WO2015064509A1 - ポジ型感光性樹脂組成物、それを用いた膜の製造方法および電子部品 - Google Patents
ポジ型感光性樹脂組成物、それを用いた膜の製造方法および電子部品 Download PDFInfo
- Publication number
- WO2015064509A1 WO2015064509A1 PCT/JP2014/078394 JP2014078394W WO2015064509A1 WO 2015064509 A1 WO2015064509 A1 WO 2015064509A1 JP 2014078394 W JP2014078394 W JP 2014078394W WO 2015064509 A1 WO2015064509 A1 WO 2015064509A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- photosensitive resin
- positive photosensitive
- resin composition
- general formula
- Prior art date
Links
- 0 Cc1ccc(C(*)(C(F)(F)F)C(F)(F)F)cc1 Chemical compound Cc1ccc(C(*)(C(F)(F)F)C(F)(F)F)cc1 0.000 description 3
- SQJVWXMOEPVFED-UHFFFAOYSA-N CS(c1cccc(C2=O)c1C=CC2=N)(=O)=O Chemical compound CS(c1cccc(C2=O)c1C=CC2=N)(=O)=O SQJVWXMOEPVFED-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/022—Quinonediazides
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/075—Silicon-containing compounds
- G03F7/0757—Macromolecular compounds containing Si-O, Si-C or Si-N bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/04—Polysiloxanes
- C08G77/14—Polysiloxanes containing silicon bound to oxygen-containing groups
- C08G77/16—Polysiloxanes containing silicon bound to oxygen-containing groups to hydroxyl groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/04—Polysiloxanes
- C08G77/14—Polysiloxanes containing silicon bound to oxygen-containing groups
- C08G77/18—Polysiloxanes containing silicon bound to oxygen-containing groups to alkoxy or aryloxy groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
- C08L83/04—Polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
- C08L83/04—Polysiloxanes
- C08L83/06—Polysiloxanes containing silicon bound to oxygen-containing groups
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D183/00—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
- C09D183/04—Polysiloxanes
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/133345—Insulating layers
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/0046—Photosensitive materials with perfluoro compounds, e.g. for dry lithography
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/0048—Photosensitive materials characterised by the solvents or agents facilitating spreading, e.g. tensio-active agents
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/022—Quinonediazides
- G03F7/023—Macromolecular quinonediazides; Macromolecular additives, e.g. binders
- G03F7/0233—Macromolecular quinonediazides; Macromolecular additives, e.g. binders characterised by the polymeric binders or the macromolecular additives other than the macromolecular quinonediazides
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/039—Macromolecular compounds which are photodegradable, e.g. positive electron resists
- G03F7/0392—Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/16—Coating processes; Apparatus therefor
- G03F7/168—Finishing the coated layer, e.g. drying, baking, soaking
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
- G03F7/2051—Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source
- G03F7/2053—Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a laser
- G03F7/2055—Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a laser for the production of printing plates; Exposure of liquid photohardening compositions
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/26—Processing photosensitive materials; Apparatus therefor
- G03F7/30—Imagewise removal using liquid means
- G03F7/32—Liquid compositions therefor, e.g. developers
- G03F7/322—Aqueous alkaline compositions
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/26—Processing photosensitive materials; Apparatus therefor
- G03F7/40—Treatment after imagewise removal, e.g. baking
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
- H01L21/0271—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/84—Passivation; Containers; Encapsulations
- H10K50/844—Encapsulations
Definitions
- the present invention relates to a positive photosensitive resin composition, a film production method using the same, and an electronic component.
- an interlayer insulating film is provided to insulate between wirings arranged in layers. Since these interlayer insulating film materials need to form a hole pattern for conduction while ensuring insulation between layers, generally a positive photosensitive material is used, and typical materials are And a composition obtained by adding a quinonediazide compound to an acrylic resin (Patent Documents 1 and 2).
- the touch panel system has been widely used for flat panel displays.
- transparent electrode members such as ITO.
- Heat treatment and film formation are required.
- the protective film and insulating film of the transparent electrode are also required to have heat resistance against high temperature processing.
- the acrylic resin has insufficient heat resistance, and it is colored when the substrate is processed at high temperature or when a transparent electrode is formed, and the transparency of the resin is lowered, or the conductivity of the electrode is lowered by degassing. There is.
- a polysiloxane compound is known as a material having both high heat resistance and high transparency, and a positive photosensitive composition obtained by adding a quinonediazide compound to this is known (Patent Document 3).
- Patent Document 3 a positive photosensitive composition obtained by adding a quinonediazide compound to this is known.
- These materials have high heat resistance, and a decrease in transparency is small even by high-temperature treatment of the substrate, and a highly transparent film can be obtained.
- these materials have a problem of low solubility and developability in an alkali developer, and there is an increasing demand for polysiloxane compounds having alkali developability that can be finely processed by exposure.
- Patent Document 4 a component that constitutes a positive resist composition in which a polysiloxane compound into which an acidic group such as a phenol group or a carboxyl group is introduced in order to impart alkali solubility necessary for development can create a high-resolution resist pattern. It is disclosed as.
- a method for imparting alkali solubility to the polysiloxane compound introduction of an acidic group is effective as described above, and a phenol group, a carboxyl group, a silanol group, a fluorocarbinol group, and the like are given as typical examples.
- a positive photosensitive resin composition containing a polysiloxane compound having a phenolic hydroxy group or a carboxyl group and a photoacid generator or a quinonediazide compound is known (Patent Documents 5 to 8).
- polysiloxane compounds when used as components of the composition, the solubility and developability in an alkali developer can be ensured, but since they have phenolic hydroxy groups and carboxyl groups, they are low in transparency and colored at high temperatures. Has a problem.
- polysiloxane compounds having silanol groups if the amount of silanol groups in the molecule is large, there will be problems with film properties such as water loss and cracking due to film loss and condensation reactions, while silanol content is low. When the amount is small, there is a problem that sufficient alkali solubility cannot be secured.
- the fluorocarbinol group is effective from the viewpoint of imparting alkali solubility to the polysiloxane compound without impairing transparency and film physical properties.
- a hexafluoroisopropanol group (2-hydroxy-1,1 , 1,3,3,3-fluoroisopropyl group: —C (CF 3 ) 2 OH) is known to be particularly suitable.
- Patent Document 9 discloses that a polysiloxane compound into which a hexafluoroisopropanol group is introduced via a linear, branched or cyclic aliphatic hydrocarbon group is useful as a component of a composition having alkali developability. Has been.
- this polysiloxane compound has a hexafluoroisopropanol group bonded to a silicon atom via an aliphatic hydrocarbon group formed by a hydrosilylation reaction, and the portion of the aliphatic hydrocarbon group is thermally decomposed at high temperature. For this reason, there is a problem that the heat resistance is not sufficient.
- an object of the present invention is to provide a positive photosensitive resin composition of a polysiloxane compound that has a developability in an alkaline aqueous solution and can provide a patterned cured film having excellent heat resistance and heat transparency. That is. Moreover, the objective of this invention is providing the electronic component which has the pattern cured film as a surface protective layer or an interlayer insulation layer.
- the present inventors have intensively studied. As a result, when a positive photosensitive resin composition containing at least a polysiloxane compound having a specific structure in the molecule, a photoacid generator or a quinonediazide compound, and a solvent was prepared, a film formed using the same was obtained.
- the present invention has been found out to have both alkali developability and heat-resistant transparency.
- the present invention includes the following [Invention 1] to [Invention 15].
- each X is independently a hydrogen atom or an acid labile group, and a is an integer of 1 to 5.
- component (B) a photoacid generator or a quinonediazide compound
- component (C) a solvent
- a positive photosensitive resin composition comprising at least
- the positive photosensitive resin composition according to any one of Inventions 1 to 5, wherein the polysiloxane compound as the component (A) is a polysiloxane compound further comprising a structural unit represented by the general formula (2).
- R Y are independently of each other a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, a phenyl group, an alkoxy group having 1 to 3 carbon atoms, or a fluoroalkyl group having 1 to 3 carbon atoms
- p is an integer of 0 to 3
- q is an integer of 1 to 4
- p + q 4.
- the polysiloxane compound (A) is a polysiloxane compound containing 0.1 to 10 units of the structural unit represented by the general formula (2) with respect to 1 unit of the structural unit represented by the general formula (1).
- invention 9 The positive photosensitive resin composition according to any one of inventions 1 to 8, further comprising one or more selected from the group consisting of a surfactant, a silane coupling agent and a dissolution inhibitor.
- invention 10 A positive photosensitive resin film obtained from the positive photosensitive resin composition of any one of inventions 1 to 9.
- invention 11 A step of applying and drying the positive photosensitive resin composition according to any one of the inventions 1 to 9 on a substrate to form a positive photosensitive resin film, a step of exposing the positive photosensitive resin film, and an exposure;
- the manufacturing method of a pattern cured film including the process of developing the said positive photosensitive resin film
- invention 14 The electronic component which has a pattern cured film obtained by the manufacturing method of the invention 11 as a surface protective layer or an interlayer insulation layer.
- invention 15 A step of applying and drying the positive photosensitive resin composition according to any one of the inventions 1 to 9 on a substrate to form a positive photosensitive resin film, a step of exposing the positive photosensitive resin film, and an exposure; And a subsequent step of developing the positive photosensitive resin film with an alkaline aqueous solution to form a pattern resin film.
- the present invention it is possible to provide a positive photosensitive resin composition capable of forming a patterned cured film having high heat-resistant transparency and alkali developability. Moreover, the electronic component which has the pattern cured film as a surface protective layer or an interlayer insulation layer can be provided.
- 4 is a line pattern photograph of Composition 1-3 in Example 1-3 of the present invention.
- 3 is a hole pattern photograph of Composition 1-3 in Example 1-3 of the present invention.
- 4 is a line pattern photograph of Composition 1-4 in Example 1-4 of the present invention.
- 4 is a hole pattern photograph of Composition 1-4 in Example 1-4 of the present invention.
- 3 is a hole pattern photograph of Composition 2-3 in Example 2-3 of the present invention.
- 4 is a hole pattern photograph of Composition 2-4 in Example 2-4 of the present invention.
- 4 is a hole pattern photograph of the composition 3-1 in Example 3-1 of the present invention. It is a hole pattern photograph of composition 3-2 in Example 3-2 of the present invention.
- 3 is a hole pattern photograph of Composition 3-3 in Example 3-3 of the present invention.
- It is a hole pattern photograph of composition 3-4 in Example 3-4 of the present invention.
- a polysiloxane compound as component (A), a photoacid generator or quinonediazide compound as component (B), a solvent as component (C), and a positive photosensitive resin containing at least components (A) to (C) A composition, a film obtained from the composition, and an electronic component having the film will be described in order.
- the polysiloxane compound which is the component (A) according to the present invention includes a polysiloxane compound containing at least the structural unit represented by the general formula (1) (hereinafter sometimes referred to as “polysiloxane compound (1)”). It is.
- R X is a group represented by the following formula, if R X there are a plurality, R X may be the same or different from each other.
- X is a hydrogen atom or an acid labile group, and when a plurality of Xs are present, Xs may be the same as or different from each other.
- a is an integer of 1 to 5.
- R 1 is a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, a phenyl group, a hydroxy group, an alkoxy group having 1 to 3 carbon atoms or a fluoroalkyl group having 1 to 3 carbon atoms, and a plurality of R 1 groups. When there is one, R 1 may be the same as or different from each other.
- b is an integer from 1 to 3
- m is an integer from 0 to 2
- n is an integer from 1 to 3
- b + m + n 4.
- Examples of the alkyl group having 1 to 3 carbon atoms in R 1 include a methyl group, an ethyl group, a propyl group, and an isopropyl group. Of these, a methyl group is preferable.
- Examples of the alkoxy group having 1 to 3 carbon atoms in R 1 include a methoxy group, an ethoxy group, a propoxy group, and an isopropoxy group. Of these, a methoxy group and an ethoxy group are preferable.
- the fluoroalkyl group having 1 to 3 carbon atoms in R 1 is an alkyl group having 1 to 3 carbon atoms in which some or all of the hydrogen atoms are substituted with fluorine atoms.
- Specific examples include trifluoromethyl group, perfluoroethyl group, perfluoropropyl group, 2,2,2-trifluoroethyl group, 3,3,3-trifluoropropyl group and the like. Not. Of these, a trifluoromethyl group and a 3,3,3-trifluoropropyl group are preferable.
- R 1 is preferably a methyl group, a phenyl group, a methoxy group, an ethoxy group, or a hydroxy group from the viewpoint of easy availability of raw materials.
- On / 2 is generally used as a notation of a polysiloxane compound.
- n is 1, and formula (1-2) is n is 2 and Formula (1-3) represents the case where n is 3.
- R X has the same meaning as R X in the general formula (1)
- R a, R b has the same meaning as R X or R 1 each independently formula (1).
- a line segment intersecting with the wavy line represents the coupling position.
- a —C (CF 3 ) 2 OX group is directly introduced into an aromatic ring site bonded to a silicon atom.
- X in the —C (CF 3 ) 2 OX group may be a hydrogen atom or an acid labile group.
- the polysiloxane compound (1) according to the present invention exhibits good solubility in an alkaline developer, and the positive photosensitive resin composition of the present invention containing this as a component and The resulting film also exhibits good solubility in an alkaline developer. If the solubility of the polysiloxane compound (1) in the alkali developer is too high than desired, the content of the —C (CF 3 ) 2 OX group is adjusted to be small, or the quinonediazide compound as the component (B) Can suppress the solubility with respect to an alkali developing solution, and can suppress the film loss in the image development process.
- the quinonediazide compound is decomposed by releasing nitrogen molecules upon exposure and forming carboxylic acid groups in the molecules, so that it becomes soluble in an alkali developer.
- the photosensitive resin composition containing a quinonediazide compound suppresses the solubility of the photosensitive resin composition film in an alkaline developer at an unexposed portion and improves the solubility in an alkaline developer at an exposed portion.
- a positive pattern can be formed.
- the polysiloxane compound (1) according to the present invention when X is an acid labile group is more soluble in an alkaline developer than the polysiloxane compound (1) according to the present invention when X is a hydrogen atom. Therefore, the solubility of the positive photosensitive resin composition of the present invention containing this as a component and a film obtained therefrom is also low. Accordingly, in the present invention, when X is an acid labile group, it is possible to suppress the film loss of the film of the present invention with respect to an alkaline developer in the development step. This acid labile group is decomposed and eliminated by the action of an acid. As a result, film loss in the unexposed area can be suppressed, and alkali development can be performed by imparting alkali solubility only to the exposed area.
- the type of the acid labile group is not particularly limited. Specific examples include an alkoxycarbonyl group, an acetal group, a silyl group, and an acyl group, but are not limited thereto.
- Examples of the alkoxycarbonyl group include a tert-butoxycarbonyl group, a tert-amyloxycarbonyl group, a methoxycarbonyl group, an ethoxycarbonyl group, and an i-propoxycarbonyl group.
- methoxymethyl group methoxymethyl group, ethoxyethyl group, butoxyethyl group, cyclohexyloxyethyl group, benzyloxyethyl group, phenethyloxyethyl group, ethoxypropyl group, benzyloxypropyl group, phenethyloxypropyl group, ethoxybutyl group, An ethoxyisobutyl group etc. are mentioned.
- silyl group examples include trimethylsilyl group, ethyldimethylsilyl group, methyldiethylsilyl group, triethylsilyl group, i-propyldimethylsilyl group, methyldi-i-propylsilyl group, tri-i-propylsilyl group, tert-butyl.
- examples thereof include a dimethylsilyl group, a methyldi-tert-butylsilyl group, a tri-tert-butylsilyl group, a phenyldimethylsilyl group, a methyldiphenylsilyl group, and a triphenylsilyl group.
- acyl group examples include acetyl, propionyl, butyryl, heptanoyl, hexanoyl, valeryl, pivaloyl, isovaleryl, laurylyl, myristoyl, palmitoyl, stearoyl, oxalyl, malonyl, and succinyl.
- the tert-butoxycarbonyl group can be suitably used because it can be easily removed by decomposition into gas 2-methylpropene and carbon dioxide by heat treatment. .
- the solubility of the exposed area in an alkaline developer depends on the content of hexafluoroisopropanol groups in the polysiloxane compound according to the present invention.
- the content is not particularly limited as long as alkali solubility can be imparted to the positive photosensitive resin composition of the present invention and a film obtained therefrom.
- the polysiloxane compound according to the present invention preferably has 0.1 to 5 hexafluoroisopropanol groups per one silicon atom.
- the polysiloxane compound (1) according to the present invention includes a polysiloxane compound (1) in which at least one X in the general formula (1) is a hydrogen atom, and a polysiloxane compound in which at least one X is an acid labile group (1) can also be used in combination. By using these compounds in combination, the contrast of the alkali dissolution rate can be adjusted.
- the compounding ratio in the case of using these compounds together is not specifically limited, Arbitrary compounding ratios are employable.
- the mass average molecular weight of the polysiloxane compound according to the present invention is not particularly limited. It is preferable that it is 1000 or more and 200000 or less, More preferably, it is 2000 or more and 100000 or less.
- the mass average molecular weight is a value obtained by measuring by a gel permeation chromatography (GPC) method and converting from a standard polystyrene calibration curve.
- GPC gel permeation chromatography
- the mass average molecular weight is lower than 1000, the film physical properties may be adversely affected, for example, when the film of the present invention is formed, cracks occur at high temperatures.
- the mass average molecular weight is higher than 200000, it will be described later ( In some cases, the solubility of the component C) in the solvent may be low, or the solution viscosity may be too high.
- the polysiloxane compound used in the present invention is not particularly limited as long as it has at least the structural unit represented by the general formula (1). From the viewpoint of ease of production, a polysiloxane compound in which a is 1 to 3 is preferable. Specific examples include those in which R X in the general formula (1) is represented by any of the following. In the formula, each X independently represents a hydrogen atom or an acid labile group.
- a is preferably 1 to 2.
- R X is represented by any of the following can be exemplified.
- b is preferably 1 from the viewpoint of ease of production. Also in this case, those in which a is 1 to 3 are preferred, and those in which a is 1 to 2 are particularly preferred.
- the polysiloxane compound containing the structural unit represented by the general formula (1) according to the present invention is represented by the general formula (2) for the purpose of adjusting physical properties such as heat resistance and solubility in an alkali developer. Further structural units may be included.
- R Y may be the same or different from each other.
- O q / 2 in the general formula (2) is generally used as a notation of a polysiloxane compound.
- q in the general formula (2) is 1
- Formula (2-2) represents the case where q is 2
- Formula (2-3) represents q
- Formula (2-4) represents q.
- q is 1, it is located at the end of the polysiloxane chain in the polysiloxane compound.
- R Y has the same meaning as R Y in the general formula (2).
- a line segment intersecting with the wavy line represents the coupling position.
- Examples of the alkyl group having 1 to 3 carbon atoms in R Y include a methyl group, an ethyl group, a propyl group, and an isopropyl group. Of these, a methyl group is preferable.
- Examples of the alkoxy group having 1 to 3 carbon atoms in R Y include a methoxy group, an ethoxy group, a propoxy group, and an isopropoxy group. Of these, a methoxy group and an ethoxy group are preferable.
- the fluoroalkyl group having 1 to 3 carbon atoms in R Y is an alkyl group having 1 to 3 carbon atoms in which some or all of the hydrogen atoms are fluorinated.
- Specific examples include trifluoromethyl group, perfluoroethyl group, perfluoropropyl group, 2,2,2-trifluoroethyl group, 3,3,3-trifluoropropyl group and the like. Not. Of these, a trifluoromethyl group and a 3,3,3-trifluoropropyl group are preferable.
- R Y is preferably a hydrogen atom, a methyl group, a phenyl group, a methoxy group, or an ethoxy group from the viewpoint of availability of raw materials.
- the ratio of the structural unit represented by the general formula (1) and the structural unit represented by the general formula (2) is not particularly limited.
- the ratio of the structural unit represented by the general formula (2) to the structural unit represented by the general formula (1) is preferably 0.1 to 10 units, and more preferably 0.2 to 5 units. If it is less than 0.1 unit, the alkali solubility may be excessively high in the rear part of the dew, and if it exceeds 10 units, the alkali solubility may not be imparted.
- the polysiloxane compound which is the component (A) according to the present invention may include a structural unit represented by the general formula (1) and a structural unit represented by the general formula (2).
- the structural unit represented by the general formula (1) may include a structural unit in which X is a hydrogen atom and a structural unit in which X is an acid labile group.
- the manufacturing method of the polysiloxane compound containing at least the structural unit represented by the general formula (1) is not particularly limited.
- a compound in which X is a hydrogen atom can be obtained by hydrolytic condensation using at least the compound represented by the general formula (3).
- R 1, R X, b , m, n is an R 1, R X respectively general formula (1), b, m, and n synonymous.
- R 2 is an alkoxy group having 1 to 3 carbon atoms, and when a plurality of R 2 are present, R 2 may be the same as or different from each other.
- One type of the compound represented by the general formula (3) may be hydrolyzed and condensed alone, or a plurality of types may be used in combination.
- the silane compound represented by the general formula (4) may be combined and subjected to hydrolysis condensation.
- a single type of silane compound represented by the general formula (4) may be used, or two or more different types of compounds may be used in combination.
- a compound in which X is an acid labile group can be obtained by introducing an acid labile group into the hydrolysis condensate by the method described later.
- R Y, p , q is a respectively the same as R Y, p, q in formula (2)
- R Z is a chlorine atom or 1 to 3 alkoxy carbon atoms It is a group.
- R Z is not an alkoxy group having 1 to 3 carbon atoms. That is, a chlorine atom and an alkoxy group are not simultaneously bonded to the same silicon atom.
- the compound represented by the general formula (4) has an alkoxy group having 1 to 3 carbon atoms in the formula, tetramethoxysilane, tetraethoxysilane, trimethoxysilane, triethoxysilane, dimethyldimethoxysilane, diphenyl Dimethoxysilane, methylphenyldimethoxysilane, methyltrifluoromethyldimethoxysilane, methyl (3,3,3-trifluoropropyl) dimethoxysilane, di (3,3,3-trifluoropropyl) dimethoxysilane, dimethyldiethoxysilane, Methyltrifluoromethyldimethoxysilane, methyl (3,3,3-trifluoropropyl) diethoxysilane, di (3,3,3-trifluoropropyl) diethoxysilane, diphenyldiethoxysilane, methylphenyldiethoxysilane, methyl
- tetrachlorosilane When it has a chlorine atom in the formula, tetrachlorosilane, trichlorosilane, methyltrichlorosilane, phenyltrichlorosilane, dimethyldichlorosilane, diphenyldichlorosilane, methylphenyldichlorosilane, trimethylchlorosilane, triphenylchlorosilane and the like can be exemplified.
- the compound represented by the above general formula (3) is added to the compound represented by the above general formula (4) and subjected to hydrolysis condensation, whereby the polysiloxane compound according to the present invention is obtained.
- the content of the hexafluoroisopropanol group in the siloxane compound can be adjusted, whereby physical properties such as heat resistance and solubility in an alkali developer can be adjusted.
- the polysiloxane compound (1) in which X is a hydrogen atom further includes a structural unit represented by the general formula (2).
- a chlorosilane-based compound in which R Z is a chlorine atom is used as the silane compound represented by the general formula (12)
- this chlorosilane-based compound easily reacts with water, silanol or the like to form hydrochloric acid.
- this hydrochloric acid acts as an acid catalyst, it is not always necessary to add the catalyst.
- the reaction vessel is closed to prevent unreacted raw materials, water, acid catalyst or alkali catalyst, and reaction solvent in the reaction system from being distilled out of the reaction system.
- the reaction system is refluxed by using a system or attaching a condenser.
- the time required for the hydrolytic condensation depends on the type of catalyst, but is usually 3 hours to 24 hours, and the reaction temperature is room temperature to 180 ° C.
- the removal of water, alcohol, and catalyst may be performed by an extraction operation, or a solvent that does not adversely influence the reaction, such as toluene, may be added to the reaction system and removed azeotropically with a Dean-Stark tube.
- the amount of water to be used is not particularly limited, but is represented by a molar ratio with respect to reactive groups contained in the silicon compound as a starting material, that is, alkoxy groups and chlorine atoms. And 0.5 mol or more and 5.0 mol or less are preferable.
- the acid catalyst or base catalyst is not particularly limited as long as it acts on hydrolysis and condensation of alkoxysilane. Specifically, hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, boric acid, acetic acid, trifluoroacetic acid, trifluoromethanesulfonic acid, formic acid, oxalic acid, maleic acid, benzenesulfonic acid or tosylic acid, sodium hydroxide, potassium hydroxide Etc. can be illustrated. These catalysts are not particularly limited as long as they use an amount allowing the hydrolysis condensation reaction to proceed, that is, a so-called catalyst amount.
- the reaction solvent used for the hydrolysis and condensation reaction is not particularly limited. Among these, from the viewpoint of solubility in the raw material compound, water, and catalyst, a polar solvent is preferable, and an alcohol solvent is more preferable.
- the alcohol solvent is not particularly limited. Specific examples include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol and the like.
- it is not always necessary to use a reaction solvent, and the raw material compound, water, and catalyst can be mixed and hydrolyzed and condensed as described above. It may be preferable not to use a reaction solvent from the viewpoint of obtaining a high molecular weight polysiloxane compound or from the viewpoint of production.
- an acid labile group into the hydrolysis condensate of the general formula (3)
- a conventionally known general method for introducing an acid labile group into an alcohol compound can be employed.
- an acid labile group can be introduced by reacting a dialkyl dicarbonate compound or an alkoxycarbonylalkyl halide with a hydrolysis condensate of the general formula (3) in a solvent in the presence of a base.
- a method for introducing a tert-butoxycarbonyl group that can be easily deprotected by heat treatment and is preferably used will be described.
- di-tert-butyl dicarbonate of the same molar amount or more is added, and pyridine, triethylamine, N, N It can be obtained by reacting in a solvent in the presence of a base such as dimethylaminopyridine.
- the solvent to be used is not particularly limited as long as it can dissolve the compound to be added to the above reaction system and does not adversely influence the reaction. Specifically, for example, toluene, xylene, pyridine and the like are preferable.
- reaction temperature and reaction time vary depending on the type of base used, the reaction temperature is usually from room temperature to 180 ° C., and the reaction time is from 1 hour to 24 hours.
- di-tert-butyl dicarbonate is distilled off to obtain a polysiloxane compound (1) in which X is a tert-butoxycarbonyl group.
- the positive photosensitive resin composition of the present invention contains a photoacid generator or a quinonediazide compound as the component (B).
- the photoacid generator is not particularly limited as long as it is a compound that generates an acid by light irradiation. It is preferable to select a resist pattern that can give sufficient contrast to the developed resist pattern. Specifically, sulfonium salt, iodonium salt, sulfonyldiazomethane, N-sulfonyloxyimide or oxime-O-sulfonate can be exemplified. These photoacid generators may be used alone or in combination of two or more.
- the photosensitive resin composition containing a quinonediazide compound has a solubility contrast with an alkali developer at an unexposed portion and an exposed portion, and can form a positive pattern.
- a naphthoquinone diazide compound in which naphthoquinone diazide sulfonic acid is ester-bonded to a compound having at least a phenolic hydroxy group is used.
- naphthoquinone diazide sulfonic acid is added to a compound in which the ortho-position and para-position of the phenolic hydroxy group are each independently a hydrogen atom, a hydroxy group or a substituent represented by the general formula (5).
- An ester-linked naphthoquinonediazide compound is exemplified.
- R c , R d , and R e in the general formula (5) each independently represent any of an alkyl group having 1 to 10 carbon atoms, a carboxyl group, a phenyl group, and a substituted phenyl group.
- the alkyl group having 1 to 10 carbon atoms may be either unsubstituted or substituted.
- Specific examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, n-hexyl group, cyclohexyl group, n-heptyl group, n -Octyl group, trifluoromethyl group, 2-carboxyethyl group and the like.
- examples of the substituent of the substituted phenyl group include a hydroxy group and a methoxy group.
- the number of these substituents and the substitution position are not particularly limited.
- naphthoquinone diazide compounds can be synthesized by a known esterification reaction between a compound having at least a phenolic hydroxy group and naphthoquinone diazide sulfonic acid chloride.
- the compound having at least a phenolic hydroxy group include the following compounds.
- Me represents a methyl group
- t-Bu represents a tert-butyl group (hereinafter the same in this specification).
- naphthoquinone diazide sulfonic acid chloride 4-naphthoquinone diazide sulfonic acid chloride or 5-naphthoquinone diazide sulfonic acid chloride represented by the following structural formula can be used.
- a compound synthesized by an esterification reaction of 4-naphthoquinone diazide sulfonic acid chloride and the compound having at least the phenolic hydroxy group may be referred to as “4-naphthoquinone diazide sulfonic acid ester compound”.
- a compound synthesized by an esterification reaction of 5-naphthoquinonediazidesulfonic acid chloride with the compound having at least the phenolic hydroxy group may be referred to as “5-naphthoquinonediazidesulfonic acid chloride”.
- the 4-naphthoquinonediazide sulfonic acid ester compound has absorption in the i-line (wavelength 365 nm) region and is suitable for i-line exposure. Further, the 5-naphthoquinonediazide sulfonic acid ester compound has absorption in a wide range of wavelengths, and therefore is suitable for exposure in a wide range of wavelengths.
- the quinonediazide compound according to the present invention is preferably selected from the 4-naphthoquinonediazidesulfonic acid ester compound or the 5-naphthoquinonediazidesulfonic acid ester compound depending on the wavelength to be exposed.
- the 4-naphthoquinone diazide sulfonic acid ester compound and the 5-naphthoquinone diazide sulfonic acid ester compound may be mixed and used.
- each D independently represents a hydrogen atom or the following functional group.
- at least one of D in the molecular structure represents the following functional group.
- the addition amount of the photoacid generator or quinonediazide compound as the component (B) according to the present invention is not particularly limited.
- a photo-acid generator As a component, Preferably it is 0.01 to 30 mass parts with respect to 100 mass parts of polysiloxane compounds which are (A) components, More preferably 0.1 parts by mass or more and 20 parts by mass or less, more preferably 0.5 parts by mass or more and 10 parts by mass or less.
- the content of the photoacid generator is less than 0.01 parts by mass, it may be difficult to give sufficient contrast to the pattern after development.
- the photoacid generator is present. May reduce transparency.
- the addition amount is preferably 1 to 50 parts by mass, more preferably 2 to 30 parts by mass with respect to 100 parts by mass of the polysiloxane compound as the component (A).
- the addition amount of the quinonediazide compound is less than 1 part by mass, the dissolution contrast between the exposed part and the unexposed part is too low, and it may be difficult to develop photosensitivity suitable for practical use. 2 parts by mass or more is particularly preferable.
- the addition amount of the quinonediazide compound is more than 50 parts by mass, whitening of the coating film due to poor compatibility between the polysiloxane compound and the quinonediazide compound occurs, or coloring by the quinonediazide compound occurs.
- the transparency of the film of the positive photosensitive resin composition of the present invention to be described later may be lowered. In order to obtain a highly transparent film, 30 parts by mass or less is particularly preferable.
- the kind of the solvent which is the component (C) according to the present invention is not particularly limited as long as it can dissolve the polysiloxane compound of the component (A) and the photoacid generator or the quinonediazide compound of the component (B).
- Specific examples include cyclohexanone, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, cyclohexanone, ethyl lactate, ⁇ -butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide or N-methylpyrrolidone. However, it is not limited to these.
- the concentration when the polysiloxane compound (A) of the present invention and the photoacid generator or quinonediazide compound (B) of the present invention are dissolved in the solvent (C) is not particularly limited.
- the mass ratio of the component (A) to the total amount of the positive photosensitive resin composition of the present invention is preferably 5% by mass to 50% by mass, and more preferably 10% by mass to 40% by mass. .
- concentration is high, a thick film can be formed in the film formation of the positive photosensitive resin composition of the present invention described later.
- the positive photosensitive resin composition of the present invention is prepared by mixing at least a polysiloxane compound as component (A), a photoacid generator as component (B) or a quinonediazide compound, and a solvent as component (C). Can be prepared.
- the mixing method is not particularly limited. It is preferable that (A) component and (B) component are melt
- additives may be added to the positive photosensitive resin composition of the present invention as necessary.
- surfactants commonly used to improve film formability such as coating properties, defoaming properties, and leveling properties
- silane coupling agents commonly used to improve adhesiveness.
- a dissolution inhibitor commonly used to increase the difference in dissolution rate between the exposed and unexposed areas.
- the amount of these additives can be a normal amount as long as the effects of the present invention are not hindered.
- the positive photosensitive resin composition of the present invention may contain one or more of these additives.
- the surfactant is preferably nonionic, and examples thereof include perfluoroalkyl polyoxyethylene ethanol, fluorinated alkyl ester, perfluoroalkylamine oxide, and fluorine-containing organosiloxane compounds.
- Silane coupling agents include methyltrimethoxysilane, methyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxy.
- the dissolution inhibitor may be an acid labile group having a mean molecular weight of 100 to 1,000, preferably 150 to 800, and a hydrogen atom of the phenolic hydroxyl group of a compound having two or more phenolic hydroxyl groups in the molecule.
- the compounds substituted by can be used.
- the substitution rate of the hydrogen atom of the phenolic hydroxyl group by the acid labile group is 20 mol% or more and 100 mol% or less, preferably 30 mol% or more and 100 mol% or less of the entire phenolic hydroxyl group.
- dissolution inhibitor examples include di-tert-butoxycarbonylresorcin, di-tert-butoxycarbonylphloroglucin, 2,4-di-tert-butoxycarbonyloxybenzophenone, 2,3,4-tri -Tert-butoxycarbonyloxybenzophenone, 2,2 ', 4,4'-tetra-tert-butoxycarbonyloxybenzophenone, 4,4'-di-tert-butoxycarbonyloxydiphenylsulfone, tris (4-tert-butoxycarbonyl Oxyphenyl) methane, di-tert-butoxycarbonylhydroquinone, 4,4 ⁇ -di-tert-butoxycarbonyloxybiphenyl, di-tert-butoxycarbonylbisphenol A, di-tert-butoxycarbonylbisph It can be exemplified a protected phenols by tert- butoxycarbonyl group such as Nord F
- the positive photosensitive resin composition of the present invention can be developed using an alkaline solution. Furthermore, by using the above-described photosensitive resin composition, it is possible to form a patterned cured film having high heat resistance and transparency.
- the method for producing a patterned cured film from the positive photosensitive resin composition of the present invention includes, for example, a step of forming a positive photosensitive resin film by applying and drying the positive photosensitive resin composition on a substrate (positive Type photosensitive resin film forming step), exposing the positive type photosensitive resin film (exposure step), and developing the exposed positive type photosensitive resin film with an alkaline solution to form a pattern resin film A step (developing step) and a step of heating the pattern resin film (heating step).
- the positive photosensitive resin composition of the present invention can be applied onto a substrate to form a film (hereinafter sometimes referred to as “positive photosensitive resin film”).
- the substrate may be selected according to the use of the film to be formed.
- a semiconductor substrate such as a silicon wafer or a ceramic substrate, a glass substrate, a metal substrate, a plastic substrate, or the like is used.
- a solution coating method can be used. Specifically, for example, a bar coater, a spin coater, or a roll coater can be used for coating on a substrate. After application, drying is performed to remove the solvent from the coating film.
- the drying method is not particularly limited, but it is preferable to dry by heating.
- the heating temperature at this time is not particularly limited, but depends on the solvent used. Usually, it is preferably heated at 60 ° C. or higher and 150 ° C. or lower, and more preferably 80 ° C. or higher and 140 ° C. or lower.
- This coating film (positive type photosensitive resin film) is exposed to light with a light shielding plate (mask) having a desired shape to form a desired pattern, and then the exposed part is washed and removed with an alkaline developer.
- a film having a desired pattern shape hereinafter sometimes referred to as “pattern resin film”.
- the positive photosensitive resin film obtained from the positive photosensitive resin composition of the present invention contains a photoacid generator or a quinonediazide compound as a component of the composition.
- a photoacid generator or a quinonediazide compound as a component of the composition.
- an acid is generated from the photoacid generator present in the exposed area when a photoacid generator is included, and a quinonediazide present in the exposed area when a quinonediazide compound is included.
- the compound decomposes by releasing nitrogen molecules, and a carboxylic acid group is generated in the molecule. Due to the action of these acid or carboxylic acid groups, the permeability and solubility in an alkaline developer are improved.
- a positive pattern can be formed by exposing the positive photosensitive resin film and washing the exposed positive photosensitive resin film with an alkali developer.
- a known method can be used for the exposure.
- the light source include a low-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a KrF excimer laser (wavelength 248 nm), an ArF excimer laser (wavelength 193 nm), and the like.
- the exposure amount can be adjusted according to the amount of photoacid generator used, the production process, and the like, and is not particularly limited, but is about 1 to 10000 mJ / cm 2 , preferably 10 to 5000 mJ / cm 2. It is preferable that it is a grade.
- post-exposure heating can be performed before the development process.
- the post-exposure heating temperature is preferably 60 to 180 ° C.
- the post-exposure heating time is preferably 1 to 30 minutes.
- the development of the positive photosensitive resin film of the present invention after exposure can be performed using an alkaline solution as a developer.
- the alkaline developer is not particularly limited as long as it can remove the positive photosensitive resin film at the exposed site by a predetermined developing method. Specific examples include an alkaline aqueous solution using an inorganic alkali, primary amine, secondary amine, tertiary amine, alcohol amine, quaternary ammonium salt, and a mixture thereof.
- alkaline aqueous solutions such as potassium hydroxide, sodium hydroxide, ammonia, ethylamine, diethylamine, triethylamine, triethanolamine, and tetramethylammonium hydroxide (abbreviation: TMAH) can be given.
- TMAH tetramethylammonium hydroxide
- it is preferable to use a TMAH aqueous solution and it is particularly preferable to use a TMAH aqueous solution of 0.1% by mass to 5% by mass, more preferably 2% by mass to 3% by mass.
- a known method such as a dipping method, a paddle method, or a spray method can be used.
- the development time is usually from 0.1 minutes to 3 minutes, and from 0.5 minutes to 2 minutes. It is preferable. Thereafter, washing, rinsing, drying, and the like are performed as necessary to form a target pattern film (hereinafter referred to as “pattern resin film”) on the substrate.
- pattern resin film a target pattern film
- the patterned resin film of the present invention is formed by condensing an alkoxy group or silanol group remaining as an unreactive group in the polysiloxane compound of component (A), and the polysiloxane compound has an acid labile group.
- heat treatment is preferably performed.
- heating temperature in this case, 80 degreeC or more and 400 degrees C or less are preferable, and 100 degreeC or more and 350 degrees C or less are more preferable. If the heating temperature is low, acid labile groups, alkoxy groups and silanol groups may remain, and if the heating temperature is too high, polysiloxane compounds may be thermally decomposed or cracks may occur in the film. There is.
- a desired patterned cured film hereinafter, sometimes referred to as “pattern cured film” can be formed on the substrate.
- the patterned cured film of the present invention can maintain high transparency even after the above heat treatment.
- the patterned cured film of the present invention has excellent transparency and heat resistance, and can be particularly suitably used as a surface protective film and an interlayer insulating film for organic EL (Electro Luminescence) display devices, touch panels and liquid crystal display devices. .
- the patterned cured film of the present invention can also be applied to microlenses.
- the positive type photosensitive resin composition of the present invention can easily form a cured pattern film as described above. For this reason, a laminated body can be easily formed by forming a layered pattern cured film on a substrate as described above.
- the electronic component of the present invention has a patterned cured film formed by the above-described manufacturing method as an interlayer insulating layer or a surface protective layer.
- the pattern cured film can be used as a surface protective layer or interlayer insulating layer of a semiconductor device, an interlayer insulating layer of a multilayer wiring board, or the like. It can be particularly suitably used as a surface protective film or interlayer insulating film for organic EL display devices, touch panels, and liquid crystal display devices.
- the electronic component of the present invention is not particularly limited except that it has a surface protective film and an interlayer insulating film formed using the above-described photosensitive resin composition, and shows various cross-sectional structures.
- the obtained diisopropyl ether solution was washed three times with an aqueous solution containing a small amount of sodium chloride. Next, activated carbon was added to the solution, stirred, and allowed to stand for 12 hours. Next, activated carbon was filtered off from the same solution through a celite column, magnesium sulfate was added, the mixture was stirred, allowed to stand for 3 hours, and then diisopropyl ether was distilled off. Further, the obtained reaction product was distilled under reduced pressure under the conditions of a temperature of 120 ° C. to 160 ° C. and a pressure of 180 Pa to obtain 3,5-di (2-hydroxy-1,1,1,1 represented by the formula (6).
- Weight average molecular weight The polysiloxane compounds prepared in the following examples and comparative examples were prepared using gel permeation chromatography (GPC, manufactured by Tosoh Corporation, HLC-8320GPC, solvent: tetrahydrofuran), and the mass average molecular weight (Mw) was calculated in terms of polystyrene. Calculated.
- thermogravimetric measurement (TGA, manufactured by Rigaku Corporation, type TG8120) was performed.
- TGA thermogravimetric measurement
- T d5 thermal decomposition temperature
- Example 1-1 In a 50 mL flask, 3,5-di (2-hydroxy-1,1,1,3,3,3-hexafluorofluoroisopropyl) -1-triethoxysilylbenzene, 8.59 g (15 mmol), water, 0 .81 g (45 mmol), acetic acid and 0.045 g (0.75 mmol) were added, and the mixture was stirred at 100 ° C. for 12 hours. After completion of the reaction, toluene is added and refluxed (bath temperature 150 ° C.), thereby distilling off water, generated ethanol and acetic acid, and finally distilling off toluene to obtain polysiloxane compound 1-1. 64 g was obtained.
- T d5 was 388 ° C.
- a composition 1-2 was prepared in the same manner as in Example 1-1 except that the polysiloxane compound 1-2 was used in place of the polysiloxane compound 1.
- Example 1-3 In a 50 mL flask, 3,5-di (2-hydroxy-1,1,1,3,3,3-hexafluoroisopropyl) -1-triethoxysilylbenzene, 4.58 g (8 mmol), phenyltrimethoxysilane 6.35 g (32 mmol), water, 2.16 g (120 mmol), acetic acid, 0.12 g (2 mmol) were added, and the mixture was stirred at 100 ° C. for 12 hours. After completion of the reaction, toluene is added and refluxed (bath temperature 150 ° C.), thereby distilling off water, generated ethanol and acetic acid, and finally distilling off toluene to obtain 8.
- a composition 1-3 was prepared in the same manner as in Example 1-1 except that the polysiloxane compound 1-3 was used instead of the polysiloxane compound 1-1.
- Example 1-4 In a 50 mL flask, 4- (2-hydroxy-1,1,1,3,3,3-hexafluoroisopropyl) -1-triethoxysilylbenzene, 5.59 g (13.75 mmol), phenyltrimethoxysilane, 2.23 g (11.25 mmol), water, 1.35 g (75 mmol), acetic acid, 0.075 g (1.25 mmol) were added, and the mixture was stirred at 100 ° C. for 12 hours.
- a composition 1-4 was prepared in the same manner as in Example 1-1 except that the polysiloxane compound 1-4 was used instead of the polysiloxane compound 1-1.
- Example 2-1 To 0.3 g of the polysiloxane compound 1-1 obtained in Example 1-1, 0.06 g of quinonediazide compound PC-5 (manufactured by Toyo Gosei Co., Ltd.) and 1.2 g of cyclohexanone are added and dissolved. Thus, a composition 2-1 was prepared.
- Example 2-2 A composition 2-2 was prepared in the same manner as in Example 2-1, except that the polysiloxane compound 1-2 obtained in Example 1-2 was used instead of the polysiloxane compound 1-1.
- Example 2-3 A composition 2-3 was prepared in the same manner as in Example 2-1, except that the polysiloxane compound 1-3 obtained in Example 1-3 was used instead of the polysiloxane compound 1-1.
- Example 2-4 A composition 2-4 was prepared in the same manner as in Example 2-1, except that the polysiloxane compound 1-4 obtained in Example 1-4 was used instead of the polysiloxane compound 1-1.
- Example 1-1 The same method as in Example 1-1, except that the polysiloxane compound 3-1 was used instead of the polysiloxane compound 1-1, and 0.1 g of the photoacid generator CPI-100TF represented by the formula (8) was used. Thus, a composition 3-1 was prepared.
- a comparative composition 1 was prepared in the same manner as in Example 1 except that the comparative polysiloxane compound 1 was used instead of the polysiloxane compound 1-1.
- Comparative composition 2 was prepared in the same manner as in Example 1-1 except that comparative polysiloxane compound 2 was used instead of polysiloxane compound 1-1.
- Comparative composition 3 was prepared in the same manner as in Example 1-1 except that comparative polysiloxane compound 3 was used instead of polysiloxane compound 1-1.
- TMAH tetramethylammonium hydroxide
- RDA-790 Resist Developer Analyzer Model RDA-790 (manufactured by RISOTEC JAPAN).
- the test method is to immerse the positive photosensitive resin film on the silicon wafer in TMAH aqueous solution for 3 minutes, dissolve the positive photosensitive resin film and remove it from the silicon wafer, and remove the remaining film. The state which was not able to be made was set as x.
- Examples 3-1 to 3-4 in addition to the above solubility test, a similar positive photosensitive resin film was formed on a silicon wafer, and an exposure device (MUV-351U, manufactured by MORITEX) was installed. The positive-type photosensitive resin film was exposed for 10 minutes and then subjected to a solubility test in the same manner as described above. The test results obtained are shown in Table 2.
- TMAH tetramethylammonium hydroxide
- Resist Developer Analyzer Model RDA-790 manufactured by Risotech Japan Co., Ltd.
- the upper positive photosensitive resin film was immersed for 3 minutes. Then, it washed with water and dried.
- the film thickness of the remaining positive photosensitive resin film after completion of a series of processes was measured, and a value obtained by subtracting the remaining film thickness from the initial film thickness was defined as a film reduction amount (unit: nm).
- the obtained film loss values are shown in Table 2.
- the positive photosensitive resin film prepared from the compositions 1-1 to 2-4 and the comparative compositions 1 and 2 was immersed in an alkali developer for 3 minutes, and then dissolved, leaving no residual film.
- the positive-type photosensitive resin film prepared from the compositions 3-1 to 3-4 was hardly dissolved even after being immersed in an alkali developer for 3 minutes and remained in the film. I understood.
- the positive photosensitive resin film prepared from the compositions 3-1 to 3-4 shows solubility in an alkali developer when exposed for 10 minutes by the above test method, and after immersion for 3 minutes. Did not leave any film.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Optics & Photonics (AREA)
- Theoretical Computer Science (AREA)
- Nonlinear Science (AREA)
- General Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mathematical Physics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Human Computer Interaction (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Materials For Photolithography (AREA)
- Silicon Polymers (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
Description
(A)成分として、一般式(1)で表される構造単位を少なくとも含むポリシロキサン化合物、
(B)成分として、光酸発生剤もしくはキノンジアジド化合物、および
(C)成分として、溶剤、
を少なくとも含む、ポジ型感光性樹脂組成物。
一般式(1)のRXにおけるaが1~3である、発明1のポジ型感光性樹脂組成物。
一般式(1)におけるbが1である、発明1乃至3のいずれかのポジ型感光性樹脂組成物。
一般式(1)におけるnが3である、発明4のポジ型感光性樹脂組成物。
(A)成分のポリシロキサン化合物が、一般式(2)で表される構造単位をさらに含むポリシロキサン化合物である、発明1乃至5のいずれかのポジ型感光性樹脂組成物。
(A)成分のポリシロキサン化合物が、一般式(1)で表される構造単位1単位に対して、一般式(2)で表される構造単位を0.1~10単位含むポリシロキサン化合物である、発明6のポジ型感光性樹脂組成物。
一般式(1)におけるnが3である、発明6または7のポジ型感光性樹脂組成物。
界面活性剤、シランカップリング剤および溶解阻止剤からなる群から選ばれる一種以上をさらに含む、発明1乃至8のいずれかのポジ型感光性樹脂組成物。
発明1乃至9のいずれかのポジ型感光性樹脂組成物から得られるポジ型感光性樹脂膜。
発明1乃至9のいずれかのポジ型感光性樹脂組成物を基板上に塗布および乾燥してポジ型感光性樹脂膜を形成する工程と、前記ポジ型感光性樹脂膜を露光する工程と、露光後の前記ポジ型感光性樹脂膜をアルカリ水溶液によって現像して、パターン樹脂膜を形成する工程と、前記パターン樹脂膜を加熱する工程とを含む、パターン硬化膜の製造方法。
発明11の製造方法により得られるパターン硬化膜。
発明11の製造方法により得られるパターン硬化膜と基板を少なくとも備える積層体。
発明11の製造方法により得られるパターン硬化膜を、表面保護層または層間絶縁層として有する電子部品。
発明1乃至9のいずれかのポジ型感光性樹脂組成物を基板上に塗布および乾燥してポジ型感光性樹脂膜を形成する工程と、前記ポジ型感光性樹脂膜を露光する工程と、露光後の前記ポジ型感光性樹脂膜をアルカリ水溶液によって現像してパターン樹脂膜を形成する工程とを含む、パターン樹脂膜を形成する方法。
本発明に係る(A)成分であるポリシロキサン化合物は、一般式(1)で表される構造単位を少なくとも含むポリシロキサン化合物(以下、「ポリシロキサン化合物(1)」と呼ぶことがある。)である。
一般式(3)で表される化合物は、1種類を単独で加水分解縮合してもよいし、複数種類を併用して加水分解縮合してもよい。
本発明のポジ型感光性樹脂組成物は、(B)成分として光酸発生剤またはキノンジアジド化合物を含有する。この光酸発生剤は、光照射により酸を発生する化合物であれば、特に限定されるものではない。現像後のレジストパターンに十分なコントラストを付与できるものを選択することが好ましい。具体的には、スルホニウム塩、ヨードニウム塩、スルホニルジアゾメタン、N-スルホニルオキシイミドまたはオキシム-O-スルホネートを例示することができる。これらの光酸発生剤は単独で使用してもよいし、2種類以上を併せて用いてもよい。市販品の具体例としては、商品名:Irgacure PAG121、Irgacure PAG103、Irgacure CGI1380、Irgacure CGI725(以上、米国BASF社製)、商品名:PAI-101,PAI-106、NAI-105、NAI-106、TAZ-110、TAZ-204(以上、みどり化学株式会社製)、商品名:CPI-200K、CPI-210S、CPI-101A、CPI-110A、CPI-100P、CPI-110P、CPI-100TF、HS-1、HS-1A、HS-1P、HS-1N、HS-1TF、HS-1NF、HS-1MS、HS-1CS、LW-S1、LW-S1NF(以上、サンアプロ株式会社製)、商品名:TFE-トリアジン、TME-トリアジンまたはMP-トリアジン(以上、株式会社三和ケミカル製)が挙げられるが、これらに限定されるものではない。
本発明に係る(C)成分である溶剤の種類は、(A)成分のポリシロキサン化合物および(B)成分の光酸発生剤もしくはキノンジアジド化合物を溶解させることができれば、特に限定されるものではない。具体的には、シクロヘキサノン、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、シクロヘキサノン、乳酸エチル、γーブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドまたはN-メチルピロリドン等を例示することができるが、これらに限定されるものではない。
本発明のポジ型感光性樹脂組成物は、少なくとも、(A)成分であるポリシロキサン化合物、(B)成分である光酸発生剤もしくはキノンジアジド化合物および(C)成分である溶剤を混合することによって調製することができる。混合方法については、特に限定されるものではない。(A)成分と(B)成分とが(C)成分である溶剤に溶解し、実質的に均一に分散していることが好ましい。
本発明のポジ型感光性樹脂組成物は、アルカリ性の溶液を用いて現像することが可能である。さらに、上述の感光性樹脂組成物を用いることにより、高い耐熱性と透明性を有するパターン硬化膜を形成することが可能となる。
本発明のポジ型感光性樹脂組成物は、基板上に塗布して膜(以下、「ポジ型感光性樹脂膜」と呼ぶことがある。)とすることができる。基板は、形成される膜の用途に応じて選択されればよく、例えば、シリコンウエハのような半導体基板またはセラミック基板や、ガラス製、金属製、プラスチック製の基板などが用いられる。この際の塗布方法としては、溶液塗布法を使用することができ、具体的に例えば、バーコーター、スピンコーターまたはロールコーターを使用して基板上に塗布することができる。塗布後、塗膜から溶剤を除去するために乾燥を行う。乾燥方法は特に限定されないが、加熱乾燥することが好ましい。この際の加熱の温度は、特に限定されるものではないが、使用する溶剤に依存する。通常は60℃以上150℃以下で加熱することが好ましく、さらに好ましくは、80℃以上140℃以下である。
この塗膜(ポジ型感光性樹脂膜)を目的のパターンを形成するための所望の形状の遮光板(マスク)で遮光して、露光し、その後、露光された部位をアルカリ現像液で洗浄除去することで、所望のパターン形状を有する膜(以下、「パターン樹脂膜」と呼ぶことがある。)を作成することができる。
露光を行った後の本発明のポジ型感光性樹脂膜の現像は、アルカリ性の溶液を現像液として用いて行うことができる。アルカリ現像液は、所定の現像法で露光部位のポジ型感光性樹脂膜を除去できるものであれば、特に限定されるものではない。具体的には、無機アルカリ、1級アミン、2級アミン、3級アミン、アルコールアミン、4級アンモニウム塩およびこれらの混合物を用いたアルカリ水溶液が挙げられる。より具体的には、水酸化カリウム、水酸化ナトリウム、アンモニア、エチルアミン、ジエチルアミン、トリエチルアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド(略称:TMAH)などのアルカリ水溶液が挙げられる。中でも、TMAH水溶液を用いることが好ましく、特に、0.1質量%以上5質量%以下、より好ましくは2質量%以上3質量%以下のTMAH水溶液を用いることが好ましい。現像法としては、浸漬法、パドル法、スプレー法等の公知の方法を用いることができ、現像時間は、通常0.1分間以上3分間以下で行い、0.5分間以上2分間以下で行うことが好ましい。その後、必要に応じて洗浄、リンス、乾燥などを行い、基板上に目的のパターン状の膜(以下、「パターン樹脂膜」)を形成させることができる。
現像後、本発明のパターン樹脂膜は、(A)成分のポリシロキサン化合物において未反応性基として残存するアルコキシ基やシラノール基を縮合させ、且つポリシロキサン化合物が酸不安定性基を有する場合にはこれを熱分解により除去するために加熱処理を施すことが好ましい。この際の加熱温度としては、80℃以上400℃以下が好ましく、100℃以上350℃以下がより好ましい。加熱温度が低いと、酸不安定性基、アルコキシ基やシラノール基が残存する可能性があり、加熱温度が高すぎるとポリシロキサン化合物の熱分解が生じたり、膜に亀裂(クラック)が入る可能性がある。この加熱処理により基板上に目的のパターン状の硬化膜(以下、「パターン硬化膜」と呼ぶことがある。)を形成させることができる。
本発明の電子部品は、上述の製造方法によって形成されるパターン硬化膜を層間絶縁層または表面保護層として有する。上記パターン硬化膜は、具体的には、半導体装置の表面保護層や層間絶縁層、多層配線板の層間絶縁層などとして使用することができる。有機EL表示装置、タッチパネルおよび液晶表示装置の表面保護膜や層間絶縁膜として特に好適に使用することができる。本発明の電子部品は、上述の感光性樹脂組成物を用いて形成される表面保護膜や層間絶縁膜を有すること以外は特に限定されず、様々な断面構造を示す。
以下の調製例で合成したケイ素化合物の構造解析は、共鳴周波数400MHzの核磁気共鳴装置(NMR、日本電子株式会社製、形式AL400)を使用し、1H-NMR、19F-NMR、13C-NMRまたは29Si-NMRを測定することにより行った。
[3,5-ジ(2-ヒドロキシ-1,1,1,3,3,3-ヘキサフルオロイソプロピル)-1-トリエトキシシリルベンゼン]
アルゴン雰囲気下、1L三口フラスコ内に、テトラブチルアンモニウムヨージド、60.95g(165mmol)、およびビス(アセトニトリル)(1,5-シクロオクタジエン)ロジウム(I)テトラフルオロボラート、2.85g(7.5mmol)、3,5-ジ(2-ヒドロキシ-1,1,1,3,3,3-ヘキサフルオロイソプロピル)-1-ブロモベンゼン、73.36g(150mmol)を加えた。次いで、脱水処理したN,N-ジメチルホルムアミド、500mL、脱水処理したトリエチルアミン、100mLを加え、80℃に加熱、攪拌しながら、上記化合物を溶解させた。次に、トリエトキシシラン、49.28g(300mmol)を反応系内に滴下し、そのまま80℃で3時間攪拌した。反応終了後、N,N-ジメチルホルムアミドとトリエチルアミンを留去し、ジイソプロピルエーテル、1Lを加え、10分間攪拌した後、反応系内に析出した塩を濾別した。得られたジイソプロピルエーテル溶液を、塩化ナトリウムを少量含む水溶液で3回洗浄した。次に同溶液に活性炭を加え、攪拌した後、12時間静置した。次に同溶液から活性炭をセライトカラムで濾別した後、硫酸マグネシウムを加え、攪拌した後、3時間静置し、次いでジイソプロピルエーテルを留去した。さらに得られた反応物を温度120℃~160℃、圧力180Paの条件にて減圧蒸留することにより、式(6)で表される3,5-ジ(2-ヒドロキシ-1,1,1,3,3,3-ヘキサフルオロイソプロピル)-1-トリエトキシシリルベンゼン、34.54g(収率40%)を得た。
1H-NMR:δ8.18(1H,s),8.11(2H,s),3.88(6H,q,J=7.0Hz),3.80(2H,s),1.24(9H,t,J=7.0Hz)
19F-NMR(溶媒CDCl3,CCl3F):δ-76.01(s)
13C-NMR(溶媒CDCl3):δ134.66(s),133.12(s),130.06(s),127.26(s),122.71(q,J=285.7Hz),77.29(sep,J=29.9Hz),59.25(s),18.12(s)
29Si-NMR(溶媒CDCl3,緩和剤クロム(III)アセチルアセトナート):
δ-60.38(s)
[4-(2-ヒドロキシ-1,1,1,3,3,3-ヘキサフルオロイソプロピル)-1-トリエトキシシリルベンゼン]
アルゴン雰囲気下、1L三口フラスコ内に、テトラブチルアンモニウムヨージド、60.95g(165mmol)、およびビス(アセトニトリル)(1,5-シクロオクタジエン)ロジウム(I)テトラフルオロボラート、1.71g(4.5mmol)、4-(2-ヒドロキシ-1,1,1,3,3,3-ヘキサフルオロイソプロピル)-1-ブロモベンゼン、48.45g(150mmol)を加え、次いで、脱水処理したN,N-ジメチルホルムアミド、500mL、脱水処理したトリエチルアミン、100mLを加え、80℃に加熱、攪拌しながら、上記化合物を溶解させた。次にトリエトキシシラン、49.28g(300mmol)を反応系内に滴下し、そのまま80℃で3時間攪拌した。反応終了後、N,N-ジメチルホルムアミドとトリエチルアミンを留去し、ジイソプロピルエーテル、1Lを加え、10分間攪拌した後、反応系内に析出した塩を濾別した。得られたジイソプロピルエーテル溶液を、塩化ナトリウムを少量含む水溶液で3回洗浄した。次に同溶液に活性炭を加え、攪拌した後、12時間静置した。次に同溶液から活性炭をセライトカラムで濾別した後、硫酸マグネシウムを加え、攪拌した後、3時間静置し、次いでジイソプロピルエーテルを留去した。さらに得られた反応物を温度120℃~160℃、圧力200Paで減圧蒸留することにより式(7)で表される4-(2-ヒドロキシ-1,1,1,3,3,3-ヘキサフルオロイソプロピル)-1-トリエトキシシリルベンゼン、36.17g(収率59%)を得た。
1H-NMR(溶媒CDCl3):δ7.74(4H,dd,J=18.6,8.3Hz),3.89(6H,q,J=7.0Hz),3.57(1H,s),1.26(9H,t,J=7.0Hz)
19F-NMR(溶媒CDCl3,CCl3F):δ-75.94(s)
13C-NMR(溶媒CDCl3):δ134.87(s),133.32(s),132.02(s),125.97(s),122.74(q,J=287.6Hz),77.15(sep,J=29.7Hz),58.95(s),17.98(s)
29Si-NMR(溶媒CDCl3,緩和剤クロム(III)アセチルアセトナート):δ-58.52(s)
以下の実施例および比較例で調製したポリシロキサン化合物の質量平均分子量、熱分解温度は以下の方法で評価した。
以下の実施例および比較例で調製したポリシロキサン化合物は、ゲル透過クロマトグラフィー(GPC、東ソー株式会社製、HLC-8320GPC、溶媒:テトラヒドロフラン)を使用し、ポリスチレン換算により、質量平均分子量(Mw)を算出した。
以下の実施例および比較例で調製したポリシロキサン化合物をそれぞれ150℃のオーブンで1時間乾燥した後、熱重量測定(TGA、株式会社リガク製、形式TG8120)を実施し、初期の重量に対して5%の重量損失があった温度を熱分解温度(Td5)とした。
50mLのフラスコに、3,5-ジ(2-ヒドロキシ-1,1,1,3,3,3-ヘキサフルオロフルオロイソプロピル)-1-トリエトキシシリルベンゼン、8.59g(15mmol)、水、0.81g(45mmol)、酢酸、0.045g(0.75mmol)を加え、100℃で12時間攪拌した。反応終了後、トルエンを加え、還流(バス温度150℃)させることにより、水、生成するエタノール、酢酸を留去し、最後にトルエンを留去することによって、ポリシロキサン化合物1-1を7.64g得た。GPCを測定した結果、Mw=2663であった。熱分解温度を測定した結果、Td5は397℃であった。得られたポリシロキサン化合物1-1の1gに、下記式(8)で表される光酸発生剤(製品名:CPI-100TF、サンアプロ株式会社製)を0.03g加え、プロピレングリコールモノメチルエーテルアセテートを2g加えることにより組成物1-1を調製した。
4-(2-ヒドロキシ-1,1,1,3,3,3-ヘキサフルオロイソプロピル)-1-トリエトキシシリルベンゼン、6.10g(15mmol)、水、0.81g(45mmol)、酢酸、0.045g(0.75mmol)を加え、100℃で12時間攪拌した。反応終了後、トルエンを加え、還流(バス温度150℃)させることにより、水、生成するエタノール、酢酸を留去し、最後にトルエンを留去することによって、ポリシロキサン化合物1-2を4.43g得た。GPCを測定した結果、Mw=7022であった。熱分解温度を測定した結果、Td5は388℃であった。ポリシロキサン化合物1の代わりにポリシロキサン化合物1-2を用いた以外は実施例1-1と同様の方法により、組成物1-2を調製した。
50mLのフラスコに、3,5-ジ(2-ヒドロキシ-1,1,1,3,3,3-ヘキサフルオロイソプロピル)-1-トリエトキシシリルベンゼン、4.58g(8mmol)、フェニルトリメトキシシラン、6.35g(32mmol)、水、2.16g(120mmol)、酢酸、0.12g(2mmol)を加え、100℃で12時間攪拌した。反応終了後、トルエンを加え、還流(バス温度150℃)させることにより、水、生成するエタノール、酢酸を留去し、最後にトルエンを留去することによって、ポリシロキサン化合物1-3を8.60g得た。GPCを測定した結果、Mw=3475であった。熱分解温度を測定した結果、Td5は408℃であった。ポリシロキサン化合物1-1の代わりにポリシロキサン化合物1-3を用いた以外は実施例1-1と同様の方法により、組成物1-3を調製した。
50mLのフラスコに、4-(2-ヒドロキシ-1,1,1,3,3,3-ヘキサフルオロイソプロピル)-1-トリエトキシシリルベンゼン、5.59g(13.75mmol)、フェニルトリメトキシシラン、2.23g(11.25mmol)、水、1.35g(75mmol)、酢酸、0.075g(1.25mmol)を加え、100℃で12時間攪拌した。反応終了後、トルエンを加え、還流(バス温度150℃)させることにより、水、生成するエタノール、酢酸を留去し、最後にトルエンを留去することによって、ポリシロキサン化合物1-4を5.67g得た。GPCを測定した結果、Mw=15603であった。熱分解温度を測定した結果、Td5は419℃であった。ポリシロキサン化合物1-1の代わりにポリシロキサン化合物1-4を用いた以外は実施例1-1と同様の方法により、組成物1-4を調製した。
実施例1-1で得られたポリシロキサン化合物1-1の0.3gに、0.06gのキノンジアジド化合物PC-5(東洋合成株式会社製)と、1.2gのシクロヘキサノンを加え、溶解させることにより組成物2-1を調製した。
ポリシロキサン化合物1-1の代わりに実施例1-2で得られたポリシロキサン化合物1-2を用いた以外は実施例2-1と同様の方法により、組成物2-2を調製した。
ポリシロキサン化合物1-1の代わりに実施例1-3で得られたポリシロキサン化合物1-3を用いた以外は実施例2-1と同様の方法により、組成物2-3を調製した。
ポリシロキサン化合物1-1の代わりに実施例1-4で得られたポリシロキサン化合物1-4を用いた以外は実施例2-1と同様の方法により、組成物2-4を調製した。
20mLのフラスコに実施例1-1で得られたポリシロキサン化合物1、1.845g、N,N-ジメチル-4-アミノピリジン、0.049g(0.4mmol)、ピリジン、5mL、二炭酸ジ-tert-ブチル、3.492g(16mmol)を加え、100℃で15時間攪拌することにより反応させた。反応終了後、ピリジンと過剰量に加えた二炭酸ジ-tert-ブチルを留去することにより、ポリシロキサン化合物3-1、2.073gを得た。GPCを測定した結果、Mw=2652であった。ポリシロキサン化合物1-1の代わりにポリシロキサン化合物3-1を用い、式(8)で表される光酸発生剤CPI-100TFを0.1g用いた以外は実施例1-1と同様の方法により、組成物3-1を調製した。
20mLのフラスコに実施例1-2で得られたポリシロキサン化合物1-2、1.476g、N,N-ジメチル-4-アミノピリジン、0.031g(0.25mmol)、ピリジン、5mL、二炭酸ジ-tert-ブチル、2.183g(10mmol)を加え、100℃で15時間攪拌することにより反応させた。反応終了後、ピリジンと過剰量に加えた二炭酸ジ-tert-ブチルを留去することにより、ポリシロキサン化合物3-2、1.449gを得た。GPCを測定した結果、Mw=3766であった。ポリシロキサン化合物1-1の代わりにポリシロキサン化合物3-2を用いた以外は実施例1-1と同様の方法により、組成物3-2を調製した。
20mLのフラスコに実施例1-3で得られたポリシロキサン化合物1-3、1.956g、N,N-ジメチル-4-アミノピリジン、0.024g(0.2mmol)、ピリジン、5mL、二炭酸ジ-tert-ブチル、1.746g(8mmol)を加え、100℃で15時間攪拌することにより反応させた。反応終了後、ピリジンと過剰量に加えた二炭酸ジ-tert-ブチルを留去することにより、ポリシロキサン化合物3-3、1.645gを得た。GPCを測定した結果、Mw=5117であった。ポリシロキサン化合物1-1の代わりにポリシロキサン化合物3-3を用いた以外は実施例1-1と同様の方法により、組成物3-3を調製した。
20mLのフラスコに実施例1-4で得られたポリシロキサン化合物1-4、1.764g、N,N-ジメチル-4-アミノピリジン、0.027g(0.22mmol)、ピリジン、5mL、二炭酸ジ-tert-ブチル、1.921g(8.8mmol)を加え、100℃で15時間攪拌することにより反応させた。反応終了後、ピリジンと過剰量に加えた二炭酸ジ-tert-ブチルを留去することにより、ポリシロキサン化合物3-4、1.573gを得た。GPCを測定した結果、Mw=3125であった。ポリシロキサン化合物1-1の代わりにポリシロキサン化合物3-4を用いた以外は実施例1-1と同様の方法により、組成物3-4を調製した。
50mLのフラスコに、下記式(8)で表される1,1-ジトリフルオロメチル-1-ヒドロキシ-3-トリエトキシシリルプロパン、7.45g(20mmol)、水、1.08g(60mmol)、酢酸0.06g(1mmol)を加え、100℃で12時間攪拌した。反応終了後、トルエンを加え、還流(バス温度150℃)させることにより、水、生成するエタノール、酢酸を留去し、最後にトルエンを留去することによって、比較用ポリシロキサン化合物1を4.20g得た。GPCを測定した結果、Mw=2860であった。熱分解温度を測定した結果、Td5は318℃であった。ポリシロキサン化合物1-1の代わりに比較用ポリシロキサン化合物1を用いた以外は実施例1と同様の方法により、比較用組成物1を調製した。
50mLのフラスコに、式(10)で表される化合物4.00g(9.21mmol)、水0.497g(27.63mmol)および酢酸0.028g(0.461mmol)を加え、100℃で12時間攪拌した。反応終了後、トルエンを加え、還流(バス温度150℃)させることにより、水、生成するエタノールおよび酢酸を留去し、最後にトルエンを留去することによって、比較用ポリシロキサン化合物2を2.98g得た。GPCを測定した結果、Mw=5320であった。熱分解温度を測定した結果、Td5は320℃であった。ポリシロキサン化合物1-1の代わりに比較用ポリシロキサン化合物2を用いた以外は実施例1-1と同様の方法により、比較用組成物2を調製した。
50mLのフラスコに、フェニルトリメトキシシラン19.83g(100mmol)、水5.40g(300mmol)、酢酸0.3g(5mmol)を加え、100℃で12時間攪拌した。反応終了後、トルエンを加え、還流(バス温度150℃)させることにより、水、生成するエタノールおよび酢酸を留去し、最後にトルエンを留去することによって、比較用ポリシロキサン化合物3を11.7g得た。GPCを測定した結果、Mw=3500であった。熱分解温度を測定した結果、Td5は500℃であった。ポリシロキサン化合物1-1の代わりに比較用ポリシロキサン化合物3を用いた以外は実施例1-1と同様の方法により、比較用組成物3を調製した。
実施例1-1~実施例1-4および比較例1~3で得られたポリシロキサン化合物および比較用ポリシロキサン化合物について、前述の熱分解温度の測定に記載の方法に従って、熱分解温度(Td5)の測定を行った。その結果を表1に示す。
実施例1-1~実施例3-4および比較例1~2で得られた組成物および比較用組成物をそれぞれシリコンウエハー(株式会社SUMCO製、直径:4インチ、厚み:525μm)上にスピンコート(500rpm)し、ホットプレート上で90℃、1分間乾燥させて膜厚1.8~3.6μmのポジ型感光性樹脂膜を形成した。形成したポジ型感光性樹脂膜の膜厚は、触針式表面形状測定器(Dektak8、アルバック販売株式会社製)により測定した。次いで、2.38質量%の水酸化テトラメチルアンモニウム(略称:TMAH)水溶液を現像液とし、Resist Develop Analyzer Model RDA-790(リソテックジャパン株式会社製)を用いて溶解性試験を行った。試験方法は、TMAH水溶液中に上記シリコンウエハー上のポジ型感光性樹脂膜を3分間浸漬させ、ポジ型感光性樹脂膜が溶解し、シリコンウエハーから除去できた状態を○、残膜して除去できなかった状態を×とした。実施例3-1~3-4については、上記の溶解性試験を実施した他に、同様のポジ型感光性樹脂膜をシリコンウエハー上に形成し、露光器(MUV-351U、MORITEX製)を用いて該ポジ型感光性樹脂膜に対して10分間露光した後、上記と同様の方法で溶解性試験を実施した。得られた試験結果を表2に示す。
実施例3-1~3-4で得られた組成物をそれぞれシリコンウエハー(株式会社SUMCO製、直径:4インチ、厚み:525μm)上にスピンコート(500rpm)し、ホットプレート上で90℃、1分間乾燥させて膜厚3.0~3.5μmのポジ型感光性樹脂膜を形成した。形成したポジ型感光性樹脂膜の膜厚は、触針式表面形状測定器(Dektak8、アルバック販売株式会社製)により測定し、これを初期膜厚とした。次いで、2.38質量%の水酸化テトラメチルアンモニウム(略称:TMAH)水溶液を現像液とし、Resist Develop Analyzer Model RDA-790(リソテックジャパン株式会社製)を用いてこの現像液中に上記シリコンウエハー上のポジ型感光性樹脂膜を3分間浸漬させた。その後、水洗して乾燥を行った。一連のプロセス完了後の残存ポジ型感光性樹脂膜の膜厚を測定し、初期膜厚から残存膜厚を引いた値を膜減り量(単位:nm)とした。得られた膜減り量の値について表2に示す。
実施例1-3、1-4、2-3、2-4および3-1~3-4で得られた組成物をそれぞれシリコンウエハー(株式会社SUMCO製、直径:4インチ、厚み:525μm)上にスピンコート(500rpm)し、ホットプレート上で90℃、1分間乾燥させてポジ型感光性樹脂膜を形成した。次いで、300μm幅のラインもしくは直径12μmのホールを有する遮光板(マスク)上から露光器(MUV-351U、MORITEX製)を用いて該ポジ型感光性樹脂膜に対して10分間露光した。その後、2.38質量%のTMAH水溶液に浸漬した後、水洗することにより現像試験を行った。現像試験後、得られたパターン形状の写真を図1~10に示す。この結果、組成物1-3、1-4、2-3、2-4および3-1~3-4から作成したポジ型感光性樹脂膜は、ポジ型現像性を示すことが確認できた。
実施例1-1~実施例3-4で得られた組成物をそれぞれ1.1mm厚の透明性ガラス基板上に、膜厚が1.3~3.5μmとなるようにスピンコート(500rpm)し、ホットプレート上で90℃、1分間乾燥させてポジ型感光性樹脂膜を形成した。さらに250℃のオーブン内で1時間加熱して硬化膜を得た。その硬化膜に対して400nmでのUV透過率(SHIMADZU UV-3150)を測定した。表3に組成物1-1~組成物3-4から作成したポジ型感光性樹脂膜の膜厚及び硬化膜に対する耐熱透明性試験の透過率の値を示す。結果、組成物1-1~組成物3-4から作成した膜は、250℃で1時間加熱した後も、高い耐熱透明性を示すことがわかった。
Claims (15)
- 一般式(1)のRXにおけるaが1~3である、請求項1に記載のポジ型感光性樹脂組成物。
- 一般式(1)におけるbが1である、請求項1乃至3のいずれか一項に記載のポジ型感光性樹脂組成物。
- 一般式(1)におけるnが3である、請求項4に記載のポジ型感光性樹脂組成物。
- (A)成分のポリシロキサン化合物が、一般式(1)で表される構造単位1単位に対して、一般式(2)で表される構造単位を0.1~10単位含むポリシロキサン化合物である、請求項6に記載のポジ型感光性樹脂組成物。
- 一般式(1)におけるnが3である、請求項6または7に記載のポジ型感光性樹脂組成物。
- 界面活性剤、シランカップリング剤および溶解阻止剤からなる群から選ばれる一種以上をさらに含む、請求項1乃至8のいずれか一項に記載のポジ型感光性樹脂組成物。
- 請求項1乃至9のいずれか一項に記載のポジ型感光性樹脂組成物から得られるポジ型感光性樹脂膜。
- 請求項1乃至9のいずれか一項に記載のポジ型感光性樹脂組成物を基板上に塗布および乾燥してポジ型感光性樹脂膜を形成する工程と、前記ポジ型感光性樹脂膜を露光する工程と、露光後の前記ポジ型感光性樹脂膜をアルカリ水溶液によって現像して、パターン樹脂膜を形成する工程と、前記パターン樹脂膜を加熱する工程とを含む、パターン硬化膜の製造方法。
- 請求項11に記載の製造方法により得られるパターン硬化膜。
- 請求項11に記載の製造方法により得られるパターン硬化膜と基板を少なくとも備える積層体。
- 請求項11に記載の製造方法により得られるパターン硬化膜を、表面保護層または層間絶縁層として有する電子部品。
- 請求項1乃至9のいずれか一項に記載のポジ型感光性樹脂組成物を基板上に塗布および乾燥してポジ型感光性樹脂膜を形成する工程と、前記ポジ型感光性樹脂膜を露光する工程と、露光後の前記ポジ型感光性樹脂膜をアルカリ水溶液によって現像してパターン樹脂膜を形成する工程とを含む、パターン樹脂膜を形成する方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020167014457A KR101827902B1 (ko) | 2013-11-01 | 2014-10-24 | 포지티브형 감광성 수지 조성물, 그것을 이용한 막의 제조 방법 및 전자 부품 |
US15/033,318 US9778569B2 (en) | 2013-11-01 | 2014-10-24 | Positive photosensitive resin composition, method for producing film using same, and electronic component |
CN201480060038.6A CN105706000B (zh) | 2013-11-01 | 2014-10-24 | 正型感光性树脂组合物、使用了它的膜的制造方法以及电子部件 |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-228477 | 2013-11-01 | ||
JP2013228477 | 2013-11-01 | ||
JP2013253529 | 2013-12-06 | ||
JP2013-253529 | 2013-12-06 | ||
JP2014-145650 | 2014-07-16 | ||
JP2014145650A JP6323225B2 (ja) | 2013-11-01 | 2014-07-16 | ポジ型感光性樹脂組成物、それを用いた膜の製造方法および電子部品 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015064509A1 true WO2015064509A1 (ja) | 2015-05-07 |
Family
ID=53004115
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/078394 WO2015064509A1 (ja) | 2013-11-01 | 2014-10-24 | ポジ型感光性樹脂組成物、それを用いた膜の製造方法および電子部品 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9778569B2 (ja) |
JP (1) | JP6323225B2 (ja) |
KR (1) | KR101827902B1 (ja) |
CN (1) | CN105706000B (ja) |
TW (1) | TW201527890A (ja) |
WO (1) | WO2015064509A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107340686A (zh) * | 2016-05-03 | 2017-11-10 | 东友精细化工有限公司 | 正型感光性树脂组合物和由其制造的绝缘膜 |
WO2022113724A1 (ja) * | 2020-11-24 | 2022-06-02 | セントラル硝子株式会社 | 珪素含有モノマー、混合物、ポリシロキサン、およびそれらの製造方法 |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150068899A (ko) * | 2013-12-12 | 2015-06-22 | 제이엔씨 주식회사 | 포지티브형 감광성 조성물 |
JP6455160B2 (ja) * | 2015-01-14 | 2019-01-23 | Jsr株式会社 | 硬化膜形成用感放射線性組成物、硬化膜、表示素子及び硬化膜の形成方法 |
JP6741957B2 (ja) * | 2016-03-10 | 2020-08-19 | Jsr株式会社 | レジストプロセス用膜形成材料及びパターン形成方法 |
JP6668888B2 (ja) * | 2016-03-31 | 2020-03-18 | Jsr株式会社 | ポジ型感放射線性樹脂組成物、層間絶縁膜、層間絶縁膜の形成方法、半導体素子及び表示素子 |
KR102446537B1 (ko) * | 2016-08-29 | 2022-09-23 | 닛산 가가쿠 가부시키가이샤 | 아세탈 보호된 실라놀기를 포함하는 폴리실록산 조성물 |
JP2018189732A (ja) * | 2017-04-28 | 2018-11-29 | メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH | ポジ型感光性シロキサン組成物、およびそれを用いて形成した硬化膜 |
KR102611310B1 (ko) | 2018-02-28 | 2023-12-08 | 샌트랄 글래스 컴퍼니 리미티드 | 규소 함유층 형성 조성물 및 그것을 이용한 패턴을 가지는 기판의 제조 방법 |
CN111819183A (zh) * | 2018-02-28 | 2020-10-23 | 中央硝子株式会社 | 包含六氟异丙醇基的硅化合物及其制造方法 |
WO2019189877A1 (ja) * | 2018-03-29 | 2019-10-03 | Jsr株式会社 | 感放射線性樹脂組成物及びレジストパターン形成方法 |
CN112368336A (zh) * | 2018-08-31 | 2021-02-12 | 东丽株式会社 | 树脂组合物、其固化膜 |
WO2020090746A1 (ja) * | 2018-10-30 | 2020-05-07 | セントラル硝子株式会社 | 樹脂組成物、感光性樹脂組成物、硬化膜、硬化膜の製造方法、パターン硬化膜およびパターン硬化膜の作製方法 |
JPWO2021085262A1 (ja) * | 2019-10-28 | 2021-05-06 | ||
JP2021070758A (ja) * | 2019-10-31 | 2021-05-06 | 東レ株式会社 | 樹脂組成物、およびその硬化膜 |
JPWO2021187324A1 (ja) * | 2020-03-16 | 2021-09-23 | ||
JPWO2022059506A1 (ja) | 2020-09-16 | 2022-03-24 | ||
WO2022131277A1 (ja) * | 2020-12-15 | 2022-06-23 | セントラル硝子株式会社 | 樹脂組成物、硬化膜、硬化膜の製造方法、多層膜付き基板、パターン付き基板の製造方法、感光性樹脂組成物、パターン硬化膜の製造方法、重合体の製造方法及び樹脂組成物の製造方法 |
WO2022131278A1 (ja) * | 2020-12-15 | 2022-06-23 | セントラル硝子株式会社 | 光学部材用の塗布液、重合体、硬化膜、感光性塗布液、パターン硬化膜、光学部材、固体撮像素子、表示装置、ポリシロキサン化合物、塗布液に用いる安定化剤、硬化膜の製造方法、パターン硬化膜の製造方法、及び重合体の製造方法 |
JPWO2022168735A1 (ja) * | 2021-02-05 | 2022-08-11 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004212983A (ja) * | 2003-01-08 | 2004-07-29 | Internatl Business Mach Corp <Ibm> | パターナブル低誘電率材料およびulsi相互接続でのその使用 |
JP2005222040A (ja) * | 2003-12-30 | 2005-08-18 | Rohm & Haas Electronic Materials Llc | Si−成分を含むフォトレジスト組成物 |
JP2008203612A (ja) * | 2007-02-21 | 2008-09-04 | Tokyo Ohka Kogyo Co Ltd | ネガ型レジスト組成物およびレジストパターン形成方法 |
JP2009301007A (ja) * | 2008-05-15 | 2009-12-24 | Shin-Etsu Chemical Co Ltd | パターン形成方法 |
JP2011128469A (ja) * | 2009-12-18 | 2011-06-30 | Jsr Corp | 感放射線性組成物、硬化膜及びこの形成方法 |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000020472A1 (en) * | 1998-10-05 | 2000-04-13 | The B.F. Goodrich Company | Catalyst and methods for polymerizing cycloolefins |
US6903171B2 (en) * | 1998-10-05 | 2005-06-07 | Promerus, Llc | Polymerized cycloolefins using transition metal catalyst and end products thereof |
JP2001281861A (ja) | 2000-04-03 | 2001-10-10 | Fujifilm Arch Co Ltd | ポジ型感光性樹脂組成物 |
JP2001281853A (ja) | 2000-04-03 | 2001-10-10 | Fujifilm Arch Co Ltd | ポジ型感光性樹脂組成物 |
JP4019247B2 (ja) | 2000-06-02 | 2007-12-12 | 信越化学工業株式会社 | 高分子化合物、レジスト材料及びパターン形成方法 |
US6660230B2 (en) * | 2000-06-30 | 2003-12-09 | The United States Of America As Represented By The Secretary Of The Navy | Linear chemoselective carbosilane polymers and methods for use in analytical and purification applications |
JP2003020335A (ja) | 2001-05-01 | 2003-01-24 | Jsr Corp | ポリシロキサンおよび感放射線性樹脂組成物 |
JP4373082B2 (ja) | 2001-12-28 | 2009-11-25 | 富士通株式会社 | アルカリ可溶性シロキサン重合体、ポジ型レジスト組成物、レジストパターン及びその製造方法、並びに、電子回路装置及びその製造方法 |
FR2876380B1 (fr) * | 2004-10-07 | 2006-12-08 | Commissariat Energie Atomique | Capteurs chimiques comprenant des polysiloxanes anilines comme materiaux sensibles et leur utilisation pour la detection ou le dosage de composes nitres |
JP4784283B2 (ja) | 2004-11-26 | 2011-10-05 | 東レ株式会社 | ポジ型感光性シロキサン組成物、それから形成された硬化膜、および硬化膜を有する素子 |
JP2005330488A (ja) | 2005-05-19 | 2005-12-02 | Tokyo Ohka Kogyo Co Ltd | アルカリ可溶性ポリシロキサン樹脂 |
JP4678379B2 (ja) * | 2007-02-23 | 2011-04-27 | 信越化学工業株式会社 | パターン形成方法 |
JP4960330B2 (ja) | 2008-10-21 | 2012-06-27 | 株式会社Adeka | ポジ型感光性組成物及び永久レジスト |
JPWO2011078106A1 (ja) * | 2009-12-22 | 2013-05-09 | 東レ株式会社 | ポジ型感光性樹脂組成物、それから形成された硬化膜、および硬化膜を有する素子 |
EP2588537A1 (en) * | 2010-06-30 | 2013-05-08 | 3M Innovative Properties Company | Curable-on-demand composition comprising dual reactive silane functionality |
TWI398489B (zh) * | 2010-08-31 | 2013-06-11 | Chi Mei Corp | 光硬化性聚矽氧烷組成物及其所形成之基材保護膜 |
JP5666266B2 (ja) | 2010-11-25 | 2015-02-12 | 株式会社Adeka | ポジ型感光性樹脂組成物及び永久レジスト |
CN104470983A (zh) * | 2011-12-29 | 2015-03-25 | 3M创新有限公司 | 可固化聚硅氧烷组合物 |
JP2015503660A (ja) * | 2011-12-29 | 2015-02-02 | スリーエム イノベイティブ プロパティズ カンパニー | 硬化性ポリシロキサンコーティング組成物 |
TWI443465B (zh) * | 2012-04-23 | 2014-07-01 | Chi Mei Corp | 感光性聚矽氧烷組成物、保護膜及具有保護膜的元件 |
JP6281288B2 (ja) * | 2013-01-21 | 2018-02-21 | セントラル硝子株式会社 | ヘキサフルオロイソプロパノール基を含む珪素化合物およびその製造方法、並びにそれが重合してなる高分子化合物 |
-
2014
- 2014-07-16 JP JP2014145650A patent/JP6323225B2/ja active Active
- 2014-10-24 KR KR1020167014457A patent/KR101827902B1/ko active IP Right Grant
- 2014-10-24 WO PCT/JP2014/078394 patent/WO2015064509A1/ja active Application Filing
- 2014-10-24 CN CN201480060038.6A patent/CN105706000B/zh active Active
- 2014-10-24 US US15/033,318 patent/US9778569B2/en active Active
- 2014-10-31 TW TW103137947A patent/TW201527890A/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004212983A (ja) * | 2003-01-08 | 2004-07-29 | Internatl Business Mach Corp <Ibm> | パターナブル低誘電率材料およびulsi相互接続でのその使用 |
JP2005222040A (ja) * | 2003-12-30 | 2005-08-18 | Rohm & Haas Electronic Materials Llc | Si−成分を含むフォトレジスト組成物 |
JP2008203612A (ja) * | 2007-02-21 | 2008-09-04 | Tokyo Ohka Kogyo Co Ltd | ネガ型レジスト組成物およびレジストパターン形成方法 |
JP2009301007A (ja) * | 2008-05-15 | 2009-12-24 | Shin-Etsu Chemical Co Ltd | パターン形成方法 |
JP2011128469A (ja) * | 2009-12-18 | 2011-06-30 | Jsr Corp | 感放射線性組成物、硬化膜及びこの形成方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107340686A (zh) * | 2016-05-03 | 2017-11-10 | 东友精细化工有限公司 | 正型感光性树脂组合物和由其制造的绝缘膜 |
CN107340686B (zh) * | 2016-05-03 | 2022-03-08 | 东友精细化工有限公司 | 正型感光性树脂组合物和由其制造的绝缘膜 |
WO2022113724A1 (ja) * | 2020-11-24 | 2022-06-02 | セントラル硝子株式会社 | 珪素含有モノマー、混合物、ポリシロキサン、およびそれらの製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2015129908A (ja) | 2015-07-16 |
TW201527890A (zh) | 2015-07-16 |
KR20160078486A (ko) | 2016-07-04 |
JP6323225B2 (ja) | 2018-05-16 |
TWI561930B (ja) | 2016-12-11 |
KR101827902B1 (ko) | 2018-02-09 |
US20160266491A1 (en) | 2016-09-15 |
CN105706000A (zh) | 2016-06-22 |
CN105706000B (zh) | 2019-09-27 |
US9778569B2 (en) | 2017-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6323225B2 (ja) | ポジ型感光性樹脂組成物、それを用いた膜の製造方法および電子部品 | |
KR101739607B1 (ko) | 포지티브형 감광성 수지 조성물, 그것으로부터 형성된 경화막, 및 경화막을 갖는 소자 | |
TWI393746B (zh) | 矽氧烷樹脂組成物及其製法 | |
JP4687250B2 (ja) | 感光性樹脂組成物 | |
JP7510060B2 (ja) | 樹脂組成物、感光性樹脂組成物、硬化膜、硬化膜の製造方法、パターン硬化膜およびパターン硬化膜の作製方法 | |
TWI482802B (zh) | 感光性矽氧烷組成物、由其形成的硬化膜及具有硬化膜的元件 | |
JP5929679B2 (ja) | シラン系組成物およびその硬化膜、並びにそれを用いたネガ型レジストパターンの形成方法 | |
JP7327163B2 (ja) | 樹脂組成物、その硬化膜 | |
JP2013114238A (ja) | ポジ型感光性組成物、そのポジ型感光性組成物から形成された硬化膜、およびその硬化膜を有する素子。 | |
WO2019063460A1 (en) | POSITIVE-TYPE PHOTOSENSITIVE SILOXANE COMPOSITION AND CURED FILM USING THE SAME | |
JP2012053381A (ja) | ポジ型感光性組成物、それから形成された硬化膜、および硬化膜を有する素子 | |
CN116034127B (zh) | 含硅单体混合物、聚硅氧烷、树脂组合物、感光性树脂组合物、固化膜、固化膜的制造方法、图案固化膜和图案固化膜的制造方法 | |
CN105359037B (zh) | 正型感光性树脂组合物、使其固化而成的固化膜及具有其的光学设备 | |
JPWO2022059506A5 (ja) | ||
TW202141192A (zh) | 負型感光性樹脂組成物、圖案結構及圖案固化膜的製造方法 | |
JPWO2021187324A5 (ja) | ||
WO2021085262A1 (ja) | ケイ素化合物、反応性材料、樹脂組成物、感光性樹脂組成物、硬化膜、硬化膜の製造方法、パターン硬化膜およびパターン硬化膜の製造方法 | |
WO2023181812A1 (ja) | ポジ型感光性樹脂組成物、その硬化物およびそれを具備する表示装置 | |
CN116601210A (zh) | 树脂组合物、固化膜、固化膜的制造方法、带有多层膜的基板、带有图案的基板的制造方法、感光性树脂组合物、图案固化膜的制造方法、聚合物的制造方法和树脂组合物的制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14857420 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15033318 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20167014457 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14857420 Country of ref document: EP Kind code of ref document: A1 |