WO2013145233A1 - 切削工具用硬質被膜及び硬質被膜被覆切削工具 - Google Patents

切削工具用硬質被膜及び硬質被膜被覆切削工具 Download PDF

Info

Publication number
WO2013145233A1
WO2013145233A1 PCT/JP2012/058450 JP2012058450W WO2013145233A1 WO 2013145233 A1 WO2013145233 A1 WO 2013145233A1 JP 2012058450 W JP2012058450 W JP 2012058450W WO 2013145233 A1 WO2013145233 A1 WO 2013145233A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating layer
coating
cutting tool
hard coating
range
Prior art date
Application number
PCT/JP2012/058450
Other languages
English (en)
French (fr)
Inventor
正俊 櫻井
功基 村澤
Original Assignee
オーエスジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オーエスジー株式会社 filed Critical オーエスジー株式会社
Priority to JP2014507199A priority Critical patent/JP5762626B2/ja
Priority to EP12873015.7A priority patent/EP2832479B1/en
Priority to PCT/JP2012/058450 priority patent/WO2013145233A1/ja
Publication of WO2013145233A1 publication Critical patent/WO2013145233A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/067Borides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/341Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one carbide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/347Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with layers adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0057Reactive sputtering using reactive gases other than O2, H2O, N2, NH3 or CH4
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target

Definitions

  • the present invention relates to a hard coating for a cutting tool provided on the surface of a cutting tool and a hard coating coated cutting tool provided with the hard coating, and in particular, an improvement for improving both wear resistance and welding resistance. About.
  • Cutting tools such as drills and taps are provided with a hard coating to improve wear resistance.
  • a hard coating for cutting tools TiN-based, TiCN-based, TiAlN-based, and AlCrN-based coatings are widely used, and improvements are made to further improve the performance.
  • it is the hard laminated film described in Patent Document 1.
  • the welding resistance may be insufficient depending on the type of the work material and the cutting conditions. That is, the tool life may be shortened by welding of the work material or the like, and there is room for improvement. For this reason, the development of a hard coating for a cutting tool and a hard coating coated cutting tool having both excellent wear resistance and welding resistance has been demanded.
  • the present invention has been made in the background of the above circumstances, and its object is to provide a hard coating for a cutting tool and a hard coating-coated cutting tool having excellent wear resistance and welding resistance. There is.
  • the gist of the first invention is a hard coating for a cutting tool provided on the surface of the cutting tool, the first coating layer made of Ag, and Al 1.
  • -ab Cr a M b is a multilayer film in which two or more second coating layers made of nitride, oxide, carbide, carbonitride, or boride are alternately laminated, and the second coating layer M includes at least one of Si, V, and W, the atomic ratio a relating to the second coating layer is in the range of 0.2 to 0.5, and b is greater than 0 and 0.3 or less.
  • the lamination period of the first coating layer and the second coating layer is in the range of 0.2 nm to 100 nm, and the total film thickness is in the range of 0.2 ⁇ m to 10.0 ⁇ m. It is characterized by being within.
  • the gist of the second invention is a hard film-coated cutting tool characterized in that the hard film for a cutting tool according to the first invention is provided on the surface. .
  • a first coating layer made of Ag, nitrides of Al 1-ab Cr a M b , oxides, carbides, carbonitrides, or a second coating of boride
  • the layer is a multilayer film in which two or more layers are alternately stacked, M related to the second coating layer includes at least one of Si, V, and W, and the atomic ratio related to the second coating layer a is in the range of 0.2 or more and 0.5 or less, b is in the range of greater than 0 and 0.3 or less, and the lamination period of the first coating layer and the second coating layer is 0.2 nm or more and 100 nm.
  • the friction coefficient and cutting resistance can be reduced by containing Ag in the coating, A film having excellent lubricity and welding resistance and a high hardness can be obtained. That is, it is possible to provide a hard coating for a cutting tool that has both excellent wear resistance and welding resistance.
  • the hard coating for a cutting tool of the first invention is provided on the surface, the friction coefficient and cutting resistance are reduced by containing Ag in the coating. It is possible to obtain a coating film having excellent lubricity and welding resistance and having high hardness. That is, it is possible to provide a hard coating coated cutting tool having both excellent wear resistance and welding resistance.
  • the hard coating for a cutting tool of the present invention is a surface coating of various cutting tools such as a rotating cutting tool such as an end mill, a drill, a face mill, a total mill, a reamer, a tap, and a non-rotating cutting tool such as a bite. It is preferably applied to.
  • Cemented carbide or high-speed tool steel is preferably used as the material of the tool base, that is, the member on which the hard coating is provided, but other materials may be used, such as cermet, ceramics, polycrystalline diamond, single crystal diamond,
  • the hard coating for cutting tools of the present invention is widely applied to cutting tools composed of various materials such as crystal CBN and single crystal CBN.
  • the hard coating for a cutting tool of the present invention is provided so as to cover a part or all of the surface of the cutting tool, and is preferably provided on a blade part involved in cutting in the cutting tool. More preferably, it is provided so as to cover at least the cutting edge or rake face of the blade portion.
  • the second membrane layer is, when the M Si, V, intended to contain at least one of W, a nitride of Al 1-ab Cr a M b , oxides, carbides, carbonitrides, or borides Or a mutual solid solution thereof. Specifically, it is made of AlCrSiN, AlCrSiO, AlCrSiB, AlCrSiVN, AlCrSiWCN, AlCrSiVWB, AlCrVN, AlCrVC, AlCrVWO, AlCrWN, AlCrWCN, or the like.
  • the film thicknesses of the first film layer and the second film layer are individually determined according to the composition, etc., but when they are repeatedly laminated, the film thickness may be constant, It can also be changed in stages.
  • the average film thickness of the first coating layer and the second coating layer varies depending on the member to be coated, the composition of the coating, and the like, but is preferably in the range of about 0.1 to 50 nm, for example.
  • the first coating layer and the second coating layer may be formed by, for example, arc ion plating, ion beam deposition, sputtering, PLD (Pulse Laser Deposition), IBAD (Ion Beam Assisted Deposition), or the like. Although it is suitably provided by the PVD method, other film forming methods can also be adopted.
  • FIG. 1 is a view showing a drill 10 which is an embodiment of a hard film-coated cutting tool of the present invention, and is a front view seen from a direction perpendicular to an axis O.
  • FIG. FIG. 2 is an enlarged bottom view of the drill 10 shown in FIG. 1 as viewed from the tip side where the cutting edge 12 is provided (that is, in the direction indicated by the arrow II).
  • the drill 10 of this embodiment shown in FIGS. 1 and 2 is a two-blade twist drill, and is integrally provided with a shank 14 and a body 16 in the direction of the axis O. In the body 16, a pair of grooves 18 twisted clockwise around the axis O are formed.
  • a pair of cutting edges 12 are provided at the tip of the body 16 corresponding to the pair of grooves 18, and the drill 10 is driven to rotate clockwise around the axis O as viewed from the shank 14 side. Accordingly, a hole is cut in the work material by the cutting edge 12, and chips generated when the hole is cut are discharged through the groove 18 to the shank 14 side. .
  • FIG. 3 is an enlarged sectional view of the vicinity of the surface of the body 16 of the drill 10 and illustrates the configuration of the hard coating 22 which is an embodiment of the hard coating for a cutting tool of the present invention.
  • the drill 10 is configured, for example, by coating the surface of a tool base material (tool base material) 20 made of high-speed tool steel (high speed) with a hard coating 22 as shown in FIG.
  • the hard coating 22 is a multilayer film in which two or more first coating layers 24 and second coating layers 26 are alternately stacked on the surface of the tool base 20.
  • the first coating layer 24 is the lowermost layer provided on the surface of the tool base 20, and the second coating layer 26 is the uppermost layer corresponding to the surface (outer surface) of the hard coating 22.
  • the said 2nd coating layer 26 may comprise a lowermost layer, and the said 1st coating layer 24 may comprise an uppermost layer, respectively.
  • the first coating layer 24 is made of Ag containing inevitable impurities.
  • the second coating layer 26, a nitride of Al 1-ab Cr a M b including unavoidable impurities, oxides, carbides, carbonitrides, or borides, or a their mutual solid solutions.
  • This M includes at least one of Si, V, and W.
  • the second coating layer 26 is made of AlCrSiN, AlCrSiO, AlCrSiB, AlCrSiVN, AlCrSiWCN, AlCrSiVWB, AlCrVN, AlCrVC, AlCrVWO, AlCrWN, AlCrWCN, or the like.
  • the atomic ratio (mixed crystal ratio) a of the second coating layer 26 is in the range of 0.2 to 0.5 (0.2 ⁇ a ⁇ 0.5), and b is greater than 0 and 0.3 or less. (0 ⁇ b ⁇ 0.3).
  • the first coating layer 24 and the second coating layer 26 are preferably formed with a predetermined constant film thickness (average film thickness).
  • the average film thickness of each of the first coating layer 24 and the second coating layer 26 is individually set according to the member to be coated, the composition of the coating, and the like.
  • the average film thickness of the first coating layer 24 is The thickness d1 is appropriately determined within the range of 0.1 to 25.0 nm, and the average film thickness d2 of the second coating layer 26 is appropriately determined within the range of 0.1 to 75.0 nm.
  • the lamination period d3 of the first coating layer 24 and the second coating layer 26 is in the range of 0.2 nm to 100 nm.
  • the number of layers of the first coating layer 24 and the second coating layer 26 (the total number of layers of the first coating layer 24 and the second coating layer 26) is preferably in the range of 44 to 6500. That is, the number of layers of the first coating layer 24 and the second coating layer 26 is preferably in the range of 22-3250.
  • the total film thickness D of the hard coating 22 is in the range of 0.2 ⁇ m to 10.0 ⁇ m.
  • FIG. 4 is a diagram for explaining an example of the coating method of the hard film 22.
  • the hard film 22 is coated on the drill 10 and the like under the control of the controller 36 using, for example, a sputtering apparatus 30 as shown in FIG.
  • a negative bias voltage is applied to the tool base material 20 disposed in the chamber 32 of the sputtering apparatus 30 by a bias power source 34.
  • positive argon ions Ar + collide with the tool base 20 and the surface of the tool base 20 is roughened.
  • a constant negative bias voltage for example, about ⁇ 50 to ⁇ 60 V
  • a target 38 such as AlCrSi constituting the second coating layer 26 of the hard coating 22.
  • a negative constant bias voltage for example, about ⁇ 100 V
  • argon ions Ar + are caused to collide with the target 38, thereby causing a constituent material such as AlCrSi. Is beaten.
  • a reactive gas such as nitrogen gas (N 2 ) or hydrocarbon gas (CH 4 , C 2 H 2 ) is introduced into the chamber 32 at a predetermined flow rate, and the nitrogen atom N or carbon atom C is introduced.
  • N 2 nitrogen gas
  • CH 4 , C 2 H 2 hydrocarbon gas
  • the second coating layer 26 made of AlCrSiN or the like is formed by forming a target corresponding to each of simple substances such as Al, Cr, and Si and performing sputtering simultaneously using the plurality of targets. May be.
  • a positive voltage may be applied to the tool base 20.
  • the first coating layer 24 and the second coating layer 26 are alternately attached to the surface of the tool base 20, whereby the hard coating 22 is applied to the surface of the tool base 20. Is formed.
  • FIG. 5 is a diagram showing the coating structure of the product of the present invention and the test product used in this test and the respective test results (number of processed holes and determination).
  • the inventors of the present invention have prepared a sample of the present invention 1 to 11 and test samples 1 to 6 by coating a hard drill having a tool diameter of 8.3 mm ⁇ with each coating structure and film thickness shown in FIG. Then, a cutting test was performed on each test product under the following cutting conditions. Among the samples shown in FIG.
  • the products 1 to 11 of the present invention correspond to the products of the present invention to which the hard coating 22 of this example is applied, and the samples 1 to 6 do not satisfy the requirements of the present invention (claims).
  • This corresponds to a non-invention product to which a hard coating is applied.
  • “A layer” and “B layer” in FIG. 5 correspond to the first coating layer 24 and the second coating layer 26, respectively.
  • the number of processed holes shown in FIG. 5 is the number of holes when the flank wear width is 0.2 mm, and the acceptance criterion is that the number of processed holes when the flank wear width is 0.2 mm is 20 or more. .
  • the present invention products 1 to 11, both the first coating layer made of Ag and (A layer) 24, a nitride of Al 1-ab Cr a M b , oxides, carbides, carbonitrides
  • the second coating layer (B layer) 26 made of nitride or boride is a multilayer film in which two or more layers are alternately stacked, and M related to the second coating layer 26 is at least one of Si, V, and W 1 is included, the atomic ratio a related to the second coating layer 26 is in the range of 0.2 to 0.5, b is greater than 0 and in the range of 0.3 or less, the first The lamination period d3 of the coating layer 24 and the second coating layer 26 is in the range of 0.2 nm to 100 nm, and the total film thickness D is in the range of 0.2 ⁇ m to 10.0 ⁇ m.
  • the hard coating 22 satisfying the requirements of claim 1 of the present invention is applied.
  • the flank wear width is 0.2 mm in any sample.
  • the number of processed holes is 20 holes or more, which satisfies the acceptance criteria.
  • the second coating layer 26 is made of AlCrSiN (composition Al 0.2 Cr 0.5 Si 0.3 ), the average thickness of the first coating layer 24 and the second coating layer 26 is 8.5 nm, and the stacking cycle is 17.
  • the invention product 5 having 0 nm, the number of layers of 650, and the total film thickness of 5.5 ⁇ m has 40 processed holes, and the second coating layer 26 is made of AlCrSiO (composition Al 0.3 Cr 0.5 Si 0.2 ), and the first coating
  • the product according to the present invention in which the average thickness of the layer 24 is 0.5 nm, the average thickness of the second coating layer 26 is 3.5 nm, the stacking period is 4.0 nm, the number of layers is 1000, and the total thickness is 2.0 ⁇ m.
  • the number of processed holes is 35
  • the second coating layer 26 is made of AlCrWCN (composition Al 0.6 Cr 0.3 SiW 0.1 )
  • the average thickness of the first coating layer 24 is 5.0 nm
  • the average of the second coating layer 26 Film thickness is 15.0 nm
  • stacking cycle is 20.0 nm
  • layer In the present invention 3 having a number of 325 and a total film thickness of 3.2 ⁇ m
  • the number of processed holes is 34
  • the second coating layer 26 is made of AlCrSiVWB (composition Al 0.5 Cr 0.3 SiVW 0.2 ).
  • Processed with Product 4 of the present invention having an average film thickness of 6.0 nm, an average film thickness of the second coating layer 26 of 3.0 nm, a stacking period of 9.0 nm, a number of layers of 545, and a total film thickness of 2.5 ⁇ m.
  • the number of holes is 32
  • the second coating layer 26 is made of AlCrVN (composition Al 0.3 Cr 0.4 V 0.3 )
  • the average thickness of the first coating layer 24 is 20.0 nm
  • the average thickness of the second coating layer 26 is Processing of the present invention product 6 with 40.0 nm, stacking cycle 60.0 nm, number of layers 44, and total film thickness 1.3 ⁇ m, and processing when both flank wear width is 0.2 mm
  • the number of holes is 30 holes or more, and especially shows good cutting performance Hunt.
  • the test product 1 has a total film thickness of 10.5 ⁇ m, and deviates from the range of the total film thickness of 0.2 ⁇ m or more and 10.0 ⁇ m or less, which is a requirement of claim 1 of the present invention.
  • the test product 2 has a total film thickness of 0.15 ⁇ m, and deviates from the range of the total film thickness of 0.2 ⁇ m or more and 10.0 ⁇ m or less which is a requirement of claim 1 of the present invention.
  • the second coating layer 26 is made of AlCrSiC (composition Al 0.6 Cr 0.1 Si 0.3 ), and the Cr atomic ratio a which is a requirement of claim 1 of the present invention is 0.2 or more and 0. It deviates from the range of 5 or less.
  • the test product 5 has a stacking period of 120.0 nm, which deviates from the range of the stacking period of 0.2 nm to 100 nm, which is a requirement of claim 1 of the present invention.
  • the second coating layer 26 is made of AlCrSiCN (composition Al 0.5 Cr 0.1 Si 0.4 ), and the atomic ratio a of Cr, which is a requirement of claim 1 of the present invention, is 0.2 or more and 0. It deviates from the range of 5 or less.
  • the number of holes processed was less than 20 when the flank wear width was 0.2 mm. It turns out that it is inferior to cutting performance compared with. This is considered to be because a hard coating that does not satisfy the requirements of claim 1 of the present invention has insufficient welding resistance, leading to an early life due to welding or peeling.
  • the first coating layer 24 made of Ag, nitrides of Al 1-ab Cr a M b , oxides, carbides, carbonitrides, or a second coating of boride
  • the layer 26 is a multilayer film in which two or more layers are alternately stacked, and M related to the second coating layer 26 includes at least one of Si, V, and W.
  • the atomic ratio a is in the range of 0.2 or more and 0.5 or less
  • b is in the range of greater than 0 and 0.3 or less
  • the lamination period d3 of the first coating layer 24 and the second coating layer 26 Is in the range of 0.2 nm or more and 100 nm or less
  • the total film thickness D is in the range of 0.2 ⁇ m or more and 10.0 ⁇ m or less. Therefore, the friction coefficient and cutting resistance can be obtained by containing Ag in the coating. , Which provides excellent lubricity and adhesion resistance and a high hardness coating. . That is, it is possible to provide a hard coating 22 for a cutting tool that has both excellent wear resistance and welding resistance.
  • the hard coating 22 is a drill 10 as a super hard coating coated cutting tool provided on the surface, the friction coefficient and cutting resistance can be reduced by containing Ag in the coating. It can be reduced, and a coating with high hardness and excellent lubricity and welding resistance can be obtained. That is, it is possible to provide the drill 10 having both excellent wear resistance and welding resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Milling, Broaching, Filing, Reaming, And Others (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

 優れた耐摩耗性及び耐溶着性を兼ね備えた切削工具用硬質被膜及び硬質被膜被覆切削工具を提供する。 Agから成る第1被膜層(24)と、Al1-a-bCrab の窒化物、酸化物、炭化物、炭窒化物、又は硼化物から成る第2被膜層(26)とが、交互に2層以上積層した多層膜であり、第2被膜層(26)に係るMはSi、V、Wのうち少なくとも1種類を含むものであり、第2被膜層(26)に係る原子比aは0.2以上0.5以下の範囲内、bは0より大きく0.3以下の範囲内であり、第1被膜層(24)と第2被膜層(26)との積層周期d3は0.2nm以上100nm以下の範囲内であり、且つ、総膜厚Dは0.2μm以上10.0μm以下の範囲内であることから、被膜中にAgを含有することで摩擦係数及び切削抵抗を軽減させることができ、潤滑性及び耐溶着性に優れると共に高硬度の被膜が得られる。

Description

切削工具用硬質被膜及び硬質被膜被覆切削工具
 本発明は、切削工具の表面に被覆して設けられる切削工具用硬質被膜及びその硬質被膜が設けられた硬質被膜被覆切削工具に関し、特に、耐摩耗性及び耐溶着性を共に向上させるための改良に関する。
 ドリルやタップ等の切削工具には、耐摩耗性を向上させるために硬質被膜が被覆して設けられる。この切削工具用硬質被膜としては、TiN系、TiCN系、TiAlN系、及びAlCrN系のコーティングが広く用いられており、その性能を更に向上させるために改良が図られている。例えば、特許文献1に記載された硬質積層被膜がそれである。
特開2010-76082号公報
 しかし、前述したような従来の技術により硬質被膜が形成された切削工具では、その切削加工に際して被削材の種類や切削条件によっては耐溶着性が不十分となるおそれがあった。すなわち、被削材等の溶着により工具の寿命が短くなる場合があり、改良の余地があった。このため、優れた耐摩耗性及び耐溶着性を兼ね備えた切削工具用硬質被膜及び硬質被膜被覆切削工具の開発が求められていた。
 本発明は、以上の事情を背景として為されたものであり、その目的とするところは、優れた耐摩耗性及び耐溶着性を兼ね備えた切削工具用硬質被膜及び硬質被膜被覆切削工具を提供することにある。
 斯かる目的を達成するために、本第1発明の要旨とするところは、切削工具の表面に被覆して設けられる切削工具用硬質被膜であって、Agから成る第1被膜層と、Al1-a-bCrabの窒化物、酸化物、炭化物、炭窒化物、又は硼化物から成る第2被膜層とが、交互に2層以上積層した多層膜であり、前記第2被膜層に係るMはSi、V、Wのうち少なくとも1種類を含むものであり、前記第2被膜層に係る原子比aは0.2以上0.5以下の範囲内、bは0より大きく0.3以下の範囲内であり、前記第1被膜層と前記第2被膜層との積層周期は0.2nm以上100nm以下の範囲内であり、且つ、総膜厚は0.2μm以上10.0μm以下の範囲内であることを特徴とするものである。
 前記目的を達成するために、本第2発明の要旨とするところは、上記第1発明の切削工具用硬質被膜が表面に被覆して設けられたことを特徴とする硬質被膜被覆切削工具である。
 このように、前記第1発明によれば、Agから成る第1被膜層と、Al1-a-bCrabの窒化物、酸化物、炭化物、炭窒化物、又は硼化物から成る第2被膜層とが、交互に2層以上積層した多層膜であり、前記第2被膜層に係るMはSi、V、Wのうち少なくとも1種類を含むものであり、前記第2被膜層に係る原子比aは0.2以上0.5以下の範囲内、bは0より大きく0.3以下の範囲内であり、前記第1被膜層と前記第2被膜層との積層周期は0.2nm以上100nm以下の範囲内であり、且つ、総膜厚は0.2μm以上10.0μm以下の範囲内であることから、被膜中にAgを含有することで摩擦係数及び切削抵抗を軽減させることができ、潤滑性及び耐溶着性に優れると共に高硬度の被膜が得られる。すなわち、優れた耐摩耗性及び耐溶着性を兼ね備えた切削工具用硬質被膜を提供することができる。
 前記第2発明によれば、前記第1発明の切削工具用硬質被膜が表面に被覆して設けられたものであるため、被膜中にAgを含有することで摩擦係数及び切削抵抗を軽減させることができ、潤滑性及び耐溶着性に優れると共に高硬度の被膜が得られる。すなわち、優れた耐摩耗性及び耐溶着性を兼ね備えた硬質被膜被覆切削工具を提供することができる。
本発明の硬質被膜被覆切削工具の一実施例であるドリルを軸心に垂直な方向から見た正面図である。 図1に示すドリルを切れ刃が設けられた先端側から見た拡大底面図である。 図1のドリルのボデーにおける表面付近の拡大断面図であり、本発明の切削工具用硬質被膜の一実施例である硬質被膜の構成を例示するものである。 図3の硬質被膜のコーティング方法の一例を説明する図である。 本発明の効果を検証するために本発明者等が行った穴空け試験に用いられた各試料の被膜構造及びそれぞれの試験結果を併せて示す図である。
 本発明の切削工具用硬質被膜は、エンドミル、ドリル、正面フライス、総型フライス、リーマ、タップ等の回転切削工具の他、バイト等の非回転式の切削工具等、種々の切削工具の表面コーティングに好適に適用される。工具基材すなわち硬質被膜が設けられる部材の材質としては、超硬合金や高速度工具鋼が好適に用いられるが、他の材料でもよく、例えばサーメット、セラミックス、多結晶ダイヤモンド、単結晶ダイヤモンド、多結晶CBN、単結晶CBN等、種々の材料から構成された切削工具に本発明の切削工具用硬質被膜は広く適用される。
 本発明の切削工具用硬質被膜は、切削工具の一部乃至全部の表面に被覆して設けられるものであり、好適には、その切削工具において切削加工に関与する刃部に設けられる。更に好適には、少なくともその刃部における切れ刃乃至すくい面を被覆するように設けられる。
 前記2被膜層は、MをSi、V、Wのうち少なくとも1種類を含むものとした場合に、Al1-a-bCrabの窒化物、酸化物、炭化物、炭窒化物、又は硼化物、或いはこれらの相互固溶体にて構成される。具体的には、AlCrSiN、AlCrSiO、AlCrSiB、AlCrSiVN、AlCrSiWCN、AlCrSiVWB、AlCrVN、AlCrVC、AlCrVWO、AlCrWN、AlCrWCN等から成るものである。
 前記第1被膜層及び第2被膜層の膜厚は、組成等に応じて個々に定められるが、それ等を複数層繰り返し積層する場合には、それぞれ一定の膜厚でも良いし、連続的或いは段階的に変化させることもできる。前記第1被膜層、第2被膜層の各平均膜厚は、コーティングする部材や被膜の組成等によって異なるが、例えば0.1~50nm程度の範囲内が適当である。
 前記第1被膜層、第2被膜層は、例えばアークイオンプレーティング法やイオンビーム蒸着法、スパッタリング法、PLD(Pulse Laser Deposition) 法、IBAD(Ion Beam Assisted Deposition;イオンビーム支援蒸着)法等のPVD法によって好適に設けられるが、他の成膜法を採用することもできる。
 以下、本発明の好適な実施例を図面に基づいて詳細に説明する。以下の説明に用いる図面に関して、各部の寸法比等は必ずしも正確に描かれていない。
 図1は、本発明の硬質被膜被覆切削工具の一実施例であるドリル10を示す図であり、軸心Oに垂直な方向から見た正面図である。図2は、図1に示すドリル10を、切れ刃12が設けられた先端側から(すなわち矢印IIで示す方向に)見た拡大底面図である。これら図1及び図2に示す本実施例のドリル10は、2枚刃のツイストドリルであり、シャンク14及びボデー16を軸心O方向に一体に備えている。斯かるボデー16には、軸心Oの右まわりにねじれた一対の溝18が形成されている。前記ボデー16の先端には、前記一対の溝18に対応して一対の切れ刃12が設けられており、前記ドリル10が前記シャンク14側から見て軸心Oの右まわりに回転駆動されることにより、前記切れ刃12によって被削材に穴が切削加工されると共に、その穴を切削加工する際に生じる切屑が前記溝18を通ってシャンク14側へ排出されるように構成されている。
 図3は、前記ドリル10のボデー16における表面付近の拡大断面図であり、本発明の切削工具用硬質被膜の一実施例である硬質被膜22の構成を例示するものである。前記ドリル10は、例えば、高速度工具鋼(ハイス)製の工具基材(工具母材)20の表面に、図3に示すような硬質被膜22がコーティングされて構成されたものである。この硬質被膜22は、例えば図3に示すように、前記工具基材20の表面に第1被膜層24と、第2被膜層26とが、交互に2層以上積層した多層膜である。図3においては、前記第1被膜層24が前記工具基材20の表面に設けられる最下層を、前記第2被膜層26が前記硬質被膜22の表面(外表面)に相当する最上層をそれぞれ構成する例を示しているが、前記第2被膜層26が最下層、前記第1被膜層24が最上層をそれぞれ構成するものであってもよい。
 前記第1被膜層24は、不可避的不純物を含むAgから成るものである。前記第2被膜層26は、不可避的不純物を含むAl1-a-bCrabの窒化物、酸化物、炭化物、炭窒化物、又は硼化物、或いはこれらの相互固溶体である。このMは、Si、V、Wのうち少なくとも1種類を含むものである。すなわち、前記第2被膜層26は、具体的には、AlCrSiN、AlCrSiO、AlCrSiB、AlCrSiVN、AlCrSiWCN、AlCrSiVWB、AlCrVN、AlCrVC、AlCrVWO、AlCrWN、AlCrWCN等から成るものである。前記第2被膜層26に係る原子比(混晶比)aは、0.2以上0.5以下の範囲内(0.2≦a≦0.5)、bは0より大きく0.3以下の範囲内(0<b≦0.3)である。
 前記硬質被膜22において、好適には、前記第1被膜層24及び第2被膜層26がそれぞれ予め定められた一定の膜厚(平均膜厚)で形成される。前記第1被膜層24及び第2被膜層26それぞれの平均膜厚は、コーティングする部材や被膜の組成等に応じて個別に設定されるが、好適には、前記第1被膜層24の平均膜厚d1は、0.1~25.0nmの範囲内で、前記第2被膜層26の平均膜厚d2は、0.1~75.0nmの範囲内で、それぞれ適宜定められる。前記第1被膜層24と前記第2被膜層26との積層周期d3は、0.2nm以上100nm以下の範囲内である。前記第1被膜層24及び前記第2被膜層26の積層数(第1被膜層24及び第2被膜層26の層数の合計)は、好適には、44~6500の範囲内である。すなわち、前記第1被膜層24及び前記第2被膜層26それぞれの層数は、好適には、22~3250の範囲内である。前記硬質被膜22の総膜厚Dは、0.2μm以上10.0μm以下の範囲内である。
 図4は、前記硬質被膜22のコーティング方法の一例を説明する図である。前記ドリル10等に対する前記硬質被膜22のコーティングは、例えば図4に示すようなスパッタリング装置30を用いてコントローラ36の制御により行われる。好適には、先ず、前処理としてのエッチング工程において、前記スパッタリング装置30のチャンバ32内に配置された前記工具基材20に、バイアス電源34により負のバイアス電圧が印加される。これにより、正のアルゴンイオンAr+が前記工具基材20に衝突させられ、その工具基材20の表面が粗面化させられる。
 次に、スパッタリング工程において、例えば前記硬質被膜22の第2被膜層26を構成するAlCrSi等のターゲット38に電源40により負の一定のバイアス電圧(例えば-50~-60V程度)が印加されるとともに、前記バイアス電源34により工具基材20に負の一定のバイアス電圧(例えば-100V程度)が印加されることにより、アルゴンイオンAr+が前記ターゲット38に衝突させられ、これによりAlCrSi等の構成物質が叩き出される。前記チャンバ32内には、アルゴンガスの他に窒素ガス(N2)や炭化水素ガス(CH4、C22)の反応ガスが所定の流量で導入され、その窒素原子Nや炭素原子Cが前記ターゲット38から叩き出されたAlCrSi等と結合してAlCrSiN等となり、前記工具基材20の表面に前記硬質被膜22における第2被膜層26等として付着させられる。或いは、Al、Cr、Si等の単体それぞれに対応してターゲットを構成し、それら複数のターゲットを用いて同時にスパッタリングを行うことで、AlCrSiN等から成る前記第2被膜層26を形成するものであってもよい。前記スパッタリング工程においては、前記工具基材20に正の電圧を印加するようにしてもよい。以上のようにして、前記第1被膜層24と、前記第2被膜層26とが交互に前記工具基材20の表面に付着させられることで、その工具基材20の表面に前記硬質被膜22が形成される。
 続いて、本発明の効果を検証するために本発明者等が行った穴空け試験について説明する。図5は、この試験に用いられた本発明品及び試験品の被膜構造と、それぞれの試験結果(加工穴数及び判定)とを、併せて示す図である。本発明者等は、工具径8.3mmφの超硬ドリルに図5に示す各被膜構造及び膜厚の硬質被膜をコーティングして試料である本発明品1~11及び試験品1~6を作成し、各試験品について以下の切削条件で切削試験を行った。この図5に示す試料のうち、本発明品1~11が本実施例の硬質被膜22が適用された本発明品に相当し、試験品1~6が本発明の要件を満たさない(請求項1の要件から外れている)硬質被膜が適用された非発明品に相当する。図5における「A層」、「B層」は、それぞれ前記第1被膜層24、第2被膜層26に対応する。図5に示す加工穴数は、逃げ面摩耗幅0.2mmであるときの穴数であり、合格判定基準は、逃げ面摩耗幅0.2mmであるときの加工穴数が20穴以上である。
[加工条件]
・工具形状:φ8.3超硬ドリル
・被削材:インコネル(登録商標)718
・切削機械:立型M/C
・切削速度:10m/min
・送り速度:0.1mm/rev
・加工深さ:33mm(止まり)
・ステップ量:ノンステップ
・切削油:油性
 図5に示すように、前記本発明品1~11は、何れもAgから成る第1被膜層(A層)24と、Al1-a-bCrabの窒化物、酸化物、炭化物、炭窒化物、又は硼化物から成る第2被膜層(B層)26とが、交互に2層以上積層した多層膜であり、前記第2被膜層26に係るMはSi、V、Wのうち少なくとも1種類を含むものであり、前記第2被膜層26に係る原子比aは0.2以上0.5以下の範囲内、bは0より大きく0.3以下の範囲内であり、前記第1被膜層24と前記第2被膜層26との積層周期d3は0.2nm以上100nm以下の範囲内であり、且つ、総膜厚Dは0.2μm以上10.0μm以下の範囲内である。すなわち、本発明の請求項1の要件を満たす硬質被膜22が適用されたものである。図5に示す試験結果から明らかなように、斯かる本実施例の硬質被膜22が適用された本発明品1~11においては、何れの試料においても逃げ面摩耗幅0.2mmであるときの加工穴数が20穴以上となり、合格基準を満たしている。
 特に、前記第2被膜層26がAlCrSiN(組成Al0.2Cr0.5Si0.3)から成り、前記第1被膜層24及び第2被膜層26の平均膜厚が何れも8.5nm、積層周期が17.0nm、層数が650、総膜厚が5.5μmである本発明品5で加工穴数40、前記第2被膜層26がAlCrSiO(組成Al0.3Cr0.5Si0.2)から成り、前記第1被膜層24の平均膜厚が0.5nm、前記第2被膜層26の平均膜厚が3.5nm、積層周期が4.0nm、層数が1000、総膜厚が2.0μmである本発明品8で加工穴数35、前記第2被膜層26がAlCrWCN(組成Al0.6Cr0.3SiW0.1)から成り、前記第1被膜層24の平均膜厚が5.0nm、前記第2被膜層26の平均膜厚が15.0nm、積層周期が20.0nm、層数が325、総膜厚が3.2μmである本発明品3で加工穴数34、前記第2被膜層26がAlCrSiVWB(組成Al0.5Cr0.3SiVW0.2)から成り、前記第1被膜層24の平均膜厚が6.0nm、前記第2被膜層26の平均膜厚が3.0nm、積層周期が9.0nm、層数が545、総膜厚が2.5μmである本発明品4で加工穴数32、前記第2被膜層26がAlCrVN(組成Al0.3Cr0.40.3)から成り、前記第1被膜層24の平均膜厚が20.0nm、前記第2被膜層26の平均膜厚が40.0nm、積層周期が60.0nm、層数が44、総膜厚が1.3μmである本発明品6で加工穴数31と、何れも逃げ面摩耗幅0.2mmであるときの加工穴数が30穴以上となり、とりわけ良好な切削性能を示していることがわかる。
 前記試験品1は、総膜厚が10.5μmであり、本発明の請求項1の要件である総膜厚0.2μm以上10.0μm以下の範囲を逸脱している。前記試験品2は、総膜厚が0.15μmであり、本発明の請求項1の要件である総膜厚0.2μm以上10.0μm以下の範囲を逸脱している。前記試験品3は、前記第2被膜層26がAlCrSiC(組成Al0.6Cr0.1Si0.3)から成るものであり、本発明の請求項1の要件であるCrの原子比aが0.2以上0.5以下である範囲を逸脱している。前記試験品4は、前記第2被膜層26がAlCrVO(組成Al0.4Cr0.20.4)から成るものであり、本発明の請求項1の要件であるM(=V)の原子比bが0より大きく0.3以下である範囲を逸脱すると共に、積層周期が0.18nmであり、本発明の請求項1の要件である積層周期0.2nm以上100nm以下の範囲を逸脱している。前記試験品5は、積層周期が120.0nmであり、本発明の請求項1の要件である積層周期0.2nm以上100nm以下の範囲を逸脱している。前記試験品6は、前記第2被膜層26がAlCrSiCN(組成Al0.5Cr0.1Si0.4)から成るものであり、本発明の請求項1の要件であるCrの原子比aが0.2以上0.5以下である範囲を逸脱している。図5に示す試験結果から明らかなように、これら試験品1~6においては、何れも逃げ面摩耗幅0.2mmであるときの加工穴数が20未満となり、前記本発明品1~11と比べて切削性能に劣るものであることがわかる。これは、本発明の請求項1の要件を満たさない硬質被膜では、耐溶着性が十分ではなく、溶着や剥離等により早期寿命に至るためであると考えられる。
 このように、本実施例によれば、Agから成る第1被膜層24と、Al1-a-bCrabの窒化物、酸化物、炭化物、炭窒化物、又は硼化物から成る第2被膜層26とが、交互に2層以上積層した多層膜であり、前記第2被膜層26に係るMはSi、V、Wのうち少なくとも1種類を含むものであり、前記第2被膜層26に係る原子比aは0.2以上0.5以下の範囲内、bは0より大きく0.3以下の範囲内であり、前記第1被膜層24と前記第2被膜層26との積層周期d3は0.2nm以上100nm以下の範囲内であり、且つ、総膜厚Dは0.2μm以上10.0μm以下の範囲内であることから、被膜中にAgを含有することで摩擦係数及び切削抵抗を軽減させることができ、潤滑性及び耐溶着性に優れると共に高硬度の被膜が得られる。すなわち、優れた耐摩耗性及び耐溶着性を兼ね備えた切削工具用硬質被膜22を提供することができる。
 本実施例によれば、前記硬質被膜22が表面に被覆して設けられた超硬被膜被覆切削工具としてのドリル10であることから、被膜中にAgを含有することで摩擦係数及び切削抵抗を軽減させることができ、潤滑性及び耐溶着性に優れると共に高硬度の被膜が得られる。すなわち、優れた耐摩耗性及び耐溶着性を兼ね備えたドリル10を提供することができる。
 以上、本発明の好適な実施例を図面に基づいて詳細に説明したが、本発明はこれに限定されるものではなく、その趣旨を逸脱しない範囲内において種々の変更が加えられて実施されるものである。
 10:ドリル(硬質被膜被覆切削工具)、12:切れ刃、14:シャンク、16:ボデー、18:溝、20:工具基材、22:硬質被膜(切削工具用硬質被膜)、24:第1被膜層、26:第2被膜層、30:スパッタリング装置、32:チャンバ、34:バイアス電源、36:コントローラ、38:ターゲット、40:電源

Claims (2)

  1.  切削工具の表面に被覆して設けられる切削工具用硬質被膜であって、
     Agから成る第1被膜層と、
     Al1-a-bCrabの窒化物、酸化物、炭化物、炭窒化物、又は硼化物から成る第2被膜層とが、交互に2層以上積層した多層膜であり、
     前記第2被膜層に係るMはSi、V、Wのうち少なくとも1種類を含むものであり、
     前記第2被膜層に係る原子比aは0.2以上0.5以下の範囲内、bは0より大きく0.3以下の範囲内であり、
     前記第1被膜層と前記第2被膜層との積層周期は0.2nm以上100nm以下の範囲内であり、
     且つ、総膜厚は0.2μm以上10.0μm以下の範囲内である
     ことを特徴とする切削工具用硬質被膜。
  2.  請求項1に記載の切削工具用硬質被膜が表面に被覆して設けられた硬質被膜被覆切削工具。
PCT/JP2012/058450 2012-03-29 2012-03-29 切削工具用硬質被膜及び硬質被膜被覆切削工具 WO2013145233A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014507199A JP5762626B2 (ja) 2012-03-29 2012-03-29 切削工具用硬質被膜及び硬質被膜被覆切削工具
EP12873015.7A EP2832479B1 (en) 2012-03-29 2012-03-29 Hard coating for cutting tool and cutting tool coated with hard coating
PCT/JP2012/058450 WO2013145233A1 (ja) 2012-03-29 2012-03-29 切削工具用硬質被膜及び硬質被膜被覆切削工具

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/058450 WO2013145233A1 (ja) 2012-03-29 2012-03-29 切削工具用硬質被膜及び硬質被膜被覆切削工具

Publications (1)

Publication Number Publication Date
WO2013145233A1 true WO2013145233A1 (ja) 2013-10-03

Family

ID=49258598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058450 WO2013145233A1 (ja) 2012-03-29 2012-03-29 切削工具用硬質被膜及び硬質被膜被覆切削工具

Country Status (3)

Country Link
EP (1) EP2832479B1 (ja)
JP (1) JP5762626B2 (ja)
WO (1) WO2013145233A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019098471A (ja) * 2017-12-04 2019-06-24 三菱マテリアル株式会社 表面被覆切削工具

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110373640A (zh) * 2019-09-05 2019-10-25 蓬莱市超硬复合材料有限公司 一种CrAlXN基PVD涂层硬质合金材料的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000178720A (ja) * 1998-12-14 2000-06-27 Sumitomo Metal Mining Co Ltd 固体潤滑膜付き部材
JP2008173756A (ja) * 2007-01-22 2008-07-31 Mitsubishi Materials Corp 耐熱合金の高速重切削加工で硬質被覆層がすぐれた耐チッピング性と耐摩耗性を発揮する表面被覆切削工具
JP2010076082A (ja) 2008-09-29 2010-04-08 Sumitomo Electric Hardmetal Corp 表面被覆切削工具
JP2011240438A (ja) * 2010-05-19 2011-12-01 Mitsubishi Materials Corp 耐熱性および耐溶着性にすぐれた表面被覆切削工具

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT6792U1 (de) * 2002-10-14 2004-04-26 Plansee Tizit Ag Werkzeug oder bauteil mit niedrigem reibwert
US7348074B2 (en) * 2005-04-01 2008-03-25 Oc Oerlikon Balzers Ag Multilayer hard coating for tools

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000178720A (ja) * 1998-12-14 2000-06-27 Sumitomo Metal Mining Co Ltd 固体潤滑膜付き部材
JP2008173756A (ja) * 2007-01-22 2008-07-31 Mitsubishi Materials Corp 耐熱合金の高速重切削加工で硬質被覆層がすぐれた耐チッピング性と耐摩耗性を発揮する表面被覆切削工具
JP2010076082A (ja) 2008-09-29 2010-04-08 Sumitomo Electric Hardmetal Corp 表面被覆切削工具
JP2011240438A (ja) * 2010-05-19 2011-12-01 Mitsubishi Materials Corp 耐熱性および耐溶着性にすぐれた表面被覆切削工具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2832479A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019098471A (ja) * 2017-12-04 2019-06-24 三菱マテリアル株式会社 表面被覆切削工具

Also Published As

Publication number Publication date
JPWO2013145233A1 (ja) 2015-08-03
EP2832479B1 (en) 2016-07-13
EP2832479A1 (en) 2015-02-04
JP5762626B2 (ja) 2015-08-12
EP2832479A4 (en) 2015-11-11

Similar Documents

Publication Publication Date Title
KR102122139B1 (ko) 경질 피막 및 경질 피막 피복 부재
EP3346022B1 (en) Hard coating and hard coating-covered member
JP6710773B2 (ja) 硬質被膜および硬質被膜被覆部材
WO2013153614A1 (ja) 切削工具用硬質被膜及び硬質被膜被覆切削工具
WO2013150603A1 (ja) 切削工具用硬質被膜及び硬質被膜被覆切削工具
JP5762626B2 (ja) 切削工具用硬質被膜及び硬質被膜被覆切削工具
JP6099224B2 (ja) 硬質潤滑被膜および硬質潤滑被膜被覆工具
JP6168540B2 (ja) 硬質潤滑被膜および硬質潤滑被膜被覆工具
JP5734318B2 (ja) 硬質積層被膜
JP2012115924A (ja) 切削工具用硬質被膜及び硬質被膜被覆切削工具
WO2013153640A1 (ja) 切削工具用硬質被膜及び硬質被膜被覆切削工具
JP6099225B2 (ja) 硬質潤滑被膜および硬質潤滑被膜被覆工具
JP2008254144A (ja) 硬質被膜および硬質被膜被覆工具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12873015

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014507199

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012873015

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012873015

Country of ref document: EP