WO2015079587A1 - 硬質潤滑被膜および硬質潤滑被膜被覆工具 - Google Patents

硬質潤滑被膜および硬質潤滑被膜被覆工具 Download PDF

Info

Publication number
WO2015079587A1
WO2015079587A1 PCT/JP2013/082284 JP2013082284W WO2015079587A1 WO 2015079587 A1 WO2015079587 A1 WO 2015079587A1 JP 2013082284 W JP2013082284 W JP 2013082284W WO 2015079587 A1 WO2015079587 A1 WO 2015079587A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
hard
film
drill
atomic ratio
Prior art date
Application number
PCT/JP2013/082284
Other languages
English (en)
French (fr)
Inventor
博昭 杉田
メイ ワン
正俊 櫻井
須藤 祐司
小池 淳一
Original Assignee
オーエスジー株式会社
国立大学法人東北大学
博昭 杉田
メイ ワン
正俊 櫻井
須藤 祐司
小池 淳一
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オーエスジー株式会社, 国立大学法人東北大学, 博昭 杉田, メイ ワン, 正俊 櫻井, 須藤 祐司, 小池 淳一 filed Critical オーエスジー株式会社
Priority to PCT/JP2013/082284 priority Critical patent/WO2015079587A1/ja
Priority to JP2015550529A priority patent/JP6168540B2/ja
Publication of WO2015079587A1 publication Critical patent/WO2015079587A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/10Coatings
    • B23B2228/105Coatings with specified thickness

Definitions

  • the present invention relates to a hard lubricating coating provided on the surface of a base material and a hard lubricating coating-coated tool coated with the hard lubricating coating, and more particularly to an improvement for improving both the hardness and the wear resistance.
  • Cutting tools such as drills and taps that cut materials such as carbon steel, stainless steel, and mild steel have properties such as wear resistance that can increase the hardness and tool life required to cut the work material. Desired. Therefore, a hard coating is provided on the surface of the base material of the cutting tool so as to improve the wear resistance.
  • this hard coating for cutting tools coatings such as TiN, CrN, and TiAlN are widely used, and improvements are made to further improve the performance.
  • the hard laminated film described in patent document 1 and patent document 2 is it.
  • Patent Document 1 first made of Ti a Cr b Al c Mo 1 -abc nitride or a first coating layer made of carbonitride, Ti d Cr e Al 1- de nitride or carbonitride A hard laminated film composed of a multilayer film in which two or more film layers are alternately laminated, and in Patent Document 2, from Ti a Cr b Al c Mo 1-abc nitride or carbonitride. A hard laminate coating composed of a single layer film is proposed.
  • the base material on which the hard multilayer coating is formed by the conventional technology as described above is still insufficient in lubricity and wear resistance. There was a problem that it might lead to. Accordingly, there has been a demand for the development of a hard laminate film that is hard and wear-resistant.
  • the present invention has been made against the background described above, and an object of the present invention is to provide a hard lubricant film and a hard lubricant film-coated tool that are hard and wear-resistant.
  • the layer A is composed of chromium (Cr), molybdenum (Mo), tungsten (W), vanadium (V) and boron (B) as constituent elements.
  • Cr chromium
  • Mo molybdenum
  • W tungsten
  • V vanadium
  • B boron
  • a B layer having titanium (Ti) and silicon (Si) as constituent elements is inserted and oxygen is introduced into the A layer, an oxycarbide, oxynitride or oxycarbonitride of Cr, Mo, W and V It has been found that since a fine structure of the crystal is formed, higher lubricity can be obtained while having high hardness.
  • the present invention has been made based on such findings.
  • the crystal of the A layer has a fine crystal structure in which crystal growth is suppressed by the thickness of the layer to increase the hardness of the coating, and the oxycarbide of Cr, Mo, W and V,
  • the crystal of oxynitride or oxycarbonitride has a solid lubricating structure similar to that of molybdenum sulfide or nitride, and thus it is estimated that the lubricity of the coating is improved.
  • the gist of the first invention is a hard lubricating coating coated on the surface of the base material, and (Cr a Mo b W c V d B e ) 1-xyz C x N y O z oxycarbide of the a layer made of oxynitride or oxycarbonitride compound, (Ti 1-f Si f ) 1-g N g is the composed B layer from rigid laminated alternately in two layers or more lubricating
  • the thickness of the A layer is 2 nm or more and 50 Hard lubrication film and hard lubrication coated with a hard lubrication film, wherein the thickness of the B layer is in the range of 1 nm to 500 nm and the total film thickness is in the range of 0.1 ⁇ m to 10.0 ⁇ m In coating tool.
  • the gist of the second invention is that in the hard lubricating film of the first invention, the A layer has a multiphase structure in which a crystalline phase and an amorphous phase are mixed.
  • the hard lubricating coating of the first invention is an oxycarbide, oxynitride or oxycarbonitride of (Cr a Mo b W c V d B e ) 1-xyz C x N y O z Since the A layer made of a material and the B layer made of (Ti 1-f Si f ) 1-g N g are alternately laminated, two or more layers are formed.
  • the hardness of the film is increased by forming a microstructure composed of oxycarbides, oxynitrides or oxycarbonitrides of Mo, W and V, and oxides, oxycarbides and oxynitrides of Mo, W and V Since the object or oxycarbonitride has solid lubricity, the lubricity of the film is enhanced, so that a hard and wear-resistant hard lubricating film and hard lubricating film-coated tool can be obtained.
  • the A layer has a multiphase structure in which a crystalline phase and an amorphous phase are mixed.
  • a fine NaCl phase crystal phase ( ⁇ - (Cr, Mo, W, V) N, ⁇ -Mo 2 N, etc.) composed of Mo, W and V oxycarbides, oxynitrides or oxycarbonitrides. ) And an amorphous phase are formed, whereby a hard lubricating coating and a hard lubricating coating-coated tool having hard and wear resistance can be obtained.
  • FIG. 2 is a conceptual cross-sectional view for explaining a laminated structure of a surface portion of a body in the drill of FIG. 1. It is a process chart for forming the drill of FIG. It is a schematic block diagram explaining the sputtering device used suitably when forming the drill of FIG. 7 is a graph showing the hardness H (GPa) of the hard coating film and the wear width (mm) obtained by the cutting test of the drill coated with the hard coating for each of the test products 1 to 35 and the comparative products 1 to 6. . It is a graph which shows transition of the wear width accompanying the increase in the number of processing holes in a cutting test. 2 is a photograph taken by a transmission electron microscope (TEM) of layer A in the hard coating of test product 1.
  • TEM transmission electron microscope
  • FIG. 1 is a view showing a drill 12 provided with a hard coating 10 according to the present invention, where (a) is a front view seen from a direction perpendicular to the axis O, and (b) is a tip side provided with a cutting edge 14. It is the enlarged bottom view seen from.
  • the drill 12 is a two-blade twist drill, and is integrally provided with a shank 16 and a body 18 in the axial direction. A pair of grooves 20 twisted clockwise around the axis O is formed in the body 18. .
  • a pair of cutting edges 14 are provided at the tip of the body 18 corresponding to the grooves 20, and a hole is cut by the cutting edges 14 by being driven to rotate clockwise around the axis O as viewed from the shank 16 side. While processing, chips are discharged through the groove 20 to the shank 16 side.
  • the hard coating 10 corresponds to the hard lubricating coating of the present invention
  • the drill 12 corresponds to the hard lubricating coating coated tool of the present invention
  • FIG. 2 is a conceptual cross-sectional view for explaining the laminated structure of the surface portion of the body 18 in the drill 12 of FIG.
  • a hard coating 10 is coated on the surface of a tool base material 22 made of cemented carbide that is a base material of the drill 12.
  • the hatched portion in FIG. 1 shows a portion of the drill 12 where the hard coating 10 is provided.
  • the hard coating 10 is preferably coated on the surface of the tool base material 22 corresponding to the body 18 in the drill 12.
  • the tool base material 22 corresponds to the base material of the present invention.
  • the hard coating 10 of the present example is a multilayer in which two or more A layers 24 containing oxygen elements and B layers 25 containing titanium (Ti) and silicon (Si) are alternately laminated. It is a film
  • bc-d is 0 ⁇ e ⁇ 0.05, x is 0 ⁇ x ⁇ 0.6, y is 0 ⁇ y ⁇ 0.6, z is 0 ⁇ z ⁇ 0.2, x + y + z is 0.3 ⁇ x + y + z ⁇ 0.6.
  • a microstructure made of oxides, oxycarbides, oxynitrides or oxycarbonitrides of Mo, W and V having a solid lubricating structure similar to molybdenum sulfide or nitride is formed.
  • (Cr 0.4 Mo 0.6 ) 0.48 N 0.4 O 0.12 is preferably exemplified.
  • the B layer 25 is (Ti 1-f Si f ) 1-g N g , the atomic ratio f is 0 ⁇ f ⁇ 0.4, and g is 0.4 ⁇ g ⁇ 0.6.
  • the B layer 25 is mostly composed of a crystal phase and has a hard property, and also has good heat resistance because it contains silicon (Si).
  • the thickness D1 of the A layer 24 is in the range of 2 nm to 500 nm
  • the thickness D2 of the B layer 25 is in the range of 1 nm to 500 nm
  • the total thickness D of the hard coating 10 is 0. It is set within a range of 1 ⁇ m or more and 10.0 ⁇ m or less.
  • the number of layers of the A layer 24 and the B layer 25 is appropriately determined as long as it does not deviate from the above numerical range related to the total film thickness D of the hard coating 10 and the film thicknesses D1 and D2 of the coating layers 24 and 25. Since the hardness is higher when it is composed of multiple layers, a multilayer film having at least one A layer 24 and one B layer 25 is provided.
  • the film thicknesses D1 of the plurality of A layers 24 in the hard coating 10 may be all equal or may be different from each other within the above numerical range.
  • the film thicknesses D2 of the plurality of B layers 25 in the hard coating 10 may all be equal, or may be different from each other within the above numerical range.
  • the stacking order of the A layer 24 and the B layer 25 is preferably B layer 25, A layer 24,..., B layer 25 from the tool base material 22 side as shown in FIG.
  • the surface layer of the hard coating 10 (the uppermost layer of the hard coating 10, that is, the layer coated on the tool base material 22) is the A layer 24. Since the A layer 24 has a smaller coefficient of friction than the B layer 25, the hard coating 10 can be provided with good wear resistance by using the A layer 24 as the surface layer.
  • FIG. 3 is a process chart for forming the drill 12 of FIG. 1
  • FIG. 4 is a schematic configuration diagram (schematic diagram) for explaining a sputtering apparatus 26 suitably used for forming the drill 12 of FIG. .
  • the cemented carbide which is the base material of the tool base material 22, and the tool base material 22 is obtained.
  • the cemented carbide is first subjected to cylindrical grinding to form a rough shape of the tool base material 22, that is, a cylindrical shape that becomes the shank 16 and the body 18 having an axial center.
  • groove grinding is performed to form a groove 20 or the like twisted clockwise about the axis O on the outer peripheral side surface on one end in the longitudinal direction corresponding to the cylindrical body 18.
  • blade sharpening is applied to one end in the longitudinal direction so that a cutting edge 14 for cutting the work material is formed.
  • the surface of the tool base material 22 is cleaned prior to the coating of the hard coating 10.
  • the surface of the tool base material 22 is roughened as a pretreatment by the sputtering apparatus 26.
  • the drill 12 is formed by coating the hard coating 10 on the body 18 of the tool base material 22 by the sputtering device 26.
  • an inspection is performed to determine whether or not the drill 12 coated with the hard coating 10 satisfies the use standard as a cutting tool.
  • the sputtering apparatus 26 includes a chamber 28, a rotating shaft that passes through a substantially central through hole in the bottom surface of the chamber 28, and a disk-shaped base 30 that is fixed to one end of the rotating shaft inside the chamber 28. .
  • the tool base material 22 is heated to about 500 ° C.
  • argon (Ar) gas is introduced into the chamber 28 while the inside of the chamber 28 is maintained at a vacuum level equal to or lower than a predetermined pressure.
  • a bias voltage of ⁇ 200 to ⁇ 500 V for example, is applied to the tool base material 22 by the bias power source 32, and the surface of the tool base material 22 is etched by Ar ions generated by glow discharge generated in Ar gas. Is called.
  • Ar gas is exhausted from the chamber 28.
  • a film forming process P4 is subsequently performed.
  • a constant cathode voltage (for example, about ⁇ 100 to ⁇ 500 V) is applied to the targets 34 and 35 such as Cr, Mo, Ti, and Si constituting the hard coating 10 by the power source 36, and the tool mother is applied by the bias power source 32.
  • a constant negative bias voltage (for example, about ⁇ 100 V) to the material 22, argon ions Ar + collide with the targets 34 and 35 to strike and ionize constituent materials such as Cr, Mo, Ti, and Si.
  • the voltage applied by the power source 36 and the bias power source 32 is controlled by a controller 38.
  • a reactive gas such as nitrogen gas (N 2 ), hydrocarbon gas (CH 4 , C 2 H 2 ) or oxygen gas (O 2 ) in addition to argon gas is selectively selected at a predetermined flow rate and pressure.
  • the nitrogen atom (N), carbon atom (C), or oxygen atom (O) is introduced and combined with Cr, Mo, Ti, Si or the like knocked out from the targets 34, 35 to form an A layer 24, for example (Cr An oxynitride such as 0.4 Mo 0.6 ) 0.48 N 0.4 O 0.12 or an oxycarbide such as (Cr 0.25 Mo 0.45 W 0.28 V 0.02 ) 0.63 C 0.2 O 0.17 is formed as the B layer 25, for example (Ti 0.9 Si 0.1 ) 0.5 N 0.5 is formed.
  • the tool base material 22 is further rotated with respect to the base 30 on the base 30 rotated with respect to the chamber 28, they are coated on the surface of the tool base 22 as a homogeneous hard coating 10. It is done.
  • the A layer 24 and the B layer 25 are controlled only by controlling the composition ratios related to Cr, Mo, W, V, and B and various reaction gases during film formation, or only by controlling various reaction gases during film formation.
  • a coating of is formed.
  • hydrocarbon gas as a reaction gas in the coating layer B 25 is (CH 4, C 2 H 2 ) and oxygen (O 2) for gas is not necessary, a hydrocarbon gas (CH 4, C 2 H 2 ) And oxygen (O 2 ) gas into the chamber 28 are turned off to form the B layer 25.
  • the alternate coating of the tool base material 22 with the A layer 24 and the B layer 25 is repeated, and finally the hard coating 10 is coated.
  • a hard alloy drill 12 is formed.
  • the hard coating 10 thus coated on the drill 12 is made of (Cr a Mo b W c V d B e ) 1-xyz C x N y O z oxycarbide, oxynitride or oxycarbonitride
  • the coating satisfying the required conditions was coated on a cemented carbide drill with a tool diameter of 6 mm ⁇ through steps P2, P3 and P4 of FIG. 3, and drills 12 to 35 of test samples 1 to 35 were formed.
  • a coating that does not satisfy the conditions of the hard coating 10 was similarly coated with a carbide drill with a tool diameter of 6 mm ⁇ through the steps P2, P3, and P4, and the drills of comparative products 1 to 6 were formed. .
  • the hardness H (GPa) of the film in Table 2 was determined as follows. The hardness of each film was measured according to the nanoindentation method for the test products 1 to 35 and the comparative products 1 to 6. That is, a triangular pyramid type indenter consisting of a diamond tip at the tip is pushed into the surface of each of the test products 1 to 35 and the comparative products 1 to 6 coated with a hard coating with a load P, and a projected area A under the indenter was calculated. The film hardness H (GPa) is calculated by dividing the load P by the area A. In the nanoindentation method, the hardness is evaluated as soft at 15 to 20 GPa, hard at 30 GPa or more, and brittle at 50 to 60 GPa.
  • the wear width (mm) after drilling 5000 holes in Table 2 was obtained by conducting a cutting test on the drills 12 to 35 of the test sample 1 and the drills of the comparative products 1 to 6 under the following cutting conditions.
  • the wear width after the 5000 hole processing shown in Table 2 is the outer peripheral portion of the cutting edge 14 in the drill 12 of the test product 1 to 35 and the drill of the comparative product 1 to 6 after the 5000 hole processing under the above cutting conditions.
  • the wear width was 0.2 mm or less, it was determined to be acceptable, and when the wear width was greater than 0.2 mm, it was determined to be unacceptable.
  • “continuation is possible” refers to the case where the subsequent drilling is possible in the drill after drilling 5000 holes. If the subsequent cutting is impossible, the state of the drill subjected to the cutting test is indicated. evaluated.
  • FIG. 5 shows the hardness H (GPa) of the film obtained by the nanoindentation method and the wear width (mm) after processing 5000 holes obtained by the cutting test for each of the test products 1 to 35 and the comparative products 1 to 6. It is a graph. That is, FIG. 5 is a graph of the hardness H (GPa) and the wear width (mm) after processing 5000 holes in Table 2.
  • the horizontal axis represents the numbers of test products 1 to 35 and comparative products 1 to 6
  • the left horizontal axis represents the film hardness H (GPa) of test products 1 to 35 and comparative products 1 to 6
  • the horizontal axis shows the wear width (mm) after drilling 5000 holes of the test products 1 to 35 and the comparative products 1 to 6.
  • the hardness H (GPa) of the film is 29.0 GPa or more
  • the wear width (mm) after processing 5000 holes was 0.198 mm or less, and was evaluated as passing in the cutting test. Note that all of the test samples 1 to 35 were able to continue the subsequent cutting because the wear width was small even after processing 5000 holes.
  • FIG. 6 is a graph showing the transition of the wear width associated with the increase in the number of drilled holes in the cutting test.
  • Test products 3, 17 and 22, and comparative products 4 and 5 are test products 1 to 35 and comparative products 1 to 5, respectively. Plotted on behalf of 6. As shown in FIG. 6, with the increase in the number of processed holes, the specimens 3, 17 and 22 gradually increased in wear width (mm), and the wear width after processing 5000 holes was about 0.200 mm. .
  • Film thickness D2 is 1 nm to 500 nm
  • the drill 12 of the test products 1 to 35 coated with the hard coating 10 having a total film thickness D in the range of 0.1 ⁇ m to 10.0 ⁇ m has a film hardness H of 29.0 GPa or more and The wear width (mm) after processing 5000 holes was 0.198 mm or less, indicating a good value.
  • the comparative product 1 is a drill in which a single layer film of A layer having a thickness of 6300 nm made of (Ti 0.2 Cr 0.4 Mo 0.4 ) 0.45 C 0.05 N 0.2 O 0.3 is coated, and in the A layer, titanium (Ti) Is contained, and the atomic ratio z of oxygen is 0.3. Therefore, an element titanium (Ti) different from the thin film composition related to the A layer 24 of the hard coating 10 is contained, and oxygen (O) is contained. Since the atomic ratio z deviates from 0 ⁇ z ⁇ 0.2, and the B layer is not inserted at the thin film interface of the A layer, the A layer 24 and the B layer 25 of the hard coating 10 are alternately laminated.
  • the film thickness of the A layer deviates from the range of 2 nm or more and 500 nm or less of the film thickness D1 of the A layer 24 related to the hard coating 10. Therefore, the hardness H of the film of the drill of the comparative product 1 was 31.0 GPa, but the wear width after processing 5000 holes is 0.428 mm, which is a large value compared with the test product and is judged as rejected. It was. In the cutting test, after 2000 holes were drilled, the wear width of the corner of the drill became too large, and continuous use became impossible.
  • the atomic ratio z of oxygen (O) related to the A layer 24 should be 0.2 or less
  • the film thickness D1 related to the A layer should be 500 nm or less
  • the B layer 25 is a thin film of the A layer 24
  • Comparative product 2 is a drill coated with a single layer film of 11500 nm in thickness A made of Mo 0.6 N 0.4 , and the A layer does not contain chromium (Cr) and oxygen (O), Since the atomic ratio b of molybdenum (Mo) is 1, 0.2 ⁇ a ⁇ 0.7 of the atomic ratio a of chromium (Cr) related to the A layer 24 of the hard coating 10, and the atomic ratio b of molybdenum (Mo) 0.05 ⁇ b ⁇ 0.6 and oxygen (O) atomic ratio z 0 ⁇ z ⁇ 0.2, respectively, and the B layer is not inserted and formed at the thin film interface of the A layer.
  • Mo molybdenum
  • O oxygen
  • the thickness of the A layer and the total thickness are 2 nm or more and 500 nm or less of the thickness D1 of the A layer 24 related to the hard coating 10.
  • the total film thickness D deviates from the range of 0.1 ⁇ m to 10.0 ⁇ m. Therefore, the hardness H of the film of the drill of the comparative product 2 is 19.3 GPa, which is small compared to the test product, and the wear width after drilling 5000 holes is 0.765 mm, which is a large value compared to the test product and is not good. It was determined to pass. In the cutting test, after 3100 holes were drilled, the wear width of the corner of the drill became too large, and continuous use became impossible.
  • the atomic ratio a of chromium (Cr) in the A layer 24 is 0.2 or more, the atomic ratio b of molybdenum (Mo) is 0.6 or less, and the atomic ratio z of oxygen (O) is less than 0.
  • the film thickness D1 related to the A layer 24 should be 500 nm or less, the total film thickness D should be 10.0 ⁇ m or less, and the B layer 25 is formed at the thin film interface of the A layer 24. It was verified that the layers 25 should be alternately stacked, and the significance of the requirements required for the hard coating 10 according to the present invention was confirmed.
  • Comparative product 3 is a drill in which a single layer film of A layer having a thickness of 8500 nm made of (Ti 0.5 Mo 0.5 ) 0.4 C 0.1 N 0.2 O 0.3 is coated, and titanium (Ti) is contained in the A layer. Since the chromium (Cr) is not contained and the atomic ratio z of oxygen (O) is 0.3, element titanium (Ti) different from the thin film composition related to the A layer 24 of the hard coating 10 is formed. And the atomic ratio a of chromium (Cr) is 0.2 ⁇ a ⁇ 0.7 and the oxygen (O) primitive ratio z is 0 ⁇ z ⁇ 0.2, and the B layer is the A layer.
  • the hardness H of the film of the drill of the comparative product 3 is 25.3 GPa, which is small compared to the test product, and the wear width after drilling 5000 holes is 0.622 mm. It was determined to pass. In the cutting test, since the corner portion of the drill was broken after 2799 holes were drilled, continuous use was impossible.
  • the atomic ratio a of chromium (Cr) related to the A layer 24 is 0.2 or more, the atomic ratio z of oxygen (O) is 0.2 or less, and the film pressure D1 related to the A layer 24 is 500 nm or less. It is verified that the B layer 25 is inserted and formed at the thin film interface of the A layer 24, and the A layer 24 and the B layer 25 should be alternately laminated. The significance of the requirements required for this was confirmed.
  • Comparative product 4 is a stack of two or more alternating layers of 1 nm thick A layer made of Ti 0.73 C 0.1 N 0.15 O 0.02 and 2 nm thick B layer made of (Ti 0.45 Si 0.55 ) 0.85 N 0.15.
  • the atomic ratio f of silicon (Si) in the B layer is 0.55 and the atomic ratio g of nitrogen (N) is 0.15
  • the atomic ratio f of silicon (Si) in the B layer of the hard coating 10 0 ⁇ f ⁇ 0.4
  • the atomic ratio g of nitrogen (N) is 0.4 ⁇ g ⁇ 0.6
  • the thickness of the A layer is equal to the thickness D1 of the A layer 24 according to the hard coating 10.
  • the hardness H of the film of the drill of the comparative product 4 is 21.0 GPa, which is a small value compared to the test product, and the wear width (mm) after drilling 5000 holes is 0.550 mm, compared with the test product. It was a large value and was judged to be unacceptable. As shown in FIG. 6, the wear width exceeds 0.1 mm after drilling 2000 holes, and then the wear width increases rapidly as the number of drilled holes increases, and the wear width at the corner of the drill after drilling 3619 holes. Became too large for continuous use.
  • the atomic ratio a of chromium (Cr) in the A layer 24 is 0.2 or more
  • the atomic ratio b of molybdenum (Mo) is 0.05 or more
  • carbon (C), nitrogen (N), and oxygen ( O) The sum of atomic ratios x + y + z is 0.3 or more
  • the atomic ratio f of silicon (Si) related to the B layer 25 is 0.4 or less
  • the atomic ratio g of nitrogen is 0.4 or more
  • the film related to the A layer 24 It was verified that the thickness D1 should be 2 nm or more, and the significance of the numerical range required for the hard coating 10 according to the present invention was confirmed.
  • Comparative product 5 is composed of two alternating layers of 800 nm thick A layers composed of (Ti 0.1 Cr 0.5 Mo 0.4 ) 0.55 N 0.45 and 600 nm thick B layers composed of (Ti 0.7 Si 0.3 ) 0.6 N 0.4. It is a drill coated with a multilayer film with a total film thickness of 7.00 ⁇ m formed by laminating more than one layer, and contains hard titanium (Ti) and no oxygen (O) in the A layer. An element titanium (Ti) different from the thin film composition related to the A layer 24 of the coating 10 is contained, and the atomic ratio z of oxygen (O) deviates from 0 ⁇ z ⁇ 0.2.
  • the respective film thicknesses deviate from the range of 2 nm to 500 nm of the film thickness D1 related to the A layer 24 of the hard coating 10 and the film thickness D2 of 1 nm to 500 nm related to the B layer 25. Therefore, although the hardness H of the film of the drill of the comparative product 5 was 36.6 GPa, the wear width (mm) after processing 5000 holes is 0.369 mm, which is a large value compared with the test product and is rejected. It was determined. As shown in FIG. 6, the wear width exceeds 0.1 mm after drilling 2000 holes, and the wear width gradually increases after that, and the corner of the drill breaks after drilling 4571 holes, and continuous use is impossible. became.
  • the atomic ratio z of oxygen (O) related to the A layer 24 should be larger than 0, the film thickness D1 related to the A layer 24 should be 500 nm or less, and the film thickness D2 related to the B layer 25 should be 500 nm or less. And the significance of the numerical range required for the hard coating 10 according to the present invention was confirmed.
  • Comparative product 6 is a 650 nm thick A layer made of (Ti 0.5 Cr 0.15 Mo 0.2 W 0.15 ) 0.25 C 0.1 N 0.2 O 0.45 and a 1 nm thick B layer made of (Ti 0.55 Si 0.45 ) 0.75 N 0.25.
  • Ti titanium
  • Cr chromium
  • the ratio a is 0.15
  • the atomic ratio z of oxygen (O) is 0.45
  • the sum x + y + z of the atomic ratios of carbon (C), nitrogen (N), and oxygen (O) is 0.75.
  • elemental titanium (Ti) different from the thin film composition related to the A layer 24 of the hard coating 10 is contained, the atomic ratio a of chromium (Cr) is 0.2 ⁇ a ⁇ 0.7, oxygen (O) 0 ⁇ z ⁇ 0.2 of the atomic ratio z, and the sum of the atomic ratios of carbon (C), nitrogen (N), and oxygen (O) x + + Z of 0.3 ⁇ x + y + z ⁇ 0.6, and in the B layer, the atomic ratio f of silicon (Si) is 0.45 and the atomic ratio g of nitrogen (N) is 0.25.
  • the film thickness of the A layer deviates from 0 ⁇ f ⁇ 0.4 of the atomic ratio f of silicon (Si) in the B layer and 0.4 ⁇ g ⁇ 0.6 of the atomic ratio g of nitrogen (N). However, it deviates from the range of 2 nm or more and 500 nm or less of the film thickness D1 related to the A layer 24 of the hard coating 10. Therefore, the hardness H of the film of the drill of the comparative product 6 was 39.4 GPa, but the wear width (mm) after processing 5000 holes is 0.394 mm, which is a large value compared to the test product and is rejected. It was determined. In the cutting test, the corner portion of the drill broke after 1100 holes were drilled, making continuous use impossible.
  • the atomic ratio a of chromium (Cr) in the A layer 24 is 0.2 or more, the atomic ratio z of oxygen (O) is 0.2 or less, carbon (C), nitrogen (N), and oxygen (
  • the sum x + y + z of the atomic ratio of O) is 0.6 or less, the atomic ratio f of silicon (Si) according to the B layer 25 is 0.4 or less, the atomic ratio g of nitrogen is 0.4 or more, and the film according to the A layer 24 It was verified that the thickness D1 should be 500 nm or less, and the significance of the numerical range according to the present invention was confirmed.
  • the drills 12 of the test products 1 to 35 shown in Table 2 have a large value in the film hardness H and a small wear width (mm) after processing 5000 holes. A value was obtained, indicating high hardness and good wear resistance.
  • the drills of the comparative products 1 to 6 that deviate from the ranges of the thin film composition, the atomic ratio of each element, the respective film thicknesses and the total film thickness required for the hard coating 10 Although the hardness was 30 GPa or more, the wear width (mm) after drilling 5000 holes was a large value as compared with the test products 1 to 35, and it did not satisfy both hardness and wear resistance.
  • FIG. 6 is a photograph of a cross section of the A layer 24 in the hard coating 10 of the test product 1 taken with a transmission electron microscope (TEM).
  • crystal layers ( ⁇ - (Cr, Mo, W, V) N, ⁇ -Mo 2 N, etc.) 40 composed of fine crystal grains, which are regions where lattice fringes in FIG. 6 are observed.
  • oxygen multiphase structure of the amorphous phase 42 containing (O 2) has been formed which is the other area.
  • the hardness H of the film is as high as 30.0 GPa. 24, since the amorphous phase 42 containing oxygen (O 2 ) is present, the formation of molybdenum (Mo), tungsten (W) and vanadium (V) oxides due to wear is promoted, so that low wear and welding resistance are achieved. As a result, the wear width after drilling 5000 holes is 0.125 mm and has good wear resistance.
  • the A layer 24 is formed with a microstructure made of oxides of Mo, W and V, oxycarbides, oxynitrides or oxycarbonitrides, so that the hardness of the coating is increased, and Mo, W and V Oxide, oxycarbide, oxynitride, or oxycarbonitride has solid lubricity, so that the lubricity of the film is improved. Can do.
  • the A layer 24 has a multiphase structure in which the crystal phase 40 and the amorphous phase 42 are mixed.
  • a fine NaCl phase crystal phase ( ⁇ - (Cr, Mo, W, V) N, ⁇ -Mo 2 N, etc.) composed of Mo, W and V oxycarbides, oxynitrides or oxycarbonitrides. )
  • the stacking order of the A layer 24 and the B layer 25 in the hard coating 10 is B layer 25, A layer 24,..., B layer from the tool base material 22 side as shown in FIG. 25 and the A layer 24 in this order. That is, the base layer of the hard coating 10 (the lowermost layer in contact with the tool base material 22) is the B layer 25, and the surface layer (the uppermost layer of the hard coating 10) is the A layer 24. 24 is not necessarily limited to such a configuration, and the base layer may be the A layer 24.
  • the hard coating 10 is coated with the drill 12, but is not limited to this.
  • a cutting tool such as an end mill, a tap, or a die, or a metal such as punching or bending. You may coat
  • the hard coating 10 is coated with the sputtering apparatus 26 when the drill 12 is formed.
  • the present invention is not limited to this.
  • PVD method physical coating method
  • CVD method chemical vapor deposition method
  • plasma CVD method or thermal CVD method may be used to coat the hard coating 10.
  • Hard coating hard lubricating coating
  • Drill hard lubricant coated tool

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

硬質且つ耐摩耗性を有する硬質潤滑被膜および硬質潤滑被膜被覆工具を提供する。 (CrMo1-x-y-zの酸炭化物、酸窒化物または酸炭窒化物から成るA層24と、(Ti1-fSi1-gから成るB層25とが、交互に2層以上積層されて形成されるものであり、A層24に係る原子比aないしeおよびx、y、zおよびx+y+zは所定の範囲内にあるものであり、B層25に係る原子比fは0<f≦0.4、gは0.4≦g≦0.6であり、且つ、A層24の膜厚D1は2nm以上500nm以下、B層25の膜厚D2は1nm以上500nm以下、総膜厚Dは0.1μm以上10.0μm以下の範囲内であるため、硬質且つ耐摩耗性を有する硬質被膜10およびドリル12を得ることができる。

Description

硬質潤滑被膜および硬質潤滑被膜被覆工具
 本発明は、母材の表面に被覆して設けられる硬質潤滑被膜およびその硬質潤滑被膜が被覆された硬質潤滑被膜被覆工具に関し、特に、硬質及び耐摩耗性を共に向上させるための改良に関する。
 炭素鋼、ステンレス、および軟鋼などの材料を切削加工するドリルやタップ等の切削用工具には、被削材を切削するに必要な硬度や工具寿命を長くすることつながる耐摩耗性などの性質が求められる。そのため、切削工具の母材表面には、耐摩耗性を向上させるために硬質被膜が被覆して設けられる。この切削工具用硬質被膜としては、TiN系、CrN系およびTiAlN系などのコーティングが広く用いられており、その性能を更に向上させるために改良が図られている。例えば、特許文献1および特許文献2に記載された硬質積層被膜がそれである。
 たとえば特許文献1においては、TiaCrbAlcMo1-a-b-cの窒化物又は炭窒化物から成る第1被膜層と、TidCreAl1-d-eの窒化物又は炭窒化物から成る第2被膜層とが、交互に2層以上積層された多層膜から構成される硬質積層被膜が、また特許文献2においては、TiaCrbAlcMo1-a-b-cの窒化物又は炭窒化物から成る単層膜から構成される硬質積層被膜がそれぞれ提案されている。
特開2012-115924 特開2012-115923
 しかし、前述したような従来の技術により硬質積層被膜が形成された母材では、潤滑性や耐摩耗性が依然として十分ではなく、それ故に欠損や摩耗により母材から構成される切削工具は早期寿命に至る場合があるという問題があった。したがって、硬質且つ耐摩耗性を有する硬質積層被膜の開発が求められていた。
 本発明は、以上の事情を背景として為されたものであり、その目的とするところは、硬質且つ耐摩耗性を有する硬質潤滑被膜および硬質潤滑被膜被覆工具を提供することにある。
 本発明者等は、以上の事情を背景として鋭意研究するうち、クロム(Cr)、モリブデン(Mo)、タングステン(W)、バナジウム(V)およびホウ素(B)を構成元素とするA層の間に、チタン(Ti)、ケイ素(Si)を構成元素とするB層を挿入し、さらにA層に酸素を導入すると、Cr、Mo、WおよびVの酸炭化物、酸窒化物又は酸炭窒化物から成る結晶の微細組織が形成されるため、高硬度でありながら一層高潤滑性が得られるという事実を見出した。本発明はこのような知見に基づいて為されたものである。A層の上記結晶はB層との積層構造において層の厚みにより結晶成長が抑制されて被膜の硬度を高める微細な結晶構造が生成されるとともに、上記Cr、Mo、WおよびVの酸炭化物、酸窒化物又は酸炭窒化物の結晶は、モリブデン硫化物或いは窒化物と類似した固体潤滑構造を有しているために被膜の潤滑性が高められると推定される。
 すなわち、第1発明の要旨とするところは、母材の表面に被覆される硬質潤滑被膜であって、(CrMo1-x-y-zの酸炭化物、酸窒化物または酸炭窒化物から成るA層と、(Ti1-fSi1-gから成るB層とが、交互に2層以上積層された硬質潤滑被膜であって、前記A層に係る原子比aは0.2≦a≦0.7、bは0.05≦b≦0.6、cは0≦c≦0.3、dは0≦d≦0.05、e=1-a-b-c-dは0≦e≦0.05、xは0≦x≦0.6、yは0≦y≦0.6、zは0<z≦0.2、x+y+zは0.3≦x+y+z≦0.6であり、前記B層に係る原子比fは0<f≦0.4、gは0.4≦g≦0.6であり、且つ、前記A層の膜厚は2nm以上500nm以下、前記B層の膜厚は1nm以上500nm以下、総膜厚は0.1μm以上10.0μm以下の範囲内であることを特徴とする硬質潤滑被膜および硬質潤滑被膜が被覆された硬質潤滑被膜被覆工具にある。
 また、第2発明の要旨とするところは、第1発明の硬質潤滑被膜において、前記A層は、結晶相とアモルファス相とが混在した複相組織であることを特徴とする。
 第1発明の硬質潤滑被膜は、上述のように、(CrMo1-x-y-zの酸炭化物、酸窒化物または酸炭窒化物から成るA層と、(Ti1-fSi1-gから成るB層とが、交互に2層以上積層されて形成されたものであることから、積層されたA層にはMo、WおよびVの酸炭化物、酸窒化物または酸炭窒化物から成る微細組織が形成されることにより被膜の硬度が高められ、且つMo、WおよびVの酸化物、酸炭化物、酸窒化物または酸炭窒化物は固体潤滑性を有していることにより被膜の潤滑性が高められるので、硬質且つ耐摩耗性を有する硬質潤滑被膜および硬質潤滑被膜被覆工具を得ることができる。
 第2発明の硬質潤滑被膜によれば、A層は結晶相とアモルファス相とが混在した複相組織である。このように、Mo、WおよびVの酸炭化物、酸窒化物または酸炭窒化物から成る微細なNaCl構造の結晶相(δ-(Cr、Mo、W、V)Nおよびγ-MoNなど)とアモルファス相との複相組織が形成されることにより、硬質且つ耐摩耗性を有する硬質潤滑被膜および硬質潤滑被膜被覆工具を得ることができる。
本発明の硬質被膜が設けられたドリルを示す図で、(a)は正面図、(b)は先端側から見た拡大底面図である。 図1のドリルにおけるボデーの表面部分の積層構造を説明するための概念的な断面図である。 図1のドリルを形成するためのプロセスチャートである。 図1のドリルを形成する際に好適に用いられるスパッタリング装置を説明する概略構成図である。 硬質被膜の膜の硬さH(GPa)と硬質被膜が被覆されたドリルの切削試験により得られた摩耗幅(mm)を試験品1~35および比較品1~6ごとに示したグラフである。 切削試験における加工穴数の増加に伴う摩耗幅の推移を示すグラフである。 試験品1の硬質被膜におけるA層の透過型電子顕微鏡(TEM)により撮影した写真である。
 以下、本発明の硬質潤滑被膜の一実施例について図面を参照して詳細に説明する。
 図1は本発明の硬質被膜10が設けられたドリル12を示す図で、(a)は軸心Oと直角な方向から見た正面図、(b)は切れ刃14が設けられた先端側から見た拡大底面図である。このドリル12は、2枚刃のツイストドリルで、シャンク16およびボデー18を軸方向に一体に備えており、ボデー18には軸心Oの右まわりにねじれた一対の溝20が形成されている。ボデー18の先端には、溝20に対応して一対の切れ刃14が設けられており、シャンク16側から見て軸心Oの右まわりに回転駆動されることにより切れ刃14によって穴を切削加工するとともに、切屑が溝20を通ってシャンク16側へ排出される。なお、硬質被膜10は本発明の硬質潤滑被膜に、またドリル12は本発明の硬質潤滑被膜被覆工具にそれぞれ相当する。
 図2は、図1のドリル12におけるボデー18の表面部分の積層構造を説明するための概念的な断面図である。図2に示されるように、ドリル12の基材である超硬合金製の工具母材22の表面には、その表面を被覆して硬質被膜10がコーティングされている。図1の斜線部は、ドリル12においてこの硬質被膜10が設けられた部分が示されており、硬質被膜10は、好適には、ドリル12におけるボデー18に対応する工具母材22の表面に被覆して設けられる。なお、工具母材22は本発明の母材に相当する。
 図2から明らかなように、本実施例の硬質被膜10は、酸素元素を含むA層24とチタン(Ti)、ケイ素(Si)を含むB層25とが交互に2層以上積層された多層膜であり、斯かるA層24及びB層25は、以下に示す化学組成を満足する材料から構成される。すなわち、A層24は、(CrMo1-x-y-zの酸炭化物、酸窒化物または酸炭窒化物であって、原子比aは0.2≦a≦0.7、bは0.05≦b≦0.6、cは0≦c≦0.3、dは0≦d≦0.05、e=1-a-b-c-dは0≦e≦0.05、xは0≦x≦0.6、yは0≦y≦0.6、zは0<z≦0.2、x+y+zは0.3≦x+y+z≦0.6である。A層24において、モリブデン硫化物或いは窒化物と類似した固体潤滑構造を有するMo、WおよびVの酸化物、酸炭化物、酸窒化物または酸炭窒化物から成る微細組織が形成されており、A層24としては、たとえば(Cr0.4Mo0.60.480.40.12などが好適に例示される。また、B層25は、(Ti1-fSi1-gであって、原子比fは0<f≦0.4、gは0.4≦g≦0.6である。B層25はそのほとんどが結晶相から構成され硬い性質を有するとともに、ケイ素(Si)が含有されているこから良好な耐熱性を有する。硬質被膜10におけるB層25としては、(Ti0.9Si0.10.50.5などが好適に例示される。
 また、硬質被膜10において、A層24の膜厚D1は2nm以上500nm以下の範囲内、B層25の膜厚D2は1nm以上500nm以下の範囲内、硬質被膜10の総膜厚Dは0.1μm以上10.0μm以下の範囲内とされる。A層24及びB層25の積層数は、硬質被膜10の総膜厚D及び各被膜層24、25の膜厚D1、D2に係る上記数値範囲を逸脱しない限りにおいて適宜定められるが、単層よりも多層から構成される方がより硬度が上がるため、少なくともA層24およびB層25を1層ずつ有する多層膜とされる。また、硬質被膜10における複数のA層24の膜厚D1はすべて等しいものであってもよいし、上記数値範囲内で相互に異なるものであってもよい。同様に、硬質被膜10における複数のB層25の膜厚D2はすべて等しいものであってもよいし、上記数値範囲内で相互に異なるものであってもよい。
 また、硬質被膜10において、A層24およびB層25の積層順は、好適には、図2に示すように工具母材22側からB層25、A層24、・・・、B層25、A層24の順で積層されたものであり、硬質被膜10の表層(硬質被膜10の最上層すなわち工具母材22に対してさいごに被覆される層)はA層24とされる。A層24はB層25よりも摩擦係数が小さいことからA層24を上記表層とすることにより、硬質被膜10に良好な耐摩耗性を付することができる。
 次に、工具母材22のボデー18に対応する部分が硬質被膜10により被膜されたドリル12を形成する工程を図3および図4を参照して詳細に説明する。図3は図1のドリル12を形成するためのプロセスチャートであり、図4は図1のドリル12を形成する際に好適に用いられるスパッタリング装置26を説明する概略構成図(模式図)である。
 図3における母材の研削工程P1では、工具母材22の基材である超硬合金に対して研削が施されて工具母材22が得られる。たとえば、先ず工具母材22の大まかな形すなわち軸心を有するシャンク16およびボデー18となる円柱状の形状を形成するために超硬合金に対して円筒研が施される。次に、円柱状形状のボデー18に相当する長手方向の一端部側の外周側面に軸心Oの右回りにねじれた溝20などを形成する溝研が施される。最後に、被削材を切削するための切れ刃14が形成されるように上記長手方向の一端に対して刃研が施される。次に、洗浄工程P2では、硬質被膜10の被覆に先立って工具母材22の表面が洗浄される。エッチング工程P3では、スパッタリング装置26により前処理として工具母材22の表面が粗面化される。被膜10の成膜工程P4では、スパッタリング装置26により工具母材22のボデー18に対して硬質被膜10が被覆されてドリル12が形成される。検査工程P5では、硬質被膜10が被覆されたドリル12が切削工具としての使用基準を満たしているか否かの判定をするための検査が行われる。
 次に、スパッタリング装置26により行われる上記エッチング工程P3および上記被膜の成膜工程P4に関して図4を参照してさらに詳細に説明する。スパッタリング装置26はチャンバー28とチャンバー28の底面の略中心の貫通穴を通じて貫通される回転軸と回転軸のチャンバー28内部側の一端部に固設された円盤状の基台30とを備えている。先ず、円盤状の基台30上には、基台30の中心から等間隔の位置にある円周上において周方向に互いに等間隔で研削工程P1で得られた複数本の工具母材22が基台30に自転可能に設置される。図示しないヒーターにより工具母材22が約500℃まで昇温され、チャンバー28内が所定の圧力以下の真空度に保たれつつチャンバー28内にアルゴン(Ar)ガスが導入される。この状態でバイアス電源32により工具母材22にたとえば-200~-500Vのバイアス電圧がかけられ、Arガス中で発生したグロー放電により生じたArイオンによる工具母材22の表面のエッチング処理が行われる。エッチング処理終了後、チャンバー28内からArガスが排気される。上記のようにしてエッチング工程P3が終了した後、引き続き被膜の成膜工程P4が行われる。すなわち、硬質被膜10を構成するCr、Mo、Ti、Si等のターゲット34、35に電源36により一定のカソード電圧(たとえば-100~-500V程度)を印加するとともに、バイアス電源32により前記工具母材22に一定の負のバイアス電圧(例えば-100V程度)を印加することにより、アルゴンイオンAr+を上記ターゲット34、35に衝突させてCr、Mo、Ti,Si等の構成物質を叩き出しイオン化させる。上記電源36及びバイアス電源32により印加される電圧はコントローラ38により制御される。チャンバー28内には、アルゴンガスの他に窒素ガス(N2)、炭化水素ガス(CH4、C22)あるいは酸素ガス(O)の反応ガスが所定の流量、圧力で選択的に導入され、その窒素原子(N)、炭素原子(C)あるいは酸素原子(O)がターゲット34、35から叩き出されたCr、Mo、Ti、Siなどと結合してA層24としてたとえば(Cr0.4Mo0.60.480.40.12ような酸窒化物、(Cr0.25Mo0.450.280.020.630.20.17のような酸炭化物が形成され、B層25としてたとえば(Ti0.9Si0.10.50.5が形成される。そして、工具母材22は、チャンバー28に対して回転させられる基台30上においてさらに基台30に対して回転させられるため、それらは工具母材22の表面に均質な硬質被膜10として被覆させられる。ここで、Cr、Mo、W、VおよびBに係る組成比の制御および成膜時の各種反応ガスの制御により、あるいは成膜時の各種反応ガスの制御のみで、A層24およびB層25の被覆が成膜される。たとえば、B層25の被覆の際には反応ガスとしての炭化水素ガス(CH4、C22)および酸素(O)ガスは不要なため、炭化水素ガス(CH4、C22)および酸素(O)ガスのチャンバー28内への導入がオフとされることによりB層25が形成される。そして、反応ガスの切替えおよびターゲット34、35の選択に応じてA層24とB層25との工具母材22への交互の被覆が繰り返されて、最終的に硬質被膜10が被覆された超硬合金製のドリル12が形成される。
 このようにドリル12に被覆された硬質被膜10は、(CrMo1-x-y-zの酸炭化物、酸窒化物または酸炭窒化物であるA層24と(Ti1-fSi1-gの結晶層であるB層25とが交互に積層されて成る、すなわちA層24の薄膜界面にB層25が挿入されて成るものであるため、A層24およびB層25を構成する被膜粒子の粒径がさらに小さくなり微細組織構造が形成されることから、耐摩耗性に優れ、ひいてはドリル12の工具寿命の向上に帰結する。また、摩耗された際にMo、W、V酸化物の自己形成により固体潤滑粒子が生成するため、低摩耗性および耐溶着性に優れることから、結果としてドリル12の工具寿命を延ばすことができる。
 続いて、硬質被膜10が被覆されたドリル12すなわち本発明の効果を検証するために本発明者等が行った試験について図5ないし図7、表1および表2に基づいて詳細に説明する。
 先ず、表1に示されるA層24とB層25の薄膜組成および表2に示されるA層24とB層25の各膜厚D1、D2および総膜厚Dを有する被膜すなわち硬質被膜10に要求される条件を満たす被膜が図3の工程P2、P3およびP4を経て工具径6mmφの超硬ドリルに被覆され、試験品1~35のドリル12が形成された。また、比較のため、硬質被膜10の条件を満たさない被膜が、同様に前記工程P2、P3およびP4を経て工具径6mmφの超硬ドリルに被覆され、比較品1~6のドリルが形成された。
 表2における膜の硬さH(GPa)は以下のようにして求めた。試験品1~35および比較品1~6についてナノインデンテーション法にしたがってそれぞれの膜の硬さを測定した。すなわち、先端がダイヤモンドチップから成る三角錐型(バーコビッチ型)の圧子を硬質被膜が被覆された試験品1~35および比較品1~6の表面に荷重Pで押し込み、圧子の下の射影面積Aを算出した。荷重Pを面積Aで割ることで膜の硬さH(GPa)が算出される。なお、ナノインデンテーション法において、硬さは15~20GPaで柔らかい、30GPa以上で硬い、50~60GPaで脆いと評価される。
 また、表2における5000穴加工後摩耗幅(mm)は、試験品1~35のドリル12および比較品1~6のドリルについて以下の切削条件で切削試験を行うことで求めた。
[切削条件]
・試験品および比較品:超硬ドリル 工具径6(mmφ)
・被削材:S50C
・切削方法:穴加工
・切削速度:100(m/min)
・送り速度:955(mm/min)
・加工深さ:30mm止まり
・切削油:水溶性
 上記切削試験において、表2に示される5000穴加工後摩耗幅は、上記切削条件で5000穴加工後の試験品1~35のドリル12および比較品1~6のドリルにおける切れ刃14の外周部(コーナー部)の周方向の摩耗幅(mm)であり、摩耗幅が0.2mm以下の場合、合格と判定し、摩耗幅が0.2mmよりも大きい場合、不合格と判定した。また、表2の備考において継続可能とは、5000穴加工後のドリルにおいて、以後の切削が可能である場合であり、以後の切削が不可能な場合、切削試験に供されたドリルの状態を評価した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 図5はナノインデンテーション法により得られた膜の硬さH(GPa)と切削試験により得られた5000穴加工後摩耗幅(mm)を試験品1~35および比較品1~6ごとに示したグラフである。すなわち、図5は表2の膜の硬さH(GPa)および5000穴加工後摩耗幅(mm)をグラフ化したものである。なお、図5の横軸は試験品1~35および比較品1~6の番号を、左横軸は試験品1~35および比較品1~6の膜の硬さH(GPa)を、右横軸は試験品1~35および比較品1~6の5000穴加工後摩耗幅(mm)をそれぞれ示す。表2および図5に示されるように、硬質被膜10の要件を満たす被膜が被覆された試験品1~35の全てのドリル12において、その膜の硬さH(GPa)は29.0GPa以上、5000穴加工後摩耗幅(mm)は0.198mm以下であり切削試験において合格と評価された。なお、試験品1~35の全ては5000穴加工後においても、摩耗幅が小さいため以後の切削も継続可能であった。
 また、図6は切削試験における加工穴数の増加に伴う摩耗幅の推移を示すグラフであり、試験品3、17および22、比較品4および5がそれぞれ試験品1~35および比較品1~6を代表してプロットされている。図6に示されるように、試験品3、17および22は加工穴数の増加に伴い、なだらかに摩耗幅(mm)が増加し、5000穴加工後の摩耗幅は0.200mm程度に収まった。
 すなわち、上記の結果から、(CrMo1-x-y-zの酸炭化物、酸窒化物または酸炭窒化物から成るA層24と、(Ti1-fSi1-gから成るB層25とが、交互に2層以上積層されて成るものであり、A層24に係る原子比aは0.2≦a≦0.7、bは0.05≦b≦0.6、cは0≦c≦0.3、dは0≦d≦0.05、e=1-a-b-c-dは0≦e≦0.05、xは0≦x≦0.6、yは0≦y≦0.6、zは0<z≦0.2、x+y+zは0.3≦x+y+z≦0.6であり、B層25に係る原子比fは0<f≦0.4、gは0.4≦g≦0.6であり、且つ、A層24の膜厚D1は2nm以上500nm以下、B層25の膜厚D2は1nm以上500nm以下、総膜厚Dは0.1μm以上10.0μm以下の範囲内である硬質被膜10が被覆された試験品1~35のドリル12はその膜の硬さHが29.0GPa以上、且つその5000穴加工後摩耗幅(mm)は0.198mm以下であり、良好な値を示した。
 それに対して、比較品1は(Ti0.2Cr0.4Mo0.40.450.050.20.3から成る膜厚6300nmのA層の単層膜が被覆されたドリルであり、A層においてチタン(Ti)が含有されており、酸素の原子比zが0.3であるため、硬質被膜10のA層24に係る薄膜組成とは異なる元素チタン(Ti)が含有されており、且つ酸素(O)の原子比zの0<z≦0.2をそれぞれ逸脱し、B層がA層の薄膜界面に挿入形成されていないため、硬質被膜10のA層24とB層25とが交互に積層されて成るという要件から逸脱し、A層の膜厚が硬質被膜10に係るA層24の膜厚D1の2nm以上500nm以下の範囲を逸脱するものである。そのため、比較品1のドリルの膜の硬さHは31.0GPaであったが、5000穴加工後摩耗幅は0.428mmであり、試験品と比較して大きな値であり不合格と判定された。なお、切削試験において、2000穴加工後にドリルのコーナー部の摩耗幅が大きくなりすぎ、継続使用は不可能となった。この結果から特に、A層24に係る酸素(O)の原子比zは0.2以下、A層に係る膜厚D1は500nm以下とすべきであり、またB層25はA層24の薄膜界面に挿入形成され、A層24とB層25とが交互に積層されるべきであることが検証され、本発明に係る硬質被膜10に求められる要件の意義が確かめられた。
 また、比較品2はMo0.60.4から成る膜厚11500nmのA層の単層膜が被覆されたドリルであり、A層において、クロム(Cr)および酸素(O)が含有されておらず、モリブデン(Mo)の原子比bは1であるため、硬質被膜10のA層24に係るクロム(Cr)の原子比aの0.2≦a≦0.7、モリブデン(Mo)の原子比bの0.05≦b≦0.6、酸素(O)の原子比zの0<z≦0.2をそれぞれ逸脱し、B層がA層の薄膜界面に挿入形成されていないため、硬質被膜10のA層24とB層25とが交互に積層されて成るという要件から逸脱し、A層の膜厚と総膜厚が硬質被膜10に係るA層24の膜厚D1の2nm以上500nm以下、総膜厚Dの0.1μm以上10.0μm以下の範囲を逸脱するものである。そのため、比較品2のドリルの膜の硬さHは19.3GPaと試験品と比較して小さく、5000穴加工後摩耗幅は0.765mmであり、試験品と比較して大きな値であり不合格と判定された。なお、切削試験において、3100穴加工後にドリルのコーナー部の摩耗幅が大きくなりすぎ、継続使用は不可能となった。この結果から特に、A層24に係るクロム(Cr)の原子比aは0.2以上、モリブデン(Mo)の原子比bは0.6以下、酸素(O)の原子比zは0よりも大きく、A層24に係る膜厚D1は500nm以下、総膜厚Dは10.0μm以下とすべきであり、またB層25はA層24の薄膜界面に挿入形成され、A層24とB層25とが交互に積層されるべきであることが検証され、本発明に係る硬質被膜10に求められる要件の意義が確かめられた。
 また、比較品3は(Ti0.5Mo0.50.40.10.20.3から成る膜厚8500nmのA層の単層膜が被覆されたドリルであり、A層において、チタン(Ti)が含有されており、クロム(Cr)が含有されておらず、酸素(O)の原子比zが0.3であるため、硬質被膜10のA層24に係る薄膜組成とは異なる元素チタン(Ti)が含有されており、且つクロム(Cr)の原子比aの0.2≦a≦0.7、酸素(O)の原始比zの0<z≦0.2を逸脱し、B層がA層の薄膜界面に挿入形成されていないため、硬質被膜10のA層24とB層25とが交互に積層されて成るという要件から逸脱し、A層の膜厚が硬質被膜10に係るA層24の膜厚D1の2nm以上500nm以下の範囲を逸脱するものである。そのため、比較品3のドリルの膜の硬さHは25.3GPaと試験品と比較して小さく、5000穴加工後摩耗幅は0.622mmであり、試験品と比較して大きな値であり不合格と判定された。なお、切削試験において、2799穴加工後にドリルのコーナー部が折損したことから、継続使用は不可能となった。この結果から特に、A層24に係るクロム(Cr)の原子比aは0.2以上、酸素(O)の原子比zは0.2以下、A層24に係る膜圧D1は500nm以下とすべきであり、またB層25はA層24の薄膜界面に挿入形成され、A層24とB層25とが交互に積層されるべきであることが検証され、本発明に係る硬質被膜10に求められる要件の意義が確かめられた。
 また、比較品4はTi0.730.10.150.02から成る膜厚1nmのA層と、(Ti0.45Si0.550.850.15から成る膜厚2nmのB層とが、交互に2層以上積層して形成された総膜厚5.00μmの多層膜が被覆されたドリルであり、A層においてチタン(Ti)が含有されており、クロム(Cr)およびモリブデン(Mo)が含有されておらず、炭素(C)と窒素(N)と酸素(O)の原子比の総和x+y+zが0.27であるため、硬質被膜10のA層24に係る薄膜組成とは異なる元素チタン(Ti)が含有されており、且つクロム(Cr)の原子比aの0.2≦a≦0.7、モリブデン(Mo)の原子比bの0.05≦b≦0.6、炭素(C)と窒素(N)と酸素(O)の原子比の総和x+y+zの0.3≦x+y+z≦0.6を逸脱し、B層においてケイ素(Si)の原子比fが0.55、窒素(N)の原子比gが0.15であるため、硬質被膜10のB層に係るケイ素(Si)の原子比fの0<f≦0.4、窒素(N)の原子比gの0.4≦g≦0.6を逸脱し、A層の膜厚が硬質被膜10に係るA層24の膜厚D1の2nm以上500nm以下の範囲を逸脱するものである。そのため、比較品4のドリルの膜の硬さHは21.0GPaと試験品と比較して小さな値となり、5000穴加工後摩耗幅(mm)は0.550mmであり、試験品と比較して大きな値であり不合格と判定された。なお、図6に示されるように、2000穴加工後に摩耗幅は0.1mmを超え、その後加工穴数の増加に伴い摩耗幅は急激に大きくなり、3619穴加工後にドリルのコーナー部の摩耗幅が大きくなりすぎ、継続使用は不可能となった。この結果から特に、A層24に係るクロム(Cr)の原子比aは0.2以上、モリブデン(Mo)の原子比bは0.05以上、炭素(C)と窒素(N)と酸素(O)の原子比の総和x+y+zは0.3以上、B層25に係るケイ素(Si)の原子比fは0.4以下、窒素の原子比gは0.4以上、A層24に係る膜厚D1は2nm以上とすべきであることが検証され、本発明に係る硬質被膜10に求められる数値範囲の意義が確かめられた。
 また、比較品5は(Ti0.1Cr0.5Mo0.40.550.45から成る膜厚800nmのA層と、(Ti0.7Si0.30.60.4から成る膜厚600nmのB層とが、交互に2層以上積層して形成された総膜厚7.00μmの多層膜が被覆されたドリルであり、A層においてチタン(Ti)が含有されており、酸素(O)が含有されていないため、硬質被膜10のA層24に係る薄膜組成とは異なる元素チタン(Ti)が含有されており、酸素(O)の原子比zの0<z≦0.2を逸脱し、A層およびB層に係る各膜厚が硬質被膜10のA層24に係る膜厚D1の2nm以上500nm以下、B層25に係る膜厚D2の1nm以上500nm以下の範囲を逸脱するものである。そのため、比較品5のドリルの膜の硬さHは36.6GPaであったが、5000穴加工後摩耗幅(mm)は0.369mmであり、試験品と比較して大きな値であり不合格と判定された。なお、図6に示されるように、2000穴加工後に摩耗幅は0.1mmを超え、その後も摩耗幅は漸次大きくなり、4571穴加工後にドリルのコーナー部が折損し、継続使用は不可能となった。この結果から特に、A層24に係る酸素(O)の原子比zは0よりも大きく、A層24に係る膜厚D1は500nm以下、B層25に係る膜厚D2は500nm以下とすべきであることが検証され、本発明に係る硬質被膜10に求められる数値範囲の意義が確かめられた。
 また、比較品6は(Ti0.5Cr0.15Mo0.20.150.250.10.20.45から成る膜厚650nmのA層と、(Ti0.55Si0.450.750.25から成る膜厚1nmのB層とが、交互に2層以上積層して形成された総膜厚6.52μmの多層膜が被覆されたドリルであり、A層においてチタン(Ti)が含有されており、クロム(Cr)の原子比aは0.15であり、酸素(O)の原子比zは0.45であり、炭素(C)と窒素(N)と酸素(O)の原子比の総和x+y+zは0.75であるため、硬質被膜10のA層24に係る薄膜組成とは異なる元素チタン(Ti)が含有されており、クロム(Cr)の原子比aの0.2≦a≦0.7、酸素(O)の原子比zの0<z≦0.2、炭素(C)と窒素(N)と酸素(O)の原子比の総和x+y+zの0.3≦x+y+z≦0.6を逸脱し、B層においてケイ素(Si)の原子比fが0.45、窒素(N)の原子比gが0.25であるため、硬質被膜10のB層に係るケイ素(Si)の原子比fの0<f≦0.4、窒素(N)の原子比gの0.4≦g≦0.6を逸脱し、A層に係る膜厚が硬質被膜10のA層24に係る膜厚D1の2nm以上500nm以下の範囲を逸脱するものである。そのため、比較品6のドリルの膜の硬さHは39.4GPaであったが、5000穴加工後摩耗幅(mm)は0.394mmであり、試験品と比較して大きな値であり不合格と判定された。なお、切削試験において、1100穴加工後にドリルのコーナー部が折損し、継続使用は不可能となった。この結果から特に、A層24に係るクロム(Cr)の原子比aは0.2以上、酸素(O)の原子比zは0.2以下、炭素(C)と窒素(N)と酸素(O)の原子比の総和x+y+zは0.6以下、B層25に係るケイ素(Si)の原子比fは0.4以下、窒素の原子比gは0.4以上、A層24に係る膜厚D1は500nm以下とすべきことが検証され、本発明に係る数値範囲の意義が確かめられた。
 前記膜の硬さ試験および前記切削試験の結果から、表2に示された試験品1~35のドリル12は、膜の硬さHにおいて大きい値且つ5000穴加工後摩耗幅(mm)において小さな値が得られ、高硬度且つ良好な耐摩耗性を有することが示された。一方、硬質被膜10に要求される薄膜組成、各元素の原子比、各膜厚および総膜厚の範囲を逸脱する比較品1~6のドリルは、比較品1、5および6においては膜の硬さが30GPa以上であったが、5000穴加工後摩耗幅(mm)が試験品1~35と比較して大きな値であり、硬度および耐摩耗性の両方を充足するものではなかった。
 次に、高硬度且つ耐摩耗性に優れる試験品1~35のそれぞれの硬質被膜10におけるA層24について、透過型電子顕微鏡(TEM)により観察を行った。図6は試験品1の硬質被膜10におけるA層24の断面を透過型電子顕微鏡(TEM)により撮影した写真である。その結果、A層24においては、図6における格子縞が観察される領域である微細な結晶粒から成る結晶層(δ-(Cr、Mo、W、V)Nおよびγ-MoNなど)40と、それ以外の領域である酸素(O)を含むアモルファス相42との複相組織が形成されていた。このようなA層24を有する硬質被膜10が被覆されたドリル12は、微細な結晶粒から成る結晶層40が存在するため膜の硬さHが30.0GPaと高硬度であると共に、A層24において酸素(O)を含むアモルファス相42が存在するため、摩耗によるモリブデン(Mo)、タングステン(W)およびバナジウム(V)酸化物の形成が促進されることから低摩耗性および耐溶着性に優れ、ひいては5000穴加工後摩耗幅が0.125mmと良好な耐摩耗性を有する。
 上述のように、本実施例の試験品1~35のドリル12に被覆された硬質被膜10によれば、工具母材22の表面に設けられ、(CrMo1-x-y-zの酸炭化物、酸窒化物または酸炭窒化物から成るA層24と、(Ti1-fSi1-gから成るB層25とが、交互に2層以上積層されて形成されるものであり、A層24に係る原子比aは0.2≦a≦0.7、bは0.05≦b≦0.6、cは0≦c≦0.3、dは0≦d≦0.05、e=1-a-b-c-dは0≦e≦0.05、xは0≦x≦0.6、yは0≦y≦0.6、zは0<z≦0.2、x+y+zは0.3≦x+y+z≦0.6であり、B層25に係る原子比fは0<f≦0.4、gは0.4≦g≦0.6であり、且つ、A層24の膜厚D1は2nm以上500nm以下、B層25の膜厚D2は1nm以上500nm以下、総膜厚Dは0.1μm以上10.0μm以下の範囲内であるため、積層されたA層24にはMo、WおよびVの酸化物、酸炭化物、酸窒化物または酸炭窒化物から成る微細組織が形成されることにより被膜の硬度が高められ、且つMo、WおよびVの酸化物、酸炭化物、酸窒化物または酸炭窒化物は固体潤滑性を有していることにより被膜の潤滑性が高められるので、硬質且つ耐摩耗性を有する硬質被膜10およびドリル12を得ることができる。
 また、本実施例の試験品1~40のドリル12に被覆された硬質被膜10によれば、A層24は結晶相40とアモルファス相42とが混在した複相組織である。このように、Mo、WおよびVの酸炭化物、酸窒化物または酸炭窒化物から成る微細なNaCl構造の結晶相(δ-(Cr、Mo、W、V)Nおよびγ-MoNなど)40とアモルファス相42との複相組織が形成されることにより、硬質且つ耐摩耗性を有する硬質被膜10およびドリル12を得ることができる。
 以上、本発明を表及び図面を参照して詳細に説明したが、本発明は更に別の態様でも実施でき、その主旨を逸脱しない範囲で種々変更を加え得るものである。
 たとえば、前述の実施例では、硬質被膜10におけるA層24及びB層25の積層順は、図2に示すように工具母材22側からB層25、A層24、・・・、B層25、A層24の順で積層されたものである。すなわち、硬質被膜10の基層(工具母材22と接する最下層)はB層25とされ、表層(硬質被膜10の最上層)はA層24とされたものであるが、上記表層がA層24とされるに限り必ずしも斯かる構成には限定されず、上記基層がA層24とされたものであってもよい。
 また、前述の実施例では、硬質被膜10はドリル12に被覆されたものであったが、これに限定されるものではなく、たとえばエンドミル、タップ、ダイスなど切削工具や、打ち抜き、曲げなどの金属加工用金型などの金属加工工具に被覆されるものであってもよい。
 また、前述の実施例では、ドリル12の形成に際し、硬質被膜10はスパッタリング装置26により被覆されるものであったが、これに限定されるものではなく、たとえば、アークイオンプレーティング法などの他の物理蒸着法(PVD法)や、プラズマCVD法、熱CVD法などの化学蒸着法(CVD法)を用いて硬質被膜10が被覆されてもよい。
10:硬質被膜(硬質潤滑被膜)
12:ドリル(硬質潤滑被膜被覆工具)
24:A層
25:B層

Claims (3)

  1.  母材の表面に被覆される硬質潤滑被膜であって、
     (CrMo1-x-y-zの酸炭化物、酸窒化物または酸炭窒化物から成るA層と、(Ti1-fSi1-gから成るB層とが、交互に2層以上積層された硬質潤滑被膜であって、
     前記A層に係る原子比aは0.2≦a≦0.7、bは0.05≦b≦0.6、cは0≦c≦0.3、dは0≦d≦0.05、e=1-a-b-c-dは0≦e≦0.05、xは0≦x≦0.6、yは0≦y≦0.6、zは0<z≦0.2、x+y+zは0.3≦x+y+z≦0.6であり、
     前記B層に係る原子比fは0<f≦0.4、gは0.4≦g≦0.6であり、
     且つ、前記A層の膜厚は2nm以上500nm以下、前記B層の膜厚は1nm以上500nm以下、総膜厚は0.1μm以上10.0μm以下の範囲内であることを特徴とする硬質潤滑被膜。
  2.  前記A層は、結晶相とアモルファス相とが混在した複相組織であることを特徴とする請求項1に記載の硬質潤滑被膜。
  3.  請求項1または2に記載の硬質潤滑被膜により被覆されたことを特徴とする硬質潤滑被膜被覆工具。
PCT/JP2013/082284 2013-11-29 2013-11-29 硬質潤滑被膜および硬質潤滑被膜被覆工具 WO2015079587A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2013/082284 WO2015079587A1 (ja) 2013-11-29 2013-11-29 硬質潤滑被膜および硬質潤滑被膜被覆工具
JP2015550529A JP6168540B2 (ja) 2013-11-29 2013-11-29 硬質潤滑被膜および硬質潤滑被膜被覆工具

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/082284 WO2015079587A1 (ja) 2013-11-29 2013-11-29 硬質潤滑被膜および硬質潤滑被膜被覆工具

Publications (1)

Publication Number Publication Date
WO2015079587A1 true WO2015079587A1 (ja) 2015-06-04

Family

ID=53198571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082284 WO2015079587A1 (ja) 2013-11-29 2013-11-29 硬質潤滑被膜および硬質潤滑被膜被覆工具

Country Status (2)

Country Link
JP (1) JP6168540B2 (ja)
WO (1) WO2015079587A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113574201A (zh) * 2019-03-20 2021-10-29 日立金属株式会社 被覆模具、被覆模具的制造方法及硬质皮膜形成用靶

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000326108A (ja) * 1999-05-19 2000-11-28 Hitachi Tool Engineering Ltd 硬質皮膜被覆工具
JP2008240157A (ja) * 2008-04-21 2008-10-09 Kobe Steel Ltd 成形用冶工具用硬質皮膜被覆部材および成形用冶工具
WO2010150411A1 (ja) * 2009-06-26 2010-12-29 オーエスジー株式会社 硬質被膜、および硬質被膜被覆工具
WO2013140989A1 (ja) * 2012-03-19 2013-09-26 シチズンホールディングス株式会社 硬質装飾部材

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000326108A (ja) * 1999-05-19 2000-11-28 Hitachi Tool Engineering Ltd 硬質皮膜被覆工具
JP2008240157A (ja) * 2008-04-21 2008-10-09 Kobe Steel Ltd 成形用冶工具用硬質皮膜被覆部材および成形用冶工具
WO2010150411A1 (ja) * 2009-06-26 2010-12-29 オーエスジー株式会社 硬質被膜、および硬質被膜被覆工具
WO2013140989A1 (ja) * 2012-03-19 2013-09-26 シチズンホールディングス株式会社 硬質装飾部材

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113574201A (zh) * 2019-03-20 2021-10-29 日立金属株式会社 被覆模具、被覆模具的制造方法及硬质皮膜形成用靶

Also Published As

Publication number Publication date
JP6168540B2 (ja) 2017-07-26
JPWO2015079587A1 (ja) 2017-03-16

Similar Documents

Publication Publication Date Title
JP7083448B2 (ja) 被覆切削工具
JP5008984B2 (ja) 表面被覆切削工具および表面被覆切削工具の製造方法
JP5382581B2 (ja) 表面被覆切削工具
JP5382580B2 (ja) 表面被覆切削工具
JP6722410B2 (ja) ドリル
JP5483067B2 (ja) 表面被覆切削工具
WO2013153614A1 (ja) 切削工具用硬質被膜及び硬質被膜被覆切削工具
JP5003947B2 (ja) 表面被覆切削工具
JP5023369B2 (ja) 表面被覆切削工具
JP5483071B2 (ja) 表面被覆切削工具
JP6168539B2 (ja) 硬質潤滑被膜および硬質潤滑被膜被覆工具
JP5070622B2 (ja) 表面被覆切削工具
JP5376375B2 (ja) 表面被覆切削工具
JP6168540B2 (ja) 硬質潤滑被膜および硬質潤滑被膜被覆工具
JP6099225B2 (ja) 硬質潤滑被膜および硬質潤滑被膜被覆工具
JP6099224B2 (ja) 硬質潤滑被膜および硬質潤滑被膜被覆工具
JP5376374B2 (ja) 表面被覆切削工具
JP5267985B2 (ja) 表面被覆切削工具
JP2010076082A (ja) 表面被覆切削工具
WO2024079891A1 (ja) 切削工具
WO2024079889A1 (ja) 切削工具
JP5267986B2 (ja) 表面被覆切削工具
JP2010082704A (ja) 表面被覆切削工具
JP6168541B2 (ja) 硬質潤滑被膜および硬質潤滑被膜被覆工具
WO2013145233A1 (ja) 切削工具用硬質被膜及び硬質被膜被覆切削工具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13898171

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015550529

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13898171

Country of ref document: EP

Kind code of ref document: A1