WO2015064628A1 - 超純水中の微粒子数の測定方法及び装置 - Google Patents

超純水中の微粒子数の測定方法及び装置 Download PDF

Info

Publication number
WO2015064628A1
WO2015064628A1 PCT/JP2014/078736 JP2014078736W WO2015064628A1 WO 2015064628 A1 WO2015064628 A1 WO 2015064628A1 JP 2014078736 W JP2014078736 W JP 2014078736W WO 2015064628 A1 WO2015064628 A1 WO 2015064628A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring
ultrapure water
fine particles
particle
particles
Prior art date
Application number
PCT/JP2014/078736
Other languages
English (en)
French (fr)
Inventor
田中 洋一
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to JP2015545260A priority Critical patent/JP6477487B2/ja
Publication of WO2015064628A1 publication Critical patent/WO2015064628A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1456Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • G01N15/1459Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1429Signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/075Investigating concentration of particle suspensions by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0053Investigating dispersion of solids in liquids, e.g. trouble
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N2015/1486Counting the particles

Definitions

  • the present invention relates to a method and apparatus for measuring the number of fine particles in ultrapure water, and more particularly to a method and apparatus for measuring the number of fine particles in which an error due to noise is reduced.
  • Patent Document 1 As a device for measuring (counting) the number of fine particles in ultrapure water online, a fine particle meter (particle counter) using laser scattering is used (Patent Document 1).
  • FIG. 4 is an explanatory diagram of the method disclosed in Patent Document 2.
  • the air is discharged from the inflow nozzle 41, passes through the light beam, is sucked by the discharge nozzle 42 and discharged.
  • the scattered light scattered by the particles in the air is collected and detected by the first photodiode 51 or the second photodiode 52 via the condenser lens 50.
  • the particles are located near the inflow side nozzle in the light beam, and the scattered light at this time is focused on the first photodiode 51.
  • the time advances by ⁇ t and becomes time t + ⁇ t the particles have progressed to the discharge nozzle 42 side in the light beam, and the scattered light at this time is focused on the second photodiode 52.
  • the first photodiode 51 detects particles in a predetermined time zone including time t and the second photodiode 52 detects particles in a predetermined time zone including time t + ⁇ t, the particles are detected.
  • the photodiodes 51 and 52 detects particles, it is handled as noise.
  • Patent Document 2 The method disclosed in Patent Document 2 is for detecting particles in the air. Even if this method is applied to the detection of particles in ultrapure water, the particles cannot be detected with high accuracy. That is, both the air and water particles perform Brownian motion, but in water, the Brownian motion speed of the particles is significantly higher than in air, and the particles present in the light beam at time t in FIG. Even so, it does not necessarily proceed to the discharge nozzle 42 side at time t + ⁇ t. Therefore, even though there are actually fine particles in ultrapure water, only the first photodiode 51 may detect the fine particles, and the second photodiode 52 may not detect the fine particles. Becomes larger.
  • the present invention solves such problems, and a method and apparatus for measuring the number of fine particles in ultrapure water capable of accurately detecting the number of fine particles in ultrapure water, and an ultrapure water production apparatus equipped with this measurement apparatus.
  • the purpose is to provide.
  • the method for measuring the number of fine particles in the ultrapure water of the present invention comprises the steps of separately passing ultrapure water through two or more fine particle number measuring means and measuring the number of fine particles per unit time or unit volume, And adopting the lowest value of each measured value as the number of fine particles in ultrapure water.
  • an apparatus for measuring the number of fine particles by a laser light scattering method is preferable.
  • the apparatus for measuring the number of fine particles in ultrapure water comprises two or more measuring means for measuring the number of fine particles in ultrapure water, ultrapure water flow means for flowing ultrapure water to each measurement means, Comparing means for comparing the number of fine particles per unit time or unit volume detected by each measuring means and outputting the lowest value.
  • the apparatus for measuring the number of fine particles in ultrapure water includes a measuring means for measuring the number of fine particles of 2 or more and an ultrapure water flow means for flowing ultrapure water separately to each measurement means.
  • the ultrapure water production facility of the present invention includes such a fine particle number measuring device as a water quality monitoring means.
  • the number of fine particles per unit time or unit volume is measured by passing ultrapure water through a plurality of fine particle number measuring means. Since the smallest one is adopted as the number of fine particles of the ultrapure water, it is possible to obtain fine particle number data having no or almost no influence of noise. Therefore, the water quality of the ultrapure water production facility can be managed with high accuracy, and the water quality trend can be managed with high accuracy.
  • the present invention relates to a method and apparatus for measuring the number of fine particles in ultrapure water (the number of fine particles in a unit volume or the number of fine particles counted per unit time).
  • the fine particles preferably have a particle size measured by a laser light scattering type fine particle meter of 0.2 ⁇ m or less and a detection lower limit value or more of the fine particle meter.
  • ultrapure water is water having a conductivity of 18.2 M ⁇ or more.
  • the present invention is suitable for measuring the number of fine particles of ultrapure water having a fine particle number of 5000 / L or less.
  • FIG. 2 is a flowchart showing an example of an ultrapure water production apparatus.
  • ultrapure water is raw water (industrial water, city water, wells) in an ultrapure water production facility composed of a pretreatment device 1, a primary pure water production device 2, and an ultrapure water production device (subsystem) 3. Manufactured by treating water, etc.).
  • the pretreatment device 1 comprising agglomeration, pressurized flotation (precipitation), filtration (membrane filtration) device, etc. removes suspended substances and colloidal substances in raw water. In this process, it is also possible to remove high molecular organic substances, hydrophobic organic substances, and the like.
  • the primary pure water production apparatus 2 equipped with a reverse osmosis membrane separation device, a deaeration device, and an ion exchange device (such as a mixed bed type or a 4-bed, 5-tower type) removes ions and organic components from raw water.
  • the reverse osmosis membrane separation apparatus removes salts and ionic and colloidal TOC.
  • the ion exchange apparatus removes salts and removes the TOC component adsorbed or ion exchanged by the ion exchange resin.
  • inorganic carbon (IC) and dissolved oxygen are removed.
  • the primary pure water from the primary pure water production apparatus 2 is passed from the tank 11 to the heat exchanger 13 by the pump 12 in the ultrapure water production apparatus 3, and then the ultraviolet (UV) irradiation apparatus (low-pressure UV oxidation in FIG. 2).
  • Device) 14 ion exchange device 15 and ultrafiltration (UF) membrane separation device 16 to produce ultrapure water.
  • UV irradiation apparatus low-pressure UV oxidation in FIG. 2
  • Device 14 ion exchange device 15 and ultrafiltration (UF) membrane separation device 16 to produce ultrapure water.
  • TOC is decomposed to an organic acid and further to CO 2 by 185 nm UV emitted from a UV lamp.
  • Organic substances and CO 2 produced by the decomposition are removed by the ion exchange device 15 at the subsequent stage.
  • the UF membrane separation device 16 the fine particles are removed, and the outflow particles of the ion exchange resin are also removed.
  • the ultrapure water obtained in this way is supplied to the use point 4 through the pipe 17, and surplus ultrapure water is returned to the tank 11 through the pipe 18.
  • Use point 4 indicates a place where ultrapure water is used, and may include piping, nozzles, and the like as appropriate in addition to a cleaning device for cleaning an object (for example, a semiconductor). Note that the ultrapure water used at the use point 4 is appropriately collected as drainage.
  • Part of the ultrapure water from the UF membrane separation device 16 is supplied to the first particle counter 31 and the particle counter 32 via a pipe 20 branched from the pipe 17 and pipes 21 and 22 further branched from the pipe 20, respectively. Supply separately and measure the number of fine particles.
  • the first fine particle meter 31 is referred to as a fine particle meter A
  • the second fine particle meter 32 is referred to as a fine particle meter B.
  • a flow meter is provided on the downstream side of the particle meters A and B, respectively.
  • the inner surfaces of the pipes 20, 21, and 22 are lined with fluororesin.
  • the fine particle meters A and B are preferably of a laser light scattering type.
  • the laser beam is preferably selected from a wavelength range of 532 to 808 nm.
  • Ultra DI20 Ultra DI-20
  • Ultra DI50 Ultra DI-50 manufactured by Particle Measuring Systems, Inc., located in United States 5475 Airport Boulevard Boulder, CO 80301, can be used, but not limited thereto.
  • the fine particle meters A and B are configured to detect the fine particles by flowing the sample water so as to cross the light beam of the laser light and detecting the scattered light by the fine particles with a photodiode.
  • the detection circuit of the particle counter generates a pulse signal every time one particle is detected.
  • the fine particle meter outputs the number of pulses per unit time, but the number of pulses per unit time is divided by the flow rate per unit time to obtain an ultrapure water per unit volume (for example, 1 L).
  • the number of fine particles may be calculated and output.
  • the unit time is preferably a time selected from 5 to 600 seconds, and in the examples described later, 60 seconds (1 minute) is adopted.
  • the particle count data signals detected by these particle meters A and B are respectively input to the comparison circuit as shown in FIG. 3, and the smaller number of particles per unit time is output as the number of particles to control the water quality of the ultrapure water production facility. Data.
  • FIG. 2 two particle meters A and B are provided, but three or more particle meters are provided, and the minimum number of particles detected from the three or more particle meters is output from the particle comparison circuit. You may do it.
  • the pipes 21 and 22 connected to the particle analyzers A and B are connected to the pipe 20 branched from the pipe 17, but the pipes 21 and 22 may be directly connected to the pipe 17. .
  • An apparatus for measuring the number of fine particles in ultrapure water includes a measuring means for measuring the number of fine particles of 2 or more, and ultrapure water flow means for flowing ultrapure water separately to each measuring means. .
  • the measurement results are compared to determine whether the measuring device is abnormal or faulty. For example, when one measuring device counts many fine particles but the other one does not count, it can be determined that one of them is abnormal. In this case, by separately measuring the number of fine particles in ultrapure water using a highly reliable method such as a microscopic method, it is possible to determine which measuring device has an abnormality / failure and to determine whether there is an abnormality / failure. It is possible to replace the measuring device.
  • Particle measuring devices with different particle size ranges (measurement ranges) (for example, when using Particle Measuring Systems particle counters UDI-50 and UDI-20, the number of fine particles present in each particle size range is known. When an increase in fine particles is recognized, it is possible to use and analyze this information to search for the cause and plan a solution.
  • ultrapure water was produced at 15 m 3 / hr.
  • a part of the ultrapure water from the UF membrane separation device 16 was passed through the pipes 20, 21, 22 to the particle counters A and B, respectively, and the number of particles was measured.
  • the particle counters A and B are of a laser beam scattering system with a wavelength of 808 nm, and are of the same model (lower limit of measurement particle size 0.05 ⁇ m) of a domestic manufacturer.
  • Fig. 1 shows a time chart of the particle detection pulses of the particle counters A and B. It should be noted that the number of pulses after 107 minutes of the particle counter A is considerably larger than that of the particle counter B, and the data after 107 minutes of the particle counter A of FIG. Table 1 shows the number of detected particles per minute between 100 and 139 minutes of the particle counters A and B.
  • the fine particle detection pulses per minute are 0 or 1 for both fine particle meters A and B, and the comparison circuit is 1 / min (both A and B). 1 / min.) Or 0 / min. (Other cases) is output as the particle count data.
  • the comparison circuit outputs the number of detected particles of the particle counter B as particle number data.
  • the average number of fine particles was 1/20 min, and 0.05 / min per minute. Since the amount of water passing through the particle meters A and B was 0.00375 L / min (3.75 ml / min), the number of particles per liter of ultrapure water was 13 particles / L.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

 超純水中の微粒子数を精度よく検出することができる微粒子数の測定方法及び装置を提供する。2以上の微粒子測定手段A,Bによって、超純水中の微粒子数を測定する方法及び装置であって、各微粒子測定手段にそれぞれ超純水を流通させ、単位時間又は単位体積当りの微粒子数をそれぞれ測定し、それぞれの測定値の最も低い値を超純水中の微粒子数として採用する。この方法及び装置を用いて超純水製造装置のトレンド管理を行う。

Description

超純水中の微粒子数の測定方法及び装置
 本発明は、超純水中の微粒子数を測定するための方法及び装置に係り、特にノイズによる誤差を小さくするようにした微粒子数の測定方法及び装置に関する。
 超純水中の微粒子数をオンラインで測定(カウント)する装置として、レーザー散乱を応用した微粒子計(パーティクルカウンター)が利用されている(特許文献1)。
 レーザー散乱を応用した微粒子計は、振動、宇宙線、自己ノイズ等による影響でフォトディテクターが誤検値を起こしやすい事が知られている。レーザー散乱を応用した微粒子計は、セルの汚れによるノイズ等により、実際に微粒子を検出しているか、ノイズにより誤検知を起こしているかの区別をつける必要がある。レーザー散乱を応用した微粒子計によって、トレンド管理をする場合、微粒子の急な上昇やハンチングが微粒子計のノイズによる影響か否かを判別する必要がある。
 特許文献2には、空気中の粒子を光ビームを横断させ、2個のフォトダイオードで散乱光を検出し、いずれのフォトダイオードも粒子を検出するときには粒子を検出したものとし、一方のフォトダイオードのみが粒子を検出するときには、ノイズと扱う方法が記載されている。図4はこの特許文献2の方法の説明図である。空気は流入ノズル41から吐出され、光ビームを通過して排出ノズル42に吸引されて排出される。この空気中の粒子によって散乱された散乱光は、集光レンズ50を介して第1フォトダイオード51又は第2フォトダイオード52に集光され、検出される。
 時刻tにあっては、粒子は光ビーム内のうち流入側ノズル近くに位置しており、このときの散乱光は第1フォトダイオード51に集光される。時刻がΔtだけ進行し、時刻t+Δtとなったときには、粒子は光ビーム内の排出ノズル42側にまで進行しており、このときの散乱光は第2フォトダイオード52に集光される。
 第1フォトダイオード51が時刻tを含む所定の時間帯に粒子を検出し、第2フォトダイオード52が時刻t+Δtを含む所定の時間帯に粒子を検出するときには、粒子を検出したものとする。フォトダイオード51,52の一方のみが粒子を検出するときには、ノイズによるものと扱う。
特開2008-241584 特開平5-149866
 上記特許文献2の方法は、空気中の粒子を検出する場合のものであり、これを超純水中の微粒子検出に適用しても精度よく微粒子を検出することはできない。即ち、空気中及び水中の微粒子はいずれもブラウン運動を行うが、水中にあっては空気中に比べて微粒子のブラウン運動速度が格段に大きく、図4の時刻tにおいて光ビーム内に存在した微粒子であっても、時刻t+Δtに必らずしも排出ノズル42側に進行するとは限らない。そのため、実際には超純水中に微粒子が存在するにもかかわらず、第1のフォトダイオード51のみが微粒子を検出し、第2のフォトダイオード52は微粒子を検出しないこともあり、微粒子検出誤差が大きくなる。
 本発明は、かかる問題点を解決し、超純水中の微粒子数を精度よく検出することができる超純水中の微粒子数の測定方法及び装置並びにこの測定装置を備えた超純水製造装置を提供することを目的とする。
 本発明の超純水中の微粒子数の測定方法は、2以上の微粒子数の測定手段にそれぞれ別々に超純水を流通させ、単位時間又は単位体積当りの微粒子数をそれぞれ測定する工程と、それぞれの測定値の最も低い値を超純水中の微粒子数として採用する工程とを有する。
 微粒子数の測定手段としては、レーザー光の光散乱方式の微粒子数の測定装置が好ましい。
 本発明の超純水中の微粒子数の測定装置は、超純水中の微粒子数を測定する2以上の測定手段と、各測定手段にそれぞれ超純水を流通させる超純水流通手段と、各測定手段で検出される単位時間又は単位体積当りの微粒子数を比較し、最も低い値を出力する比較手段とを備える。
 本発明の別態様の超純水中の微粒子数の測定装置は、2以上の微粒子数の測定手段と、各測定手段にそれぞれ別々に超純水を流通させる超純水流通手段とを備える。
 本発明の超純水製造設備は、かかる微粒子数測定装置を水質監視手段として備える。
 本発明の超純水中の微粒子数の測定方法及び装置によると、超純水を複数の微粒子数の測定手段に通水して微粒子数を測定し、単位時間又は単位体積当りの微粒子数が最も小さいものを当該超純水の微粒子数として採用するので、ノイズの影響が全く又は殆どない微粒子数データを得ることができる。従って、超純水製造設備の水質を精度よく管理することができ、精度よく水質のトレンドを管理することができる。
実施例の結果を示すチャートである。 超純水製造システムのフロー図である。 実施の形態に係る微粒子測定装置のブロック図である。 従来例の説明図である。
 以下、実施の形態について説明する。
 本発明は、超純水中の微粒子数(単位体積中の微粒子の数又は単位時間当りにカウントされる微粒子の数)を測定する方法及び装置に関する。本発明では、微粒子は、好ましくはレーザー光散乱方式の微粒子計によって測定した粒径が0.2μm以下でかつ微粒子計の検出下限値以上のものである。
 本発明では、超純水とは、導電率18.2MΩ以上の水である。本発明は微粒子数5000個/L以下の超純水の微粒子数測定に好適である。
 図2は超純水製造装置の一例を示すフロー図である。図示の通り、超純水は、前処理装置1、一次純水製造装置2、超純水製造装置(サブシステム)3から構成される超純水製造設備で原水(工業用水、市水、井水等)を処理することにより製造される。
 凝集、加圧浮上(沈殿)、濾過(膜濾過)装置などよりなる前処理装置1は、原水中の懸濁物質やコロイド物質の除去を行う。また、この過程では高分子系有機物、疎水性有機物などの除去も可能である。
 逆浸透膜分離装置、脱気装置及びイオン交換装置(混床式又は4床5塔式など)を備える一次純水系製造装置2では、原水中のイオンや有機成分の除去を行う。なお、逆浸透膜分離装置では、塩類を除去すると共に、イオン性、コロイド性のTOCを除去する。イオン交換装置では、塩類を除去すると共にイオン交換樹脂によって吸着又はイオン交換されるTOC成分の除去を行う。脱気装置では無機系炭素(IC)、溶存酸素の除去を行う。
 一次純水製造装置2からの一次純水は、超純水製造装置3において、タンク11からポンプ12により熱交換器13に通水され、次いで紫外線(UV)照射装置(図2では低圧UV酸化装置)14、イオン交換装置15及び限外濾過(UF)膜分離装置16で処理されて、超純水が製造される。低圧UV酸化装置14では、UVランプより出される185nmのUVによりTOCを有機酸、さらにはCOまで分解する。分解により生成した有機物及びCOは後段のイオン交換装置15で除去される。UF膜分離装置16では、微粒子が除去され、イオン交換樹脂の流出粒子も除去される。
 このようにして得られた超純水は、配管17よりユースポイント4に送給され、余剰の超純水が配管18よりタンク11に戻される。
 ユースポイント4は超純水の使用場所を示し、対象物(例えば半導体)を洗浄するための洗浄装置の他、適宜配管やノズル類等を含んでもよい。なお、ユースポイント4で使用された超純水は、適宜排水として回収される。
 このUF膜分離装置16からの超純水の一部を、配管17から分岐した配管20と、該配管20からさらに分岐した配管21,22を介して第1微粒子計31及び微粒子計32にそれぞれ別々に供給し、微粒子数を測定する。以下、第1の微粒子計31を微粒子計Aといい、第2の微粒子計32を微粒子計Bという。
 図示は省略するが、微粒子計A,Bの下流側にはそれぞれ流量計が設けられている。配管20,21,22の内面はフッ素樹脂ライニングされている。
 本態様においては、微粒子計A,Bは同一機種を用いる必要がある。微粒子計A,Bは、レーザー光の光散乱方式のものが好ましい。レーザー光としては、波長が532~808nmの範囲から選ばれたものが好ましい。微粒子計としては、アメリカ合衆国5475 Airport Blvd Boulder,CO 80301所在のParticle Measuring Systems社製のUltra DI20(UDI-20)、Ultra DI50(UDI-50)などを用いることができるが、これに限定されない。
 微粒子計A,Bは、レーザー光の光束を横断するように試料水を流し、微粒子による散乱光をフォトダイオードで検出して微粒子を検出するよう構成されている。微粒子計の検出回路は、1個の微粒子を検出する度に1パルスの信号を発生させる。微粒子計は、この実施の形態では、単位時間当りのパルス数を出力しているが、単位時間当りのパルス数を単位時間当りの流量で除算して超純水単位体積(例えば1L)当りの微粒子数を演算して出力してもよい。この単位時間としては、5~600秒の間から選定された時間であることが好ましく、後述の実施例では60秒(1分)が採用されている。
 これらの微粒子計A,Bの検出した微粒子数データ信号を図3の通り比較回路にそれぞれ入力し、単位時間当りの微粒子数が少ない方を微粒子数として出力し、超純水製造設備の水質管理データとする。
 このように、2台の微粒子計A,Bの検出微粒子数のうち小さい方を微粒子数とすることにより、ノイズの影響のない微粒子数データを得ることができ、超純水製造装置のトレンド管理を精度良く行うことができる。
 図2では、2台の微粒子計A,Bを設けているが、3台以上の微粒子計を設け、3台以上の微粒子計の検出微粒子数のうち最小の微粒子数を微粒子比較回路から出力させるようにしてもよい。また、図2では微粒子計A,Bそれぞれに接続されている配管21,22は、配管17より分岐した配管20に接続されているが、配管21,22は配管17に直接接続してもよい。
 本発明の一態様に係る超純水中の微粒子数の測定装置は、2以上の微粒子数の測定手段と、各測定手段にそれぞれ別々に超純水を流通させる超純水流通手段とを備える。
 この測定装置として、同一(同じ機種)の粒径範囲の粒子測定装置を用いた場合には、それぞれの測定結果を比較することで、当該測定装置の異常・故障の判定を行う。例えば、1台の測定装置が多くの微粒子をカウントするのに、他の1台はカウントしない場合には、どちらかが異常と判断できる。この場合には、別途、顕鏡法などの信頼性の高い方法で超純水中の微粒子数を測定することで、どの測定装置に異常・故障があるかを判断し、異常・故障のある測定装置を取り換えることが可能となる。
 異なる粒径範囲(測定レンジ)の粒子測定装置(例えば、Particle Measuring Systemsのパーティクルカウンター UDI-50及びUDI-20を用いた場合には、それぞれの粒径範囲に存在する微粒子の数がわかるため、微粒子の増加が認められた場合には、これらの情報を利用・解析することで、原因の探求、解決策の立案に用いることが可能となる。
 図2に示す超純水製造設備において、超純水を15m/hrにて製造した。UF膜分離装置16からの超純水の一部を配管20,21,22を介して各微粒子計A,Bにそれぞれ流し、微粒子数を測定した。微粒子計A,Bは、波長808nmのレーザー光の散乱方式のものであり、国内メーカーの同一機種(測定下限粒径0.05μm)のものである。
 微粒子計A,Bの微粒子検出パルスのタイムチャートを図1に示す。なお、微粒子計Aの107分以降のパルス数は微粒子計Bに比べてかなり多く、図1の微粒子計Aの107分以降のデータは模式的となっている。微粒子計A,Bの100~139分の間の1分毎の検出微粒子数を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1及び図1に示す通り、0~107分の間は1分当りの微粒子検出パルスは微粒子計A,Bいずれも0又は1個であり、比較回路は1個/min(A,Bいずれも1個/minを出力する場合)又は0個/min(その他の場合)を微粒子数データとして出力する。107~250分の間は、しばしば、微粒子計Aの検出微粒子数が微粒子計Bよりも著しく多くなっている。これはノイズによるものと考えられる。この間、比較回路は、微粒子計Bの検出微粒子数を微粒子数データとして出力する。
 これにより、ノイズの影響を排除して、超純水の水質を正しく管理することができた。微粒子数は、平均すると1個/20minであり、1分当りでは0.05個/minであった。微粒子計A,Bの通過水量は0.00375L/min(3.75ml/min)であるため、超純水1L当りの微粒子数は13個/Lであった。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2013年10月31日付で出願された日本特許出願2013-226926に基づいており、その全体が引用により援用される。

Claims (8)

  1.  超純水中の微粒子数を測定する方法であって、
     2以上の微粒子数の測定手段にそれぞれ別々に超純水を流通させ、単位時間又は単位体積当りの微粒子数をそれぞれ測定する工程と、
     それぞれの測定値の最も低い値を超純水中の微粒子数として採用する工程と
    を有する微粒子数の測定方法。
  2.  請求項1において、前記微粒子数の測定手段はレーザー光の光散乱方式の微粒子数の測定装置であることを特徴とする微粒子数の測定方法。
  3.  請求項1又は2において、前記単位時間は5~600秒の間から選定された時間であることを特徴とする微粒子数の測定方法。
  4.  超純水中の微粒子数を測定する2以上の測定手段と、
     各測定手段にそれぞれ超純水を流通させる超純水流通手段と、
     各測定手段で検出される単位時間又は単位体積当りの微粒子数を比較し、最も低い値を出力する比較手段と
    を備えてなる超純水中の微粒子数の測定装置。
  5.  請求項4において、前記微粒子数の測定手段はレーザー光の光散乱方式の微粒子数の測定装置であることを特徴とする微粒子数の測定装置。
  6.  請求項4又は5において、前記単位時間は5~600秒の間から選定された時間であることを特徴とする微粒子数の測定装置。
  7.  2以上の微粒子数の測定手段と、
     各測定手段にそれぞれ別々に超純水を流通させる超純水流通手段と
    を備えてなる超純水中の微粒子数の測定装置。
  8.  請求項4ないし7のいずれか1項に記載の微粒子数の測定装置を水質監視手段として備えた超純水製造設備。
PCT/JP2014/078736 2013-10-31 2014-10-29 超純水中の微粒子数の測定方法及び装置 WO2015064628A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015545260A JP6477487B2 (ja) 2013-10-31 2014-10-29 超純水中の微粒子数の測定方法及び装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013226926 2013-10-31
JP2013-226926 2013-10-31

Publications (1)

Publication Number Publication Date
WO2015064628A1 true WO2015064628A1 (ja) 2015-05-07

Family

ID=53004228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078736 WO2015064628A1 (ja) 2013-10-31 2014-10-29 超純水中の微粒子数の測定方法及び装置

Country Status (3)

Country Link
JP (1) JP6477487B2 (ja)
TW (1) TW201531688A (ja)
WO (1) WO2015064628A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018047442A1 (ja) * 2016-09-12 2018-03-15 ソニー株式会社 微小粒子測定装置及び微小粒子測定方法
WO2018105462A1 (ja) * 2016-12-08 2018-06-14 東京エレクトロン株式会社 信号処理方法及びプログラム
KR20180123663A (ko) * 2016-03-25 2018-11-19 쿠리타 고교 가부시키가이샤 초순수 제조 시스템
JP2020153948A (ja) * 2019-03-22 2020-09-24 野村マイクロ・サイエンス株式会社 微粒子測定システムの洗浄方法及び超純水製造システム
WO2022264584A1 (ja) * 2021-06-14 2022-12-22 オルガノ株式会社 微粒子測定装置とこれを備えた超純水製造装置、及び微粒子測定方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6415634A (en) * 1987-07-09 1989-01-19 Agency Ind Science Techn Apparatus for measuring distribution of diameter of particle in mist by instantaneous evaporating method
JPH0611433A (ja) * 1992-06-25 1994-01-21 Hitachi Electron Eng Co Ltd 微粒子計測装置及び微粒子検出方法
JPH0743300A (ja) * 1993-07-27 1995-02-14 Hitachi Ltd 微粒子計測装置
JPH10104150A (ja) * 1996-09-26 1998-04-24 Rion Co Ltd 液中粒子検出装置
JP2003161688A (ja) * 2001-11-26 2003-06-06 Kurita Water Ind Ltd 粒子状態検出用プローブおよび凝集モニタ装置
JP2008241584A (ja) * 2007-03-28 2008-10-09 Kurita Water Ind Ltd 超純水中の微粒子数の測定方法及び装置
WO2009074943A1 (en) * 2007-12-12 2009-06-18 Koninklijke Philips Electronics N.V. Device for characterizing a size distribution of electrically-charged airborne particles in an air flow
JP2012154634A (ja) * 2011-01-21 2012-08-16 Kurita Water Ind Ltd 非再生型イオン交換樹脂装置の破過時期予測方法及び保守方法
JP2012213700A (ja) * 2011-03-31 2012-11-08 Kurita Water Ind Ltd 高温水のろ過性能評価装置およびろ過方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6415634A (en) * 1987-07-09 1989-01-19 Agency Ind Science Techn Apparatus for measuring distribution of diameter of particle in mist by instantaneous evaporating method
JPH0611433A (ja) * 1992-06-25 1994-01-21 Hitachi Electron Eng Co Ltd 微粒子計測装置及び微粒子検出方法
JPH0743300A (ja) * 1993-07-27 1995-02-14 Hitachi Ltd 微粒子計測装置
JPH10104150A (ja) * 1996-09-26 1998-04-24 Rion Co Ltd 液中粒子検出装置
JP2003161688A (ja) * 2001-11-26 2003-06-06 Kurita Water Ind Ltd 粒子状態検出用プローブおよび凝集モニタ装置
JP2008241584A (ja) * 2007-03-28 2008-10-09 Kurita Water Ind Ltd 超純水中の微粒子数の測定方法及び装置
WO2009074943A1 (en) * 2007-12-12 2009-06-18 Koninklijke Philips Electronics N.V. Device for characterizing a size distribution of electrically-charged airborne particles in an air flow
JP2012154634A (ja) * 2011-01-21 2012-08-16 Kurita Water Ind Ltd 非再生型イオン交換樹脂装置の破過時期予測方法及び保守方法
JP2012213700A (ja) * 2011-03-31 2012-11-08 Kurita Water Ind Ltd 高温水のろ過性能評価装置およびろ過方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180123663A (ko) * 2016-03-25 2018-11-19 쿠리타 고교 가부시키가이샤 초순수 제조 시스템
KR102287709B1 (ko) 2016-03-25 2021-08-06 쿠리타 고교 가부시키가이샤 초순수 제조 시스템
WO2018047442A1 (ja) * 2016-09-12 2018-03-15 ソニー株式会社 微小粒子測定装置及び微小粒子測定方法
JPWO2018047442A1 (ja) * 2016-09-12 2019-07-18 ソニー株式会社 微小粒子測定装置及び微小粒子測定方法
US10690583B2 (en) 2016-09-12 2020-06-23 Sony Corporation Microparticle measuring device and microparticle measuring method
WO2018105462A1 (ja) * 2016-12-08 2018-06-14 東京エレクトロン株式会社 信号処理方法及びプログラム
JPWO2018105462A1 (ja) * 2016-12-08 2019-10-24 東京エレクトロン株式会社 信号処理方法及びプログラム
JP2020153948A (ja) * 2019-03-22 2020-09-24 野村マイクロ・サイエンス株式会社 微粒子測定システムの洗浄方法及び超純水製造システム
WO2020195510A1 (ja) * 2019-03-22 2020-10-01 野村マイクロ・サイエンス株式会社 微粒子測定システムの洗浄方法及び超純水製造システム
WO2022264584A1 (ja) * 2021-06-14 2022-12-22 オルガノ株式会社 微粒子測定装置とこれを備えた超純水製造装置、及び微粒子測定方法

Also Published As

Publication number Publication date
JPWO2015064628A1 (ja) 2017-03-09
TW201531688A (zh) 2015-08-16
JP6477487B2 (ja) 2019-03-06

Similar Documents

Publication Publication Date Title
JP6477487B2 (ja) 超純水中の微粒子数の測定方法及び装置
JP6973801B2 (ja) 流れ及び気泡検出システムを有する自動出力制御液体粒子計数器
JPWO2008047926A1 (ja) ろ過水監視装置及びろ過水監視システム
JP2001170458A (ja) 膜浄水処理における膜破断とファウリングの検出方法
EP2572739A1 (de) Vorrichtung zur Erzeugung von Reinstwasser
WO2014156694A1 (ja) 微粒子測定方法及び微粒子測定システム並びに超純水製造システム
Troester et al. Laser-Induced Breakdown-Detection for reliable online monitoring of membrane integrity
JP6825724B2 (ja) 水質プロファイルの作成方法、分離膜モジュールの検査方法及び水処理装置
Wang et al. Micro-bubbles enhanced breakage warning for hollow fiber membrane integrity with a low-cost real-time monitoring device
US8991235B2 (en) Method of testing membranes and membrane-based systems
US20050228610A1 (en) Method and device for measuring fine particles in ultrapure water
JP2013193004A (ja) 純水製造方法
JP2005087949A (ja) 膜ろ過装置の膜損傷の検知方法およびそのための装置
JP4591702B2 (ja) 膜処理装置及び膜損傷検知方法
JP4713905B2 (ja) 膜ろ過装置の膜破断検知方法および装置
JPH10128086A (ja) 膜処理システムの異常検知方法および制御方法
CN108226015A (zh) 一种新型液体颗粒计数方法及系统
US11549879B2 (en) Membrane integrity monitoring in water treatment
WO2022264584A1 (ja) 微粒子測定装置とこれを備えた超純水製造装置、及び微粒子測定方法
JP5168952B2 (ja) 膜ろ過装置の運転方法及び膜ろ過装置
Ebie et al. New measurement principle and basic performance of high-sensitivity turbidimeter with two optical systems in series
JP2001124692A (ja) 微粒子計測装置
JP6943119B2 (ja) 膜モジュールの評価方法、評価装置および超純水製造装置
JPH0321309A (ja) 供給ラインのフィルタ監視装置
JP7163991B1 (ja) 水質測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14856981

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015545260

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14856981

Country of ref document: EP

Kind code of ref document: A1