WO2015062221A1 - 一种NiTi形状记忆合金的表面改性方法 - Google Patents

一种NiTi形状记忆合金的表面改性方法 Download PDF

Info

Publication number
WO2015062221A1
WO2015062221A1 PCT/CN2014/075913 CN2014075913W WO2015062221A1 WO 2015062221 A1 WO2015062221 A1 WO 2015062221A1 CN 2014075913 W CN2014075913 W CN 2014075913W WO 2015062221 A1 WO2015062221 A1 WO 2015062221A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
shape memory
memory alloy
niti shape
pmma
Prior art date
Application number
PCT/CN2014/075913
Other languages
English (en)
French (fr)
Inventor
张利强
李永峰
崔立山
苏燕
王玉路
Original Assignee
中国石油大学(北京)
内蒙古科技大学包头医学院
内蒙古科技大学包头医学院第一附属医院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油大学(北京), 内蒙古科技大学包头医学院, 内蒙古科技大学包头医学院第一附属医院 filed Critical 中国石油大学(北京)
Publication of WO2015062221A1 publication Critical patent/WO2015062221A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/186Preparation by chemical vapour deposition [CVD]

Definitions

  • the invention relates to a method for surface modification of a medical NiTi shape memory alloy by using graphene coating, and belongs to the field of NiTi biomedical materials. Background technique
  • NiTi shape memory alloys have become a widely used biomedical material due to their unique shape memory effect, superelasticity, low modulus of elasticity and good biocompatibility.
  • Ni in NiTi shape memory alloys The content is high.
  • Ni ions will precipitate and liberate into the human blood, and combine with human biomolecules, causing human poisoning and allergies. In severe cases, it may even cause cancer. Therefore, how to effectively suppress the precipitation of Ni ions is the primary problem solved by NiTi shape memory alloys in the field of biomedical materials.
  • Ti and 0 In an aerobic environment, Ti and 0 have a strong binding force, and a Ti0 2 protective film will spontaneously form on the surface of the NiTi memory alloy. Although the Ti0 2 protective film can theoretically inhibit Ni ion precipitation and is biocompatible, Ti0 2 film as a ceramic film has poor mechanical properties. It is easy to break during the deformation process of NiTi shape memory alloy and cannot repair it. It can not effectively inhibit the precipitation of Ni ions.
  • surface modification is generally employed to suppress the precipitation of Ni ions.
  • Surface-modified films are usually TiN films, TiC films, diamond films, metal tantalum films and metal tantalum films, but these films may be affected by factors such as high preparation cost, complicated process, poor mechanical properties and poor biocompatibility. , their application is greatly limited, far from meeting the needs of the field of biomedical materials.
  • NiTi shape memory alloy surface modified film is particularly important. Summary of the invention
  • an object of the present invention is to provide a surface modification method for a NiTi shape memory alloy, which uses a graphene film to modify the surface of a NiTi shape memory alloy, and has the characteristics of simple operation and low cost.
  • the prepared NiTi shape memory alloy having a graphene film on the surface has good biocompatibility.
  • the present invention provides a method for surface modification of a NiTi shape memory alloy by graphene coating, which comprises the following steps:
  • the PMMA/graphene composite film is washed with water, and then the PMMA/graphene composite film is transferred to the surface of the NiTi shape memory alloy;
  • NiTi shape memory alloy with PMMA/graphene composite film on the surface is placed in an oven, and incubated at 50-60 ° C for 3-5 hours, then acetone is added dropwise to remove polymethyl methacrylate to realize a graphene film pair. Coating of the surface of NiTi shape memory alloy.
  • the method comprises the steps of:
  • a layer of ethanol is sprayed on the surface of the NiTi shape memory alloy before transferring the PMMA/graphene composite film; this allows the PMMA/graphene composite film to form a good contact with the metal substrate.
  • the method comprises the step of pretreating the NiTi shape memory alloy:
  • the surface of the NiTi shape memory alloy is mechanically polished and polished, and then ultrasonically washed in ethanol and acetone for 30-60 minutes, and dried for use.
  • the graphene is prepared by chemical vapor deposition.
  • the method comprises the step of preparing graphene:
  • a metal copper substrate or a metal nickel substrate is placed in a quartz reactor, and the quartz reactor is pushed to the center of the reaction chamber of the chemical vapor deposition apparatus, the vacuum pump is turned on, and then at a rate of 50 sccm/min and 300 sccm/min, respectively. Hydrogen and nitrogen are introduced into the reaction chamber;
  • CH 4 was introduced into the reaction chamber at a rate of 35 SCC m/min to grow the graphene on the surface of the metal copper sheet or the metal nickel sheet, and at the same time, the quartz reactor was heated to 950 during the growth of the graphene. -1100 ° C, CH 4 access time is 4-20min;
  • argon gas and hydrogen gas were introduced into the reaction chamber at a rate of 300 sccm/min and 35 sccm/min, respectively, until cooling to room temperature.
  • the heating rate of the quartz reactor is 12 ° C / min and the cooling rate of the reaction chamber is 10 ° C / min.
  • NiTi shape memory alloy The surface of the NiTi shape memory alloy was mechanically polished and polished, and then ultrasonically washed in ethanol and acetone for 30-60 minutes, and dried for use.
  • the graphene is prepared by chemical vapor deposition according to the following steps: First, a metal copper sheet or a metal nickel sheet is placed in a quartz reactor, and the reactor is pushed to the center of the reaction chamber of the chemical vapor deposition apparatus to open the vacuum pump. Hydrogen and nitrogen were introduced into the reaction chamber at a rate of 50 sccm/min and 300 sccm/min, respectively, and CH 4 was passed at a rate of 35 sccm/min for 4-20 minutes to make the graphene on the metal copper sheet or the metal nickel sheet.
  • the quartz reactor is heated to 950-1100 ° C, the heating rate is 12 ° C / min, at the end of the growth, argon gas at a rate of 300sccm / min and 35sccm / min respectively And hydrogen until cooling to room temperature, the cooling rate was 10 ° C / min.
  • Transfer of graphene is to transfer the graphene prepared in step (2) to the surface of the NiTi shape memory alloy substrate, and proceed as follows: First, coat the surface of the graphene grown on the metal copper sheet or the metal nickel sheet with a layer. Polymethyl methacrylate (PMMA), which is then placed in a concentration of 0.5 mol / L of ferric chloride solution for 20-40min of corrosion; after corrosion, metal copper or metal nickel sheet can be completely corroded Only the PMMA/graphene composite film is left, and then the composite film is repeatedly washed in deionized water for 3-5 times, and finally transferred to the surface of the pretreated NiTi shape memory alloy, before the transfer, in the NiTi shape memory. The surface of the alloy is pre-sprayed with a layer of ethanol.
  • PMMA Polymethyl methacrylate
  • the heat treatment is to place the NiTi shape memory alloy with the PMMA/graphene composite film prepared in the step (3) into the oven, and to remove the water molecules at 50-60 for 3-5 hours, and then add acetone to remove the hydrazine. Finally, the coating of the graphene film on the surface of the NiTi shape memory alloy is realized.
  • the present invention also provides a NiTi shape memory alloy having a surface coated with a graphene film.
  • the NiTi shape memory alloy is prepared by the above method of surface modification of a NiTi shape memory alloy by graphene coating.
  • the precipitation of Ni ions can be significantly suppressed.
  • a graphene-coated NiTi shape memory alloy and a graphene-free NiTi shape memory alloy were respectively placed in a solution containing red blood cells for detection and comparison. It was found that the NiTi shape memory alloy with the graphene protective layer has better biocompatibility, and it is less likely to cause red blood cells to be destroyed and hemolysis.
  • Example 1 is a schematic structural view of a graphene-coated NiTi shape memory alloy prepared in Example 1;
  • Example 2 is a high resolution transmission electron micrograph of graphene on the graphene-coated NiTi shape memory alloy prepared in Example 1;
  • FIG. 3 is a Raman spectrum diagram of the graphene-coated NiTi shape memory alloy surface graphene prepared in Example 1;
  • FIG. 4 is a graphene-coated NiTi shape memory alloy and a graphene-free protective layer prepared in Example 1. A graph showing the change of Ni ion precipitation amount in a simulated body fluid with time in a NiTi shape memory alloy;
  • Example 5 is a comparison result of erythrocyte hemolysis of the graphene-coated NiTi shape memory alloy and the NiTi shape memory alloy without the graphene protective layer prepared in Example 1 (12h);
  • Example 6 is a high resolution transmission electron micrograph of graphene on the graphene-coated NiTi shape memory alloy prepared in Example 2;
  • FIG. 7 is a graph showing changes in the amount of Ni ions precipitated in a simulated body fluid of a graphene-coated NiTi shape memory alloy prepared in Example 2 and a NiTi shape memory alloy having no graphene protective layer;
  • Fig. 8 is a comparison result of erythrocyte hemolysis of the graphene-coated NiTi shape memory alloy and the NiTi shape memory alloy without the graphene protective layer prepared in Example 2 (48h). detailed description
  • NiTi shape memory alloy was mechanically polished and polished, and then ultrasonically washed in ethanol and acetone for 30 minutes, and dried for use.
  • a metal copper piece (or a metal nickel piece) is placed in a quartz reactor, and the reactor is pushed to the center of the chamber of the chemical vapor deposition apparatus, the vacuum pump is turned on, and then introduced at a rate of 50 sccm/min and 300 sccm/min, respectively. Hydrogen and nitrogen, and a CH 4 for 4 minutes at a rate of 35 SCC m/min to produce graphene on the surface of a metallic copper sheet (or nickel metal sheet). During the growth of graphene, the quartz reactor is heated.
  • the heating rate is 12 ° C / min, after the end of growth, argon and hydrogen are introduced into the chamber at a rate of 300 sccm / min and 35 sccm / min, respectively, until cooling to room temperature, the cooling rate is 10 ° C /min.
  • the surface of the graphene grown on the metal copper sheet (or the metal nickel sheet) is coated with a layer of polymethyl methacrylate (PMMA), and then placed in a ferric chloride solution having a concentration of 0.5 mol/L. 20min corrosion; after etching, the metal copper sheet (or metal nickel sheet) can be completely etched away, leaving only the PMMA/graphene composite film, and then the composite film is repeatedly washed in deionized water for 3 times, and finally transferred
  • PMMA polymethyl methacrylate
  • NiTi shape memory alloy prepared by the step (3) covered with the PMMA/graphene composite film is placed in an oven, and the water molecules are removed by holding at 50 ° C for 3 hours, and then acetone is added dropwise to remove the ruthenium to obtain a graphene package. Covered NiTi shape memory alloy.
  • the structure of the graphene-coated NiTi shape memory alloy is shown in Fig. 1.
  • the high-resolution transmission electron micrograph is shown in Fig. 2. It can be seen from Fig. 2 that the number of surface graphene layers is four.
  • the graphene-coated NiTi shape memory alloy was subjected to Raman test under a laser of 532 nm, and its Raman spectrum is shown in Fig. 3. From Fig. 3, it can be found that graphene still has good quality.
  • the graphene-coated NiTi shape memory alloy prepared in the present embodiment was immersed in a simulated body fluid having a NaCl concentration of 0.9 wt% for 15 days, wherein the release amount of Ni ions on the first, third, sixth, tenth, and fifteenth days was as follows.
  • Figure 4 shows. It can be seen from Fig. 4 that the presence of the graphene protective layer can effectively suppress the precipitation of Ni ions. After 15 days of corrosion, the Ni ion release of the graphene-coated NiTi shape memory alloy was 77.0 ⁇ 6.9 g/L, while the NiI release of the NiTi shape memory alloy without the graphene protective layer was 168.6 ⁇ 66.1 g/ L.
  • the graphene-coated NiTi shape memory alloy sample and the graphene-free NiTi shape memory alloy sample were respectively placed in a solution with a red blood cell concentration of 4.06-5.74 ⁇ 10 12 /L for absorbance comparison. As shown in Figure 5. After 12 hours, it was found that the surface layer solution of the NiTi shape memory alloy sample with graphene protective layer has better transmittance, indicating that the presence of graphene can effectively inhibit the rupture of red blood cells and cause hemolysis. The graphene coating layer can improve the NiTi shape memory alloy. Biocompatibility.
  • NiTi shape memory alloy was mechanically polished and polished, and then ultrasonically cleaned in ethanol and acetone for 60 minutes, and dried for use.
  • the graphene is grown on the surface of the metal copper sheet (or metal nickel sheet), during the growth of graphene, the quartz reactor is heated At 1100 ° C, the heating rate is 12 ° C / min, after the end of growth, argon and hydrogen are introduced into the chamber at a rate of 300 sccm / min and 35 sccm / min, respectively, until cooling to room temperature, the cooling rate is 10 ° C /min.
  • the surface of the graphene grown on the metal copper sheet (or the metal nickel sheet) is coated with a layer of polymethyl methacrylate (PMMA), and then placed in a ferric chloride solution having a concentration of 0.5 mol/L. After 40 minutes of corrosion; after etching, the metal copper sheet (or metal nickel sheet) can be completely etched away, leaving only the PMMA/graphene composite film, and then the composite film is repeatedly washed in deionized water for 3 times, and finally transferred.
  • PMMA polymethyl methacrylate
  • NiTi shape memory alloy prepared by the step (3) covered with the PMMA/graphene composite film is placed in an oven, and the water molecules are removed by holding at 50 ° C for 3 hours, and then acetone is added dropwise to remove the ruthenium to obtain a graphene package. Covered NiTi shape memory alloy.
  • the structure of the graphene-coated NiTi shape memory alloy is shown in Fig. 1.
  • the high-resolution transmission electron micrograph is shown in Fig. 6. It can be seen from Fig. 6 that the number of surface graphene layers is six.
  • the graphene-coated NiTi shape memory alloy prepared in the present embodiment was immersed in a simulated body fluid having a NaCl concentration of 0.9 wt% for 15 days, wherein the release amount of Ni ions on the first, third, sixth, tenth, and fifteenth days was as follows.
  • Figure 7 shows. It can be seen from Fig. 7 that the presence of the graphene protective layer can effectively suppress the precipitation of Ni ions. After 15 days of corrosion, the Ni ion release of the graphene-coated NiTi shape memory alloy was 65.3 ⁇ 43.4 g/L, while the Ni ion release of the NiTi shape memory alloy without the graphene protective layer was 168.6 ⁇ 66.1 g/ L.
  • the graphene-coated NiTi shape memory alloy sample and the graphene-free NiTi shape memory alloy sample were respectively placed in a solution with a red blood cell concentration of 4.06-5.74 ⁇ 10 12 /L for absorbance comparison.
  • Figure 8 After 48 hours, it was found that the surface layer solution of the NiTi shape memory alloy sample with graphene protective layer has better transmittance, indicating that the presence of graphene can effectively inhibit the rupture of red blood cells and cause hemolysis.
  • the graphene coating layer can improve the NiTi shape memory alloy. Biocompatibility.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Nanotechnology (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明提供了一种NiTi形状记忆合金的表面改性方法。该方法包括以下步骤:在生长在金属铜基底或金属镍基底上的石墨烯的表面涂一层PMMA,然后将基底和石墨烯放入三氯化铁溶液中对基底进行腐蚀,腐蚀时间为20-40min,得到PMMA/石墨烯复合膜;利用去离子水对PMMA/石墨烯复合膜进行清洗,然后将PMMA/石墨烯复合膜转移至NiTi形状记忆合金的表面;然后将表面具有PMMA/石墨烯复合膜的NiTi形状记忆合金放入烘箱内,在50-60℃下保温3-5小时,然后滴加丙酮去除聚甲基丙烯酸甲酯,实现石墨烯薄膜对NiTi形状记忆合金表面的包覆。本发明制备的表面包覆有石墨烯的NiTi形状记忆合金的石墨烯保护层可以明显抑制Ni离子的析出,并具有更好的生物相容性,更不容易造成红细胞被破坏而出现溶血现象。

Description

一种 NiTi形状记忆合金的表面改性方法
技术领域
本发明涉及一种应用石墨烯包覆对医用 NiTi形状记忆合金进行表面改性的方法, 属于 NiTi生物医用材料领域。 背景技术
如今, NiTi形状记忆合金由于其独特的形状记忆效应、 超弹性、 低弹性模量和较好 的生物相容性已成为一种被广泛应用的生物医用材料, 然而, 由于 NiTi形状记忆合金 中 Ni含量较高, 在长期使用中, Ni离子会析出并游离进入到人体血液中去, 与人体生 物分子结合, 导致人体中毒、 过敏, 严重时甚至会引发癌症。 因此, 如何有效抑制 Ni 离子的析出是当今 NiTi形状记忆合金在生物医用材料领域首要解决的问题。
在有氧环境中, 由于 Ti和 0具有很强的结合力, 在 NiTi记忆合金表面会自发生成 Ti02保护膜, 虽然 Ti02保护膜理论上可以抑制 Ni离子析出并且具有生物相容性, 但是 Ti02薄膜作为陶瓷膜, 其力学性能很差, 在 NiTi形状记忆合金变形过程中很容易发生 断裂并无法修复, 不能起到有效抑制 Ni离子析出的功能。
针对上述问题, 一般采用表面改性的方法来抑制 Ni离子的析出。 表面改性膜通常 为 TiN薄膜、 TiC薄膜、 金刚石膜、 金属钽膜和金属铌膜等, 但这些薄膜或由于制备成 本高、 工艺复杂、 力学性能差和生物相容性不理想等因素的影响, 使它们的应用性受到 很大的限制, 远远不能满足生物医用材料领域的需求。
因此, 探索一种制备工艺简单, 成本低廉, 并具有较好力学性能和生物相容性的
NiTi形状记忆合金表面改性膜显得尤为重要。 发明内容
为解决上述技术问题, 本发明的目的在于提供一种 NiTi形状记忆合金的表面改性 方法, 该方法采用石墨烯薄膜对 NiTi形状记忆合金的表面进行改性, 具有操作简单、 成本低等特点, 所制备得到的表面具有石墨烯薄膜的 NiTi形状记忆合金具有良好的生 物相容性。
为达到上述目的, 本发明提供了一种利用石墨烯包覆对 NiTi形状记忆合金进行表 面改性的方法, 其包括以下步骤:
在生长在金属铜基底或金属镍基底上的石墨烯的表面涂一层聚甲基丙烯酸甲酯,然 后将基底和石墨烯放入浓度为 0.5mol/L的三氯化铁溶液中对基底进行腐蚀,腐蚀时间为 20-40min, 得到 PMMA/石墨烯复合膜;
利用水对所述 PMMA/石墨烯复合膜进行清洗,然后将所述 PMMA/石墨烯复合膜转 移至 NiTi形状记忆合金的表面;
然后将表面具有 PMMA/石墨烯复合膜的 NiTi形状记忆合金放入烘箱内, 在 50-60 °C下保温 3-5小时, 然后滴加丙酮去除聚甲基丙烯酸甲酯, 实现石墨烯薄膜对 NiTi形状 记忆合金表面的包覆。
根据本发明的具体实施方案, 优选地, 该方法包括以下步骤:
在转移所述 PMMA/石墨烯复合膜之前, 在所述 NiTi形状记忆合金的表面喷涂一层 乙醇; 这样可以使 PMMA/石墨烯复合膜与金属衬底形成良好的接触。
根据本发明的具体实施方案, 优选地, 该方法包括对 NiTi形状记忆合金进行预处 理的步骤:
在转移所述 PMMA/石墨烯复合膜之前, 对所述 NiTi形状记忆合金的表面进行机械 打磨、 抛光, 再分别放入乙醇和丙酮中超声清洗 30-60分钟, 吹干备用。
根据本发明的具体实施方案, 优选地, 所述石墨烯是通过化学气相沉积法制备得到 的。
根据本发明的具体实施方案, 优选地, 该方法包括制备石墨烯的步骤:
首先将金属铜基底或金属镍基底放入石英反应器中, 并将石英反应器推送到化学气 相沉积设备的反应室中央, 打开真空泵, 然后分别以 50 sccm/min和 300 sccm/min的速 率向反应室内通入氢气和氮气;
以 35SCCm/min的速率向反应室中通入 CH4, 使石墨烯在金属铜片或者金属镍片的 表面进行生长, 同时, 在石墨烯的生长过程中, 将石英反应器加热至 950-1100°C, CH4 的通入时间为 4-20min;
石墨烯生长结束之后,分别以 300sccm/min和 35sccm/min的速率向反应室内通入氩 气和氢气, 直到冷却到室温。
根据本发明的具体实施方案, 优选地, 在制备过程中, 石英反应器的加热速率为 12 °C/min, 反应室的冷却速度为 10°C/min。
本发明提供的上述利用石墨烯包覆对 NiTi形状记忆合金进行表面改性的方法可以 按照以下具体步骤进行:
( 1 ) NiTi形状记忆合金的预处理: 对 NiTi形状记忆合金的表面进行机械打磨、 抛光, 再分别放入乙醇和丙酮中超声 清洗 30-60分钟, 吹干备用。
(2) 石墨烯的制备:
石墨烯的制备是采用化学气相沉积方法, 按照以下步骤进行: 首先将金属铜片或者 金属镍片放入石英反应器中, 并将反应器推送到化学气相沉积设备的反应室中央, 打开 真空泵,分别以 50sccm/min和 300sccm/min的速率向反应室中通入氢气和氮气,并且以 35sccm/min的速率通入 4-20分钟的 CH4, 使石墨烯在金属铜片或金属镍片的表面生长, 在石墨烯生长过程中, 石英反应器被加热到 950-1100°C, 加热速率为 12°C/min, 生长结 束时,分别以 300sccm/min和 35sccm/min的速率通入氩气和氢气直到冷却到室温,冷却 速度为 10°C/min。
(3 ) 石墨烯的转移:
石墨烯的转移是将步骤 (2) 中已经制备好的石墨烯转移到 NiTi形状记忆合金衬底 表面, 按照以下步骤进行: 首先将生长在金属铜片或者金属镍片上的石墨烯表面涂一层 聚甲基丙烯酸甲酯 (PMMA), 然后将其放入浓度为 0.5mol/L 的三氯化铁溶液中进行 20-40min 的腐蚀; 经过腐蚀之后, 金属铜片或者金属镍片可完全被腐蚀掉, 仅剩下 PMMA/石墨烯复合膜, 然后将此复合膜放入去离子水中反复清洗 3-5次, 最后转移到经 过预处理的 NiTi形状记忆合金表面, 在转移之前, 在 NiTi形状记忆合金的表面预喷涂 一层乙醇。
(4) 热处理:
热处理是将步骤 (3 ) 中制备好的表面带有 PMMA/石墨烯复合膜的 NiTi形状记忆 合金放入烘箱内, 在 50-60 下保温 3-5小时去除水分子, 然后滴加丙酮去除 ΡΜΜΑ, 最终实现石墨烯薄膜在 NiTi形状记忆合金表面的包覆。
本发明还提供了一种 NiTi形状记忆合金, 其表面包覆有石墨烯薄膜。
根据本发明的具体实施方案, 优选地, 该 NiTi形状记忆合金是通过上述利用石墨 烯包覆对 NiTi形状记忆合金进行表面改性的方法制备的。
通过将本发明制备的表面包覆有石墨烯的 NiTi形状记忆合金在模拟体液中浸泡发 现石墨烯保护层可以明显抑制 Ni离子的析出。 为测试石墨烯保护层与 NiTi形状记忆合 金的生物相容性, 将石墨烯包覆的 NiTi形状记忆合金和无石墨烯保护层的 NiTi形状记 忆合金分别放入含有红细胞的溶液中进行检测比较, 发现具有石墨烯保护层的 NiTi形 状记忆合金具有更好的生物相容性, 更不容易造成红细胞被破坏而出现溶血现象。 附图说明
图 1为实施例 1制备的石墨烯包覆的 NiTi形状记忆合金的结构示意图;
图 2为实施例 1制备的石墨烯包覆的 NiTi形状记忆合金表面石墨烯的高分辨透射 电镜照片;
图 3为实施例 1制备的石墨烯包覆的 NiTi形状记忆合金表面石墨烯的拉曼光谱图; 图 4为实施例 1制备的石墨烯包覆的 NiTi形状记忆合金和无石墨烯保护层的 NiTi 形状记忆合金在模拟体液中的 Ni离子析出量随时间变化结果图;
图 5为实施例 1制备的石墨烯包覆 NiTi形状记忆合金和无石墨烯保护层的 NiTi形 状记忆合金的红细胞溶血量比较结果 (12h);
图 6为实施例 2制备的石墨烯包覆的 NiTi形状记忆合金表面石墨烯的高分辨透射 电镜照片;
图 7为实施例 2制备的石墨烯包覆的 NiTi形状记忆合金和无石墨烯保护层的 NiTi 形状记忆合金在模拟体液中的 Ni离子析出量随时间变化结果图;
图 8为实施例 2制备的石墨烯包覆 NiTi形状记忆合金和无石墨烯保护层的 NiTi形 状记忆合金的红细胞溶血量比较结果 (48h)。 具体实施方式
为了对本发明的技术特征、 目的和有益效果有更加清楚的理解, 现对本发明的技术 方案进行以下详细说明, 但不能理解为对本发明的可实施范围的限定。
实施例 1
本实施例提供一种石墨烯包覆的 NiTi形状记忆合金, 其是通过以下步骤制备的:
( 1 ) NiTi形状记忆合金的预处理:
对 NiTi形状记忆合金进行机械打磨、 抛光, 再分别放入乙醇和丙酮中各超声清洗 30分钟, 吹干备用。
(2) 石墨烯的制备
首先将金属铜片 (或者金属镍片)放入石英反应器中, 并将反应器推送到化学气相 沉积设备的腔体中央,打开真空泵,然后分别以 50sccm/min和 300sccm/min的速率通入 氢气和氮气, 并且以 35SCCm/min的速率通入 4分钟 CH4, 使石墨烯在金属铜片 (或金 属镍片) 的表面生产, 在石墨烯的生长过程中, 石英反应器被加热到 950°C, 加热速率 为 12°C/min, 生长结束之后, 分别以 300sccm/min和 35sccm/min的速率向腔体中通入 氩气和氢气直到冷却到室温, 冷却速度为 10°C/min。 (3 ) 石墨烯的转移
首先将生长在金属铜片(或者金属镍片)上的石墨烯表面涂一层聚甲基丙烯酸甲酯 (PMMA), 然后将其放入浓度为 0.5mol/L的三氯化铁溶液中进行 20min的腐蚀; 经过 腐蚀之后, 金属铜片 (或者金属镍片)可完全被腐蚀掉, 仅剩下 PMMA/石墨烯复合膜, 然后将此复合膜放入去离子水中反复清洗 3次, 最后转移到经过预处理的 NiTi形状记 忆合金表面, 在转移之前, 在 NiTi形状记忆合金表面预喷涂一层乙醇。
(4) 热处理
将步骤 (3 ) 中制备的表面覆盖有 PMMA/石墨烯复合膜的 NiTi形状记忆合金放入 烘箱内, 在 50°C下保温 3小时去除水分子, 然后滴加丙酮去除 ΡΜΜΑ, 得到石墨烯包 覆的 NiTi形状记忆合金。
该石墨烯包覆的 NiTi形状记忆合金的结构如图 1所示, 其高分辨透射电镜照片如 图 2所示, 由图 2可以看出表层石墨烯层数为 4层。 将该石墨烯包覆的 NiTi形状记忆 合金在 532nm激光下进行拉曼测试,其拉曼光谱图如图 3所示,从图 3中可以发现石墨 烯仍具有良好的质量。
将本实施例制备的石墨烯包覆的 NiTi形状记忆合金放入 NaCl浓度为 0.9wt%的模拟 体液中浸泡 15天, 其中, 第 1、 3、 6、 10、 15天的 Ni离子释放量如图 4所示。 由图 4 可以看出, 石墨烯保护层的存在可以有效抑制 Ni离子的析出。 经过 15天的腐蚀, 石墨 烯包覆的 NiTi形状记忆合金的 Ni离子释放量为 77.0±6.9 g/L,而无石墨烯保护层的 NiTi 形状记忆合金的 Ni离子释放量为 168.6±66.1 g/L。
在相同的测试条件下, 将石墨烯包覆 NiTi形状记忆合金样品与无石墨烯包覆 NiTi 形状记忆合金样品分别放入红细胞浓度为 4.06-5.74x l012/L 的溶液中进行吸光度比较, 结果如图 5所示。 经过 12小时, 发现具有石墨烯保护层的 NiTi形状记忆合金样品表层 溶液透光度更好, 表明石墨烯的存在可以有效抑制红细胞发生破裂而产生溶血, 石墨烯 包覆层可以提高 NiTi形状记忆合金的生物相容性。
实施例 2
本实施例提供一种石墨烯包覆的 NiTi形状记忆合金, 其是通过以下步骤制备的:
( 1 ) NiTi形状记忆合金的预处理:
对 NiTi形状记忆合金进行机械打磨、 抛光, 再分别放入乙醇和丙酮中各超声清洗 60分钟, 吹干备用。
(2) 石墨烯的制备 首先将金属铜片 (或者金属镍片)放入石英反应器中, 并将反应器推送到化学气相 沉积设备的腔体中央,打开真空泵,然后分别以 50sccm/min和 300sccm/min的速率通入 氢气和氮气, 并且以 35SCCm/min的速率通入 10分钟 CH4, 使石墨烯在金属铜片 (或金 属镍片) 的表面生长, 在石墨烯的生长过程中, 石英反应器被加热到 1100°C, 加热速率 为 12°C/min, 生长结束之后, 分别以 300sccm/min和 35sccm/min的速率向腔体中通入 氩气和氢气直到冷却到室温, 冷却速度为 10°C/min。
(3 ) 石墨烯的转移
首先将生长在金属铜片(或者金属镍片)上的石墨烯表面涂一层聚甲基丙烯酸甲酯 (PMMA), 然后将其放入浓度为 0.5mol/L的三氯化铁溶液中进行 40min的腐蚀; 经过 腐蚀之后, 金属铜片 (或者金属镍片)可完全被腐蚀掉, 仅剩下 PMMA/石墨烯复合膜, 然后将此复合膜放入去离子水中反复清洗 3次, 最后转移到经过预处理的 NiTi形状记 忆合金表面, 在转移之前, 在 NiTi形状记忆合金表面预喷涂一层乙醇。
(4) 热处理
将步骤 (3 ) 中制备的表面覆盖有 PMMA/石墨烯复合膜的 NiTi形状记忆合金放入 烘箱内, 在 50°C下保温 3小时去除水分子, 然后滴加丙酮去除 ΡΜΜΑ, 得到石墨烯包 覆的 NiTi形状记忆合金。
该石墨烯包覆的 NiTi形状记忆合金的结构如图 1所示, 其高分辨透射电镜照片如 图 6所示, 由图 6可以看出表层石墨烯层数为 6层。
将本实施例制备的石墨烯包覆的 NiTi形状记忆合金放入 NaCl浓度为 0.9wt%的模拟 体液中浸泡 15天, 其中, 第 1、 3、 6、 10、 15天的 Ni离子释放量如图 7所示。 由图 7 可以看出, 石墨烯保护层的存在可以有效抑制 Ni离子的析出。 经过 15天的腐蚀, 石墨 烯包覆的 NiTi形状记忆合金的 Ni离子释放量为 65.3±43.4 g/L, 而无石墨烯保护层的 NiTi形状记忆合金的 Ni离子释放量为 168.6±66.1 g/L。
在相同的测试条件下, 将石墨烯包覆 NiTi形状记忆合金样品与无石墨烯包覆 NiTi 形状记忆合金样品分别放入红细胞浓度为 4.06-5.74x l012/L 的溶液中进行吸光度比较, 结果如图 8所示。 经过 48小时, 发现具有石墨烯保护层的 NiTi形状记忆合金样品表层 溶液透光度更好, 表明石墨烯的存在可以有效抑制红细胞发生破裂而产生溶血, 石墨烯 包覆层可以提高 NiTi形状记忆合金的生物相容性。

Claims

权利要求书
1、 一种利用石墨烯包覆对 NiTi形状记忆合金进行表面改性的方法, 其包括以下步 骤:
在生长在金属铜基底或金属镍基底上的石墨烯的表面涂一层聚甲基丙烯酸甲酯,然 后将基底和石墨烯放入三氯化铁溶液中对基底进行腐蚀, 腐蚀时间为 20-40min, 得到 PMMA/石墨烯复合膜;
利用水对所述 PMMA/石墨烯复合膜进行清洗,然后将所述 PMMA/石墨烯复合膜转 移至 NiTi形状记忆合金的表面;
然后将表面具有 PMMA/石墨烯复合膜的 NiTi形状记忆合金放入烘箱内, 在 50-60 °C下保温 3-5小时, 然后滴加丙酮去除聚甲基丙烯酸甲酯, 实现石墨烯薄膜对 NiTi形状 记忆合金表面的包覆。
2、 根据权利要求 1所述的方法, 其中, 该方法包括以下步骤:
在转移所述 PMMA/石墨烯复合膜之前, 在所述 NiTi形状记忆合金的表面喷涂一层 乙醇。
3、 根据权利要求 1所述的方法, 其中, 该方法包括对 NiTi形状记忆合金进行预处 理的步骤:
在转移所述 PMMA/石墨烯复合膜之前, 对所述 NiTi形状记忆合金的表面进行机械 打磨、 抛光, 再分别放入乙醇和丙酮中超声清洗 30-60分钟, 吹干备用。
4、 根据权利要求 1所述的方法, 其中, 所述石墨烯是通过化学气相沉积法制备得 到的。
5、 根据权利要求 1或 4所述的方法, 其中, 该方法包括制备石墨烯的步骤: 首先将金属铜基底或金属镍基底放入石英反应器中, 并将石英反应器推送到化学气 相沉积设备的反应室中央, 打开真空泵, 然后分别以 50 sccm/min和 300 sccm/min的速 率向反应室内通入氢气和氮气;
以 35SCCm/min的速率向反应室中通入 CH4, 使石墨烯在金属铜片或者金属镍片的 表面进行生长, 同时, 在石墨烯的生长过程中, 将石英反应器加热至 950-1100°C, CH4 的通入时间为 4-20min;
石墨烯生长结束之后, 分别以 300 sccm/min和 35 sccm/min的速率向反应室内通入 氩气和氢气, 直到冷却到室温。
6、 根据权利要求 5所述的方法, 其中, 所述石英反应器的加热速率为 12°C/min。
7、 根据权利要求 5所述的方法, 其中, 石墨烯生长结束之后, 所述反应室的冷却 速度为 10°C/min。
8、 根据权利要求 1所述的方法, 其中, 所述金属铜基底为金属铜片, 所述金属镍 基底为金属镍片。
9、 一种 NiTi形状记忆合金, 其表面包覆有石墨烯薄膜。
10、 根据权利要求 9所述的 NiTi形状记忆合金, 其中, 该 NiTi形状记忆合金是通 过权利要求 1-8任一项所述的方法制备的。
PCT/CN2014/075913 2013-10-29 2014-04-22 一种NiTi形状记忆合金的表面改性方法 WO2015062221A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310524328.9 2013-10-29
CN201310524328.9A CN103556148B (zh) 2013-10-29 2013-10-29 一种NiTi形状记忆合金的表面改性方法

Publications (1)

Publication Number Publication Date
WO2015062221A1 true WO2015062221A1 (zh) 2015-05-07

Family

ID=50010488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/075913 WO2015062221A1 (zh) 2013-10-29 2014-04-22 一种NiTi形状记忆合金的表面改性方法

Country Status (2)

Country Link
CN (1) CN103556148B (zh)
WO (1) WO2015062221A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103556148B (zh) * 2013-10-29 2016-03-02 中国石油大学(北京) 一种NiTi形状记忆合金的表面改性方法
CN105586597B (zh) * 2014-10-21 2017-11-24 中国石油大学(北京) 一种TiNi记忆合金表面改性方法
CN105983132A (zh) * 2015-02-06 2016-10-05 中国科学院上海微系统与信息技术研究所 一种对医用钛材料表面进行改性的方法
CN105060280A (zh) * 2015-07-20 2015-11-18 中国人民解放军第四军医大学 一种钛或钛合金表面石墨烯薄膜的制备方法
CN105483800B (zh) * 2015-12-09 2017-08-08 北京市医疗器械检验所 一种医用级镍钛形状记忆合金循环动电位成膜工艺
CN105734561A (zh) * 2016-04-08 2016-07-06 北京航空航天大学 一种在医用镍钛合金表面原位生长的石墨烯薄膜及其制备方法
CN111926329A (zh) * 2020-07-21 2020-11-13 淮阴工学院 一种钛合金表面激光改性有机-无机复合保护涂层的制备方法
CN113998694B (zh) * 2021-11-22 2023-12-12 上海大学 一种利用固态碳源获取大尺寸石墨烯的制备方法
CN114203326B (zh) * 2021-12-13 2024-04-30 中国核动力研究设计院 石墨烯封装超薄镍-63辐射源薄膜及其制备方法、应用
CN114309649B (zh) * 2021-12-24 2024-05-28 吉林大学威海仿生研究院 一种通过热处理工艺改善激光选区熔化NiTi合金耐腐蚀性的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6238496B1 (en) * 1998-07-01 2001-05-29 Jeffrey W. Akers Method for precision modification and enhancement of shape memory alloy properties
CN101988182A (zh) * 2010-12-08 2011-03-23 沈阳工业大学 耐磨蚀牙科正畸弓丝表面改性方法及所得的耐磨蚀弓丝
CN102351175A (zh) * 2011-11-03 2012-02-15 东南大学 化学气相沉积法制备石墨烯的高质量转移方法
CN102674335A (zh) * 2012-05-24 2012-09-19 哈尔滨工业大学 一种基于自由基反应低温制备石墨烯的方法
CN102719803A (zh) * 2012-07-09 2012-10-10 深圳市贝特瑞纳米科技有限公司 一种石墨烯透明薄膜的制备和转移方法
US20130098540A1 (en) * 2011-10-24 2013-04-25 Samsung Electronics Co., Ltd. Graphene-transferring member, graphene transferrer, method of transferring graphene, and methods of fabricating graphene device by using the same
CN103556148A (zh) * 2013-10-29 2014-02-05 中国石油大学(北京) 一种NiTi形状记忆合金的表面改性方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6238496B1 (en) * 1998-07-01 2001-05-29 Jeffrey W. Akers Method for precision modification and enhancement of shape memory alloy properties
CN101988182A (zh) * 2010-12-08 2011-03-23 沈阳工业大学 耐磨蚀牙科正畸弓丝表面改性方法及所得的耐磨蚀弓丝
US20130098540A1 (en) * 2011-10-24 2013-04-25 Samsung Electronics Co., Ltd. Graphene-transferring member, graphene transferrer, method of transferring graphene, and methods of fabricating graphene device by using the same
CN102351175A (zh) * 2011-11-03 2012-02-15 东南大学 化学气相沉积法制备石墨烯的高质量转移方法
CN102674335A (zh) * 2012-05-24 2012-09-19 哈尔滨工业大学 一种基于自由基反应低温制备石墨烯的方法
CN102719803A (zh) * 2012-07-09 2012-10-10 深圳市贝特瑞纳米科技有限公司 一种石墨烯透明薄膜的制备和转移方法
CN103556148A (zh) * 2013-10-29 2014-02-05 中国石油大学(北京) 一种NiTi形状记忆合金的表面改性方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ABBAS AMINI ET AL.: "Effect of graphene layers on the thermomechanical behaviour of a NiTi shape memory alloy during the nanoscale phase transition", SCRIPTA MATERIALIA, vol. 68, 17 November 2012 (2012-11-17), pages 420 - 423 *

Also Published As

Publication number Publication date
CN103556148A (zh) 2014-02-05
CN103556148B (zh) 2016-03-02

Similar Documents

Publication Publication Date Title
WO2015062221A1 (zh) 一种NiTi形状记忆合金的表面改性方法
Zhang et al. Graphene enhanced anti-corrosion and biocompatibility of NiTi alloy
Fang et al. Enhanced adhesion and anticorrosion of silk fibroin coated biodegradable Mg-Zn-Ca alloy via a two-step plasma activation
CN101880874A (zh) 改善医用钛或钛合金表面亲水性的方法
CN107034498B (zh) 一种石墨烯钢基合金的制备方法
TW202021904A (zh) 石墨烯膠膜的製備方法及石墨烯的轉移方法
WO2020015475A1 (zh) 在金属表面制备石墨烯涂层的方法
CN105220214B (zh) 一种石墨烯薄膜的制备方法
Shanaghi et al. Investigation of corrosion mechanism of NiTi modified by carbon plasma immersion ion implantation (C-PIII) by electrochemical impedance spectroscopy
CN109234784A (zh) 一种医用镁合金复合材料的制备方法
Jiang et al. Surface characteristics of mussel-inspired polydopamine coating on titanium substrates
CN106835066A (zh) 一种金属表面石墨烯钝化处理防腐涂层的方法
Wang et al. Preparation and corrosion resistance of ZnO@ ZIF-8-SA film on carbon steel surface
CN115376757B (zh) 一种抗氧化的铜纳米线透明电极及其制备方法和应用
JPH07103462B2 (ja) 酸化アルミニウム保護膜の製造方法および製造装置
Ye et al. The influence of mesopores on the corrosion resistance of hydroxyapatite coated AZ31 Mg alloy
CN113412047A (zh) 铜基石墨烯包覆结构及其制备方法
TW201118050A (en) A high temperature pretreatment method on surface of glass substrate for anti-reflection film
CN111020574A (zh) 一种基于不锈钢和石墨烯的疏水换热材料的低温制备方法
WO2014156161A1 (ja) 金属部品の製造方法並びにそれに用いられる鋳型および離型膜
Li et al. Influence of the microstructure of sputtered Ti films on the anodization toward TiO2 nanotube arrays
WO2019136769A1 (zh) 类金刚石膜的制备方法
CN112919454A (zh) 一种控制双层石墨烯堆叠角度的方法
CN101413103B (zh) 一种在锆表面渗镀铂薄膜的方法
CN206692722U (zh) 一种涂层基材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14858885

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14858885

Country of ref document: EP

Kind code of ref document: A1