WO2015072372A1 - 離型フィルム、積層体及びその製造方法並びに燃料電池の製造方法 - Google Patents

離型フィルム、積層体及びその製造方法並びに燃料電池の製造方法 Download PDF

Info

Publication number
WO2015072372A1
WO2015072372A1 PCT/JP2014/079256 JP2014079256W WO2015072372A1 WO 2015072372 A1 WO2015072372 A1 WO 2015072372A1 JP 2014079256 W JP2014079256 W JP 2014079256W WO 2015072372 A1 WO2015072372 A1 WO 2015072372A1
Authority
WO
WIPO (PCT)
Prior art keywords
release film
release
cyclic olefin
ion exchange
layer
Prior art date
Application number
PCT/JP2014/079256
Other languages
English (en)
French (fr)
Inventor
浩 尾道
隅田 克彦
善道 岡野
西村 協
岡田 和之
敬之 八重樫
鈴木 健
Original Assignee
株式会社ダイセル
ダイセルバリューコーティング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル, ダイセルバリューコーティング株式会社 filed Critical 株式会社ダイセル
Priority to KR1020167015322A priority Critical patent/KR102220134B1/ko
Priority to EP14861826.7A priority patent/EP3070770B1/en
Priority to US15/033,302 priority patent/US10622658B2/en
Priority to CN201480062591.3A priority patent/CN105722654B/zh
Publication of WO2015072372A1 publication Critical patent/WO2015072372A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • B29C33/68Release sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/0046Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by constructional aspects of the apparatus
    • B32B37/0053Constructional details of laminating machines comprising rollers; Constructional features of the rollers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F232/00Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • C08F232/08Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having condensed rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2275Heterogeneous membranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/881Electrolytic membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8814Temporary supports, e.g. decal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • H01M8/1093After-treatment of the membrane other than by polymerisation mechanical, e.g. pressing, puncturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/18Fuel cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/12Polymers characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2427/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2427/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2427/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2427/22Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2445/00Characterised by the use of homopolymers or copolymers of compounds having no unsaturated aliphatic radicals in side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic or in a heterocyclic ring system; Derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a release film used when a membrane electrode assembly, which is a constituent member of a polymer electrolyte fuel cell, is produced (film formation), a laminate including the release film (lamination film), and production thereof.
  • the present invention relates to a method and a method for producing the membrane electrode assembly using the release film.
  • the polymer electrolyte fuel cell has a basic structure called a membrane electrode assembly (MEA).
  • MEA is a laminate obtained by laminating an electrode membrane (catalyst layer or electrode catalyst membrane) mainly composed of carbon powder carrying a platinum group metal catalyst on both surfaces of a solid polymer electrolyte membrane which is an ion exchange membrane. Is further sandwiched between a fuel gas supply layer and an air supply layer which are conductive porous membranes.
  • both the electrolyte membrane and the electrode membrane contain an ion exchange resin, but the electrolyte membrane and the electrode membrane are usually formed by a casting method and / or a coating method.
  • both layers formed on a support are brought into contact with each other, about 130 to 150 ° C. (about 150 to 200 ° C. depending on the material used), and a pressure of about 1 to 10 MPa.
  • a method is used in which the support is peeled off after it is brought into close contact by thermocompression. For this reason, a release film is used as the support, but the release film is required to have appropriate peelability and adhesion to the electrolyte membrane and the electrode membrane.
  • the ion exchange resin contained in the electrolyte membrane and the electrode membrane is a resin having a unique structure having a main chain of a fluororesin having a high releasability and a side chain containing a sulfonic acid group having a low releasability. It is difficult to predict the behavior related to the property, and it is difficult to balance the peelability and the adhesion. Furthermore, the release film for manufacturing a fuel cell is required to have heat resistance in the manufacturing process, and is also required to be flexible because it is manufactured by a roll-to-roll method from the viewpoint of productivity.
  • fluorine-based films are widely used as mold release films, but they are excellent in heat resistance, mold release, and non-contamination, are expensive, and are incinerated after disposal. It is difficult to combust in and it is easy to generate toxic gas. Furthermore, since the elastic modulus is low, it is difficult to manufacture by a roll-to-roll method. Therefore, a release film formed of a cyclic olefin resin has been proposed as a release film that replaces the fluorine film.
  • Patent Document 1 discloses a release film made of a cycloolefin copolymer, and a cycloolefin copolymer solution is coated on a base film such as a polyethylene terephthalate film. A release film formed in this way is also described.
  • the glass transition temperature of a cycloolefin copolymer is usually 50 ° C. or more, most preferably 160 ° C. or more, and the upper limit of Tg of a general cycloolefin copolymer is about 250 ° C. ing.
  • a solution containing a copolymer of ethylene and norbornene is cast on a polyethylene terephthalate film using a casting apparatus to form a release film having a thickness of 0.5 ⁇ m.
  • this release film has low heat resistance, is not sufficiently peelable in the high temperature manufacturing process, and does not have sufficient toughness. Therefore, in the roll-to-roll manufacturing, cracks and cracks are likely to occur.
  • Patent Document 2 discloses (A) a structural unit derived from propylene and (B) 6 to 6 carbon atoms as a copolymer for forming a polarizing film of a liquid crystal display device.
  • a copolymer comprising 12 structural units derived from ⁇ -olefin and (C) a structural unit derived from norbornene, wherein 10 to 69 mol% of the structural unit (A) is contained in the structural unit ( A copolymer containing 1 to 50 mol% of B), 30 to 89 mol% of the structural unit (C) and having a weight average molecular weight of 50,000 to 1,000,000 is disclosed.
  • the glass transition temperature of the copolymer is described as 50 to 250 ° C. (especially 80 to 200 ° C.). In the examples, copolymers having a glass transition temperature of 92 to 168 ° C. are prepared.
  • Patent Document 3 discloses a cyclic olefin addition copolymer obtained from a cyclic olefin (A) monomer unit and an ⁇ -olefin (B) monomer unit having 5 or more carbon atoms.
  • the proportion of the structural unit (A) is 80 to 99 mol% and the proportion of the structural unit (B) is 1 to 20 mol in a total of 100 mol% of the structural unit (A) and the structural unit (B).
  • % Optical film is disclosed.
  • the cyclic olefin addition copolymer is excellent in heat resistance, transparency, low water absorption, moldability and toughness, and has a small coefficient of linear expansion, and is used for applications such as optical substrates for displays. It is described as preferred.
  • the glass transition temperature of the cyclic olefin addition copolymer is described as 200 to 400 ° C. (especially 245 to 300 ° C.), and in the examples, copolymers having a glass transition temperature of 245 to 262 ° C. are prepared.
  • JP 2010-234570 A (claims, paragraphs [0024] [0025], Example 2) Japanese Patent No. 5017222 (claims, paragraph [0030], Examples) JP 2009-298999 A (claims, paragraphs [0019] [0028] [0044], Examples)
  • an object of the present invention is to provide a release film capable of improving the productivity of a membrane / electrode assembly (electrolyte membrane and / or electrode membrane) of a polymer electrolyte fuel cell, a laminated film including this release film, and a method for producing the same
  • Another object of the present invention is to provide a method for producing the membrane electrode assembly using the release film.
  • Another object of the present invention is to have moderate peelability and adhesion to the electrolyte membrane and electrode membrane, as well as high heat resistance and toughness, and heat-treat in a roll-to-roll manner.
  • a release film capable of manufacturing the membrane electrode assembly with high productivity a laminated film including the release film, a manufacturing method thereof, and a method of manufacturing the membrane electrode assembly using the release film are provided. There is.
  • Still another object of the present invention is to provide a release film that is excellent in solubility in a solvent and can be easily produced by coating, a laminated film including the release film, a method for producing the release film, and the membrane electrode bonding using the release film.
  • the object is to provide a method of manufacturing a body.
  • the present inventors first pay attention to the fact that the heat resistance of the release film in Patent Document 1 is not sufficient, and adjust the glass transition temperature of the ethylene-norbornene copolymer of Patent Document 1. Study was carried out. However, in the case of ethylene-norbornene copolymer, the glass transition temperature is increased by increasing the norbornene content, and if the releasability at high temperature is improved, the toughness is lowered, or the release film is damaged (cracked or cracked). The membrane electrode assembly (MEA) of the polymer electrolyte fuel cell could not be efficiently produced by the roll-to-roll method.
  • MAA membrane electrode assembly
  • the release layer of the release film for producing MEA is a cyclic olefin resin containing an olefin unit having an alkyl group having 3 to 10 carbon atoms in the side chain. It has been found that the productivity of MEA can be improved by forming the above, and the present invention has been completed.
  • the release film of the present invention is a release film for producing a membrane electrode assembly of a polymer electrolyte fuel cell, and includes an olefin unit having an alkyl group having 3 to 10 carbon atoms in the side chain.
  • a release layer formed of a cyclic olefin resin is included.
  • the release layer may have a glass transition temperature of about 210 to 350 ° C.
  • the dynamic storage elastic modulus E ′ of the release layer may have a transition point in the range of ⁇ 50 to 100 ° C.
  • the cyclic olefin-based resin may contain a chain olefin unit having an alkyl group having 3 to 10 carbon atoms and / or a cyclic olefin unit having an alkyl group having 3 to 10 carbon atoms as a repeating unit. It may be a copolymer comprising a cyclic olefin unit (A) having no alkyl group having 3 to 10 carbon atoms and a chain or cyclic olefin unit (B) having an alkyl group having 3 to 10 carbon atoms. .
  • the cyclic olefin unit (B) may be an ethylene or norbornene unit having a linear alkyl group having 4 to 8 carbon atoms.
  • the average thickness of the release layer may be about 0.2 to 5 ⁇ m.
  • the release film of the present invention further includes a base material layer, the release layer is laminated on at least one surface of the base material layer, and the base material layer is polyolefin, polyvinyl alcohol polymer, polyester, polyamide, and cellulose derivative. It may be formed of at least one selected from the group consisting of
  • the release film of the present invention may be a film formed by coating.
  • the present invention provides a laminate for producing a polymer electrolyte fuel cell, the release film, and an ion exchange layer laminated on the release layer of the release film and containing an ion exchange resin. And a laminate formed by the above.
  • the ion exchange resin may be a fluororesin having a sulfonic acid group in the side chain.
  • the ion exchange layer containing the ion exchange resin may be an electrolyte membrane and / or an electrode membrane.
  • the laminate of the present invention may be a laminate produced by a roll-to-roll method.
  • the present invention includes a method for producing the laminate including a lamination step of laminating an ion exchange layer containing an ion exchange resin on a release layer of a release film.
  • lamination may be performed by a roll-to-roll method.
  • the present invention includes a method for producing a membrane / electrode assembly of a polymer electrolyte fuel cell including a peeling step of peeling a release film from the laminate.
  • the “ion exchange layer” means a layer containing an ion exchange resin, and is not limited to an electrolyte membrane that is an ion exchange membrane.
  • An electrode membrane containing a catalyst in addition to an ion exchange resin is also an ion membrane. Included in the exchange layer.
  • the release layer of the release film for producing MEA is formed of a cyclic olefin resin containing an olefin unit having an alkyl group having 3 to 10 carbon atoms in the side chain.
  • the release film of the present invention has appropriate elasticity, it can be wound up by a roll, can be continuously produced by a roll-to-roll system, and can be manufactured by a roll-to-roll system. Even if it manufactures by heat-processing (for example, heat processing to 140 degreeC or more), a peeling defect and a release layer damage (a crack, a crack, etc.) can be suppressed, it can manufacture stably and productivity can be improved. Furthermore, it has excellent solubility in solvents and can be easily manufactured by coating.
  • the release film of the present invention is a release film for producing a membrane electrode assembly (MEA) of a polymer electrolyte fuel cell, and has an olefin unit having an alkyl group having 3 to 10 carbon atoms in a side chain.
  • a release layer formed of the cyclic olefin-based resin is included.
  • the release film of the present invention may be a film for peeling an MEA after laminating an electrolyte membrane and / or an electrode membrane containing an ion exchange resin on the membrane.
  • the release layer of the present invention contains a cyclic olefin resin, and since this cyclic olefin resin contains an olefin unit having an alkyl group having 3 to 10 carbon atoms in the side chain, it has a predetermined viscoelastic property. It is.
  • the glass transition temperature (Tg) of the release layer (cyclic olefin resin) can be selected from a range of about 210 to 350 ° C., and is preferably 220 to 350 ° C., for example, from the viewpoint of the balance between heat resistance and mechanical properties. Is about 230 to 340 ° C. (for example, 250 to 320 ° C.), more preferably about 260 to 300 ° C. (especially 265 to 280 ° C.). For applications requiring high heat resistance, for example, 270 to 350 ° C., Preferably, it may be about 280 to 340 ° C. (particularly 300 to 335 ° C.). If the glass transition temperature is too low, the heat resistance is low, so that peeling failure is likely to occur, and if it is too high, production becomes difficult. In the present specification, the glass transition temperature can be measured using a differential scanning calorimeter (DSC).
  • DSC differential scanning calorimeter
  • the dynamic storage elastic modulus E ′ of the release layer is a temperature range lower than the glass transition temperature in a dynamic viscoelasticity test measured from ⁇ 50 ° C. to 250 ° C. under conditions of a temperature rising rate of 5 ° C./min and a frequency of 10 Hz. It preferably has a transition point (for example, about ⁇ 50 to 100 ° C.). When there is no transition point, toughness decreases, and when the side chain is too long or the proportion of units having side chains is too large, the glass transition temperature decreases and the heat resistance decreases.
  • the dynamic storage elastic modulus can be measured by the method described in the examples. In the test, the mechanical loss tangent tan ⁇ , which is the ratio of the dynamic storage elastic modulus E ′ and the dynamic loss elastic modulus E ′′, is a maximum. It can be evaluated from taking points.
  • the cyclic olefin-based resin having such characteristics may contain an olefin unit having an alkyl group having 3 to 10 carbon atoms (C 3-10 alkyl group) in the side chain, and the C 3-10 alkyl group is Because the main chain of the cyclic olefin resin is present as a side chain with a high degree of freedom, the energy generated by deformation can be converted to thermal energy, or the glass transition temperature of the cyclic olefin resin is increased to increase heat resistance. Even if it improves, elasticity and toughness can be maintained.
  • the carbon number of the terminal alkyl group is 3 or more, it becomes liquid at room temperature.
  • the carbon number of the side chain alkyl group is 3 or more, the above-described effects are exhibited. . On the other hand, if the carbon number exceeds 10, the glass transition temperature is too low.
  • Examples of the C 3-10 alkyl group include propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl group, neopentyl group, hexyl group, heptyl group, octyl group, Examples thereof include linear or branched alkyl groups such as 2-ethylhexyl group, nonyl group, and decanyl group. These C 3-10 alkyl groups can be used alone or in combination of two or more.
  • a linear C 4-9 alkyl group (for example, n-butyl group, n-hexyl group, n-octyl group, etc.) is preferable from the viewpoint of excellent balance between heat resistance, elasticity, and toughness. Further preferred are linear C 4-8 alkyl groups (particularly linear C 5-7 alkyl groups such as n-hexyl group).
  • the cyclic olefin-based resin includes a chain olefin unit having a C 3-10 alkyl group and / or a cyclic olefin having a C 3-10 alkyl group as a repeating unit. It may contain a unit and may be a homopolymer. However, from the viewpoint of easy adjustment of desired properties, the chain olefin unit and / or the cyclic olefin unit and other copolymerizable units.
  • copolymers are preferred, and cyclic olefin units having no C 3-10 alkyl group (a), a copolymer particularly preferably contains a linear or cyclic olefin units having a C 3-10 alkyl group (B) .
  • the polymerization component (monomer) for forming the cyclic olefin unit (A) is a polymerizable cyclic olefin having an ethylenic double bond in the ring, and includes a monocyclic olefin, a bicyclic olefin, and a tricyclic ring. It can be classified into the above polycyclic olefins.
  • monocyclic olefins examples include cyclic C 4-12 cycloolefins such as cyclobutene, cyclopentene, cycloheptene, and cyclooctene.
  • bicyclic olefin examples include 2-norbornene; norbornenes having a C 1-2 alkyl group such as 5-methyl-2-norbornene, 5,5-dimethyl-2-norbornene, and 5-ethyl-2-norbornene.
  • polycyclic olefin examples include dicyclopentadiene; 2,3-dihydrodicyclopentadiene, methanooctahydrofluorene, dimethanooctahydronaphthalene, dimethanocyclopentadienonaphthalene, methanooctahydrocyclopentadienaphthalene, etc.
  • Derivatives having a substituent such as 6-ethyl-octahydronaphthalene; adducts of cyclopentadiene and tetrahydroindene, tripentamers of cyclopentadiene, and the like.
  • cyclic olefins can be used alone or in combination of two or more.
  • bicyclic olefins are preferred because they have a good balance between peelability and flexibility.
  • the proportion of bicyclic olefins (particularly norbornenes) is 10 mol% or more with respect to the total cyclic olefins having no C 3-10 alkyl group (cyclic olefins for forming cyclic olefin units (A)).
  • it is 30 mol% or more, preferably 50 mol% or more, more preferably 80 mol% or more (particularly 90 mol% or more), and may be a bicyclic olefin alone (100 mol%).
  • the ratio of the tricyclic or higher polycyclic olefin is increased, it becomes difficult to use for production in a roll-to-roll system.
  • Exemplary bicyclic olefins e.g., C 3-10 alkyl which may norbornene have a substituent group other than group (2-norbornene), have a substituent other than C 3-10 alkyl group
  • An example is octalin (octahydronaphthalene).
  • the substituent include methyl, ethyl group, alkenyl group, aryl group, hydroxyl group, alkoxy group, carboxyl group, alkoxycarbonyl group, acyl group, cyano group, amide group and halogen atom. These substituents may be used alone or in combination of two or more.
  • a nonpolar group such as a methyl group or an ethyl group is preferable from the viewpoint that the peelability is not impaired.
  • norbornenes such as norbornene and norbornene having a C 1-2 alkyl group (particularly norbornene) are particularly preferable.
  • the polymerization component (monomer) for forming the chain or cyclic olefin unit (B) can form a C 3-10 alkyl group as a side chain with respect to the main chain of the cyclic olefin resin, and ethylene.
  • a polymerizable olefins having sex double bond can be classified into a cyclic olefin having a chain olefins, C 3-10 alkyl group having a C 3-10 alkyl group.
  • the chain olefin unit may be a chain olefin unit generated by ring-opening of a cyclic olefin, but a unit having a chain olefin as a polymerization component is preferable from the viewpoint of easily controlling the ratio of both units.
  • Examples of the chain olefin having a C 3-10 alkyl group include, for example, 1-pentene, 3-methyl-1-pentene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-nonene, 1-nonene, And ⁇ -chain C 5-13 olefins such as decene, 1-undecene and 1-dodecene. These chain olefins can be used alone or in combination of two or more.
  • chain olefins ⁇ -chain C 6-12 olefins are preferable, and ⁇ -chain C 6-10 olefins (particularly ⁇ -chain C 7-9 olefins such as 1-octene) are more preferable. ).
  • the cyclic olefin having a C 3-10 alkyl group may be a cyclic olefin in which a C 3-10 alkyl group is substituted on the cyclic olefin skeleton exemplified in the section of the cyclic olefin unit (A).
  • a bicyclic olefin particularly norbornene is preferable.
  • Preferred cyclic olefins having a C 3-10 alkyl group include, for example, 5-propyl-2-norbornene, 5-butyl-2-norbornene, 5-pentyl-2-norbornene, 5-hexyl-2-norbornene, 5- Examples thereof include linear or branched C 3-10 alkyl norbornene such as octyl-2-norbornene and 5-decyl-2-norbornene. These cyclic olefins can be used alone or in combination of two or more.
  • linear C was 4-9 alkyl norbornene, still preferably linear C such as linear C 4-8 alkyl norbornene (particularly 5-hexyl-2-norbornene 5- 7 alkyl norbornene).
  • the ratio of the cyclic olefin unit (A) is too small, the heat resistance is lowered, and when it is too much, the toughness is easily lowered.
  • the cyclic olefin resin may contain other copolymerizable units in addition to the cyclic olefin unit (A) and the chain or cyclic olefin unit (B).
  • polymerization components (monomers) for forming other copolymerizable units include ⁇ -chain C 1-4 olefins (ethylene, propylene, 1-butene, isobutene, etc.), vinyl ester monomers Body (for example, vinyl acetate, vinyl propionate, etc.), diene monomer (for example, butadiene, isoprene, etc.), (meth) acrylic monomer [for example, (meth) acrylic acid, or derivatives thereof (( Meth) acrylic acid ester, etc.)] and the like.
  • polymerization components can be used alone or in combination of two or more.
  • monomers that do not substantially contain a unit having a polar group such as a carboxyl group, a hydroxy group, and an amino group are preferable from the viewpoint of not deteriorating the peelability, and ⁇ -chain C 1 such as ethylene and propylene is preferable.
  • -4 olefins are widely used.
  • the ratio of the other copolymerizable unit is, for example, 10 mol% or less, preferably 5 mol% or less, more preferably 1%, based on the total of the cyclic olefin unit (A) and the chain or cyclic olefin unit (B). It is less than mol%.
  • the number average molecular weight of the cyclic olefin-based resin is, for example, 10,000 to 300,000, preferably 50,000 to 250,000, and more preferably about 80,000 to 200,000 (particularly 100,000 to 150,000) in terms of polystyrene in gel permeation chromatography (GPC). . If the molecular weight is too small, the film-forming property is liable to be lowered, and if it is too large, the viscosity is increased, so that the handleability is liable to be lowered.
  • the cyclic olefin-based resin may be a resin obtained by addition polymerization, or may be a resin obtained by ring-opening polymerization (ring-opening metathesis polymerization or the like).
  • the polymer obtained by ring-opening metathesis polymerization may be a hydrogenated hydrogenated resin.
  • the polymerization method of the cyclic olefin resin is a conventional method, for example, ring-opening metathesis polymerization using a metathesis polymerization catalyst, addition polymerization using a Ziegler type catalyst, addition polymerization using a metallocene catalyst (usually a metathesis polymerization catalyst).
  • the ring-opening metathesis polymerization used can be used.
  • Specific polymerization methods include, for example, JP-A No. 2004-197442, JP-A No. 2007-119660, JP-A No. 2008-255341, Macromolecules, 43, 4527 (2010), Polyhedron, 24, 1269 (2005). ), J. Appl. Polym. Sci, 128 (1), 216 (2013), Polymer Journal, 43, 331 (2011).
  • the catalyst used for the polymerization is also a conventional catalyst such as a catalyst synthesized by the method described in Macromolecules, 1988, Vol. 31, 313184, Journal of Organometallic Chemistry, 2006, 691, 1193. Available.
  • the release layer may further contain a conventional additive.
  • conventional additives include fillers, lubricants (waxes, fatty acid esters, fatty acid amides, etc.), antistatic agents, stabilizers (antioxidants, heat stabilizers, light stabilizers, etc.), flame retardants, viscosity adjustments Agents, thickeners, antifoaming agents and the like may be included.
  • organic or inorganic particles particularly, anti-blocking agents such as zeolite may be included as long as the surface smoothness is not impaired.
  • the ratio of the cyclic olefin-based resin in the release layer is, for example, 80% by weight or more, preferably 90% by weight or more, more preferably 95% by weight or more (for example, 95 to 100% by weight) with respect to the entire release layer. It may be.
  • the releasability can be improved without containing a low molecular weight release agent such as a silicone compound that easily contaminates the electrolyte membrane or the electrode membrane, and it is preferable that the silicone compound is not substantially contained. .
  • the average thickness of the release layer is, for example, about 0.1 to 100 ⁇ m, preferably about 0.3 to 80 ⁇ m, and more preferably about 0.5 to 50 ⁇ m.
  • the release layer when it is a coating film, it may be thin, for example, 0.2 to 5 ⁇ m, preferably 0.5 to 3 ⁇ m, and more preferably about 0.8 to 2 ⁇ m.
  • the average thickness can be calculated based on the coating amount (solid content weight per unit area) and density of the release layer.
  • the release film of the present invention is not particularly limited as long as it includes the release layer, and is a single-layer release film (for example, a release film formed by extrusion molding) formed by the release layer alone. It may be a release film having a laminated structure in which the release layer is laminated on at least one surface of the base material layer. Among these, a release film having a laminated structure is preferable because productivity of the fuel cell can be improved and a thin release layer having a uniform thickness can be easily manufactured.
  • the base material layer can improve the dimensional stability of the release film in the manufacturing process of the fuel cell. In particular, even when tension is applied in the roll-to-roll method, it can suppress the elongation, and further, the drying process and thermocompression bonding. Even when exposed to high temperatures due to processing, etc., it is preferable that it is formed of a material having high heat resistance and high dimensional stability from the viewpoint of maintaining high dimensional stability and suppressing peeling from the electrolyte membrane and electrode membrane, Specifically, it may be formed of a synthetic resin having an elastic modulus at 150 ° C. of 100 to 1000 MPa.
  • the elastic modulus may be, for example, about 120 to 1000 MPa, preferably about 150 to 1000 MPa, and more preferably about 200 to 1000 MPa. When the elastic modulus is too small, the dimensional stability is lowered, and peeling from the electrolyte membrane and the electrode membrane occurs in the production by the roll-to-roll method, and the productivity of the fuel cell is lowered.
  • thermoplastic resin As such a synthetic resin, for example, various thermoplastic resins and thermosetting resins can be used, but a thermoplastic resin is preferable from the viewpoint of flexibility that can be manufactured by a roll-to-roll method.
  • thermoplastic resin include polyolefin (polypropylene resin, cyclic polyolefin, etc.), polyvinyl alcohol polymer, polyester, polyamide, polyimide, polycarbonate, polyphenylene ether, polyphenylene sulfide, and cellulose derivatives. These thermoplastic resins can be used alone or in combination of two or more.
  • thermoplastic resins At least one selected from the group consisting of polyolefins, polyvinyl alcohol polymers, polyesters, polyamides, polyimides, and cellulose derivatives is preferred, from the point of excellent balance between heat resistance and flexibility, Polyester and polyimide are particularly preferable.
  • polyester poly C 2-4 alkylene arylate resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) can be preferably used.
  • polyimide examples include thermosetting polyimide (such as pyromellitic acid-based polyimide, bismaleimide-based polyimide, nadic acid-based polyimide, and acetylene-terminated polyimide), thermoplastic polyimide, polyetherimide, and polyamideimide.
  • the base material layer may be formed of a stretched film from the viewpoint of improving the film strength.
  • the stretching may be uniaxial stretching, but biaxial stretching is preferred from the viewpoint that the film strength can be improved.
  • the stretching ratio may be, for example, 1.5 times or more (eg, 1.5 to 6 times), preferably 2 to 5 times, more preferably about 3 to 4 times in the longitudinal and transverse directions, respectively. It is. If the draw ratio is too low, the film strength tends to be insufficient.
  • the average thickness of the base material layer is, for example, about 1 to 300 ⁇ m, preferably about 5 to 200 ⁇ m, more preferably about 10 to 100 ⁇ m (particularly about 20 to 80 ⁇ m). If the thickness of the base material layer is too large, production by the roll-to-roll method becomes difficult, and if it is too thin, the dimensional stability is lowered.
  • the surface of the base material layer may be subjected to conventional surface treatment or easy adhesion treatment in order to improve adhesion with the release layer.
  • the release film As a method for producing the release film, a conventional method can be used.
  • the release film When the release film is formed of a single release layer, it may be formed by, for example, extrusion molding or coating, and may have a laminated structure with the base material layer.
  • a method such as coating, co-extrusion or extrusion lamination, thermocompression bonding, or the like may be used, and lamination may be performed via an adhesive or an adhesive.
  • the method of drying after coating (or casting) a solution containing a cyclic olefin-based resin on the base material layer is preferable from the viewpoint that a thin-walled and smooth surface release layer can be easily formed.
  • the coating method conventional methods such as roll coater, air knife coater, blade coater, rod coater, reverse coater, bar coater, comma coater, die coater, gravure coater, screen coater method, spray method, spinner method and the like can be mentioned. It is done. Of these methods, the blade coater method, the bar coater method, the gravure coater method and the like are widely used.
  • a nonpolar solvent can be used, for example, aliphatic hydrocarbons such as hexane, alicyclic hydrocarbons such as cyclohexane, aromatic hydrocarbons such as toluene and xylene, and aromatics such as solvent naphtha. Oil can be used. These solvents may be used alone or in combination of two or more. Of these, aromatic hydrocarbons such as toluene and aromatic oils such as solvent naphtha are preferred.
  • the solid content concentration in the solution is, for example, about 0.1 to 50% by weight, preferably 0.3 to 30% by weight, more preferably 0.5 to 20% by weight (particularly 0.8 to 15% by weight). is there.
  • Drying may be natural drying, or the solvent may be evaporated by heating and drying.
  • the drying temperature may be 50 ° C. or higher, for example, 50 to 200 ° C., preferably 60 to 150 ° C., and more preferably about 80 to 120 ° C.
  • the laminate of the present invention is a laminate for producing a polymer electrolyte fuel cell, and is an ion exchange layered on a release film and a release layer of the release film and containing an ion exchange resin.
  • Layer electrophilyte membrane, electrode membrane, membrane electrode assembly.
  • ion exchange resin a conventional ion exchange resin used in a fuel cell can be used, and among them, a cation exchange resin such as a strong acid cation exchange resin or a weak acid cation exchange resin is preferable.
  • Ion exchange resin having sulfonic acid group, carboxyl group, phosphoric acid group, phosphonic acid group, etc. specifically, sulfonic acid group, carboxyl group, phosphoric acid group, phosphonic acid group, etc. have been introduced as electrolyte group having electrolyte function
  • An ion exchange resin having a sulfonic acid group is particularly preferable.
  • the ion exchange resin having a sulfonic acid group various resins having a sulfonic acid group can be used.
  • the various resins include polyolefins such as polyethylene and polypropylene, (meth) acrylic resins, styrene resins, polyacetals, polyesters, polycarbonates, polyamides, polyamideimides, polyimides, polyethers, polyetherimides, polyether ketones, Examples include polyetheretherketone, polysulfone, polyethersulfone, polyphenylene sulfide, and fluororesin.
  • ion exchange resins having a sulfonic acid group a fluorine resin having a sulfonic acid group, a sulfonated product of a crosslinked polystyrene, and the like are preferable.
  • a polystyrene-graft-ethylenetetrafluoroethylene copolymer having a sulfonic acid group, a polystyrene-graft. -It may be a polytetrafluoroethylene copolymer or the like.
  • a fluororesin having a sulfonic acid group (such as a fluorohydrocarbon resin in which at least some of the hydrogen atoms are substituted with fluorine atoms) is particularly preferable from the viewpoint of releasability.
  • a fluororesin having a sulfonic acid group (or —CF 2 CF 2 SO 3 H group) in the side chain, such as [2- (2-sulfotetrafluoroethoxy) hexafluoropropoxy]
  • a copolymer (such as a block copolymer) of trifluoroethylene and tetrafluoroethylene is preferably used.
  • the ion exchange capacity of the ion exchange resin may be 0.1 meq / g or more, for example, 0.1 to 2.0 meq / g, preferably 0.2 to 1.8 meq / g, more preferably 0.3. It may be about ⁇ 1.5 meq / g (particularly 0.5 to 1.5 meq / g).
  • an ion exchange resin a commercially available product such as “Registered trademark: Nafion” manufactured by DuPont can be used.
  • an ion exchange resin described in JP 2010-234570 A may be used.
  • the ion exchange layer may be an electrolyte membrane formed of the ion exchange resin, an electrode membrane including the ion exchange resin and catalyst particles.
  • the catalyst particles include a metal component having a catalytic action (particularly, a noble metal element such as platinum (Pt) or an alloy containing a noble metal), and is usually an electrode film for a cathode electrode. Contains platinum, and the electrode film for the anode electrode contains a platinum-ruthenium alloy. Furthermore, the catalyst particles are usually used as composite particles in which the metal component is supported on a conductive material (carbon material such as carbon black).
  • the ratio of the ion exchange resin is, for example, about 5 to 300 parts by weight, preferably about 10 to 250 parts by weight, and more preferably about 20 to 200 parts by weight with respect to 100 parts by weight of the catalyst particles.
  • the ion exchange layer may also contain the conventional additives exemplified in the section of the release layer, for example, inorganic materials such as inorganic particles and inorganic fibers (carbonaceous material, glass, ceramics, etc.). Also good.
  • inorganic materials such as inorganic particles and inorganic fibers (carbonaceous material, glass, ceramics, etc.). Also good.
  • the ion exchange layer may be formed on at least one surface of the release layer, may be formed on both surfaces of the release layer, or may be formed only on one surface of the release layer.
  • the average thickness of the ion exchange layer is, for example, about 1 to 500 ⁇ m, preferably about 1.5 to 300 ⁇ m, and more preferably about 2 to 200 ⁇ m.
  • the average thickness of the electrolyte membrane is, for example, about 1 to 500 ⁇ m, preferably about 5 to 300 ⁇ m, and more preferably about 10 to 200 ⁇ m.
  • the average thickness of the electrode film is, for example, about 1 to 100 ⁇ m, preferably about 2 to 80 ⁇ m, and more preferably about 2 to 50 ⁇ m.
  • the manufacturing method of the laminated body of this invention includes the lamination process of laminating
  • an ion exchange layer (an electrolyte membrane containing an ion exchange resin and / or an electrode membrane containing an ion exchange resin) may be formed on the release layer of the release film by coating.
  • An electrolyte membrane is laminated on the mold release film by coating to produce a laminate in which the electrolyte film is laminated on the mold release film, and an electrode film is laminated on the second mold release film by coating.
  • a laminate in which an electrode film is laminated on a release film may be manufactured.
  • the electrolyte membrane and the electrode membrane are subjected to coating in the state of a solution in which an ion exchange resin (and catalyst particles) are dissolved in a solvent.
  • the solvent examples include water, alcohols (C 1-4 alkanols such as methanol, ethanol, isopropanol, and 1-butanol), ketones (acetone, methyl ethyl ketone, etc.), ethers (dioxane, tetrahydrofuran, etc.), sulfoxides, and the like. (Such as dimethyl sulfoxide).
  • alcohols C 1-4 alkanols such as methanol, ethanol, isopropanol, and 1-butanol
  • ketones acetone, methyl ethyl ketone, etc.
  • ethers dioxane, tetrahydrofuran, etc.
  • sulfoxides and the like.
  • concentration of the solute (ion exchange resin, catalyst particles) in the solution is, for example, about 1 to 80% by weight, preferably 2 to 60% by weight, and more preferably about 3 to 50% by weight.
  • Examples of the coating method include conventional methods exemplified in the method for producing a release film. Of these methods, the blade coater method, the bar coater method and the like are widely used.
  • the solvent may be evaporated by heating and drying.
  • the drying temperature may be 50 ° C. or more, for example, about 80 to 200 ° C. (especially 100 to 150 ° C.) for an electrolyte membrane, and for example, 50 to 150 ° C. (especially 60 to 120 ° C.) for an electrode membrane. )
  • the laminate obtained in the laminating step is usually subjected to an adhesion step, but when continuously manufactured, the laminate is transported to a place where the adhesion step is performed in the lamination step before the adhesion step.
  • the release film is excellent in flexibility, a laminating process involving such conveyance can be performed by a roll-to-roll method, and productivity can be improved. Furthermore, since the combination of the release layer and the base material layer is excellent in dimensional stability, the release film can be prevented from being stretched by tension even in the roll-to-roll method. Therefore, the ion exchange layer can be wound up in a roll shape without peeling, and productivity can be improved.
  • the laminate obtained in the lamination step may be subjected to an adhesion step.
  • the membrane electrode assembly is prepared by closely adhering the electrolyte membrane and the electrode film respectively laminated on the release layers of the first and second release films.
  • the adhesion between the electrolyte membrane and the electrode membrane is usually carried out by thermocompression bonding.
  • the heating temperature is, for example, about 80 to 250 ° C., preferably 90 to 230 ° C., more preferably about 100 to 200 ° C.
  • the pressure is, for example, about 0.1 to 20 MPa, preferably about 0.2 to 15 MPa, and more preferably about 0.3 to 10 MPa.
  • the complex (the laminate in which the electrolyte layer and the electrode film are in close contact with each other) in the adhesion process is subjected to a separation process in which the release film is separated from the ion exchange layer (electrolyte film and / or electrode film).
  • a membrane electrode assembly of a molecular fuel cell is obtained.
  • even a laminate that has undergone the above-described drying process or thermocompression treatment has an appropriate peeling strength, so that the release film and the ion exchange layer do not peel off in the lamination process or the adhesion process, and the peeling process. Then, the release film can be easily peeled off and workability can be improved.
  • the release layer of the release film must have a predetermined release property with respect to the ion exchange layer, and the peel strength between the release layer and the ion exchange layer of the release film (especially the lamination in the release step).
  • the peel strength of the body is, for example, about 0.1 to 20 mN / mm, preferably about 0.5 to 18 mN / mm, more preferably about 1 to 15 mN / mm (particularly 2 to 12 mN / mm). If the peel strength is too high, the peeling work becomes difficult, and if it is too low, workability in the laminating step and the adhesion step is lowered.
  • the peel strength can be measured by a method of leaving 180 ° at 300 mm / min after standing at 20 ° C. and 50% RH for 1 hour or more.
  • an electrode film (second release film) is further formed on the release layer of the third release film, similarly to the adhesion step and the release step.
  • the electrode film for the anode electrode is used, the electrode film of the cathode electrode film) is adhered and peeled off, and the fuel gas supply layer and the air supply are provided on each electrode film by a conventional method.
  • a membrane electrode assembly (MEA) is obtained by laminating the layers.
  • a film having a thickness of 50 to 100 ⁇ m was prepared by a hot press method or a solution cast method, cut into a width of 5 mm and a length of 50 mm, and a dynamic viscoelasticity measuring apparatus (TE Instruments Japan Co., Ltd.).
  • the dynamic storage elastic modulus (E ′) was measured from ⁇ 100 ° C. to 250 ° C. under the conditions of a distance between chucks of 20 mm, a heating rate of 5 ° C./min and an angular frequency of 10 Hz.
  • composition ratio of cyclic olefin resin The composition ratio of the cyclic olefin resin (copolymer) was measured by 13 C-NMR.
  • the surface on the electrolyte membrane side of the obtained laminate and the surface on the electrode membrane side of the laminate including the electrode membrane obtained in Examples and Comparative Examples are pressure-bonded at a temperature and a pressure of 10 MPa shown in Table 1, and an electrode
  • the base film on the membrane side was peeled off, and the releasability was evaluated according to the following criteria.
  • a release film is set on a roll, the release film is sent out at a speed of 0.3 m / min, and the electrode film coating solution used in the examples is applied to the roll at a coating amount of Pt basis weight of 0.5 mg / cm 2.
  • ⁇ Coating was done by the two-roll method and evaluated according to the following criteria.
  • Cracks and cracks do not occur in the release layer, and the coating can be performed without problems.
  • The release layer is cracked and cannot be applied.
  • the obtained reaction mixture was released into a large amount of methanol adjusted to be acidic with hydrochloric acid to precipitate a precipitate, which was separated by filtration, washed and dried to obtain 2-norbornene / 1-octene copolymer A. 5.0 g was obtained.
  • the obtained copolymer A has a number average molecular weight Mn of 30,000, a glass transition temperature Tg of 215 ° C., a dynamic storage elastic modulus (E ′) having a transition point in the vicinity of ⁇ 20 ° C., and 2-norbornene
  • the obtained copolymer D has a Mn of 175,000, a Tg of 331 ° C., a dynamic storage elastic modulus (E ′) having a transition point in the vicinity of ⁇ 20 ° C., 2-norbornene and 5-hexyl-2-
  • the polymerization reaction solution is poured into a large amount of acidic methanol in hydrochloric acid to completely precipitate the polymer, filtered, washed, and dried under reduced pressure at 70 ° C. for 3 hours or more to give 2-norbornene / 1-hexene copolymer E. 8.7g was obtained.
  • the obtained copolymer E has a number average molecular weight Mn of 32,000, a glass transition temperature Tg of 300 ° C., a dynamic storage elastic modulus (E ′) having a transition point in the vicinity of ⁇ 20 ° C., and 2-norbornene
  • a magnetic stirrer was placed in a 100 mL glass reactor with a rubbed glass stopper, and was sufficiently replaced with nitrogen gas.
  • 0.464 g of the prepared dry aluminoxane was added, and then a predetermined amount of a 2-norbornene toluene solution (concentration 5.14 mol / L) was added.
  • the whole was diluted with toluene until 29 mL, and the 2-norbornene concentration was adjusted to 1.5 mol / L.
  • 1 atmosphere of ethylene was introduced and saturated.
  • the dynamic storage elastic modulus (E ′) showed no transition point at ⁇ 50 to 100 ° C.
  • a release film 2 (dry layer 1 ⁇ m dry thickness) was obtained in the same manner as in Production Example 1 except that 1 part by weight of 2-norbornene / 1-octene copolymer B was dissolved in 99 parts by weight of toluene. It was.
  • a release film 4 (dry thickness of the release layer) was prepared in the same manner as in Production Example 1 except that 1 part by weight of 2-norbornene / 5-hexyl-2-norbornene copolymer D was dissolved in 99 parts by weight of toluene. 1 ⁇ m) was obtained.
  • Example 1 7 parts by weight of Pt-supported carbon (“TEC10E50E” manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.) and 35 parts by weight of the ion exchange resin solution (Nafion DE2020CS) were mixed by a ball mill to obtain a coating solution for an electrode film (electrode catalyst layer). . On the release layer of the release film 1, the electrode film coating solution is applied using a doctor blade, and then dried at 100 ° C. for 10 minutes, and the electrode film having a Pt weight per unit area of 0.5 mg / cm 2 is included. A laminate was obtained.
  • Examples 2-6 and Comparative Examples 1-2 A laminate was obtained in the same manner as in Example 1 except that the release films 2 to 8 were used instead of the release film 1, respectively.
  • Table 1 shows the results of evaluating the laminates obtained in Examples and Comparative Examples.
  • the release films of the examples are excellent in toughness and release properties.
  • the releasability tends to improve as the difference between the glass transition temperature and the processing temperature increases, and Examples 2 to 4 and 6 show excellent releasability.
  • the release film of Comparative Example 1 since the release film of Comparative Example 1 has low heat resistance, it tends to cause defective release in the manufacturing process of the fuel cell, and the yield may be reduced. Since the release film of Comparative Example 2 has low toughness, it causes defective release from the ion exchange layer due to cracks or cracks in the release layer of the release film during the roll-to-roll manufacturing process. It is easy to cause a decrease in yield.
  • the release film of the present invention is used for producing a membrane electrode assembly of a polymer electrolyte fuel cell.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Inert Electrodes (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Laminated Bodies (AREA)

Abstract

 固体高分子型燃料電池の膜電極接合体を製造するための離型フィルムの離型層を、側鎖に炭素数3~10のアルキル基を有するオレフィン単位を含む環状オレフィン系樹脂で形成する。前記離型層のガラス転移温度は210~350℃程度であってもよい。前記離型層の動的貯蔵弾性率E'は-50~100℃の範囲に転移点を有していてもよい。この離型フィルムの離型層の上に、イオン交換樹脂を含むイオン交換層をロール・ツー・ロール方式で積層して積層体を製造してもよい。この積層体から離型フィルムを剥離して前記膜電極接合体を製造してもよい。この離型フィルムは、固体高分子型燃料電池の膜電極接合体(電解質膜及び/又は電極膜)の生産性を向上できる。

Description

離型フィルム、積層体及びその製造方法並びに燃料電池の製造方法
 本発明は、固体高分子型燃料電池の構成部材である膜電極接合体を製造(製膜)する際に使用される離型フィルム、この離型フィルムを含む積層体(積層フィルム)及びその製造方法並びに前記離型フィルムを用いて前記膜電極接合体を製造する方法に関する。
 固体高分子型燃料電池は、膜電極接合体(Membrane Electrode Assembly:MEA)と称される基本構成を有している。MEAは、イオン交換膜である固体高分子電解質膜の両面に、白金族金属触媒を担持したカーボン粉末を主成分とする電極膜(触媒層又は電極触媒膜)を積層し、得られた積層体を導電性の多孔膜である燃料ガス供給層と空気供給層とでさらに挟み込んで得られる。このMEAにおいて、電解質膜及び電極膜のいずれにもイオン交換樹脂が含まれているが、通常、電解質膜及び電極膜はキャスト法及び/又はコーティング法で形成される。電解質膜と電極膜との積層方法としては、通常、支持体にそれぞれ形成された両層を接触させて、130~150℃程度(使用材料によっては150~200℃程度)、圧力1~10MPa程度で加熱圧着することにより密着した後、支持体を剥離する方法が用いられる。そのため、支持体としては離型フィルムが用いられるが、離型フィルムには、電解質膜及び電極膜に対する適度な剥離性と密着性とが要求される。電解質膜及び電極膜に含まれるイオン交換樹脂は、離型性の高いフッ素樹脂の主鎖と、離型性の低いスルホン酸基を含む側鎖とを有する特異な構造を有する樹脂であり、剥離性に関する挙動を予測するのは困難であり、剥離性と密着性とのバランスをとるのが困難である。さらに、燃料電池製造用離型フィルムには、製造工程上、耐熱性が要求される上に、生産性の点から、ロール・ツー・ロール方式で製造されるため、柔軟性も要求される。離型フィルムとしては、一般的には、フッ素系フィルムが汎用されているが、耐熱性、離型性、非汚染性には優れているもの、高価である上に、使用後の廃棄焼却処理において燃焼し難く、有毒ガスを発生し易い。さらに、弾性率が低いため、ロール・ツー・ロール方式での製造が困難である。そこで、フッ素系フィルムに代わる離型フィルムとして、環状オレフィン系樹脂で形成された離型フィルムも提案されている。
 特開2010-234570号公報(特許文献1)には、シクロオレフィン系コポリマーからなる離型フィルムが開示されており、ポリエチレンテレフタレートフィルムなどの基材のフィルムの上にシクロオレフィン系コポリマー溶液をコーティングして形成された離型フィルムも記載されている。この文献には、シクロオレフィン系コポリマーのガラス転移温度は、通常50℃以上、最も好ましくは160℃以上であり、一般的なシクロオレフィン系コポリマーのTgの上限値は250℃程度であると記載されている。さらに、実施例では、ポリエチレンテレフタレートフィルムの上に、流延装置を用いて、エチレンとノルボルネンとの共重合体を含む溶液をキャストし、厚さ0.5μmの離型フィルムを形成している。
 しかし、この離型フィルムは、耐熱性が低く、高温での製造工程では剥離性が十分でなく、靱性も十分でないため、ロール・ツー・ロール方式の製造では、ひびや割れが発生し易い。
 なお、特許第5017222号公報(特許文献2)には、液晶表示装置の偏光フィルムを形成するための共重合体として、(A)プロピレンから誘導される構造単位と、(B)炭素数6~12のα-オレフィンから誘導される構造単位と、(C)ノルボルネンから誘導される構造単位とを含む共重合体であって、前記構造単位(A)を10~69モル%、前記構造単位(B)を1~50モル%、前記構造単位(C)を30~89モル%含み、かつ重量平均分子量が50,000~1,000,000である共重合体が開示されている。この文献には、共重合体のガラス転移温度は50~250℃(特に80~200℃)と記載され、実施例では、ガラス転移温度92~168℃の共重合体が調製されている。
 しかし、この文献には、燃料電池、離型フィルムのいずれについても記載されていない。また、このフィルムを燃料電池製造用離型フィルムに用いても、耐熱性が十分ではない。
 特開2009-298999号公報(特許文献3)には、環状オレフィン(A)単量体単位と炭素数5以上のα-オレフィン(B)単量体単位から得られる環状オレフィン付加共重合体のフィルムであって、構造単位(A)と構造単位(B)との合計100モル%中、構造単位(A)の割合が80~99モル%、構造単位(B)の割合が1~20モル%である光学用フィルムが開示されている。この文献には、前記環状オレフィン付加共重合体が、耐熱性、透明性、低吸水性、成形性及び靱性に優れ、かつ線膨張係数が小さいことが記載され、ディスプレイ用光学基板などの用途に好適であると記載されている。また、環状オレフィン付加共重合体のガラス転移温度は200~400℃(特に245~300℃)と記載され、実施例では、ガラス転移温度245~262℃の共重合体が調製されている。
 しかし、この文献にも、燃料電池については記載されていない。さらに、離型フィルムについては開示されているが、電気絶縁部材の一例として記載されているにすぎない。また、離型性については、目的及び効果として記載されておらず、評価もされていない。なお、このフィルムを燃料電池製造用離型フィルムに用いても、高度な耐熱性が要求される用途では十分でない。
特開2010-234570号公報(特許請求の範囲、段落[0024][0025]、実施例2) 特許第5017222号公報(特許請求の範囲、段落[0030]、実施例) 特開2009-298999号公報(特許請求の範囲、段落[0019][0028][0044]、実施例)
 従って、本発明の目的は、固体高分子型燃料電池の膜電極接合体(電解質膜及び/又は電極膜)の生産性を向上できる離型フィルム、この離型フィルムを含む積層フィルム及びその製造方法並びに前記離型フィルムを用いて前記膜電極接合体を製造する方法を提供することにある。
 本発明の他の目的は、電解質膜及び電極膜に対する適度な剥離性と密着性とを有すると共に、高い耐熱性及び靱性も有し、ロール・ツー・ロール(roll to roll)方式で加熱処理して、高い生産性で前記膜電極接合体を製造できる離型フィルム、この離型フィルムを含む積層フィルム及びその製造方法並びに前記離型フィルムを用いて前記膜電極接合体を製造する方法を提供することにある。
 本発明のさらに他の目的は、溶剤に対する溶解性に優れ、容易にコーティングにより製造できる離型フィルム、この離型フィルムを含む積層フィルム及びその製造方法並びに前記離型フィルムを用いて前記膜電極接合体を製造する方法を提供することにある。
 本発明者らは、前記課題を達成するため、まず、特許文献1における離型フィルムの耐熱性が十分でない点に着目し、特許文献1のエチレン-ノルボルネン共重合体のガラス転移温度を調整する検討を行った。しかし、エチレン-ノルボルネン共重合体では、ノルボルネン含量の増量によりガラス転移温度を上昇させて、高温での剥離性を向上させると、靱性が低下するためか、離型フィルムの破損(ひびや割れ)が発生し、ロール・ツー・ロール方式で固体高分子型燃料電池の膜電極接合体(MEA)を効率良く生産できなかった。また、ガラス転移温度をさらに上昇させ、所定のガラス転移温度を超えると、溶剤に対する溶解性が低下し、コーティングによる製造が困難となった。そこで、本発明者らは、さらに鋭意検討した結果、MEAを製造するための離型フィルムの離型層を、側鎖に炭素数3~10のアルキル基を有するオレフィン単位を含む環状オレフィン系樹脂で形成することにより、MEAの生産性を向上できることを見出し、本発明を完成した。
 すなわち、本発明の離型フィルムは、固体高分子型燃料電池の膜電極接合体を製造するための離型フィルムであって、側鎖に炭素数3~10のアルキル基を有するオレフィン単位を含む環状オレフィン系樹脂で形成された離型層を含む。前記離型層のガラス転移温度は210~350℃程度であってもよい。前記離型層の動的貯蔵弾性率E’は-50~100℃の範囲に転移点を有していてもよい。前記環状オレフィン系樹脂は、繰り返し単位として、炭素数3~10のアルキル基を有する鎖状オレフィン単位及び/又は炭素数3~10のアルキル基を有する環状オレフィン単位を含んでいてもよく、特に、炭素数3~10のアルキル基を有さない環状オレフィン単位(A)と、炭素数3~10のアルキル基を有する鎖状又は環状オレフィン単位(B)とを含む共重合体であってもよい。前記環状オレフィン単位(B)は、炭素数4~8の直鎖状アルキル基を有するエチレン又はノルボルネン単位であってもよい。前記環状オレフィン単位(A)と前記鎖状又は環状オレフィン単位(B)との割合(モル比)は、前者/後者=50/50~99/1程度であってもよい。前記離型層の平均厚みは0.2~5μm程度であってもよい。本発明の離型フィルムは、さらに基材層を含み、離型層が基材層の少なくとも一方の面に積層され、かつ基材層がポリオレフィン、ポリビニルアルコール系重合体、ポリエステル、ポリアミド及びセルロース誘導体からなる群より選択された少なくとも1種で形成されていてもよい。本発明の離型フィルムは、コーティングで形成されたフィルムであってもよい。
 本発明には、固体高分子型燃料電池を製造するための積層体であり、前記離型フィルムと、この離型フィルムの離型層の上に積層され、かつイオン交換樹脂を含むイオン交換層とで形成された積層体も含まれる。前記イオン交換樹脂が側鎖にスルホン酸基を有するフッ素樹脂であってもよい。前記イオン交換樹脂を含むイオン交換層は、電解質膜及び/又は電極膜であってもよい。本発明の積層体は、ロール・ツー・ロール方式で製造される積層体であってもよい。
 本発明には、離型フィルムの離型層の上にイオン交換樹脂を含むイオン交換層を積層する積層工程を含む前記積層体の製造方法も含まれる。前記積層工程において、ロール・ツー・ロール方式で積層してもよい。
 本発明には、前記積層体から離型フィルムを剥離する剥離工程を含む固体高分子型燃料電池の膜電極接合体の製造方法も含まれる。
 なお、本明細書では、「イオン交換層」とは、イオン交換樹脂を含む層を意味し、イオン交換膜である電解質膜に限定されず、イオン交換樹脂に加えて触媒を含む電極膜もイオン交換層に含まれる。
 本発明では、MEAを製造するための離型フィルムの離型層が、側鎖に炭素数3~10のアルキル基を有するオレフィン単位を含む環状オレフィン系樹脂で形成されているため、MEAの生産性を向上できる。特に、本発明の離型フィルムは、適度な弾性を有しているため、ロールでの巻き取りが可能であり、ロール・ツー・ロール方式で連続的に製造でき、ロール・ツー・ロール方式で加熱処理(例えば、140℃以上に加熱処理)して製造しても、剥離不良や離型層の破損(割れやひびなど)を抑制でき、安定して製造でき、生産性を向上できる。さらに、溶剤に対する溶解性に優れ、容易にコーティングにより製造できる。
 [離型フィルム]
 本発明の離型フィルムは、固体高分子型燃料電池の膜電極接合体(MEA)を製造するための離型フィルムであって、側鎖に炭素数3~10のアルキル基を有するオレフィン単位を含む環状オレフィン系樹脂で形成された離型層を含む。本発明の離型フィルムは、特に、イオン交換樹脂を含む電解質膜及び/又は電極膜をその上に積層し、MEAを製造した後、MEAから剥離するためのフィルムであってもよい。
 (離型層)
 本発明の離型層は、環状オレフィン系樹脂を含み、この環状オレフィン系樹脂が側鎖に炭素数3~10のアルキル基を有するオレフィン単位を含んでいるため、所定の粘弾特性を有していている。
 離型層(環状オレフィン系樹脂)のガラス転移温度(Tg)は、210~350℃程度の範囲から選択でき、耐熱性と機械的特性とのバランスの点から、例えば、220~350℃、好ましくは230~340℃(例えば、250~320℃)、さらに好ましくは260~300℃(特に265~280℃)程度であり、高度な耐熱性が要求される用途では、例えば、270~350℃、好ましくは280~340℃(特に300~335℃)程度であってもよい。ガラス転移温度が低すぎると、耐熱性が低いため、剥離不良が起こり易く、高すぎると、生産が困難となる。なお、本明細書において、ガラス転移温度は、示差走査熱量計(DSC)を用いて測定できる。
 離型層の動的貯蔵弾性率E’は、昇温速度5℃/分及び周波数10Hzの条件で-50℃から250℃まで測定した動的粘弾性試験において、ガラス転移温度よりも低い温度領域(例えば、-50~100℃程度)に転移点を有するのが好ましい。転移点が無い場合、靱性が低下し、側鎖が長すぎる場合や側鎖を有する単位の割合が多すぎると、ガラス転移温度が低下し、耐熱性が低下する。なお、動的貯蔵弾性率は、実施例に記載の方法で測定でき、前記試験において、動的貯蔵弾性率E’と動的損失弾性率E”との比である力学的損失正接tanδが極大点をとることから評価できる。
 このような特性を有する環状オレフィン系樹脂は、側鎖に炭素数3~10のアルキル基(C3―10アルキル基)を有するオレフィン単位を含んでいればよく、C3―10アルキル基は、環状オレフィン系樹脂の主鎖に対して、自由度の高い側鎖として存在することにより、変形により生じるエネルギーを熱エネルギーに変換できるためか、環状オレフィン系樹脂のガラス転移温度を上昇させて耐熱性を向上させても、弾性及び靱性を保持できる。なお、α-オレフィンにおいて、末端アルキル基の炭素数が3以上になると、室温で液体となるが、本発明でも、側鎖のアルキル基の炭素数が3以上になると、前述の効果が発現する。一方、炭素数が10を超えると、ガラス転移温度が低下しすぎる。
 C3―10アルキル基としては、例えば、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、ノニル基、デカニル基などの直鎖状又は分岐鎖状アルキル基などが挙げられる。これらのC3―10アルキル基は、単独で又は二種以上組み合わせて使用できる。これらのうち、耐熱性と弾性と靱性とのバランスに優れる点から、好ましくは直鎖状C4-9アルキル基(例えばn-ブチル基、n-ヘキシル基、n-オクチル基など)であり、さらに好ましくは直鎖状C4-8アルキル基(特にn-ヘキシル基などの直鎖状C5-7アルキル基)である。
 このような環状オレフィン系樹脂としては、繰り返し単位として、前記環状オレフィン系樹脂は、繰り返し単位として、C3-10アルキル基を有する鎖状オレフィン単位及び/又はC3-10アルキル基を有する環状オレフィン単位を含んでいてもよく、単独重合体であってもよいが、所望の特性を調整し易い点から、前記鎖状オレフィン単位及び/又は前記環状オレフィン単位と、他の共重合性単位との共重合体が好ましく、C3―10アルキル基を有さない環状オレフィン単位(A)と、C3―10アルキル基を有する鎖状又は環状オレフィン単位(B)とを含む共重合体が特に好ましい。
 環状オレフィン単位(A)を形成するための重合成分(単量体)は、環内にエチレン性二重結合を有する重合性の環状オレフィンであり、単環式オレフィン、二環式オレフィン、三環以上の多環式オレフィンなどに分類できる。
 単環式オレフィンとしては、例えば、シクロブテン、シクロペンテン、シクロヘプテン、シクロオクテンなどの環状C4-12シクロオレフィン類などが挙げられる。
 二環式オレフィンとしては、例えば、2-ノルボルネン;5-メチル-2-ノルボルネン、5,5-ジメチル-2-ノルボルネン、5-エチル-2-ノルボルネンなどのC1―2アルキル基を有するノルボルネン類;5-エチリデン-2-ノルボルネンなどのアルケニル基を有するノルボルネン類;5-メトキシカルボニル-2-ノルボルネン、5-メチル-5-メトキシカルボニル-2-ノルボルネンなどのアルコキシカルボニル基を有するノルボルネン類;5-シアノ-2-ノルボルネンなどのシアノ基を有するノルボルネン類;5-フェニル-2-ノルボルネン、5-フェニル-5-メチル-2-ノルボルネンなどのアリール基を有するノルボルネン類;オクタリン;6-エチル-オクタヒドロナフタレンなどのC1-2アルキル基を有するオクタリンなどが例示できる。
 多環式オレフィンとしては、例えば、ジシクロペンタジエン;2,3-ジヒドロジシクロペンタジエン、メタノオクタヒドロフルオレン、ジメタノオクタヒドロナフタレン、ジメタノシクロペンタジエノナフタレン、メタノオクタヒドロシクロペンタジエノナフタレンなどの誘導体;6-エチル-オクタヒドロナフタレンなどの置換基を有する誘導体;シクロペンタジエンとテトラヒドロインデンなどとの付加物、シクロペンタジエンの3~4量体などが挙げられる。
 これらの環状オレフィンは、単独で又は二種以上組み合わせて使用できる。これらの環状オレフィンのうち、剥離性と柔軟性とのバランスに優れる点から、二環式オレフィンが好ましい。C3―10アルキル基を有さない環状オレフィン(環状オレフィン単位(A)を形成するための環状オレフィン)全体に対して二環式オレフィン(特にノルボルネン類)の割合は10モル%以上であってもよく、例えば、30モル%以上、好ましくは50モル%以上、さらに好ましくは80モル%以上(特に90モル%以上)であり、二環式オレフィン単独(100モル%)であってもよい。特に、三環以上の多環式オレフィンの割合が大きくなると、ロール・ツー・ロール方式での製造に用いることが困難となる。
 代表的な二環式オレフィンとしては、例えば、C3―10アルキル基以外の置換基を有していてもよいノルボルネン(2-ノルボルネン)、C3―10アルキル基以外の置換基を有していてもよいオクタリン(オクタヒドロナフタレン)などが例示できる。前記置換基としては、メチル、エチル基、アルケニル基、アリール基、ヒドロキシル基、アルコキシ基、カルボキシル基、アルコキシカルボニル基、アシル基、シアノ基、アミド基、ハロゲン原子などが例示できる。これらの置換基は、単独で又は二種以上組み合わせてもよい。これらの置換基のうち、剥離性を損なわない点から、メチル基やエチル基などの非極性基が好ましい。これらの二環式オレフィンのうち、ノルボルネンやC1-2アルキル基を有するノルボルネンなどのノルボルネン類(特にノルボルネン)が特に好ましい。
 鎖状又は環状オレフィン単位(B)を形成するための重合成分(単量体)は、環状オレフィン系樹脂の主鎖に対して側鎖としてC3―10アルキル基を形成可能であり、かつエチレン性二重結合を有する重合性のオレフィンであり、C3―10アルキル基を有する鎖状オレフィン、C3―10アルキル基を有する環状オレフィンに分類できる。なお、鎖状オレフィン単位は、環状オレフィンの開環により生じた鎖状オレフィン単位であってもよいが、両単位の割合を制御し易い点から、鎖状オレフィンを重合成分とする単位が好ましい。
 C3―10アルキル基を有する鎖状オレフィンとしては、例えば、1-ペンテン、3-メチル-1-ペンテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセンなどのα-鎖状C5-13オレフィンなどが挙げられる。これらの鎖状オレフィンは、単独で又は二種以上組み合わせて使用できる。これらの鎖状オレフィンのうち、好ましくはα-鎖状C6-12オレフィンであり、さらに好ましくはα-鎖状C6-10オレフィン(特に1-オクテンなどのα-鎖状C7-9オレフィン)である。
 C3―10アルキル基を有する環状オレフィンは、前記環状オレフィン単位(A)の項で例示された環状オレフィン骨格にC3―10アルキル基が置換した環状オレフィンであってもよい。環状オレフィン骨格としては、二環式オレフィン(特にノルボルネン)が好ましい。好ましいC3―10アルキル基を有する環状オレフィンとしては、例えば、5-プロピル-2-ノルボルネン、5-ブチル-2-ノルボルネン、5-ペンチル-2-ノルボルネン、5-ヘキシル-2-ノルボルネン、5-オクチル-2-ノルボルネン、5-デシル-2-ノルボルネンなどの直鎖状又は分岐鎖状C3―10アルキルノルボルネンなどが挙げられる。これらの環状オレフィンは、単独で又は二種以上組み合わせて使用できる。これらの環状オレフィンのうち、好ましくは直鎖状C4―9アルキルノルボルネンであり、さらに好ましくは直鎖状C4-8アルキルノルボルネン(特に5-ヘキシル-2-ノルボルネンなどの直鎖状C5-7アルキルノルボルネン)である。
 環状オレフィン単位(A)と鎖状又は環状オレフィン単位(B)との割合(モル比)は、例えば、前者/後者=50/50~99/1、好ましくは60/40~95/5、さらに好ましくは70/30~90/10(特に75/25~90/10)程度である。環状オレフィン単位(A)の割合が少なすぎると、耐熱性が低下し、多すぎると靱性が低下し易い。
 環状オレフィン系樹脂は、環状オレフィン単位(A)及び鎖状又は環状オレフィン単位(B)以外に他の共重合性単位を含んでいてもよい。他の共重合性単位を形成するための重合成分(単量体)としては、例えば、α-鎖状C1-4オレフィン(エチレン、プロピレン、1-ブテン、イソブテンなど)、ビニルエステル系単量体(例えば、酢酸ビニル、プロピオン酸ビニルなど)、ジエン系単量体(例えば、ブタジエン、イソプレンなど)、(メタ)アクリル系単量体[例えば、(メタ)アクリル酸、又はこれらの誘導体((メタ)アクリル酸エステルなど)など]などが挙げられる。これらの重合成分は、単独で又は二種以上組み合わせて使用できる。これらのうち、剥離性を損なわない点から、カルボキシル基、ヒドロキシ基、アミノ基などの極性基を有する単位を実質的に含まない単量体が好ましく、エチレンやプロピレンなどのα-鎖状C1-4オレフィンなどが汎用される。他の共重合性単位の割合は、環状オレフィン単位(A)及び鎖状又は環状オレフィン単位(B)の合計に対して、例えば、10モル%以下、好ましくは5モル%以下、さらに好ましくは1モル%以下である。
 環状オレフィン系樹脂の数平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)において、ポリスチレン換算で、例えば、10000~300000、好ましくは50000~250000、さらに好ましくは80000~200000(特に100000~150000)程度である。分子量が小さすぎると、製膜性が低下し易く、大きすぎると、粘度が高くなるため、取り扱い性が低下し易い。
 環状オレフィン系樹脂は、付加重合により得られた樹脂であってもよく、開環重合(開環メタセシス重合など)により得られた樹脂であってもよい。また、開環メタセシス重合により得られた重合体は、水素添加された水添樹脂であってもよい。環状オレフィン系樹脂の重合方法は、慣用の方法、例えば、メタセシス重合触媒を用いた開環メタセシス重合、チーグラー型触媒を用いた付加重合、メタロセン系触媒を用いた付加重合(通常、メタセシス重合触媒を用いた開環メタセシス重合)などを利用できる。具体的な重合方法としては、例えば、特開2004-197442号公報、特開2007-119660号公報、特開2008-255341号公報、Macromolecules, 43, 4527(2010)、Polyhedron, 24, 1269(2005), J. Appl. Polym. Sci, 128(1), 216(2013), Polymer Journal, 43, 331(2011)に記載の方法などを利用できる。また、重合に用いる触媒も、慣用の触媒、例えば、Macromolecules, 1988年, 第31巻, 3184頁、Journal of Organometallic Chemistry, 2006年, 691巻, 193頁に記載の方法で合成された触媒などを利用できる。
 離型層には、さらに慣用の添加剤が含まれていてもよい。慣用の添加剤としては、例えば、充填剤、滑剤(ワックス、脂肪酸エステル、脂肪酸アミドなど)、帯電防止剤、安定剤(酸化防止剤、熱安定剤、光安定剤など)、難燃剤、粘度調整剤、増粘剤、消泡剤などが含まれていてもよい。また、表面平滑性を損なわない範囲で、有機又は無機粒子(特にゼオライトなどのアンチブロッキング剤)を含んでいてもよい。
 離型層中の環状オレフィン系樹脂の割合は、例えば、離型層全体に対して80重量%以上、好ましくは90重量%以上、さらに好ましくは95重量%以上(例えば、95~100重量%)であってもよい。
 特に、本発明では、電解質膜や電極膜を汚染し易いシリコーン化合物などの低分子量の離型剤を含んでいなくても剥離性を向上でき、シリコーン化合物を実質的に含んでいないのが好ましい。
 離型層の平均厚みは、例えば、0.1~100μm、好ましくは0.3~80μm、さらに好ましくは0.5~50μm程度である。特に、離型層がコーティング膜である場合、薄肉であってもよく、例えば、0.2~5μm、好ましくは0.5~3μm、さらに好ましくは0.8~2μm程度であってもよい。離型層が薄肉であると、取り扱い性に優れ、ロール・ツー・ロール方式などに適するとともに、経済性も向上する。なお、平均厚みは、コーティング膜の場合、離型層の塗工量(単位面積当たりの固形分重量)及び密度に基づいて算出できる。
 (基材層)
 本発明の離型フィルムは、前記離型層を含む限り、特に限定されず、前記離型層単独で形成された単層の離型フィルム(例えば、押出成形により形成された離型フィルム)であってもよく、基材層の少なくとも一方の面に前記離型層が積層された積層構造の離型フィルムであってもよい。これらのうち、燃料電池の生産性を向上でき、薄肉で厚みの均一な離型層を容易に製造できる点から、積層構造の離型フィルムが好ましい。
 基材層は、燃料電池の製造工程において、離型フィルムの寸法安定性を向上でき、特に、ロール・ツー・ロール方式において張力が負荷されても、伸びを抑制でき、さらに乾燥工程や加熱圧着処理などによって高温に晒されても、高い寸法安定性を維持し、電解質膜や電極膜との剥離を抑制できる点から、耐熱性及び寸法安定性の高い材質で形成されているのが好ましく、具体的には、150℃における弾性率が100~1000MPaの合成樹脂で形成されていてもよい。前記弾性率は、例えば、120~1000MPa、好ましくは150~1000MPa、さらに好ましくは200~1000MPa程度であってもよい。弾性率が小さすぎると、寸法安定性が低下し、ロール・ツー・ロール方式での製造において電解質膜や電極膜との剥離が発生し、燃料電池の生産性が低下する。
 このような合成樹脂としては、例えば、各種の熱可塑性樹脂や熱硬化性樹脂が使用できるが、ロール・ツー・ロール方式で製造できる柔軟性を有する点から、熱可塑性樹脂が好ましい。熱可塑性樹脂としては、例えば、ポリオレフィン(ポリプロピレン系樹脂、環状ポリオレフィンなど)、ポリビニルアルコール系重合体、ポリエステル、ポリアミド、ポリイミド、ポリカーボネート、ポリフェニレンエーテル、ポリフェニレンスルフィド、セルロース誘導体などが挙げられる。これらの熱可塑性樹脂は、単独で又は二種以上組み合わせて使用できる。これらの熱可塑性樹脂のうち、ポリオレフィン、ポリビニルアルコール系重合体、ポリエステル、ポリアミド、ポリイミド及びセルロース誘導体からなる群より選択された少なくとも1種が好ましく、耐熱性と柔軟性とのバランスに優れる点から、ポリエステル、ポリイミドが特に好ましい。さらに、ポリエステルとしては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)などのポリC2-4アルキレンアリレート系樹脂が好ましく使用できる。ポリイミドとしては、熱硬化性ポリイミド(ピロメリット酸系ポリイミド、ビスマレイミド系ポリイミド、ナジック酸系ポリイミド、アセチレン末端系ポリイミドなど)、熱可塑性ポリイミド、ポリエーテルイミド、ポリアミドイミドなどが挙げられる。
 基材層は、フィルム強度を向上させる点から、延伸フィルムで形成されていてもよい。延伸は、一軸延伸であってもよいが、フィルム強度を向上できる点から、二軸延伸が好ましい。延伸倍率は、縦及び横方向において、それぞれ、例えば、1.5倍以上(例えば、1.5~6倍)であってもよく、好ましくは2~5倍、さらに好ましくは3~4倍程度である。延伸倍率が低すぎると、フィルム強度が不十分となり易い。
 基材層の平均厚みは、例えば、1~300μm、好ましくは5~200μm、さらに好ましくは10~100μm(特に20~80μm)程度である。基材層の厚みが大きすぎると、ロール・ツー・ロール方式での生産が困難となり、薄すぎると、寸法安定性が低下する。
 離型層と基材層との厚み比は、例えば、離型層/基材層=1/1~1/500、好ましくは1/5~1/300、さらに好ましくは1/10~1/200(特に1/30~1/100)程度である。
 基材層の表面は、離型層との密着性を向上させるために、慣用の表面処理や易接着処理に供してもよい。
 (離型フィルムの製造方法)
 離型フィルムの製造方法としては、慣用の方法を利用でき、単独の離型層で形成されている場合は、例えば、押出成形やコーティングで形成してもよく、基材層との積層構造の場合は、例えば、コーティング、共押出や押出ラミネート、加熱圧着などの方法であってもよく、粘着剤や接着剤を介して積層してもよい。
 これらのうち、薄肉で、表面平滑な離型層を形成し易い点から、基材層の上に環状オレフィン系樹脂を含む溶液をコーティング(又は流延)した後、乾燥する方法が好ましい。コーティング方法としては、慣用の方法、例えば、ロールコーター、エアナイフコーター、ブレードコーター、ロッドコーター、リバースコーター、バーコーター、コンマコーター、ダイコーター、グラビアコーター、スクリーンコーター法、スプレー法、スピナー法などが挙げられる。これらの方法のうち、ブレードコーター法、バーコーター法、グラビアコーター法などが汎用される。
 溶媒としては、非極性溶媒を利用でき、例えば、ヘキサンなどの脂肪族炭化水素類、シクロヘキサンなどの脂環族炭化水素類、トルエンやキシレンなどの芳香族炭化水素類、ソルベントナフサなどの芳香族系油などを利用できる。これらの溶媒は単独で又は2種以上組み合わせてもよい。これらのうち、トルエンなどの芳香族炭化水素類、ソルベントナフサなどの芳香族系油が好ましい。
 溶液中における固形分濃度は、例えば、0.1~50重量%、好ましくは0.3~30重量%、さらに好ましくは0.5~20重量%(特に0.8~15重量%)程度である。
 乾燥は、自然乾燥であってもよいが、加熱して乾燥することにより溶媒を蒸発させてもよい。乾燥温度は、50℃以上であってもよく、例えば、50~200℃、好ましくは60~150℃、さらに好ましくは80~120℃程度である。
 [積層体]
 本発明の積層体は、固体高分子型燃料電池を製造するための積層体であり、離型フィルムと、この離型フィルムの離型層の上に積層され、かつイオン交換樹脂を含むイオン交換層(電解質膜、電極膜、膜電極接合体)とで形成されている。
 前記イオン交換樹脂としては、燃料電池で利用される慣用のイオン交換樹脂を利用できるが、なかでも、強酸性陽イオン交換樹脂や弱酸性陽イオン交換樹脂などの陽イオン交換樹脂が好ましく、例えば、スルホン酸基、カルボキシル基、リン酸基、ホスホン酸基などを有するイオン交換樹脂(詳しくは、電解質機能を有する電解質基として、スルホン酸基、カルボキシル基、リン酸基、ホスホン酸基などが導入されたイオン交換樹脂)などが挙げられ、スルホン酸基を有するイオン交換樹脂(電解質基としてスルホン酸基が導入されたイオン交換樹脂)が特に好ましい。
 前記スルホン酸基を有するイオン交換樹脂としては、スルホン酸基を有する各種の樹脂を使用できる。各種の樹脂としては、例えば、ポリエチレンやポリプロピレンなどのポリオレフィン、(メタ)アクリル系樹脂、スチレン系樹脂、ポリアセタール、ポリエステル、ポリカーボネート、ポリアミド、ポリアミドイミド、ポリイミド、ポリエーテル、ポリエーテルイミド、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルフィド、フッ素樹脂などが挙げられる。
 前記スルホン酸基を有するイオン交換樹脂のなかでも、スルホン酸基を有するフッ素樹脂、架橋ポリスチレンのスルホン化物などが好ましく、スルホン酸基を有するポリスチレン-グラフト-エチレンテトラフルオロエチレン共重合体、ポリスチレン-グラフト-ポリテトラフルオロエチレン共重合体などであってもよい。なかでも、離型性などの点から、スルホン酸基を有するフッ素樹脂(少なくとも一部の水素原子がフッ素原子に置換されたフルオロ炭化水素樹脂など)が特に好ましい。特に、固体高分子型燃料電池では、側鎖にスルホン酸基(又は-CFCFSOH基)を有するフッ素樹脂、例えば、[2-(2-スルホテトラフルオロエトキシ)ヘキサフルオロプロポキシ]トリフルオロエチレンとテトラフルオロエチレンとの共重合体(ブロック共重合体など)などが好ましく利用される。
 イオン交換樹脂のイオン交換容量は0.1meq/g以上であってもよく、例えば、0.1~2.0meq/g、好ましくは0.2~1.8meq/g、さらに好ましくは0.3~1.5meq/g(特に0.5~1.5meq/g)程度であってもよい。
 このようなイオン交換樹脂としては、デュポン社製「登録商標:ナフィオン(Nafion)」などの市販品を利用できる。なお、イオン交換樹脂としては、特開2010-234570号公報に記載のイオン交換樹脂などを用いてもよい。
 イオン交換層は、前記イオン交換樹脂で形成された電解質膜、前記イオン交換樹脂及び触媒粒子を含む電極膜であってもよい。
 電極膜(触媒層又は電極触媒膜)において、触媒粒子は触媒作用を有する金属成分(特に、白金(Pt)などの貴金属単体又は貴金属を含む合金)を含んでおり、通常、カソード電極用電極膜では白金を含み、アノード電極用電極膜では白金-ルテニウム合金を含む。さらに、触媒粒子は、通常、前記金属成分を、導電材料(カーボンブラックなどの炭素材料など)に担持させた複合粒子として使用される。電極膜において、イオン交換樹脂の割合は、触媒粒子100重量部に対して、例えば、5~300重量部、好ましくは10~250重量部、さらに好ましくは20~200重量部程度である。
 イオン交換層も、離型層の項で例示された慣用の添加剤を含んでいてもよく、例えば、無機粒子や無機繊維などの無機材料(炭素質材料、ガラス、セラミックスなど)を含んでいてもよい。
 イオン交換層は、離型層の少なくとも一方の面に形成されていればよく、離型層の両面に形成されていてもよく、離型層の一方の面のみに形成されていてもよい。
 イオン交換層の平均厚みは、例えば、1~500μm、好ましくは1.5~300μm、さらに好ましくは2~200μm程度である。
 電解質膜の平均厚みは、例えば、1~500μm、好ましくは5~300μm、さらに好ましくは10~200μm程度である。
 電極膜の平均厚みは、例えば、1~100μm、好ましくは2~80μm、さらに好ましくは2~50μm程度である。
 [積層体及び膜電極接合体の製造方法]
 本発明の積層体の製造方法は、離型フィルムの離型層の上(離型層の少なくとも一方の面)にイオン交換樹脂を含むイオン交換層を積層する積層工程を含む。
 前記積層工程では、離型フィルムの離型層の上に、イオン交換層(イオン交換樹脂を含む電解質膜及び/又はイオン交換樹脂を含む電極膜)をコーティングにより形成すればよく、例えば、第1の離型フィルムの上に電解質膜をコーティングにより積層し、離型フィルムの上に電解質膜が積層された積層体を製造し、かつ第2の離型フィルムの上に電極膜をコーティングにより積層し、離型フィルムの上に電極膜が積層された積層体を製造してもよい。
 電解質膜及び電極膜をコーティング(又は流延)により形成するために、電解質膜及び電極膜は、イオン交換樹脂(及び触媒粒子)を溶媒に溶解した溶液の状態でコーティングに供される。
 溶媒としては、例えば、水、アルコール類(メタノール、エタノール、イソプロパノール、1-ブタノールなどのC1-4アルカノールなど)、ケトン類(アセトン、メチルエチルケトンなど)、エーテル類(ジオキサン、テトラヒドロフランなど)、スルホキシド類(ジメチルスルホキシドなど)などが挙げられる。これらの溶媒は、単独で又は二種以上組み合わせて使用できる。これらの溶媒のうち、取り扱い性などの点から、水や、水とC1-4アルカノールとの混合溶媒が汎用される。溶液中の溶質(イオン交換樹脂、触媒粒子)の濃度は、例えば、1~80重量%、好ましくは2~60重量%、さらに好ましくは3~50重量%程度である。
 コーティング方法としては、前記離型フィルムの製造方法で例示された慣用の方法が挙げられる。これらの方法のうち、ブレードコーター法、バーコーター法などが汎用される。
 イオン交換樹脂(及び触媒粒子)を含む溶液をコーティングした後、加熱して乾燥することにより溶媒を蒸発させてもよい。乾燥温度は、50℃以上であってもよく、電解質膜では、例えば、80~200℃(特に100~150℃)程度であり、電極膜では、例えば、50~150℃(特に60~120℃)程度である。
 前記積層工程で得られた積層体は、通常、密着工程に供されるが、連続的に製造する場合は、密着工程の前に、積層工程において、密着工程が行われる場所に搬送される。
 本発明では、前記離型フィルムが柔軟性に優れるため、このような搬送を伴う積層工程をロール・ツー・ロール方式で行うことができ、生産性を向上できる。さらに、離型層と基材層との組み合わせにより、寸法安定性にも優れるため、ロール・ツー・ロール方式でも、離型フィルムが張力による伸びが抑制される。そのため、イオン交換層が剥離することなく、ロール状に巻き取ることができ、生産性を向上できる。
 積層工程で得られた積層体は、密着工程に供してもよい。密着工程では、第1及び第2の離型フィルムの離型層の上にそれぞれ積層された電解質膜と電極膜とを密着させて膜電極接合体が調製される。
 電解質膜と電極膜との密着は、通常、加熱圧着により密着される。加熱温度は、例えば、80~250℃、好ましくは90~230℃、さらに好ましくは100~200℃程度である。圧力は、例えば、0.1~20MPa、好ましくは0.2~15MPa、さらに好ましくは0.3~10MPa程度である。
 密着工程で密着した複合体(電解質層と電極膜とが密着して積層体)は、イオン交換層(電解質膜及び/又は電極膜)から離型フィルムを剥離する剥離工程に供され、固体高分子型燃料電池の膜電極接合体が得られる。本発明では、前述の乾燥工程や加熱圧着処理を経た積層体であっても適度な剥離強度を有するため、積層工程や密着工程では離型フィルムとイオン交換層とが剥離せずに、剥離工程では容易に離型フィルムを剥離でき、作業性を向上できる。
 離型フィルムの離型層は、イオン交換層に対して、所定の離型性を有する必要があり、離型フィルムの離型層とイオン交換層との剥離強度(特に、剥離工程での積層体の剥離強度)は、例えば、0.1~20mN/mm、好ましくは0.5~18mN/mm、さらに好ましくは1~15mN/mm(特に2~12mN/mm)程度である。剥離強度が大きすぎると、剥離作業が困難となり、小さすぎると、積層工程及び密着工程での作業性が低下する。
 本明細書では、剥離強度は、20℃、50%RHで1時間以上静置した後、300mm/分の条件で180°剥離する方法で測定できる。
 さらに、第1の離型フィルムを剥離した電解質膜に対して、前記密着工程及び剥離工程と同様に、さらに第3の離型フィルムの離型層の上に電極膜(第2の離型フィルムがアノード電極用電極膜である場合、カソード電極用電極膜)が積層された積層体の電極膜を密着させて剥離し、慣用の方法で、各電極膜の上に燃料ガス供給層及び空気供給層をそれぞれ積層することにより膜電極接合体(MEA)が得られる。
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。実施例及び比較例で得られた離型フィルムの特性は、以下の方法で評価した。
 [ガラス転移温度]
 示差走査熱量計(エスアイアイ・ナノテクノロジー(株)製「DSC6200」)を用い、JIS K7121に準じ、窒素気流下、昇温速度10℃/分で測定を行った。
 [粘弾性測定]
 試験片について、熱プレス法又は溶液キャスト法により厚み50~100μmのフィルムを作製し、幅5mm、長さ50mmに切り出し、動的粘弾性測定装置(ティー・エイ・インスツルメント・ジャパン(株)製、RSA-III)を用い、チャック間距離20mm、昇温速度5℃/分及び角周波数10Hzの条件で、-100℃から250℃まで動的貯蔵弾性率(E’)を測定した。
 [環状オレフィン系樹脂の組成比]
 環状オレフィン系樹脂(共重合体)の組成比は、13C-NMRで測定した。
 [溶解性]
 離型フィルムを構成する環状オレフィン系樹脂1重量部を、トルエン9重量部中に添加して攪拌し、室温での溶解状態を目視で観察し、以下の基準で評価した。
  ○:直ちに完溶する
  △:溶解に所定の時間を要する
  ×:溶解しない。
 [電極膜の離型性]
 易接着性二軸延伸ポリエステルフィルム(東洋紡(株)製「コスモシャインA4100」、厚み50μm)、イオン交換樹脂溶液(デュポン社製「ナフィオン(登録商標)DE2020CS」、イオン交換樹脂の水-アルコール分散液、固形分濃度20重量%)を用意し、ドクターブレードを用いて、前記ポリエステルフィルムの易接着層面に前記イオン交換樹脂溶液をキャストし、その塗膜を130℃のオーブン内で乾燥させて、電解質膜であるイオン交換層(厚み20μm)を含む積層体を形成した。
 得られた積層体の電解質膜側の面と、実施例及び比較例で得られた電極膜を含む積層体の電極膜側の面とを、表1に示す温度及び圧力10MPaで圧着し、電極膜側の基材フィルムを剥離し、離型性を以下の基準で評価した。
  ○…離型層に電極膜が残存していない
  △…離型層に電極膜が僅かに残存している
  ×…離型層に電極膜が残存している。
 [靱性]
 ロールに離型フィルムをセットし、0.3m/分の速度で離型フィルムを送り出し、Pt目付量0.5mg/cmの塗布量で、実施例で使用した電極膜の塗布液を、ロール・ツー・ロール方式で塗工し、以下の基準で評価した。
  ○:離型層に割れやひびが発生せず、問題なく塗工できる
  ×:離型層が割れて塗工できない。
 [合成例1]
 乾燥した300mLの2口フラスコ内を窒素ガスで置換した後、ジメチルアニリウム テトラキス(ペンタフルオロフェニル)ボレート8.1mg、トルエン235.7mL、7.5モル/Lの濃度でノルボルネンを含有するトルエン溶液7.0mL、1-オクテン5.7mL、トリイソブチルアルミニウム2mLを添加して、反応溶液を25℃に保持した。この溶液とは別個に、グローブボックス中で、触媒として、92.9mgの(t-ブチルアミド)ジメチル-9-フルオレニルシランチタンジメチル[(t-BuNSiMeFlu)TiMe]をフラスコに入れ、5mLのトルエンに溶解させた。この触媒溶液2mLを300mLフラスコに加えて重合を開始した。2分後に2mLのメタノールを添加して反応を終了させた。次いで、得られた反応混合物を塩酸で酸性に調整した大量のメタノール中に放出して沈殿物を析出させ、濾別、洗浄後、乾燥して、2-ノルボルネン・1-オクテン共重合体Aを5.0g得た。得られた共重合体Aの数平均分子量Mnは30,000、ガラス転移温度Tgは215℃、動的貯蔵弾性率(E’)が-20℃付近に転移点を有し、2-ノルボルネンと1-オクテンとの組成(モル比)は、前者/後者=70/30であった。
 [合成例2]
 1-オクテンの配合量を3.3mLに変更する以外は合成例1と同様にして、2-ノルボルネン・1-オクテン共重合体Bを5.0g得た。得られた共重合体BのMnは121,000、Tgは269℃、動的貯蔵弾性率(E’)が-20℃付近に転移点を有し、2-ノルボルネンと1-オクテンとの組成(モル比)は、前者/後者=83/17であった。
 [合成例3]
 1-オクテンの配合量を1.7mLに変更する以外は合成例1と同様にして、2-ノルボルネン・1-オクテン共重合体Cを4.6g得た。得られた共重合体CのMnは123,000、Tgは325℃、動的貯蔵弾性率(E’)が-20℃付近に転移点を有し、2-ノルボルネンと1-オクテンとの組成(モル比)は、前者/後者=94/6であった。
 [合成例4]
 乾燥したガラス反応器に、トルエン199.3g、2-ノルボルネン33.9g、5-ヘキシル-2-ノルボルネン15.4g、及びMMAO-3A(Modified methyl aluminoxane type 3、東ソーファインケム(株)製、濃度2.23モル/L)3.1gを添加した。次に、トルエン0.87gに溶解させた(t-ブチルアミド)ジメチル-9-フルオレニルシランチタンジメチル0.0074g(20μモル)を、前記反応器に添加した。40℃で7時間攪拌して重合を継続した後、メタノール3gを添加して反応を終了させた。その後、重合反応液を多量の塩酸酸性メタノールに注いで重合体を完全に析出させ、濾別、洗浄後、70℃で3時間以上減圧乾燥して、2-ノルボルネン・5-ヘキシル-2-ノルボルネン共重合体Dを21.3g得た。得られた共重合体DのMnは175,000、Tgは331℃、動的貯蔵弾性率(E’)が-20℃付近に転移点を有し、2-ノルボルネンと5-ヘキシル-2-ノルボルネンとの組成(モル比)は、前者/後者=79/21であった。
 [合成例5]
 乾燥したガラス反応器に、トルエン646.1mL、2-ノルボルネン117.5g、1-ヘキセン114.7mL、及びMMAO-3A(Modified methyl aluminoxane type 3、東ソーファインケム(株)製、濃度2.23モル/L)7.0mLを添加した。次に、トルエン2.6mLに溶解させた(t-ブチルアミド)ジメチル-9-フルオレニルシランチタンジメチル0.0074gを、前記反応器に添加した。40℃で3時間攪拌して重合を継続した後、メタノール3gを添加して反応を終了させた。その後、重合反応液を多量の塩酸酸性メタノールに注いで重合体を完全に析出させ、濾別、洗浄後、70℃で3時間以上減圧乾燥して、2-ノルボルネン・1-ヘキセン共重合体Eを8.7g得た。得られた共重合体Eの数平均分子量Mnは32,000、ガラス転移温度Tgは300℃、動的貯蔵弾性率(E’)が-20℃付近に転移点を有し、2-ノルボルネンと1-ヘキセンとの組成(モル比)は、前者/後者=88/12であった。
 [合成例6]
 1-ヘキセンを1-デセンに変更し、配合量を174.7mLに変更する以外は合成例5と同様にして、2-ノルボルネン・1-デセン共重合体Fを8.5g得た。得られた共重合体Fの数平均分子量Mnは27,000、ガラス転移温度Tgは244℃、動的貯蔵弾性率(E’)が-20℃付近に転移点を有し、2-ノルボルネンと1-デセンとの組成(モル比)は、前者/後者=85/15であった。
 [合成例7]
 メタロセン化合物として、(t-BuNSiMeFlu)TiMeを、「Macromolecules, 1998年, 第31巻, 3184頁」の記載に基づいて調製し、-20℃にてヘキサン中で再結晶して精製した。また、乾燥アルミノキサンを、「Macromolecules, 2001年, 第34巻, 3142頁」の記載に基づいて調製した。
 100mLの摺り合わせガラス栓付きガラス反応器に磁気攪拌子を入れ、十分に窒素ガスで置換した。この反応器に、調製した乾燥アルミノキサン0.464gを入れ、次いで所定量の2-ノルボルネンのトルエン溶液(濃度5.14モル/L)を添加した。全体が29mLになるまでトルエンで希釈し、2-ノルボルネン濃度を1.5モル/Lに調整した。オイルバスで重合温度に保持し、系内を数回減圧脱気した後、1気圧のエチレンを導入し、飽和させた。反応器に、調製したメタロセン化合物のトルエン溶液(濃度0.02モル/L)を1mL添加して重合を開始し、所定時間重合を行った後、塩酸酸性メタノール(塩酸を添加したメタノール)を添加して重合を停止した。重合中は所定の温度を維持した。塩酸酸性メタノール中にポリマーを沈殿させ、メタノールで十分に洗浄し、減圧下に60℃で6時間乾燥して、2-ノルボルネン・エチレン共重合体Gを1.1g得た。得られた共重合体GのMnは30,000、Tgは207℃、2-ノルボルネンとエチレンとの組成(モル比)は、前者/後者=94/6であった。なお、動的貯蔵弾性率(E’)は、-50~100℃に転移点は認められなかった。
 [合成例8]
 2-ノルボルネン濃度を1.9モル/Lに変更する以外は合成例7と同様にして、2-ノルボルネン・エチレン共重合体Hを0.9g得た。得られた共重合体HのMnは55,000、Tgは212℃、2-ノルボルネンとエチレンとの組成(モル比)は、前者/後者=95/5であった。なお、動的貯蔵弾性率(E’)は、-50~100℃に転移点は認められなかった。
 [離型フィルムの製造例1]
 1重量部の2-ノルボルネン・1-オクテン共重合体Aを、9重量部のトルエンに溶解し、塗工液を調製した。基材フィルムとして、易接着性二軸延伸ポリエステルフィルム(コスモシャインA4100)を用い、塗工液をメイヤーバーコーティング法により基材のフィルムの片面にコーティングし、100℃の温度で1分間乾燥して離型層(乾燥厚み1μm)を形成し、離型フィルム1を得た。
 [離型フィルムの製造例2]
 1重量部の2-ノルボルネン・1-オクテン共重合体Bを、99重量部のトルエンに溶解する以外は製造例1と同様にして、離型フィルム2(離型層の乾燥厚み1μm)を得た。
 [離型フィルムの製造例3]
 1重量部の2-ノルボルネン・1-オクテン共重合体Cを、99重量部のトルエンに溶解する以外は製造例1と同様にして、離型フィルム3(離型層の乾燥厚み1μm)を得た。
 [離型フィルムの製造例4]
 1重量部の2-ノルボルネン・5-ヘキシル-2-ノルボルネン共重合体Dを、99重量部のトルエンに溶解する以外は製造例1と同様にして、離型フィルム4(離型層の乾燥厚み1μm)を得た。
 [離型フィルムの製造例5]
 2-ノルボルネン・1-オクテン共重合体Aの代わりに、2-ノルボルネン・1-ヘキセン共重合体Eを用いる以外は製造例1と同様にして、離型フィルム5(離型層の乾燥厚み1μm)を得た。
 [離型フィルムの製造例6]
 2-ノルボルネン・1-オクテン共重合体Aの代わりに、2-ノルボルネン・1-デセン共重合体Fを用いる以外は製造例1と同様にして、離型フィルム6(離型層の乾燥厚み1μm)を得た。
 [離型フィルムの製造例7]
 2-ノルボルネン・1-オクテン共重合体Aの代わりに、2-ノルボルネン・エチレン共重合体(Topas Advanced Polymers,GmbH社製「TOPAS(登録商標)6017S-04」、Tg178℃)を用いる以外は製造例1と同様にして、離型フィルム7(離型層の乾燥厚み1μm)を得た。
 [離型フィルムの製造例8]
 2-ノルボルネン・1-オクテン共重合体Aの代わりに、2-ノルボルネン・エチレン共重合体Gを用いる以外は製造例1と同様にして、離型フィルム8(離型層の乾燥厚み1μm)を得た。
 [離型フィルムの製造例9]
 2-ノルボルネン・1-オクテン共重合体Aの代わりに、2-ノルボルネン・エチレン共重合体Hをトルエンに溶解しようと試みたが、溶解しなかったため、離型フィルムを作製できなかった。
 実施例1
 Pt担持カーボン(田中貴金属工業(株)製「TEC10E50E」)7重量部、前記イオン交換樹脂溶液(ナフィオンDE2020CS)35重量部をボールミルで混合し、電極膜(電極用触媒層)の塗布液とした。離型フィルム1の離型層の上に、ドクターブレードを用いて電極膜の塗布液を塗工後、100℃で10分乾燥し、Pt目付量が0.5mg/cmの電極膜を含む積層体を得た。
 実施例2~6及び比較例1~2
 離型フィルム1の代わりに、それぞれ離型フィルム2~8を用いる以外は実施例1と同様にして積層体を得た。
 実施例及び比較例で得られた積層体を評価した結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から明らかなように、実施例の離型フィルムは、靱性及び離型性に優れている。離型性は、ガラス転移温度と加工温度との差異が大きいほど、向上する傾向があり、実施例2~4及び6では、優れた離型性を示している。
 一方、比較例1の離型フィルムは、耐熱性が低いため、燃料電池の製造工程において、離型不良を起こし易く、収率の低下となる虞がある。比較例2の離型フィルムは、靱性が低いため、ロール・ツー・ロール方式での製造工程中において、離型フィルムの離型層の割れやひびによって、イオン交換層との離型不良を起こし易く、収率の低下となる虞がある。
 本発明の離型フィルムは、固体高分子型燃料電池の膜電極接合体を製造するために用いられる。

Claims (16)

  1.  固体高分子型燃料電池の膜電極接合体を製造するための離型フィルムであって、側鎖に炭素数3~10のアルキル基を有するオレフィン単位を含む環状オレフィン系樹脂で形成された離型層を含む離型フィルム。
  2.  離型層のガラス転移温度が210~350℃である請求項1記載の離型フィルム。
  3.  離型層の動的貯蔵弾性率E’が-50~100℃の範囲に転移点を有する請求項1又は2記載の離型フィルム。
  4.  環状オレフィン系樹脂が、繰り返し単位として、炭素数3~10のアルキル基を有する鎖状オレフィン単位及び/又は炭素数3~10のアルキル基を有する環状オレフィン単位を含む請求項1~3のいずれかに記載の離型フィルム。
  5.  環状オレフィン系樹脂が、繰り返し単位として、炭素数3~10のアルキル基を有さない環状オレフィン単位(A)と、炭素数3~10のアルキル基を有する鎖状又は環状オレフィン単位(B)とを含む共重合体である請求項1~4のいずれかに記載の離型フィルム。
  6.  鎖状又は環状オレフィン単位(B)が、炭素数4~8の直鎖状アルキル基を有するエチレン又はノルボルネン単位である請求項5記載の離型フィルム。
  7.  環状オレフィン単位(A)と鎖状又は環状オレフィン単位(B)との割合(モル比)が、前者/後者=50/50~99/1である請求項5又は6記載の離型フィルム。
  8.  離型層の平均厚みが0.2~5μmである請求項1~7のいずれかに記載の離型フィルム。
  9.  さらに基材層を含み、離型層が基材層の少なくとも一方の面に積層され、かつ基材層がポリオレフィン、ポリビニルアルコール系重合体、ポリエステル、ポリアミド及びセルロース誘導体からなる群より選択された少なくとも1種で形成されている請求項1~8のいずれかに記載の離型フィルム。
  10.  コーティングで形成されたフィルムである請求項1~9のいずれかに記載の離型フィルム。
  11.  固体高分子型燃料電池を製造するための積層体であり、請求項1~10のいずれかに記載の離型フィルムと、この離型フィルムの離型層の上に積層され、かつイオン交換樹脂を含むイオン交換層とで形成された積層体。
  12.  イオン交換樹脂が側鎖にスルホン酸基を有するフッ素樹脂であり、かつイオン交換樹脂を含むイオン交換層が、電解質膜及び/又は電極膜である請求項11記載の積層体。
  13.  ロール・ツー・ロール方式で製造される請求項11又は12記載の積層体。
  14.  離型フィルムの離型層の上にイオン交換樹脂を含むイオン交換層を積層する積層工程を含む請求項11~13のいずれかに記載の積層体の製造方法。
  15.  積層工程において、ロール・ツー・ロール方式で積層する請求項14記載の製造方法。
  16.  請求項11~13のいずれかに記載の積層体から離型フィルムを剥離する剥離工程を含む固体高分子型燃料電池の膜電極接合体の製造方法。
PCT/JP2014/079256 2013-11-14 2014-11-04 離型フィルム、積層体及びその製造方法並びに燃料電池の製造方法 WO2015072372A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167015322A KR102220134B1 (ko) 2013-11-14 2014-11-04 이형 필름, 적층체 및 그의 제조 방법, 및 연료 전지의 제조 방법
EP14861826.7A EP3070770B1 (en) 2013-11-14 2014-11-04 Release film, laminate and method for manufacturing same, and method for manufacturing fuel cell
US15/033,302 US10622658B2 (en) 2013-11-14 2014-11-04 Release film, laminate and method for manufacturing same, and method for manufacturing fuel cell
CN201480062591.3A CN105722654B (zh) 2013-11-14 2014-11-04 脱模膜、叠层体及其制造方法以及燃料电池的制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013235988 2013-11-14
JP2013-235988 2013-11-14
JP2014-190098 2014-09-18
JP2014190098A JP6062407B2 (ja) 2013-11-14 2014-09-18 離型フィルム、積層体及びその製造方法並びに燃料電池の製造方法

Publications (1)

Publication Number Publication Date
WO2015072372A1 true WO2015072372A1 (ja) 2015-05-21

Family

ID=53057308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079256 WO2015072372A1 (ja) 2013-11-14 2014-11-04 離型フィルム、積層体及びその製造方法並びに燃料電池の製造方法

Country Status (7)

Country Link
US (1) US10622658B2 (ja)
EP (1) EP3070770B1 (ja)
JP (1) JP6062407B2 (ja)
KR (1) KR102220134B1 (ja)
CN (1) CN105722654B (ja)
TW (1) TWI641179B (ja)
WO (1) WO2015072372A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6081959B2 (ja) * 2014-05-19 2017-02-15 ダイセルバリューコーティング株式会社 樹脂フィルム、積層体及びその製造方法並びに燃料電池の製造方法
JP2016037577A (ja) * 2014-08-08 2016-03-22 ポリプラスチックス株式会社 ノルボルネン系重合体溶液及び絶縁被膜の製造方法
JP6580455B2 (ja) * 2015-10-28 2019-09-25 ダイセルバリューコーティング株式会社 積層フィルム及びその製造方法並びに積層体及び触媒層−電解質膜複合体の製造方法
JP6561800B2 (ja) * 2015-11-26 2019-08-21 トヨタ自動車株式会社 膜電極接合体の製造方法
JP7251596B2 (ja) * 2015-12-14 2023-04-04 東洋紡株式会社 固体高分子型燃料電池部材成型用離型フィルム
JP7133893B2 (ja) * 2015-12-14 2022-09-09 東洋紡株式会社 固体高分子型燃料電池部材成型用離型フィルム
JP6814277B2 (ja) * 2016-07-20 2021-01-13 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティドW.L. Gore & Associates, Incorporated ラミネート化材料のロール構造及び製造方法
JP2018045841A (ja) * 2016-09-13 2018-03-22 トヨタ自動車株式会社 膜電極ガス拡散接合体の製造方法
US11123967B2 (en) * 2017-03-30 2021-09-21 Nitto Denko Corporation Heat resistant release sheet and method for manufacturing same
KR102440588B1 (ko) 2017-05-10 2022-09-05 현대자동차 주식회사 연료전지용 막-전극 어셈블리의 제조장치 및 방법
WO2019013219A1 (ja) * 2017-07-12 2019-01-17 日本ゼオン株式会社 電気化学素子用積層体及び電気化学素子用部材の製造方法
US10971708B2 (en) * 2018-04-23 2021-04-06 International Business Machines Corporation Release layer for preparation of ion conducting membranes
US20220001581A1 (en) * 2018-10-04 2022-01-06 Nitto Denko Corporation Heat-resistant release sheet and thermocompression bonding method
US20210380771A1 (en) * 2018-10-05 2021-12-09 Rensselaer Polytechnic Institute Preparation of ion exchange membranes from polyolefins and polycyclic olefins
JP6967128B1 (ja) * 2020-08-26 2021-11-17 株式会社ダイセル 積層フィルムおよびその製造方法ならびに燃料電池の製造方法
JP2022040112A (ja) * 2020-08-26 2022-03-10 株式会社ダイセル 積層フィルムおよびその製造方法ならびに燃料電池の製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0517222B2 (ja) 1983-07-15 1993-03-08 Mitsui Toatsu Chemicals
JP2004197442A (ja) 2002-12-19 2004-07-15 Shiroki Corp ワイヤ式ウィンドレギュレータ
JP2007119660A (ja) 2005-10-31 2007-05-17 Nippon Zeon Co Ltd 環状オレフィン付加共重合体、その製造方法、及び成形用材料
JP2008255341A (ja) 2007-03-09 2008-10-23 Nippon Zeon Co Ltd 環状オレフィン付加重合体の製造方法、環状オレフィン付加重合用触媒、および遷移金属化合物
JP2009298999A (ja) 2008-05-14 2009-12-24 Kaneka Corp 環状オレフィン付加共重合体、光学用フィルム及び液晶またはel表示素子用透明導電性フィルム
JP2010080169A (ja) * 2008-09-25 2010-04-08 Dainippon Printing Co Ltd 固体高分子形燃料電池用触媒転写フィルム並びにそれを用いて得られる触媒層−電解質膜積層体及び固体高分子形燃料電池
JP2010234570A (ja) 2009-03-30 2010-10-21 Japan Gore Tex Inc 積層体およびその製造方法
JP2014154273A (ja) * 2013-02-06 2014-08-25 Daicel Corp 燃料電池製造用離型フィルム及び積層体並びに燃料電池の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5017222B2 (ja) 1971-10-04 1975-06-19
DE69836911T2 (de) * 1997-07-18 2007-10-31 Nippon Zeon Co., Ltd. Modifiziertes cycloolefin-additionspolymer und härtbare harzzusammensetzung die dieses enthält
WO2002005371A1 (fr) * 2000-07-06 2002-01-17 Matsushita Electric Industrial Co., Ltd. Procede pour produire un ensemble film-electrodes, et procede pour produire une pile a combustible du type polymere solide
JP2006257399A (ja) * 2005-02-21 2006-09-28 Kureha Corp 離型フィルム、積層離型フィルム及びそれらの製造方法
KR101041125B1 (ko) * 2007-09-19 2011-06-13 삼성에스디아이 주식회사 연료 전지용 전극, 연료 전지용 막-전극 어셈블리, 및 이를포함하는 연료 전지 시스템
JP5017222B2 (ja) 2007-09-25 2012-09-05 富士フイルム株式会社 環状オレフィン系共重合体、フィルム、これを用いた偏光板および液晶表示装置
JP5321181B2 (ja) * 2009-03-24 2013-10-23 凸版印刷株式会社 燃料電池部材の触媒層と電解質膜の接合体の製造方法
KR101745038B1 (ko) * 2010-02-09 2017-06-08 스미또모 베이크라이트 가부시키가이샤 적층 필름
WO2012132150A1 (ja) * 2011-03-28 2012-10-04 日本ゼオン株式会社 熱硬化性架橋環状オレフィン樹脂組成物、熱硬化性架橋環状オレフィン樹脂フィルム、熱硬化性架橋環状オレフィン樹脂組成物の製造方法及び熱硬化性架橋環状オレフィン樹脂フィルムの製造方法
WO2012144644A1 (ja) * 2011-04-21 2012-10-26 株式会社ダイセル 環状オレフィン系樹脂の架橋体及びその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0517222B2 (ja) 1983-07-15 1993-03-08 Mitsui Toatsu Chemicals
JP2004197442A (ja) 2002-12-19 2004-07-15 Shiroki Corp ワイヤ式ウィンドレギュレータ
JP2007119660A (ja) 2005-10-31 2007-05-17 Nippon Zeon Co Ltd 環状オレフィン付加共重合体、その製造方法、及び成形用材料
JP2008255341A (ja) 2007-03-09 2008-10-23 Nippon Zeon Co Ltd 環状オレフィン付加重合体の製造方法、環状オレフィン付加重合用触媒、および遷移金属化合物
JP2009298999A (ja) 2008-05-14 2009-12-24 Kaneka Corp 環状オレフィン付加共重合体、光学用フィルム及び液晶またはel表示素子用透明導電性フィルム
JP2010080169A (ja) * 2008-09-25 2010-04-08 Dainippon Printing Co Ltd 固体高分子形燃料電池用触媒転写フィルム並びにそれを用いて得られる触媒層−電解質膜積層体及び固体高分子形燃料電池
JP2010234570A (ja) 2009-03-30 2010-10-21 Japan Gore Tex Inc 積層体およびその製造方法
JP2014154273A (ja) * 2013-02-06 2014-08-25 Daicel Corp 燃料電池製造用離型フィルム及び積層体並びに燃料電池の製造方法

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
J. APPL. POLYM. SCI, vol. 128, no. 1, 2013, pages 216
JOURNAL OF ORGANOMETALLIC CHEMISTRY, vol. 691, 2006, pages 193
MACROMOLECULES, vol. 31, 1988, pages 3184
MACROMOLECULES, vol. 31, 1998, pages 3184
MACROMOLECULES, vol. 34, 2001, pages 3142
MACROMOLECULES, vol. 43, 2010, pages 4527
POLYHEDRON, vol. 24, 2005, pages 1269
POLYMER JOURNAL, vol. 43, 2011, pages 331
See also references of EP3070770A4

Also Published As

Publication number Publication date
TW201535851A (zh) 2015-09-16
EP3070770A1 (en) 2016-09-21
JP6062407B2 (ja) 2017-01-18
TWI641179B (zh) 2018-11-11
KR102220134B1 (ko) 2021-02-25
US10622658B2 (en) 2020-04-14
EP3070770A4 (en) 2017-05-24
CN105722654A (zh) 2016-06-29
US20160276689A1 (en) 2016-09-22
EP3070770B1 (en) 2020-07-15
CN105722654B (zh) 2018-02-02
KR20160085831A (ko) 2016-07-18
JP2015118916A (ja) 2015-06-25

Similar Documents

Publication Publication Date Title
JP6062407B2 (ja) 離型フィルム、積層体及びその製造方法並びに燃料電池の製造方法
JP6085185B2 (ja) 燃料電池製造用離型フィルム及び積層体並びに燃料電池の製造方法
JP6790421B2 (ja) 離型フィルム
US10355298B2 (en) Resin film, laminate, method for producing same, and method for producing fuel cell
JP2016210129A (ja) 積層フィルム、積層体及びその製造方法並びに燃料電池の製造方法
JP6013398B2 (ja) 樹脂フィルム、積層体及びその製造方法並びに燃料電池の製造方法
JP6946644B2 (ja) 固体高分子型燃料電池部材成型用離型フィルム
JP6950144B2 (ja) 固体高分子型燃料電池部材成型用離型フィルム
JP6580455B2 (ja) 積層フィルム及びその製造方法並びに積層体及び触媒層−電解質膜複合体の製造方法
JP7133893B2 (ja) 固体高分子型燃料電池部材成型用離型フィルム
JP6988947B2 (ja) 離型フィルム
JP6967128B1 (ja) 積層フィルムおよびその製造方法ならびに燃料電池の製造方法
JP7251596B2 (ja) 固体高分子型燃料電池部材成型用離型フィルム
JP2023022070A (ja) 積層フィルムおよびその製造方法ならびに燃料電池の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14861826

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014861826

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15033302

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167015322

Country of ref document: KR

Kind code of ref document: A