WO2015072779A1 - 촉매 조성물 및 이의 제조방법 - Google Patents

촉매 조성물 및 이의 제조방법 Download PDF

Info

Publication number
WO2015072779A1
WO2015072779A1 PCT/KR2014/010955 KR2014010955W WO2015072779A1 WO 2015072779 A1 WO2015072779 A1 WO 2015072779A1 KR 2014010955 W KR2014010955 W KR 2014010955W WO 2015072779 A1 WO2015072779 A1 WO 2015072779A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst composition
catalyst
metal hydroxide
preparing
mixed metal
Prior art date
Application number
PCT/KR2014/010955
Other languages
English (en)
French (fr)
Other versions
WO2015072779A9 (ko
Inventor
김대철
고동현
조성준
강전한
차경용
이주혁
남현석
최대흥
서명지
황예슬
한준규
한상진
Original Assignee
(주) 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 엘지화학 filed Critical (주) 엘지화학
Priority to US14/763,104 priority Critical patent/US9592496B2/en
Priority to EP14862758.1A priority patent/EP2937141B1/en
Priority to CN201480009360.6A priority patent/CN104994943B/zh
Priority to JP2015555119A priority patent/JP6277203B2/ja
Publication of WO2015072779A1 publication Critical patent/WO2015072779A1/ko
Publication of WO2015072779A9 publication Critical patent/WO2015072779A9/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/232Carbonates
    • B01J27/236Hydroxy carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/007Mixed salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/31Chromium, molybdenum or tungsten combined with bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8876Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/78Compounds containing aluminium and two or more other elements, with the exception of oxygen and hydrogen
    • C01F7/784Layered double hydroxide, e.g. comprising nitrate, sulfate or carbonate ions as intercalating anions
    • C01F7/785Hydrotalcite
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/12Alkadienes
    • C07C11/16Alkadienes with four carbon atoms
    • C07C11/1671, 3-Butadiene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/42Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor
    • C07C5/48Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor with oxygen as an acceptor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/612Surface area less than 10 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/28Molybdenum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/31Chromium, molybdenum or tungsten combined with bismuth

Definitions

  • the present disclosure relates to a catalyst composition for an oxidative dehydrogenation reaction and a method for preparing the same, and more particularly, excellent mechanical durability to prevent loss during a filling process and abrasion due to long-term use, and to form polymers and carbon during the reaction. Deposition is suppressed, and relates to a catalyst composition for oxidative dehydrogenation reaction having excellent conversion and selectivity, a method for preparing the same, and the like.
  • oxidative dehydrogenation of butene occurs at 300 to 450 ° C. as a chemical process for preparing butadiene, a raw material for synthetic rubber. At this time, oxygen or water is added as an oxidizing agent, or butadiene is prepared using only butene.
  • metal oxide catalysts such as molybdenum, bismuth, and cobalt, which are catalysts for oxidative dehydrogenation of butene, are manufactured into pellets through manufacturing and molding processes. Wear occurs. In particular, various problems occur, such as forming a metal oxide precursor and then pelleting in the process of firing.
  • the present substrate is excellent in mechanical durability to prevent the loss during the filling process and abrasion due to long-term use, polymer formation and carbon deposition during the reaction is suppressed, conversion and selection
  • An object of the present invention is to provide an excellent catalyst composition, a method for preparing the same, and a binder applied thereto.
  • the present disclosure provides a catalyst composition comprising a multicomponent metal oxide catalyst and a mixed metal hydroxide.
  • the present invention also provides a method of preparing a catalyst composition comprising a) mixing a multicomponent metal oxide catalyst and a mixed metal hydroxide, b) molding the mixture, and c) firing the molding. .
  • the present invention also provides a binder which is a mixed metal hydroxide and is applied to a multicomponent metal oxide catalyst.
  • according to the present invention is excellent in mechanical durability to prevent the loss during the filling process and abrasion due to long-term use, polymer formation and carbon deposition during the reaction is suppressed, excellent conversion and selectivity catalyst There is an effect of providing a composition and a method for producing the same.
  • FIG. 1 is a graph showing the conversion rate of oxidative dehydrogenation of butenes (1-butene 5 cc per minute, 12 cc oxygen, 84 cc helium) according to the reaction temperature for the catalyst composition pellets prepared in Example 1.
  • FIG. 1 is a graph showing the conversion rate of oxidative dehydrogenation of butenes (1-butene 5 cc per minute, 12 cc oxygen, 84 cc helium) according to the reaction temperature for the catalyst composition pellets prepared in Example 1.
  • FIG. 2 shows 1,3-butadiene selectivity (based on 1-butene 5 cc, 12 cc oxygen, 84 cc helium) of oxidative dehydrogenation of butene according to reaction temperature for the catalyst composition pellets prepared in Example 1.
  • FIG. It is a graph.
  • Figure 3 is a photograph of the state of the catalyst composition (BDP + HT) containing the mixed metal hydroxide according to the present invention and the catalyst composition (BDP) not containing the same before and after immersion in water, respectively.
  • Figure 4 is the conversion rate of oxidative dehydrogenation of butenes and 1,3-butadiene selectivity (reaction temperature 380 °C, 1-butene 5 cc per minute, oxygen 12 cc, helium) according to the content of mixed metal hydroxide in the catalyst composition of the present invention 84 cc standard).
  • the catalyst composition of the present disclosure is characterized by comprising a multicomponent metal oxide catalyst and a mixed metal hydroxide.
  • the multi-component metal oxide catalyst may include, for example, bismuth and molybdenum, and has an excellent conversion and selectivity within this range.
  • the multicomponent metal oxide catalyst may include bismuth, molybdenum, and cobalt, and has excellent conversion and selectivity within this range.
  • the multicomponent metal oxide catalyst may be, for example, a catalyst for an oxidative dehydrogenation reaction.
  • the multi-component metal oxide catalyst may be, for example, a coprecipitation catalyst, in which case the strength of the metal oxide catalyst is increased, the structure of the catalyst is maintained, and accordingly, the activity and selectivity are excellent.
  • the specific surface area of the multicomponent metal oxide catalyst is, for example, 2 to 15 m 2 g -1 , 3 to 12 m 2 g -1 , or 5 to 10 m 2 g -1 , and the activity and selection of the catalyst within this range. The effect is excellent.
  • the pore volume of the multi-component metal oxide catalyst is, for example, 0.01 to 0.1 ccg -1 , 0.01 to 0.06 ccg -1 , or 0.02 to 0.05 ccg -1 , and the effect of excellent catalyst activity and selectivity within this range is excellent. have.
  • the oxidative dehydrogenation reaction is, for example, a reaction for producing butadiene from butane or butene.
  • the mixed metal hydroxide is, for example, plate or layered, and has a specific specific surface area in comparison with the existing metal hydroxide within this range.
  • the plate or layer of the present disclosure is not particularly limited in the case of a form recognized as a plate or layer in the technical field to which the invention of the present disclosure belongs, and for example, means a form in which the thickness is greater than the length of the plane.
  • the length (L / T) of the length divided by the thickness means 1.5 or 5.
  • the specific surface area of the mixed metal hydroxide is, for example, 5 to 500 m 2 g -1 , 10 to 300 m 2 g -1 , or 50 to 200 m 2 g -1 , within which the metal hydroxide is bound to the catalyst. There is an augmented effect.
  • the pore volume of the mixed metal hydroxide is, for example, 0.1 to 1.0 ccg ⁇ 1 , 0.1 to 0.5 ccg ⁇ 1 , or 0.2 to 0.5 ccg ⁇ 1 , and the metal hydroxide has an effect of increasing binding with the catalyst within this range.
  • the mixed metal hydroxide includes, for example, aluminum and magnesium, in which case the strength of the metal oxide catalyst is increased.
  • the molar ratio of aluminum and magnesium is, for example, 1: 6 to 6: 1, 1: 1 to 6: 1, or 2: 1 to 4: 1, and the strength of the metal oxide catalyst is excellent in this range.
  • the mixed metal hydroxide is hydrotalcite, and in this case, the strength of the metal oxide catalyst is excellent.
  • the mixed metal hydroxide is, for example, 0.01 to 20% by weight, 0.1 to 5% by weight, or 1 to 2.5% by weight based on the catalyst composition, the effect of excellent crush strength, butene conversion and butadiene selectivity all within this range There is.
  • the weight of the catalyst composition of the present description means the weight of the sum of the multicomponent metal oxide and the mixed metal hydroxide or the weight of the catalyst composition after firing.
  • the catalyst composition may be calcined, and in this case, there is an effect of increasing the strength of the metal oxide catalyst in an amorphous phase.
  • the catalyst composition is, for example, a coprecipitation catalyst, in which case the strength of the metal oxide catalyst is increased, the structure of the catalyst is maintained, and accordingly, there is an effect of excellent activity and selectivity.
  • the catalyst composition is, for example, in the form of pellets, in which case there is an effect of increasing the strength of the metal oxide catalyst.
  • the catalyst composition may have a crush strength (Newton) of 4.5 or more, 4.5 to 15, or 7 to 14, and may be molded into various morphologies within this range, and have excellent activity and selectivity.
  • a crush strength Newton
  • the specific surface area of the catalyst composition is, for example, 5 to 500 m 2 g -1 , 10 to 300 m 2 g -1 , or 50 to 250 m 2 g -1 , within which the strength of the metal oxide catalyst is increased. It works.
  • Three study blooming example of the catalyst composition is 0.01 to 0.5ccg -1, -1 ccg 0.01 to 0.3, or 0.02 to 0.3 ccg -1, this has the effect that the strength of the metal oxide catalyst increases in the range.
  • the method for preparing a catalyst composition of the present disclosure is characterized by comprising a) mixing a multicomponent metal oxide catalyst and a mixed metal hydroxide, b) molding the mixture, and c) firing the molding. .
  • the method for preparing the catalyst composition may include a) preparing a slurry by mixing a multicomponent metal oxide catalyst, a mixed metal hydroxide, and water, b) preparing a molding by molding the slurry, and c) It may include the step of firing the molding, in which case the strength of the metal oxide catalyst is increased, there is an effect that the conversion and selectivity when producing butadiene compared to the conventional metal oxide catalyst.
  • the heat treatment may be omitted, thereby simplifying the process and reducing the process cost.
  • the calcined catalyst composition shows comparable levels in oxidative dehydrogenation reactivity (conversion and selectivity) of butenes compared to multicomponent metal oxide catalyst powders.
  • the multi-component metal oxide catalyst of step a) may be prepared through, for example, i) co-precipitation step, ii) drying step, and iii) firing step, in which case the strength of the metal oxide catalyst is increased.
  • the mixed metal hydroxide of step a) is calcined at, for example, 500 to 600 ° C., 550 to 600 ° C., or 570 to 580 ° C., and has excellent self adhesiveness within this range, thereby increasing the strength of the catalyst.
  • Step a) is a step of mixing 50 to 100 parts by weight, 10 to 20 parts by weight, or 5 to 7 parts by weight of water to 100 parts by weight of the total of the multi-component metal oxide catalyst and mixed metal hydroxide, for example, within this range Pellet molding is easy and there is an effect of increasing the strength of the metal oxide catalyst.
  • the water may be, for example, secondary distilled water of 5 ° C or less, 0 ° C or less, or 5 to -10 ° C.
  • the reaction rate may be slowed to secure a time required for process mixing and molding. .
  • the mixed metal hydroxide is, for example, 0.01 to 20% by weight, 0.1 to 5% by weight, or 1 to 2.5% by weight based on the total weight of the multicomponent metal oxide and the mixed metal hydroxide, and within the range of crush strength and butene Both conversion and butadiene selectivity are effective.
  • the molded article of step b) is in the form of a pellet, for example, in this case there is an effect that can easily control the size of the catalyst composition.
  • step c) is performed at 200 to 500 ° C., 300 to 400 ° C., or 300 to 350 ° C., for example, and crush strength, butene conversion, and butadiene selectivity are all excellent within this range.
  • Firing of step c) may be carried out for 1 to 8 hours, 2 to 6 hours, or 3 to 4 hours, for example, there is an excellent effect of crush strength within this range.
  • the preparation step of the catalyst composition may further comprise the step of aging the molding before firing of the step c), for example, there is an excellent effect of crush strength within this range.
  • the aging may be carried out for example for 12 to 96 hours, or 20 to 30 hours at room temperature, or 20 to 30 °C, it is excellent in crush strength within this range.
  • the aging method is not particularly limited when the aging method generally used in the art to which the present invention belongs.
  • the preparing of the catalyst composition may further include drying the molded product before firing of the c) step, and has excellent crush strength within this range.
  • the drying may be carried out at room temperature, or at 20 to 30 ° C. for 12 to 96 hours, or 10 to 15 hours, and has excellent crush strength within this range.
  • the binder of the present disclosure is a mixed metal hydroxide, and is characterized in that it is applied to a multicomponent metal oxide catalyst.
  • the mixed metal hydroxide includes, for example, aluminum and magnesium, in which case crush strength, butene conversion and butadiene selectivity are all excellent.
  • the mixed metal hydroxide is hydrotalcite, in which case crush strength, butene conversion and butadiene selectivity are all excellent.
  • Mo 12 Bi 1 Fe 1 Co 8 molybdenum-bismuth-
  • a catalyst composition was prepared in the same manner as in Example 1, except that Hydrotalcite was added in an amount of 1.3 wt% based on the mixed powder in Example 1.
  • the catalyst composition was prepared in the same manner as in Example 1, except that Hydrotalcite was added in an amount of 1.3 wt% based on the mixed powder and calcined at 350 ° C. in Example 1.
  • a catalyst composition was prepared in the same manner as in Example 1, except that Hydrotalcite was added in an amount of 2.5 wt% based on the mixed powder in Example 1.
  • the catalyst composition was prepared in the same manner as in Example 1, except that Hydrotalcite was added in an amount of 2.5 wt% based on the mixed powder and calcined at 350 ° C. in Example 1.
  • a catalyst composition was prepared in the same manner as in Example 1, except that Hydrotalcite was added in an amount of 3.0 wt% based on the mixed powder in Example 1.
  • the catalyst composition was prepared in the same manner as in Example 1, except that Hydrotalcite was added in an amount of 3.0 wt% based on the mixed powder and calcined at 350 ° C.
  • a catalyst composition was prepared in the same manner as in Example 1, except that silica was added in an amount of 2.0 wt% based on the mixed powder instead of hydrotalcite in Example 1.
  • a catalyst composition was prepared in the same manner as in Example 1, except that alumina was added in an amount of 1.25 wt% based on the mixed powder instead of hydrotalcite in Example 1.
  • a catalyst composition was prepared in the same manner as in Example 1, except that hydrotalcite was not added in Example 1.
  • a catalyst composition was prepared in the same manner as in Example 1, except that calcined at 350 ° C. without adding hydrotalcite in Example 1.
  • a catalyst composition was prepared in the same manner as in Example 1, except that aluminum hydroxide was added in an amount of 1.25 wt% based on the mixed powder instead of hydrotalcite in Example 1.
  • Carbon deposition measured by TGA method.
  • the catalyst composition of the present invention is superior in crush strength, conversion rate, and selectivity as compared to the catalyst composition (Comparative Examples 1 to 5) which do not contain a mixed metal hydroxide.
  • the catalyst composition of the present invention is combined with a multi-component metal oxide catalyst calcined with mixed metal hydroxides to preserve the crystal structure of the catalyst, there is no significant restriction on the amount of mixed metal hydroxides used to control the crush strength of the pellets It is easy to reduce the catalyst activity due to the increase in the amount of mixed metal hydroxide can be controlled by the change in the composition of the catalyst, up to 2.5% by weight only increase the crush strength without changing the catalyst activity, further due to the basic characteristics of the mixed metal hydroxide It was confirmed that there is a side effect of suppressing side reactions.
  • the catalyst composition prepared in Example 1 has a constant conversion rate of oxidative dehydration reaction of butene according to reaction temperature and 1,3 of oxidative dehydration reaction of butene according to reaction temperature. It was found that butadiene selectivity was maintained above 90%.
  • the catalyst compositions (Examples 3 and 4) of the present disclosure have high crush strength and remain in water even in water, but do not include mixed metal hydroxides (Comparative Example 3).
  • the silver crush strength was weak, so it was found to be submerged and crushed in water, making the water cloudy.
  • the catalyst composition of the present invention increases only the crush strength without changing the catalytic activity up to 2.5 wt% of the mixed metal hydroxide, and from 3.0 wt% with the increase in the crush strength. It was confirmed that this was lowered (in Fig. 3,?: Conversion of butene in 300 ° C reaction, ⁇ : selectivity of 1,3-butadiene in 300 ° C reaction, : Conversion of butene in a 350 ° C reaction, : Selectivity of 1,3-butadiene in a reaction at 350 ° C,: conversion of butenes to catalyst composition not containing mixed metal hydroxide,: conversion of 1,3-butadiene to catalyst composition not containing mixed metal hydroxide ).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

본 기재는 산화 탈수소화 반응용 촉매 조성물 및 이의 제조방법에 관한 것으로, 보다 상세하게는 다성분계 금속 산화물 촉매 및 혼합금속 수산화물을 포함하는 촉매 조성물에 관한 것이다. 본 기재에 따르면, 기계적 내구성이 우수하여 충진 과정에서 발생하는 소실과 장기간 사용에 따른 마모 등이 방지되고, 반응 중 고분자 형성 및 탄소침적이 억제되며, 전환율 및 선택도가 우수한 촉매 조성물 및 이의 제조방법 등을 제공하는 효과가 있습니다.

Description

촉매 조성물 및 이의 제조방법
본 기재는 산화 탈수소화 반응용 촉매 조성물 및 이의 제조방법에 관한 것으로, 보다 상세하게는 기계적 내구성이 우수하여 충진 과정에서 발생하는 소실과 장기간 사용에 따른 마모 등이 방지되고, 반응 중 고분자 형성 및 탄소침적이 억제되며, 전환율 및 선택도가 우수한 산화 탈수소화 반응용 촉매 조성물 및 이의 제조방법 등에 관한 것이다.
합성고무의 원료인 부타디엔을 제조하기 위한 화학공정으로 대표적인 부텐의 산화 탈수소화 반응은 300 내지 450 ℃에서 일어난다. 이때 산화제로 산소 또는 물 등을 첨가하거나, 부텐 만을 이용하여 부타디엔을 제조한다. 그러나 부텐의 산화 탈수소화 반응용 촉매인 몰리브덴, 비스무스, 코발트 등의 금속산화물 촉매는 제조 및 성형 과정을 거쳐 펠렛으로 제조되는데, 이들 촉매를 반응기에 충진하는 과정에서 일부가 소실되고, 또한 사용에 따른 마모가 발생한다. 특히 금속산화물 전구체를 성형한 다음, 소성하는 과정에서 펠렛이 부스러지는 등 여러 가지 문제가 발생한다.
따라서, 반응기에 촉매를 충진하는 과정에서 일어나는 촉매의 소실과 사용에 따른 촉매의 마모를 최소화할 수 있는 부텐의 산화 탈수소화 반응용 촉매 조성물 및 이의 제조방법의 개발이 시급한 실정이다.
상기와 같은 종래기술의 문제점을 해결하고자, 본 기재는 기계적 내구성이 우수하여 충진 과정에서 발생하는 소실과 장기간 사용에 따른 마모 등이 방지되고, 반응 중 고분자 형성 및 탄소침적이 억제되며, 전환율 및 선택도가 우수한 촉매 조성물, 이의 제조방법 및 이에 적용되는 바인더를 제공하는 것을 목적으로 한다.
본 기재의 상기 목적 및 기타 목적들은 하기 설명된 본 기재에 의하여 모두 달성될 수 있다.
상기의 목적을 달성하기 위하여, 본 기재는 다성분계 금속 산화물 촉매 및 혼합금속 수산화물을 포함하는 촉매 조성물을 제공한다.
또한, 본 기재는 a) 다성분계 금속 산화물 촉매와 혼합금속 수산화물을 혼합하는 단계, b) 상기 혼합물을 성형하는 단계, 및 c) 상기 성형물을 소성하는 단계를 포함하는 촉매 조성물의 제조방법을 제공한다.
또한, 본 기재는 혼합금속 수산화물이고, 다성분계 금속 산화물 촉매에 적용되는 바인더를 제공한다.
상기에서 살펴본 바와 같이, 본 기재에 따르면 기계적 내구성이 우수하여 충진 과정에서 발생하는 소실과 장기간 사용에 따른 마모 등이 방지되고, 반응 중 고분자 형성 및 탄소침적이 억제되며, 전환율 및 선택도가 우수한 촉매 조성물 및 이의 제조방법 등을 제공하는 효과가 있다.
도 1은 실시예 1에서 제조한 촉매 조성물 펠렛에 대한 반응온도에 따른 부텐의 산화 탈수소화 반응 전환율(분당 1-부텐 5 cc, 산소 12 cc, 헬륨 84 cc 기준으로 나타내는 그래프이다.
도 2는 실시예 1에서 제조한 촉매 조성물 펠렛에 대한 반응온도에 따른 부텐의 산화 탈수소화 반응의 1,3-부타디엔 선택도(분당 1-부텐 5 cc, 산소 12 cc, 헬륨 84 cc 기준)를 나타내는 그래프이다.
도 3은 본 기재에 따른 혼합금속 수산화물을 포함하는 촉매 조성물(BDP+HT)과 이를 포함하지 않는 촉매 조성물(BDP)을 각각, 물에 담그기 전의 상태와 물에 담근 후의 상태를 촬영한 사진이다.
도 4는 본 기재의 촉매 조성물에서 혼합금속 수산화물의 함량 변화에 따른 부텐의 산화 탈수소화 반응 전환율 및 1,3-부타디엔 선택도(반응온도 380 ℃, 분당 1-부텐 5 cc, 산소 12 cc, 헬륨 84 cc 기준)를 나타내는 그래프이다.
이하 본 기재를 상세하게 설명한다.
본 기재의 촉매 조성물은 다성분계 금속 산화물 촉매 및 혼합금속 수산화물을 포함하는 것을 특징으로 한다.
상기 다성분계 금속 산화물 촉매는 일례로 비스무스 및 몰리브덴을 포함할 수 있고, 이 범위 내에서 전환율 및 선택도가 우수한 효과가 있다.
또 다른 예로, 상기 다성분계 금속 산화물 촉매는 비스무스, 몰리브덴 및 코발트를 포함할 수 있고, 이 범위 내에서 전환율 및 선택도가 우수한 효과가 있다.
상기 다성분계 금속 산화물 촉매는 일례로 산화적 탈수소화 반응용 촉매일 수 있다.
상기 다성분계 금속 산화물 촉매는 일례로 공침 촉매일 수 있고, 이 경우 금속산화물 촉매의 강도가 증대되고, 촉매의 구조가 유지되며, 또한 이에 따라 활성 및 선택도가 우수한 효과가 있다.
상기 다성분계 금속 산화물 촉매의 비표면적은 일례로 2 내지 15 m2g-1, 3 내지 12 m2g-1, 또는 5 내지 10 m2g-1이고, 이 범위 내에서 촉매의 활성 및 선택도가 우수한 효과가 있다.
상기 상기 다성분계 금속 산화물 촉매의 세공부피는 일례로 0.01 내지 0.1 ccg-1, 0.01 내지 0.06 ccg-1, 또는 0.02 내지 0.05 ccg-1이고, 이 범위 내에서 촉매의 활성 및 선택도가 우수한 효과가 있다.
상기 산화적 탈수소화 반응은 일례로 부탄 또는 부텐으로부터 부타디엔을 생성하는 반응이다.
상기 혼합금속 수산화물은 일례로 판상 또는 층상이고, 이 범위 내에서 기존 금속 수산화물과 비교하여 넓은 비표면적을 갖는 특징이 있다.
본 기재의 판상 또는 층상은 본 기재의 발명이 속한 기술분야에서 판상 또는 층상으로 인정되는 형태인 경우 특별히 제한되지 않고, 일례로 두께(Thickness)가 면의 길이(Length)보다 큰 형태를 의미하며, 또 다른 예로 면의 길이를 두께로 나눈 값(L/T)이 혹은 1.5 내지 5인 것을 의미한다.
상기 혼합금속 수산화물의 비표면적은 일례로 5 내지 500 m2g-1, 10 내지 300 m2g-1, 또는 50 내지 200 m2g-1이고, 이 범위 내에서 금속수산화물이 촉매와 바인딩이 증대되는 효과가 있다.
상기 혼합금속 수산화물의 세공부피는 일례로 0.1 내지 1.0 ccg-1, 0.1 내지 0.5 ccg-1, 또는 0.2 내지 0.5 ccg-1이고, 이 범위 내에서 금속수산화물이 촉매와 바인딩이 증대되는 효과가 있다.
상기 혼합금속 수산화물은 일례로 알루미늄 및 마그네슘을 포함하고, 이 경우 금속산화물 촉매의 강도가 증대되는 효과가 있다.
상기 알루미늄과 마그네슘의 몰비는 일례로 1:6 내지 6:1, 1:1 내지 6:1, 또는 2:1 내지 4:1이고, 이 범위 내에서 금속산화물 촉매의 강도가 우수한 효과가 있다.
또 다른 예로, 상기 혼합금속 수산화물은 하이드로탈사이트 (hydrotalcite)이고, 이 경우 금속산화물 촉매의 강도가 우수한 효과가 있다.
상기 혼합금속 수산화물은 일례로 상기 촉매 조성물에 대하여 0.01 내지 20 중량%, 0.1 내지 5 중량%, 또는 1 내지 2.5 중량%이고, 이 범위 내에서 크러쉬 강도, 부텐의 전환율 및 부타디엔 선택도가 모두 뛰어난 효과가 있다.
본 기재의 촉매 조성물의 중량은 다성분계 금속 산화물과 혼합금속 수산화물을 합한 중량 또는 소성 후 촉매 조성물의 중량을 의미한다.
상기 촉매 조성물은 일례로 소성 처리된 것일 수 있고, 이 경우 비정질상으로 금속산화물 촉매의 강도가 증대되는 효과가 있다.
상기 촉매 조성물은 일례로 공침 촉매이고, 이 경우 금속산화물 촉매의 강도가 증대되고, 촉매의 구조가 유지되며, 또한 이에 따라 활성 및 선택도가 우수한 효과가 있다.
상기 촉매 조성물은 일례로 펠렛 형태이고, 이 경우 금속산화물 촉매의 강도가 증대되는 효과가 있다.
상기 촉매 조성물은 일례로 크러쉬 강도(Newton)가 4.5 이상, 4.5 내지 15, 또는 7 내지 14인 것일 수 있고, 이 범위 내에서 다양한 모폴로지로 성형이 가능하고, 활성 및 선택도가 우수한 효과가 있다.
상기 촉매 조성물의 비표면적은 일례로 5 내지 500 m2g-1, 10 내지 300 m2g-1, 또는 50 내지 250 m2g-1이고, 이 범위 내에서 금속산화물 촉매의 강도가 증대되는 효과가 있다.
상기 촉매 조성물의 세공부피는 일례로 0.01 내지 0.5ccg-1, 0.01 내지 0.3 ccg-1, 또는 0.02 내지 0.3 ccg-1이고, 이 범위 내에서 금속산화물 촉매의 강도가 증대되는 효과가 있다.
본 기재의 촉매 조성물의 제조방법은 a) 다성분계 금속 산화물 촉매와 혼합금속 수산화물을 혼합하는 단계, b) 상기 혼합물을 성형하는 단계, 및 c) 상기 성형물을 소성하는 단계를 포함하는 것을 특징으로 한다.
또한, 상기 촉매 조성물의 제조방법은 일례로 a) 다성분계 금속 산화물 촉매, 혼합금속 수산화물 및 물을 혼합하여 슬러리를 제조하는 단계, b) 상기 슬러리를 성형하여 성형물을 제조하는 단계, 및 c) 상기 성형물을 소성하는 단계를 포함할 수 있고, 이 경우 금속산화물 촉매의 강도가 증대되고, 종래 금속산화물 촉매와 비교하여 부타디엔 생성시 전환율과 선택도가 우수한 효과가 있다.
본 기재의 촉매 조성물의 제조방법은 다성분계 금속산화물의 제조, 성형 및 열처리 과정을 거치는 종래 공정에서, 열처리 과정이 생략될 수 있어 공정의 단순화 및 공정상의 경비를 절감하는 효과가 있다.
상기 소성된 촉매 조성물은 부텐의 산화 탈수소화 반응성(전환율 및 선택도)에 있어서 다성분계 금속 산화물 촉매 분말과 비교하여 대등한 수준을 보여 준다.
상기 a) 단계의 다성분계 금속 산화물 촉매는 일례로 i) 공침 단계, ii) 건조 단계, 및 iii) 소성 단계를 거쳐 제조될 수 있고, 이 경우 금속산화물 촉매의 강도가 증대되는 효과가 있다.
상기 a) 단계의 혼합금속 수산화물은 일례로 500 내지 600 ℃, 550 내지 600 ℃, 또는 570 내지 580 ℃에서 소성되고, 이 범위 내에서 자가 접착성이 우수하여 촉매의 강도가 증대되는 효과가 있다.
상기 a) 단계는 일례로 다성분계 금속 산화물 촉매 및 혼합금속 수산화물의 총합 100 중량부에 물 50 내지 100 중량부, 10 내지 20 중량부, 또는 5 내지 7 중량부를 혼합하는 단계이고, 이 범위 내에서 펠렛 성형이 용이하고, 금속산화물 촉매의 강도가 증대되는 효과가 있다.
상기 물은 일례로 5 ℃ 이하, 0 ℃ 이하, 또는 5 내지 -10 ℃의 2차 증류수일 수 있고, 이 경우 반응속도를 늦추어서 공정상의 혼합 및 성형에 필요한 시간을 확보할 수 있는 효과가 있다.
상기 혼합금속 수산화물은 일례로 다성분계 금속 산화물과 혼합금속 수산화물을 합한 총 중량에 대하여 0.01 내지 20 중량%, 0.1 내지 5 중량%, 또는 1 내지 2.5 중량%이고, 이 범위 내에서 크러쉬 강도, 부텐의 전환율 및 부타디엔 선택도가 모두 뛰어난 효과가 있다.
상기 b) 단계의 성형물은 일례로 펠렛 형태이고, 이 경우 촉매 조성물의 크기를 용이하게 제어할 수 있는 효과가 있다.
상기 c) 단계의 소성은 일례로 200 내지 500 ℃, 300 내지 400 ℃, 또는 300 내지 350 ℃에서 실시되고, 이 범위 내에서 크러쉬 강도, 부텐의 전환율 및 부타디엔 선택도가 모두 뛰어난 효과가 있다.
상기 c) 단계의 소성은 일례로 1 내지 8 시간, 2 내지 6 시간, 또는 3 내지 4 시간 동안 실시될 수 있고, 이 범위 내에서 크러쉬 강도가 뛰어난 효과가 있다.
상기 촉매 조성물의 제조단계는 일례로 상기 c) 단계의 소성 전에 성형물을 숙성시키는 단계를 더 포함할 수 있고, 이 범위 내에서 크러쉬 강도가 뛰어난 효과가 있다.
상기 숙성은 일례로 상온, 또는 20 내지 30 ℃에서 12 내지 96 시간, 또는 20 내지 30 시간 동안 실시될 수 있고, 이 범위 내에서 크러쉬 강도가 뛰어난 효과가 있다.
상기 숙성 방법은 이 발명이 속한 기술분야에서 일반적으로 사용하는 숙성 방법인 경우 특별히 제한되지 않는다.
상기 촉매 조성물의 제조단계는 일례로 상기 c) 단계의 소성 전에 성형물을 건조시키는 단계를 더 포함할 수 있고, 이 범위 내에서 크러쉬 강도가 뛰어난 효과가 있다.
상기 건조는 일례로 상온, 또는 20 내지 30 ℃에서 12 내지 96 시간, 또는 10 내지 15 시간 동안 실시될 수 있고, 이 범위 내에서 크러쉬 강도가 뛰어난 효과가 있다.
본 기재의 바인더는 혼합금속 수산화물이고, 다성분계 금속 산화물 촉매에 적용되는 것을 특징으로 한다.
상기 혼합금속 수산화물은 일례로 알루미늄 및 마그네슘을 포함하고, 이 경우 크러쉬 강도, 부텐의 전환율 및 부타디엔 선택도가 모두 뛰어난 효과가 있다.
또 다른 일례로, 상기 혼합금속 수산화물은 하이드로탈사이트이고, 이 경우 크러쉬 강도, 부텐의 전환율 및 부타디엔 선택도가 모두 뛰어난 효과가 있다
이하, 본 기재의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 기재를 예시하는 것일 뿐 본 기재의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
[실시예]
실시예 1
공침 소성된 비표면적이 5 m2g-1이고 세공부피가 0.03 ccg-1인 몰리브덴-비스무스-철-코발트(Mo12Bi1Fe1Co8) 복합산화물 촉매를 상온에서 볼밀을 이용하여 미세 분말로 분쇄한 다음, 여기에 판상의 하이드로탈사이트를 1.25 중량%가 되게 하는 양으로 투입하고 혼합하였다. 이 혼합 분말에 0 ℃로 유지된 2차 증류수를, 혼합 분말 100 중량부를 기준으로 50 중량부 투입하고 혼합하여 슬러리를 만들었다. 이 슬러리를 80-100 kgcm-2의 압력으로 사출성형 하여 구형의 펠렛을 제조하였다. 제조된 펠렛을 상온에서 24 시간 동안 숙성한 다음, 24 시간 동안 건조시켰다. 건조된 펠렛을 강도를 증가시키기 위해 300 ℃에서 2시간 동안 소성(열처리)하여 최종 촉매 조성물을 제조하였다.
실시예 2
상기 실시예 1에서 하이드로탈사이트를 혼합 분말에 대하여 1.3 중량%가 되게 하는 양으로 투입한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 촉매 조성물을 제조하였다.
실시예 3
상기 실시예 1에서 하이드로탈사이트를 혼합 분말에 대하여 1.3 중량%가 되게 하는 양으로 투입하고, 350 ℃에서 소성한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 촉매 조성물을 제조하였다.
실시예 4
상기 실시예 1에서 하이드로탈사이트를 혼합 분말에 대하여 2.5 중량%가 되게 하는 양으로 투입한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 촉매 조성물을 제조하였다.
실시예 5
상기 실시예 1에서 하이드로탈사이트를 혼합 분말에 대하여 2.5 중량%가 되게 하는 양으로 투입하고, 350 ℃에서 소성한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 촉매 조성물을 제조하였다.
실시예 6
상기 실시예 1에서 하이드로탈사이트를 혼합 분말에 대하여 3.0 중량%가 되게 하는 양으로 투입한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 촉매 조성물을 제조하였다.
실시예 7
상기 실시예 1에서 하이드로탈사이트를 혼합 분말에 대하여 3.0 중량%가 되게 하는 양으로 투입하고, 350 ℃에서 소성한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 촉매 조성물을 제조하였다.
비교예 1
상기 실시예 1에서 하이드로탈사이트 대신 실리카를 혼합 분말에 대하여 2.0 중량%가 되게 하는 양으로 투입한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 촉매 조성물을 제조하였다.
비교예 2
상기 실시예 1에서 하이드로탈사이트 대신 알루미나를 혼합 분말에 대하여 1.25 중량%가 되게 하는 양으로 투입한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 촉매 조성물을 제조하였다.
비교예 3
상기 실시예 1에서 하이드로탈사이트를 투입하지 않은 것을 제외하고는 상기 실시예 1과 동일한 방법으로 촉매 조성물을 제조하였다.
비교예 4
상기 실시예 1에서 하이드로탈사이트를 투입하지 않고, 350 ℃에서 소성한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 촉매 조성물을 제조하였다.
비교예 5
상기 실시예 1에서 하이드로탈사이트 대신 수산화알루미늄을 혼합 분말에 대하여 1.25 중량%가 되게 하는 양으로 투입한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 촉매 조성물을 제조하였다.
[시험예]
제조된 촉매 조성물을 고정층 반응기를 이용하여 반응온도 380 ℃에서 반응물의 조성비가 1-부텐: 산소: 헬륨=5:12:84가 되게 하는 조건으로 반응시킨 후 생성된 부타디엔의 조성 등을 가스 크로마토그래피(GC) 등을 이용하여 분석하였다.
상기 실시예 및 비교예에서 제조된 촉매 조성물의 특성을 하기의 방법으로 측정하였고, 그 결과를 하기의 표 1, 2에 나타내었다.
* 크러쉬 강도(Newton): 만능 인장강도기를 이용하여 측정하였다.
* 탄소침적: TGA 방법으로 측정하였다.
* 전환율: GC 방법으로 측정하였다.
* 선택도: GC 방법으로 측정하였다.
* 수율: GC 방법으로 측정하였다.
* 비표면적: BET 방법으로 측정하였다.
* 세공부피: BET 방법으로 측정하였다.
표 1
구분 혼합금속산화물 촉매 조성물
형태 비표면적 세공부피 크러쉬 강도 전환율 선택도 수율
실시예 1 판상 3 0.01 4.51 45 95 43
실시예 2 판상 5 0.02 7.75 44 92 40
실시예 3 판상 5 0.02 9.71 45 95 43
실시예 4 판상 7 0.03 10.44 44 96 42
실시예 5 판상 7 0.03 13.64 51 94 48
실시예 6 판상 10 0.05 13.81 24 92 22
실시예 7 판상 10 0.05 12.95 19 92 17
비교예 1 무정형 3 0.01 4.10 44 93 41
비교예 2 무정형 5 0.02 9.51 20 60 12
비교예 3 무정형 3 0.01 4.36 45 95 43
비교예 4 무정형 3 0.01 6.10 35 75 26
비교예 5 무정형 8 0.05 5.10 20 60 12
상기 표 1에 나타낸 바와 같이, 본 기재의 촉매 조성물은 혼합금속 수산화물을 포함하지 않는 촉매 조성물(비교예 1 내지 5)과 비교하여 크러쉬 강도, 전환율 및 선택도 등이 뛰어난 것을 확인할 수 있었다.
덧붙여, 본 기재의 촉매 조성물은 혼합금속 수산화물이 소성된 다성분계 금속 산화물 촉매와 결합하므로 촉매의 결정 구조가 보존되고, 혼합금속 수산화물의 사용량에 큰 제약이 없어 펠렛의 크러쉬 강도(crush strength) 조절이 용이하며, 또한 혼합금속 수산화물의 투입량 증가로 인한 촉매 활성 감소는 촉매의 조성 변화로 조절이 가능하고, 2.5 중량%까지는 촉매 활성의 변화 없이 크러쉬 강도만 증가하며, 나아가 혼합금속 수산화물의 염기성 특성으로 인해 부반응이 억제되는 부수적 효과도 있음을 확인할 수 있었다.
그러나, 소성 전의 다성분계 금속 산화물 촉매에 결합제를 첨가하는 종래기술의 경우 공침 구조의 변형을 초래하고, 소성된 다성분계 금속 산화물 촉매는 물 또는 실리카 졸 계열의 결합제로는 성형이 곤란하며, 또한 공침 구조의 변형을 최소화 하기 위해 결합제로 물만 쓰거나 최소량을 투입하는 경우 그 펠렛의 크러쉬 강도가 떨어지는 문제가 있다.
다음으로, 하기 도 1, 2에 나타낸 바와 같이, 실시예 1에서 제조된 촉매 조성물은 반응온도에 따른 부텐의 산화 탈수화 반응 전환율이 일정하고 반응온도에 따른 부텐의 산화 탈수화 반응의 1,3-부타디엔 선택도가 90 % 이상을 유지하고 있음을 확인할 수 있었다.
또한, 하기 도 3에 나타낸 바와 같이, 본 기재의 촉매 조성물(실시예 3, 4)은 크러쉬 강도가 높아 물 속에서도 그 형태가 그대로 유지되나, 혼합금속 수산화물을 포함하지 않는 촉매 조성물(비교예 3)은 크러쉬 강도가 약해 물 속에서 물러지고 으스러져 물을 혼탁하게 만드는 것을 확인할 수 있었다.
표 2
구분 HT함량 소성온도 크러쉬 강도(crush strength)
Horiz. Vert.
실시예 2 1.3 중량% 300 ℃ 7.75 6.26
실시예 3 1.3 중량% 350 ℃ 9.71 7.45
실시예 4 2.5 중량% 300 ℃ 10.44 8.45
실시예 5 2.5 중량% 350 ℃ 13.64 11.29
실시예 6 3.0 중량% 300 ℃ 13.81 8.34
실시예 7 3.0 중량% 350 ℃ 12.95 11.40
비교예 3 0.0 중량% 300 ℃ 4.36 4.83
비교예 4 0.0 중량% 350 ℃ 4.87 3.68
상기 표 2 및 하기 도 4에 나타낸 바와 같이, 본 기재의 촉매 조성물은 혼합금속 수산화물의 함량 2.5 중량%까지는 촉매 활성의 변화 없이 크러쉬 강도만 증가하고, 3.0 중량%부터는 크러쉬 강도의 증가와 함께 촉매 활성이 낮아지는 것을 확인할 수 있었다(도 3에서, ●: 300 ℃ 반응에서의 부텐의 전환율, ▲: 300 ℃ 반응에서의 1,3-부타디엔의 선택도,
Figure PCTKR2014010955-appb-I000001
: 350 ℃ 반응에서의 부텐의 전환율,
Figure PCTKR2014010955-appb-I000002
: 350 ℃ 반응에서의 1,3-부타디엔의 선택도, : 혼합금속 수산화물이 포함되지 않은 촉매 조성물에 대한 부텐의 전환율, : 혼합금속 수산화물이 포함되지 않은 촉매 조성물에 대한 1,3-부타디엔의 전환율).

Claims (19)

  1. 다성분계 금속 산화물 촉매 및 혼합금속 수산화물을 포함하는 것을 특징으로 하는
    촉매 조성물.
  2. 제 1항에 있어서,
    상기 다성분계 금속 산화물 촉매는, 비스무스 및 몰리브덴을 포함하는 것을 특징으로 하는
    촉매 조성물.
  3. 제 1항에 있어서,
    상기 다성분계 금속 산화물 촉매는, 산화적 탈수소화 반응용 촉매인 것을 특징으로 하는
    촉매 조성물.
  4. 제 3항에 있어서,
    상기 산화적 탈수소화 반응은, 부탄 또는 부텐으로부터 부타디엔을 생성하는 반응인 것을 특징으로 하는
    촉매 조성물.
  5. 제 1항에 있어서,
    상기 혼합금속 수산화물은, 판상 또는 층상인 것을 특징으로 하는
    촉매 조성물.
  6. 제 1항에 있어서,
    상기 혼합금속 수산화물의 비표면적은, 5 내지 500 m2g-1인 것을 특징으로 하는
    촉매 조성물.
  7. 제 1항에 있어서,
    상기 혼합금속 수산화물의 세공부피는, 0.1 내지 1.0 ccg-1인 것을 특징으로 하는
    촉매 조성물.
  8. 제 5항에 있어서,
    상기 혼합금속 수산화물은, 알루미늄 및 마그네슘을 포함하는 것을 특징으로 하는
    촉매 조성물.
  9. 제 5항에 있어서,
    상기 혼합금속 수산화물은, 하이드로탈사이트(hydrotalcite)인 것을 특징으로 하는
    촉매 조성물.
  10. 제 1항에 있어서,
    상기 혼합금속 수산화물의 함량은, 0.01 내지 20 중량%인 것을 특징으로 하는
    촉매 조성물.
  11. 제 1항에 있어서,
    상기 촉매 조성물의 크러쉬 강도(Newton)는, 4.5 이상인 것을 특징으로 하는
    촉매 조성물.
  12. a) 다성분계 금속 산화물 촉매와 혼합금속 수산화물을 혼합하는 단계, b) 상기 혼합물을 성형하는 단계, 및 c) 상기 성형물을 소성하는 단계를 포함하는 것을 특징으로 하는
    촉매 조성물의 제조방법.
  13. 제 12항에 있어서,
    상기 a) 단계의 다성분계 금속 산화물 촉매는, i) 공침 단계, ii) 건조 단계, 및 iii) 소성 단계를 거쳐 제조되는 것을 특징으로 하는
    촉매 조성물의 제조방법.
  14. 제 12항에 있어서,
    상기 a) 단계의 혼합금속 수산화물은, 500 내지 600 ℃에서 소성된 것임을 특징으로 하는
    촉매 조성물의 제조방법.
  15. 제 12항에 있어서,
    상기 a) 단계는, 다성분계 금속 산화물 촉매 및 혼합금속 수산화물을 합한 중량 총 100 중량부에 물 50 내지 100 중량부를 혼합하는 단계인 것을 특징으로 하는
    촉매 조성물의 제조방법.
  16. 제 12항에 있어서,
    상기 c) 단계의 소성은, 200 내지 500 ℃에서 실시되는 것을 특징으로 하는
    촉매 조성물의 제조방법.
  17. 제 12항에 있어서,
    상기 촉매 조성물의 제조단계는, 상기 c) 단계의 소성 전에 성형물을 숙성시키는 단계를 더 포함하는 것을 특징으로 하는
    촉매 조성물의 제조방법.
  18. 제 17항에 있어서,
    상기 촉매 조성물의 제조단계는, 상기 c) 단계의 소성 전에 성형물을 건조시키는 단계를 더 포함하는 것을 특징으로 하는
    촉매 조성물의 제조방법.
  19. 혼합금속 수산화물이고, 다성분계 금속 산화물 촉매에 적용되는 것을 특징으로 하는
    바인더.
PCT/KR2014/010955 2013-11-18 2014-11-14 촉매 조성물 및 이의 제조방법 WO2015072779A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/763,104 US9592496B2 (en) 2013-11-18 2014-11-14 Catalyst composition and method for preparing same
EP14862758.1A EP2937141B1 (en) 2013-11-18 2014-11-14 Method for preparing a molybdenum-bismuth-containing catalyst composition using a hydrotalcite binder, said catalyst composition and its use in oxidative dehydrogenation
CN201480009360.6A CN104994943B (zh) 2013-11-18 2014-11-14 催化剂组合物及其制备方法
JP2015555119A JP6277203B2 (ja) 2013-11-18 2014-11-14 触媒組成物及びその製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2013-0139783 2013-11-18
KR20130139783 2013-11-18
KR10-2014-0158524 2014-11-14
KR1020140158524A KR101757028B1 (ko) 2013-11-18 2014-11-14 촉매 조성물 및 이의 제조방법

Publications (2)

Publication Number Publication Date
WO2015072779A1 true WO2015072779A1 (ko) 2015-05-21
WO2015072779A9 WO2015072779A9 (ko) 2015-10-15

Family

ID=53392693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/010955 WO2015072779A1 (ko) 2013-11-18 2014-11-14 촉매 조성물 및 이의 제조방법

Country Status (6)

Country Link
US (1) US9592496B2 (ko)
EP (1) EP2937141B1 (ko)
JP (1) JP6277203B2 (ko)
KR (1) KR101757028B1 (ko)
CN (1) CN104994943B (ko)
WO (1) WO2015072779A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101747501B1 (ko) * 2014-12-05 2017-06-14 주식회사 엘지화학 부타디엔 제조용 복합산화물 촉매 및 이의 제조방법
KR102477904B1 (ko) * 2020-10-27 2022-12-15 금호석유화학 주식회사 촉매 성형체, 그 제조방법 및 이를 이용한 환형 케톤의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5104987A (en) * 1990-09-20 1992-04-14 Union Carbide Chemicals & Plastics Technology Corporation Alkoxylation of active hydrogen-containing compounds
US6586360B1 (en) * 1999-06-03 2003-07-01 Enichem S.P.A. Catalyst system for the oxidative dehydrogenation of alkylaromatics or paraffins to the corresponding alkenylaromatics or olefins
KR20090103424A (ko) * 2008-03-28 2009-10-01 에스케이에너지 주식회사 연속 흐름식 2중 촉매 반응 장치를 이용하여노르말-부텐으로부터 1,3-부타디엔을 제조하는 방법
KR20110106181A (ko) * 2010-03-22 2011-09-28 금호석유화학 주식회사 비스무스-몰리브덴-철-인 다성분계 금속산화물 촉매와 그의 제조방법 및 이를 이용한 1,3-부타디엔의 제조방법
KR20130046214A (ko) * 2011-10-27 2013-05-07 주식회사 엘지화학 부텐혼합물로부터 부타디엔 제조를 위한 촉매 및 그 제조방법

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5437589B2 (ko) * 1975-03-14 1979-11-15
JPS57123122A (en) * 1981-01-24 1982-07-31 Nippon Zeon Co Ltd Preparation of conjugated diolefin
US4487850A (en) * 1984-01-06 1984-12-11 Monsanto Company Catalysts for the oxidation and ammoxidation of olefins
DE4220859A1 (de) * 1992-06-25 1994-01-05 Basf Ag Multimetalloxidmassen
NO179131C (no) * 1993-06-14 1996-08-14 Statoil As Katalysator, fremgangsmåte for dens fremstilling og fremgangsmåte for dehydrogenering av lette paraffiner
US5507980A (en) * 1993-07-06 1996-04-16 Aristech Chemical Corporation Basic inorganic binders
KR0136177B1 (ko) 1994-09-07 1998-04-25 김만제 기록용 침상 알파 산화철의 입도 제어방법
IT1318551B1 (it) * 2000-06-01 2003-08-27 Enichem Spa Procedimento per la preparazione di sistemi catalitici per ladeidrogenazione ossidativa di alchilaromatici o paraffine.
DE10028432A1 (de) * 2000-06-13 2001-12-20 Basell Polyolefine Gmbh Auf calciniertes Hydrotalcit geträgerter Katalysatorfeststoff zur Olefinpolymerisation
US7973207B2 (en) * 2005-09-02 2011-07-05 Sud-Chemie Inc. Endothermic hydrocarbon conversion process
US7622623B2 (en) * 2005-09-02 2009-11-24 Sud-Chemie Inc. Catalytically inactive heat generator and improved dehydrogenation process
KR100888133B1 (ko) 2007-10-02 2009-03-13 에스케이에너지 주식회사 4종의 금속성분으로 구성된 다성분계 비스무스몰리브데이트 촉매 제조방법 및 상기촉매를 이용하여1,3-부타디엔을 제조하는 방법
CN101913975B (zh) * 2009-09-15 2013-07-31 中国石油天然气股份有限公司 一种碳二馏分选择加氢方法
EP2521705A4 (en) * 2010-01-08 2014-06-18 Gevo Inc INTEGRATED METHODS OF MANUFACTURING RENEWABLE CHEMICALS
FI20105223A0 (fi) * 2010-03-05 2010-03-05 Licentia Oy Menetelmä epäorgaanisten, kerrostettujen kaksoishydroksidien valmistamiseksi, uudet epäorgaaniset, kerrostetut kaksoishydroksidit sekä niiden käyttö
US8551443B2 (en) * 2010-09-02 2013-10-08 Saudi Basic Industries Corporation Modified zinc ferrite catalyst and method of preparation and use
KR20150003214A (ko) * 2012-04-23 2015-01-08 닛뽄 가야쿠 가부시키가이샤 부타디엔의 제조용 촉매, 그 촉매의 제조 방법 및 그 촉매를 이용한 부타디엔의 제조 방법
CN103721735B (zh) * 2013-12-31 2016-04-27 富德(北京)能源化工有限公司 用于选择性氧化脱氢的催化剂前驱体和催化剂
CN103785450B (zh) * 2014-01-28 2016-04-27 富德(北京)能源化工有限公司 用于烯烃氧化脱氢的双功能催化剂

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5104987A (en) * 1990-09-20 1992-04-14 Union Carbide Chemicals & Plastics Technology Corporation Alkoxylation of active hydrogen-containing compounds
US6586360B1 (en) * 1999-06-03 2003-07-01 Enichem S.P.A. Catalyst system for the oxidative dehydrogenation of alkylaromatics or paraffins to the corresponding alkenylaromatics or olefins
KR20090103424A (ko) * 2008-03-28 2009-10-01 에스케이에너지 주식회사 연속 흐름식 2중 촉매 반응 장치를 이용하여노르말-부텐으로부터 1,3-부타디엔을 제조하는 방법
KR20110106181A (ko) * 2010-03-22 2011-09-28 금호석유화학 주식회사 비스무스-몰리브덴-철-인 다성분계 금속산화물 촉매와 그의 제조방법 및 이를 이용한 1,3-부타디엔의 제조방법
KR20130046214A (ko) * 2011-10-27 2013-05-07 주식회사 엘지화학 부텐혼합물로부터 부타디엔 제조를 위한 촉매 및 그 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2937141A4 *

Also Published As

Publication number Publication date
EP2937141A1 (en) 2015-10-28
KR101757028B1 (ko) 2017-07-12
EP2937141B1 (en) 2020-01-01
CN104994943B (zh) 2017-09-22
KR20150058012A (ko) 2015-05-28
CN104994943A (zh) 2015-10-21
US9592496B2 (en) 2017-03-14
EP2937141A4 (en) 2016-09-14
US20150352534A1 (en) 2015-12-10
JP2016509536A (ja) 2016-03-31
WO2015072779A9 (ko) 2015-10-15
JP6277203B2 (ja) 2018-02-07

Similar Documents

Publication Publication Date Title
WO2017150830A1 (ko) 페라이트계 촉매 복합체, 제조방법 및 부타디엔의 제조방법
WO2016195162A1 (ko) 페라이트 금속 산화물 촉매의 제조방법
DE2631875C2 (de) Verwendung eines keramischen Cordierit-Verbundkörpers mit Wabenstruktur als Katalysatorträger zum Reinigen von Auspuffgasen
WO2014182018A1 (ko) 메조포러스 복합 산화물 촉매, 그 제조방법 및 이를 이용한 1,3-부타디엔 합성방법
WO2012119332A1 (zh) 特种耐火耐酸砖及其制备方法
WO2015072779A1 (ko) 촉매 조성물 및 이의 제조방법
CN101811880A (zh) 一种无碳耐火砖及其制备方法
WO2016052838A1 (ko) 이산화탄소 중온 활성 고체 흡수제, 슬러리 조성물 및 이의 제조방법
CN110981446B (zh) 一种体积稳定型高温台板及制造方法
CN107935557B (zh) 一种瓷绝缘子及其制备方法
WO2018182214A1 (ko) 금속산화물 촉매, 그 제조방법, 및 이를 이용한 알코올의 제조방법
WO2018190642A2 (ko) 산화적 탈수소화 반응용 촉매 시스템, 이를 포함하는 산화적 탈수소화용 반응기 및 산화적 탈수소화 방법
WO2019107884A1 (ko) 산화적 탈수소화 반응용 촉매 시스템, 이를 포함하는 부타디엔 제조용 반응기 및 1,3-부타디엔의 제조방법
WO2014204099A1 (ko) 젖산으로부터 락타이드 직접 제조용 성형 촉매 및 이의 제조 방법
WO2018139776A1 (ko) 산화적 탈수소화 반응용 페라이트 촉매, 이의 제조방법 및 이를 이용한 부타디엔의 제조방법
WO2012015262A2 (en) Silicon carbide and method for manufacturing the same
CN114032045A (zh) 一种防火保温材料及其制备方法和应用
WO2019245157A1 (ko) 경질올레핀 제조용 촉매, 이의 제조방법, 및 이를 이용하여 경질올레핀을 제조하는 방법
WO2012046897A1 (ko) 다공질 탄화규소 세라믹스의 제조방법
CN117247272A (zh) 一种抗氧化高炉铁沟浇注料及其制备方法
WO2018080025A1 (ko) 촉매의 재현성이 우수한 부타디엔의 제조방법
WO2013015531A2 (ko) 스피넬형 구조를 갖는 다공성 망간산화물계 리튬 흡착제 및 그 제조방법
CN1243062C (zh) 高温耐火黑色涂料及其制法和应用
WO2019160259A1 (ko) 촉매의 충진방법 및 이를 이용한 부타디엔의 제조방법
WO2019199042A1 (ko) 금속 복합 촉매의 제조방법 및 이에 의해 제조된 금속 복합 촉매

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14862758

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14763104

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015555119

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014862758

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE