 4 using the film 1 or film 3 as the fluorine-containing resin film, the insulating tape wound by heat treatment at 320 to 360 ° C. was able to adhere sufficiently. Moreover, it was excellent in the adhesiveness of an insulating tape and the conductor for electric wires.
  • Example 15 to 19 where the conductor was covered with the insulating tape of Example 6, Example 8 or Example 9 using film 4 (ETFE film), film 2 (PFA film) or PTFE tape as the fluororesin film, the film was wound. The insulating tape could not be adhered sufficiently. Moreover, the adhesiveness of an insulating tape and the conductor for electric wires was inadequate.
  • the insulating tape of the present invention is useful in applications in which the surface of a conductor is coated and heat treated to obtain a structure.
  • Example 20 An electric wire composed of an electric wire conductor and a sheath covering the electric wire conductor was produced by the following procedure.
  • the fluorine-containing copolymer (A1-1) was pelletized by a twin screw extruder (manufactured by Technobel). Using the obtained pellets, a fluorine-containing copolymer (A1-1) was extruded around the electric wire conductor (core wire diameter: ⁇ 1.8 mm, stranded wire) under the following conditions to form a sheath, and the electric wire diameter: ⁇ 2.
  • An electric wire having a thickness of 8 mm and a sheath thickness of 0.5 mm was obtained. Cylinder temperature: 350-390 ° C, Die temperature: 390 ° C, Take-up speed: 10-30 m / min. When the abrasion resistance of the obtained electric wire was measured, the abrasion resistance was 3,274 times.
  • Example 21 An electric wire was produced in the same manner as in Example 20 except that the fluorinated copolymer (A1-1) was changed to the fluorinated copolymer (A1-2). When the abrasion resistance of the obtained electric wire was measured, the abrasion resistance was 16,954 times, which was superior to Example 20 in scrape abrasion resistance.
  • the structure of the present invention can be suitably used for electric wires, particularly motor coils, cables, aircraft electric wires, and the like.
  • electric wires particularly motor coils, cables, aircraft electric wires, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Laminated Bodies (AREA)
  • Insulating Bodies (AREA)
  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)

Abstract

 ポリイミドフィルムと含フッ素樹脂フィルムとが優れた密着性で積層された被覆用絶縁テープ、および該被覆用絶縁テープを用いて導体を被覆し、熱処理する構造体の製造方法の提供。 ポリイミドフィルムの片面または両面に含フッ素樹脂フィルムが直接積層してなり、前記含フッ素樹脂フィルムが、融点が220~320℃であり、溶融成形が可能であり、カルボニル基含有基、ヒドロキシ基、エポキシ基およびイソシアネート基からなる群から選択される少なくとも1種の官能基を有する含フッ素共重合体(A)を含む被覆用絶縁テープ。

Description

被覆用絶縁テープ、および構造体の製造方法
 本発明は、被覆用絶縁テープ、および導体を該被覆絶縁テープで被覆した構造体の製造方法に関する。
 電線の製造においては、導体を絶縁材料で被覆することが行われている。電線の製造方法の一つとして、ポリイミドフィルムの片面または両面に含フッ素樹脂層を設けた積層体をテープ状に加工した絶縁テープを導体の表面に巻き付け、該表面を被覆する方法がある。該方法では、通常、導体表面の絶縁性を確保するため、導体を絶縁テープで被覆したのち、熱処理により含フッ素樹脂層を熱融着させることが行われる。
 前記絶縁テープは、ポリイミドが耐熱性等の特性に優れ、含フッ素樹脂が電気絶縁性、耐熱性、耐薬品性、耐候性等の特性に優れることから、航空宇宙用途に好ましく用いられる。また、近年、電気機器の高性能、高機能化が進み、これらの電気機器に用いられる電線が高温、高湿度の環境に曝されるようになっている。さらに電線の電流量も増大し、発熱に伴って電線が一層高温に曝される場合が少なくない。前記絶縁テープは、これらの用途への適用も期待される。
 前記絶縁テープにおいて、含フッ素樹脂としては、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)等が用いられている(例えば特許文献1~2参照)。特に、最外層には、電気絶縁性、耐候性の点から、PTFE層が設けられることが多い。
 前記絶縁テープの製造方法としては、ポリイミドフィルムに含フッ素樹脂のディスパージョン(dispersion)を塗布する方法が一般的である。
 しかしこの方法は、生産性が良くない等問題がある。例えば含フッ素樹脂層をある程度の厚さにするには、ディスパージョンの塗布と乾燥を繰り返す必要があり、手間や時間がかかる。また、絶縁テープの製造時やこれを用いた電線の製造時に高温での熱処理が必要になる。例えば絶縁テープを用いて電線を製造する際には、通常、絶縁テープを導体に渦巻き状に、それ自身に重なるように巻き付けたのち、絶縁テープ同士を融着させ、絶縁テープ間の隙間を封止するための熱処理が行われる。この時の熱処理は焼結工程も兼ねており、例えばPTFEの場合、未焼結のPTFE層を設けた絶縁テープを導体に巻き付けた後、360℃以上に加熱することが必要になる。特に該熱処理を短時間(例えば1時間程度)で完了させようとする場合、400℃以上に加熱する必要がある。
 含フッ素樹脂層を有する積層体の製造方法として、含フッ素樹脂フィルムと他のフィルムとを熱ラミネート、押出ラミネート等により積層する方法もある。
 しかし、PTFEフィルムとポリイミドフィルムとを積層した絶縁テープは、フィルム間の密着性が低い問題がある。本発明者らの検討によれば、PTFEフィルムとポリイミドフィルムとを積層した絶縁テープの場合、導体に巻き付けた後に前記のような熱処理を行ってもPTFEフィルムとポリイミドフィルムとの間の密着性は低いままで、電線の製造時や製造後にこれらのフィルム間に剥離が生じやすい問題がある。
 熱処理の温度を高くするとPTFEフィルムとポリイミドフィルムとの間の密着性がある程度向上する可能性はあるが、樹脂、特にPTFEに比べて耐熱性の低いポリイミドが劣化するおそれがあり、製造コストも高くなる。
 FEPフィルムのポリイミドフィルムに対する密着性は、PTFEフィルムよりは良好であるが充分とはいえず、これをポリイミドフィルムと積層した場合、PTFEフィルムの場合と同様の問題を生じる。
特開平10-100340号公報 特開2000-211081号公報
 本発明は、上記事情に鑑みなされたものであり、ポリイミドフィルムと含フッ素樹脂フィルムとが優れた密着性で積層された被覆用絶縁テープ、および該被覆用絶縁テープを用いて、導体を被覆し熱処理して構造体を製造する方法を提供することを目的とする。
 本発明は以下の[1]~[13]の構成を有し、被覆用絶縁テープおよび構造体の製造方法を提供する。
 [1]ポリイミドフィルムの片面または両面に含フッ素樹脂フィルムが直接積層してなり、
 前記含フッ素樹脂フィルムが、融点が220~320℃であり、溶融成形が可能であり、カルボニル基含有基、ヒドロキシ基、エポキシ基およびイソシアネート基からなる群から選択される少なくとも1種の官能基を有する含フッ素共重合体(A)を含むことを特徴とする、被覆用絶縁テープ。
 [2]前記含フッ素共重合体(A)の融点が260~320℃である、前記[1]に記載の被覆用絶縁テープ。
 [3]前記カルボニル基含有基が、炭化水素基の炭素原子間にカルボニル基を含む基、カーボネート基、カルボキシル基、ハロホルミル基、アルコキシカルボニル基および酸無水物残基からなる群から選択される少なくとも1種である、前記[1]または[2]に記載の被覆用絶縁テープ。
 [4]前記官能基の含有量が、前記含フッ素共重合体(A)の主鎖炭素数1×10個に対して10~60,000個である、前記[1]~[3]のいずれかに記載の被覆用絶縁テープ。
 [5]前記含フッ素共重合体(A)の、372℃、49N荷重下で測定されるメルトフローレートが、0.5~15g/10分である、前記[1]~[4]のいずれかに記載の被覆用絶縁テープ。
 [6]前記含フッ素共重合体(A)の、297℃、49N荷重下で測定されるメルトフローレートが、0.5~25g/10分である、前記[1]~[4]のいずれかに記載の被覆用絶縁テープ。
 [7]導体の表面を、前記[1]~[6]のいずれかに記載の被覆用絶縁テープで被覆して被覆層を形成する工程と、前記被覆層で被覆された導体を、前記含フッ素共重合体(A)の融点以上の温度で熱処理して構造体を得る工程とを含む、構造体の製造方法。
 [8]導体の表面を、前記[1]~[6]のいずれかに記載の被覆用絶縁テープで被覆して第一の被覆層を形成する工程と、前記第一の被覆層の表面を、ポリテトラフルオロエチレンを含むテープで被覆して第二の被覆層を形成する工程と、前記第一の被覆層および第二の被覆層で被覆された導体を、前記含フッ素共重合体(A)の融点以上の温度で熱処理して構造体を得る工程とを含む、構造体の製造方法。
 [9]導体の表面を、テープ状の含フッ素樹脂フィルムで被覆して第一の被覆層を形成する工程と、前記第一の被覆層の表面を、テープ状のポリイミドフィルムで被覆して第二の被覆層を形成する工程と、前記第一の被覆層および第二の被覆層で被覆された導体を熱処理して構造体を得る工程とを含み、
 前記含フッ素樹脂フィルムが、カルボニル基含有基、ヒドロキシ基、エポキシ基およびイソシアネート基からなる群から選択される少なくとも1種の官能基を有し、融点が220~320℃であり、溶融成形が可能な含フッ素共重合体(A)を含み、
 前記熱処理が、前記含フッ素共重合体(A)の融点以上の温度で行われることを特徴とする、構造体の製造方法。
 [10]導体の表面を、テープ状の含フッ素樹脂フィルムで被覆して第一の被覆層を形成する工程と、前記第一の被覆層の表面を、テープ状のポリイミドフィルムで被覆して第二の被覆層を形成する工程と、前記第二の被覆層の表面を、テープ状の含フッ素樹脂フィルムで被覆して第三の被覆層を形成する工程と、前記第一の被覆層、第二の被覆層および第三の被覆層で被覆された導体を熱処理して構造体を得る工程とを含み、
 前記第一の被覆層および第三の被覆層を形成する含フッ素樹脂フィルムがそれぞれ、カルボニル基含有基、ヒドロキシ基、エポキシ基およびイソシアネート基からなる群から選択される少なくとも1種の官能基を有し、融点が220~320℃であり、溶融成形が可能な含フッ素共重合体(A)を含み、
 前記熱処理が、前記含フッ素共重合体(A)の融点以上の温度で行われることを特徴とする、構造体の製造方法。
 [11]前記含フッ素共重合体(A)の融点が260~320℃である、前記[9]または[10]に記載の構造体の製造方法。
 [12]前記熱処理が、前記含フッ素共重合体(A)の融点以上400℃未満の温度で行われる、前記[7]~[11]のいずれかに記載の構造体の製造方法。
 [13]前記構造体が電線である、前記[7]~[12]のいずれかに記載の構造体の製造方法。
 本発明によれば、ポリイミドフィルムと含フッ素樹脂フィルムとが優れた密着性で積層した被覆用絶縁テープの提供と、機械的強度も強く、耐熱性にも優れる前記被覆用絶縁テープにより導体を被覆し、熱処理して有用な構造体を製造する方法を提供できる。
〔被覆用絶縁テープ〕
 本発明の被覆用絶縁テープ(以下、「絶縁テープ」ともいう。)は、ポリイミドフィルムの片面または両面に含フッ素樹脂フィルムが直接積層してなる。
 含フッ素樹脂フィルムは、ポリイミドフィルムの両面に積層していることが好ましい。
 本発明の絶縁テープの厚さは、3~3,000μmが好ましく、15~1,500μmがより好ましく、25~750μmが特に好ましい。絶縁テープの厚さが上記範囲の下限値以上であると、電気絶縁性に優れ、上記範囲の上限値以下であると、柔軟性に優れる。
(含フッ素樹脂フィルム)
 含フッ素樹脂フィルムは、含フッ素共重合体(A)を含む。
 含フッ素共重合体(A)は、融点が220~320℃であり、溶融成形が可能であり、カルボニル基含有基、ヒドロキシ基、エポキシ基およびイソシアネート基からなる群から選択される少なくとも1種の官能基(以下、「官能基(I)」ともいう。)を有する。
 官能基(I)を有することで、該含フッ素共重合体(A)を含む含フッ素樹脂フィルムと、ポリイミドフィルムとの間の密着性が向上する。これは、官能基(I)は、ポリイミドが有する官能基、例えばカルボニル基との間で何らかの相互作用(化学反応等)を生じるためと考えられる。さらに、官能基(I)を有することで、含フッ素樹脂フィルムと、絶縁テープで被覆される導体(銅、アルミニウム等)との間の密着性、ひいては絶縁テープと導体との間の密着性も向上する。
 官能基(I)は、含フッ素共重合体(A)の主鎖末端および側鎖の少なくとも一方に位置する。含フッ素共重合体(A)が有する官能基(I)は1種でも2種以上でもよい。
 含フッ素共重合体(A)は、官能基(I)として少なくともカルボニル基含有基を有することが好ましい。
 カルボニル基含有基は、構造中にカルボニル基(-C(=O)-)を含む基であり、例えば、炭化水素基の炭素原子間にカルボニル基を含む基、カーボネート基、カルボキシル基、ハロホルミル基、アルコキシカルボニル基、酸無水物残基、等が挙げられる。
 前記炭化水素基としては、例えば炭素数2~8のアルキレン基等が挙げられる。なお、該アルキレン基の炭素数は、カルボニル基を含まない状態での炭素数である。アルキレン基は直鎖状でも分岐状でもよい。
 ハロホルミル基は、-C(=O)-X(ただしXはハロゲン原子である。)で表される。ハロホルミル基におけるハロゲン原子としては、フッ素原子、塩素原子等が挙げられ、フッ素原子が好ましい。すなわちハロホルミル基としてはフルオロホルミル基(「カルボニルフルオリド基」ともいう。)が好ましい。
 アルコキシカルボニル基におけるアルコキシ基は、直鎖状でも分岐状でもよく、炭素数1~8のアルコキシ基が好ましく、メトキシ基またはエトキシ基が特に好ましい。
 含フッ素共重合体(A)中の官能基(I)の含有量は、含フッ素共重合体(A)の主鎖炭素数1×10個に対し10~60,000個が好ましく、100~50,000個がより好ましく、100~10,000個がさらに好ましく、300~5,000個が特に好ましい。
 官能基(I)の含有量が上記範囲の下限値以上であると、含フッ素樹脂フィルムとポリイミドフィルムとの間の密着性、および含フッ素樹脂フィルムと導体との間の密着性がより優れたものとなり、上記範囲の上限値以下であると、低い加工温度でポリイミドフィルムに対する高度の密着性が得られる。
 前記官能基(I)の含有量は、核磁気共鳴(NMR)分析、赤外吸収スペクトル分析等の方法により、測定できる。例えば、特開2007-314720号公報に記載のように赤外吸収スペクトル分析等の方法を用いて、含フッ素共重合体(A)を構成する全構成単位中の官能基(I)を有する構成単位の割合(モル%)を求め、該割合から、官能基(I)の含有量を算出することができる。
 含フッ素共重合体(A)としては、テトラフルオロエチレン(以下、「TFE」ともいう。)および/またはクロロトリフルオロエチレン(以下、「CTFE」ともいう。)に基づく構成単位(a)と、ジカルボン酸無水物基を有しかつ環内に重合性不飽和基を有する環状炭化水素モノマーに基づく構成単位(b)と、その他のモノマー(ただし、TFE、CTFEおよびジカルボン酸無水物基を有しかつ環内に重合性不飽和基を有する環状炭化水素モノマーを除く。)に基づく構成単位(c)とを含有する共重合体が好ましい。
 ここで、構成単位(b)の有するジカルボン酸無水物残基が官能基(I)に相当する。
 含フッ素共重合体(A)は、主鎖末端基として官能基(I)を有していてもよい。主鎖末端基としての官能基(I)としては、アルコキシカルボニル基、カーボネート基、ヒドロキシ基、カルボキシル基、フルオロホルミル基、酸無水物残基等が好ましい。これらの官能基は、含フッ素共重合体(A)の製造時に用いられる、ラジカル重合開始剤、連鎖移動剤等を適宜選定することにより導入できる。
 本発明において「ジカルボン酸無水物基を有しかつ環内に重合性不飽和基を有する環状炭化水素モノマー」(以下、「環状炭化水素モノマー」ともいう。)は、1つ以上の5員環または6員環からなる環状炭化水素であって、しかもジカルボン酸無水物基と環内重合性不飽和基を有する重合性化合物をいう。
 環状炭化水素としては1つ以上の有橋多環炭化水素を有する環状炭化水素が好ましい。すなわち、有橋多環炭化水素からなる環状炭化水素、有橋多環炭化水素の2以上が縮合した環状炭化水素、または有橋多環炭化水素と他の環状炭化水素が縮合した環状炭化水素であることが好ましい。
 環状炭化水素モノマーは環内重合性不飽和基、すなわち炭化水素環を構成する炭素原子間に存在する重合性不飽和基、を1つ以上有する。
 環状炭化水素モノマーはさらにジカルボン酸無水物基(-CO-O-CO-)を有する。ジカルボン酸無水物基は、炭化水素環を構成する2つの炭素原子に結合していてもよく、環外の2つの炭素原子に結合していてもよい。好ましくは、ジカルボン酸無水物基は上記環状炭化水素の環を構成する炭素原子であってかつ隣接する2つの炭素原子に結合する。さらに、環状炭化水素の環を構成する炭素原子には、水素原子の代わりに、ハロゲン原子、アルキル基、ハロゲン化アルキル基、その他の置換基が結合していてもよい。
 環状炭化水素モノマーの具体例としては、式(1)~(8)のいずれかで表される化合物、無水マレイン酸等が挙げられる。ここで、式(2)、(5)~(8)におけるRは、炭素数1~6の低級アルキル基、フッ素原子、塩素原子、臭素原子およびヨウ素原子から選択されるハロゲン原子、または前記低級アルキル基中の水素原子がハロゲン原子で置換されたハロゲン化アルキル基を示す。
 これらの環状炭化水素モノマーは、いずれか1種を単独で用いてもよく、2種以上を併用してもよい。
Figure JPOXMLDOC01-appb-C000001
  上記式(1)~(8)の環状炭化水素モノマーはそれ自身公知化合物であり、例えば、シクロペンタジエンと無水マレイン酸を無触媒で加熱する方法、特開平6-73043号公報に記載の方法等により容易に製造できる。また、市販の環状炭化水素モノマーを使用できる。
 環状炭化水素モノマーとしては、上記のなかでも、無水イタコン酸(以下、「IAH」ともいう。)、無水シトラコン酸(以下、「CAH」ともいう。)および5-ノルボルネン-2,3-ジカルボン酸無水物(以下、「NAH」ともいう。)からなる群から選ばれる1種以上が好ましい。IAH、CAHおよびNAHからなる群から選ばれる1種以上を用いると、無水マレイン酸を用いた場合に必要となる特殊な重合方法(特開平11-193312号公報参照。)を用いることなく、酸無水物残基を含有する含フッ素共重合体(A)を容易に製造できる。
 IAH、CAHおよびNAHのなかでは、ポリイミドフィルムとの間の密着性がより優れる点から、IAHまたはNAHが好ましい。
 構成単位(c)を形成するその他のモノマー(ただし、TFE、CTFEおよび前記環状炭化水素モノマーを除く。)は、含フッ素モノマー(ただしTFEおよびCTFEを除く。)でもよく、非含フッ素モノマー(ただし、前記環状炭化水素モノマーを除く。)でもよく、これらの混合物でもよい。
 構成単位(c)を形成する含フッ素モノマーとしては、重合性二重結合を1つ有する含フッ素化合物が好ましく、例えばフッ化ビニル、フッ化ビニリデン(以下、「VdF」ともいう。)、トリフルオロエチレン、ヘキサフルオロプロピレン(以下、「HFP」ともいう。)等のフルオロオレフィン(ただし、TFEおよびCTFEを除く。)、CF=CFORf1(ただしRf1は炭素数1~10で炭素原子間に酸素原子を含んでもよいペルフルオロアルキル基。)、CF=CFORf2SO(ただしRf2は炭素数1~10で炭素原子間に酸素原子を含んでもよいペルフルオロアルキレン基、Xはハロゲン原子または水酸基。)、CF=CFORf3CO(ただしRf3は炭素数1~10で炭素原子間に酸素原子を含んでもよいペルフルオロアルキレン基、Xは水素原子または炭素数3以下のアルキル基。)、CF=CF(CFOCF=CF(ただしpは1または2。)、CH=CX(CF(ただしXは水素原子またはフッ素原子、qは2~10の整数、Xは水素原子またはフッ素原子。)、ペルフルオロ(2-メチレン-4-メチル-1、3-ジオキソラン)等が挙げられる。
 これら含フッ素モノマーのなかでも、VdF、HFP、CF=CFORf1およびCH=CX(CFからなる群から選ばれる少なくとも1種が好ましく、CF=CFORf1またはHFPが特に好ましい。
 CF=CFORf1としては、CF=CFOCFCF、CF=CFOCFCFCF、CF=CFOCFCFCFCFCF=CFO(CFF等が挙げられ、CF=CFOCFCFCF(以下、「PPVE」ともいう。)が好ましい。
 CH=CX(CFとしては、CH=CH(CFF、CH=CH(CFF、CH=CH(CFF、CH=CF(CFH、CH=CF(CFH等が挙げられ、CH=CH(CFFまたはCH=CH(CFFが好ましい。
 構成単位(c)を形成する非含フッ素モノマー(ただし、前記環状炭化水素モノマーを除く。)としては、重合性二重結合を1つ有する非含フッ素化合物が好ましく、例えばエチレン、プロピレン等の炭素数3以下のオレフィン、酢酸ビニル等のビニルエステル等が挙げられる。これらは、1種単独で用いても、2種以上用いてもよい。
 上記のなかでも、エチレン、プロピレンまたは酢酸ビニルが好ましく、エチレンが特に好ましい。
 含フッ素共重合体(A)としては、下記の含フッ素共重合体(A1)または含フッ素共重合体(A2)が好ましい。
 含フッ素共重合体(A1):TFEおよび/またはCTFEに基づく構成単位(a)と、前記環状炭化水素モノマーに基づく構成単位(b)と、含フッ素モノマー(ただし、TFEおよびCTFEを除く。)に基づく構成単位(c1)とを含有する共重合体。
 含フッ素共重合体(A2):TFEおよび/またはCTFEに基づく構成単位(a)と、前記環状炭化水素モノマーに基づく構成単位(b)と、非含フッ素モノマー(ただし、前記環状炭化水素モノマーを除く。)に基づく構成単位(c2)とを含有する共重合体。
 含フッ素共重合体(A1)は、構成単位(a)、構成単位(b)および構成単位(c1)以外の他の構成単位をさらに有してもよい。他の構成単位としては、例えば非含フッ素モノマー(ただし、前記環状炭化水素モノマーを除く。)に基づく構成単位(c2)が挙げられる。
 含フッ素共重合体(A1)としては、構成単位(a)として少なくともTFEに基づく構成単位を有し、含フッ素モノマー(c1)として少なくともCF=CFORf1に基づく構成単位を有するTFE/ペルフルオロ(アルキルビニルエーテル)共重合体(PFA)が特に好ましい。
 含フッ素共重合体(A1)の好ましい具体例としては、TFE/PPVE/NAH共重合体、TFE/PPVE/IAH共重合体、TFE/PPVE/CAH共重合体、TFE/HFP/NAH共重合体、TFE/HFP/IAH共重合体、TFE/HFP/CAH共重合体、TFE/VdF/IAH共重合体、TFE/VdF/CAH共重合体、TFE/PPVE/HFP/NAH共重合体等が挙げられる。
 含フッ素共重合体(A2)は、構成単位(a)、構成単位(b)および構成単位(c2)以外の他の構成単位をさらに有してもよい。他の構成単位としては、例えば含フッ素モノマー(ただし、TFEおよびCTFEを除く。)に基づく構成単位(c1)が挙げられる。
 含フッ素共重合体(A2)としては、構成単位(a)として少なくともTFEに基づく構成単位を有し、非含フッ素モノマー(c2)として少なくともエチレンに基づく構成単位を有するTFE/エチレン共重合体(ETFE)が特に好ましい。
 含フッ素共重合体(A2)の好ましい具体例としては、TFE/CH=CH(CFF/NAH/エチレン共重合体、TFE/CH=CH(CFF/IAH/エチレン共重合体、TFE/CH=CH(CFF/CAH/エチレン共重合体、TFE/CH=CH(CFF/NAH/エチレン共重合体、
TFE/CH=CH(CFF/IAH/エチレン共重合体、TFE/CH=CH(CFF/CAH/エチレン共重合体、CTFE/CH=CH(CFF/NAH/エチレン共重合体、CTFE/CH=CH(CFF/IAH/エチレン共重合体、CTFE/CH=CH(CFF/CAH/エチレン共重合体、CTFE/CH=CH(CFF/NAH/エチレン共重合体、CTFE/CH=CH(CFF/IAH/エチレン共重合体、CTFE/CH=CH(CFF/CAH/エチレン共重合体等が挙げられる。
 含フッ素共重合体(A)は、構成単位(a)と構成単位(b)と構成単位(c)とを含有し、かつ構成単位(a)と構成単位(b)と構成単位(c)との合計モル量に対する構成単位(b)の割合が0.01~5モル%であることが好ましく、0.1~3モル%がより好ましく、0.1~2モル%が特に好ましい。
 構成単位(b)の含有量が上記範囲内であると、含フッ素共重合体(A)の有するジカルボン酸無水物残基の量が適切な量となり、ポリイミドフィルムとの間の密着性、および含フッ素樹脂フィルムと導体との間の密着性に優れる。
 なお、含フッ素共重合体(A)が構成単位(a)と構成単位(b)と構成単位(c)とからなる場合、構成単位(b)の含有量が、構成単位(a)と構成単位(b)と構成単位(c)との合計モル量に対して0.01モル%とは、該含フッ素共重合体(A)中のジカルボン酸無水物残基の含有量が含フッ素共重合体(A)の主鎖炭素数1×10個に対して100個であることに相当する。構成単位(b)の含有量が、構成単位(a)と構成単位(b)と構成単位(c)との合計モル量に対して5モル%とは、該含フッ素共重合体(A)中のジカルボン酸無水物残基の含有量が含フッ素共重合体(A)の主鎖炭素数1×10個に対して50000個であることに相当する。
 構成単位(b)を有する含フッ素共重合体(A)には、前記環状炭化水素モノマーが一部加水分解し、その結果、ジカルボン酸無水物残基に対応するジカルボン酸(イタコン酸、シトラコン酸、5-ノルボルネン-2,3-ジカルボン酸、マレイン酸等。)に基づく構成単位が含まれる場合がある。該ジカルボン酸に基づく構成単位が含まれる場合、該構成単位の含有量は、構成単位(b)に含まれるものとする。
 含フッ素共重合体(A1)は、構成単位(a)と構成単位(b)と構成単位(c1)との合計モル量に対して、構成単位(a)が50~99.89モル%で、構成単位(b)が0.01~5モル%で、構成単位(c1)が0.1~49.99モル%であることが好ましく、構成単位(a)が50~99.4モル%で、構成単位(b)が0.1~3モル%で、構成単位(c1)が0.5~49.9モル%であることがより好ましく、構成単位(a)が50~98.9モル%で、構成単位(b)が0.1~2モル%で、構成単位(c1)が1~49.9モル%であることが特に好ましい。
 各構成単位の含有量が上記範囲内であると、含フッ素共重合体(A1)が耐熱性、耐薬品性に優れ、これを含む含フッ素樹脂フィルムが高温での弾性率に優れる。
 特に、構成単位(b)の含有量が上記範囲内であると、前記のとおり、ポリイミドフィルムとの間の密着性、および含フッ素樹脂フィルムと導体との間の密着性に優れる。
 構成単位(c1)の含有量が上記範囲内であると、含フッ素共重合体(A)は成形性に優れ、これを含む含フッ素樹脂フィルムが耐ストレスクラック性等の機械物性により優れる。
 含フッ素共重合体(A1)が構成単位(c2)を有する場合、構成単位(c2)の含有量は、構成単位(a)と構成単位(b)と構成単位(c1)との合計モル量を100モルとした際に、5~90モルが好ましく、5~80モルがより好ましく、10~65モルが特に好ましい。
 含フッ素共重合体(A1)の全構成単位の合計モル量を100モル%とした際に、構成単位(a)と構成単位(b)と構成単位(c1)の合計モル量は60モル%以上が好ましく、65モル%以上がより好ましく、68モル%以上が特に好ましい。好ましい上限値は、100モル%である。
 含フッ素共重合体(A2)は、構成単位(a)と構成単位(b)と構成単位(c2)との合計モル量に対して、構成単位(a)が30~70モル%で、構成単位(b)が0.3~4.0モル%で、構成単位(c2)が70~30モル%であることが好ましく、構成単位(a)が40~60モル%で、構成単位(b)が0.5~3.5モル%で、構成単位(c2)が40~60モル%であることがより好ましく、構成単位(a)が50~60モル%で、構成単位(b)が0.5~2.5モル%で、構成単位(c2)が40~50モル%であることが特に好ましい。
 各構成単位の含有量が上記範囲内であると、含フッ素共重合体(A2)が耐熱性、耐薬品性に優れ、これを含む含フッ素樹脂フィルムが高温での弾性率に優れる。
 特に、構成単位(b)の含有量が上記範囲内であると、前記のとおり、ポリイミドフィルムとの間の密着性、および含フッ素樹脂フィルムと導体との間の密着性に優れる。
 構成単位(c2)の含有量が上記範囲内であると、含フッ素共重合体(A)は成形性に優れ、これを含む含フッ素樹脂フィルムが柔軟性および靭性に優れる。
 含フッ素共重合体(A2)が構成単位(c1)を有する場合、構成単位(c1)の含有量は、構成単位(a)と構成単位(b)と構成単位(c2)との合計モル量を100モルとした際に、0.3~4.0モルが好ましく、0.5~3.5モルがより好ましく、0.7~3.0モルが特に好ましい。
 含フッ素共重合体(A2)の全構成単位の合計モル量を100モル%とした際に、構成単位(a)と構成単位(b)と構成単位(c2)の合計モル量は96モル%以上が好ましく、97モル%以上がより好ましく、98モル%以上が特に好ましい。好ましい上限値は、100モル%である。
 各構成単位の含有量は、含フッ素共重合体(A)の溶融NMR分析、フッ素含有量分析、赤外吸収スペクトル分析等により算出できる。
 含フッ素共重合体(A)の融点は、220~320℃であり、好ましくは230~320℃であり、より好ましくは260~320℃である。
 含フッ素共重合体(A)が含フッ素共重合体(A1)である場合、その融点は、260~320℃であることが好ましく、265~320℃がより好ましく、280~315℃が特に好ましい。含フッ素共重合体(A1)の融点が上記範囲の下限値以上であると耐熱性に優れ、上記範囲の上限値以下であると、成形性に優れる。
 含フッ素共重合体(A)が含フッ素共重合体(A2)である場合、その融点は、230~280℃であることが好ましく、240~270℃が特に好ましい。含フッ素共重合体(A2)の融点が上記範囲の下限値以上であると耐熱性に優れ、上記範囲の上限値以下であると、成形性に優れる。
 含フッ素共重合体(A)の融点は、当該含フッ素共重合体(A)を構成する構成単位の種類や含有割合、分子量等によって調整できる。例えば後述する構成単位(a)の割合が多くなるほど、融点が上がる傾向がある。
 なお、本明細書において、含フッ素共重合体(A)という場合、含フッ素共重合体(A1)および含フッ素共重合体(A2)の両方を包含するものとする。
 含フッ素共重合体(A)は、溶融成形が可能なものである。「溶融成形が可能」であるとは、溶融流動性を示すことを意味する。
 本発明の好ましい態様において、含フッ素共重合体(A)の、該含フッ素共重合体(A)の融点よりも20℃以上高い温度にて49Nの荷重下で測定される溶融流れ速度(メルトフローレート(Melt Flow Rate):以下、「MFR」ともいう。)は、0.1~1,000g/10分が好ましく、0.5~100g/10分がより好ましく、1~30g/10分がさらに好ましく、5~25g/10分が特に好ましく、5~20g/10分が最も好ましい。MFRが上記範囲の下限値以上であると、該含フッ素共重合体(A)の成形性や、該含フッ素共重合体(A)から形成された含フッ素樹脂フィルムは、表面平滑性、外観が優れ、上記範囲の上限値以下であると、該含フッ素共重合体(A)を含有する含フッ素樹脂フィルムは、機械強度が優れる。
 本発明の他の好ましい態様において、含フッ素共重合体(A1)の、該含フッ素共重合体(A1)の融点よりも20℃以上高い温度にて49Nの荷重下で測定されるMFRは、0.5~15g/10分が好ましく、1~15g/10分がより好ましく、5~12g/10分がさらに好ましく、5~11g/10分が特に好ましく、5~10g/10分が最も好ましい。含フッ素共重合体(A2)の、該含フッ素共重合体(A2)の融点よりも20℃以上高い温度にて49Nの荷重下で測定されるMFRは、0.5~25g/10分が好ましく、1~25g/10分がより好ましく、5~25g/10分がさらに好ましく、10~25g/10分が特に好ましい。MFRが上記範囲の上限値以下であると、含フッ素共重合体(A1)または含フッ素共重合体(A2)を含む被覆用絶縁テープやこれを用いて導体の表面に形成される被覆層が、耐スクレープ(scrape)摩耗特性に優れる。MFRが上記範囲の下限値以上であると、成形性に優れる。
 前記のMFRの測定温度は、含フッ素共重合体(A)が含フッ素共重合体(A1)である場合は、通常、372℃が採用される。含フッ素共重合体(A)が含フッ素共重合体(A2)である場合は、通常、297℃が採用される。
 MFRは、含フッ素共重合体(A)の分子量の目安であり、MFRが大きいと分子量が小さく、小さいと分子量が大きいことを示す。含フッ素共重合体(A)の分子量、ひいてはMFRは、含フッ素共重合体(A)の製造条件によって調整できる。例えばモノマーの重合時に重合時間を短縮すると、MFRが大きくなる傾向がある。また、重合反応により得られた含フッ素共重合体を熱処理すると、架橋構造が形成され、分子量が大きくなってMFRが小さくなる傾向がある。
 含フッ素共重合体(A)は、常法により製造できる。
 官能基(I)を有する含フッ素共重合体(A)の製造方法としては、例えば、
(1)重合反応で含フッ素共重合体(A)を製造する際に、官能基(I)を有するモノマーを使用する方法、
(2)官能基(I)を有するラジカル重合開始剤や連鎖移動剤を用いて、重合反応で含フッ素共重合体(A)を製造する方法、
(3)官能基(I)を有しない含フッ素共重合体を加熱して、該含フッ素共重合体を部分的に熱分解することで、反応性官能基(例えばカルボニル基。)を生成させ、官能基(I)を有する含フッ素共重合体(A)を得る方法、
(4)官能基(I)を有しない含フッ素共重合体に、官能基(I)を有するモノマーをグラフト重合して、該含フッ素共重合体に官能基(I)を導入する方法、等が挙げられる。
 含フッ素重合体(A)の製造方法としては、(1)の方法が好ましい。
 重合反応で含フッ素共重合体(A)を製造する場合、重合方法としては、特に制限はないが、例えばラジカル重合開始剤を用いる重合方法が好ましい。
 該重合方法としては、塊状重合、フッ化炭化水素、塩化炭化水素、フッ化塩化炭化水素、アルコール、炭化水素等の有機溶媒を使用する溶液重合、水性媒体と必要に応じて適当な有機溶剤とを使用する懸濁重合、水性媒体と乳化剤とを使用する乳化重合が挙げられ、なかでも溶液重合が好ましい。
 ラジカル重合開始剤としては、その半減期が10時間である温度が、0~100℃である開始剤が好ましく、20~90℃である開始剤が特に好ましい。
 具体例としては、アゾビスイソブチロニトリル等のアゾ化合物、イソブチリルペルオキシド、オクタノイルペルオキシド、ベンゾイルペルオキシド、ラウロイルペルオキシド等の非フッ素系ジアシルペルオキシド、ジイソプロピルペルオキシジカ-ボネート等のペルオキシジカーボネート、tert-ブチルペルオキシピバレート、tert-ブチルペルオキシイソブチレート、tert-ブチルペルオキシアセテート等のペルオキシエステル、(Z(CFCOO)(ここで、Zは水素原子、フッ素原子または塩素原子であり、rは1~10の整数である。)で表される化合物等の含フッ素ジアシルペルオキシド、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等の無機過酸化物等が挙げられる。
 重合時には、含フッ素共重合体(A)の溶融粘度を制御するために、連鎖移動剤を使用することも好ましい。
 連鎖移動剤としては、メタノール、エタノール等のアルコール、1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン、1,1-ジクロロ-1-フルオロエタン等のクロロフルオロハイドロカーボン、ペンタン、ヘキサン、シクロヘキサン等のハイドロカーボンが挙げられる。
 ラジカル重合開始剤および連鎖移動剤の少なくとも一方として、上述したように、官能基(I)を有する化合物を用いてもよい。これにより、製造される含フッ素共重合体(A)の主鎖末端に、官能基(I)を導入することができる。
 このようなラジカル重合開始剤としては、ジ-n-プロピルペルオキシジカーボネート、ジイソプロピルペルオキシカーボネート、t-ブチルペルオキシイソプロピルカーボネート、ビス(4-t-ブチルシクロヘキシル)ペルオキシジカーボネート、ジ-2-エチルヘキシルペルオキシジカーボネート等が挙げられ、連鎖移動剤としては、酢酸、無水酢酸、酢酸メチル、エチレングリコール、プロピレングリコール等が挙げられる。
 溶液重合で使用される溶媒としては、ペルフルオロカーボン、ヒドロフルオロカーボン、クロロヒドロフルオロカーボン、ヒドロフルオロエーテル等が用いられる。炭素数は、4~12が好ましい。
 ペルフルオロカーボンの具体例としては、ペルフルオロシクロブタン、ペルフルオロペンタン、ペルフルオロヘキサン、ペルフルオロシクロペンタン、ペルフルオロシクロヘキサン等が挙げられる。
 ヒドロフルオロカーボンの具体例としては、1-ヒドロペルフルオロヘキサン等が挙げられる。
 クロロヒドロフルオロカーボンの具体例としては、1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン等が挙げられる。
 ヒドロフルオロエーテルの具体例としては、メチルペルフルオロブチルエーテル、2,2,2-トリフルオロエチル2,2,1,1-テトラフルオロエチルエーテル等が挙げられる。
 重合条件は特に限定されず、重合温度は0~100℃が好ましく、20~90℃が特に好ましい。重合圧力は0.1~10MPaが好ましく、0.5~3MPaが特に好ましい。重合時間は1~30時間が好ましい。
 構成単位(b)を有する含フッ素共重合体(A)を重合する場合、前記環状炭化水素モノマーの重合中の濃度は、全モノマーに対して0.01~5モル%が好ましく、0.1~3モル%がより好ましく、0.1~2モル%が特に好ましい。該モノマーの濃度が上記範囲にあると、製造時の重合速度が適度で、該モノマーの濃度が高すぎると、重合速度が低下する傾向がある。
 重合中、前記環状炭化水素モノマーが重合で消費されるに従って、消費された量を連続的または断続的に重合槽内に供給し、該環状炭化水素モノマーの濃度を上記範囲内に維持することが好ましい。
 含フッ素樹脂フィルムは、必要に応じて、本発明の効果を損なわない範囲で、含フッ素共重合体(A)以外の他の樹脂を含有してもよい。
 他の樹脂としては、誘電率や誘電正接が低く、電気特性に優れることから、含フッ素樹脂(ただし含フッ素共重合体(A)を除く。)が好ましい。
 他の樹脂としての含フッ素樹脂(以下、「含フッ素樹脂(B)」ともいう。)としては、例えば、前記構成単位(a)と、前記構成単位(c)とを含有し、前記構成単位(b)を含有しない共重合体が挙げられる。
 含フッ素樹脂(B)の具体例としては、例えば、TFE/ペルフルオロ(アルキルビニルエーテル)共重合体(PFA)、TFE/HFP共重合体(FEP)、エチレン/TFE共重合体(ETFE)、ポリフッ化ビニリデン(PVDF)、ポリクロロトリフルオロエチレン(以下、「PCTFE」ともいう。)、エチレン/CTFE共重合体(ECTFE)等が挙げられる。
 含フッ素樹脂フィルムが含フッ素樹脂(B)を含有する場合、含フッ素樹脂フィルム中の含フッ素樹脂(B)の含有量は、含フッ素共重合体(A)と含フッ素樹脂(B)との合計量(100質量%)に対して、10~90質量%が好ましく、20~80質量%がより好ましい。含フッ素樹脂(B)の含有量が前記範囲の下限値以上であると耐熱性に優れ、前記範囲の上限値以下であると密着性に優れる。
 含フッ素樹脂フィルムは、必要に応じて、本発明の効果を損なわない範囲で、添加剤を含有してもよい。
 添加剤としては、誘電率や誘電正接が低い無機フィラーが好ましい。該無機フィラーとしては、シリカ、クレー、タルク、炭酸カルシウム、マイカ、珪藻土、アルミナ、酸化亜鉛、酸化チタン、酸化カルシウム、酸化マグネシウム、酸化鉄、酸化錫、酸化アンチモン、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、塩基性炭酸マグネシウム、炭酸マグネシウム、炭酸亜鉛、炭酸バリウム、ドーソナイト、ハイドロタルサイト、硫酸カルシウム、硫酸バリウム、珪酸カルシウム、モンモリロナイト、ベントナイト、活性白土、セピオライト、イモゴライト、セリサイト、ガラス繊維、ガラスビーズ、シリカ系バルーン、カーボンブラック、カーボンナノチューブ、カーボンナノホーン、グラファイト、炭素繊維、ガラスバルーン、炭素バーン、木粉、ホウ酸亜鉛等が挙げられる。無機フィラーは1種単独で用いてもよく、2種以上を併用してもよい。
 無機フィラーは、多孔質でも非多孔質でもよい。誘電率や誘電正接がさらに低い点で、多孔質であることが好ましい。
 無機フィラーは、含フッ素共重合体(A)への分散性の向上のために、シランカップリング剤やチタネートカップリング剤等の表面処理剤による表面処理が施されてもよい。
 無機フィラーを含有する場合、含フッ素樹脂フィルム中の無機フィラーの含有量は、含フッ素共重合体(A)に対して0.1~100質量%が好ましく、0.1~60質量%がより好ましい。
 含フッ素樹脂フィルムは、常法により製造できる。例えば含フッ素共重合体(A)をそのまま、または含フッ素共重合体(A)と添加剤とを配合して混練して樹脂組成物とし、押出成形、インフレーション成形等の公知の成形法によりフィルム状に成形することにより製造できる。
 含フッ素樹脂フィルムの表面、例えばポリイミドフィルムと積層する面に表面処理が施されてもよい。表面処理方法としては特に限定されず、コロナ放電処理、プラズマ処理等の公知の表面処理方法のなかから適宜選択できる。
 含フッ素樹脂フィルムの厚さは、1~1,000μmが好ましく、5~500μmがより好ましく、10~250μmが特に好ましい。含フッ素樹脂フィルムの厚さが上記範囲の下限値以上であると、電気絶縁性に優れ、上記範囲の上限値以下であると、柔軟性に優れる。
(ポリイミドフィルム)
 ポリイミドフィルムは、ポリイミドから構成されるフィルムである。
 ポリイミドフィルムを構成するポリイミドは特に限定されない。熱可塑性を有さないポリイミドでも、熱可塑性ポリイミドでもよい。
 ポリイミドとしては、例えば、芳香族ポリイミドが挙げられる。中でも、芳香族多価カルボン酸二無水物と芳香族ジアミンとの縮重合で製造される全芳香族ポリイミドが好ましい。
 ポリイミドは、一般的に、多価カルボン酸二無水物(またはその誘導体)とジアミンとの反応(重縮合)によって、ポリアミック酸(ポリイミド前駆体)を経由して得られる。
 ポリイミド、特に、芳香族ポリイミドは、その剛直な主鎖構造により溶媒等に対して不溶であり、また不融の性質を有する。そのため、先ず、多価カルボン酸二無水物とジアミンとの反応により、有機溶媒に可溶なポリイミド前駆体(ポリアミック酸、またはポリアミド酸)を合成し、このポリアミック酸の段階で様々な方法で成形加工が行われる。その後ポリアミック酸を加熱もしくは化学的な方法で脱水反応させて環化(イミド化)しポリイミドとされる。
 上記芳香族多価カルボン酸二無水物の具体例としては、例えば、ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、2,2-ビス(3,4-ジカルボキシルフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、1,2,3,4-ベンゼンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、2,3,6,7-アントラセンテトラカルボン酸二無水物、1,2,7,8-フェナントレンテトラカルボン酸二無水物等が挙げられる。
 また、非芳香族系の多価カルボン酸二無水物であるエチレンテトラカルボン酸二無水物、シクロペンタンテトラカルボン酸二無水物も、芳香族系のものと遜色なく用いることができる。
 これらは単独または2種以上混合して用いられる。
 芳香族ジアミンの具体例としては、例えば、m-フェニレンジアミン、o-フェニレンジアミン、p-フェニレンジアミン、m-アミノベンジルアミン、p-アミノベンジルアミン、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、ビス(3-アミノフェニル)スルフィド、(3-アミノフェニル)(4-アミノフェニル)スルフィド、ビス(4-アミノフェニル)スルフィド、ビス(3-アミノフェニル)スルフィド、(3-アミノフェニル)(4-アミノフェニル)スルホキシド、ビス(3-アミノフェニル)スルホン、(3-アミノフェニル)(4-アミノフェニル)スルホン、ビス(4-アミノフェニル)スルホン、3,3’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、ビス〔4-(3-アミノフェノキシ)フェニル〕メタン、ビス〔4-(4-アミノフェノキシ)フェニル〕メタン、1,1-ビス〔4-(3-アミノフェノキシ)フェニル〕エタン、1,1-ビス〔4-(4-アミノフェノキシ)フェニル〕-エタン、1,2-ビス〔4-(3-アミノフェノキシ)フェニル〕エタン、1,2-ビス〔4-(4-アミノフェノキシ)フェニル〕エタン、2,2-ビス〔4-(3-アミノフェノキシ)フェニル〕プロパン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン、2,2-ビス〔4-(3-アミノフェノキシ)フェニル〕ブタン、2,2-ビス〔3-(3-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(3-アミノフェノキシ)ビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス〔4-(3-アミノフェノキシ)フェニル〕ケトン、ビス〔4-(4-アミノフェノキシ)フェニル〕ケトン、ビス〔4-(3-アミノフェノキシ)フェニル〕スルフィド、ビス〔4-(4-アミノフェノキシ)フェニル〕スルフィド、ビス〔4-(3-アミノフェノキシ)フェニル〕スルホキシド、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホキシド、ビス〔4-(3-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(3-アミノフェノキシ)フェニル〕エーテル、ビス〔4-(4-アミノフェノキシ)フェニル〕エーテル、1,4-ビス〔4-(3-アミノフェノキシ)ベンゾイル〕ベンゼン、1,3-ビス〔4-(3-アミノフェノキシ)ベンゾイル〕ベンゼン、4,4’-ビス〔3-(4-アミノフェノキシ)ベンゾイル〕ジフェニルエーテル、4,4’-ビス〔3-(3-アミノフェノキシ)ベンゾイル〕ジフェニルエーテル、4,4’-ビス〔4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ〕ベンゾフェノン、4,4’-ビス〔4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ〕ジフェニルスルホン、ビス〔4-{4-(4-アミノフェノキシ)フェノキシ}フェニル〕スルホン、1,4-ビス〔4-(4-アミノフェノキシ)フェノキシ〕-α,α-ジメチルベンジル〕ベンゼン、1,3-ビス〔4-(4-アミノフェノキシ)-α,α-ジメチルベンジル〕ベンゼン等が挙げられる。これらは単独または2種以上を混合して使用される。
 ポリイミドフィルムは、必要に応じて、本発明の効果を損なわない範囲で、添加剤を含有してもよい。
 添加剤としては、誘電率や誘電正接が低い無機フィラーが好ましい。該無機フィラーとしては、含フッ素樹脂フィルムの説明で挙げたものと同様のものが挙げられる。無機フィラーは1種単独で用いてもよく、2種以上を併用してもよい。
 無機フィラーは、多孔質でも非多孔質でもよい。誘電率や誘電正接がさらに低い点で、多孔質であることが好ましい。
 無機フィラーは、ポリイミドへの分散性の向上のために、シランカップリング剤やチタネートカップリング剤等の表面処理剤による表面処理が施されてもよい。
 無機フィラーを含有する場合、ポリイミドフィルム中の無機フィラーの含有量は、ポリイミドに対して0.1~100質量%が好ましく、0.1~60質量%が特に好ましい。
 ポリイミドフィルムは、公知の製造方法により製造したものを用いてもよく、市販品を用いてもよい。
 ポリイミドフィルムの表面、例えば含フッ素樹脂フィルムと積層する面に表面処理が施されてもよい。表面処理方法としては特に限定されず、コロナ放電処理、プラズマ処理等の公知の表面処理方法の中から適宜選択できる。
 ポリイミドフィルムの厚さは、1~1,000μmが好ましく、5~500μmがより好ましく、5~250μmが特に好ましい。ポリイミドフィルムの厚さが上記範囲の下限値以上であると、電気絶縁性に優れ、上記範囲の上限値以下であると、柔軟性に優れる。
(絶縁テープの製造方法)
 本発明の絶縁テープは、ポリイミドフィルムの片面または両面に含フッ素樹脂フィルムを積層することにより製造できる。積層後、得られた積層体がテープ状でない場合は、該積層体をテープ状に加工する工程を行ってもよい。
 ポリイミドフィルムと含フッ素樹脂フィルムとの積層方法は、これらのフィルムを直接積層できる方法であれば特に限定されないが、絶縁テープの電気特性や耐熱性向上といった観点から、熱ラミネート法および押出しラミネート法が好ましい。
 熱ラミネート法では、予め成形された含フッ素樹脂フィルムとポリイミドフィルムとを重ね、熱プレスすることでそれらのフィルムをラミネートする。
 熱プレス条件としては、温度は260~420℃が好ましく、300~400℃が特に好ましい。圧力は0.3~30MPaが好ましく、0.5~20MPaがより好ましく、1~10MPaが特に好ましい。時間は3~240分が好ましく、5~120分がより好ましく、10~80分が特に好ましい。熱プレスは、プレス板、ロール等を用いて行うことができる。プレス板としては、ステンレス鋼板が好ましい。
 押出しラミネート法では、含フッ素共重合体(A)またはこれを含む樹脂組成物を溶融して、フィルム状に押し出したものを、ポリイミドフィルムにラミネートする。
 本発明の絶縁テープは、導体の被覆に用いられる。本発明の絶縁テープで導体の表面を被覆することで、導体の絶縁を行うことができる。
 本発明においては、絶縁テープよりも広幅の導体の表面を、絶縁テープ同士が重なるように被覆し、その後に熱処理を行うことで、重なった絶縁テープ間の密着性を向上させ、導体の表面の絶縁をより確実に行うことができる。
 特に、絶縁テープが、ポリイミドフィルムの両面に含フッ素樹脂フィルムが積層したものである場合、前記熱処理によって、重なった含フッ素樹脂フィルム同士を熱融着させることができ、上記効果がより優れたものとなる。
〔構造体の製造方法〕
 本発明の構造体の製造方法の第一の態様は、導体の表面を、本発明の被覆用絶縁テープで被覆して被覆層を形成する工程と、前記被覆層で被覆された導体を、前記含フッ素共重合体(A)の融点以上の温度で熱処理して構造体を得る工程とを含む。
 導体としては、基本的には、電気伝導性の良好な材料であれば、限定されるものでなく、例えば、軟銅、硬銅、無酸素銅、クロム鉱、アルミニウム等の線材、棒状あるいは板状体材料等が用いられる。また、これらに機械的強度が要求される場合は、上記材料にマグネシウム、ケイ素、鉄等が添加され得る。
 導体の被覆方法は特に限定されず、被覆する導体の形状等に応じて、公知の絶縁テープによる被覆方法を採用できる。
 構造体として電線(線状の導体が絶縁テープで被覆されたもの)を製造する場合の例として、絶縁テープを導体の周りに渦巻き状に巻き付ける方法が挙げられる。このときの巻き付けは、絶縁テープの縁部が、先に巻き付けたそれ自身の上に重なるように行うことが好ましい。
 重なり部分の幅は、巻き付けの際の角度に依存して変えることができる。重なり部分の幅(オーバーラップ幅)は、テープ幅の50%程度が好ましい。
 巻き付けの際に絶縁テープに適用される張力は、ちりめんじわ(wrinkling)を避けるのに充分なだけの張力から、絶縁テープを引っ張ってネックダウン(Neck down)を生じさせるのに充分な強い張力の範囲まで広く変化させることができる。たとえ張力が低くても、後続の熱処理中に熱の影響によってある程度絶縁テープが縮むので、結果的にピッタリと包まれることになる。
 本発明の被覆用絶縁テープが、ポリイミドフィルムの片面に含フッ素樹脂フィルムが積層したものである場合、含フッ素樹脂フィルム側が導体側になるように被覆を行うことが好ましい。
 被覆後の熱処理は、絶縁テープの含フッ素樹脂フィルムに含まれる含フッ素共重合体(A)の融点以上の温度で行われる。含フッ素樹脂フィルムが複数の含フッ素共重合体(A)を含む場合、最も融点が高い含フッ素共重合体(A)の融点以上の温度で行われる。該熱処理を行うことで、含フッ素樹脂フィルムが、該含フッ素樹脂フィルムが接する面(導体の表面や、ポリイミドフィルムまたは含フッ素樹脂フィルムの表面)に熱融着し、巻き付けた絶縁テープがシールされる。
 該熱処理条件としては、含フッ素樹脂フィルムの熱融着に充分な温度と時間であれば特に限定されないが、熱処理温度は、含フッ素共重合体(A)の融点以上400℃未満が好ましく、400℃未満でありかつ含フッ素共重合体(A)の融点+20℃以上100℃以下(例えば含フッ素共重合体(A)の融点が260℃であれば、280℃以上360℃以下)がより好ましく、400℃未満であり且つ含フッ素共重合体(A)の融点+20℃以上80℃以下が特に好ましい。熱処理温度が高いほど、より短い時間で充分にシールできる。熱処理温度が低いほど、生産性が向上する。
 熱処理時間は、導体表面の被覆層の厚さ、導体のゲージ(gauge)、生産ラインの速度およびシールオーブンの長さに依存する。
 被覆層を熱処理してなる層は絶縁層として機能する。
 本発明の構造体の製造方法の第二の態様は、導体の表面を、本発明の被覆用絶縁テープで被覆して第一の被覆層を形成する工程と、前記第一の被覆層の表面を、ポリテトラフルオロエチレンを含むテープで被覆して第二の被覆層を形成する工程と、前記第一の被覆層および第二の被覆層で被覆された導体を、前記含フッ素共重合体(A)の融点以上の温度で熱処理して構造体を得る工程とを含む。
 ここで、本発明において、第一の被覆層は、導体の表面上に設けられる複数の被覆層のうち、最も導体側に配置されて導体の表面に直接接する被覆層である。第二の被覆層は、複数の被覆層のうち、導体側から数えて2層目の被覆層である。被覆層が3層以上である場合、3層目以降の被覆層も同様に称する。
 第一の被覆層を形成する工程は、前記第一の態様における被覆層を形成する工程と同様にして実施できる。
 ポリテトラフルオロエチレンを含むテープとしては、通常、非焼結のものが使用される。この場合、その後の熱処理が、ポリテトラフルオロエチレンを含むテープを焼結する工程を兼ねてもよい。
 ポリテトラフルオロエチレンを含むテープによる第二の被覆層の形成は、第一の被覆層の形成と同様にして実施できる。
 第二の被覆層を形成した後の熱処理は、前記第一の態様における熱処理と同様にして実施できる。
 第一の被覆層および第二の被覆層を熱処理してなる層は絶縁層として機能する。
 本発明の構造体の製造方法の第三の態様は、導体の表面を、テープ状の含フッ素樹脂フィルムで被覆して第一の被覆層を形成する工程と、前記第一の被覆層の表面を、テープ状のポリイミドフィルムで被覆して第二の被覆層を形成する工程と、前記第一の被覆層および第二の被覆層で被覆された導体を熱処理して構造体を得る工程とを含み、
 前記含フッ素樹脂フィルムが、カルボニル基含有基、ヒドロキシ基、エポキシ基、およびイソシアネート基からなる群から選択される少なくとも1種の官能基を有し、融点が230~320℃であり、溶融成形が可能な含フッ素共重合体(A)を含み、前記熱処理が、前記含フッ素共重合体(A)の融点以上の温度で行われることを特徴とする。
 含フッ素樹脂フィルムおよびポリイミドフィルムとしては、それぞれ、本発明の絶縁テープの説明で挙げたものと同様のものが挙げられる。
 これらのフィルムによる第一の被覆層~第二の被覆層の形成は、それぞれ、前記第一の態様における被覆層を形成する工程と同様にして実施できる。
 第二の被覆層を形成した後の熱処理は、前記第一の態様における熱処理と同様にして実施できる。
 第二の被覆層の形成後、熱処理を行う前に、前記第二の被覆層の表面を、ポリテトラフルオロエチレンを含むテープで被覆して第三の被覆層を形成する工程を行ってもよい。
 第一の被覆層および第二の被覆層(任意に第三の被覆層)を熱処理してなる層は絶縁層として機能する。
 本発明の構造体の製造方法の第四の態様は、導体の表面を、テープ状の含フッ素樹脂フィルムで被覆して第一の被覆層を形成する工程と、前記第一の被覆層の表面を、テープ状のポリイミドフィルムで被覆して第二の被覆層を形成する工程と、前記第二の被覆層の表面を、テープ状の含フッ素樹脂フィルムで被覆して第三の被覆層を形成する工程と、前記第一の被覆層、第二の被覆層および第三の被覆層で被覆された導体を熱処理して構造体を得る工程とを含み、
 前記第一の被覆層および第三の被覆層を形成する含フッ素樹脂フィルムが、それぞれ、カルボニル基含有基、ヒドロキシ基、エポキシ基、およびイソシアネート基からなる群から選択される少なくとも1種の官能基を有し、融点が230~320℃であり、溶融成形が可能な含フッ素共重合体(A)を含み、
 前記熱処理が、前記含フッ素共重合体(A)の融点以上の温度で行われることを特徴とする。
 ポリイミドフィルム、含フッ素樹脂フィルムとしては、それぞれ、本発明の絶縁テープの説明で挙げたものと同様のものが挙げられる。
 これらのフィルムによる第一の被覆層~第三の被覆層の形成は、それぞれ、前記第一の態様における被覆層を形成する工程と同様にして実施できる。
 第三の被覆層を形成した後の熱処理は、前記第一の態様における熱処理と同様にして実施できる。
 第三の被覆層の形成後、熱処理を行う前に、前記第三の被覆層の表面を、ポリテトラフルオロエチレンを含むテープで被覆して第四の被覆層を形成する工程を行ってもよい。
 第一の被覆層、第二の被覆層および第三の被覆層(任意に第四の被覆層)を熱処理してなる層は絶縁層として機能する。
 上記のようにして、導体と、該導体の表面を被覆する絶縁層とを備える構造体を得ることができる。
 第一の態様~第四の態様の製造方法で得られる構造体は、いずれも、絶縁層中に、ポリイミドフィルムと含フッ素樹脂フィルムとが直接積層した構造を含む。
 本発明において用いられる含フッ素樹脂フィルムは、含フッ素共重合体(A)を含むことでポリイミドフィルムとの密着性が高く、構造体の製造時や製造後に、それらのフィルム間の剥離が生じにくい。そのためフィルム間の剥離による絶縁性の低下が生じにくい。
 また、含フッ素共重合体(A)を含むことで、含フッ素樹脂フィルムと、絶縁テープで被覆される導体(銅、アルミニウム等)との間の密着性、ひいては該絶縁テープから形成される絶縁層と導体との間の密着性も高く、構造体の製造時や製造後に、それらの間での剥離が生じにくい。そのため、絶縁層の導体からの剥離による絶縁性の低下が生じにくい。例えば、近年は導体として、従来の銅製のものに代えてアルミニウム製のものが用いられるようになっているが、アルミニウム製の導体は、銅製の導体に比べて、絶縁層との密着性が低い傾向がある。本発明によれば、アルミニウム製の導体に対しても、充分な密着性で絶縁層を形成できる。
 また、本発明においては、含フッ素共重合体(A)を含む含フッ素樹脂フィルムとともにポリイミドフィルムを併用するため、絶縁テープや形成される絶縁層の強度が優れる。例えば、近年用いられているようになっている断面形状が四角形の導体に絶縁テープを巻き付ける場合、導体の角の部分で絶縁テープに大きな負荷がかかり絶縁テープが破れやすいが、本発明の絶縁テープは、このような場合でも破れにくい。
 さらに、従来は、絶縁層に含まれる含フッ素樹脂フィルムがPTFEテープのみである場合、被覆後を充分にシールするためには、例えば400℃以上の高温での熱処理が必要となる。これに対し本発明では、PTFEテープで最も外側を被覆した場合でも、含フッ素共重合体(A)を含む含フッ素樹脂フィルムが介在することで、より低い温度でのシールが可能となる。
 以下、実施例により本発明をさらに詳しく説明する。ただし本発明は、以下の実施例に限定されるものではない。
 後述する例1~21のうち、例1~4、10~14が実施例であり、例5~9、15~19が比較例である。例20~21は試験例である。
 各例で用いた材料、測定方法を以下に示す。
〔材料〕
 含フッ素共重合体(A1-1):後述する製造例1で得た、TFE/NAH/PPVE共重合体(融点300℃、MFR17.6g/10分)。
 含フッ素共重合体(A1-2):後述する製造例5で得た、TFE/NAH/PPVE共重合体(融点305℃、MFR11.0g/10分)。
 PFA-1:TFE/ペルフルオロ(アルキルビニルエーテル)共重合体(融点305℃、MFR13.6g/10分)、旭硝子社製、製品名「Fluon PFA 73PT」。
 含フッ素共重合体(A2-1):後述する製造例2で得た、TFE/E/PFEE/IAH共重合体(融点221℃、MFR20.5g/10分)。
 含フッ素共重合体(B-2):後述する製造例3で得た、TFE/E/PFEE共重合体(融点255℃、MFR30.5g/10分)。
 含フッ素共重合体(AB-3):後述する製造例4で得た、含フッ素共重合体(A2-1)と(B-2)とのコンパウンド(Compound)(融点235℃、MFR21.3g/10分)。
 ETFE-1:TFE/エチレン共重合体(融点255℃、MFR10.9g/10分)、旭硝子社製、製品名「Fluon ETFE C-88AX」。
 PTFEテープ(厚さ100μm):ポリテトラフルオロエチレンのテープ、ニチアス社製、製品名「ナフロン」。
 ポリイミドフィルム(厚さ75μm):宇部興産社製、製品名「ユーピレックス75S」。
〔測定方法〕
(含フッ素共重合体の共重合組成)
 共重合組成を溶融NMR分析、フッ素含有量分析および赤外吸収スペクトル分析により求めた。
(含フッ素共重合体における官能基(I)の含有量)
 まず、以下の赤外吸収スペクトル分析によって、含フッ素共重合体における官能基(I)を有するモノマー(NAHまたはIAH)に基づく構成単位の割合を求めた。
 含フッ素共重合体をプレス成形して厚さ200μmのフィルムを得た。赤外吸収スペクトルにおいて、含フッ素共重合体中のNAH、IAHに基づく構成単位における吸収ピークはいずれも1,778cm-1に現れる。該吸収ピークの吸光度を測定し、M=aLの関係式を用いて、IAHまたはNAHに基づく構成単位の含有量M(モル%)を決定した。ここで、Lは1,778cm-1における吸光度で、aは係数である。aとしては、IAHをモデル化合物として決定したa=0.87を用いた。
 そしてM(モル%)から、含フッ素共重合体の主鎖炭素数1×10個に対する官能基(I)(酸無水物基)の個数は、[a×10/100]個と算出される。
(含フッ素共重合体の融点(℃))
 セイコー電子社製の示差走査熱量計(DSC装置)を用い、含フッ素共重合体(A)を10℃/分の速度で昇温したときの融解ピークを記録し、極大値に対応する温度(℃)を融点(Tm)とした。
(含フッ素共重合体のMFR(g/10分))
 テクノセブン社製メルトインデクサーを用い、下記の条件で、直径2mm、長さ8mmのノズルから10分間(単位時間)に流出する含フッ素共重合体の質量(g)を測定し、その値をMFR(g/10分)とした。
 含フッ素共重合体A1-1、A1-2およびPFA-1:372℃、5kg(49N)荷重下。
 含フッ素共重合体A2-1、AB-3、B-2およびETFE-1:297℃、5kg(49N)荷重下。
(絶縁テープにおける剥離強度)
 絶縁テープを長さ150mm、幅10mmの大きさに切断し、試験フィルムを作製した。試験フィルムの長さ方向の一端から50mmの位置まで含フッ素樹脂フィルムとポリイミドフィルムとを剥離した。次いで、試験フィルムの長さ方向の一端から50mmの位置を中央にして、引張り試験機を用いて、引張速度50mm/分で180度剥離し、最大荷重を剥離強度(N/10mm)とした。剥離強度が大きいほど、含フッ素樹脂フィルムとポリイミドフィルムとの間の密着性が優れることを示す。 
 上記測定において、剥離強度が0.2N/10mm以下であった場合は、測定値のバラツキが大きく、この場合の剥離強度の結果は全て0.2N/10mm以下と表記した。
(電線における剥離強度)
 電線を作製する際、導体に渦巻き状に巻き付けた絶縁テープ(幅10mm)の終端部と、該終端部の内側(導体側)の表面に接する絶縁テープとの間に、剥離用フィルム(長さ50mm×幅20mm×厚さ50μmのステンレス箔、材質:SUS304)を、該剥離用フィルムの一端から50mmの位置まで差し込み、その状態で所定の条件による熱処理を行った。これにより得られた電線について、剥離用フィルムの部分を起点として絶縁テープの終端部を剥がしたとき、つまりポリイミドフィルムとフッ素樹脂フィルムとの間が剥離したときの最大荷重を剥離強度(N/10mm)とした。
 絶縁テープの終端部の内面側の含フッ素樹脂フィルムと、これに接する含フッ素樹脂フィルム(終端部の下側の絶縁テープの外側の含フッ素樹脂フィルム)とが熱融着している場合、上記測定の際に、絶縁テープの終端部に融着した含フッ素樹脂フィルムと、これに接するポリイミドフィルムとの界面で剥離が生じる。したがって、測定される剥離強度は、含フッ素樹脂フィルムとポリイミドフィルムとの間の剥離強度であり、該剥離強度が大きいほど、含フッ素樹脂フィルムとポリイミドフィルムとの間の密着性が優れることを示す。
 上記測定において、剥離強度が0.2N/10mm以下であった場合は、測定値のバラツキが大きく、この場合の剥離強度の結果は全て0.2N/10mm以下と表記した。
(摩耗抵抗(耐スクレープ摩耗特性))
 例20~21で作製した電線をそれぞれ長さ2mに切り出し、安田精機社製、製品名「マグネットワイヤー摩耗試験機(往復式)」を用い、ISO6722-1に準拠した試験方法によって、下記条件にて摩耗抵抗を測定した。
 ニードル直径:0.45±0.01mm、
 ニードル材質:SUS316(JIS G7602準拠)、
 摩耗距離:15.5±1mm、
 摩耗速度:55±5回/分、
 荷重:7N、
 試験環境:23±1℃。
 摩耗抵抗は、ニードルの往復運動によって、電線導体がシースから露出するまでに要したニードルの往復回数で表される。摩耗抵抗(回数)が多いほど、耐スクレープ摩耗特性に優れる。
〔樹脂の製造〕
(製造例1)
 構成単位(b)を形成するモノマーとしてNAH(無水ハイミックス酸、日立化成社製)を、構成単位(c1)を形成するモノマーとしてPPVE(CF=CFO(CFF、ペルフルオロプロピルビニルエーテル、旭硝子社製)を用いて、含フッ素共重合体(A1-1)を製造した。
 まず、1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン(AK225cb、旭硝子社製)(以下、「AK225cb」ともいう。)の369kgと、PPVEの30kgとを、予め脱気された内容積430Lの撹拌機付き重合槽に仕込んだ。次いで、この重合槽内を加熟して50℃に昇温し、さらに50kgのTFEを仕込んだ後、当該重合槽内の圧力を0.89MPa/Gまで昇圧した。なお、「0.89MPa/G」は、ゲージ圧が0.89MPaであることを示し、以下においても同様である。
 さらに、(ペルフルオロブチリル)ペルオキシドを0.36質量%の濃度でAK225cbに溶解した重合開始剤溶液を調製し、重合槽中に当該重合開始剤溶液の3Lを1分間に6.25mLの速度にて連続的に添加しながら重合を行った。また、重合反応中における重合槽内の圧力が0.89MPa/Gを保持するようにTFEを連続的に仕込んだ。また、NAHを0.3質量%の濃度でAK225cbに溶解した溶液を、重合中に仕込むTFEのモル数に対して0.1モル%に相当する量ずつ連続的に仕込んだ。
 重合開始8時間後、32kgのTFEを仕込んだ時点で、重合槽内の温度を室温まで降温するとともに、圧力を常圧までパージした。得られたスラリをAK225cbと固液分離した後、150℃で15時間乾燥することにより、33kgの含フッ素共重合体(A1-1)を得た。得られた含フッ素共重合体(A1-1)の比重は2.15であった。
 溶融NMR分析および赤外吸収スペクトル分析の結果から、この含フッ素共重合体(A1-1)の共重合組成は、TFEに基づく構成単位/NAHに基づく構成単位/PPVEに基づく構成単位=97.9/0.1/2.0(モル%)であった。
(製造例2)
 内容積94Lの撹拌機付きステンレス鋼製重合槽を脱気し、ペルフルオロペンチルジフルオロメタンの69.7kg、AK225cbの22.3kg、CH=CH(CFFの528g、TFEの13.3kg、およびエチレン(以下、「E」ともいう。)の456gを圧入し、重合槽内を66℃ に昇温した。このとき圧力は1.49MPa/Gであった。重合開始剤としてtert-ブチルペルオキシピバレートの19gを仕込み、重合を開始させた。重合中圧力が一定になるようにTFE/E=60/40のモル比のモノマー混合ガスを連続的に仕込んだ。また、重合中に仕込むTFEとEの合計モル数に対して3モル%に相当する量のCH=CH(CFFと0.3モル%に相当する量の無水イタコン酸(IAH)を連続的に仕込んだ。重合開始の5.6時間後、モノマー混合ガスが11.5kg仕込まれた時点で、重合槽内温を室温まで冷却するとともに重合槽内の圧力を常圧までパージした。
 得られたスラリを、水の100kgを仕込んだ300Lの造粒槽に投入し、撹拌しながら105℃まで昇温し溶媒を留出除去して造粒した。得られた造粒物を135℃で3時間乾燥することにより、含フッ素共重合体(A2-1)の造粒物の12.2kgが得られた。
 溶融NMR分析および赤外吸収スペクトル分析の結果から、この含フッ素共重合体(A2-1)の共重合組成は、TFEに基づく構成単位/Eに基づく構成単位/CH=CH(CFFに基づく構成単位/IAHに基づく構成単位=58.2/38.4/3.1/0.3(モル比)であった。
(製造例3)
 内容積94Lの撹拌機付きステンレス鋼製重合槽を脱気し、ペルフルオロペンチルジフルオロメタンの71.0kg、AK225cbの27.3kg、CH=CH(CFFの150g、TFEの12.6kg、およびEの752gを圧入し、重合槽内を66℃ に昇温した。このとき圧力は1.53MPa/Gであった。重合開始剤としてtert-ブチルペルオキシピバレートの9gを仕込み、重合を開始させた。重合中圧力が一定になるようにTFE/E=51/46のモル比のモノマー混合ガスを連続的に仕込んだ。また、重合中に仕込むTFEとEの合計モル数に対して0.7モル%に相当する量のCH=CH(CFFを連続的に仕込んだ。重合開始の5.7時間後、モノマー混合ガスが11.5kg仕込まれた時点で、重合槽内温を室温まで冷却するとともに重合槽内の圧力を常圧までパージした。
 得られたスラリを用いる以外は製造例2と同様に造粒して、含フッ素共重合体(B-2)の造粒物の12.5kgを得た。
 溶融NMR分析および赤外吸収スペクトル分析の結果から、この含フッ素共重合体(B-2)の共重合組成は、TFEに基づく構成単位/Eに基づく構成単位/CH=CH(CFFに基づく構成単位=53.7/45.6/0.7(モル比)であった。
(製造例4)
 含フッ素共重合体(A2-1)の20質量部と含フッ素共重合体(B-2)の80質量部とをドライブレンド(dryblend)した後、2軸押出機を用いて温度260℃、滞留時間2分で溶融混練し、含フッ素共重合体(AB-3)を得た。
(製造例5)
 製造例1で得た含フッ素共重合体(A1-1)を、260℃で24時間熱処理することで含フッ素共重合体(A1-2)を得た。
〔含フッ素樹脂フィルムの製造〕
(製造例6)
 含フッ素共重合体(A1-1)を、750mm巾コートハンガーダイを有する30mmφ単軸押出機を用いて押出成形し、厚さ50μmの含フッ素樹脂フィルム(以下、「フィルム1」ともいう。)を得た。装置のスクリューL/D比は24であり、スクリューCRは3であった。成形条件は、以下の通りであった。 
 シリンダー温度:C1=300℃、C2=320℃、C3=340℃、 
 アダプター温度:340℃、 
 ヘッド温度:340℃、 
 ダイ温度:340℃、 
 スクリュー回転数:毎分10回転、
 引取速度:5m/分。 
(製造例7および8)
 含フッ素共重合体(A1-1)の代わりにPFA-1または含フッ素共重合体(A1-2)を用いた以外は製造例6と同条件にて含フッ素樹脂フィルム(以下それぞれ、「フィルム2」、「フィルム5」ともいう。)を作製した。
(製造例9)
 含フッ素共重合体(A1-1)の代わりに含フッ素共重合体(AB-3)を用い、成形条件を以下にした以外は製造例6と同様にして含フッ素樹脂フィルム(以下、「フィルム3」ともいう。)を得た。
 シリンダー温度:C1=260℃、C2=300℃、C3=300℃、
 アダプター温度:320℃、
 ヘッド温度:320℃、
 ダイ温度:320℃、
 スクリュー回転数:毎分10回転、
 引取速度:5m/分。
(製造例10)
 含フッ素共重合体(AB-3)の代わりにETFE-1を用いた以外は製造例9と同条件にて含フッ素樹脂フィルム(以下、「フィルム4」ともいう。)を作製した。
〔絶縁テープの製造〕
(例1)
 フィルム1およびポリイミドフィルムを、フィルム1/ポリイミドフィルム/フィルム1の順序で積層し、温度320℃、圧力10MPaの条件で5分間プレスして絶縁テープを得た。含フッ素樹脂フィルムとポリイミドフィルムとの間の剥離強度を測定し、結果を表1に示す。
(例2~10)
 積層するフィルムの種類と積層順番、プレス温度を表1に示す通りにした以外は例1と同様にして絶縁テープを得た。含フッ素樹脂フィルムとポリイミドフィルムとの間の剥離強度を測定し、結果を表1に示す。
Figure JPOXMLDOC01-appb-T000002
 表1に示すとおり、含フッ素樹脂フィルムとしてフィルム1、フィルム3またはフィルム5を用いた例1~4および例10の絶縁テープは、含フッ素樹脂フィルムとポリイミドフィルムとの間の密着性に優れていた。
 一方、含フッ素樹脂フィルムとしてフィルム2(PFAフィルム)、フィルム4(ETFEフィルム)またはPTFEテープを用いた例5~9の絶縁テープは、含フッ素樹脂フィルムとポリイミドフィルムとの間の密着性が不充分であった。
〔構造体の製造〕
(例11)
 例2で作製した絶縁テープ(フィルム1/ポリイミドフィルム/フィルム1)を、電線用の導体(芯線径φ1.8mm、材質:スズメッキ軟銅)の周りに渦巻き状に、該絶縁テープのテープ幅の50%がそれ自身の上に重なるように巻き付けた。これをオーブンに入れ、炉内温度360℃の条件下で1時間加熱して電線を作製した。
 本電線について含フッ素樹脂フィルムとポリイミドフィルムとの間の剥離強度を測定した。結果を表2に示す。
<マンドレル巻き付け時剥離(銅線)>
 絶縁テープがそれ自身の上に重ならないようにした以外は上記と同様にして、前記絶縁テープを電線用の導体の周りに巻き付けた。これをオーブンに入れ、炉内温度360℃の条件下で1時間加熱して電線を作製した。本電線を、Φ20mmのマンドレルに巻き付け、前記絶縁テープと導体との間の剥離の有無を目視で確認した。下記基準で判定した結果を表2に示す。
 ○(良好):剥離なし。
 ×(不良):剥離あり。
<マンドレル巻き付け時剥離(アルミニウム線)>
 電線用の導体の材質を、スズメッキ軟銅から、アルミニウム(A1070:JIS)に変更した以外はマンドレル巻き付け時剥離(銅線)と同様に電線を作製した。本電線を、Φ20mmのマンドレルに巻き付け、前記絶縁テープと導体との間の剥離の有無を目視で確認した。下記基準で判定した結果を表2に示す。
 ○(良好):剥離なし。
 ×(不良):剥離あり。
(例12)
 例2で作製した絶縁テープ(フィルム1/ポリイミドフィルム/フィルム1)を、電線用の導体(芯線径φ1.8mm、材質:スズメッキ軟銅)の周りに渦巻き状に、該絶縁テープのテープ幅の50%がそれ自身の上に重なるように巻き付けた。次いで、その上に、PTFEテープを渦巻き状に、それ自身の上に重なるように巻き付けた。これをオーブンに入れ、炉内温度360℃の条件下で1時間加熱して電線を作製した。
 本電線について含フッ素樹脂フィルムとポリイミドフィルムとの間の剥離強度を測定した。また、マンドレル巻き付け時剥離(銅線)およびマンドレル巻き付け時剥離(アルミニウム線)を確認した。結果を表2に示す。
(例14~15、および18~19)
 絶縁テープの種類とオーブンで加熱する際の炉内温度を変更した以外は例11と同様にして電線を作製した。本電線について含フッ素樹脂フィルムとポリイミドフィルムとの間の剥離強度を測定した。また、マンドレル巻き付け時剥離(銅線)およびマンドレル巻き付け時剥離(アルミニウム線)を確認した。結果を表2に示す。
 ただし、例18~19では、前記の加熱条件では、絶縁テープの重なり部分で含フッ素樹脂フィルム同士が密着していなかったため、剥離強度の測定ができなかった。
(例13、および16~17)
 オーブンで加熱する際の炉内温度または絶縁テープの種類を変更した以外は例12と同様にして電線を作製した。本電線について含フッ素樹脂フィルムとポリイミドフィルムとの間の剥離強度を測定した。また、マンドレル巻き付け時剥離(銅線)およびマンドレル巻き付け時剥離(アルミニウム線)を確認した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000003
 表2に示すとおり、含フッ素樹脂フィルムとしてフィルム1またはフィルム3を用いた例2または例4の絶縁テープで導体を被覆した例11~14では、320~360℃の熱処理で、巻き付けた絶縁テープを充分に密着させることができた。また、絶縁テープと電線用導体との密着性に優れていた。
 一方、含フッ素樹脂フィルムとしてフィルム4(ETFEフィルム)、フィルム2(PFAフィルム)またはPTFEテープを用いた例6、例8または例9の絶縁テープで導体を被覆した例15~19では、巻き付けた絶縁テープを充分に密着させることができなかった。また、絶縁テープと電線用導体との密着性が不充分であった。
 例2、8、または9の絶縁テープ上にPTFEテープ巻き付けた例12~13、16、または17の結果を対比すると、例12~13では、例2の絶縁テープ上に巻き付けたPTFEテープが、例2の絶縁テープに充分に密着していた。
 表1に示した例2、8、および9の結果と、表2に示した例12、16、および17の結果を対比すると、例2の絶縁テープの場合、巻き付け後の加熱を360℃で行うことで、フィルム1とポリイミドフィルムとの間の剥離強度が6.5N/10mmから9.1N/10mmまで上昇した。このような大幅な剥離強度の上昇は、例8、および9の絶縁テープの場合には見られなかった。
 同様に、表1に示した例4、および6の結果と、表2に示した例14、および15の結果を対比すると、例4の絶縁テープの場合、巻き付け後の加熱を330℃で行うことで、フィルム3とポリイミドフィルムとの間の剥離強度が5.0N/10mmから7.3N/10mmまで上昇した。このような大幅な剥離強度の上昇は、例6の絶縁テープの場合には見られなかった。
 上記の結果から、本発明の絶縁テープが、導体の表面を被覆し、熱処理して構造体を得る用途において有用であることが確認された。
(例20)
 電線導体と、電線導体のまわりを被覆するシース(Sheath)とからなる電線を以下の手順で作製した。
 含フッ素共重合体(A1-1)を二軸押出機(テクノベル社製)によりペレットとした。得られたペレットを用い、電線導体(芯線径:φ1.8mm、撚り線)のまわりに下記条件にて含フッ素共重合体(A1-1)を押出してシースを形成し、電線径:φ2.8mm、シース厚さ:0.5mmの電線を得た。
 シリンダー温度:350~390℃、
 ダイス温度:390℃、
 引取速度:10~30m/分。
 得られた電線について摩耗抵抗を測定したところ、摩耗抵抗は3,274回であった。
(例21)
 含フッ素共重合体(A1-1)を含フッ素共重合体(A1-2)に変更した以外は、例20と同様にして電線を作製した。
 得られた電線について摩耗抵抗を測定したところ、摩耗抵抗は16,954回であり、例20よりも耐スクレープ摩耗特性に優れていた。
 本発明の構造体は、電線、特にモーター用のコイル、ケーブル、航空機用電線等に好適に用いることができる。
 なお、2013年7月4日に出願された日本特許出願2013-140960号、および2013年12月12日に出願された日本特許出願2013-257487号の明細書、特許請求の範囲、および要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (13)

  1.  ポリイミドフィルムの片面または両面に含フッ素樹脂フィルムが直接積層してなり、
     前記含フッ素樹脂フィルムが、融点が220~320℃であり、溶融成形が可能であり、カルボニル基含有基、ヒドロキシ基、エポキシ基およびイソシアネート基からなる群から選択される少なくとも1種の官能基を有する含フッ素共重合体(A)を含むことを特徴とする、被覆用絶縁テープ。
  2.  前記含フッ素共重合体(A)の融点が260~320℃である、請求項1に記載の被覆用絶縁テープ。
  3.  前記含フッ素共重合体(A)が、カルボニル基含有基を有し、
     前記カルボニル基含有基が、炭化水素基の炭素原子間にカルボニル基を含む基、カーボネート基、カルボキシル基、ハロホルミル基、アルコキシカルボニル基および酸無水物残基からなる群から選択される少なくとも1種である、請求項1または2に記載の被覆用絶縁テープ。
  4.  前記官能基の含有量が、前記含フッ素共重合体(A)の主鎖炭素数1×10個に対して10~60,000個である、請求項1~3のいずれか一項に記載の被覆用絶縁テープ。
  5.  前記含フッ素共重合体(A)の、372℃、49N荷重下で測定されるメルトフローレートが、0.5~15g/10分である、請求項1~4のいずれか一項に記載の被覆用絶縁テープ。
  6.  前記含フッ素共重合体(A)の、297℃、49N荷重下で測定されるメルトフローレートが、0.5~25g/10分である、請求項1~4のいずれか一項に記載の被覆用絶縁テープ。
  7.  導体の表面を、請求項1~6のいずれか一項に記載の被覆用絶縁テープで被覆して被覆層を形成する工程と、前記被覆層で被覆された導体を、前記含フッ素共重合体(A)の融点以上の温度で熱処理して構造体を得る工程とを含む、構造体の製造方法。
  8.  導体の表面を、請求項1~6のいずれか一項に記載の被覆用絶縁テープで被覆して第一の被覆層を形成する工程と、前記第一の被覆層の表面を、ポリテトラフルオロエチレンを含むテープで被覆して第二の被覆層を形成する工程と、前記第一の被覆層および第二の被覆層で被覆された導体を、前記含フッ素共重合体(A)の融点以上の温度で熱処理して構造体を得る工程とを含む、構造体の製造方法。
  9.  導体の表面を、テープ状の含フッ素樹脂フィルムで被覆して第一の被覆層を形成する工程と、前記第一の被覆層の表面を、テープ状のポリイミドフィルムで被覆して第二の被覆層を形成する工程と、前記第一の被覆層および第二の被覆層で被覆された導体を熱処理して構造体を得る工程とを含み、
     前記含フッ素樹脂フィルムが、カルボニル基含有基、ヒドロキシ基、エポキシ基およびイソシアネート基からなる群から選択される少なくとも1種の官能基を有し、融点が220~320℃であり、溶融成形が可能な含フッ素共重合体(A)を含み、
     前記熱処理が、前記含フッ素共重合体(A)の融点以上の温度で行われることを特徴とする、構造体の製造方法。
  10.  導体の表面を、テープ状の含フッ素樹脂フィルムで被覆して第一の被覆層を形成する工程と、前記第一の被覆層の表面を、テープ状のポリイミドフィルムで被覆して第二の被覆層を形成する工程と、前記第二の被覆層の表面を、テープ状の含フッ素樹脂フィルムで被覆して第三の被覆層を形成する工程と、前記第一の被覆層、第二の被覆層および第三の被覆層で被覆された導体を熱処理して構造体を得る工程とを含み、
     前記第一の被覆層および第三の被覆層を形成する含フッ素樹脂フィルムがそれぞれ、カルボニル基含有基、ヒドロキシ基、エポキシ基およびイソシアネート基からなる群から選択される少なくとも1種の官能基を有し、融点が220~320℃であり、溶融成形が可能な含フッ素共重合体(A)を含み、
     前記熱処理が、前記含フッ素共重合体(A)の融点以上の温度で行われることを特徴とする、構造体の製造方法。
  11.  前記含フッ素共重合体(A)の融点が260~320℃である、請求項9または10に記載の構造体の製造方法。
  12.  前記熱処理が、前記含フッ素共重合体(A)の融点以上400℃未満の温度で行われる、請求項7~11のいずれか一項に記載の構造体の製造方法。
  13.  前記構造体が電線である、請求項7~12のいずれか一項に記載の構造体の製造方法。
PCT/JP2014/067704 2013-07-04 2014-07-02 被覆用絶縁テープ、および構造体の製造方法 WO2015002251A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015525264A JP6332271B2 (ja) 2013-07-04 2014-07-02 被覆用絶縁テープ、および構造体の製造方法
US14/944,657 US10304583B2 (en) 2013-07-04 2015-11-18 Insulating tape for covering, and method for producing structure

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-140960 2013-07-04
JP2013140960 2013-07-04
JP2013257487 2013-12-12
JP2013-257487 2013-12-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/944,657 Continuation US10304583B2 (en) 2013-07-04 2015-11-18 Insulating tape for covering, and method for producing structure

Publications (1)

Publication Number Publication Date
WO2015002251A1 true WO2015002251A1 (ja) 2015-01-08

Family

ID=52143821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067704 WO2015002251A1 (ja) 2013-07-04 2014-07-02 被覆用絶縁テープ、および構造体の製造方法

Country Status (3)

Country Link
US (1) US10304583B2 (ja)
JP (1) JP6332271B2 (ja)
WO (1) WO2015002251A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016181936A1 (ja) * 2015-05-11 2016-11-17 旭硝子株式会社 プリント基板用材料、金属積層板、それらの製造方法およびプリント基板の製造方法
KR20180115192A (ko) * 2017-04-12 2018-10-22 주식회사 국일인토트 일체형 절연와셔 및 그 제조방법
JPWO2021039735A1 (ja) * 2019-08-27 2021-03-04
WO2024154613A1 (ja) * 2023-01-18 2024-07-25 矢崎総業株式会社 絶縁電線及びその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015080260A1 (ja) * 2013-11-29 2017-03-16 旭硝子株式会社 接着フィルム及びフレキシブル金属積層板

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62162543A (ja) * 1986-01-13 1987-07-18 宇部興産株式会社 弗素樹脂層を有するポリイミドフイルム
JPS62162542A (ja) * 1986-01-13 1987-07-18 宇部興産株式会社 弗素樹脂層を有するポリイミドフイルム
JPH0834102A (ja) * 1994-07-25 1996-02-06 Kanegafuchi Chem Ind Co Ltd ポリイミドフッ素系樹脂積層体
WO2004058833A1 (ja) * 2002-12-25 2004-07-15 Daikin Industries, Ltd. フルオロポリマー及びその組成物
JP2004238405A (ja) * 2002-02-22 2004-08-26 Asahi Glass Co Ltd 含フッ素共重合体
JP2005023261A (ja) * 2003-07-01 2005-01-27 Asahi Glass Co Ltd フッ素樹脂フィルム及び該フィルムの層を含有する積層体
JP2005254810A (ja) * 2004-02-10 2005-09-22 Daikin Ind Ltd フッ素樹脂層積層体製造方法及びフッ素樹脂層積層体
JP2006152234A (ja) * 2004-10-28 2006-06-15 Asahi Glass Co Ltd 含フッ素共重合体及びその用途
JP2006297843A (ja) * 2005-04-25 2006-11-02 Asahi Glass Co Ltd フッ素樹脂積層体
WO2006134764A1 (ja) * 2005-06-14 2006-12-21 Asahi Glass Company, Limited フッ素樹脂多層積層体
JP2010053209A (ja) * 2008-08-27 2010-03-11 Asahi Glass Co Ltd 含フッ素共重合体及びその用途

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3616177A (en) * 1969-09-17 1971-10-26 Du Pont Laminar structures of polyimides and wire insulated therewith
US4801506A (en) 1986-01-13 1989-01-31 Ube Industries, Ltd. Polyimide film having fluorocarbon resin layer
US5731088A (en) 1996-06-04 1998-03-24 E. I. Du Pont De Nemours And Company Multilayer polyimide-fluoropolymer insulation having superior cut-through resistance
JP3945947B2 (ja) 1998-11-20 2007-07-18 株式会社カネカ 電線被覆用絶縁テープならびにその製造方法
US20120219767A1 (en) * 2011-02-25 2012-08-30 Honeywell International Inc. Fluoropolymer films and methods for making the same
JP5731252B2 (ja) * 2011-03-29 2015-06-10 浦谷エンジニアリング株式会社 配線部品

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62162543A (ja) * 1986-01-13 1987-07-18 宇部興産株式会社 弗素樹脂層を有するポリイミドフイルム
JPS62162542A (ja) * 1986-01-13 1987-07-18 宇部興産株式会社 弗素樹脂層を有するポリイミドフイルム
JPH0834102A (ja) * 1994-07-25 1996-02-06 Kanegafuchi Chem Ind Co Ltd ポリイミドフッ素系樹脂積層体
JP2004238405A (ja) * 2002-02-22 2004-08-26 Asahi Glass Co Ltd 含フッ素共重合体
WO2004058833A1 (ja) * 2002-12-25 2004-07-15 Daikin Industries, Ltd. フルオロポリマー及びその組成物
JP2005023261A (ja) * 2003-07-01 2005-01-27 Asahi Glass Co Ltd フッ素樹脂フィルム及び該フィルムの層を含有する積層体
JP2005254810A (ja) * 2004-02-10 2005-09-22 Daikin Ind Ltd フッ素樹脂層積層体製造方法及びフッ素樹脂層積層体
JP2006152234A (ja) * 2004-10-28 2006-06-15 Asahi Glass Co Ltd 含フッ素共重合体及びその用途
JP2006297843A (ja) * 2005-04-25 2006-11-02 Asahi Glass Co Ltd フッ素樹脂積層体
WO2006134764A1 (ja) * 2005-06-14 2006-12-21 Asahi Glass Company, Limited フッ素樹脂多層積層体
JP2010053209A (ja) * 2008-08-27 2010-03-11 Asahi Glass Co Ltd 含フッ素共重合体及びその用途

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107960156B (zh) * 2015-05-11 2021-03-26 Agc株式会社 印刷基板用材料、金属层叠板、它们的制造方法以及印刷基板的制造方法
KR20180004710A (ko) * 2015-05-11 2018-01-12 아사히 가라스 가부시키가이샤 프린트 기판용 재료, 금속 적층판, 그들의 제조 방법 및 프린트 기판의 제조 방법
JPWO2016181936A1 (ja) * 2015-05-11 2018-03-01 旭硝子株式会社 プリント基板用材料、金属積層板、それらの製造方法およびプリント基板の製造方法
CN107960156A (zh) * 2015-05-11 2018-04-24 旭硝子株式会社 印刷基板用材料、金属层叠板、它们的制造方法以及印刷基板的制造方法
KR102507434B1 (ko) 2015-05-11 2023-03-07 에이지씨 가부시키가이샤 프린트 기판용 재료, 금속 적층판, 그들의 제조 방법 및 프린트 기판의 제조 방법
TWI694751B (zh) * 2015-05-11 2020-05-21 日商Agc股份有限公司 印刷基板用材料、金屬積層板、彼等之製造方法及印刷基板之製造方法
WO2016181936A1 (ja) * 2015-05-11 2016-11-17 旭硝子株式会社 プリント基板用材料、金属積層板、それらの製造方法およびプリント基板の製造方法
US10844153B2 (en) 2015-05-11 2020-11-24 AGC Inc. Material for printed circuit board, metal laminate, methods for producing them, and method for producing printed circuit board
KR102118486B1 (ko) * 2017-04-12 2020-06-04 주식회사 국일인토트 일체형 절연와셔 및 그 제조방법
KR20180115192A (ko) * 2017-04-12 2018-10-22 주식회사 국일인토트 일체형 절연와셔 및 그 제조방법
WO2021039735A1 (ja) * 2019-08-27 2021-03-04 Agc株式会社 フィルム、フィルムの製造方法、金属張積層体、及び被覆金属導体
JPWO2021039735A1 (ja) * 2019-08-27 2021-03-04
JP7380690B2 (ja) 2019-08-27 2023-11-15 Agc株式会社 フィルム、フィルムの製造方法、金属張積層体、及び被覆金属導体
WO2024154613A1 (ja) * 2023-01-18 2024-07-25 矢崎総業株式会社 絶縁電線及びその製造方法

Also Published As

Publication number Publication date
US20160078979A1 (en) 2016-03-17
US10304583B2 (en) 2019-05-28
JPWO2015002251A1 (ja) 2017-02-23
JP6332271B2 (ja) 2018-05-30

Similar Documents

Publication Publication Date Title
JP6822523B2 (ja) 接着フィルム、フレキシブル金属積層板、接着フィルムの製造方法、フレキシブル金属積層板の製造方法、フレキシブルプリント基板及びフレキシブルプリント基板の製造方法
JP6565936B2 (ja) 積層板およびフレキシブルプリント基板の製造方法
US10507631B2 (en) Laminate, printed circuit board and method for producing laminate
CN101080957B (zh) 柔性印刷电路板用层积体
JP6332271B2 (ja) 被覆用絶縁テープ、および構造体の製造方法
JP6819579B2 (ja) プリント基板用材料、金属積層板、それらの製造方法およびプリント基板の製造方法
JP6388483B2 (ja) 高周波回路基板用カバーレイ及びフレキシブルフラットケーブル用基材
JP6330447B2 (ja) 含フッ素共重合体組成物、その製造方法および成形品
JP6455367B2 (ja) 含フッ素樹脂組成物、成形品、電線および含フッ素樹脂組成物の製造方法
JP6791240B2 (ja) 積層体の製造方法およびプリント基板の製造方法
JP6206492B2 (ja) 耐熱電線用被覆材料、その製造方法および電線
JP2015095363A (ja) ワイヤまたはケーブル、それらの製造方法および絶縁テープ
WO2015129762A1 (ja) 電線の製造方法、成形品の製造方法、及び改質フッ素樹脂を含む樹脂材料の製造方法
JP6507607B2 (ja) カバーレイ用接着フィルム、カバーレイ、配線板、及び電子機器の製造方法
JP6107613B2 (ja) 含フッ素共重合体成形品の製造方法、電線被覆材および摺動部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14820280

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015525264

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14820280

Country of ref document: EP

Kind code of ref document: A1