WO2015076175A1 - フィラー及びガラス組成物、並びに六方晶リン酸塩系化合物の製造方法 - Google Patents

フィラー及びガラス組成物、並びに六方晶リン酸塩系化合物の製造方法 Download PDF

Info

Publication number
WO2015076175A1
WO2015076175A1 PCT/JP2014/080057 JP2014080057W WO2015076175A1 WO 2015076175 A1 WO2015076175 A1 WO 2015076175A1 JP 2014080057 W JP2014080057 W JP 2014080057W WO 2015076175 A1 WO2015076175 A1 WO 2015076175A1
Authority
WO
WIPO (PCT)
Prior art keywords
filler
phosphate
compound
hexagonal
glass composition
Prior art date
Application number
PCT/JP2014/080057
Other languages
English (en)
French (fr)
Inventor
美樹 飯田
大野 康晴
Original Assignee
東亞合成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東亞合成株式会社 filed Critical 東亞合成株式会社
Priority to JP2015549094A priority Critical patent/JP6052428B2/ja
Priority to US15/037,220 priority patent/US9714170B2/en
Priority to CN201480062757.1A priority patent/CN105764847B/zh
Priority to KR1020167013202A priority patent/KR102265249B1/ko
Publication of WO2015076175A1 publication Critical patent/WO2015076175A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/37Phosphates of heavy metals
    • C01B25/372Phosphates of heavy metals of titanium, vanadium, zirconium, niobium, hafnium or tantalum
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/006Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of microcrystallites, e.g. of optically or electrically active material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • C03C3/142Silica-free oxide glass compositions containing boron containing lead
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • C03C3/145Silica-free oxide glass compositions containing boron containing aluminium or beryllium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/17Silica-free oxide glass compositions containing phosphorus containing aluminium or beryllium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/21Silica-free oxide glass compositions containing phosphorus containing titanium, zirconium, vanadium, tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/20Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions containing titanium compounds; containing zirconium compounds
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2205/00Compositions applicable for the manufacture of vitreous enamels or glazes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/16Microcrystallites, e.g. of optically or electrically active material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/20Glass-ceramics matrix

Definitions

  • the present invention relates to a filler, a glass composition, and a method for producing a hexagonal phosphate compound.
  • the phosphate compounds include amorphous ones and crystalline ones having a two-dimensional layered structure or a three-dimensional network structure.
  • crystalline phosphate compounds that take a three-dimensional network structure are excellent in heat resistance, chemical resistance, radiation resistance, and low thermal expansion, and are used for fixing radioactive waste, solid electrolytes, and gas adsorption. ⁇ Applications to separation agents, catalysts, antibacterial agent raw materials, low thermal expansion fillers, etc. are being studied.
  • Patent Document 1 discloses a sealing made of a mixture of a low melting glass powder and a low thermal expansion material powder such as NaZr 2 (PO 4 ) 3 , CaZr 2 (PO 4 ) 3 , KZr 2 (PO 4 ) 3. Materials are disclosed, and Patent Document 2 discloses NbZr 2 (PO 4 ) 3 powder as a filler powder for lead-free glass, and Patent Document 3 discloses Zr 2 (WO 4 ) (PO 4 ) 2. A powder is disclosed.
  • these zirconium phosphates are synthesized by a firing method (for example, Patent Document 2) in which raw materials are mixed in a dry process and then fired at 1,000 ° C. or higher using a firing furnace (for example, Patent Document 2),
  • a firing method for example, Patent Document 2
  • the present invention has been made in view of the above-mentioned problems, can suppress the thermal expansion of the glass composition with a small amount of addition, and is excellent in fluidity when the glass composition is melted, And it aims at providing the glass composition containing a filler.
  • Another object of the present invention is to provide a production method capable of producing a hexagonal phosphate compound that can be suitably used as the filler by a simple and industrially advantageous method.
  • the present inventors have found that the flowability at the time of melting is excellent when the ionic compound in the filler is a predetermined amount or less. .
  • a specific hexagonal phosphate compound is produced using a layered zirconium phosphate, a compound containing potassium, and a compound containing zirconium, a hexagonal phosphate compound having a small particle size can be easily produced.
  • the present invention has been completed. That is, the present invention is as follows.
  • ⁇ 1> It is composed of a hexagonal phosphate compound represented by the following formula 1 having a purity of 90% or more, and the content of the ionic compound is 1.0% by weight or less, Filler, K a Zr b (PO 4 ) 3 (1)
  • a is a positive number in the range of 0.8 to 1.2
  • ⁇ 3> The filler according to ⁇ 1> or ⁇ 2>, wherein the volume-based median diameter measured by a laser diffraction particle size distribution analyzer is 0.05 to 10 ⁇ m
  • ⁇ 4> The filler according to any one of ⁇ 1> to ⁇ 3>, wherein a volume-based maximum particle size measured by a laser diffraction particle size distribution analyzer is 50 ⁇ m or less
  • ⁇ 5> A glass composition comprising the filler according to any one of ⁇ 1> to ⁇ 4>, ⁇ 6>
  • a step of preparing a compound containing layered zirconium phosphate, a compound containing potassium, and a compound containing zirconium other than the layered zirconium phosphate, a step of firing the mixture, and a step of grinding after the firing step A process for producing a hexagonal phosphate compound represented by the following formula 1, K a Zr b (PO 4 ) 3 (1)
  • Equation 1 a is a positive number in the range
  • ⁇ 7> The method for producing a hexagonal phosphate compound according to ⁇ 6>, wherein the layered zirconium phosphate is a particle having a median diameter of 0.05 to 10 ⁇ m on a volume basis by a laser diffraction particle size distribution analyzer.
  • ⁇ 8> The compounding amount of the compound containing potassium with respect to 1 mol of the layered zirconium phosphate is 0.8 to 1.2 times mol of the theoretical amount of the hexagonal phosphate compound to be produced.
  • ⁇ 6> Or a method for producing a hexagonal phosphate compound according to ⁇ 7>, ⁇ 9> The method for producing a hexagonal phosphate compound according to any one of ⁇ 6> to ⁇ 8>, wherein the firing temperature is 650 to 1,500 ° C.
  • the filler according to the present invention comprises a hexagonal phosphate compound represented by the formula 1 having a purity of not less than a predetermined value, and the content of ionic impurities is 1.0% by weight or less.
  • the thermal expansion of the glass composition can be suppressed, and excellent low thermal expansion performance is exhibited.
  • the glass composition containing the said filler is excellent in the fluidity
  • the filler of the present invention is characterized in that there are very few ionic compounds that adversely affect the fluidity of the glass composition, and has not been realized as a low thermal expansion filler.
  • a filler is obtained through a step of mixing, firing and pulverizing, using raw materials of layered zirconium phosphate, a compound containing potassium, and a compound containing zirconium as raw materials.
  • the glass composition using the filler of the present invention can correspond to a fine shape and exhibits excellent low thermal expansion performance.
  • the filler of the present invention is also referred to as “the low thermal expansion filler of the present invention”.
  • the filler of the present invention is composed of a hexagonal phosphate compound represented by the following formula 1 having a purity of 90% or more, and the content of the ionic compound is 1.0% by weight or less. It is characterized by being.
  • K a Zr b (PO 4 ) 3 (1)
  • a is a positive number in the range of 0.8 to 1.2
  • a is more preferably from 0.9 to 1.1, and still more preferably from 0.92 to 1.05.
  • the filler exhibits excellent low thermal expansion.
  • the composition containing the filler of the present invention has a low coefficient of thermal expansion, it is mainly used as a sealing material for electronic parts such as cathode ray tubes, plasma display panels (PDP), fluorescent display tubes, organic EL, and IC ceramic packages. Can do. Moreover, it can be used for thermal expansion suppression of IC sealing resin and resin adhesive.
  • the filler of the present invention comprises a high-purity hexagonal phosphate salt compound represented by Formula 1 having a purity of 90% by weight or more. Since the crystal purity and chemical purity are high and it is uniformly crystallized, when it is heated and melted with glass, there is little alteration due to erosion of the glass, and thermal expansion can be controlled efficiently.
  • the purity of the hexagonal phosphate compound represented by Formula 1 is determined as the product of the crystal purity and the chemical purity.
  • the purity of the hexagonal phosphate compound represented by Formula 1 needs to be 90% by weight or more.
  • the purity is preferably 93% by weight or more. Needless to say, the upper limit of purity is 100% by weight.
  • the crystal purity of the hexagonal phosphate compound as a filler is due to powder X-ray diffraction, comparison of the intensity of the main peak with the standard X-ray diffraction pattern, and other crystal components other than the hexagonal phosphate compound. This is possible by checking the presence or absence of impurity peaks.
  • Chemical purity can also be analyzed by non-destructive analysis such as fluorescent X-rays, or crystals can be dissolved with strong acid containing oxidant or hydrofluoric acid, and inductively coupled plasma (ICP) emission spectrometry It is also possible to measure the absolute contents of metals and phosphorus components contained in the water, and to measure moisture such as crystal water and adhering water by thermal analysis such as differential thermal and thermogravimetric simultaneous measurement (TG-DTA). Can do.
  • non-destructive analysis such as fluorescent X-rays
  • crystals can be dissolved with strong acid containing oxidant or hydrofluoric acid, and inductively coupled plasma (ICP) emission spectrometry
  • ICP inductively coupled plasma
  • the main peak intensity of the desired hexagonal phosphate compound is preferably 90% or more, more preferably 95% or more (peak intensity is proportional to weight%).
  • the desired hexagonal phosphate compound is preferably 90% by weight or more, more preferably 95% by weight or more, based on the solid content.
  • the content of the ionic compound in the filler needs to be 1.0% by weight or less.
  • the content is preferably 0.6% by weight or less, and more preferably 0.3% by weight or less.
  • the ionic compound means an ionic compound that elutes when the filler is immersed in hot water, and specifically, is an ionic compound derived from raw materials such as potassium ion, zirconium ion, and phosphate ion. .
  • These ionic compounds can be quantified by ICP emission analysis. A detailed analysis method will be described later.
  • the content of the ionic compound in the filler can be adjusted by a blending ratio of the raw material layered zirconium phosphate, a compound containing potassium, and a compound containing zirconium other than the layered zirconium phosphate.
  • the mechanism by which the content of the ionic compound decreases the fluidity of the glass composition is estimated as follows.
  • the ionic compound is detached from the filler and reacts with the glass component to change the glass composition.
  • the softening point increases and partial crystallization occurs, and the fluidity of the glass composition decreases.
  • the particle diameter of the filler in the present invention can be defined by a laser diffraction particle size distribution meter, measured in a state dispersed in deionized water, and the median diameter analyzed on a volume basis is used as a representative value of the particle diameter. Can do.
  • the median diameter is preferably 0.05 to 10 ⁇ m, more preferably 0.1 to 5 ⁇ m, and still more preferably 0.5 to 3 ⁇ m.
  • the median diameter is 0.05 ⁇ m or more, the viscosity of the composition is suppressed from becoming too high, and the handling is easy.
  • it when it is 10 ⁇ m or less, it can also be suitably used for applications in which fine gaps such as semiconductor elements are filled.
  • the maximum particle diameter of the filler is preferably 50 ⁇ m or less, more preferably 20 ⁇ m or less, and more preferably 10 ⁇ m. More preferably, it is as follows.
  • the lower limit is preferably 0.05 ⁇ m or more.
  • the usage form of the filler of the present invention is not particularly limited, and can be appropriately mixed with other components or combined with other materials depending on the application.
  • it can be used in various forms such as powder, powder-containing dispersion, powder-containing particles, powder-containing paint, powder-containing fiber, powder-containing plastic, and powder-containing film. It can be used as appropriate.
  • the filler of the present invention can be mixed with other fillers as necessary in order to adjust processability and thermal expansion.
  • low thermal expansion filler cordierite zirconium phosphotungstate, zirconium tungstate, ⁇ -spodumene, ⁇ -eucryptite, lead titanate, aluminum titanate, mullite, zircon, silica, celsian, willemite, and Alumina etc. are mentioned.
  • the filler of the present invention is not particularly limited in its production method, but hexagonal phosphorus produced by the method for producing a hexagonal phosphate-based compound of the present invention.
  • An acid salt compound is preferred.
  • the method for producing a hexagonal phosphate-based compound of the present invention comprises a step of preparing a mixture by preparing a layered zirconium phosphate, a compound containing potassium, and a compound containing zirconium other than the layered zirconium phosphate (hereinafter referred to as “preparation step”).
  • a step of firing the mixture (hereinafter referred to as “baking step”) and a step of grinding after the firing step (hereinafter referred to as “grinding step”).
  • the hexagonal phosphate compound obtained by this production method can be used as a filler for a composition such as glass or resin, the coefficient of thermal expansion of the cured product can be lowered. It can be applied to sealing materials for electronic parts such as PDP), fluorescent display tubes, organic EL, and IC ceramic packages. Moreover, it can be used for thermal expansion suppression of IC sealing resin and resin adhesive.
  • the raw materials used for the production of the hexagonal phosphate compound of the present invention are layered zirconium phosphate, a compound containing potassium, and a compound containing zirconium other than the layered zirconium phosphate.
  • the layered zirconium phosphate as the main raw material is a layered crystal having a two-dimensional layered space, and depending on the type of phosphate group and crystal water constituting the ⁇ -type crystal, ⁇ -type crystal containing its anhydride, and ⁇ -type There are crystals, etc., which are known as ion exchangers.
  • layered zirconium phosphate used as a raw material, an ⁇ -type crystal and a ⁇ -type crystal are preferable, and an ⁇ -type crystal is more preferable because a fine filler is easily obtained. Specifically, it is the following compound.
  • ⁇ -layered zirconium phosphate Zr (HPO 4 ) 2 .H 2 O
  • ⁇ -layered zirconium phosphate Zr (H 2 PO 4 ) (PO 4 ) ⁇ 2H 2 O
  • the particle diameter of the layered zirconium phosphate affects the particle diameter of the obtained hexagonal phosphate compound, it is preferable to select the particle diameter of the layered zirconium phosphate used in accordance with the particle diameter to be obtained.
  • the particle diameter of layered zirconium phosphate used as a raw material can be measured with a laser diffraction particle size distribution meter, measured in a state dispersed in deionized water, and the median diameter analyzed on a volume basis is a representative value of the particle diameter.
  • the hexagonal phosphate compound obtained by the production method of the present invention is used as a filler component of a composition such as glass or resin, the composition is used for filling or molding corresponding to fine shapes and gaps.
  • the median diameter is preferably small. However, if the median diameter is too small, the specific surface area may increase and the fluidity may decrease. Since the median diameter preferable as the filler is as described above, the median diameter of the layered zirconium phosphate used as the raw material is preferably 0.05 to 10 ⁇ m, more preferably 0.1 to 5 ⁇ m, and More preferably, it is 5 to 3 ⁇ m. Further, if the median diameter of the layered zirconium phosphate is in the range of 0.05 to 10 ⁇ m, it can be easily pulverized in the pulverization step described later.
  • Other raw materials used for the production of hexagonal phosphate compounds include compounds containing potassium and compounds containing zirconium other than the above layered zirconium phosphate. These compounds are raw materials for adjusting the amount of potassium and zirconium in the hexagonal phosphate compound.
  • Examples of the compound containing potassium include KOH, K 2 (CO 3 ), KH (CO 3 ), KCl, KNO 3 , and K 2 SO 4 .
  • KOH, K 2 (CO 3 ), and KH (CO 3 ) are preferable from the viewpoint of easy reaction.
  • the compound containing these potassium may be used individually by 1 type, and may use 2 or more types together.
  • Examples of the compound containing zirconium other than layered zirconium phosphate include Zr (OH) 2 , ZrO 2 , Zr 2 (CO 3 ) (OH) 2 O 2 , ZrOCl 2 .8H 2 O, and Zr (SO 4 ) 2 ⁇ 4H 2 O and the like.
  • Zr (OH) 2 and Zr 2 (CO 3 ) (OH) 2 O 2 are preferable from the viewpoint of easy reaction.
  • These zirconium-containing compounds may be used alone or in combination of two or more.
  • composition ratio of raw materials when synthesizing a hexagonal phosphate compound by the production method of the present invention is based on the theoretical composition of the hexagonal phosphate compound to be synthesized (composition ratio that matches the composition formula). , It doesn't have to be exactly the same. For example, for a compound containing potassium, crystallization is likely to occur at a low temperature during firing by adding a slight excess of the formula amount of the hexagonal phosphate compound to be synthesized, and other than layered zirconium phosphate About the compound containing zirconium, it is preferable to add a slight excess of the formula amount of the hexagonal phosphate to be synthesized because pyrophosphate which is likely to be generated as a by-product becomes difficult to precipitate.
  • a preferable blending amount of the compound containing potassium with respect to 1 mol of layered zirconium phosphate as a raw material is 0.8 to 1.2 times mol of the theoretical amount calculated from the formula amount of the hexagonal phosphate compound to be synthesized. More preferably, it is 0.9 to 1.1 times mol, and still more preferably 0.95 to 1.05 times mol.
  • the preferable blending amount of the compound containing zirconium other than the layered zirconium phosphate with respect to 1 mol of the layered zirconium phosphate as the raw material is a theoretical amount of 0. 0 calculated from the formula amount of the hexagonal phosphate compound to be synthesized. The amount is 3 to 1.7 times mol, more preferably 0.5 to 1.5 times mol, and still more preferably 0.8 to 1.2 times mol.
  • the raw material mixing method in the preparation step is not particularly limited as long as it can be uniformly mixed, and either a dry method or a wet method can be selected.
  • the mixing apparatus include a Laedige mixer, a Henschel mixer, a V-type mixer and the like for dry mixing, and a kneader, a cement mixer, and a three roll for wet mixing.
  • the firing temperature in the firing step depends on the raw material composition, it needs to be not less than the temperature at which the layered zirconium phosphate is transferred to the hexagonal phosphate, and is preferably not less than 650 ° C. More preferably, it is 700 degreeC or more, More preferably, it is 750 degreeC or more. Moreover, since a particle diameter will enlarge when a calcination temperature is too high, 1500 degrees C or less is preferable. More preferably, it is 1,450 degrees C or less, More preferably, it is 1,400 degrees C or less.
  • the firing time depends on the amount of raw material input and the ability of the firing furnace, but if it is too short, the quality of the filler will not be stable, and if it is too long, the productivity will be poor.
  • the firing apparatus is not particularly limited as long as the mixture of raw materials can be heated at a predetermined temperature, and a method of putting the mixture of raw materials into a mortar and firing it in an electric furnace or a gas furnace, or flowing the mixture of raw materials in a rotary kiln Any method can be used such as firing.
  • the pulverization step is not particularly limited as long as it is a method capable of pulverizing the fired product into primary particles, but a dry jet mill or a wet jet mill is preferable because primary particles having a narrow particle size distribution range can be easily obtained.
  • the fired product may be roughly crushed with a ball mill or a pin mill before the jet mill.
  • the glass composition of the present invention is a glass composition containing the filler of the present invention, and is composed of a blend of glass, more preferably a low-melting glass that is sealing glass and the filler of the present invention. It is preferable to become. Since the low-melting glass has a higher thermal expansibility than the glass to be sealed, it is generally performed to adjust the thermal expansibility by adding a low thermal expansive filler.
  • a conventionally well-known composition can be used for the main component of low melting glass powder. Examples of the glass composition include the following, but a lead-free glass composition is preferable in consideration of the influence on the environment.
  • the blending ratio of the filler is preferably 5% by volume or more, more preferably 10% by volume or more because the effect tends to appear when the filler content is large. Moreover, since there exists a tendency for the fluidity
  • the glass composition for sealing is often used as a paste composition by mixing with a vehicle.
  • the vehicle is preferably composed of 0.5 to 2% by weight of nitrocellulose as a solute and 98 to 99.5% by weight of isoamyl acetate or butyl acetate as a solvent.
  • any known method can be adopted as a method of blending the filler of the present invention into the sealing glass.
  • a method of directly mixing glass powder and low thermal expansion filler with a mixer a method of adding low thermal expansion filler together when pulverizing bulk glass, and simultaneously performing pulverization and mixing, and paste materials such as vehicles
  • a method of adding and mixing glass powder and a low thermal expansion filler separately is a known method.
  • the thermal expansion coefficient of the glass composition of the present invention can be measured using a thermomechanical analyzer.
  • the coefficient of thermal expansion is preferably 1 ⁇ 10 ⁇ 7 to 150 ⁇ 10 ⁇ 7 (/ K), although depending on the type of low-melting glass to be used, 1 ⁇ 10 ⁇ 7 to 120 ⁇ 10 ⁇ 7 ( / K) is more preferable. If the thermal expansion coefficient is 1 ⁇ 10 ⁇ 7 to 120 ⁇ 10 ⁇ 7 (/ K), it can be effectively used as a sealing glass.
  • the filler of the present invention can be used to seal electronic components such as high-reliability packages equipped with elements such as cathode ray tubes, plasma display panels, fluorescent display tubes, organic EL, FED, semiconductor integrated circuits, crystal resonators, SAW filters, etc. It can be effectively used for sealing glass as a bonding material. It is often used as a paste composition by mixing a glass composition containing the filler of the present invention and a sealing glass and a vehicle.
  • the purity of the filler in the present invention is a value obtained by multiplying the crystal purity and the chemical purity.
  • the chemical purity was determined from the calculated composition formula by measuring the contents of the metal and phosphorus components contained in the filler by fluorescent X-ray analysis. For those containing crystal water, TG-DTA analysis was performed to determine the water content, and the content was determined from the calculated composition formula.
  • O Powder X-ray diffraction The crystal system of the hexagonal phosphate compound obtained by the production method of the present invention can be confirmed by powder X-ray diffraction analysis. The powder X-ray diffraction analysis can be performed, for example, in accordance with JIS K 0131 (established in 1996).
  • the applied voltage to the X-ray tube using a Cu target is 40 kv
  • the current value is 150 mA
  • Thermal expansion coefficient of glass composition The surface of the glass lump produced by the above-described evaluation of fluidity is smoothed, and the thermal expansion at 30 to 300 ° C. is performed by a thermomechanical measuring device (model name “TMA2940” manufactured by TA Instruments). The coefficient was measured.
  • the lead-free glass powder had a thermal expansion coefficient of 160 ⁇ 10 ⁇ 7 / K.
  • Example 2 ⁇ -layered zirconium phosphate (Zr (HPO 4 ) 2 .H 2 O) having a median diameter of 2 ⁇ m, manufactured by Toagosei Co., Ltd., trade name “NS-10TZ” 1,506 g, zirconium oxyhydroxide (ZrO (OH)) 2 ⁇ H 2 O) 260 g (1.0 times the molar amount of theoretical amount), 335 g of potassium bicarbonate (1.0 molar amount of theoretical amount), and 750 g of pure water were mixed in a 20 L Henschel mixer for 5 minutes. . The mixture was dried at 250 ° C. for 15 hours. Next, the dried mixture was heated to 1,250 ° C.
  • Example 3 ⁇ -layered zirconium phosphate (Zr (HPO 4 ) 2 .H 2 O) having a median diameter of 2 ⁇ m, manufactured by Toagosei Co., Ltd., trade name “NS-10TZ” 1,506 g, zirconium oxyhydroxide (ZrO (OH)) 2 ⁇ H 2 O) 246g (1.0 times mole of the theoretical amount) and 938g of 20wt% potassium hydroxide aqueous solution (1.0 times mole of the theoretical amount) were mixed for 5 minutes with a 20L Henschel mixer. did. The mixture was dried at 250 ° C. for 15 hours. Next, the dried mixture was heated to 1,250 ° C.
  • Example 4 ⁇ -layered zirconium phosphate (Zr (HPO 4 ) 2 .H 2 O) having a median diameter of 2 ⁇ m, manufactured by Toagosei Co., Ltd., trade name “NS-10TZ” 1,506 g, zirconium oxyhydroxide (ZrO (OH)) 2 ⁇ H 2 O) (123 g, 0.5 times mol of the theoretical amount) and 231 g of potassium carbonate (1.1 times mol of the theoretical amount) were mixed in a 20 L Henschel mixer for 5 minutes. The mixture was heated to 1,250 ° C. in a firing furnace for 6 hours and then fired at 1,250 ° C. for 6 hours. Next, the mass after firing was roughly crushed with a ball mill, and further pulverized into primary particles with a dry jet mill to obtain hexagonal phosphate-based compound D. This hexagonal phosphate compound was evaluated in the same manner as in Example 1.
  • the glass composition containing the filler has excellent low thermal expansibility and fluidity. High nature.
  • the fillers of Comparative Examples 1 to 5 have an ionic compound content outside the range of the present invention, the flowability of the glass composition is low.
  • the manufacturing method of the hexagonal phosphate compound of the present invention can lower the firing temperature than the firing method shown in Comparative Example 4, and it was easy to make the median diameter 10 ⁇ m or less.
  • the filler of the present invention is excellent in thermal expansion control when applied to lead-free glass and the like, and is excellent in fluidity when glass is melted. Therefore, it is mainly a cathode ray tube, PDP, fluorescent display tube, organic EL, IC ceramic package, etc. It can be used as a sealing agent composition for electronic parts.
  • the method for producing a hexagonal phosphate compound of the present invention is excellent in productivity and processability, and a hexagonal phosphate compound having a controlled particle size can be obtained.
  • Crystalline phosphate can be used as a filler for sealing glass for electronic parts such as cathode ray tubes, PDPs, fluorescent display tubes, organic EL, and IC ceramic packages.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

 少量の添加でガラス組成物の熱膨張を抑制することができ、ガラス組成物を溶融させた時の流動性にも優れるフィラー及び上記フィラーを含有するガラス組成物を提供する。また、上記フィラーとして好適に用いることができる六方晶リン酸塩系化合物を、簡便で工業的に有利な方法で造ることができる製造方法を提供する。 本発明のフィラーは、純度が90%以上である下記式1で表される六方晶リン酸塩系化合物からなり、かつ、イオン性化合物の含有量が1.0重量%以下であることを特徴とする。 KaZrb(PO43 (1) 式1中、aは0.8~1.2の正数であり、bはa+4b=9を満たす正数である。

Description

フィラー及びガラス組成物、並びに六方晶リン酸塩系化合物の製造方法
 本発明は、フィラー及びガラス組成物、並びに六方晶リン酸塩系化合物の製造方法に関する。
 リン酸塩系化合物には、非晶質のものと2次元層状構造や3次元網目状構造をとる結晶質のものがある。この中でも3次元網目状構造をとる結晶質リン酸塩系化合物は、耐熱性、耐薬品性、耐放射線性及び低熱膨張性などに優れており、放射性廃棄物の固定化、固体電解質、ガス吸着・分離剤、触媒、抗菌剤原料及び低熱膨張性フィラー等への応用が検討されている。
 これまでに様々なリン酸塩系化合物からなる低熱膨張性フィラーが報告されており、封着材料等に応用されている。例えば、特許文献1には、低融点ガラス粉末と、NaZr2(PO43、CaZr2(PO43、KZr2(PO43等の低熱膨張材粉末との混合物からなる封着材料が開示されており、特許文献2には、無鉛ガラス用のフィラー粉末としてNbZr2(PO43粉末が開示されており、特許文献3にはZr2(WO4)(PO42粉末が開示されている。
 また、これらのリン酸ジルコニウムの合成法には、原料を乾式で混合後、焼成炉等を用いて1,000℃以上で焼成することにより合成する焼成法(例えば、特許文献2)、水中又は水を含有した状態で原料を混合後加圧加熱して合成する水熱法、及び原料を水中で混合後、常圧下で加熱して合成する湿式法等が知られている。
特開平02-267137号公報 特開2000-290007号公報 特開2005-035840号公報
 しかし、特許文献1~3に記載されているような従来の低熱膨張性フィラーでは、その効果が十分ではない。具体的には、最近多用されるようになった無鉛低融点ガラスは、一般的に鉛ガラスよりも熱膨張が大きいために、従来の低熱膨張性フィラーを多量に配合しても、ガラス組成物の熱膨張係数を十分に下げることができないという問題がある。また、ガラス組成物に多量の低熱膨張性フィラーを加えると、ガラス組成物を溶融させた際の流動性が低下するという問題もある。
 また、焼成法によりリン酸ジルコニウムを製造すると、焼結によって硬度が高い塊状のリン酸ジルコニウムが生成するため、これを粉砕する場合は粉砕装置の摩耗や、摩耗物による汚染が起き易く、粉砕された結晶は形状や粒度が制御できないという問題がある。
 本発明は、上記問題点に鑑みてなされたものであって、少量の添加でガラス組成物の熱膨張を抑制することができ、ガラス組成物を溶融させた時の流動性にも優れるフィラー、及び、フィラーを含有するガラス組成物を提供することを目的とする。
 また、本発明の他の目的は、上記フィラーとして好適に用いることができる六方晶リン酸塩系化合物を、簡便で工業的に有利な方法で造ることができる製造方法を提供することである。
 本発明者らは、フィラーを含有するガラス組成物の溶融時の流動性について検討した結果、フィラー中のイオン性化合物が所定量以下である場合に、溶融時の流動性に優れることを見出した。また、層状リン酸ジルコニウム、カリウムを含む化合物、及びジルコニウムを含む化合物を用いて特定の六方晶リン酸塩系化合物を製造すると、小粒径の六方晶リン酸塩系化合物を容易に製造することができることを見出して本発明を完成させた。
 すなわち、本発明は次のとおりである。
 <1> 純度が90%以上である下記式1で表される六方晶リン酸塩系化合物からなり、かつ、イオン性化合物の含有量が1.0重量%以下であることを特徴とする、フィラー、
   KaZrb(PO43   (1)
 式1中、aは0.8~1.2の正数であり、bはa+4b=9を満たす正数である。
 <2> 上記イオン性化合物が、カリウムイオン、ジルコニウムイオン及びリン酸イオンである、<1>に記載のフィラー、
 <3> レーザー回折式粒度分布計による体積基準のメジアン径が、0.05~10μmである、<1>又は<2>に記載のフィラー、
 <4> レーザー回折式粒度分布計による体積基準の最大粒径が、50μm以下である、<1>~<3>のいずれか1つに記載のフィラー、
 <5> <1>~<4>のいずれか1つに記載のフィラーを含有することを特徴とする、ガラス組成物、
 <6> 層状リン酸ジルコニウム、カリウムを含む化合物、及び上記層状リン酸ジルコニウム以外のジルコニウムを含む化合物を調合し混合物を得る工程、上記混合物を焼成する工程、並びに、上記焼成工程後に粉砕する工程を含むことを特徴とする下記式1で表される六方晶リン酸塩系化合物の製造方法、
   KaZrb(PO43   (1)
 式1中、aは0.8~1.2の正数であり、bはa+4b=9を満たす正数である。
 <7> 上記層状リン酸ジルコニウムが、レーザー回折式粒度分布計による体積基準で0.05~10μmのメジアン径を有する粒子である、<6>に記載の六方晶リン酸塩系化合物の製造方法、
 <8> 上記層状リン酸ジルコニウム1モルに対する上記カリウムを含む化合物の配合量が、製造する六方晶リン酸塩系化合物の理論量の0.8~1.2倍量モルである、<6>又は<7>に記載の六方晶リン酸塩系化合物の製造方法、
 <9> 焼成温度が、650~1,500℃である、<6>~<8>のいずれか1つに記載の六方晶リン酸塩系化合物の製造方法。
 本発明に係るフィラーは、純度が所定以上の式1で表される六方晶リン酸塩系化合物からなり、かつ、イオン性不純物の含有量が1.0重量%以下であるため、少量の添加でガラス組成物の熱膨張を抑制することができ、優れた低熱膨張性能を示す。また、当該フィラーを含むガラス組成物は、溶融時の流動性に優れる。
 本発明の六方晶リン酸塩系化合物の製造方法は、高純度で、かつ、小粒径の六方晶リン酸塩系化合物を得ることができる。
 以下、本発明について説明する。なお、「%」は特に明記しない限り「重量%」を意味し、「部」は「重量部」、「ppm」は「重量ppm」を意味する。
 また、数値範囲を表す「~」の記載は、その前後の数値を含む数値範囲を意味する。
 本発明のフィラーは、ガラス組成物の流動性に悪影響を与えるイオン性化合物が極めて少ない点に特徴があり、低熱膨張性フィラーとして従来実現されていなかったものである。このようなフィラーは、原料として、層状リン酸ジルコニウム、カリウムを含む化合物、及びジルコニウムを含む化合物を使用し、混合、焼成及び粉砕する工程を経て得られるものである。本発明のフィラーを用いたガラス組成物は、微細な形状に対応することができ、優れた低熱膨張性能を示す。また、以下、本発明のフィラーを、「本発明の低熱膨張性フィラー」ともいう。
[1]フィラー
 本発明のフィラーは、純度が90%以上である下記式1で表される六方晶リン酸塩系化合物からなり、かつ、イオン性化合物の含有量が1.0重量%以下であることを特徴とする。
   KaZrb(PO43   (1)
 式1中、aは0.8~1.2の正数であり、bはa+4b=9を満たす正数である。aは0.9~1.1であることがより好ましく、0.92~1.05であることが更に好ましい。aが0.8~1.2の正数であれば、フィラーは優れた低熱膨張性を示す。
 本発明のフィラーを含む組成物は熱膨張率が低いので、主にブラウン管、プラズマディスプレイパネル(PDP)、蛍光表示管、有機EL、及びICセラミックパッケージ等の電子部品の封着材料に使用することができる。また、IC封止樹脂や樹脂接着剤の熱膨張抑制に使用することができる。
 本発明のフィラーは、純度が90重量%以上である高純度の式1で表される六方晶リン酸系塩化合物からなる。結晶的純度や化学的純度が高く、均一に結晶化していることでガラスと加熱溶融した際にガラスの浸食による変質が少なく、効率よく熱膨張性制御が可能となる。
 本発明において、式1で表される六方晶リン酸塩系化合物の純度は、結晶的純度と化学的純度との積として求められる。式1で表される六方晶リン酸塩系化合物の純度は、90重量%以上であることが必要である。当該純度は、93重量%以上であることが好ましい。なお、純度の上限は、100重量%であることは言うまでもない。
 フィラーとしての六方晶リン酸塩系化合物の結晶的純度は粉末X線回折により、標準X線回折図との主要ピークの強度比較や、六方晶リン酸塩系化合物以外の他の結晶成分に起因する不純物ピークの有無の確認によって可能である。また、化学的純度は、蛍光X線等の非破壊分析で組成分析をすることもできるし、酸化剤やフッ化水素酸を含む強酸によって結晶を溶解し、誘導結合プラズマ(ICP)発光分析法によって含まれる金属及びリン成分等の含有量絶対値を測定することもでき、結晶水や付着水等の水分については示差熱・熱重量同時測定(TG-DTA)等の熱分析で測定することができる。
 好ましい純度の値として、結晶的純度としては粉末X線回折により検出された所望の六方晶リン酸塩系化合物の主要ピーク(2θ=20.3°)と、不純物の主要ピーク(2θ=9.8°、21.5°及び/又は28.3°)のそれぞれの強度の和に対し、所望の六方晶リン酸塩系化合物の主要ピーク強度が90%以上を示すことが好ましく、より好ましくは95%以上である(ピーク強度は重量%に比例する)。また、化学的純度においても同様に、所望の六方晶リン酸塩系化合物が固形分重量中の90重量%以上であることが好ましく、より好ましくは95重量%以上である。
 フィラー中のイオン性化合物の含有量は、1.0重量%以下である必要がある。当該含有量は、0.6重量%以下であることが好ましく、0.3重量%以下であることがより好ましい。イオン性化合物の含有量が1.0重量%以下であることにより、ガラス組成物の流動性が損なわれない。ここで、イオン性化合物とは、フィラーを熱水に浸漬した時に溶出するイオン性化合物を意味し、具体的には、カリウムイオン、ジルコニウムイオン及びリン酸イオン等の原料由来のイオン性化合物である。これらのイオン性化合物は、ICP発光分析により定量することができる。詳細な分析方法は、後述する。
 フィラー中のイオン性化合物の含有量は、原料である層状リン酸ジルコニウムと、カリウムを含む化合物及び上記層状リン酸ジルコニウム以外のジルコニウムを含む化合物との配合比等で調製することができる。
 上記イオン性化合物の含有量が、ガラス組成物の流動性を低下させるメカニズムは次のように推定される。ガラス組成物を加熱して溶融すると、フィラーから上記イオン性化合物が脱離し、ガラス成分と反応することによりガラス組成が変化する。その結果、軟化点の上昇や部分的結晶化が起こり、ガラス組成物の流動性が低下すると考えられる。
 本発明におけるフィラーの粒子径は、レーザー回折式粒度分布計で定義することができ、脱イオン水中に分散させた状態で測定し、体積基準で解析したメジアン径を粒子径の代表値として用いることができる。メジアン径は0.05~10μmであることが好ましく、0.1~5μmであることがより好ましく、0.5~3μmであることが更に好ましい。低熱膨張性フィラーとして用いる場合、メジアン径が0.05μm以上であると、組成物の粘度が高くなり過ぎることが抑制され、扱いが容易である。一方、10μm以下であると、半導体素子などの微細な隙間を埋める用途にも好適に使用できる。
 また、各種製品への加工性を考慮すればメジアン径のみでなく、最大粒径も重要であり、フィラーの最大粒径は50μm以下であることが好ましく、20μm以下であることがより好ましく、10μm以下であることが更に好ましい。下限値は、0.05μm以上であることが好ましい。
 本発明のフィラーの使用形態は特に制限がなく、用途に応じて適宜他の成分と混合させたり、他の材料と複合させたりすることができる。例えば、粉末、粉末含有分散液、粉末含有粒子、粉末含有塗料、粉末含有繊維、粉末含有プラスチック、及び粉末含有フィルム等の種々の形態で用いることができ、熱膨張性の制御が必要な材料に適宜使用が可能である。更に、本発明のフィラーには、加工性や熱膨張性を調整するため、必要に応じて他のフィラーを混合することもできる。具体例としては低熱膨張性フィラーであるコーディエライト、リンタングステン酸ジルコニウム、タングステン酸ジルコニウム、βスポジューメン、βユークリプトライト、チタン酸鉛、チタン酸アルミニウム、ムライト、ジルコン、シリカ、セルシアン、ウィレマイト、及びアルミナ等が挙げられる。
[2]六方晶リン酸塩系化合物の製造方法
 本発明のフィラーは、その製造方法には特に制限はないが、本発明の六方晶リン酸塩系化合物の製造方法により製造された六方晶リン酸塩系化合物であることが好ましい。
 本発明の六方晶リン酸塩系化合物の製造方法は、層状リン酸ジルコニウム、カリウムを含む化合物、及び上記層状リン酸ジルコニウム以外のジルコニウムを含む化合物を調合し混合物を得る工程(以下、「調合工程」という)、上記混合物を焼成する工程(以下、「焼成工程」という)、並びに、上記焼成工程後に粉砕する工程(以下、「粉砕工程」という)を含むことを特徴とする。
 本製造方法で得られる六方晶リン酸塩系化合物は、ガラスや樹脂等の組成物のフィラーとして用いることにより、硬化物の熱膨張率を下げることができるので、主にブラウン管、プラズマディスプレイパネル(PDP)、蛍光表示管、有機EL、及びICセラミックパッケージ等の電子部品の封着材料に応用できるものである。また、IC封止樹脂や樹脂接着剤の熱膨張抑制に使用することができる。
 本発明の六方晶リン酸塩系化合物の製造に用いる原料は、層状リン酸ジルコニウム、カリウムを含む化合物、及び上記層状リン酸ジルコニウム以外のジルコニウムを含む化合物である。
 主原料である層状リン酸ジルコニウムは、2次元の層状空間を有する層状結晶であり、構成するリン酸基と結晶水の種類によって、α型結晶、その無水物を含むβ型結晶、及びγ型結晶等があり、イオン交換体として知られている。これらの結晶系の違いによって層間の距離が異なるため、イオン交換しやすい陽イオンの種類に選択性があることなどが研究されてきたが、これらの層状リン酸ジルコニウムを原料にして六方晶リン酸塩系化合物を製造したときに低熱膨張性に特徴あるものが得られることは、今まで知られていなかった。
 原料として用いる層状リン酸ジルコニウムとしては、微細なフィラーが得られ易いことから、α型結晶及びγ型結晶が好ましく、α型結晶がより好ましい。具体的には、次の化合物である。
  α層状リン酸ジルコニウム:Zr(HPO42・H2
  γ層状リン酸ジルコニウム:Zr(H2PO4)(PO4)・2H2
 上記層状リン酸ジルコニウムの粒子径は、得られる六方晶リン酸塩系化合物の粒子径に影響するため、得たい粒子径に合わせて用いる層状リン酸ジルコニウムの粒子径を選択することが好ましい。原料として用いる層状リン酸ジルコニウムの粒子径は、レーザー回折式粒度分布計で測定することができ、脱イオン水中に分散させた状態で測定し、体積基準で解析したメジアン径を粒子径の代表値として用いることができる。本発明の製造方法で得られた六方晶リン酸塩系化合物をガラスや樹脂等の組成物のフィラー成分として用いるとき、組成物を、微細な形状や隙間に対応する充填や成形の用途に用いるためにはメジアン径は小さい方がよいが、小さすぎると比表面積が大きくなってかえって流動性が低下する場合もある。フィラーとして好ましいメジアン径は上記のとおりであるから、原料として用いる層状リン酸ジルコニウムのメジアン径は、0.05~10μmであることが好ましく、0.1~5μmであることがより好ましく、0.5~3μmであることが更に好ましい。また、層状リン酸ジルコニウムのメジアン径が0.05~10μmの範囲であれば、後述する粉砕工程において容易に粉砕することができる。
 六方晶リン酸塩系化合物の製造に用いる他の原料としては、カリウムを含む化合物及び上記層状リン酸ジルコニウム以外のジルコニウムを含む化合物がある。これらの化合物は、六方晶リン酸塩系化合物中のカリウム量及びジルコニウム量を調整するための原料である。
 カリウムを含む化合物としては、例えば、KOH、K2(CO3)、KH(CO3)、KCl、KNO3、及びK2SO4等が挙げられる。これらの中でも、反応のし易さの点から、KOH、K2(CO3)、及びKH(CO3)が好ましい。また、これらのカリウムを含む化合物は、1種単独で使用してもよく、2種以上を併用してもよい。
 また、層状リン酸ジルコニウム以外のジルコニウムを含む化合物としては、例えば、Zr(OH)2、ZrO2、Zr2(CO3)(OH)22、ZrOCl2・8H2O、及びZr(SO42・4H2O等が挙げられる。これらの中でも、反応のし易さの点から、Zr(OH)2、Zr2(CO3)(OH)22が好ましい。また、これらのジルコニウムを含む化合物は、1種単独で使用してもよく、2種以上を併用してもよい。
 本発明の製造方法で六方晶リン酸塩系化合物を合成するときの原料の配合比は、合成する六方晶リン酸塩系化合物の理論組成(組成式と一致する配合比)を基本とするが、必ずしも完全に一致している必要はない。例えば、カリウムを含む化合物については、合成する六方晶リン酸塩系化合物の式量よりも若干過剰に添加することで、焼成時に低温で結晶化が起こりやすくなり、また、層状リン酸ジルコニウム以外のジルコニウムを含む化合物については、合成する六方晶リン酸塩の式量よりも若干過剰に添加することで、副生成物として生成しやすいピロリン酸塩が析出し難くなるので好ましい。
 原料の層状リン酸ジルコニウム1モルに対するカリウムを含む化合物の好ましい配合量は、合成する六方晶リン酸塩系化合物の式量から算出される理論量の0.8~1.2倍量モルであり、より好ましくは0.9~1.1倍量モル、更に好ましくは0.95~1.05倍量モルである。
 同様に、原料の層状リン酸ジルコニウム1モルに対する層状リン酸ジルコニウム以外のジルコニウムを含む化合物の好ましい配合量については、合成する六方晶リン酸塩系化合物の式量から算出される理論量の0.3~1.7倍量モルであり、より好ましくは0.5~1.5倍量モル、更に好ましくは0.8~1.2倍量モルである。
 上記調合工程における原料の混合方法は、均一に混合できる方法であれば特に限定されず、乾式法、湿式法のいずれの方法も選ぶことができる。混合装置の例としては、乾式混合であればレーディゲミキサー、ヘンシェルミキサー、V型混合機等が挙げられ、湿式混合であればニーダー、セメントミキサー、3本ロール等が挙げられる。また、湿式混合したものは、焼成前に乾燥することが好ましい。嵩が減って一度に焼成できることや、焼成時の熱伝導効率がよくなるからである。
 上記焼成工程における焼成温度は、原料組成にもよるが、層状リン酸ジルコニウムが六方晶リン酸塩に転移する温度以上である必要があり、650℃以上が好ましい。より好ましくは700℃以上であり、更に好ましくは750℃以上である。また、焼成温度が高すぎると粒子径が肥大化するため、1,500℃以下が好ましい。より好ましくは1,450℃以下であり、更に好ましくは1,400℃以下である。
 焼成時間は、原料投入量や焼成炉の能力にもよるが、短すぎるとフィラーの品質が安定せず、長すぎると生産性が悪いため、30分以上24時間以下が好ましい。
 焼成装置は、原料の混合物を所定の温度で加熱できるものであれば特に限定されず、匣鉢に原料の混合物を入れて電気炉やガス炉で焼成する方法や、ロータリーキルンで原料の混合物を流動させながら焼成する方法などいずれでも用いることができる。
 上記粉砕工程は、焼成物を一次粒子に粉砕できる方法であれば特に限定されないが、乾式ジェットミルや湿式ジェットミルが粒度分布幅の狭い一次粒子が得られ易いことから好ましい。ジェットミルの前にボールミルやピンミルなどで焼成品を粗砕してもよい。
[3]ガラス組成物
 本発明のガラス組成物は、本発明のフィラーを含有するガラス組成物であり、ガラス、より好ましくは封着用ガラスである低融点ガラスと本発明のフィラーとの配合物からなることが好ましい。上記低融点ガラスは、封着対象となるガラス等よりも熱膨張性が大きいことから、一般に低熱膨張性のフィラーを添加して熱膨張性を調整することが行われている。低融点ガラス粉の主成分は、従来公知の組成が使用できる。ガラス組成としては、次のものが例示されるが、環境への影響を考慮すると無鉛のガラス組成が好ましい。
 ・Bi23(50~85重量%)-ZnO(10~25重量%)-Al23(0.1~5重量%)-B23(2~20重量%)-MO(0.2~20重量%、Mはアルカリ土類金属である。)
 ・SnO(30~70重量%)-ZnO(0~20重量%)-Al23(0~10重量%)-B23(0~30重量%)-P25(5~45重量%)
 ・PbO(70~85重量%)-ZnO(7~12重量%)-SiO2(0.5~3重量%)-B23(7~10重量%)-BaO(0~3重量%)
 ・V25(28~56重量%)-ZnO(0~40重量%)-P25(20~40重量%)-BaO(7~42重量%)
 ・P25(20~60重量%)-Al23(5~40重量%)-M2O(5~40重量%、Mはアルカリ金属である。)
 ・P25(20~60重量%)-ZnO(5~40重量%)-BaO(5~40重量%)-Al23(1~10重量%)
 ガラス組成物とするときのフィラーの配合割合は、フィラーの含有量が多いと効果が表れやすいことから5体積%以上が好ましく、より好ましくは10体積%以上である。また、フィラーの含有量は少ない方が組成物の流動性や封着するときの密着性が優れる傾向があるため、40体積%以下が好ましく、より好ましくは35体積%以下である。封着用のガラス組成物はビヒクルと混合することでペースト組成物として使用されることが多い。ビヒクルは、溶質としてニトロセルロース0.5~2重量%と、溶媒である酢酸イソアミル又は酢酸ブチル98~99.5重量%からなることが好ましい。
 本発明のフィラーを封着ガラスへ配合する方法は、公知の方法がいずれも採用できる。例えば、ガラス粉末と低熱膨張性フィラーをミキサーで直接混合する方法、塊状のガラスを粉砕する場合に低熱膨張性フィラーを一緒に入れて、粉砕と混合を同時に行う方法、及びビヒクル等のペースト材料にガラス粉末と低熱膨張性フィラーを別々に添加混合する方法などがある。
 本発明のガラス組成物の熱膨張係数は、熱機械分析装置を用いて測定することができる。当該熱膨張係数は、用いる低融点ガラスの種類にもよるが、1×10-7~150×10-7(/K)であることが好ましく、1×10-7~120×10-7(/K)であることがより好ましい。熱膨張係数が1×10-7~120×10-7(/K)であれば、封着ガラスとして有効に使用できる。
 本発明のフィラーの用途としては、ブラウン管、プラズマディスプレイパネル、蛍光表示管、有機EL、FEDや半導体集積回路、水晶振動子、SAWフィルタ等の素子を搭載した高信頼性パッケージ等の電子部品の封着材料として封着ガラスに有効に使用できる。本発明のフィラーと封着ガラスとを含有するガラス組成物と、ビヒクルとを混合することでペースト組成物として使用されることも多い。
 本発明を、実施例に基づいてより具体的に説明するが、本発明は、これに限定されるものではない。なお、下記において、部及び%は、特に断らない限り、重量基準である。
1.評価方法
(1)フィラーの純度
 本発明におけるフィラーの純度は、結晶的純度と化学的純度とを乗じた値である。結晶的純度は、粉末X線回折によって六方晶結晶相の生成を確認し、不純物とのピーク強度の比により決定した。具体的には、六方晶結晶相の主要ピーク(2θ=20.3°)の強度と、不純物の主要ピーク(2θ=9.8°、21.5°及び/又は28.3°)の強度の和に対する六方晶結晶相の主要ピークの強度の割合を結晶的純度とした。また、化学的純度は、蛍光X線分析によりフィラーに含まれる金属とリン成分の含有量を測定し、算出した組成式より決定した。結晶水を含むものについてはTG-DTA分析を行って含有水分量を測定し、算出した組成式より決定した。
○粉末X線回折
 本発明の製造方法によって得られる六方晶リン酸塩系化合物の結晶系は、粉末X線回折分析によって確認することができる。粉末X線回折分析は、例えばJIS K 0131(1996年制定)の規定に従って行うことができる。JISの規定にはX線管球の印加電圧の定めはないが、今回はCuターゲットを用いたX線管球への印加電圧40kv、電流値150mAで、発生するCuKα線を用いてX線回折測定を行った。もし試料に結晶質の物質が含まれていた場合は、X線回折図に鋭角の形状を有する回折ピークが表れるので、得られた粉末X線回折図から、回折ピークの回折角2θを決定し、λ=2dsinθの関係に基づいて結晶の面間隔dを算出し、結晶系の同定をすることができる。なお、CuKα線のλは1.5418オングストロームである。
(2)粒径
 フィラーのメジアン径及び最大粒径は、レーザー回折式粒度分布計により測定し、体積基準で解析して算出した。
(3)イオン性化合物の含有量
 純水100gにフィラー1gを入れて95℃で20時間静置後、メンブレンフィルター(0.1μm)でろ過し、ろ液を得た。このろ液中のP、K、Zr濃度をICP発光分析により定量し、イオン性化合物量に換算した。P濃度は、すべてリン酸イオン由来の元素とした。これらの分析結果は表1に示した。
(4)ガラス組成物の流動性
 無鉛系ガラス粉末である日本フリット(株)製 商品名「VY-144」(組成:P25-Al23-Li2O-Na2O-K2O)に、合成したフィラーを30体積%となるように混合して直径10mm×高さ6mmの円柱状に成型後、電気炉にて540℃で10分加熱した。これにより得たガラス塊の直径をデジタルノギスで測定し、流動径とした。この流動径が、ガラスに近いものほど、流動性が良好であると判断した。なお、上記無鉛系ガラス粉末の流動径は、10.8mmであった。
(5)ガラス組成物の熱膨張係数
 上記流動性の評価で作製したガラス塊の表面を平滑化し、熱機械測定装置(TA Instruments社製 型式名「TMA2940」)により、30~300℃の熱膨張係数を測定した。なお、上記無鉛系ガラス粉末の熱膨張係数は、160×10-7/Kであった。
2.六方晶リン酸塩系化合物の製造及び評価
(実施例1)
 メジアン径2μmのα層状リン酸ジルコニウム(Zr(HPO42・H2O)である、東亞合成(株)製 商品名「NS-10TZ」1,506g、オキシ水酸化ジルコニウム(ZrO(OH)2・H2O)246g(理論量の1.0倍量モル)、及び、炭酸カリウム231g(理論量の1.0倍量モル)を20Lのヘンシェルミキサーで5分間混合した。この混合物を、焼成炉にて6時間で1,350℃まで昇温後、1,350℃で6時間焼成した。次いで、焼成後の塊をボールミルで粗砕し、更に乾式ジェットミルで1次粒子に粉砕して、六方晶リン酸塩系化合物Aを得た。この六方晶リン酸塩系化合物の純度、メジアン径、及びイオン性化合物量、並びにガラス組成物の流動性及び熱膨張係数を上記の方法で測定し、結果を表1及び2に示した。
(実施例2)
 メジアン径2μmのα層状リン酸ジルコニウム(Zr(HPO42・H2O)である、東亞合成(株)製 商品名「NS-10TZ」1,506g、オキシ水酸化ジルコニウム(ZrO(OH)2・H2O)260g(理論量の1.0倍量モル)、炭酸水素カリウム335g(理論量の1.0倍量モル)、及び、純水750gを20Lのヘンシェルミキサーで5分間混合した。この混合物を、250℃で15時間乾燥した。次いで、乾燥した混合物を、焼成炉にて6時間で1,250℃まで昇温後、1,250℃で12時間焼成した。焼成後の塊をボールミルで粗砕し、更に乾式ジェットミルで1次粒子に粉砕して、六方晶リン酸塩系化合物Bを得た。この六方晶リン酸塩系化合物を実施例1と同様に評価した。
(実施例3)
 メジアン径2μmのα層状リン酸ジルコニウム(Zr(HPO42・H2O)である、東亞合成(株)製 商品名「NS-10TZ」1,506g、オキシ水酸化ジルコニウム(ZrO(OH)2・H2O)246g(理論量の1.0倍量モル)、及び、20重量%の水酸化カリウム水溶液938g(理論量の1.0倍量モル)を20Lのヘンシェルミキサーで5分間混合した。この混合物を、250℃で15時間乾燥した。次いで、乾燥した混合物を、焼成炉にて6時間で1,250℃まで昇温後、1,250℃で6時間焼成した。焼成後の塊をボールミルで粗砕し、更に乾式ジェットミルで1次粒子に粉砕して、六方晶リン酸塩系化合物Cを得た。この六方晶リン酸塩系化合物を実施例1と同様に評価した。
(実施例4)
 メジアン径2μmのα層状リン酸ジルコニウム(Zr(HPO42・H2O)である、東亞合成(株)製 商品名「NS-10TZ」1,506g、オキシ水酸化ジルコニウム(ZrO(OH)2・H2O)123g(理論量の0.5倍量モル)、及び、炭酸カリウム231g(理論量の1.1倍量モル)を20Lのヘンシェルミキサーで5分間混合した。この混合物を、焼成炉にて6時間で1,250℃まで昇温後、1,250℃で6時間焼成した。次いで、焼成後の塊をボールミルで粗砕し、更に乾式ジェットミルで1次粒子に粉砕して、六方晶リン酸塩系化合物Dを得た。この六方晶リン酸塩系化合物を実施例1と同様に評価した。
(比較例1)
 純水7Lに、シュウ酸2水和物290g、及び、20重量%オキシ塩化ジルコニウム水溶液2,787gを溶解し、撹拌しながら75重量%リン酸水溶液897gを添加した。この溶液に、20重量%水酸化カリウム水溶液をpHが2.7になるまで添加し、98℃で6時間反応させた。その後、セラミックフィルターを用いて純水でろ過洗浄し、固形分を250℃で15時間乾燥して六方晶リン酸塩系化合物Eを得た。この六方晶リン酸塩系化合物を実施例1と同様に評価した。
(比較例2)
 純水7Lに、炭酸ナトリウム319g、及び、炭酸水素ナトリウム556gを溶解し、撹拌しながら20重量%オキシ塩化ジルコニウム水溶液3,592gを添加して、30℃で15時間反応させた。その後、セラミックフィルターを用いて純水でろ過洗浄した。このスラリーに、75重量%リン酸水溶液1,030g、及び、20重量%水酸化カリウム水溶液931gを添加し、98℃で2時間反応させた。その後、セラミックフィルターを用いて純水でろ過洗浄し、固形分を250℃で15時間乾燥した。次いで、この乾燥した反応物を焼成炉にて6時間で1,250℃まで昇温後、1,250℃で6時間焼成した。乾式ボールミルで粗砕した後、更に乾式ジェットミルにより粉砕して六方晶リン酸塩系化合物Fを得た。この六方晶リン酸塩系化合物を実施例1と同様に評価した。
(比較例3)
 純水7Lに、炭酸カリウム240g、及び、炭酸水素ナトリウム372gを溶解し、撹拌しながら20重量%オキシ塩化ジルコニウム水溶液1,960gを添加した。これに75重量%リン酸水溶液562g、及び、20重量%水酸化カリウム水溶液448gを添加し、98℃で2時間反応させた。その後、セラミックフィルターを用いて純水でろ過洗浄し、固形分を250℃で15時間乾燥した。次いで、この乾燥した反応物を焼成炉にて6時間で1,350℃まで昇温後、1,350℃で6時間焼成した。乾式ボールミルで粗砕した後、更に乾式ジェットミルにより粉砕して六方晶リン酸塩系化合物Gを得た。この六方晶リン酸塩系化合物を実施例1と同様に評価した。
(比較例4)
 炭酸カリウム138g、酸化ジルコニウム246g、リン酸水素二アンモニウム396g、及び焼結助剤として酸化マグネシウム15gを20Lのヘンシェルミキサーで5分間混合した。次いで、この混合物を焼成炉にて6時間で1,450℃まで昇温後、1,450℃で6時間焼成した。乾式ボールミルで粗砕した後、更に乾式ジェットミルにより粉砕して六方晶リン酸塩系化合物Hを得た。この六方晶リン酸塩系化合物を実施例1と同様に評価した。
 なお、同様の操作で焼成温度を1,350℃とした場合は酸化ジルコニウムが多く残り、目的物である六方晶リン酸塩系化合物はほとんど得られなかった。
(比較例5)
 メジアン径2μmのα層状リン酸ジルコニウム(Zr(HPO42・H2O)である、東亞合成(株)製 商品名「NS-10TZ」1,506g、オキシ水酸化ジルコニウム(ZrO(OH)2・H2O)246g(理論量の1.0倍量モル)、及び、炭酸カリウム307g(理論量の1.3倍量モル)を20Lのヘンシェルミキサーで5分間混合した。この混合物を、焼成炉にて6時間で1,250℃まで昇温後、1,250℃で6時間焼成した。次いで、焼成後の塊をボールミルで粗砕し、更に乾式ジェットミルで1次粒子に粉砕して、六方晶リン酸塩系化合物Iを得た。この六方晶リン酸塩系化合物を実施例1と同様に評価した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、実施例1~4のフィラーは、イオン性化合物の含有量が1.0重量%以下であるため、それを含むガラス組成物は優れた低熱膨張性を有するとともに、流動性が高い。一方、比較例1~5のフィラーは、イオン性化合物の含有量が本発明の範囲外であるため、ガラス組成物の流動性が低い。また、本発明の六方晶リン酸塩系化合物の製造方法は、比較例4に示す焼成法よりも焼成温度を低くすることができ、メジアン径を10μm以下にすることも容易であった。
 本発明のフィラーは、無鉛系ガラス等に適用した際の熱膨張性制御に優れ、ガラス溶融時の流動性にも優れるため、主にブラウン管、PDP、蛍光表示管、有機EL、ICセラミックパッケージ等の電子部品用の封着剤組成物等として使用できる。
 本発明の六方晶リン酸塩系化合物の製造方法は、生産性、加工性に優れており、粒径の制御された六方晶リン酸塩系化合物が得られるので、本発明の製造方法による六方晶リン酸塩は、ブラウン管、PDP、蛍光表示管、有機EL、ICセラミックパッケージ等の電子部品用の封着ガラス等のフィラーとして使用できる。

Claims (9)

  1.  純度が90%以上である下記式1で表される六方晶リン酸塩系化合物からなり、かつ、イオン性化合物の含有量が1.0重量%以下であることを特徴とする、
     フィラー。
       KaZrb(PO43   (1)
     式1中、aは0.8~1.2の正数であり、bはa+4b=9を満たす正数である。
  2.  前記イオン性化合物が、カリウムイオン、ジルコニウムイオン及びリン酸イオンである、請求項1に記載のフィラー。
  3.  レーザー回折式粒度分布計による体積基準のメジアン径が、0.05~10μmである、請求項1又は2に記載のフィラー。
  4.  レーザー回折式粒度分布計による体積基準の最大粒径が、50μm以下である、請求項1~3のいずれか1項に記載のフィラー。
  5.  請求項1~4のいずれか1項に記載のフィラーを含有することを特徴とする、ガラス組成物。
  6.  層状リン酸ジルコニウム、カリウムを含む化合物、及び前記層状リン酸ジルコニウム以外のジルコニウムを含む化合物を調合し混合物を得る工程、
     前記混合物を焼成する工程、並びに、
     前記焼成工程後に粉砕する工程を含むことを特徴とする
     下記式1で表される六方晶リン酸塩系化合物の製造方法。
       KaZrb(PO43   (1)
     式1中、aは0.8~1.2の正数であり、bはa+4b=9を満たす正数である。
  7.  前記層状リン酸ジルコニウムが、レーザー回折式粒度分布計による体積基準で0.05~10μmのメジアン径を有する粒子である、請求項6に記載の六方晶リン酸塩系化合物の製造方法。
  8.  前記層状リン酸ジルコニウム1モルに対する前記カリウムを含む化合物の配合量が、製造する六方晶リン酸塩系化合物の理論量の0.8~1.2倍量モルである、請求項6又は7に記載の六方晶リン酸塩系化合物の製造方法。
  9.  焼成温度が、650~1,500℃である、請求項6~8のいずれか1項に記載の六方晶リン酸塩系化合物の製造方法。
PCT/JP2014/080057 2013-11-20 2014-11-13 フィラー及びガラス組成物、並びに六方晶リン酸塩系化合物の製造方法 WO2015076175A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015549094A JP6052428B2 (ja) 2013-11-20 2014-11-13 フィラー及びガラス組成物、並びに六方晶リン酸塩系化合物の製造方法
US15/037,220 US9714170B2 (en) 2013-11-20 2014-11-13 Filler and glass composition, and process for producing hexagonal phosphate-based compound
CN201480062757.1A CN105764847B (zh) 2013-11-20 2014-11-13 填料及玻璃组合物、以及六方晶磷酸盐类化合物的制造方法
KR1020167013202A KR102265249B1 (ko) 2013-11-20 2014-11-13 필러 및 유리 조성물, 그리고 육방정 인산염계 화합물의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-239675 2013-11-20
JP2013239675 2013-11-20

Publications (1)

Publication Number Publication Date
WO2015076175A1 true WO2015076175A1 (ja) 2015-05-28

Family

ID=53179441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080057 WO2015076175A1 (ja) 2013-11-20 2014-11-13 フィラー及びガラス組成物、並びに六方晶リン酸塩系化合物の製造方法

Country Status (6)

Country Link
US (1) US9714170B2 (ja)
JP (1) JP6052428B2 (ja)
KR (1) KR102265249B1 (ja)
CN (1) CN105764847B (ja)
TW (1) TWI643813B (ja)
WO (1) WO2015076175A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200024011A (ko) * 2018-08-27 2020-03-06 한국세라믹기술원 Las계 결정화 유리 및 그 제조 방법

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110156076A (zh) * 2019-06-14 2019-08-23 南京赛诺特斯材料科技有限公司 一种光纤插芯、光纤套筒用纳米氧化锆粉体及其生产工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0517112A (ja) * 1991-07-12 1993-01-26 Toagosei Chem Ind Co Ltd 結晶質リン酸ジルコニウム化合物の製造方法
JP2005162570A (ja) * 2003-12-05 2005-06-23 Nippon Electric Glass Co Ltd 封着用複合材料
JP2006111463A (ja) * 2004-10-12 2006-04-27 Nippon Electric Glass Co Ltd Pdp封着用粉末およびそれを用いてなるpdp封着用ペースト
JP2006306677A (ja) * 2005-04-28 2006-11-09 Toagosei Co Ltd 新規リン酸ジルコニウム
WO2010131731A1 (ja) * 2009-05-15 2010-11-18 東亞合成株式会社 低熱膨張性フィラーおよびその製造方法、ならびにガラス組成物
JP2011136871A (ja) * 2009-12-28 2011-07-14 Jgc Catalysts & Chemicals Ltd リン含有金属酸化物微粒子およびその製造方法、該リン含有金属酸化物微粒子を含む透明被膜形成用塗布液ならびに透明被膜付基材
JP2011168491A (ja) * 2011-05-13 2011-09-01 Toagosei Co Ltd 低熱膨張性フィラー及びその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4112194A (en) * 1976-11-08 1978-09-05 Gte Sylvania Incorporated Hexagonal hafnium, zirconium phosphate luminescent material, method of preparation, and x-ray intensifying screen containing the same
JP2767276B2 (ja) 1989-04-06 1998-06-18 株式会社日立製作所 封着材料
JP3852239B2 (ja) 1999-04-07 2006-11-29 日本電気硝子株式会社 フィラー粉末の製造方法
JP2005035840A (ja) 2003-07-15 2005-02-10 Kcm Corp 封着材料
JP4957073B2 (ja) 2006-05-12 2012-06-20 東亞合成株式会社 低熱膨張性フィラーを含有する、ガラス組成物
US8066810B2 (en) * 2006-10-27 2011-11-29 Toagosei Co., Ltd. Lamellar zirconium phosphate
US8603929B2 (en) * 2007-11-14 2013-12-10 Fujifilm Corporation Process for producing hexagonal zirconium phosphate powder

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0517112A (ja) * 1991-07-12 1993-01-26 Toagosei Chem Ind Co Ltd 結晶質リン酸ジルコニウム化合物の製造方法
JP2005162570A (ja) * 2003-12-05 2005-06-23 Nippon Electric Glass Co Ltd 封着用複合材料
JP2006111463A (ja) * 2004-10-12 2006-04-27 Nippon Electric Glass Co Ltd Pdp封着用粉末およびそれを用いてなるpdp封着用ペースト
JP2006306677A (ja) * 2005-04-28 2006-11-09 Toagosei Co Ltd 新規リン酸ジルコニウム
WO2010131731A1 (ja) * 2009-05-15 2010-11-18 東亞合成株式会社 低熱膨張性フィラーおよびその製造方法、ならびにガラス組成物
JP2011136871A (ja) * 2009-12-28 2011-07-14 Jgc Catalysts & Chemicals Ltd リン含有金属酸化物微粒子およびその製造方法、該リン含有金属酸化物微粒子を含む透明被膜形成用塗布液ならびに透明被膜付基材
JP2011168491A (ja) * 2011-05-13 2011-09-01 Toagosei Co Ltd 低熱膨張性フィラー及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200024011A (ko) * 2018-08-27 2020-03-06 한국세라믹기술원 Las계 결정화 유리 및 그 제조 방법
KR102137875B1 (ko) 2018-08-27 2020-07-27 한국세라믹기술원 Las계 결정화 유리 및 그 제조 방법

Also Published As

Publication number Publication date
JPWO2015076175A1 (ja) 2017-03-16
US20160289076A1 (en) 2016-10-06
TWI643813B (zh) 2018-12-11
CN105764847A (zh) 2016-07-13
KR20160086341A (ko) 2016-07-19
KR102265249B1 (ko) 2021-06-14
US9714170B2 (en) 2017-07-25
TW201527208A (zh) 2015-07-16
CN105764847B (zh) 2018-01-23
JP6052428B2 (ja) 2016-12-27

Similar Documents

Publication Publication Date Title
CN103917214B (zh) 包含三价金属氧化物的硅酸锂玻璃陶瓷和硅酸锂玻璃
CN110627361B (zh) 一种用于卫生陶瓷的低锆洁白釉及其制备工艺
JP5126235B2 (ja) 六方晶リン酸ジルコニウム粉末の製造方法
WO2017061403A1 (ja) 負熱膨張材及びそれを含む複合材料
JP6052428B2 (ja) フィラー及びガラス組成物、並びに六方晶リン酸塩系化合物の製造方法
JP5454813B2 (ja) 低熱膨張性フィラーおよびその製造方法、ならびにガラス組成物
JP5839129B2 (ja) フィラーおよびガラス組成物、ならびに、六方晶リン酸塩の製造方法
CN111559870B (zh) 含有铕的荧光玻璃陶瓷和玻璃
JP4957073B2 (ja) 低熱膨張性フィラーを含有する、ガラス組成物
WO2020195721A1 (ja) スピネル粉末
JP5360439B2 (ja) 低熱膨張性フィラー及びその製造方法
JP2006213546A (ja) ガラスの製造方法および赤外カットフィルター
TWI751146B (zh) 陶瓷粉末的製造方法
JP2000290007A (ja) フィラー粉末の製造方法
JP4239150B2 (ja) フィラー粉末の製造方法
JP6509668B2 (ja) ホウ酸アルミニウムウィスカーの製造方法
Get’man et al. Synthesis and study of NaNd9 (SiO4) 6O2
JP7020335B2 (ja) ガラス組成物
JP2023038904A (ja) 負熱膨張材、その製造方法及びペースト
JPS624334B2 (ja)
JP2009269803A (ja) パッキング材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14864666

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015549094

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15037220

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167013202

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14864666

Country of ref document: EP

Kind code of ref document: A1