WO2015072010A1 - 角形電池 - Google Patents

角形電池 Download PDF

Info

Publication number
WO2015072010A1
WO2015072010A1 PCT/JP2013/080888 JP2013080888W WO2015072010A1 WO 2015072010 A1 WO2015072010 A1 WO 2015072010A1 JP 2013080888 W JP2013080888 W JP 2013080888W WO 2015072010 A1 WO2015072010 A1 WO 2015072010A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
lid
boundary surface
side wall
vertical
Prior art date
Application number
PCT/JP2013/080888
Other languages
English (en)
French (fr)
Inventor
翔 西丸
幸弘 曽我
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to PCT/JP2013/080888 priority Critical patent/WO2015072010A1/ja
Priority to JP2015547349A priority patent/JP6138963B2/ja
Priority to CN201380080759.9A priority patent/CN105723542B/zh
Priority to EP13897582.6A priority patent/EP3070760B1/en
Priority to US15/029,825 priority patent/US9905819B2/en
Publication of WO2015072010A1 publication Critical patent/WO2015072010A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/244Overlap seam welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/206Laser sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/28Seam welding of curved planar seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K33/00Specially-profiled edge portions of workpieces for making soldering or welding connections; Filling the seams formed thereby
    • B23K33/004Filling of continuous seams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/15Lids or covers characterised by their shape for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/169Lids or covers characterised by the methods of assembling casings with lids by welding, brazing or soldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention provides a rectangular battery can having an opening, a battery lid that seals the opening of the battery can, a space defined by the battery can and the battery lid, and a positive and negative electrode plate.
  • the present invention relates to a prismatic battery having a flat wound group and a manufacturing method thereof.
  • Cylindrical or square sealed batteries are used in in-vehicle lithium ion batteries.
  • cylindrical batteries have been used, but in recent years, prismatic batteries have come to be used from the viewpoint of improving mounting density for in-vehicle use.
  • the prismatic battery and the assembled battery obtained by combining a plurality of the batteries are required to be reduced in size and weight, and accordingly, the plate thickness of the battery can is being actively reduced.
  • a metal battery can having a rectangular parallelepiped shape in which a depth dimension is larger than a short side dimension of an opening is often used by a deep drawing method or the like.
  • a flat wound group is accommodated in this rectangular battery can through an insulating sheet.
  • the flat wound group is formed by stacking a positive electrode plate and a negative electrode plate having a current collector foil and winding or alternately laminating a plurality of sheets, and an uncoated portion of a positive electrode active material mixture and a negative electrode active material at both ends. Separated from the uncoated part of the mixture. An electrode plate is joined to each of the uncoated portions by an ultrasonic method or the like.
  • the opening of the battery can is sealed with a metal battery lid.
  • a positive electrode terminal and a negative electrode terminal for connecting to an external load are fixed to the battery cover via a gasket for performing electrical insulation with the battery cover and maintaining airtightness inside the battery.
  • the battery lid is welded to the battery can by laser beam welding or the like, and seals the opening of the battery can.
  • a battery container is configured by welding a battery can and a battery lid by fillet welding with a laser. That is, the battery lid is provided with a fitting portion that fits into the opening of the battery can and a flange portion that contacts the upper end surface of the opening of the battery can, and the battery lid has the fitting portion fitted into the opening. In this state, the flange portion is fixed to the upper end surface of the opening of the battery can by fillet welding on both the wide side surface side and the narrow side surface side.
  • a battery can and a battery lid are fillet welded with a laser to constitute a battery container. That is, since fillet welding is performed within the range of the plate thickness of the battery can, the weldable range is narrowed as the plate thickness of the battery container is reduced. Further, when welding with the battery lid is performed outside the range of the plate thickness of the battery can due to variations in component accuracy, the range of penetration becomes narrower. Therefore, it may be difficult to ensure a predetermined welding strength.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a prismatic battery in which a welded portion welded between a battery can and a battery lid can secure a preset welding strength. It is to be.
  • the prismatic battery of the present invention that solves the above problems is a battery can surrounded by four side walls, the upper end of one side in the height direction of the side wall being opened, and the lower end of the other side in the height direction
  • a battery can having a bottom surface portion, and a battery lid welded to an upper end portion of the battery can to seal the battery can, and between the battery can and the battery lid.
  • a lateral boundary surface that intersects the height direction of the side wall portion, and a vertical boundary surface that intersects the lateral boundary surface and extends along the height direction of the side wall portion, and the height of the side wall portion is formed. It is characterized in that at least a part of the horizontal boundary surface and at least a part of the vertical boundary surface are welded by a laser irradiated in a direction along the direction.
  • the external appearance perspective view of a square battery The disassembled perspective view of the square battery shown in FIG.
  • the perspective view which shows the state which expanded a part of flat winding group.
  • It is sectional drawing which shows the structural example of the junction part of the battery can and battery lid in 1st Embodiment, and is a figure which shows the cross section before welding.
  • It is sectional drawing which shows the structural example of the junction part of the battery can and battery lid in 1st Embodiment, and is a figure which shows the cross section after welding.
  • It is sectional drawing which shows the case where there exists a clearance gap between the opening part of the battery can shown to FIG. 4A and FIG. 4B, and the fitting part of a battery cover and is a figure which shows the cross section before welding.
  • FIG. 14 is a sectional view taken along line AA in FIG. 13.
  • FIG. 1 is an external perspective view of a prismatic battery as an embodiment of the prismatic battery according to the present invention
  • FIG. 2 is an exploded perspective view of the prismatic battery shown in FIG.
  • the prismatic battery 1 is a high-capacity lithium ion secondary battery that is mounted on an electric vehicle (EV), a hybrid vehicle, or the like as an assembled battery in which a plurality of prismatic batteries 1 are combined, for example. It has the structure which accommodated the rotation group and the nonaqueous electrolyte solution in the sealed state.
  • EV electric vehicle
  • hybrid vehicle hybrid vehicle
  • the rectangular battery 1 includes a rectangular battery container including a battery can 100 and a battery lid 200.
  • the material of the battery can 100 and the battery lid 200 is, for example, an aluminum metal such as aluminum or an aluminum alloy.
  • the battery can 100 has a pair of wide side wall portions 100a, a pair of narrow side wall portions 100b, and a bottom surface portion 100c, and is formed in a rectangular box shape having an open top surface. That is, as shown in FIG. 2, the battery can 100 is surrounded by four side walls, the upper end on one side in the height direction of the side wall is opened by the opening 100 d, and the lower end on the other side in the height direction.
  • the shape has a bottom surface portion 100c.
  • the direction between the bottom surface portion 100c and the opening portion 100d is the vertical direction
  • the bottom surface portion 100c side is the lower side
  • the opening portion 100d side is the upper side
  • the horizontal direction is the horizontal direction, but these are convenient orientations for explaining the configuration of the prismatic battery 1 and do not mean the vertical direction or the horizontal direction.
  • the battery can 100 has a pair of wide side wall portions 100a extending upward from a pair of long sides of the rectangular bottom surface portion 100c, and a pair of narrow side wall portions 100b extending upward from a pair of short sides of the bottom surface portion 100c. Is extended.
  • the pair of wide side wall portions 100a and the pair of narrow side wall portions 100b are continuous with each other through a chamfer having a predetermined curved surface shape, and extend vertically with a certain closed cross-sectional shape.
  • the pair of wide side wall portions 100a and the pair of narrow side wall portions 100b of the battery can 100 have a substantially constant plate thickness and extend from the bottom surface portion 100c to the same height position.
  • the opening portion 100d of the battery can 100 opens upward from the battery can 100 so as to have a substantially rectangular shape in plan view extending along a direction orthogonal to the wide side wall portion 100a and the narrow side wall portion 100b. Yes.
  • the battery lid 200 is formed of a rectangular flat plate member having a size that closes the opening 100d of the battery can 100.
  • the battery lid 200 is laser-welded to the battery can 100 in a state where the battery lid 200 is in contact with the upper end portion of the battery can 100, and seals the opening 100 d of the battery can 100.
  • the battery cover 200 is provided with a positive terminal 6 and a negative terminal 7.
  • the positive electrode terminal 6 and the negative electrode terminal 7 are provided at positions separated from each other in the long side direction of the battery lid 200.
  • the positive electrode terminal 6 and the negative electrode terminal 7 have an upper surface that extends in parallel along the upper surface of the battery lid 200, and the upper surface constitutes a bus bar welding surface capable of welding the bus bar.
  • the battery cover 200 is provided with a gas discharge valve 202.
  • the gas discharge valve 202 is formed by partially thinning the battery cover 200 by, for example, pressing.
  • the gas discharge valve 202 is formed with a cleavage groove so that a large opening is formed at the time of cleavage.
  • the gas discharge valve 202 generates heat when the rectangular battery generates heat due to an abnormality such as overcharging, and is cleaved when the pressure inside the battery container rises and reaches a predetermined pressure, and discharges the gas from the inside. By doing so, the pressure in the battery container is reduced.
  • a flat wound group 10 is accommodated in the battery can 100.
  • the flat wound group 10 is accommodated in the battery can 100 in a state covered with insulating cases 41 and 42 composed of three parts.
  • the material of the insulating cases 41 and 42 is an insulating resin such as polypropylene. Thereby, the battery can 100 and the flat wound group 10 are electrically insulated.
  • the positive electrode 62 (see FIG. 3) of the flat wound group 10 is electrically connected to the positive terminal 6 via the positive current collector 64, and the negative electrode 72 of the flat wound group 10 is connected to the negative current collector 74. Is electrically connected to the negative terminal 7. Thereby, electric power is supplied from the flat wound group 10 to the external load via the positive terminal 6 and the negative terminal 7, or external generated power is supplied to the flat wound group 10 via the positive terminal 6 and the negative terminal 7. And charged.
  • the battery lid assembly 2 includes a battery lid 200, a positive electrode terminal 6 and a negative electrode terminal 7 attached to each of a pair of through holes 201 provided in the battery lid 200, a positive electrode current collector 64, and a negative electrode current collector 74.
  • the battery lid assembly 2 compresses the gasket 5 by performing a caulking process on each of the positive electrode terminal 6 and the negative electrode terminal 7, and defines and fixes the inner surface side and the outer surface side of the battery container.
  • the material of the positive electrode terminal 6 and the positive electrode current collector 64 is aluminum or an aluminum alloy.
  • the material of the negative electrode terminal 7 and the negative electrode current collector 74 is copper or a copper alloy.
  • the material of the insulating member 8 and the gasket 5 is an insulating resin such as polybutylene terephthalate, polyphenylene sulfide, perfluoroalkoxy fluororesin.
  • the battery lid 200 is provided with a liquid injection hole 203.
  • the flat wound group 10 is accommodated in the battery can 100, the opening 100 d of the battery can 100 is closed with the battery lid 200, and the battery lid 200 is welded to the battery can 100.
  • An electrolytic solution is injected from 203 into the battery can 100.
  • the electrolytic solution for example, a non-aqueous electrolytic solution in which a lithium salt such as lithium hexafluorophosphate (LiPF 6 ) is dissolved in a carbonate-based organic solvent such as ethylene carbonate can be used.
  • the liquid injection hole 203 is sealed by the sealing plug 3 after injecting the electrolytic solution into the battery can 100.
  • the sealing plug 3 is welded to the battery lid 200 to seal the liquid injection hole 203.
  • the liquid injection hole 203 is formed so as to penetrate in the thickness direction of the battery lid 200, and an annular annular recess is formed concentrically along the outer periphery of the liquid injection hole 203 on the upper surface side of the battery lid 200. It is recessed.
  • the annular recess is provided on the upper surface (outside of the battery container) side of the battery lid 200 constituting one side surface of the battery container so as to be recessed toward the inside of the battery container, and is formed by, for example, spot facing.
  • the sealing plug 3 has a disk shape, is inserted into the liquid injection hole 203 after the liquid injection process, and is hermetically sealed by laser welding.
  • the sealing plug 3 is formed of, for example, an aluminum metal such as aluminum or an aluminum alloy.
  • FIG. 3 is a perspective view showing a state where the winding end portion side of the flat wound group 10 shown in FIG. 2 is developed.
  • the flat wound group 10 that is also a power storage element has a long positive electrode 62 and a negative electrode 72 in a flat shape around the winding axis W with a separator 80 interposed therebetween.
  • the flat wound group 10 is a flat wound electrode group in which curved surface portions having a semicircular arc shape in cross section are formed at both ends, and a flat surface portion between the curved surface portions is a substantially flat surface portion.
  • the positive electrode 62 includes a positive electrode foil 61 and a positive electrode active material mixture layer 63 formed by coating a positive electrode active material mixture in which a binder (binder) is mixed with the positive electrode active material on both surfaces of the positive electrode foil 61.
  • the negative electrode 72 includes a negative electrode foil 71, a negative electrode active material mixture layer 73 formed by applying a negative electrode active material mixture in which a negative electrode active material is mixed with a binder (binder) on both surfaces of the negative electrode foil 71, and Have Charging / discharging is performed between the positive electrode active material and the negative electrode active material.
  • the positive foil 61 is an aluminum alloy foil having a thickness of about 20 to 30 ⁇ m
  • the negative foil 71 is a copper alloy foil having a thickness of about 15 to 20 ⁇ m.
  • the material of the separator 80 is a porous polyethylene resin.
  • the positive electrode active material is a lithium-containing transition metal double oxide such as lithium manganate
  • the negative electrode active material is a carbon material such as graphite capable of reversibly occluding and releasing lithium ions.
  • One end of the flat wound group 10 in the width direction is an uncoated portion where the positive electrode active material mixture layer 63 is not formed (exposure of the positive foil 61).
  • Part) is a laminated part.
  • the other is a portion where an uncoated portion (exposed portion of the negative electrode foil 71) where the negative electrode active material mixture layer 73 is not formed is laminated.
  • the laminated body of the positive electrode side uncoated part and the laminated body of the negative electrode side uncoated part are respectively crushed in advance in the thickness direction of the flat wound group 10 (in the direction of arrow D in FIG. 3), respectively. 2 are connected by ultrasonic bonding between the positive electrode current collector 64 and the positive electrode current collector protective foil 65 and between the negative electrode current collector 74 and the negative electrode current collector protective foil 75 (see FIG. 2).
  • FIG. 4A and 4B are cross-sectional views showing a structural example of a joint portion between the battery can and the battery lid in the present embodiment
  • FIG. 4A is a cross-sectional view before welding
  • FIG. 4B is a cross-sectional view after welding.
  • FIG. 4A is a cross-sectional view before welding
  • FIG. 4B is a cross-sectional view after welding.
  • the battery can 100 includes a lateral upper end surface 121 that intersects the height direction of the side wall portion at the upper end portion of the battery can 100, and an inner portion in the vertical direction along the height direction of the side wall portion on the inside and outside of the battery can 100.
  • a wall surface 111 and an outer wall surface 131 are provided.
  • the battery lid 200 has a flange portion 220 provided along the outer peripheral portion, and a lower convex portion 210 formed on the inner portion excluding the outer peripheral portion.
  • the lower convex portion 210 has a size that protrudes toward the battery can 100 side from the flange portion 220 and is fitted into the opening 100 d of the battery can 100.
  • the battery lid 200 is formed such that the thickness in the flange portion 220 is thinner than the thickness in the lower convex portion 210, and a lid step surface 211 is formed between the flange portion 220 and the lower convex portion 210.
  • the lid step surface 211 has a height that is a difference between the thickness of the flange portion 220 and the thickness of the lower convex portion 210.
  • the battery lid 200 is placed on the battery can 100, so that the lower convex portion 210 is inserted into the opening 100 d of the battery can 100.
  • the lower surface (first opposing surface) 221 of the flange portion 220 is in contact with the upper end surface 121 of the battery can 100, and the lid step surface (second opposing surface) of the battery lid 200 is in contact with the inner wall surface 111 of the battery can 100.
  • 211 are arranged facing each other.
  • a lateral lateral boundary surface Fx perpendicular to the height direction of the side wall portion of the battery can 100 is formed between the upper end surface 121 of the battery can 100 and the lower surface 221 of the flange portion 220 of the battery lid 200.
  • a vertical longitudinal boundary surface Fy along the height direction of the side wall portion of the battery can 100 orthogonal to the lateral boundary surface Fx. Is formed. That is, the battery lid 200 is opposed to the upper surface of the battery can 100 and forms a lateral boundary surface Fx, and the first facing surface (lower surface 221) is orthogonal to the first facing surface and faces the inner wall surface of the battery can 100.
  • the horizontal boundary surface Fx and the vertical boundary surface Fy have L-shaped cross sections that are orthogonal to each other and intersect at the corner K1, and are continuously formed along the outer periphery of the battery lid 200.
  • the lateral boundary surface Fx may not be completely perpendicular to the height direction of the side wall portion, and the lateral boundary surface Fx and the longitudinal boundary surface Fy may not be completely orthogonal.
  • the battery lid 200 is welded to the battery can 100 by the laser EB and hermetically seals the opening 100d.
  • the laser EB is irradiated from the upper side of the battery lid 200 in the vertical direction along the height direction of the side wall portion of the battery can 100, and at least a part of the horizontal boundary surface Fx and the vertical boundary surface Fy. Weld at least a part of
  • the laser EB is irradiated from above the battery cover 200 toward a position directly above the corner K1, which is a position inside the outer peripheral end face 222 by a predetermined distance. Then, the depth direction along the irradiation direction of the laser EB and the two directions in the width direction intersecting the irradiation direction are simultaneously melted to form a welded portion 301 for welding between the battery lid 200 and the battery can 100. .
  • the laser EB is irradiated with the outer wall surface 131 of the battery can 100 as a reference.
  • the welded portion 301 is provided so as to include a corner portion K1 in which the horizontal boundary surface Fx and the vertical boundary surface Fy are orthogonal to each other, and hermetically seals between the battery can 100 and the battery lid 200.
  • the welded portion 301 is formed by melting from the upper surface of the battery lid 200 to a position deeper than the thickness of the flange portion 220, joins the lateral boundary surface Fx by the welding width w1, and forms the second boundary surface portion F2 by the welding height w2. It is joined.
  • the lateral boundary surface Fx is partially welded by a preset welding width w1 from a corner portion K1 where the lateral boundary surface Fx and the longitudinal boundary surface Fy intersect, and the longitudinal boundary surface Fy extends from the corner portion K1. It is partially welded by a preset welding depth w2.
  • the welded portion 301 is provided continuously over the entire circumference along the vertical boundary surface Fy.
  • the prismatic battery 1 is deformed in a direction in which the battery case expands due to an increase in internal pressure or the like, and a force in a direction in which the flange portion 220 of the battery lid 200 is peeled off from the upper end surface 121 of the battery can 100, that is, the lateral boundary surface Fx.
  • the longitudinal boundary surface Fy extending in the direction orthogonal to the lateral boundary surface Fx is also welded by the welded portion 301 in addition to the lateral boundary surface Fx.
  • a shearing force can be applied between the lid step surface 211 of the battery lid 200 and the inner wall surface 111 of the battery can 100 to resist the force in the direction in which the battery lid 200 is peeled off, resulting in high welding strength. Can be obtained. Therefore, stable welding strength can be obtained, and an effect of suppressing variation in welding strength can be obtained.
  • FIGS. 5A and 5B are cross-sectional views showing a case where there is a gap between the opening of the battery can and the fitting part of the battery lid shown in FIGS. 4A and 4B, and FIG. 5A shows a cross-section before welding.
  • FIG. 5B is a view showing a cross section after welding.
  • Each component of the prismatic battery 1 usually has a dimensional tolerance. Especially when a mass-produced product is assembled, as shown in FIG. 5A, the inner wall surface 111 of the battery can 100 and the lid step surface 211 of the battery lid 200 are separated. A gap G may be locally generated between them. Even in such a case, the welded portion 301 can be formed by irradiating the laser EB from above the battery lid 200 toward the corner K1.
  • the welded portion 301 is provided at a corner portion K1 where the horizontal boundary surface Fx and the vertical boundary surface Fy are orthogonal to each other, and hermetically seals between the battery can 100 and the battery lid 200. As shown in FIG. 5B, the welded portion 301 can join the lateral boundary surface Fx by the welding width w1 and the second boundary surface portion F2 by the welding height w2 even when the gap G is generated.
  • the prismatic battery 1 irradiates a laser EB from above the battery can 100 to penetrate the welded portion 301 in the thickness direction of the battery lid 200 and melt it to the battery can 100, so that the horizontal boundary surface Fx and the vertical boundary surface Fy Both are joined together. Since the battery can 100 is a thin plate press-molded product, the rigidity of the upper end of the battery can 110 is low, and the dimensional shape of the opening 100d tends to vary.
  • the focal length of the laser is likely to shift, and advanced control for adjusting the focal length is necessary.
  • the welded portion may protrude from the outer wall 131 of the battery can 100 to the side.
  • the rectangular battery 1 of this embodiment irradiates the laser EB from above the battery lid 200, the focal length is difficult to shift, it can be easily welded, and a certain welding quality can be obtained. It has the effect of being easy to manufacture. Moreover, it can prevent that the welding part 301 protrudes to the side rather than the outer wall surface 131 of the battery can 100, and when it is set as an assembled battery, assembly property is good.
  • the prismatic battery 1 is welded by being irradiated with laser EB with reference to the outer wall surface 131 of the battery can 100.
  • the laser EB is irradiated so as to continuously move from the outer wall surface 131 of the battery can 100 to the inner side of the battery can 100 by the thickness of the battery can 100 over the entire outer periphery of the battery lid 200.
  • the battery lid 200 may be displaced in the lateral direction due to the dimensional tolerance. Therefore, if the laser EB is irradiated with the outer peripheral end surface 222 of the battery lid 200 as a reference, the corner is caused by the dimensional tolerance. The portion K1 cannot be accurately captured, and there is a possibility that both the horizontal boundary surface Fx and the vertical boundary surface Fy cannot be welded at the same time.
  • the rectangular battery 1 in the present embodiment irradiates the laser EB with the outer wall surface 131 of the battery can 100 as a reference
  • the irradiation width of the laser EB is set to a width considering the dimensional tolerance. Accordingly, the corner portion K1 can be accurately captured, and both the horizontal boundary surface Fx and the vertical boundary surface Fy can be welded simultaneously.
  • the welding height w ⁇ b> 2 of the welded portion 301 at the vertical boundary surface Fy is shorter than the lid step surface 211 of the battery lid 200, and the inner wall surface 111 of the battery can 100 and the battery lid 200 are located below the welded portion 301. A portion facing the lid step surface 211 is formed. Therefore, the spatter generated when the laser EB is irradiated can be caught at the facing portion, and the spatter can be prevented from entering the inside of the battery container.
  • FIG. 13 is a plan view showing another structural example of the joint portion between the battery can and the battery lid of the first embodiment
  • FIG. 14 is a cross-sectional view taken along line AA of FIG.
  • the welded portion 301 is continuously provided over the entire circumference along the vertical boundary surface Fy.
  • the wide side wall portion 100a and the narrow side wall portion 100b of the battery can 100 are not provided.
  • the rigidity of the battery can 100 is high and the amount of expansion / deformation is small. Therefore, the welded portion 301 may not be provided along the vertical boundary surface Fy. Only the lateral boundary surface Fx may be welded. According to such a configuration, it is not necessary to irradiate the laser EB along the R shape at the corner, the trajectory can be a simple rectangular shape, and the control of the irradiation position where the laser EB is irradiated can be simplified.
  • FIG. 6A and FIG. 6B are cross-sectional views showing a structural example of a joint portion between the battery can and the battery lid in the second embodiment
  • FIG. 6A is a view showing a cross section before welding
  • FIG. 6B is a cross section after welding.
  • the detailed description is abbreviate
  • a characteristic feature of this embodiment is that the upper protrusion 230 is provided on the upper surface of the battery lid 200.
  • the upper protrusion 230 is integrally formed when the battery lid 200 is press-molded.
  • the upper convex part 230 protrudes toward the side away from the battery can 100 in the thickness direction of the battery lid 200 with respect to the flange part 220, and has a step surface 231 between the flange part 220.
  • the step surface 231 is disposed on the inner side of the battery cover 200 than the lid step surface 211 between the lower convex portion 210 and the flange portion 220, that is, on the side away from the outer peripheral end surface 222 through the lid step surface 211. ing. Therefore, the thickness of the portion of the battery lid 200 irradiated with the laser EB can be reduced, the output of the laser EB can be reduced, and energy can be saved.
  • the battery lid 200 is provided with the upper protrusion 230 on the upper surface thereof, so that the protrusion height of the lower protrusion 210 can be lowered accordingly. Therefore, when the opening 100d of the battery can 100 is closed, a larger internal volume of the battery container can be secured, and the size of the flat wound group 10 is increased by an amount corresponding to the increase in the volume. High capacity can be achieved. In addition, by lowering the protruding height of the lower convex portion 210, it is possible to prevent the rigidity of the battery lid 200 from being lowered, leading to an improvement in the strength of the battery lid 200.
  • FIG. 7A and FIG. 7B are cross-sectional views showing a structural example of a joint portion between the battery can and the battery lid in the third embodiment.
  • FIG. 7A is a cross-sectional view before welding
  • FIG. 7B is a cross-sectional view after welding.
  • the detailed description is abbreviate
  • a characteristic feature of this embodiment is that a protrusion 240 that is melted by irradiation with the laser EB and serves as a melting allowance is provided at the outer peripheral end of the flange 220.
  • the protrusion 240 is integrally formed when the battery lid 200 is press-molded.
  • the protruding portion 240 protrudes upward from the flange portion 220 in the same direction as the upper convex portion 230, and is continuously provided along the outer periphery of the battery lid 200. And in this embodiment, it protrudes to the same height as the upper convex part 230, and has a lateral width smaller than the plate
  • the protrusion 240 is disposed on the side of the flange 220 where the laser EB is irradiated and is melted by the laser EB.
  • the laser EB is irradiated from above the battery lid 200 toward the corner K1 that is the intersection of the horizontal boundary surface Fx and the vertical boundary surface Fy, and in the depth direction along the irradiation direction of the laser EB and the irradiation direction.
  • the two directions in the intersecting width direction are simultaneously melted to form a welded portion 302 that welds between the battery lid 200 and the battery can 100.
  • the projecting portion 240 is melted by the laser EB and used for welding supplementary metal of the welded portion 302.
  • the welded portion 302 has a volume that is increased by the amount of melting of the protruding portion 240, the cooling rate is reduced, and the stress that acts during solidification shrinkage after welding is relaxed. Therefore, cracks and the like of the welded portion 302 can be effectively prevented, and high welding quality can be obtained.
  • FIG. 8A and FIG. 8B are cross-sectional views showing a structure example of a joint portion between the battery can and the battery lid in the fourth embodiment
  • FIG. 8A is a view showing a cross section before welding
  • FIG. 8B is a cross section after welding.
  • the detailed description is abbreviate
  • a characteristic feature of this embodiment is that the rib portion 250 is provided on the lower convex portion 210 of the battery lid 200.
  • the rib portion 250 is integrally formed when the battery lid 200 is press-molded.
  • the rib portion 250 is provided over the entire circumference along the outer peripheral end portion of the lower convex portion 210 so as to protrude downward from the lower convex portion 210 and face the inner wall surface 111 of the battery can 100.
  • the lid step surface 211 between the lower convex part 210 and the flange part 220 extends below the lower convex part 210 by the rib part 250, extends the vertical boundary surface Fy downward, and makes its distance longer, It is possible to face the inner wall surface 111 of the battery can 100 over a wider area.
  • the welding height w2 it is possible to extend the welding height w2 and increase the resistance to the shearing force acting on the longitudinal boundary surface Fy. Further, the distance of the vertical boundary surface Fy below the welded portion 301 is increased, and the weld metal (when the welded portion 301 is welded between the inner wall surface 111 of the battery can 100 and the lid step surface 211 of the battery lid 200 ( It is possible to assemble the battery with higher quality by catching (sputtering) and preventing it from entering the inside of the battery container.
  • FIG. 9A and FIG. 9B are cross-sectional views showing a structural example of a joint portion between the battery can and the battery lid in the fifth embodiment.
  • FIG. 9A is a cross-sectional view before welding
  • FIG. 9B is a cross-sectional view after welding.
  • the detailed description is abbreviate
  • What is characteristic in the present embodiment is that two steps are formed between the battery can 100 and the battery lid 200 by forming a step at the upper end of the battery can 100 and fitting the battery lid 200 into the step.
  • This is a structure in which the surface is laser welded.
  • the battery can 100 has an upper end surface 122, a lower end surface 123, and a can step surface 124 at the upper end of the battery can 100.
  • the upper stage end surface 122 and the lower stage end surface 123 are formed in a lateral direction orthogonal to (intersect) the height direction of the side wall portion of the battery can 100.
  • the upper stage end surface 122 is provided on the outer wall surface 131 side of the upper end portion of the battery can 100
  • the lower stage end surface 123 is provided on the inner wall surface 111 side of the battery can 100 on the lower end side of the battery can 100 with respect to the upper stage end surface 122. Yes.
  • the can step surface 124 is interposed between the upper end surface 122 and the lower end surface 123 and is formed in the vertical direction along the height direction of the side wall portion of the battery can 100.
  • the upper stage end surface 122 and the lower stage end surface 123 are integrally formed when the battery can 100 is press-molded.
  • the upper stage end surface 122 and the lower stage end surface 123 are provided continuously along the entire periphery along the upper end portion of the battery can 100.
  • the battery lid 200 is placed on the battery can 100 to close the opening 100 d of the battery can 100, the lower surface 241 contacts the lower end surface 123 of the battery can 100, and the outer peripheral end surface 222 is the can of the battery can 100. Opposite the step surface 124. Accordingly, a lateral boundary surface Fx is formed between the lower end surface 123 of the battery can 100 and the lower surface 241 of the battery lid 200, and between the can step surface 124 of the battery can 100 and the outer peripheral end surface 222 of the battery lid 200. A vertical boundary surface Fy is formed.
  • the lower surface 241 of the battery lid 200 constitutes a first opposing surface that forms the lateral boundary surface Fx facing the lower end surface 123 of the battery can 100, and the outer peripheral end surface 222 of the battery lid 200 is orthogonal to the first opposing surface.
  • a second facing surface that forms the vertical boundary surface Fy is configured to face the can step surface 124.
  • the horizontal boundary surface Fx and the vertical boundary surface Fy have L-shaped cross sections that are orthogonal to each other and intersect at the corner K2, and are continuously formed along the outer periphery of the battery lid 200. .
  • the battery lid 200 is welded to the battery can 100 by the laser EB and hermetically seals the opening 100d.
  • the laser EB is irradiated from the upper side of the battery lid 200 in the vertical direction along the height direction of the side wall portion of the battery can 100, and at least a part of the horizontal boundary surface Fx and the vertical boundary surface Fy. Weld at least a part of
  • Laser EB is irradiated from above the battery lid 200 toward the corner K2 where the horizontal boundary surface Fx and the vertical boundary surface Fy are orthogonal to each other along the vertical boundary surface Fy. Then, the depth direction along the irradiation direction of the laser EB and the two directions in the width direction intersecting the irradiation direction are simultaneously melted to form a welded portion 303 for welding between the battery lid 200 and the battery can 100. .
  • the laser EB is irradiated with the outer wall surface 131 of the battery can 100 as a reference.
  • the welded portion 303 is provided so as to include a corner portion K1 in which the horizontal boundary surface Fx and the vertical boundary surface Fy are orthogonal to each other, and hermetically seals between the battery can 100 and the battery lid 200.
  • the welded portion 303 is formed by melting from the upper surface of the battery lid 200 to a position deeper than the corner portion K2, and joins the lateral boundary surface Fx by the welding width w3, and the longitudinal boundary surface Fy over the entire vertical direction. It is joined.
  • the horizontal boundary surface Fx is partially welded by a preset welding width w3 from the corner K2, and the vertical boundary surface Fy is welded over the entire vertical direction.
  • the welded portion 301 is provided continuously over the entire circumference along the vertical boundary surface Fy.
  • the prismatic battery 1 is deformed in a direction in which the battery case expands due to an increase in internal pressure or the like, and a force in a direction to peel the outer peripheral portion of the battery cover 200 from the lower end surface 123 of the battery can 100, that is, the lateral boundary surface Fx.
  • the peeling direction force acts, the longitudinal boundary surface Fy extending in the direction orthogonal to the lateral boundary surface Fx is also welded by the welded portion 303 in addition to the lateral boundary surface Fx. Therefore, a force in the shearing direction can be applied between the battery lid 200 and the battery can 100 to resist the force in the direction of peeling the battery lid 200, and high welding strength can be obtained.
  • the rectangular battery 1 has a weld width w3 of the welded portion 301 at the lateral boundary surface Fx that is shorter than the lower end surface 123 of the battery can 100 and is closer to the inner side of the battery container than the welded portion 303 and the lower end end surface 123 of the battery can 100 and the battery.
  • a portion facing the lower surface 241 of the lid 200 is formed. Therefore, the spatter generated when the laser EB is irradiated can be caught at the facing portion, and the spatter can be prevented from entering the inside of the battery container.
  • FIG. 10A and FIG. 10B are cross-sectional views showing a structural example of a joint portion between the battery can and the battery lid in the sixth embodiment.
  • FIG. 10A is a cross-sectional view before welding
  • FIG. 10B is a cross-sectional view after welding.
  • the detailed description is abbreviate
  • one of the can step surface 124 of the battery can 100 and the outer peripheral end surface 222 of the battery lid 200 has a higher height in the vertical direction than the other, and the higher one That is, it is partially melted by the irradiation of the laser EB to make a melting allowance.
  • the height of the can step surface 124 of the battery can 100 is larger than the thickness of the battery cover 200, and a protrusion 132 disposed above the upper surface 251 of the battery cover 200 is formed at the upper end of the battery cover 200. Is provided.
  • the protrusion 132 is integrally formed when the battery can 100 is press-molded. The protrusion 132 is provided over the entire periphery along the outer edge of the opening 100 d of the battery can 100.
  • the battery lid 200 is welded to the battery can 110 by irradiation with the laser EB, and seals the opening 100d.
  • the laser EB is irradiated from above the battery cover 200 toward the corner portion K2 along the vertical boundary surface Fy.
  • the laser EB is bi-directional in the depth direction along the irradiation direction of the laser EB and the width direction intersecting the irradiation direction. At the same time, it melts to form a welded portion 304 that welds between the battery lid 200 and the battery can 100.
  • the protrusion 132 is melted by the laser EB and used for the weld supplement metal of the weld 304.
  • the welded portion 304 has a volume that is increased by the amount by which the protrusion 132 is melted, and the stress that acts during solidification shrinkage after welding is relieved. Therefore, cracks and the like of the welded portion 302 can be effectively prevented, and high-quality welding can be performed.
  • FIG. 11A and FIG. 11B are cross-sectional views showing a structural example of a joint portion between the battery can and the battery lid in the seventh embodiment.
  • FIG. 11A is a cross-sectional view before welding
  • FIG. 11B is a cross-sectional view after welding.
  • the detailed description is abbreviate
  • the height of the can step surface 124 of the battery can 100 is smaller than the thickness of the battery lid 200.
  • the thickness of the battery lid 200 is larger than the height of the can step surface 124 of the battery can 100, and the upper end edge 252 of the outer peripheral portion of the battery lid 200 is located above the upper end surface 122 of the battery can 100. Exposed.
  • the battery lid 200 is welded to the battery can 110 by irradiation with the laser EB, and seals the opening 100d.
  • the laser EB is irradiated from above the battery cover 200 toward the corner portion K2 along the vertical boundary surface Fy.
  • the laser EB is bi-directional in the depth direction along the irradiation direction of the laser EB and the width direction intersecting the irradiation direction. At the same time, it melts to form a welded portion 305 that welds between the battery lid 200 and the battery can 100.
  • the upper end edge 252 of the outer peripheral portion of the battery lid 200 is melted by the laser EB and used for welding supplementary metal of the welded portion 305.
  • the welded portion 305 has a volume that is increased by the amount of melting of the upper edge portion 252, and the stress that acts during solidification shrinkage after welding is relieved. Therefore, cracks and the like of the welded portion 302 can be effectively prevented, and high welding quality can be obtained.
  • FIG. 12A and FIG. 12B are cross-sectional views showing a structural example of a joint portion between the battery can and the battery lid in the eighth embodiment.
  • FIG. 12A is a cross-sectional view before welding
  • FIG. 12B is a cross-sectional view after welding.
  • the detailed description is abbreviate
  • a plurality of steps formed between the battery can 100 and the battery lid 200 are formed by providing steps at the upper end of the battery can 100 and the outer peripheral end of the battery lid 200, respectively. That is, the boundary surfaces are each laser welded.
  • the battery can 100 has an upper end surface 122 in the lateral direction orthogonal to (intersects) the height direction of the side wall at the upper end of the battery can 100, and the inside of the battery can 100 on the lower end side of the battery can 100 with respect to the upper end surface 122.
  • the battery lid 200 is opposed to the lower end surface 123 of the battery can 100 and forms a lateral boundary surface Fx.
  • the lower surface (first opposed surface) 221 of the flange portion 220 and the lower surface 221 of the flange portion 220 are orthogonal to the battery can 100.
  • the outer peripheral end surface (second opposing surface) 222 that forms the first vertical boundary surface Fy1 facing the can step surface 124 and the inner surface 111 of the battery can 100 that is orthogonal to the lower surface 221 of the flange portion 220 and facing the inner wall surface 111 of the battery can 100.
  • 2 has a lid step surface (third opposing surface) 211 that forms two vertical boundary surfaces Fy2.
  • the battery lid 200 is placed on the battery can 100 to close the opening 100d of the battery can 100, and the lower surface 221 of the flange 220 contacts the lower end surface 123 of the battery can 100 as shown in FIG. 12A.
  • the outer peripheral end surface 222 faces the can step surface 124 of the battery can 100.
  • the lid step surface 211 of the battery lid 200 faces the inner wall surface 111 of the battery can 100.
  • the first vertical boundary surface Fy1 is formed between the can step surface 124 of the battery can 100 and the outer peripheral end surface 222 of the battery lid 200, and the lower end surface 123 of the battery can 100 and the flange portion 220 of the battery lid 200 are formed.
  • a horizontal boundary surface Fx is formed therebetween, and a second vertical boundary surface Fy2 is formed between the inner wall surface 111 of the battery can 100 and the lid step surface 211 of the battery lid 200.
  • the first vertical boundary surface Fy1 and the second horizontal boundary surface Fx are orthogonal to each other and intersect at the corner K3, and the horizontal boundary surface Fx and the second vertical boundary surface Fy2 are orthogonal to each other at the corner K4.
  • Crossing, the cross-sectional shape of the whole boundary surface is a crank shape, and it forms continuously along the outer periphery of the battery lid 200 over the entire periphery.
  • the battery lid 200 is welded to the battery can 100 by the laser EB and hermetically seals the opening 100d.
  • the laser EB is irradiated from above the battery lid 200 toward the corners K3 and K4 with a width including the vertical boundary surfaces Fy1 and Fy2, and in the depth direction along the irradiation direction of the laser EB.
  • intersect an irradiation direction are fuse
  • the welded portion 306 hermetically seals between the battery can 100 and the battery lid 200.
  • the welded portion 306 is formed by melting from the upper surface of the battery lid 200 to a position deeper than the corner portions K3 and K4, and joins the first vertical boundary surface Fy1 in the height direction to form the horizontal boundary surface Fx. Are joined in the horizontal direction, and the second vertical boundary surface Fy2 is joined by the welding height w2.
  • the force acting in the height direction and the lateral direction are compared with the case where only one of the boundary surfaces is welded. Both of the acting forces can be resisted and a high welding strength can be obtained.
  • the present invention is not limited to the contents of the above-described embodiments, and various modifications can be made without departing from the gist of the present invention.
  • the case where three boundary surfaces are respectively welded has been described as an example.
  • a structure may be employed in which either one of the vertical boundary surfaces Fy1 and Fy2 and the horizontal boundary surface Fx are welded. High weld strength can be obtained.
  • a structure in which the upper protrusion 230 is provided on the surface of the battery cover 200, a structure in which the protrusion 240 is provided on the battery cover 200 as a melting allowance, and the battery cover 200 is also effective in the structures shown in the fifth to seventh embodiments.
  • the present invention accommodates a flat wound group formed by winding a positive electrode, a negative electrode and a separator into a flat shape, and a flat wound group, and has an opening at one end and the other end is closed.
  • the battery can has a flat rectangular parallelepiped shape whose side faces are formed by a wide side face and a narrow side face, and an engaging portion that is engaged with an end face of the side face of the battery can, and the opening of the battery can is sealed by welding.
  • a prismatic battery having a battery lid wherein the battery lid has a welded portion on an upper surface thereof, and the engagement portion of the battery lid is engaged with two surfaces at least intersecting an end surface of the battery can side surface in a cross section in the thickness direction.
  • the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the present invention described in the claims. It can be changed.
  • the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described.
  • a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

 本発明の課題は、電池缶と電池蓋との間を溶接した溶接部が予め設定された溶接強度を確保できる角形電池を得ることである。 本発明の角形電池(1)は、4つの側壁部で囲まれた電池缶であって、側壁部の高さ方向一方側の上端部が開口し、高さ方向他方側の下端部に底面部を有する電池缶(100)と、電池缶の上端部に溶接されて電池缶を封止する電池蓋(200)とを備える角形電池であって、電池缶と電池蓋との間には、側壁部の高さ方向に交差する横方向の横境界面(Fx)と、横境界面に交差して側壁部の高さ方向に沿った縦方向の縦境界面(Fy)とが形成されており、側壁部の高さ方向に沿った縦方向に照射されるレーザ(EB)によって横境界面の少なくとも一部と縦境界面の少なくとも一部が溶接されている構成を有している。

Description

角形電池
 本発明は、開口部が形成された直方体形状の電池缶と、電池缶の開口部を封止する電池蓋と、電池缶と電池蓋とで画定された空間内に配置され、正負極板を有する扁平捲回群とを備えた角形電池およびその製造方法に関する。
 車載用リチウムイオン電池では、円柱形や角形の密閉型電池が用いられている。これまでは円柱形電池が多く用いられてきたが、車載用として実装密度の向上を図る観点から、近年、角形電池が用いられるようになってきた。角形の電池及びそれを複数個組み合わせた組電池は、小型化、軽量化が求められており、それに伴い電池缶の板厚は薄尺化が盛んに検討されている。
 角形電池には、深絞り製法等により、開口部の短辺寸法より深さ寸法を大きくした直方体形状を有する金属製の電池缶が用いられることが多い。この直方体形状の電池缶に絶縁シートを介して扁平捲回群が収納される。
 扁平捲回群は、集電箔を有する正極板と負極板を重ねて捲回または複数枚を交互に積層したものであり、両端部に正極活物質合剤の未塗工部と負極活物質合剤の未塗工部とが分かれて配置されている。未塗工部のそれぞれには極板が超音波法等により接合されている。電池缶の開口部は金属製の電池蓋で封止される。電池蓋には、外部負荷と接続するための正極端子および負極端子が、電池蓋と電気的絶縁を行い、かつ、電池内部の気密を保つためのガスケットを介して固定されている。電池蓋は、レーザビーム溶接法等により電池缶に溶接され、電池缶の開口部を封止する。
 特許文献1の角形電池では、電池缶と電池蓋とをレーザにより隅肉溶接して電池容器を構成している。すなわち、電池蓋には、電池缶の開口部に嵌入される嵌入部と、電池缶の開口部の上端面に当接するフランジ部とが設けられ、電池蓋は、嵌入部が開口部に嵌入した状態で、幅広側面側および前記幅狭側面側の双方において、前記フランジ部を電池缶の開口部の上端面に隅肉溶接して固着されている。
特開2011-181215号公報
 特許文献1の構造の場合、電池缶と電池蓋とをレーザにより隅肉溶接して電池容器を構成している。すなわち、電池缶の板厚の範囲内で隅肉溶接されていることから、電池容器の板厚が薄尺化するに従い、溶接可能範囲が狭くなる。また、部品精度のバラツキにより電池缶の板厚の範囲外に亘り電池蓋と溶接を行った場合、溶け込みの範囲が狭くなる。したがって、予め定められた溶接強度の確保が困難となるおそれがある。
 本発明は、上記の点に鑑みてなされたものであり、その目的とするところは、電池缶と電池蓋との間を溶接した溶接部が予め設定された溶接強度を確保できる角形電池を提供することである。
 上記課題を解決する本発明の角形電池は、4つの側壁部で囲まれた電池缶であって、該側壁部の高さ方向一方側の上端部が開口し、高さ方向他方側の下端部に底面部を有する電池缶と、前記電池缶の上端部に溶接されて前記電池缶を封止する電池蓋と、を備える角形電池であって、前記電池缶と前記電池蓋との間には、前記側壁部の高さ方向に交差する横境界面と、該横境界面に交差して前記側壁部の高さ方向に沿った縦境界面とが形成されており、前記側壁部の高さ方向に沿った方向に照射されるレーザによって前記横境界面の少なくとも一部と前記縦境界面の少なくとも一部が溶接されている構成を有することを特徴としている。
 本発明によれば、予め設定された溶接強度を容易に確保することができる。なお、上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
角形電池の外観斜視図。 図1に示す角形電池の分解斜視図。 扁平捲回群の一部を展開した状態を示す斜視図。 第1実施形態における電池缶と電池蓋との接合部分の構造例を示す断面図であり、溶接前の断面を示す図。 第1実施形態における電池缶と電池蓋との接合部分の構造例を示す断面図であり、溶接後の断面を示す図。 図4A、図4Bに示す電池缶の開口部と電池蓋の嵌合部との間に隙間がある場合を示す断面図であり、溶接前の断面を示す図。 図4A、図4Bに示す電池缶の開口部と電池蓋の嵌合部との間に隙間がある場合を示す断面図であり、溶接後の断面を示す図。 第2実施形態における電池缶と電池蓋との接合部分の構造例を示す断面図であり、溶接前の断面を示す図。 第2実施形態における電池缶と電池蓋との接合部分の構造例を示す断面図であり、溶接後の断面を示す図。 第3実施形態における電池缶と電池蓋との接合部分の構造例を示す断面図であり、溶接前の断面を示す図。 第3実施形態における電池缶と電池蓋との接合部分の構造例を示す断面図であり、溶接後の断面を示す図。 第4実施形態における電池缶と電池蓋との接合部分の構造例を示す断面図であり、溶接前の断面を示す図。 第4実施形態における電池缶と電池蓋との接合部分の構造例を示す断面図であり、溶接後の断面を示す図。 第5実施形態における電池缶と電池蓋との接合部分の構造例を示す断面図であり、溶接前の断面を示す図。 第5実施形態における電池缶と電池蓋との接合部分の構造例を示す断面図であり、溶接後の断面を示す図。 第6実施形態における電池缶と電池蓋との接合部分の構造例を示す断面図であり、溶接前の断面を示す図。 第6実施形態における電池缶と電池蓋との接合部分の構造例を示す断面図であり、溶接後の断面を示す図。 第7実施形態における電池缶と電池蓋との接合部分の構造例を示す断面図であり、溶接前の断面を示す図。 第7実施形態における電池缶と電池蓋との接合部分の構造例を示す断面図であり、溶接後の断面を示す図。 第8実施形態における電池缶と電池蓋との接合部分の構造例を示す断面図であり、溶接前の断面を示す図。 第8実施形態における電池缶と電池蓋との接合部分の構造例を示す断面図であり、溶接後の断面を示す図。 第1実施形態の電池缶と電池蓋との接合部分の他の構造例を示す平面図。 図13のA-A線断面図。
 以下、本発明の角形電池の各実施形態について、図面を参照しながら詳細に説明する。
[第1実施形態]
 図1は、本発明に係る角形電池の一実施の形態としての角形電池の外観斜視図、図2は、図1に示す角形電池の分解斜視図である。
 角形電池1は、例えば複数の角形電池1を組み合わせた組電池として電気自動車(EV)やハイブリッド自動車等に搭載される高容量のリチウムイオン二次電池であり、扁平角形の電池容器内に扁平捲回群と非水電解液とを密閉した状態で収容した構成を有している。
 角形電池1は、図1に示すように、電池缶100と電池蓋200から構成される角形の電池容器を備えている。電池缶100および電池蓋200の材質は、たとえば、アルミニウムまたはアルミニウム合金などのアルミニウム系金属である。電池缶100は、一対の幅広側壁部100aと一対の幅狭側壁部100bと底面部100cとを有し、上面が開口された矩形箱状に形成されている。すなわち、電池缶100は、図2に示すように、4つの側壁部で囲まれ、側壁部の高さ方向一方側の上端部が開口部100dによって開口し、高さ方向他方側の下端部に底面部100cを有する形状を有している。
 なお、本実施形態では説明の便宜上、底面部100cと開口部100dとの間の方向を上下の高さ方向として底面部100c側を下側、開口部100d側を上側とし、高さ方向に交差する方向を左右の横方向とするが、これらは、角形電池1の構成を説明するための便宜的な方向付けであり、鉛直方向あるいは水平方向を意味するものではない。
 電池缶100は、長方形の底面部100cの一対の長辺から上方に向かって一対の幅広側壁部100aが延出し、底面部100cの一対の短辺から上方に向かって一対の幅狭側壁部100bが延出している。これら一対の幅広側壁部100aと一対の幅狭側壁部100bは、所定の曲面形状を有する面取りを介して互いに連続しており、一定の閉断面形状を有して上下に延びている。電池缶100の一対の幅広側壁部100aと一対の幅狭側壁部100bは、略一定の板厚を有しており、底面部100cから互いに同じ高さ位置まで延出している。電池缶100の開口部100dは、幅広側壁部100a及び幅狭側壁部100bに対して直交する方向に沿って広がる平面視略矩形状を有するように、電池缶100の上方に向かって開口している。
 電池蓋200は、電池缶100の開口部100dを閉塞する大きさを有する長方形の平板部材によって構成されている。電池蓋200は、電池蓋200が電池缶100の上端部に当接した状態で電池缶100にレーザ溶接され、電池缶100の開口部100dを封止する。
 電池蓋200には、正極端子6および負極端子7が配設されている。正極端子6と負極端子7は、互いに電池蓋200の長辺方向に離間した位置に設けられている。正極端子6と負極端子7は、電池蓋200の上面に沿って平行に広がる上面を有しており、その上面がバスバーを溶接可能なバスバー溶接面を構成している。
 電池蓋200には、ガス排出弁202が設けられている。ガス排出弁202は、例えばプレス加工によって電池蓋200を部分的に薄肉化することで形成される。ガス排出弁202には、開裂時に大きな開口が形成されるように開裂溝が形成されている。ガス排出弁202は、角形電池が過充電等の異常により発熱して内部にガスが発生し、電池容器内の圧力が上昇して所定圧力に達したときに開裂して、内部からガスを排出することで電池容器内の圧力を低減させる。
 図2に示すように、電池缶100には扁平捲回群10が収容されている。
 扁平捲回群10は、3部品から構成される絶縁ケース41、42に覆われた状態で電池缶100内に収容されている。絶縁ケース41、42の材質は、ポリプロピレン等の絶縁性を有する樹脂である。これにより、電池缶100と、扁平捲回群10とは電気的に絶縁されている。
 扁平捲回群10の正極電極62(図3参照)は、正極集電体64を介して正極端子6に電気的に接続され、扁平捲回群10の負極電極72は、負極集電体74を介して負極端子7に電気的に接続されている。これにより、扁平捲回群10から正極端子6および負極端子7を介して外部負荷に電力が供給され、あるいは、正極端子6および負極端子7を介して外部発電電力が扁平捲回群10に供給されて充電される。
 電池蓋組立体2は、電池蓋200と、電池蓋200に設けられた一対の貫通孔201のそれぞれに取り付けられた正極端子6および負極端子7と、正極集電体64および負極集電体74と、一対のガスケット5と、電池蓋200の上下面にそれぞれ一対の絶縁部材8とを含んで構成される。
 電池蓋組立体2は、正極端子6及び負極端子7のそれぞれを、カシメ工程を行うことでガスケット5を圧縮し、電池容器の内面側と外面側を画定して固定される。ここで、正極端子6および正極集電体64の材質はアルミニウムまたはアルミニウム合金である。負極端子7および負極集電体74の材質は銅または銅合金である。絶縁部材8およびガスケット5の材質は、ポリブチレンテレフタレートやポリフェニレンサルファイド、ペルフルオロアルコキシフッ素樹脂等の絶縁性を有する樹脂である。
 電池蓋200には、注液孔203が設けられている。角形電池1は、電池缶100内に扁平捲回群10を収容し、電池蓋200で電池缶100の開口部100dを閉塞し、電池蓋200を電池缶100に溶接接合した後、注液孔203から電池缶100内に電解液が注液される。電解液としては、たとえば、エチレンカーボネート等の炭酸エステル系の有機溶媒に6フッ化リン酸リチウム(LiPF)等のリチウム塩が溶解された非水電解液を用いることができる。注液孔203は、電池缶100内に電解液を注入した後に、封止栓3により封止される。封止栓3は、電池蓋200に溶接されて注液孔203を封止する。
 注液孔203は、電池蓋200の厚さ方向に貫通して形成されており、その電池蓋200の上面側には、円環状の環状凹部が注液孔203の外周に沿って同心円上に凹設されている。環状凹部は、電池容器の一側面を構成する電池蓋200の上面(電池容器の外部)側において、電池容器の内側に向かって窪むように設けられており、例えば座ぐり加工により形成される。封止栓3は、円盤形状をしており、注液工程後に注液孔203に嵌入されてレーザ溶接により気密封止される。封止栓3は、たとえば、アルミニウム、アルミニウム合金等のアルミニウム系金属により形成される。
 図3を参照して、扁平捲回群10について説明する。図3は、図2に示された扁平捲回群10の捲回終端部側を展開した状態を示す斜視図である。
 蓄電要素でもある扁平捲回群10は、図3に示すように、長尺状の正極電極62および負極電極72を、間にセパレータ80を介在させて捲回軸Wの周りに扁平形状に捲回することで積層構造とされている。すなわち、扁平捲回群10は、断面が半円弧形状の湾曲面部が両端に形成され、両湾曲面部の間がほぼ平坦な平坦面部とされた扁平形状の捲回電極群である。
 正極電極62は、正極箔61と、正極活物質に結着材(バインダ)を配合した正極活物質合剤が正極箔61の両面に塗工されて形成された正極活物質合剤層63とを有する。負極電極72は、負極箔71と、負極活物質に結着材(バインダ)を配合した負極活物質合剤が負極箔71の両面に塗工されて形成された負極活物質合剤層73とを有する。正極活物質と負極活物質との間では、充放電が行われる。
 正極箔61は、厚さ20~30μm程度のアルミニウム合金箔であり、負極箔71は、厚さ15~20μm程度の銅合金箔である。セパレータ80の素材は、多孔質のポリエチレン樹脂である。正極活物質は、マンガン酸リチウム等のリチウム含有遷移金属複酸化物であり、負極活物質は、リチウムイオンを可逆に吸蔵、放出可能な黒鉛等の炭素材である。
 扁平捲回群10の幅方向(捲回方向に直交する捲回軸W方向)の両端部は、一方は正極活物質合剤層63が形成されていない未塗工部(正極箔61の露出部)が積層された部分とされている。また、他方は負極活物質合剤層73が形成されていない未塗工部(負極箔71の露出部)が積層された部分とされている。正極側未塗工部の積層体および負極側未塗工部の積層体は、それぞれ扁平捲回群10の厚さ方向(図3の矢印D方向)に予め押し潰され、それぞれ電池蓋組立体2の正極集電体64と正極集電保護箔65との間、および負極集電体74と負極集電保護箔75との間で(図2参照)超音波接合により接続される。
 図4A、図4Bは、本実施形態における電池缶と電池蓋との接合部分の構造例を示す断面図であり、図4Aは溶接前の断面を示す図、図4Bは溶接後の断面を示す図である。
 電池缶100は、電池缶100の上端部で側壁部の高さ方向に交差する横方向の上端面121と、電池缶100の内側と外側で側壁部の高さ方向に沿った縦方向の内壁面111及び外壁面131を有している。
 電池蓋200は、外周部に沿って設けられたフランジ部220と、外周部を除く内側部分に形成された下凸部210を有している。下凸部210は、フランジ部220よりも電池缶100側に向かって突出して電池缶100の開口部100dに嵌入される大きさを有している。電池蓋200は、フランジ部220における厚みが下凸部210における厚みよりも薄く形成されており、フランジ部220と下凸部210との間に蓋段差面211が形成されている。蓋段差面211は、フランジ部220の厚さと下凸部210の厚さの差分である高さを有している。
 電池蓋200は、電池缶100の上に載置することによって、下凸部210が電池缶100の開口部100dに嵌入される。そして、電池缶100の上端面121にフランジ部220の下面(第1対向面)221が接面し、かつ、電池缶100の内壁面111に電池蓋200の蓋段差面(第2対向面)211が対向して配置される。
 したがって、電池缶100の上端面121と電池蓋200のフランジ部220の下面221との間には、電池缶100の側壁部の高さ方向に垂直な横方向の横境界面Fxが形成され、電池缶100の内壁面111と電池蓋200の蓋段差面211との間には、横境界面Fxに直交して電池缶100の側壁部の高さ方向に沿った縦方向の縦境界面Fyが形成される。すなわち、電池蓋200は、電池缶100の上端面に対向して横境界面Fxを形成する第1対向面(下面221)と、第1対向面に直交し電池缶100の内壁面に対向して縦境界面Fyを形成する第2対向面(蓋段差面211)とを有している。横境界面Fxと縦境界面Fyは、互いに直交して角部K1で交差する断面がL字状となっており、電池蓋200の外周に沿って全周に亘って連続して形成される。なお、横境界面Fxは側壁部の高さ方向に完全に垂直でなくてもよく、また、横境界面Fxと縦境界面Fyは完全に直交していなくてもよい。
 電池蓋200は、レーザEBにより電池缶100に溶接され、開口部100dを密閉封止する。レーザEBは、図4Aに示すように、電池蓋200の上方から、電池缶100の側壁部の高さ方向に沿った縦方向に照射され、横境界面Fxの少なくとも一部と縦境界面Fyの少なくとも一部を溶接する。
 レーザEBは、電池蓋200の上方から外周端面222よりも所定距離だけ内側の位置である、角部K1の直上位置に向かって照射される。そして、レーザEBの照射方向に沿った深さ方向と、照射方向に交差する幅方向の双方向を同時に溶融して、電池蓋200と電池缶100との間を溶接する溶接部301を形成する。レーザEBは、電池缶100の外壁面131を基準として照射される。
 溶接部301は、横境界面Fxと縦境界面Fyとが直交する角部K1を含むように設けられており、電池缶100と電池蓋200との間を気密封止している。溶接部301は、電池蓋200の上面からフランジ部220の厚さよりも深い位置まで溶融して形成され、溶接幅w1だけ横境界面Fxを接合し、溶接高さw2だけ第2境界面部F2を接合している。すなわち、横境界面Fxは、横境界面Fxと縦境界面Fyとが交差する角部K1から予め設定された溶接幅分w1だけ部分的に溶接され、縦境界面Fyは、角部K1から予め設定された溶接深さ分w2だけ部分的に溶接されている。溶接部301は、縦境界面Fyに沿って全周に亘って連続して設けられている。
 上記した角形電池1によれば、横境界面Fxと縦境界面Fyの両方でそれぞれ溶接されているので、横境界面Fxと縦境界面Fyのいずれか一方のみが溶接されている場合と比較して、高さ方向に作用する力と横方向に作用する力の両方に対して抗することができ、高い溶接強度を得ることができる。
 特に、角形電池1は、内圧の上昇等によって電池容器が膨張する方向に変形し、電池蓋200のフランジ部220を電池缶100の上端面121から引き剥がす方向の力、すなわち、横境界面Fxを剥離する引張方向の力が作用するが、溶接部301によって、横境界面Fxに加えて、横境界面Fxに直交する方向に延在する縦境界面Fyも溶接されている。したがって、電池蓋200の蓋段差面211と電池缶100の内壁面111との間に剪断方向の力を作用させて、電池蓋200を剥離する方向の力に抗することができ、高い溶接強度を得ることができる。したがって、安定した溶接強度を得ることができ、溶接強度のバラツキを抑える効果が得られる。
 図5A、図5Bは、図4A、図4Bに示す電池缶の開口部と電池蓋の嵌合部との間に隙間がある場合を示す断面図であり、図5Aは溶接前の断面を示す図、図5Bは溶接後の断面を示す図である。
 角形電池1の各構成部品には、通常、寸法公差が存在し、特に量産製品を組立てる場合、図5Aに示すように、電池缶100の内壁面111と電池蓋200の蓋段差面211との間に局所的に隙間Gが生じることがある。かかる場合でも、電池蓋200の上方から角部K1に向かってレーザEBを照射することによって、溶接部301を形成することができる。
 溶接部301は、横境界面Fxと縦境界面Fyとが直交する角部K1に設けられており、電池缶100と電池蓋200との間を気密封止している。溶接部301は、図5Bに示すように、隙間Gが生じた場合においても、溶接幅w1だけ横境界面Fxを接合し、溶接高さw2だけ第2境界面部F2を接合することができる。
 したがって、横境界面Fxと縦境界面Fyのいずれか一方のみが溶接されている場合と比較して、高さ方向に作用する力と横方向に作用する力の両方に対して抗することができ、高い溶接強度を得ることができる。したがって、電池缶100と電池蓋200の間に生じた隙間Gに左右されることなく、安定した溶接強度を得ることができ、溶接強度のバラツキを抑える効果が得られる。
 角形電池1は、電池缶100の上方からレーザEBを照射して、溶接部301を電池蓋200の厚さ方向に貫通させて電池缶100まで溶融させ、横境界面Fxと縦境界面Fyの両方をそれぞれ接合している。電池缶100は、薄板のプレス成形品であるので、電池缶110の上端部の剛性が低く、開口部100dの寸法形状にバラツキを生じやすい。
 したがって、電池缶100の側方からレーザを照射して電池缶100と電池蓋200との間を溶接しようとすると、レーザの焦点距離がずれやすく、焦点距離を調整するための高度な制御が必要とされ、製造し難いという問題がある。また、電池缶100の側方からレーザを照射して電池缶100と電池蓋200との間を溶接した場合に、溶接部が電池缶100の外壁面131よりも側方に突出するおそれがあり、複数個を並べて組電池としたときに溶接部が干渉して配列性に影響を与えることが懸念される。
 これに対して、本実施形態の角形電池1は、電池蓋200の上方からレーザEBを照射するので、焦点距離がずれにくく、簡単に溶接することができ、一定の溶接品質を得ることができ、製造し易いという効果を有している。また、溶接部301が電池缶100の外壁面131よりも側方に突出するのを防ぐことができ、組電池とした場合に組立性が良い。
 角形電池1は、電池缶100の外壁面131を基準としてレーザEBが照射されて溶接されている。レーザEBは、電池缶100の外壁面131から電池缶100の板厚分だけ内側の位置を、電池蓋200の外周全周に亘って連続して移動するように照射される。
 電池蓋200は、図5A、図5Bに示すように、寸法公差によって横方向に位置がずれるおそれがあるので、仮に電池蓋200の外周端面222を基準にレーザEBを照射すると、寸法公差によって角部K1を正確に捉えることができず、横境界面Fxと縦境界面Fyの両方を同時に溶接することができない事態が発生するおそれがある。
 これに対して、本実施の形態における角形電池1は、電池缶100の外壁面131を基準としてレーザEBを照射しているので、レーザEBの照射幅を、寸法公差を考慮した幅に設定することによって角部K1を正確に捉えることができ、横境界面Fxと縦境界面Fyの両方を同時に溶接することができる。
 角形電池1は、縦境界面Fyにおける溶接部301の溶接高さw2が電池蓋200の蓋段差面211よりも短く、溶接部301の下方に、電池缶100の内壁面111と電池蓋200の蓋段差面211とが対向する部分が形成されている。したがって、レーザEBを照射した際に発生したスパッタを、この対向部分で捕らえることができ、電池容器の内部にスパッタが侵入するのを防止することができる。
 図13は、第1実施形態の電池缶と電池蓋との接合部分の他の構造例を示す平面図、図14は、図13のA-A線断面図である。
 上記した説明では、溶接部301が縦境界面Fyに沿って全周に亘って連続して設けられている場合について説明したが、電池缶100の幅広側壁部100aと幅狭側壁部100bとの間の隅部は電池缶100の剛性が高く、膨張変形量が少ないので、縦境界面Fyに沿って溶接部301を設けなくてもよく、例えば、電池缶100の隅部では、溶接部307によって横境界面Fxのみを溶接してもよい。かかる構成によれば、隅部のR形状に沿ってレーザEBを照射する必要がなく、軌跡を単なる矩形状とすることができ、レーザEBを照射する照射位置の制御を単純化できる。
[第2実施形態]
 次に、本発明の角形電池の第2実施形態について図6A、図6Bを用いて説明する。図6A、図6Bは、第2実施形態における電池缶と電池蓋との接合部分の構造例を示す断面図であり、図6Aは溶接前の断面を示す図、図6Bは溶接後の断面を示す図である。なお、第1実施形態と同様の構成要素には同一の符号を付することでその詳細な説明を省略する。
 本実施形態において特徴的なことは、電池蓋200の上面に上凸部230を設けたことである。上凸部230は、電池蓋200をプレス成形する際に一体に成形される。上凸部230は、フランジ部220よりも電池蓋200の厚さ方向で且つ電池缶100から離間する側に向かって突出し、フランジ部220との間に段差面231を有している。
 段差面231は、下凸部210とフランジ部220との間の蓋段差面211よりも電池蓋200の内側、すなわち、蓋段差面211を間に介して外周端面222から離間する側に配置されている。したがって、電池蓋200のレーザEBが照射される部分の厚さを薄くすることができ、レーザEBの出力を小さくし、省エネルギー化を図ることができる。
 電池蓋200は、その上面に上凸部230を設けることによって、その分だけ下凸部210の突出高さを低くすることができる。したがって、電池缶100の開口部100dを閉塞した場合に、電池容器の内部容積をより大きく確保することができ、容積が大きくなった分だけ扁平捲回群10の大きさを大きくして電池の高容量化を図ることができる。また、下凸部210の突出高さを低くしたことにより、電池蓋200の剛性が低下するのを防ぐことができ、電池蓋200の強度向上につながる。
[第3実施形態]
 次に、本発明の角形電池の第3実施形態について図7A、図7Bを用いて説明する。図7A、図7Bは、第3実施形態における電池缶と電池蓋との接合部分の構造例を示す断面図であり、図7Aは溶接前の断面を示す図、図7Bは溶接後の断面を示す図である。なお、上述の各実施形態と同様の構成要素には同一の符号を付することでその詳細な説明を省略する。
 本実施形態において特徴的なことは、フランジ部220の外周端部に、レーザEBの照射によって溶融されて溶け代となる突起部240を設けたことである。突起部240は、電池蓋200をプレス成形する際に一体に成形される。突起部240は、フランジ部220から上凸部230と同じ方向である上方に向かって突出しており、電池蓋200外周に沿って全周に亘って連続して設けられている。そして、本実施形態では、上凸部230と同じ高さまで突出しており、電池缶100の板厚よりも小さな横幅を有している。
 突起部240は、フランジ部220のレーザEBが照射される箇所の側方に配置されており、レーザEBの照射によって溶融される。レーザEBは、電池蓋200の上方から、横境界面Fxと縦境界面Fyとの交点である角部K1に向かって照射され、レーザEBの照射方向に沿った深さ方向と、照射方向に交差する幅方向の双方向を同時に溶融して、電池蓋200と電池缶100との間を溶接する溶接部302を形成する。
 突起部240は、レーザEBによって溶融されて溶接部302の溶接補充金属に充てられる。溶接部302は、図7Bに示すように、突起部240が溶融された分だけ体積が大きくなり、冷却速度が遅くなり、溶接後の凝固収縮時に作用する応力が緩和される。したがって、溶接部302の割れ等を効果的に防止でき、高い溶接品質を得ることができる。
[第4実施形態]
 次に、本発明の角形電池の第4実施形態について図8A、図8Bを用いて説明する。図8A、図8Bは、第4実施形態における電池缶と電池蓋との接合部分の構造例を示す断面図であり、図8Aは溶接前の断面を示す図、図8Bは溶接後の断面を示す図である。なお、上記した各実施形態と同様の構成要素には同一の符号を付することでその詳細な説明を省略する。
 本実施形態において特徴的なことは、電池蓋200の下凸部210にリブ部250を設けたことである。
 リブ部250は、電池蓋200をプレス成形する際に一体に成形される。リブ部250は、下凸部210から下方に向かって突出して電池缶100の内壁面111に対向するように、下凸部210の外周端部に沿って全周に亘って設けられている。下凸部210とフランジ部220との間の蓋段差面211は、リブ部250によって下凸部210よりも下方まで延出し、縦境界面Fyを下方に延長してその距離をより長くし、より広い面積に亘って電池缶100の内壁面111に対向することができる。
 したがって、溶接高さw2を延長して、縦境界面Fyに作用する剪断方向の力に対する抗力をより大きくすることができる。また、溶接部301よりも下方の縦境界面Fyの距離を長くして、電池缶100の内壁面111と電池蓋200の蓋段差面211との間に溶接部301の溶接時における溶接金属(スパッタ)をキャッチし、電池容器の内部に侵入するのを防ぎ、より高品質な電池の組立てを行うことができる。
[第5実施形態]
 次に、本発明の角形電池の第5実施形態について図9A、図9Bを用いて説明する。図9A、図9Bは、第5実施形態における電池缶と電池蓋との接合部分の構造例を示す断面図であり、図9Aは溶接前の断面を示す図、図9Bは溶接後の断面を示す図である。なお、上記した各実施形態と同様の構成要素には同一の符号を付することでその詳細な説明を省略する。
 本実施形態において特徴的なことは、電池缶100の上端部に段差を形成し、その段差に電池蓋200を嵌め入れて、電池缶100と電池蓋200との間に形成される2つの境界面をレーザ溶接した構造としたことである。
 電池缶100は、電池缶100の上端部に上段端面122と下段端面123と缶段差面124とを有している。上段端面122と下段端面123は、電池缶100の側壁部の高さ方向に直交(交差)する横方向に形成されている。上段端面122は、電池缶100の上端部の外壁面131側に設けられ、下段端面123は、上段端面122よりも電池缶100の下端部側で電池缶100の内壁面111側に設けられている。缶段差面124は、上段端面122と下段端面123との間に介在されて電池缶100の側壁部の高さ方向に沿った縦方向に形成されている。上段端面122と下段端面123は、電池缶100をプレス成形する際に一体に成形される。上段端面122と下段端面123は、電池缶100の上端部に沿って全周に亘って連続して設けられている。
 電池蓋200は、電池缶100の上に載置することによって電池缶100の開口部100dを閉塞し、下面241が電池缶100の下段端面123に当接し、外周端面222が電池缶100の缶段差面124に対向する。したがって、電池缶100の下段端面123と電池蓋200の下面241との間には横境界面Fxが形成され、電池缶100の缶段差面124と電池蓋200の外周端面222との間には縦境界面Fyが形成される。すなわち、電池蓋200の下面241が電池缶100の下段端面123に対向して横境界面Fxを形成する第1対向面を構成し、電池蓋200の外周端面222が第1対向面に直交して缶段差面124に対向して縦境界面Fyを形成する第2対向面を構成する。横境界面Fxと縦境界面Fyは、互いに直交して角部K2で交差する断面がL字状となっており、電池蓋200の外周に沿って全周に亘って連続して形成される。
 電池蓋200は、レーザEBにより電池缶100に溶接され、開口部100dを密閉封止する。レーザEBは、図9Aに示すように、電池蓋200の上方から、電池缶100の側壁部の高さ方向に沿った縦方向に照射され、横境界面Fxの少なくとも一部と縦境界面Fyの少なくとも一部を溶接する。
 レーザEBは、電池蓋200の上方から縦境界面Fyに沿って横境界面Fxと縦境界面Fyとが直交する角部K2に向かって照射される。そして、レーザEBの照射方向に沿った深さ方向と、照射方向に交差する幅方向の双方向を同時に溶融して、電池蓋200と電池缶100との間を溶接する溶接部303を形成する。レーザEBは、電池缶100の外壁面131を基準として照射される。
 溶接部303は、横境界面Fxと縦境界面Fyとが直交する角部K1を含むように設けられており、電池缶100と電池蓋200との間を気密封止している。溶接部303は、電池蓋200の上面から角部K2よりも深い位置まで溶融して形成されており、溶接幅w3だけ横境界面Fxを接合し、縦方向全体に亘って縦境界面Fyを接合している。
 すなわち、横境界面Fxは、角部K2から予め設定された溶接幅分w3だけ部分的に溶接され、縦境界面Fyは、縦方向全体に亘って溶接されている。溶接部301は、縦境界面Fyに沿って全周に亘って連続して設けられている。
 上記した角形電池1によれば、横境界面Fxと縦境界面Fyの両方でそれぞれ溶接されているので、横境界面Fxと縦境界面Fyのいずれか一方のみが溶接されている場合と比較して、高さ方向に作用する力と横方向に作用する力の両方に対して抗することができ、高い溶接強度を得ることができる。
 特に、角形電池1は、内圧の上昇等によって電池容器が膨張する方向に変形し、電池蓋200の外周部を電池缶100の下段端面123から引き剥がす方向の力、すなわち、横境界面Fxを剥離する引張方向の力が作用するが、溶接部303によって、横境界面Fxに加えて、横境界面Fxに直交する方向に延在する縦境界面Fyも溶接されている。したがって、電池蓋200と電池缶100との間に剪断方向の力を作用させて電池蓋200を剥離する方向の力に抗することができ、高い溶接強度を得ることができる。
 角形電池1は、横境界面Fxにおける溶接部301の溶接幅w3が電池缶100の下段端面123よりも短く、溶接部303よりも電池容器の内部側に、電池缶100の下段端面123と電池蓋200の下面241とが対向する部分が形成されている。したがって、レーザEBを照射した際に発生したスパッタを、この対向部分で捕らえることができ、電池容器の内部にスパッタが侵入するのを防止することができる。
[第6実施形態]
 次に、本発明の角形電池の第6実施形態について図10A、図10Bを用いて説明する。図10A、図10Bは、第6実施形態における電池缶と電池蓋との接合部分の構造例を示す断面図であり、図10Aは溶接前の断面を示す図、図10Bは溶接後の断面を示す図である。なお、上述の各実施形態と同様の構成要素には同一の符号を付することでその詳細な説明を省略する。
 本実施形態において特徴的なことは、電池缶100の缶段差面124と電池蓋200の外周端面222は、いずれか一方が他方よりも縦方向の高さが高くなっており、より高い方をレーザEBの照射によって部分的に溶融させて溶け代としたことである。
 電池缶100の缶段差面124の高さは、電池蓋200の厚さよりも大きくなっており、電池蓋200の上端部には、電池蓋200の上面251よりも上方に配置する突起部132が設けられている。突起部132は、電池缶100をプレス成形する際に一体に成形される。突起部132は、電池缶100の開口部100dの外縁に沿って全周に亘って設けられている。
 電池蓋200は、レーザEBの照射によって電池缶110に溶接され、開口部100dを封止する。レーザEBは、電池蓋200の上方から縦境界面Fyに沿って角部K2に向かって照射され、レーザEBの照射方向に沿った深さ方向と、照射方向に交差する幅方向の双方向を同時に溶融して、電池蓋200と電池缶100との間を溶接する溶接部304を形成する。
 突起部132は、レーザEBによって溶融されて溶接部304の溶接補充金属に充てられる。溶接部304は、図10Bに示すように、突起部132が溶融された分だけ体積が大きくなり、溶接後の凝固収縮時に作用する応力が緩和される。したがって、溶接部302の割れ等を効果的に防止でき、高品質の溶接を行うことができる。
[第7実施形態]
 次に、本発明の角形電池の第7実施形態について図11A、図11Bを用いて説明する。図11A、図11Bは、第7実施形態における電池缶と電池蓋との接合部分の構造例を示す断面図であり、図11Aは溶接前の断面を示す図、図11Bは溶接後の断面を示す図である。なお、上述の各実施形態と同様の構成要素には同一の符号を付することでその詳細な説明を省略する。
 本実施形態において特徴的なことは、上記した第6実施形態と同様に、電池缶100の缶段差面124と電池蓋200の外周端面222は、いずれか一方が他方よりも縦方向の高さが高くなっており、より高い方をレーザEBの照射によって部分的に溶融させて溶け代としたことである。
 電池缶100の缶段差面124の高さは、電池蓋200の厚さよりも小さくなっている。
 電池蓋200の厚さは、電池缶100の缶段差面124の高さよりも大きくなっており、電池蓋200の外周部の上端縁部252が電池缶100の上段端面122よりも上方の位置で露出している。
 電池蓋200は、レーザEBの照射によって電池缶110に溶接され、開口部100dを封止する。レーザEBは、電池蓋200の上方から縦境界面Fyに沿って角部K2に向かって照射され、レーザEBの照射方向に沿った深さ方向と、照射方向に交差する幅方向の双方向を同時に溶融して、電池蓋200と電池缶100との間を溶接する溶接部305を形成する。
 電池蓋200の外周部の上端縁部252は、レーザEBによって溶融されて溶接部305の溶接補充金属に充てられる。溶接部305は、図11Bに示すように、上端縁部252が溶融された分だけ体積が大きくなり、溶接後の凝固収縮時に作用する応力が緩和される。したがって、溶接部302の割れ等を効果的に防止でき、高い溶接品質を得ることができる。
[第8実施形態]
 次に、本発明の角形電池の第8実施形態について図12A、図12Bを用いて説明する。図12A、図12Bは、第8実施形態における電池缶と電池蓋との接合部分の構造例を示す断面図であり、図12Aは溶接前の断面を示す図、図12Bは溶接後の断面を示す図である。なお、上述の各実施形態と同様の構成要素には同一の符号を付することでその詳細な説明を省略する。
 本実施の形態において特徴的なことは、電池缶100の上端部と電池蓋200の外周端部にそれぞれ段差を設けて互いに組み合わせ、電池缶100と電池蓋200との間に形成される複数の境界面をそれぞれレーザ溶接した構成としたことである。
 電池缶100は、電池缶100の上端部で側壁部の高さ方向に直交(交差)する横方向の上段端面122と、上段端面122よりも電池缶100の下端部側で電池缶100の内部側に形成された横方向の下段端面123と、上段端面122と下段端面123との間に介在されて側壁部の高さ方向に沿った縦方向の缶段差面124とを有する。
 電池蓋200は、電池缶100の下段端面123に対向して横境界面Fxを形成するフランジ部220の下面(第1対向面)221と、フランジ部220の下面221に直交し電池缶100の缶段差面124に対向して第1の縦境界面Fy1を形成する外周端面(第2対向面)222と、フランジ部220の下面221に直交し電池缶100の内壁面111に対向して第2の縦境界面Fy2を形成する蓋段差面(第3対向面)211を有している。
 電池蓋200は、電池缶100の上に載置することによって電池缶100の開口部100dを閉塞し、図12Aに示すように、フランジ部220の下面221が電池缶100の下段端面123に当接し、外周端面222が電池缶100の缶段差面124に対向する。そして、電池蓋200の蓋段差面211が電池缶100の内壁面111に対向する。
 したがって、電池缶100の缶段差面124と電池蓋200の外周端面222との間に第1の縦境界面Fy1が形成され、電池缶100の下段端面123と電池蓋200のフランジ部220との間に横境界面Fxが形成され、さらに、電池缶100の内壁面111と電池蓋200の蓋段差面211との間に第2の縦境界面Fy2が形成される。
 第1の縦境界面Fy1と第2の横境界面Fxは、互いに直交して角部K3で交差し、横境界面Fxと第2の縦境界面Fy2は、互いに直交して角部K4で交差し、境界面全体の断面形状がクランク状となっており、電池蓋200の外周に沿って全周に亘って連続して形成される。
 電池蓋200は、レーザEBにより電池缶100に溶接され、開口部100dを密閉封止する。レーザEBは、図12Aに示すように、電池蓋200の上方から、縦境界面Fy1、Fy2を含む幅で角部K3、K4に向かって照射され、レーザEBの照射方向に沿った深さ方向と、照射方向に交差する幅方向の双方向を同時に溶融して、電池蓋200と電池缶100との間を溶接する溶接部306を形成する。
 溶接部306は、電池缶100と電池蓋200との間を気密封止している。溶接部306は、電池蓋200の上面から角部K3、K4よりも深い位置まで溶融して形成されており、第1の縦境界面Fy1を高さ方向に亘って接合し、横境界面Fxを横方向に亘って接合し、第2の縦境界面Fy2を溶接高さw2だけ接合している。
 上記した角形電池1によれば、3つの境界面でそれぞれ溶接されているので、いずれか一つの境界面のみが溶接されている場合と比較して、高さ方向に作用する力と横方向に作用する力の両方に対して抗することができ、高い溶接強度を得ることができる。
 なお、本発明は、上述の各実施の形態の内容に限定されるものではなく、本発明の主旨を逸脱しない範囲で種々の変更が可能である。例えば、第8実施形態では、3つの境界面をそれぞれ溶接する場合を例に説明したが、縦境界面Fy1、Fy2のいずれか一方と、横境界面Fxとの間を溶接する構造としてもよく、高い溶接強度を得ることができる。
 その他に、第2実施形態から第4実施形態に示したように、電池蓋200の表面に上凸部230を設ける構造や、溶け代として電池蓋200に突起部240を設ける構造、電池蓋200にリブ部250を設ける構造は、第5実施形態から第7実施形態に示した構造においても有効である。
 これらの構造は各々に示した効果ばかりでなく、以下の効果を含んでいる。レーザ溶接時に外側に位置する電池蓋側からレーザを照射することにより不用意に溶融金属を電池缶の開口部よりも外側へ流出することを防げるために、完成品での電池缶寸法精度の向上ができ、電池缶をホルダ等で拘束するような使用方法の場合、溶接後の溶融金属部を気にせずに平面で拘束が可能となる。
 本発明は、正極電極、負極電極及びセパレータを扁平形状に捲回して成る扁平捲回群と、扁平捲回群を収容し、一端部に開口部を有しており、他端部が閉塞され、側面が幅広側面と幅狭側面によって形成された扁平直方体形状の電池缶と、電池缶側面の端面に係合される係合部を有し、電池缶の開口部を溶接によって封止される電池蓋を備える角形電池であって、電池蓋の上面に溶接部を有し、前記電池蓋の係合部は厚さ方向の断面で前記電池缶側面の端面に少なくとも交差する2面で係合し、係合部に前記交差する2面に溶融部を有する角形電池の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
 以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。さらに、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
1 角形電池
100 電池缶
111 内壁面
121 上端面
122 上段端面
123 下段端面
124 缶段差面
200 電池蓋
210 下凸部
211 蓋段差面(第2対向面、第3対向面)
220 フランジ部
221 下面(第1対向面)
222 外周端面
230 上凸部
241 下面
301-307 溶接部
Fx 横境界面
Fy 縦境界面
EB レーザ

Claims (12)

  1.  4つの側壁部で囲まれた電池缶であって、該側壁部の高さ方向一方側の上端部が開口し、高さ方向他方側の下端部に底面部を有する電池缶と、前記電池缶の上端部に溶接されて前記電池缶を封止する電池蓋と、を備える角形電池であって、
     前記電池缶と前記電池蓋との間には、前記側壁部の高さ方向に交差する横方向の横境界面と、該横境界面に交差して前記側壁部の高さ方向に沿った縦方向の縦境界面とが形成されており、前記側壁部の高さ方向に沿った縦方向に照射されるレーザによって前記横境界面の少なくとも一部と前記縦境界面の少なくとも一部が溶接されている構成を有することを特徴とする角形電池。
  2.  前記電池缶は、該電池缶の上端部で前記側壁部の高さ方向に交差する横方向の上端面と、該上端面交差して前記電池缶の内側で前記側壁部の高さ方向に沿った縦方向の内壁面とを有し、
     前記電池蓋は、前記電池缶の上端面に対向して前記横境界面を形成する第1対向面と、該第1対向面に交差し前記電池缶の内壁面に対向して前記縦境界面を形成する第2対向面とを有することを特徴とする請求項1に記載の角形電池。
  3.  前記電池蓋は、該電池蓋の外周部に沿って設けられるフランジ部と、該フランジ部よりも前記電池缶側に向かって突出して前記電池缶の開口に嵌入される下凸部とを有し、前記電池缶の上端面に対向する前記フランジ部の下面によって前記第1対向面が形成され、前記フランジ部と前記下凸部との間に介在されて前記電池缶の側壁部に対向する蓋段差面によって前記第2対向面が形成されることを特徴とする請求項2に記載の角形電池。
  4.  前記横境界面は、該横境界面と前記縦境界面とが交差する角部から予め設定された溶接幅分だけ部分的に溶接され、前記縦境界面は、前記角部から予め設定された溶接深さ分だけ部分的に溶接されていることを特徴とする請求項3に記載の角形電池。
  5.  前記電池蓋は、前記フランジ部よりも前記電池蓋の厚さ方向で且つ前記電池缶から離間する側に向かって突出する上凸部を有することを特徴とする請求項4に記載の角形電池。
  6.  前記電池蓋は、前記フランジ部から前記上凸部と同じ方向に突出して前記レーザによって溶融される突起部を有することを特徴とする請求項5に記載の角形電池。
  7.  前記電池蓋は、前記下凸部から突出して前記電池缶の側壁部に対向するリブ部を有することを特徴とする請求項5に記載の角形電池。
  8.  前記電池缶は、該電池缶の上端部で前記側壁部の高さ方向に交差する横方向の上段端面と、該上段端面よりも前記電池缶の下端部側で前記電池缶の内部側に形成された前記横方向の下段端面と、前記上段端面と前記下段端面との間に介在されて前記側壁部の高さ方向に沿った縦方向の缶段差面とを有し、
     前記電池蓋は、前記電池缶の下段端面に対向して前記横境界面を形成する第1対向面と、該第1対向面に交差し前記缶段差面に対向して前記縦境界面を形成する第2対向面とを有することを特徴とする請求項1に記載の角形電池。
  9.  前記電池蓋は、前記電池缶の下段端面に当接される下面と、前記電池缶の缶段差面に対向する外周端面とを有し、
     前記電池缶の前記下段端面に当接される前記電池蓋の下面によって前記第1対向面が形成され、前記電池缶の缶段差面に対向する前記電池蓋の外周端面によって前記第2対向面が形成されることを特徴とする請求項8に記載の角形電池。
  10.  前記横境界面は、前記横境界面と前記縦境界面とが交差する角部から予め設定された溶接幅分だけ部分的に溶接され、前記縦境界面は、縦方向全体に亘って溶接されていることを特徴とする請求項9に記載の角形電池。
  11.  前記電池缶の缶段差面と前記電池蓋の外周端面は、いずれか一方が他方よりも前記縦方向の高さが高いことを特徴とする請求項10に記載の角形電池。
  12.  前記電池缶は、該電池缶の上端部で前記側壁部の高さ方向に交差する横方向の上段端面と、該上段端面よりも前記電池缶の下端部側で前記電池缶の内部側に形成された前記横方向の下段端面と、前記上段端面と前記下段端面との間に介在されて前記側壁部の高さ方向に沿った縦方向の缶段差面とを有し、
     前記電池蓋は、前記電池缶の下段端面に対向して前記横境界面を形成する第1対向面と、該第1対向面に交差し前記電池缶の段差面に対向して第1の前記縦境界面を形成する第2対向面と、前記第1対向面に直交し前記電池缶の内壁面に対向して第2の前記縦境界面を形成する第3対向面と、
     を有することを特徴とする請求項1に記載の角形電池。
PCT/JP2013/080888 2013-11-15 2013-11-15 角形電池 WO2015072010A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2013/080888 WO2015072010A1 (ja) 2013-11-15 2013-11-15 角形電池
JP2015547349A JP6138963B2 (ja) 2013-11-15 2013-11-15 角形電池
CN201380080759.9A CN105723542B (zh) 2013-11-15 2013-11-15 方形电池
EP13897582.6A EP3070760B1 (en) 2013-11-15 2013-11-15 Prismatic battery
US15/029,825 US9905819B2 (en) 2013-11-15 2013-11-15 Prismatic battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/080888 WO2015072010A1 (ja) 2013-11-15 2013-11-15 角形電池

Publications (1)

Publication Number Publication Date
WO2015072010A1 true WO2015072010A1 (ja) 2015-05-21

Family

ID=53056973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080888 WO2015072010A1 (ja) 2013-11-15 2013-11-15 角形電池

Country Status (5)

Country Link
US (1) US9905819B2 (ja)
EP (1) EP3070760B1 (ja)
JP (1) JP6138963B2 (ja)
CN (1) CN105723542B (ja)
WO (1) WO2015072010A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106531907A (zh) * 2015-09-11 2017-03-22 丰田自动车株式会社 二次电池的制造方法
JP2017532715A (ja) * 2014-09-25 2017-11-02 エルジー・ケム・リミテッド 2つ以上のケース部材を含む角型電池セル
KR101838382B1 (ko) 2015-06-12 2018-03-13 도요타지도샤가부시키가이샤 밀폐형 전지 및 그 제조 방법
WO2019216217A1 (ja) * 2018-05-09 2019-11-14 株式会社アマダホールディングス 角継手のレーザ溶接方法
JP2020172295A (ja) * 2019-04-10 2020-10-22 株式会社大北製作所 金属製箱体
CN117691269A (zh) * 2024-01-31 2024-03-12 蜂巢能源科技股份有限公司 一种电芯

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015110244B4 (de) * 2015-06-25 2023-01-19 Schuler Pressen Gmbh Batteriezellengehäuse und Verfahren zu dessen Herstellung
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
CN106684264A (zh) * 2017-01-17 2017-05-17 无锡市金杨新型电源有限公司 一种电池壳
CN107552958A (zh) * 2017-08-03 2018-01-09 大族激光科技产业集团股份有限公司 一种动力电池封口的焊接方法
CN108054302A (zh) * 2017-11-17 2018-05-18 深圳市瑞德丰精密制造有限公司 顶盖板与壳体的连接工艺
CN109817849B (zh) * 2017-11-21 2024-04-30 宁德新能源科技有限公司 包装壳及电池
DE102019215968A1 (de) * 2019-10-17 2021-04-22 Trumpf Laser- Und Systemtechnik Gmbh Laserschweißverfahren für Eckverbindungen von Werkstückteilen
US12021248B2 (en) * 2020-06-19 2024-06-25 Greatbatch Ltd. Electrochemical cell activated with a liquid electrolyte wetting the electrode assembly through an opening in one of the electrodes
CN114552098B (zh) * 2020-11-24 2024-05-07 比亚迪股份有限公司 电池壳及其制备方法
CN112917011A (zh) * 2021-01-27 2021-06-08 中国航空制造技术研究院 一种飞机发动机排气管端头法兰的激光焊接方法
CN214123982U (zh) * 2021-06-23 2021-09-03 比亚迪股份有限公司 壳体及电池
CN115732819B (zh) * 2021-08-27 2023-12-15 宁德时代新能源科技股份有限公司 电池单体及与其相关电池、装置、制备方法和制备装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004195490A (ja) * 2002-12-17 2004-07-15 Toyota Motor Corp 溶接物とその製造方法
JP2006019089A (ja) * 2004-06-30 2006-01-19 Sanyo Electric Co Ltd 密閉型電池及びその製造方法
JP2009146645A (ja) * 2007-12-12 2009-07-02 Toyota Motor Corp 溶接構造体の製造方法及び電池の製造方法
WO2010146700A1 (ja) * 2009-06-19 2010-12-23 トヨタ自動車株式会社 密閉型電池及びその電池ケース
JP2011129266A (ja) * 2009-12-15 2011-06-30 Sanyo Electric Co Ltd 角形密閉電池の製造方法
JP2011181215A (ja) 2010-02-26 2011-09-15 Hitachi Vehicle Energy Ltd 角形電池およびその製造方法
JP2012089311A (ja) * 2010-10-18 2012-05-10 Sumitomo Electric Ind Ltd 溶融塩電池及び溶融塩電池連結体
JP2012186005A (ja) * 2011-03-04 2012-09-27 Toyota Motor Corp 電池及び電池の製造方法
JP2013091085A (ja) * 2011-10-26 2013-05-16 Gs Yuasa Corp 金属容器の溶接方法、金属容器、蓄電素子及び蓄電モジュール
JP2013127867A (ja) * 2011-12-16 2013-06-27 Toyota Industries Corp 二次電池、及び車両

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5732241B2 (ja) * 2010-12-03 2015-06-10 Udトラックス株式会社 蓄電セル、蓄電装置、及び蓄電装置を搭載する車両
JP5811456B2 (ja) * 2010-12-28 2015-11-11 株式会社Gsユアサ 蓄電素子
JP2012200768A (ja) * 2011-03-25 2012-10-22 Toyota Motor Corp 容器の溶接方法、及びこれを用いた二次電池の製造方法
DE102011077689A1 (de) * 2011-06-17 2012-12-20 Robert Bosch Gmbh Gehäuseanordnung und Verfahren zur Herstellung einer Verbindung eines Gehäusebauteils mit einem Anbauteil

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004195490A (ja) * 2002-12-17 2004-07-15 Toyota Motor Corp 溶接物とその製造方法
JP2006019089A (ja) * 2004-06-30 2006-01-19 Sanyo Electric Co Ltd 密閉型電池及びその製造方法
JP2009146645A (ja) * 2007-12-12 2009-07-02 Toyota Motor Corp 溶接構造体の製造方法及び電池の製造方法
WO2010146700A1 (ja) * 2009-06-19 2010-12-23 トヨタ自動車株式会社 密閉型電池及びその電池ケース
JP2011129266A (ja) * 2009-12-15 2011-06-30 Sanyo Electric Co Ltd 角形密閉電池の製造方法
JP2011181215A (ja) 2010-02-26 2011-09-15 Hitachi Vehicle Energy Ltd 角形電池およびその製造方法
JP2012089311A (ja) * 2010-10-18 2012-05-10 Sumitomo Electric Ind Ltd 溶融塩電池及び溶融塩電池連結体
JP2012186005A (ja) * 2011-03-04 2012-09-27 Toyota Motor Corp 電池及び電池の製造方法
JP2013091085A (ja) * 2011-10-26 2013-05-16 Gs Yuasa Corp 金属容器の溶接方法、金属容器、蓄電素子及び蓄電モジュール
JP2013127867A (ja) * 2011-12-16 2013-06-27 Toyota Industries Corp 二次電池、及び車両

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3070760A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017532715A (ja) * 2014-09-25 2017-11-02 エルジー・ケム・リミテッド 2つ以上のケース部材を含む角型電池セル
US10770694B2 (en) 2014-09-25 2020-09-08 Lg Chem, Ltd. Prismatic battery cell having two or more case members
KR101838382B1 (ko) 2015-06-12 2018-03-13 도요타지도샤가부시키가이샤 밀폐형 전지 및 그 제조 방법
CN106531907A (zh) * 2015-09-11 2017-03-22 丰田自动车株式会社 二次电池的制造方法
CN106531907B (zh) * 2015-09-11 2019-05-14 丰田自动车株式会社 二次电池的制造方法
WO2019216217A1 (ja) * 2018-05-09 2019-11-14 株式会社アマダホールディングス 角継手のレーザ溶接方法
JP2019195823A (ja) * 2018-05-09 2019-11-14 株式会社アマダホールディングス 角継手のレーザ溶接方法
JP2020172295A (ja) * 2019-04-10 2020-10-22 株式会社大北製作所 金属製箱体
US11261004B2 (en) 2019-04-10 2022-03-01 Ohkita Seisakusyo Metal case
CN117691269A (zh) * 2024-01-31 2024-03-12 蜂巢能源科技股份有限公司 一种电芯
CN117691269B (zh) * 2024-01-31 2024-04-16 蜂巢能源科技股份有限公司 一种电芯

Also Published As

Publication number Publication date
CN105723542B (zh) 2019-04-19
EP3070760A4 (en) 2017-10-04
EP3070760B1 (en) 2019-02-13
US9905819B2 (en) 2018-02-27
US20160254501A1 (en) 2016-09-01
CN105723542A (zh) 2016-06-29
EP3070760A1 (en) 2016-09-21
JPWO2015072010A1 (ja) 2017-03-09
JP6138963B2 (ja) 2017-05-31

Similar Documents

Publication Publication Date Title
JP6138963B2 (ja) 角形電池
KR101427018B1 (ko) 전지 및 그 제조 방법
JP6657843B2 (ja) 二次電池
JP5651557B2 (ja) 単電池および組電池
KR101726909B1 (ko) 광흡수 부재를 갖는 이차 전지
JP5941654B2 (ja) 単電池および組電池
JP5795937B2 (ja) 二次電池
US20170229700A1 (en) Prismatic secondary battery
US8790803B2 (en) Rechargeable battery
US10403862B2 (en) Battery
JP2014138001A (ja) 2次電池
JP6192992B2 (ja) 角形二次電池
JP6084905B2 (ja) 電池及び電池の製造方法
JP6184747B2 (ja) 角形二次電池
JP5651556B2 (ja) 二次電池
KR20150083297A (ko) 이차 전지
JP2014063696A (ja) 蓄電装置およびその製造方法
KR102571488B1 (ko) 이차 전지
JP5667589B2 (ja) 非水電解液二次電池
KR102288541B1 (ko) 이차 전지
JP6105986B2 (ja) 蓄電素子および蓄電素子の製造方法
JP6133680B2 (ja) 角形二次電池
JP5490967B1 (ja) 蓄電素子および蓄電素子の製造方法
JP6640467B2 (ja) 二次電池、二次電池の製造方法
JP2023135284A (ja) 蓄電素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13897582

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015547349

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013897582

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15029825

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE