WO2015060335A1 - 共重合ポリエステル樹脂 - Google Patents

共重合ポリエステル樹脂 Download PDF

Info

Publication number
WO2015060335A1
WO2015060335A1 PCT/JP2014/078059 JP2014078059W WO2015060335A1 WO 2015060335 A1 WO2015060335 A1 WO 2015060335A1 JP 2014078059 W JP2014078059 W JP 2014078059W WO 2015060335 A1 WO2015060335 A1 WO 2015060335A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester resin
acid
mol
copolymerized polyester
resin according
Prior art date
Application number
PCT/JP2014/078059
Other languages
English (en)
French (fr)
Inventor
大橋 英人
伸行 廣中
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to KR1020167012902A priority Critical patent/KR102222247B1/ko
Priority to US15/029,699 priority patent/US9868815B2/en
Priority to CN201480057671.XA priority patent/CN105705549B/zh
Priority to JP2014561611A priority patent/JP6500440B2/ja
Publication of WO2015060335A1 publication Critical patent/WO2015060335A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/668Polyesters containing oxygen in the form of ether groups derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/672Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/84Boron, aluminium, gallium, indium, thallium, rare-earth metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/87Non-metals or inter-compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J167/00Adhesives based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Adhesives based on derivatives of such polymers
    • C09J167/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J167/00Adhesives based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Adhesives based on derivatives of such polymers
    • C09J167/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C09J167/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl - and the hydroxy groups directly linked to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/63Viscosity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Definitions

  • the present invention relates to a copolyester resin. More specifically, the present invention relates to a copolyester resin that is excellent in transparency, has few foreign matters, and has a high degree of clarity.
  • Polyesters represented by polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), etc. are excellent in mechanical properties and chemical properties.
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PEN polyethylene naphthalate
  • clothing It is used in a wide range of fields such as fibers for industrial and industrial materials, films and sheets for packaging, magnetic tape, optics, bottles that are hollow molded products, casings for electrical and electronic parts, and other engineering plastic molded products. ing.
  • copolyesters obtained by copolymerizing the above polyesters with other glycol components have attracted attention.
  • copolymers of neopentyl glycol and 1,4-cyclohexanedimethanol are characterized by being amorphous and having a high glass transition point, and are widely used in the field of films and the like. Polyesters and methods for producing the same are disclosed (for example, see Patent Documents 1 to 5).
  • a polyester is produced by an esterification reaction or a transesterification reaction between a dicarboxylic acid and / or an ester-forming derivative thereof and a diol and / or an ester-forming derivative thereof, and this is produced using a catalyst at high temperature under vacuum.
  • a catalyst at high temperature under vacuum.
  • antimony compounds, germanium compounds, and titanium compounds have been widely used as polyester polycondensation catalysts used in such polycondensation of polyesters.
  • Antimony trioxide is an inexpensive catalyst with excellent catalytic activity. However, if it is used in an amount of such a main component, that is, a practical polymerization rate, metal antimony is used during polycondensation. As a result of precipitation, darkening and foreign matter are generated in the polyester.
  • Titanium compounds have already been put to practical use as catalysts capable of obtaining polyesters that have excellent catalytic activity other than antimony compounds and do not have the above problems, but titanium compounds typified by tetraalkoxy titanates can be used. Polyesters produced using these materials are prone to thermal degradation during melt molding, and the polyesters are remarkably colored.
  • the polyester obtained by the above polycondensation catalyst system has good color tone, transparency and thermal stability and meets the above requirements.
  • the characteristic that the degree of foreign matter is small and the degree of clarity is high has not reached a sufficiently satisfactory level, and improvement thereof has been strongly desired.
  • a polyester copolymerized with neopentyl glycol is produced using the method of Patent Document 5, a large amount of foreign matter is a problem.
  • the present invention provides a copolymer polyester having a high clarity, excellent color tone and heat resistance as compared with conventionally known copolymer polyesters, and further catalyzing metal components other than antimony and titanium.
  • the copolymer polyester which can be manufactured with the polycondensation catalyst used as the main metal component is provided.
  • this invention consists of the following structures.
  • Copolyester resin comprising a dicarboxylic acid component and a diol component as constituents, comprising 90 mol% or more of terephthalic acid as the dicarboxylic acid component, 39 to 79 mol% of ethylene glycol as the diol component, neo Sample containing 20 to 60 mol% of pentyl glycol and 1 to 5 mol% of diethylene glycol, having a reduced viscosity of 0.50 dl / g or more and a thickness of 0.8 to 0.9 mm of the copolyester resin.
  • the copolymerized polyester resin contains at least one selected from an aluminum compound and at least one selected from a phosphorus compound as a polymerization catalyst, described in (1) or (2) Copolyester resin.
  • the dicarboxylic acid component and the diol component are esterified, and the carboxylic acid group terminal concentration of the reaction intermediate oligomer after the esterification reaction is 400 to 900 eq / ton, and the hydroxyl group terminal concentration is 700 to 1400 eq / ton.
  • the copolyester resin according to any one of (1) to (3) which is obtained by performing a polycondensation reaction afterwards.
  • a heat shrinkable film comprising the copolyester resin according to any one of (1) to (5).
  • a molded article comprising the copolymerized polyester resin according to any one of (1) to (5).
  • a sheet comprising the copolyester resin according to any one of (1) to (5).
  • An adhesive comprising the copolyester resin according to any one of (1) to (5).
  • the copolymerized polyester according to the present invention is widely used as a material for various molded products such as films, sheets, hollow molded containers, engineering plastics, fibers, etc., because contamination with foreign matters is suppressed and the degree of clarity is high.
  • it is suitable as a material for a molded product that requires a high degree of clarity.
  • it is suitable as a material for optical use products that require a high degree of clarity.
  • the copolymerized polyester resin according to the present invention comprises a dicarboxylic acid component containing 90 mol% or more of terephthalic acid residues, a diol component of 39 to 79 mol% of ethylene glycol residues, 20 to 60 mol% of neopentyl glycol residues and a diethylene glycol residue. It contains 1 to 5 mol% of groups.
  • the “copolyester resin” includes a polymerization catalyst compound to be described later, and foreign matters that are formed by insolubilizing, aggregating and depositing the polymerization catalyst compound by forming an inorganic salt or an organic salt in the polymerization system. Although it can be said to be a kind of “composition” in that it contains something other than a chemical substance called “copolymerized polyester”, the amount of the polymerization catalyst compound and foreign matter is very small. Resin ".
  • terephthalic acid in the dicarboxylic acid component is preferably 90 mol% or more, which is preferable from the viewpoint of satisfying the mechanical properties required when the film or molded body is formed.
  • the terephthalic acid in the dicarboxylic acid component is preferably 97 mol% or more, more preferably 98 mol% or more. It is also a preferred embodiment that terephthalic acid is 100 mol%.
  • an ester-forming derivative of terephthalic acid (such as dimethyl terephthalate) can also be used.
  • Dicarboxylic acid components other than terephthalic acid components include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, decanedicarboxylic acid, dodecanedicarboxylic acid, tetradecanedicarboxylic acid, hexadecane Dicarboxylic acid, 1,3-cyclobutanedicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 2,5-norbornanedicarboxylic acid Saturated aliphatic dicarboxylic acids exemplified by acids, dimer acids, etc.
  • esters-forming derivatives thereof unsaturated aliphatic dicarboxylic acids exemplified by fumaric acid, maleic acid, itaconic acid, etc., or ester-forming derivatives thereof, orthophthal Acid, a Phthalic acid, 5- (alkali metal) sulfoisophthalic acid, diphenic acid, 1,3-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2, 7-naphthalenedicarboxylic acid, 4,4'-biphenylsulfone dicarboxylic acid, 4,4'-biphenyl ether dicarboxylic acid, 1,2-bis (phenoxy) ethane-p, p'-dicarboxylic acid, pamoic acid, anthracene dicarboxylic acid Aromatic dicarboxylic acids exemplified in the above and their
  • dicarboxylic acids isophthalic acid, adipic acid, sebacic acid, and azelaic acid are preferable in terms of physical properties of the polyester, and other dicarboxylic acids may be added as a constituent as necessary.
  • a polyvalent carboxylic acid may be used in combination if the amount is small.
  • the polyvalent carboxylic acid include ethanetricarboxylic acid, propanetricarboxylic acid, butanetetracarboxylic acid, pyromellitic acid, trimellitic acid, trimesic acid, and 3,4,3 ', 4'-biphenyltetracarboxylic acid.
  • These polyvalent carboxylic acids are preferably 3 mol% or less with respect to 100 mol% of all dicarboxylic acid components.
  • the copolymer polyester resin of the present invention contains 39 to 79 mol% of ethylene glycol, 20 to 60 mol% of neopentyl glycol, and 1 to 5 mol% of diethylene glycol as diol components. It is preferable at the point which can obtain the polyester resin used for the various uses which heightened.
  • ethylene glycol is preferably 40 to 77 mol%, more preferably 42 to 75 mol%.
  • neopentyl glycol is preferably 22 to 58 mol%, more preferably 24 to 56 mol%.
  • diethylene glycol is preferably 1 to 3 mol%.
  • diol component three components of ethylene glycol, neopentyl glycol, and diethylene glycol occupy 90 mol% or more of the total diol component, and more preferably 95 mol% or more.
  • a diol component it is also a preferable aspect that it is 100 mol% with three components of ethylene glycol, neopentyl glycol, and diethylene glycol.
  • Diethylene glycol may be prepared as a raw material, or may be obtained by condensation of ethylene glycol during polymerization.
  • diols include 1,2-propylene glycol, 1,3-propylene glycol, triethylene glycol, 1,2-butylene glycol, 1,3-butylene glycol, 2,3-butylene glycol, 1,4-butylene.
  • Glycol 1,5-pentanediol, 1,6-hexanediol, 1,2-cyclohexanediol, 1,3-cyclohexanediol, 1,4-cyclohexanediol, 1,2-cyclohexanedimethanol, 1,3-cyclohexane Examples include dimethanol, 1,4-cyclohexanedimethanol, 1,4-cyclohexanediethanol, 1,10-decamethylene glycol, 1,12-dodecanediol, polyethylene glycol, polytrimethylene glycol, polytetramethylene glycol, etc.
  • 1,3-propylene glycol 1,4-butylene glycol, and 1,4-cyclohexanedimethanol are preferred.
  • ethylene glycol derived from biomass resources can be used as long as the purpose of the copolymer polyester of the present invention is not impaired.
  • polyhydric alcohols may be used in combination if the amount is small.
  • examples of the polyhydric alcohol include trimethylolmethane, trimethylolethane, trimethylolpropane, pentaerythritol, glycerol, hexanetriol, and the like. These polyhydric alcohols are preferably 3 mol% or less with respect to 100 mol% of all diol components.
  • hydroxycarboxylic acid may be used in combination.
  • examples of the hydroxycarboxylic acid include lactic acid, citric acid, malic acid, tartaric acid, hydroxyacetic acid, 3-hydroxybutyric acid, p-hydroxybenzoic acid, p- (2-hydroxyethoxy) benzoic acid, 4-hydroxycyclohexanecarboxylic acid, or These ester-forming derivatives are exemplified.
  • These hydroxycarboxylic acids are preferably 3 mol% or less with respect to 100 mol% of all dicarboxylic acid components.
  • cyclic esters examples include ⁇ -caprolactone, ⁇ -propiolactone, ⁇ -methyl- ⁇ -propiolactone, ⁇ -valerolactone, glycolide, lactide and the like. These cyclic esters are preferably 3 mol% or less with respect to 100 mol% of all dicarboxylic acid components.
  • ester-forming derivatives of dicarboxylic acid, polyvalent carboxylic acid or hydroxycarboxylic acid include alkyl esters and hydroxylalkyl esters of these compounds.
  • An ester-forming derivative may be used as the diol component, and examples of the diol ester-forming derivative include esters of diol with lower aliphatic carboxylic acids such as acetic acid.
  • the reduced viscosity of the copolyester resin of the present invention is 0.50 dl / g or more.
  • the reduced viscosity is preferably 0.60 dl / g or more, more preferably 0.65 dl / g or more, and further preferably 0.70 dl / g or more.
  • a preferable upper limit of the reduced viscosity is about 1.00 dl / g.
  • the polymerization catalyst used in the present invention is a polymerization catalyst characterized by having an ability to promote esterification.
  • a polymerization catalyst containing at least one selected from aluminum compounds and at least one selected from phosphorus compounds is preferable.
  • a known aluminum compound can be used without limitation as the aluminum compound constituting the polymerization catalyst to be used.
  • the aluminum compound examples include aluminum acetate, basic aluminum acetate, aluminum lactate, aluminum chloride, aluminum hydroxide, aluminum hydroxide chloride, aluminum acetylacetonate, organoaluminum compounds such as aluminum oxalate, and parts thereof.
  • examples include hydrolysates.
  • carboxylate, inorganic acid salt and chelate compound are preferable, and among these, aluminum acetate, basic aluminum acetate, aluminum lactate, aluminum chloride, aluminum hydroxide, aluminum hydroxide chloride and aluminum acetylacetonate are more preferable, Aluminum acetate, basic aluminum acetate, aluminum chloride, aluminum hydroxide and aluminum hydroxide chloride are more preferred, and aluminum acetate and basic aluminum acetate are most preferred.
  • the amount of the aluminum compound used in the polymerization catalyst according to the present invention is preferably such that 1 to 80 ppm, more preferably 2 to 60 ppm, remains as aluminum atoms with respect to the total mass of the resulting copolymerized polyester resin. More preferably, it is 3 to 50 ppm, particularly preferably 5 to 40 ppm, and most preferably 10 to 30 ppm. If it is less than the above, the catalyst activity may be poor, and if it exceeds the above, aluminum-based foreign matter may be generated. Even if the aluminum compound is placed in a reduced pressure environment at the time of polyester polymerization, since almost 100% of the used amount remains, it may be considered that the used amount becomes the remaining amount.
  • the phosphorus compound used for the polymerization catalyst is not particularly limited, but the use of a phosphonic acid compound or a phosphinic acid compound is highly preferable for improving the catalytic activity. Among these, the use of a phosphonic acid compound is effective for improving the catalytic activity. Is particularly large and preferred.
  • phosphorus compounds having a phenol moiety in the same molecule are preferred. It is not particularly limited as long as it is a phosphorus compound having a phenol structure, but it is a catalyst if one or more compounds selected from the group consisting of phosphonic acid compounds and phosphinic acid compounds having a phenol moiety in the same molecule are used.
  • the effect of improving the activity is large and preferable.
  • the use of a phosphonic acid compound having a phenol moiety in one or two or more of the same molecules is particularly preferable because the effect of improving the catalytic activity is particularly large.
  • examples of the phosphorus compound having a phenol moiety in the same molecule include compounds represented by the following general formulas (1) and (2).
  • R 1 is a hydrocarbon group having 1 to 50 carbon atoms including a phenol part, a hydroxyl group, a halogen group, an alkoxyl group, an amino group or the like, and a carbon number 1 including a phenol part.
  • R 4 represents a hydrocarbon group having 1 to 50 carbon atoms, including a substituent such as hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydroxyl group, a halogen group, an alkoxyl group, or an amino group.
  • R 2 and R 3 each independently represents hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydrocarbon group having 1 to 50 carbon atoms including a substituent such as a hydroxyl group or an alkoxyl group.
  • the group may contain a branched structure, an alicyclic structure such as cyclohexyl, or an aromatic ring structure such as phenyl or naphthyl, and the ends of R 2 and R 4 may be bonded to each other.
  • Examples of the phosphorus compound having a phenol moiety in the same molecule include p-hydroxyphenylphosphonic acid, dimethyl p-hydroxyphenylphosphonate, diethyl p-hydroxyphenylphosphonate, diphenyl p-hydroxyphenylphosphonate, bis ( p-hydroxyphenyl) phosphinic acid, methyl bis (p-hydroxyphenyl) phosphinate, phenyl bis (p-hydroxyphenyl) phosphinate, p-hydroxyphenylphenylphosphinic acid, methyl p-hydroxyphenylphenylphosphinate, p-hydroxy Examples include phenyl phenylphenylphosphinate, p-hydroxyphenylphosphinic acid, methyl p-hydroxyphenylphosphinate, and phenyl p-hydroxyphenylphosphinate.
  • Other examples include phosphorus compounds represented by the following general formula (3).
  • X 1 and X 2 each represent hydrogen, an alkyl group having 1 to 4 carbon atoms, or a monovalent or higher metal. Moreover, X 1 is metal be two or more valences, X 2 may be absent. Furthermore, an anion corresponding to the surplus valence of the metal may be arranged with respect to the phosphorus compound.
  • the metal Li, Na, K, Ca, Mg, and Al are preferable.
  • the catalytic activity of the aluminum compound is improved and the thermal stability of the polymerized copolyester resin is also improved.
  • the phosphorus compound preferably used as the polycondensation catalyst is at least one phosphorus compound selected from the compounds represented by the chemical formula (4) and the chemical formula (5).
  • Irganox 1222 (manufactured by BASF) is commercially available.
  • Irganox 1425 (manufactured by BASF) is commercially available and can be used.
  • the amount of the phosphorus compound used in the polymerization catalyst according to the present invention is preferably 10 to 100 ppm, more preferably 15 to 90 ppm, as phosphorus atoms, with respect to the total mass of the resulting copolymerized polyester resin. More preferably, it is 20 to 80 ppm, particularly preferably 25 to 70 ppm, and most preferably 30 to 60 ppm. If the amount of phosphorus atoms exceeding the upper and lower limits remains, the polymerization activity may be reduced. When the phosphorus compound is placed in a reduced pressure environment during polyester polymerization, about 10 to 30% of the amount used is removed from the system depending on the conditions. Therefore, in practice, it is necessary to determine the amount of use after conducting trial experiments several times and determining the residual ratio of the phosphorus compound in the polyester.
  • the heat resistance of the resin can be improved by using a phosphorus compound.
  • the cause is not certain, it is considered that the heat resistance of the copolyester resin is improved by the hindered phenol moiety in the phosphorus compound.
  • the residual amount of the phosphorus compound is less than 10 ppm, the effect of improving the heat resistance is reduced, and as a result, the heat resistance and coloring improvement effect of the copolymerized polyester resin of the present invention may not be seen.
  • a metal-containing polycondensation catalyst such as an antimony compound, a titanium compound, a tin compound, or a germanium compound may be used in combination in order to further improve the catalytic activity.
  • the antimony compound is preferably 30 ppm or less as an antimony atom with respect to the mass of the obtained copolyester resin
  • the germanium compound is preferably 10 ppm or less as a germanium atom with respect to the mass of the copolyester resin to be obtained.
  • the titanium compound is preferably 3 ppm or less as a titanium atom with respect to the mass of the obtained copolymerized polyester resin, and the tin compound has 3 ppm or less as a tin atom with respect to the mass of the obtained copolymerized polyester resin.
  • metal-containing polycondensation catalysts such as antimony compounds, titanium compounds, tin compounds and germanium compounds as much as possible.
  • a small amount of alkali metal, alkaline earth metal and at least one selected from the compound may coexist as the second metal-containing component.
  • the coexistence of such a second metal-containing component in the catalyst system is effective in improving productivity by obtaining a catalyst component having an increased reaction rate in addition to an effect of suppressing the formation of diethylene glycol, and thus a higher reaction rate.
  • the amount used (mol%) is preferably 1 ⁇ 10 4 with respect to the number of moles of the dicarboxylic acid component constituting the copolymer polyester resin. -5 to 0.01 mol%.
  • Alkaline metal, alkaline earth metal, or a compound thereof may be considered to be a residual amount because almost 100% of the usage amount remains even when placed in a reduced pressure environment during polyester polymerization.
  • the polymerization catalyst according to the present invention has catalytic activity not only in the polycondensation reaction but also in the esterification reaction and transesterification reaction.
  • the transesterification reaction between an alkyl ester of a dicarboxylic acid such as dimethyl terephthalate and a glycol such as ethylene glycol is usually carried out in the presence of a transesterification catalyst such as zinc.
  • the catalyst of the present invention is used in place of these catalysts. You can also
  • the polymerization catalyst according to the present invention has catalytic activity not only in melt polymerization but also in solid phase polymerization or solution polymerization.
  • the polyester polymerization catalyst used in the present invention can be added to the reaction system at any stage of the polymerization reaction.
  • it can be added to the reaction system at any stage before and during the esterification reaction or transesterification reaction, immediately before the start of the polycondensation reaction, or at any stage during the polycondensation reaction.
  • the aluminum compound and the phosphorus compound according to the present invention are preferably added immediately before the start of the polycondensation reaction.
  • the polymerization method of the copolyester resin is not particularly limited, and is a direct esterification method of a dicarboxylic acid component such as terephthalic acid and a diol component such as ethylene glycol, or an alkyl ester of a dicarboxylic acid component such as terephthalic acid and ethylene glycol.
  • An oligomer of a dicarboxylic acid component such as terephthalic acid and a diol component such as ethylene glycol is obtained by a transesterification method with a diol component of the diol component, and then melt-polymerized under normal pressure or reduced pressure to obtain a copolymer polyester resin. Obtainable.
  • Manufacture of the copolyester resin of this invention can be performed by the method provided with the conventionally well-known process.
  • terephthalic acid as an acid component ethylene glycol and neopentyl glycol as a diol component are directly reacted, water is distilled off for esterification, and then polyesterification is carried out under reduced pressure, or acid It is produced by a transesterification method in which dimethyl terephthalate is reacted as a component, ethylene glycol and neopentyl glycol are reacted as a diol component, methyl alcohol is distilled off and transesterified, and then polycondensation is performed under reduced pressure.
  • the esterification reaction or transesterification reaction may be performed in one stage or may be performed in multiple stages.
  • the melt polycondensation reaction may be performed in one stage or may be performed in multiple stages.
  • the direct esterification method from the above-mentioned direct esterification method and transesterification method in terms of productivity, cost, and environmental aspects related to the treatment of the distillate.
  • the reaction intermediate oligomer after completion of the esterification reaction is preferably such that the carboxyl group end concentration is 400 to 900 eq / ton and the hydroxyl group end concentration is 700 to 1400 eq / ton. Thereby, it has sufficient reaction rate of a polycondensation reaction, and can suppress precipitation of the foreign material which consists of a catalyst compound.
  • the physical properties of the reaction intermediate oligomer are more preferably a carboxylic acid group terminal concentration of 500 to 800 eq / ton and a hydroxyl group terminal concentration of 800 to 1300 eq / ton.
  • the lower limit of the carboxylic acid group terminal concentration of the reaction intermediate oligomer is more preferably 550 eq / ton, particularly preferably 600 eq / ton, the upper limit is further preferably 780 eq / ton, and particularly preferably 750 eq / ton.
  • the lower limit of the hydroxyl group terminal concentration of the reaction intermediate oligomer is more preferably 1000 eq / ton, particularly preferably 1100 eq / ton, and the upper limit is more preferably 1250 eq / ton.
  • the oligomer is a reaction intermediate after the esterification reaction (or transesterification reaction) and before the polycondensation reaction. When an unreacted raw material exists, the reaction intermediate including them is indicated.
  • the aluminum compound When the carboxylic acid group terminal concentration is more than 900 eq / ton, or when the hydroxyl group terminal concentration is less than 700 eq / ton, the aluminum compound may be insolubilized in the system and foreign matter may be generated. This is considered to be because the terminal of the carboxylic acid group forms a salt with aluminum. In particular, a copolymer system having a group derived from neopentyl glycol in the molecular chain tends to form an aluminum carboxylate. Further, when the carboxylic acid group terminal concentration is less than 400 eq / ton, or when the hydroxyl group terminal concentration is more than 1400 eq / ton, the reaction rate of polycondensation may be slow.
  • the measurement of the number of foreign matters in the copolymerized polyester resin of the present invention uses a method of measuring the size and number of particles by image analysis from the image of particles in the polymer observed using a phase contrast optical microscope.
  • a phase-contrast optical microscope can convert a slight delay (phase difference) in the wavelength of light transmitted through an object with a different refractive index into light and dark contrast using light diffraction and refraction. It is also suitable for observing foreign particles that appear colorless and transparent in the polymer.
  • the observed image can be taken into an image analysis apparatus as electronic data, and the particle diameter (area circle equivalent diameter) and number can be measured.
  • the visual field area and depth of focus are determined depending on the magnification and aperture of the lens used.
  • the brightness of the obtained image is dark, and there are cases where sufficient observation cannot be performed with a lens having a large magnification.
  • the thickness of the sample to be observed needs to be sufficiently thick with respect to the focal depth of the objective lens. In order to satisfy these conditions, in the present invention, observation is performed using a lens having a magnification of 10 times and an aperture of 0.5 of a phase contrast objective lens of a phase contrast optical microscope.
  • the number of foreign matters in the copolymerized polyester resin of the present invention is measured by the following procedure from a sample in which the thickness of the copolymerized polyester resin is 0.8 to 0.9 mm, and the particle diameter is 5 ⁇ m per square mm. It refers to the number of foreign particles above.
  • Measurement by the image analysis apparatus is performed according to the following procedure.
  • the obtained image is converted into an electronic signal.
  • the converted image data is a monochrome image, and the contrast of the image is composed of 256 gradations from 0 (black) to 255 (white).
  • a binarization process that clearly separates the boundary between the object of the image (coarse inorganic particles) and the background (polymer), the particles are white, the background is black (or vice versa, the particles are black, the background Is white).
  • the particle diameter (area circle equivalent diameter) and number are calculated from the number of dots (dots) constituting the image.
  • the obtained results are data in which the unit area is converted according to the actual scale of the image and the number is divided for each particle size.
  • the measurement is usually performed for 20 to 40 fields of view, and the measurement result is converted into a field of view per square mm.
  • the number of foreign particles having a particle diameter of 5 ⁇ m or more measured by the above method needs to be 100 or less per square mm.
  • the number of foreign particles exceeds 100, it becomes a foreign matter on the surface of the film, not only the appearance and quality is deteriorated, but also the foreign matter that is further agglomerated, accumulated and coarsened in the melting process when manufacturing polymers and films.
  • the back pressure rises, or the film is perforated from coarse foreign matters mixed in the film after passing through the filter, and stable production cannot be performed for a long time.
  • the number of foreign matters in the copolymerized polyester resin of the present invention is preferably 30 pieces / mm 2 or less.
  • the foreign matter is a catalyst metal compound that forms an inorganic salt or an organic salt in a polymerization system, insolubilizes, aggregates and precipitates.
  • the copolymer polyester resin of the present invention preferably has a color L value of 60 or more in order to satisfy good transparency and color tone when formed into a film. In order to obtain good heat resistance, the color b value is preferably 6 or less.
  • the manufacturing method of a polyester film is not limited to the following.
  • a copolyester resin polymerized using the above specific catalyst is melt-extruded and formed into a sheet form on a cooling rotating roll from a T-die to produce an unstretched sheet.
  • high-speed film formation is possible.
  • the oriented polyester film can be obtained by stretching 1.1 to 6 times at least in the uniaxial direction at a temperature not less than the glass transition temperature of the polyester and less than the crystallization temperature using a known method.
  • a sequential biaxial stretching method in which uniaxial stretching is performed in the longitudinal direction or the transverse direction, and then stretching in the orthogonal direction
  • a simultaneous biaxial stretching method in which stretching is performed simultaneously in the longitudinal direction and the transverse direction.
  • a linear motor as the driving method for simultaneous biaxial stretching
  • several times in the same direction such as horizontal / longitudinal / longitudinal stretching, longitudinal / horizontal / longitudinal stretching, and longitudinal / vertical / horizontal stretching
  • a heat setting treatment is performed at a temperature of (melting point ⁇ 50 ° C.) to less than the melting point within 30 seconds, preferably within 10 seconds.
  • % Longitudinal relaxation treatment, lateral relaxation treatment, etc. are preferably performed.
  • the thickness of the obtained oriented polyester film is preferably 1 to 1000 ⁇ m, more preferably 5 to 500 ⁇ m, and still more preferably 10 to 200 ⁇ m. If it is less than 1 ⁇ m, there is no waist and handling is difficult. Moreover, when it exceeds 1000 micrometers, it will be too hard and handling will become difficult.
  • the surface of the oriented polyester film may be coated with a polymer resin by a coating method. Good. Moreover, it is good also as a slippery highly transparent polyester film by making an inorganic and / or organic particle
  • the copolymerized polyester resin of the present invention can be suitably used for a heat-shrinkable film or the like by taking advantage of its characteristics. Moreover, as uses other than a film, it can use suitably for a transparent molding container, an adhesive binder, etc.
  • Antimony atom 1 g of a sample was wet-decomposed with a mixed solution of sulfuric acid / hydrogen peroxide solution. Next, sodium nitrite was added to make Sb atoms Sb 5+, and brilliant green was added to form a blue complex with Sb. After this complex was extracted with toluene, the absorbance at a wavelength of 625 nm was measured using an absorptiometer (manufactured by Shimadzu Corporation, UV-150-02), and the amount of Sb atoms in the sample was compared with a calibration curve prepared in advance. The color was determined.
  • a mixed solution of sulfuric acid / nitric acid / perchloric acid or a mixed solution of sulfuric acid / hydrogen peroxide. was defined as orthophosphoric acid.
  • molybdate was reacted in a 1 mol / L sulfuric acid solution to form phosphomolybdic acid, which was reduced with hydrazine sulfate to produce heteropoly blue.
  • Absorbance at a wavelength of 830 nm was measured with an absorptiometer (manufactured by Shimadzu Corporation, UV-150-02). The amount of phosphorus atoms in the sample was quantified from a calibration curve prepared in advance
  • the image was taken into an image analysis apparatus (manufactured by Nireco, Luzex-FS) via a CCD camera, image analysis was performed, and the number of particles of 5 ⁇ m or more was measured. The same measurement was performed 20 times while changing the field of view, the total number of particles was obtained, and the number of particles of 5 ⁇ m or more per 1 square mm of the field of view area was calculated and used as the number of foreign matters in the copolyester resin.
  • image analysis apparatus manufactured by Nireco, Luzex-FS
  • k ⁇ P (MPa / h) / (Q (kg / h) / S (cm 2 )) ( ⁇ P is the pressure increase per hour (MPa), Q is the discharge rate per hour (kg / h), S is the area of the filter (cm 2 )) ⁇ : k ⁇ 5 ⁇ : 5 ⁇ k ⁇ 10 X: k> 10
  • the solution was filtered through a glass filter (3G) to obtain an aqueous solution of an aluminum compound.
  • 3G glass filter
  • 2.0 liters of an aqueous solution of the aluminum compound and 2.0 liters of ethylene glycol were charged into a flask equipped with a distillation apparatus at room temperature and normal pressure. After stirring at 200 rpm for 30 minutes, a uniform water / ethylene glycol mixed solution was prepared. Obtained.
  • the jacket temperature was then changed to 110 ° C. and the temperature was raised, and water was distilled off from the solution. When the amount of distilled water reached 2.0 liters, the heating was stopped and the mixture was allowed to cool to room temperature to obtain an ethylene glycol solution of an aluminum compound.
  • Example 1 A reactor equipped with a stirrer, a thermometer and a distillation cooler was charged with 2130 parts of terephthalic acid, 1140 parts of ethylene glycol, and 815 parts of neopentyl glycol, 0.7 parts of triethylamine was added, and under a pressure of 0.35 MPa, The temperature was gradually raised from 220 ° C. to 250 ° C., and the esterification reaction was carried out while removing the distilled water out of the system. The oligomer obtained by esterification was sampled, the AVo and OHVo of the oligomer were measured, and OHV% (ratio of hydroxyl end groups) was calculated.
  • the pressure increase applied to the filter was evaluated for the obtained copolyester resin using a single screw extrusion spinning machine. Moreover, it was set as the sheet
  • Example 2 A reactor equipped with a stirrer, a thermometer, and a distillation cooler was charged with 2130 parts of terephthalic acid, 850 parts of ethylene glycol and 1350 parts of neopentyl glycol, 0.7 parts of triethylamine was added, and under a pressure of 0.35 MPa, The temperature was gradually raised from 220 ° C. to 250 ° C., and the esterification reaction was carried out while removing the distilled water out of the system. The oligomer obtained by esterification was sampled, the AVo and OHVo of the oligomer were measured, and OHV% (ratio of hydroxyl end groups) was calculated.
  • Example 3 A reactor equipped with a stirrer, a thermometer and a distillation cooler was charged with 2130 parts of terephthalic acid, 1310 parts of ethylene glycol, and 690 parts of neopentyl glycol, 0.7 parts of triethylamine was added, and the pressure was 0.35 MPa. The temperature was gradually raised from 220 ° C. to 250 ° C., and the esterification reaction was carried out while removing the distilled water out of the system. The oligomer obtained by esterification was sampled, the AVo and OHVo of the oligomer were measured, and OHV% (ratio of hydroxyl end groups) was calculated.
  • Example 4 In Example 1, except that the ethylene glycol to be charged was replaced with ethylene glycol derived from biomass resources (manufactured by India glycol), esterification and polycondensation reactions were performed in the same manner as in Example 1 to obtain a copolymer polyester resin. Obtained. The obtained copolyester resin was evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1.
  • Example 5 A reactor equipped with a stirrer, a thermometer, and a distillation cooler was charged with 2130 parts of terephthalic acid, 1085 parts of ethylene glycol, and 775 parts of neopentyl glycol, 0.7 parts of triethylamine was added, and the pressure was 0.35 MPa. The temperature was gradually raised from 220 ° C. to 250 ° C., and the esterification reaction was carried out while removing the distilled water out of the system. The oligomer obtained by esterification was sampled, the AVo and OHVo of the oligomer were measured, and OHV% (ratio of hydroxyl end groups) was calculated.
  • Example 6 A reactor equipped with a stirrer, a thermometer, and a distillation cooler was charged with 2130 parts of terephthalic acid, 1025 parts of ethylene glycol, and 730 parts of neopentyl glycol, 0.7 parts of triethylamine was added, and under a pressure of 0.35 MPa, The temperature was gradually raised from 220 ° C. to 250 ° C., and the esterification reaction was carried out while removing the distilled water out of the system. The oligomer obtained by esterification was sampled, the AVo and OHVo of the oligomer were measured, and OHV% (ratio of hydroxyl end groups) was calculated.
  • Example 2 An esterification reaction and a polycondensation reaction were performed in the same manner as in Example 1 except that the end time of the pressure esterification was shortened to obtain a copolyester resin.
  • the obtained copolyester resin was evaluated in the same manner as in Example 1. The evaluation results are shown in Table 2.
  • Example 3 ⁇ Comparative Example 3>
  • an esterification reaction and a polycondensation reaction were performed in the same manner as in Example 1 except that the end time of the pressure esterification was lengthened to obtain a copolyester resin.
  • the speed of the polyester polycondensation reaction was slow, and the resulting resin had a low melt viscosity.
  • Example 4 In Example 1, an esterification reaction and a polycondensation reaction were performed in the same manner as in Example 1 except that 2130 parts of terephthalic acid, 1360 parts of ethylene glycol, and 980 parts of neopentyl glycol were used as raw materials. A resin was obtained. In the method of this comparative example, the rate of the polyester polycondensation reaction was slow, and the resulting resin had a low melt viscosity, so no post-evaluation was performed.
  • Example 5 An esterification reaction and a polycondensation reaction were performed in the same manner as in Example 1 except that 2130 parts of terephthalic acid, 910 parts of ethylene glycol, and 650 parts of neopentyl glycol were used as raw materials. A resin was obtained. The obtained copolyester resin was evaluated in the same manner as in Example 1. The evaluation results are shown in Table 2.
  • the copolymerized polyester resin according to the present invention is widely used as a material for films, sheets, hollow molded containers, engineering plastics, and various molded articles because foreign matter contamination is suppressed and the degree of clarity is high.
  • it is suitable as a material for films and molded articles that require a high degree of clarity. Therefore, it is very useful industrially.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

 本発明は、ジカルボン酸成分とジオール成分を構成成分とする共重合ポリエステル樹脂であって、ジカルボン酸成分として、テレフタル酸を90モル%以上含み、ジオール成分として、エチレングリコールを39~79モル%、ネオペンチルグリコールを20~60モル%、及びジエチレングリコールを1~5モル%含み、還元粘度が0.50dl/g以上であり、該共重合ポリエステル樹脂を0.8~0.9mmの厚さにしたサンプルから位相差光学顕微鏡を用いて観測される、1平方mm当たりの粒子径5μm以上の異物数が100個以下である共重合ポリエステル樹脂であり、従来公知の共重合ポリエステルに比べて高度に清澄度が高く、色調、耐熱性に優れた共重合ポリエスエル樹脂である。

Description

共重合ポリエステル樹脂
 本発明は共重合ポリエステル樹脂に関する。さらに詳しくは、透明性に優れ、異物が少なく、清澄度が高度に高い共重合ポリエステル樹脂に関するものである。
 ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)等に代表されるポリエステルは、機械的特性および化学的特性に優れており、それぞれのポリエステルの特性に応じて、例えば衣料用や産業資材用の繊維、包装用、磁気テープ用、光学用などのフィルムやシート、中空成形品であるボトル、電気・電子部品のケーシング、その他エンジニアリングプラスチック成形品等の広範な分野において使用されている。
 近年、市場多様化により、上記ポリエステルに他のグリコール成分を共重合した共重合ポリエステルが注目されている。特に、ネオペンチルグリコールや1,4-シクロヘキサンジメタノールの共重合体は、非晶質でガラス転移点が高いという特徴を有しており、フィルム分野等で広く使用されており、これらの共重合ポリエステルやその製造方法が開示されている(例えば、特許文献1~5等参照)。
 上記共重合ポリエステルの用途の一つにフィルムやシート分野がある。該分野においては、フィルムやシートの透明性が高いこと、異物が少なく清澄度が高いことが極めて重要な特性であり、この特性をいかにして確保するかが重要な課題となる。
 一般にポリエステルはジカルボン酸および/またはそのエステル形成性誘導体とジオールおよび/またはそのエステル形成性誘導体とのエステル化反応もしくはエステル交換反応によってオリゴマー混合物を製造し、これを高温、真空下で触媒を用いて液相重縮合させ製造されている。
 従来から、このようなポリエステルの重縮合時に用いられるポリエステル重縮合触媒としては、アンチモン化合物あるいはゲルマニウム化合物、チタン化合物が広く用いられている。
 三酸化アンチモンは、安価で、かつ優れた触媒活性をもつ触媒であるが、これを主成分、即ち、実用的な重合速度が発揮される程度の添加量にて使用すると、重縮合時に金属アンチモンが析出するため、ポリエステルに黒ずみや異物が発生する。
 アンチモン化合物以外で優れた触媒活性を有し、かつ上記の問題を有しないポリエステルを得ることの出来る触媒としては、チタン化合物がすでに実用化されているが、テトラアルコキシチタネートに代表されるチタン化合物を用いて製造されたポリエステルは溶融成形時に熱劣化を受けやすく、またポリエステルが著しく着色するという問題点を有する。
 以上のような経緯で、アンチモン、ゲルマニウムおよびチタン系以外の金属成分を触媒の主たる金属成分とする重縮合触媒であり、触媒活性に優れ、色調や熱安定性に優れかつ成形品の透明性に優れたポリエステルを与える重縮合触媒が望まれている。
 上記の要求に答える新規の重縮合触媒として、アルミニウム化合物とリン化合物とからなる触媒系が開示されており注目されている。
 また、上記重縮合触媒系によるポリエステルの製造方法に関して、該重縮合触媒系の好ましい添加時期が開示されている(例えば、特許文献6~8参照)。
 上記重縮合触媒系で得られたポリエステルは、色調、透明性や熱安定性が良好であり、前記要求に答えるものである。しかし、特に共重合ポリエステル系の重合においては、異物が少なく清澄度が高いという特性においては十分に満足するレベルに到達しておらず、その改善が強く嘱望されていた。特許文献5の方法を用いてネオペンチルグリコールを共重合したポリエステルを製造すると、多量の異物が生成することが問題であった。
特開2004-67733号公報 特開2004-83620号公報 特開2004-123984号公報 特開2004-137292号公報 特開2004-256819号公報 特開2002-322250号公報 特開2002-322255号公報 特開2002-327052号公報
 本発明は、従来公知の共重合ポリエステルに比べて高度に清澄度が高く、色調、耐熱性に優れた共重合ポリエスエルを提供するものであり、さらにはアンチモン、およびチタン系以外の金属成分を触媒の主たる金属成分とする重縮合触媒で製造可能な共重合ポリエスエルを提供するものである。
 本発明者らは鋭意検討した結果、以下に示す手段により、上記課題を解決できることを見出し、本発明に到達した。
 すなわち、本発明は、以下の構成からなる。
(1) ジカルボン酸成分とジオール成分を構成成分とする共重合ポリエステル樹脂であって、ジカルボン酸成分として、テレフタル酸を90モル%以上含み、ジオール成分として、エチレングリコールを39~79モル%、ネオペンチルグリコールを20~60モル%、及びジエチレングリコールを1~5モル%含み、還元粘度が0.50dl/g以上であり、該共重合ポリエステル樹脂を0.8~0.9mmの厚さにしたサンプルから位相差光学顕微鏡を用いて観測される、1平方mm当たりの粒子径5μm以上の異物数が100個以下であることを特徴とする共重合ポリエステル樹脂。
(2) カラーL値が60以上、かつカラーb値が6以下であることを特徴とする(1)記載の共重合ポリエステル樹脂。
(3) 重合触媒として、アルミニウム化合物から選択される少なくとも1種、及びリン化合物から選択される少なくとも1種を共重合ポリエステル樹脂中に含有することを特徴とする(1)又は(2)に記載の共重合ポリエステル樹脂。
(4) ジカルボン酸成分とジオール成分をエステル化反応し、エステル化反応終了後の反応中間体オリゴマーのカルボン酸基末端濃度を400~900eq/ton、ヒドロキシル基末端濃度を700~1400eq/tonとした後、重縮合反応を行うことで得られることを特徴とする(1)~(3)のいずれかに記載の共重合ポリエステル樹脂。
(5) ジオール成分として、バイオマス資源由来のエチレングリコールを含むジオール成分を用いることを特徴とする(1)~(4)のいずれかに記載の共重合ポリエステル樹脂。
(6) (1)~(5)のいずれかに記載の共重合ポリエステル樹脂からなる熱収縮性フィルム。
(7) (1)~(5)のいずれかに記載の共重合ポリエステル樹脂からなる成型品。
(8) (1)~(5)のいずれかに記載の共重合ポリエステル樹脂からなるシート。
(9) (1)~(5)のいずれかに記載の共重合ポリエステル樹脂からなる接着剤。
 本発明による共重合ポリエステルは、異物混入が抑制されており清澄度が高いので、フィルム、シート、中空成形容器、エンジニアリングプラスチック、繊維等の各種成形品用の材料として広く使用することができる。特に、清澄度が高度に要求される成形品の材料として好適である。特に清澄度が高度に要求される光学用途用製品の材料として好適である。
 以下、本発明を詳述する。
(共重合ポリエステル樹脂)
 本発明に係る共重合ポリエステル樹脂は、ジカルボン酸成分がテレフタル酸残基90モル%以上含み、ジオール成分がエチレングリコール残基39~79モル%、ネオペンチルグリコール残基20~60モル%およびジエチレングリコール残基1~5モル%含むものである。
 本発明において、「共重合ポリエステル樹脂」とは、後記する重合触媒化合物や、該重合触媒化合物が重合系中で無機塩または有機塩を形成して不溶化、凝集して析出した異物を含むものである。「共重合ポリエステル」と言う化学物質以外のものを含む点では、一種の「組成物」とも言えるが、重合触媒化合物や異物の量は微量であることから、本発明においては、「共重合ポリエステル樹脂」と表す。
 本発明の共重合ポリエステル樹脂においては、ジカルボン酸成分中のテレフタル酸が90モル%以上であることにより、フィルムや成型体にしたときに求められる力学特性を満足する点で好ましい。
 ジカルボン酸成分中のテレフタル酸は、97モル%以上が好ましく、98モル%以上がより好ましい。テレフタル酸が100モル%であることも好ましい態様である。
 使用する原料としては、テレフタル酸のエステル形成性誘導体(ジメチルテレフタレート等)も使用可能である。
 テレフタル酸成分以外のジカルボン酸成分としては、蓚酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、デカンジカルボン酸、ドデカンジカルボン酸、テトラデカンジカルボン酸、ヘキサデカンジカルボン酸、1,3-シクロブタンジカルボン酸、1,3-シクロペンタンジカルボン酸、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、2,5-ノルボルナンジカルボン酸、ダイマー酸などに例示される飽和脂肪族ジカルボン酸またはこれらのエステル形成性誘導体、フマル酸、マレイン酸、イタコン酸などに例示される不飽和脂肪族ジカルボン酸またはこれらのエステル形成性誘導体、オルソフタル酸、イソフタル酸、5-(アルカリ金属)スルホイソフタル酸、ジフェニン酸、1,3-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、4,4’-ビフェニルスルホンジカルボン酸、4、4’-ビフェニルエーテルジカルボン酸、1,2-ビス(フェノキシ)エタン-p,p’-ジカルボン酸、パモイン酸、アントラセンジカルボン酸などに例示される芳香族ジカルボン酸またはこれらのエステル形成性誘導体が挙げられる。
 これらのジカルボン酸のうち、イソフタル酸、アジピン酸、セバシン酸およびアゼライン酸が得られるポリエステルの物性等の点で好ましく、必要に応じて他のジカルボン酸を構成成分としても加えても良い。
 これらジカルボン酸以外にも少量であれば多価カルボン酸を併用しても良い。該多価カルボン酸としては、エタントリカルボン酸、プロパントリカルボン酸、ブタンテトラカルボン酸、ピロメリット酸、トリメリット酸、トリメシン酸、3,4,3’,4’-ビフェニルテトラカルボン酸があげられる。これら多価カルボン酸は、全ジカルボン酸成分100モル%に対して、3モル%以下が好ましい。
 本発明の共重合ポリエステル樹脂においては、ジオール成分として、エチレングリコールを39~79モル%、ネオペンチルグリコールを20~60モル%、及びジエチレングリコールを1~5モル%含むことにより、透明性や成形性を高めた各種用途に使用されるポリエステル樹脂を得られる点で好ましい。ジオール成分として、エチレングリコールは40~77モル%が好ましく、42~75モル%がより好ましい。ジオール成分として、ネオペンチルグリコールは22~58モル%が好ましく、24~56モル%がより好ましい。ジオール成分として、ジエチレングリコールは1~3モル%が好ましい。
 ジオール成分としては、エチレングリコール、ネオペンチルグリコール、及びジエチレングリコールの3成分で、全ジオール成分の90モル%以上を占めることが好ましく、95モル%以上を占めることがより好ましい。ジオール成分として、エチレングリコール、ネオペンチルグリコール、及びジエチレングリコールの3成分で100モル%であることも好ましい態様である。ジエチレングリコールは、原料として仕込んだものであっても構わないし、エチレングリコールが重合時に縮合して得られたものであっても構わない。
 その他のジオールとしては、1,2-プロピレングリコール、1,3-プロピレングリコール、トリエチレングリコール、1,2-ブチレングリコール、1,3-ブチレングリコール、2,3-ブチレングリコール、1,4-ブチレングリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,2-シクロヘキサンジオール、1,3-シクロヘキサンジオール、1,4-シクロヘキサンジオール、1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、1,4-シクロヘキサンジエタノール、1,10-デカメチレングリコール、1,12-ドデカンジオール、ポリエチレングリコール、ポリトリメチレングリコール、ポリテトラメチレングリコールなどに例示される脂肪族グリコール、ヒドロキノン、4,4’-ジヒドロキシビスフェノール、1,4-ビス(β-ヒドロキシエトキシ)ベンゼン、1,4-ビス(β-ヒドロキシエトキシフェニル)スルホン、ビス(p-ヒドロキシフェニル)エーテル、ビス(p-ヒドロキシフェニル)スルホン、ビス(p-ヒドロキシフェニル)メタン、1,2-ビス(p-ヒドロキシフェニル)エタン、ビスフェノールA、ビスフェノールC、2,5-ナフタレンジオール、これらのグリコールにエチレンオキシドが付加したグリコール、などに例示される芳香族グリコールが挙げられる。
 これらのジオールのうち、1,3-プロピレングリコール、1,4-ブチレングリコール、1,4-シクロヘキサンジメタノールが好ましい。
 また、ジオール成分として、本発明の共重合ポリエステルの目的を損なわない範囲でバイオマス資源由来のエチレングリコールを使用することができる。
 これらグリコール以外に少量であれば多価アルコールを併用しても良い。該多価アルコールとしては、トリメチロールメタン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、グリセロール、ヘキサントリオールなどが挙げられる。これら多価アルコールは、全ジオール成分100モル%に対して、3モル%以下が好ましい。
 また、ヒドロキシカルボン酸を併用しても良い。該ヒドロキシカルボン酸としては、乳酸、クエン酸、リンゴ酸、酒石酸、ヒドロキシ酢酸、3-ヒドロキシ酪酸、p-ヒドロキシ安息香酸、p-(2-ヒドロキシエトキシ)安息香酸、4-ヒドロキシシクロヘキサンカルボン酸、またはこれらのエステル形成性誘導体などが挙げられる。これらヒドロキシカルボン酸は、全ジカルボン酸成分100モル%に対して、3モル%以下が好ましい。
 また、環状エステルの併用も許容される。該環状エステルとしては、ε-カプロラクトン、β-プロピオラクトン、β-メチル-β-プロピオラクトン、δ-バレロラクトン、グリコリド、ラクチドなどが挙げられる。これら環状エステルは、全ジカルボン酸成分100モル%に対して、3モル%以下が好ましい
 ジカルボン酸、多価カルボン酸もしくはヒドロキシカルボン酸のエステル形成性誘導体としては、これらの化合物のアルキルエステルやヒドロキシルアルキルエステル等が挙げられる。
 ジオール成分としてはエステル形成性誘導体も使用可能であり、ジオールのエステル形成性誘導体としては、ジオールの酢酸等の低級脂肪族カルボン酸とのエステルが挙げられる。
 本発明の共重合ポリエステル樹脂の還元粘度は0.50dl/g以上である。還元粘度は0.60dl/g以上であることが好ましく、0.65dl/g以上であることがより好ましく、0.70dl/g以上であることがさらに好ましい。還元粘度の好ましい上限は、1.00dl/g程度である。
(重合触媒)
 次に、本発明の共重合ポリエステル樹脂を製造する際に使用する重合触媒について説明する。本発明に用いられる重合触媒は、エステル化を促進させる能力を有することを特徴とする重合触媒である。このような重合触媒としては、アルミニウム化合物から選ばれる少なくとも1種と、リン系化合物から選択される少なくとも1種を含む重合触媒が好ましい。
 本発明の共重合ポリエステル樹脂を合成する際に、使用する重合触媒を構成するアルミニウム化合物としては、公知のアルミニウム化合物が限定なく使用できる。
 アルミニウム化合物としては、具体的には、酢酸アルミニウム、塩基性酢酸アルミニウム、乳酸アルミニウム、塩化アルミニウム、水酸化アルミニウム、水酸化塩化アルミニウム及びアルミニウムアセチルアセトネート、シュウ酸アルミニウムなどの有機アルミニウム化合物及びこれらの部分加水分解物などが挙げられる。これらのうちカルボン酸塩、無機酸塩及びキレート化合物が好ましく、これらの中でも酢酸アルミニウム、塩基性酢酸アルミニウム、乳酸アルミニウム、塩化アルミニウム、水酸化アルミニウム、水酸化塩化アルミニウム及びアルミニウムアセチルアセトネートがより好ましく、酢酸アルミニウム、塩基性酢酸アルミニウム、塩化アルミニウム、水酸化アルミニウム及び水酸化塩化アルミニウムがさらに好ましく、酢酸アルミニウム、塩基性酢酸アルミニウムが最も好ましい。
 本発明にかかる重合触媒に用いられるアルミニウム化合物の使用量は、アルミニウム原子として、得られる共重合ポリエステル樹脂の全質量に対して1~80ppm残留するようにすることが好ましく、より好ましくは2~60ppmであり、更に好ましくは3~50ppmであり、特に好ましくは5~40ppmであり、最も好ましくは10~30ppmである。
 上記を下回ると触媒活性不良となる可能性があり、上記を超えるとアルミニウム系異物生成を引き起こす可能性がある。
 アルミニウム化合物は、ポリエステル重合時に減圧環境下に置かれても、使用量のほぼ100%が残留するので、使用量が残留量になると考えてよい。
 重合触媒に用いられるリン化合物は、特に限定されないが、ホスホン酸系化合物、ホスフィン酸系化合物を用いると触媒活性の向上効果が大きく好ましく、これらの中でもホスホン酸系化合物を用いると触媒活性の向上効果が特に大きく好ましい。
 これらのリン化合物のうち、同一分子内にフェノール部を有するリン化合物が好ましい。フェノール構造を有するリン化合物であれば特に限定はされないが、同一分子内にフェノール部を有する、ホスホン酸系化合物、ホスフィン酸系化合物からなる群より選ばれる一種または二種以上の化合物を用いると触媒活性の向上効果が大きく好ましい。これらの中でも、一種または二種以上の同一分子内にフェノール部を有するホスホン酸系化合物を用いると触媒活性の向上効果が特に大きく好ましい。
 また、同一分子内にフェノール部を有するリン化合物としては、下記一般式(1)、(2)で表される化合物などが挙げられる。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
 (式(1)~(2)中、Rはフェノール部を含む炭素数1~50の炭化水素基、水酸基またはハロゲン基またはアルコキシル基またはアミノ基などの置換基およびフェノール部を含む炭素数1~50の炭化水素基を表す。Rは、水素、炭素数1~50の炭化水素基、水酸基またはハロゲン基またはアルコキシル基またはアミノ基などの置換基を含む炭素数1~50の炭化水素基を表す。R、Rはそれぞれ独立に水素、炭素数1~50の炭化水素基、水酸基またはアルコキシル基などの置換基を含む炭素数1~50の炭化水素基を表す。ただし、炭化水素基は分岐構造やシクロヘキシル等の脂環構造やフェニルやナフチル等の芳香環構造を含んでいてもよい。RとRの末端どうしは結合していてもよい。)
 前記の同一分子内にフェノール部を有するリン化合物としては、例えば、p-ヒドロキシフェニルホスホン酸、p-ヒドロキシフェニルホスホン酸ジメチル、p-ヒドロキシフェニルホスホン酸ジエチル、p-ヒドロキシフェニルホスホン酸ジフェニル、ビス(p-ヒドロキシフェニル)ホスフィン酸、ビス(p-ヒドロキシフェニル)ホスフィン酸メチル、ビス(p-ヒドロキシフェニル)ホスフィン酸フェニル、p-ヒドロキシフェニルフェニルホスフィン酸、p-ヒドロキシフェニルフェニルホスフィン酸メチル、p-ヒドロキシフェニルフェニルホスフィン酸フェニル、p-ヒドロキシフェニルホスフィン酸、p-ヒドロキシフェニルホスフィン酸メチル、p-ヒドロキシフェニルホスフィン酸フェニルなどが挙げられる。その他、下記一般式(3)で表されるリン化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000003
 式(3)中、X、Xは、それぞれ、水素、炭素数1~4のアルキル基、または1価以上の金属を表す。
 また、Xは、金属が2価以上であって、Xが存在しなくても良い。さらには、リン化合物に対して金属の余剰の価数に相当するアニオンが配置されていても良い。
 金属としては、Li、Na、K、Ca、Mg、Alが好ましい。
 これらの同一分子内にフェノール部を有するリン化合物をポリエステルの重合時に添加することによってアルミニウム化合物の触媒活性が向上するとともに、重合した共重合ポリエステル樹脂の熱安定性も向上する。
 上記の中でも、重縮合触媒として使用することが好ましいリン化合物は、化学式(4)、化学式(5)で表される化合物から選ばれる少なくとも一種のリン化合物である。
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
 上記の化学式(4)で示される化合物としては、Irganox1222(ビーエーエスエフ社製)が市販されている。また、化学式(5)にて示される化合物としては、Irganox1425(ビーエーエスエフ社製)が市販されており、使用可能である。
 本発明にかかる重合触媒に用いられるリン化合物の使用量は、リン原子として、得られる共重合ポリエステル樹脂の全質量に対して10~100ppm残留するようにすることが好ましく、より好ましくは15~90ppmであり、更に好ましくは20~80ppmであり、特に好ましくは25~70ppmであり、最も好ましくは30~60ppmである。
 上記の上下限を超える量のリン原子が残存することで、重合活性を低下させる可能性がある。
 リン化合物は、ポリエステル重合時に減圧環境下に置かれる際、その条件により、使用量の約10~30%が系外に除去される。そこで、実際は、数回の試行実験を行い、リン化合物のポリエステル中への残留率を見極めた上で、使用量を決める必要がある。
 また、リン化合物を使用することで、樹脂の耐熱性を向上させることができる。原因は定かではないが、リン化合物中のヒンダートフェノール部分により共重合ポリエステル樹脂の耐熱性を向上させていると考えられる。
 リン化合物の残留量が10ppmより少なくなると、上記の耐熱性向上の効果が薄れ、結果として、本発明の共重合ポリエステル樹脂の耐熱性、着色改善効果が見られなくなることがある。
 本発明の効果を損なわない範囲で、触媒活性をさらに向上させるために、アンチモン化合物、チタン化合物、スズ化合物、ゲルマニウム化合物等の金属含有重縮合触媒を併用しても良い。その場合、アンチモン化合物は、得られる共重合ポリエステル樹脂の質量に対して、アンチモン原子として30ppm以下が好ましく、ゲルマニウム化合物は、得られる共重合ポリエステル樹脂の質量に対して、ゲルマニウム原子として10ppm以下が好ましく、チタン化合物は、得られる共重合ポリエステル樹脂の質量に対して、チタン原子として3ppm以下であることが好ましく、スズ化合物は、得られる共重合ポリエステル樹脂の質量に対して、スズ原子として3ppm以下が好ましい。本発明の目的からは、これらアンチモン化合物、チタン化合物、スズ化合物、ゲルマニウム化合物等の金属含有重縮合触媒は、極力使用しないことが好ましい。
 本発明においてアルミニウム化合物に加えて少量のアルカリ金属、アルカリ土類金属並びにその化合物から選択される少なくとも1種を第2金属含有成分として共存させても良い。かかる第2金属含有成分を触媒系に共存させることは、ジエチレングリコールの生成を抑制する効果に加えて触媒活性を高め、従って反応速度をより高めた触媒成分が得られ、生産性向上に有効である。アルカリ金属、アルカリ土類金属、またはそれらの化合物を併用添加する場合、その使用量(mol%)は、共重合ポリエステル樹脂を構成するジカルボン酸成分のモル数に対して、好ましくは、1×10-5~0.01mol%である。アルカリ金属、アルカリ土類金属、またはそれらの化合物は、ポリエステル重合時に減圧環境下に置かれても、使用量のほぼ100%が残留するので、使用量が残留量になると考えてよい。
 本発明に係る重合触媒は、重縮合反応のみならずエステル化反応およびエステル交換反応にも触媒活性を有する。テレフタル酸ジメチルなどのジカルボン酸のアルキルエステルとエチレングリコールなどのグリコールとのエステル交換反応は、通常亜鉛などのエステル交換触媒の存在下で行われるが、これらの触媒の代わりに本発明の触媒を用いることもできる。また、本発明に係る重合触媒は、溶融重合のみならず固相重合や溶液重合においても触媒活性を有する。
 本発明で用いるポリエステルの重合触媒は、重合反応の任意の段階で反応系に添加することができる。例えば、エステル化反応もしくはエステル交換反応の開始前および反応途中の任意の段階、重縮合反応の開始直前、あるいは重縮合反応途中の任意の段階で、反応系への添加することができる。特に、本発明に係るアルミニウム化合物およびリン化合物の添加は重縮合反応の開始直前に添加することが好ましい。
(共重合ポリエステル樹脂の製造)
 共重合ポリエステル樹脂の重合方法は、特に制限は無く、テレフタル酸などのジカルボン酸成分とエチレングリコールなどのジオール成分との直接エステル化法、もしくはテレフタル酸などのジカルボン酸成分のアルキルエステルとエチレングリコールなどのジオール成分とのエステル交換法によって、テレフタル酸などのジカルボン酸成分とエチレングリコールなどのジオール成分とのオリゴマーを得て、しかる後に、常圧あるいは減圧下にて溶融重合して共重合ポリエステル樹脂を得ることができる。
 本発明の共重合ポリエステル樹脂の製造は、従来公知の工程を備えた方法で行うことができる。例えば、酸成分としてテレフタル酸を、ジオール成分としてエチレングリコールとネオペンチルグリコールとを直接反応させて、水を留去しエステル化した後、減圧下に重縮合を行う直接エステル化法、または、酸成分としてテレフタル酸ジメチルを、ジオール成分としてエチレングリコーとネオペンチルグリコールを反応させてメチルアルコールを留去しエステル交換させた後、減圧下に重縮合を行うエステル交換法により製造される。
 これらいずれの方式においても、エステル化反応、あるいはエステル交換反応は、1段階で行っても良いし、また多段階に分けて行っても良い。溶融重縮合反応も、1段階で行っても良いし、また多段階に分けて行っても良い。
 本発明の共重合ポリエステル樹脂の製造においては、前記の直接エステル化法とエステル交換法のうち生産性、コスト、留出液の処理にかかる環境側面から直接エステル化法を用いることが好ましい。
 本発明の共重合ポリエステル樹脂をアルミニウム化合物から選択される少なくとも1種と、リン化合物から選択される少なくとも1種を含む重合触媒を用いて重合する場合、エステル化反応終了後の反応中間体オリゴマーの物性は、カルボン酸基末端濃度が400~900eq/ton、ヒドロキシル基末端濃度が700~1400eq/tonであることが好ましい。これにより、十分な重縮合反応の反応速度を有し、かつ、触媒化合物からなる異物の析出を抑制することが出来る。反応中間体オリゴマーの物性は、カルボン酸基末端濃度が500~800eq/ton、ヒドロキシル基末端濃度が800~1300eq/tonであることがより好ましい。反応中間体オリゴマーのカルボン酸基末端濃度の下限は、550eq/tonがさらに好ましく、600eq/tonが特に好ましく、上限は780eq/tonがさらに好ましく、750eq/tonが特に好ましい。反応中間体オリゴマーのヒドロキシル基末端濃度の下限は1000eq/tonがさらに好ましく、1100eq/tonが特に好ましく、上限は1250eq/tonがさらに好ましい。
 本発明においてオリゴマーとは、エステル化反応(もしくはエステル交換反応)終了後、重縮合反応を行う前の反応中間体である。未反応の原料が存在する場合は、それらも含めた反応中間体を指す。
 カルボン酸基末端濃度が900eq/ton超の場合、または、ヒドロキシル基末端濃度が700eq/ton未満の場合、アルミニウム化合物が系内で不溶化して異物が発生する場合がある。これは、カルボン酸基末端がアルミニウムとの塩を形成するためと考えられている。とりわけ、分子鎖内にネオペンチルグリコールに由来する基を伴う共重合系では、特にアルミニウムのカルボン酸塩を形成しやすい傾向がある。また、カルボン酸基末端濃度が400eq/ton未満の場合、または、ヒドロキシル基末端濃度が1400eq/ton超の場合、重縮合の反応速度が遅くなる場合がある。
(異物数の測定方法)
 本発明の共重合ポリエステル樹脂中の異物数の測定方法について、以下に説明する。
 本発明の共重合ポリエステル樹脂中の異物数の測定は、位相差光学顕微鏡を用いて観察したポリマー中の粒子の画像から画像解析により粒子の大きさと個数を計測する方法を用いる。位相差光学顕微鏡は屈折率が異なる物体を透過する光の波長のわずかの遅れ(位相差)を光の回折・屈折を利用して明暗のコントラストに変換することができるので、通常の顕微鏡観察ではポリマー中で無色透明に見える異物粒子の観察にも適している。観察された画像は電子データとして画像解析装置に取り込み、粒子径(面積円相当径)と個数を計測することができる。
 位相差光学顕微鏡による粗大粒子の観察では、用いるレンズの倍率や開口度によって、視野面積や焦点深度が決まってくるので、これらが異なると計測結果のずれを引き起こす。また、無機粒子の含有量が大きく、光線透過率の小さい試料の場合には得られる画像の明度が暗く、倍率の大きなレンズでは十分な観測ができない場合がある。また、観察する試料の厚みは、対物レンズの焦点深度に対して十分に厚みが大きいことが必要である。これらの条件を満たすため、本発明では位相差光学顕微鏡の位相差対物レンズの倍率は10倍、開口度は0.5のレンズを用いて観察する。
 本発明の共重合ポリエステル樹脂中の異物数は、共重合ポリエステル樹脂を0.8~0.9mmの厚さにしたサンプルから、下記の手順により計測される、1平方mm当たりの、粒子径5μm以上の異物粒子数を指す。
 画像解析装置による計測は、以下の手順で行われる。
(1)得られた画像を電子信号に変換する。変換した画像データはモノクロ画像であり、画像のコントラストは0(真っ黒)から255(真っ白)の256階調から構成されている。
(2)画像の対象物(粗大無機粒子)と背景(ポリマー)の境界線を明確に仕切る、2値化処理を行い、粒子が白、背景が黒(またはその逆に、粒子が黒、背景が白)の2値化画像を得る。
(3)画像を構成する点(ドット)数から粒子の径(面積円相当径)と個数を計算する。
 得られた結果は、実際の画像の縮尺に応じて単位面積換算し、粒子径の大きさごとに個数を区分したデータである。
 測定は通常20~40視野行い、計測結果は視野面積1平方mm当たりに換算して用いる。
 観察および測定の際には、粒子径、粒子数が既知な標準試料を用いて画像の濃淡や解像度、2値化の際の閾値を適宜調整することが好ましい。
 本発明の共重合ポリエステル樹脂は、上記の方法で測定した粒子径5μm以上の異物粒子数が1平方mm当たり100個以下であることが必要である。異物粒子数が100個を超えるとフィルムの表面に異物となって外観や品質を損なうだけでなく、ポリマーやフィルムを製造する際の溶融工程で更に凝集、蓄積して粗大化した異物によりフィルターの背圧が上昇したり、フィルターを通過してフィルム中に混入した粗大異物を起点としてフィルムに穴開きが発生したりして、長期間安定した生産ができない。特にネオペンチルグリコールを共重合したポリエステル系では、樹脂の溶融粘度やフィルム製造工程の延伸時の変形に対する応力が小さいため、比較的小さな異物でも穴開きや破断といったトラブルに繋がる恐れがある。
 上記のフィルムにしたときの良好な外観や品質を有し、安定生産性を満足するためには、本発明の共重合ポリエステル樹脂の異物数は30個/mm以下であることが好ましい。
 本発明における異物とは、触媒金属化合物が重合系中で無機塩または有機塩を形成して不溶化、凝集して析出たものである。
 また、本発明の共重合ポリエステル樹脂は、フィルムにしたときの良好な透明性、色調を満足するためには、カラーL値が60以上であることが好ましい。また、良好な耐熱性を得るためには、カラーb値が6以下であることが好ましい。
(共重合ポリエステル樹脂の成形)
 次に、本発明の共重合ポリエステル樹脂を用いたフィルムの製造方法の一例を、以下に説明する。ポリエステルフィルムの製造方法は、下記に限定されるものではない。前記の特定の触媒を用いて重合した共重合ポリエステル樹脂を溶融押出して、T-ダイスより冷却回転ロール上にシート状に成型し、未延伸シートを作成する。この際、例えば特公平6-39521号公報、特公平6-45175号公報に記載の技術を適用することにより、高速製膜性が可能となる。また、複数の押出し機を用い、コア層、スキン層に各種機能を分担させ、共押出し法により積層フィルムとしても良い。
 配向ポリエステルフィルムは、公知の方法を用いて、ポリエステルのガラス転移温度以上結晶化温度未満で、少なくとも一軸方向に1.1~6倍に延伸することにより得ることができる。
 例えば、二軸配向ポリエステルフィルムを製造する場合、縦方向または横方向に一軸延伸を行い、次いで直交方向に延伸する逐次二軸延伸方法、縦方向及び横方向に同時に延伸する同時二軸延伸する方法、さらに同時二軸延伸する際の駆動方法としてリニアモーターを用いる方法のほか、横・縦・縦延伸法、縦・横・縦延伸法、縦・縦・横延伸法な、同一方向に数回に分けて延伸する多段延伸方法を採用することができる。
 さらに、延伸終了後、フィルムの熱収縮率を低減させるために、(融点-50℃)~融点未満の温度で30秒以内、好ましくは10秒以内で熱固定処理を行い、0.5~10%の縦弛緩処理、横弛緩処理などを施すことが好ましい。
 得られた配向ポリエステルフィルムの厚みは、1~1000μmであることが好ましく、より好ましくは5~500μmであり、さらに好ましくは10~200μmである。1μm未満では、腰が無く、取り扱いが困難である。また1000μmを超えると、硬すぎて取り扱いが困難となる。
 また、接着性、離型性、制電性、赤外線吸収性、抗菌性、耐擦り傷性、などの各種機能を付与するために、配向ポリエステルフィルム表面にコーティング法により高分子樹脂を被覆してもよい。また、被覆層にのみ無機及び/又は有機粒子を含有させて、易滑高透明ポリエステルフィルムとしてもよい。さらに、無機蒸着層を設け酸素、水、オリゴマーなどの各種バリア機能を付与したり、スパッタリング法などで導電層を設け、導電性を付与したりすることもできる。
 本発明の共重合ポリエステル樹脂は、その特性を生かして熱収縮性フィルムなどに好適に用いることができる。また、フィルム以外の用途としては、透明性成型容器、接着剤バインダーなどに好適に用いることができる。
 以下に実施例を示して本発明を具体的に説明するが、本発明は実施例に限定されるものではない。
<評価方法>
(1)反応中間体オリゴマーのカルボン酸基末端濃度(AVo)の測定
 オリゴマーを0.2g精秤し、20mlのクロロホルムに溶解し、0.1N-KOHエタノール溶液で、フェノールフタレインを指示薬として滴定し、樹脂10g当たりの当量(単位;eq/ton)を求めた。
(2)反応中間体オリゴマーのヒドロキシル基末端濃度(OHVo)の測定
 オリゴマー0.5gを精秤し、アセチル化剤(無水酢酸ピリジン溶液0.5モル/L)10mlを加え、95℃以上の水槽に90分間浸漬した。水槽から取り出した直後、純水10mlを添加し室温まで放冷した。フェノールフタレインを指示薬として、0.2N-NaOH-CHOH溶液で滴定した。試料を入れずに、ブランクも同じ作業を行った。なお事前に、N/10-塩酸20mlを、フェノールフタレインを指示薬として、0.2N-NaOH-CHOH溶液で滴定し、該溶液のファクター(F)を下記式に従い求めておいた。
 F=0.1×f×20/a
(f=N/10-塩酸のファクター、a=滴定数(ml))
 下記式に従って、OHVo(eq/ton)を算出した。
 OHVo={(B-A)×F×1000/W}+AVo
(A=滴定数(ml),B=ブランクの滴定数(ml),F=0.2N-NaOH-CHOH溶液のファクター,W=試料の重さ(g))
(3)OHV%(ヒドロキシル末端基の割合)の算出
 上記方法で求めたOHVoとAVoとより、下記式に従って算出した。
 OHV%={OHVo/(OHVo+AVo)}×100
(4)共重合ポリエステル樹脂の還元粘度(ηsp/C)
 共重合ポリエステル樹脂0.10gを、フェノール:テトラクロロエタン=60:40(重量比)の混合溶媒25cmに溶かし、ウベローデ粘度管を用いて、30℃で測定した。
(5)共重合ポリエステル樹脂の組成
 クロロホルム-d溶媒中、ヴァリアン社製核磁気共鳴分析計(NMR)ジェミニ-200を用いて、H-NMR分析を行って、その積分比より決定した。
(6)共重合ポリエステル樹脂中の各種原子の含有量(残留量)
 以下に示す方法で定量した。
(a)アンチモン原子
 試料1gを硫酸/過酸化水素水の混合液で湿式分解させた。次いで、亜硝酸ナトリウムを加えてSb原子をSb5+とし、ブリリアングリーンを添加してSbとの青色錯体を生成させた。この錯体をトルエンで抽出後、吸光光度計(島津製作所製、UV-150-02)を用いて、波長625nmにおける吸光度を測定し、予め作成した検量線から、試料中のSb原子の量を比色定量した。
(b)リン原子
 試料1gを、炭酸ナトリウム共存下で乾式灰化分解させる方法、あるいは硫酸/硝酸/過塩素酸の混合液または硫酸/過酸化水素水の混合液で湿式分解させる方法によってリン化合物を正リン酸とした。次いで、1モル/Lの硫酸溶液中においてモリブデン酸塩を反応させてリンモリブデン酸とし、これを硫酸ヒドラジンで還元してヘテロポリ青を生成させた。吸光光度計(島津製作所製、UV-150-02)により波長830nmにおける吸光度を測定した。予め作成した検量線から、試料中のリン原子の量を定量した。
(c)アルミニウム原子
 試料0.1gを6M塩酸溶液に溶解させ一日放置した後、純水で希釈し1.2M塩酸測定用溶液とした。調製した溶液試料を高周波プラズマ発光分析により求めた。
(7)共重合ポリエステル樹脂のカラー測定
 色差計(日本電色工業(株)製、ZE-2000)を用いて、共重合ポリエステル樹脂のチップの色差(L、a、b)を測定した。
(8)共重合ポリエステル樹脂中の異物評価
 異物評価は、上記(異物数の測定方法)の説明の通りに行った。以下、補足する。
 共重合ポリエステル樹脂のチップ1粒を2枚のカバーガラス(マツナミマイクロカバーグラス、25mm×25mm、厚さ0.2mm)に挟んで、約300℃のホットプレート上で加熱溶融し、0.8~0.9mmの厚さにプレスし、直ぐに急冷して観察用試料とした。位相差光学顕微鏡(Nikon社製、)、対物レンズ(同社製、倍率10倍、開口度0.5)を用いて、試料の厚さの中心部分を観察した。画像はCCDカメラを経由して画像解析装置(Nireco製、Luzex-FS)に取り込み、画像解析を行い、5μm以上の粒子数を計測した。視野を変えながら同様の計測を20回行い、合計の粒子数を求め、視野面積1平方mm当たりの5μm以上の粒子数を計算し、共重合ポリエステル樹脂中の異物数とした。
(9)フィルターの圧力上昇判定
 ギアポンプおよびフィルターを付属した20mmφの単軸押出紡糸機を用いて、共重合ポリエステル樹脂を押出し、フィルターにかかる圧力の上昇を測定した。フィルターは金属不織布タイプ20μm(ナスロンNF-08)、フィルター直径16mm(ろ過面積2.01cm)、吐出量は5g/分とした。押出温度は285℃で実施した。単位時間当たりの圧力上昇係数kを下記の式に基づいて求め、k≦5であれば実用上問題なしと判定した。
 k=ΔP(MPa/h)/(Q(kg/h)/S(cm))
(ΔPは1時間当たりの圧力上昇(MPa)、Qは1時間当たりの吐出量(kg/h)、Sはフィルターの面積(cm))
 ○:k≦5
 △:5<k≦10
 ×:k>10
(10)フィルムの異物判定
 200mm×300mmにカットしたフィルムの反対方向から蛍光灯の光を当てて、目視で観察される輝点の数を異物として計測した。フィルム10枚について合計の異物数を算出し、以下の基準に基づいて判定した。
 ○:異物数が100個以下
 △:異物数が101個~500個
 ×:異物数が501個以上
<重合触媒溶液の調製>
(リン化合物のエチレングリコール溶液)
 窒素導入管、冷却管を備えたフラスコに、常温常圧下、エチレングリコール2.0リットルを加えた後、窒素雰囲気下200rpmで攪拌しながら、リン化合物として化学式(4)で表されるIrganox1222(ビーエーエスエフ社製)200gを加えた。さらに2.0リットルのエチレングリコールを追加した後、ジャケット温度の設定を196℃に変更して昇温し、内温が185℃以上になった時点から60分間還流下で攪拌した。その後加熱を止め、直ちに溶液を熱源から取り去り、窒素雰囲気下を保ったまま、30分以内に120℃以下まで冷却した。
(アルミニウム化合物のエチレングリコール溶液)
 冷却管を備えたフラスコに、常温常圧下、純水5.0リットルを加えた後、200rpmで攪拌しながら、塩基性酢酸アルミニウム(ヒドロキシアルミニウムジアセテート)200gを純水とのスラリーとして加えた。さらに、全体として10.0リットルとなるよう純水を追加して、常温常圧で12時間攪拌した。その後、ジャケット温度の設定を100.5℃に変更して昇温し、内温が95℃以上になった時点から3時間還流下で攪拌した。攪拌を止め、室温まで放冷した。その際、未溶解粒子が見られた場合は、溶液をガラスフィルター(3G)にてろ過してアルミニウム化合物の水溶液を得た。
 続いて、蒸留装置を備えたフラスコに、常温常圧下、前記アルミニウム化合物の水溶液2.0リットルとエチレングリコール2.0リットルを仕込み、200rpmで30分間攪拌後、均一な水/エチレングリコール混合溶液を得た。次いで、ジャケット温度の設定を110℃に変更して昇温し、該溶液から水を留去した。留出した水の量が2.0リットルになった時点で加熱を止め、室温まで放冷することでアルミニウム化合物のエチレングリコール溶液を得た。
 以下において、「部」は「質量部」を表す。
<実施例1>
 攪拌機、温度計、溜出用冷却機を装備した反応缶にテレフタル酸2130部、エチレングリコール1140部、ネオペンチルグリコール815部を仕込み、トリエチルアミン0.7部を添加して0.35MPaの加圧下、220℃から250℃まで徐々に昇温し、溜出する水を系外に除きつつエステル化反応を行った。エステル化で得られたオリゴマーをサンプリングし、オリゴマーのAVo、OHVoを測定し、OHV%(ヒドロキシル末端基の割合)を算出した。続いて、前記の重合触媒溶液を、リン化合物のエチレングリコール溶液およびアルミニウム化合物のエチレングリコール混合溶液を共重合ポリエステル樹脂中のジカルボン酸成分に対して、リン原子として0.047モル%を、アルミニウム原子として0.021モル%となるように添加した後、1時間かけて1.3kPaまで減圧初期重合を行うとともに270℃まで上昇し、さらに0.13kPa以下で後期重合を行い、共重合ポリエステル樹脂を得た。反応缶からストランド状に取り出し、冷却固化後、カットしてチップ形状で得た。得られた共重合ポリエステル樹脂の特性を表1に示す。
 得られた共重合ポリエステル樹脂を単軸押出紡糸機を用いて、フィルターにかかる圧力上昇を評価した。また、小型押出機を用いて厚さ200μmのシートとし、二軸延伸製膜機により縦3.2倍、横3.8倍に延伸し、二軸延伸フィルムを得た。得られたフィルムの異物を評価した。評価結果を表1に示す。
<実施例2>
 攪拌機、温度計、溜出用冷却機を装備した反応缶にテレフタル酸2130部、エチレングリコール850部、ネオペンチルグリコール1350部を仕込み、トリエチルアミン0.7部を添加して0.35MPaの加圧下、220℃から250℃まで徐々に昇温し、溜出する水を系外に除きつつエステル化反応を行った。エステル化で得られたオリゴマーをサンプリングし、オリゴマーのAVo、OHVoを測定し、OHV%(ヒドロキシル末端基の割合)を算出した。続いて、前記の重合触媒溶液を、リン化合物のエチレングリコール溶液およびアルミニウム化合物のエチレングリコール混合溶液を共重合ポリエステル樹脂中のジカルボン酸成分に対して、リン原子として0.047モル%を、アルミニウム原子として0.021モル%となるように添加した後、1時間かけて1.3kPaまで減圧初期重合を行うとともに270℃まで上昇し、さらに0.13kPa以下で後期重合を行い、共重合ポリエステル樹脂を得た。得られた共重合ポリエステル樹脂を、実施例1と同様に評価した。評価結果を表1に示す。
<実施例3>
 攪拌機、温度計、溜出用冷却機を装備した反応缶にテレフタル酸2130部、エチレングリコール1310部、ネオペンチルグリコール690部を仕込み、トリエチルアミン0.7部を添加して0.35MPaの加圧下、220℃から250℃まで徐々に昇温し、溜出する水を系外に除きつつエステル化反応を行った。エステル化で得られたオリゴマーをサンプリングし、オリゴマーのAVo、OHVoを測定し、OHV%(ヒドロキシル末端基の割合)を算出した。続いて、前記の重合触媒溶液を、リン化合物のエチレングリコール溶液およびアルミニウム化合物のエチレングリコール混合溶液を共重合ポリエステル樹脂中のジカルボン酸成分に対して、リン原子として0.047モル%を、アルミニウム原子として0.021モル%となるように添加した後、1時間かけて1.3kPaまで減圧初期重合を行うとともに270℃まで上昇し、さらに0.13kPa以下で後期重合を行い、共重合ポリエステル樹脂を得た。得られた共重合ポリエステル樹脂を、実施例1と同様に評価した。評価結果を表1に示す。
<実施例4>
 実施例1において、仕込みのエチレングリコールをバイオマス資源由来のエチレングリコール(インディアグリコール製)に代えた他は、実施例1と同様な方法でエステル化、および重縮合反応を行い、共重合ポリエステル樹脂を得た。得られた共重合ポリエステル樹脂を、実施例1と同様に評価した。評価結果を表1に示す。
<実施例5>
 攪拌機、温度計、溜出用冷却機を装備した反応缶にテレフタル酸2130部、エチレングリコール1085部、ネオペンチルグリコール775部を仕込み、トリエチルアミン0.7部を添加して0.35MPaの加圧下、220℃から250℃まで徐々に昇温し、溜出する水を系外に除きつつエステル化反応を行った。エステル化で得られたオリゴマーをサンプリングし、オリゴマーのAVo、OHVoを測定し、OHV%(ヒドロキシル末端基の割合)を算出した。続いて、前記の重合触媒溶液を、リン化合物のエチレングリコール溶液およびアルミニウム化合物のエチレングリコール混合溶液を共重合ポリエステル樹脂中のジカルボン酸成分に対して、リン原子として0.047モル%を、アルミニウム原子として0.021モル%となるように添加した後、1時間かけて1.3kPaまで減圧初期重合を行うとともに270℃まで上昇し、さらに0.13kPa以下で後期重合を行い、共重合ポリエステル樹脂を得た。得られた共重合ポリエステル樹脂を、実施例1と同様に評価した。評価結果を表1に示す。
<実施例6>
 攪拌機、温度計、溜出用冷却機を装備した反応缶にテレフタル酸2130部、エチレングリコール1025部、ネオペンチルグリコール730部を仕込み、トリエチルアミン0.7部を添加して0.35MPaの加圧下、220℃から250℃まで徐々に昇温し、溜出する水を系外に除きつつエステル化反応を行った。エステル化で得られたオリゴマーをサンプリングし、オリゴマーのAVo、OHVoを測定し、OHV%(ヒドロキシル末端基の割合)を算出した。続いて、前記の重合触媒溶液を、リン化合物のエチレングリコール溶液およびアルミニウム化合物のエチレングリコール混合溶液を共重合ポリエステル樹脂中のジカルボン酸成分に対して、リン原子として0.047モル%を、アルミニウム原子として0.021モル%となるように添加した後、1時間かけて1.3kPaまで減圧初期重合を行うとともに270℃まで上昇し、さらに0.13kPa以下で後期重合を行い、共重合ポリエステル樹脂を得た。得られた共重合ポリエステル樹脂を、実施例1と同様に評価した。評価結果を表1に示す。
<比較例1>
 攪拌機、温度計、溜出用冷却機を装備した反応缶にテレフタル酸2130部、エチレングリコール1100部、ネオペンチルグリコール620部を仕込み、トリエチルアミン0.7部を添加して0.35MPaの加圧下、220℃から250℃まで徐々に昇温し、溜出する水を系外に除きつつエステル化反応を行った。エステル化で得られたオリゴマーをサンプリングし、オリゴマーのAVo、OHVoを測定し、OHV%(ヒドロキシル末端基の割合)を算出した。続いて三酸化アンチモン溶液を共重合ポリエステル樹脂中のジカルボン酸成分に対して、アンチモン原子として0.045モル%となるように添加した後、1時間かけて1.3kPaまで減圧初期重合を行うとともに270℃まで上昇し、さらに0.13kPa以下で後期重合を行い、共重合ポリエステル樹脂を得た。得られた共重合ポリエステル樹脂を、実施例1と同様に評価した。評価結果を表2に示す。
<比較例2>
 実施例1において、加圧エステル化の終了時間を短めにした以外は実施例1と同様な方法でエステル化反応および重縮合反応を行い、共重合ポリエステル樹脂を得た。得られた共重合ポリエステル樹脂を、実施例1と同様に評価した。評価結果を表2に示す。
<比較例3>
 実施例1において、加圧エステル化の終了時間を長めにした以外は実施例1と同様な方法でエステル化反応および重縮合反応を行い、共重合ポリエステル樹脂を得た。この比較例の方法ではポリエステル重縮合反応の速度が遅く、得られた樹脂は溶融粘度が低かったため、後評価は実施しなかった。
<比較例4>
 実施例1において、原料の仕込み量をテレフタル酸2130部、エチレングリコール1360部、ネオペンチルグリコール980部とした以外は実施例1と同様な方法でエステル化反応および重縮合反応を行い、共重合ポリエステル樹脂を得た。この比較例の方法ではポリエステル重縮合反応の速度が遅く、得られた樹脂は溶融粘度が低かったため、後評価は実施しなかった。
<比較例5>
 実施例1において、原料の仕込み量をテレフタル酸2130部、エチレングリコール910部、ネオペンチルグリコール650部とした以外は実施例1と同様な方法でエステル化反応および重縮合反応を行い、共重合ポリエステル樹脂を得た。得られた共重合ポリエステル樹脂を、実施例1と同様に評価した。評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 本発明による共重合ポリエステル樹脂は、異物混入が抑制されており清澄度が高いので、フィルム、シート、中空成形容器、エンジニアリングプラスチック、各種成形品用の材料として広く使用することができる。特に、清澄度が高度に要求されるフィルム、成形品の材料として好適である。従って、産業上極めて有用である。

Claims (9)

  1.  ジカルボン酸成分とジオール成分を構成成分とする共重合ポリエステル樹脂であって、ジカルボン酸成分として、テレフタル酸を90モル%以上含み、ジオール成分として、エチレングリコールを39~79モル%、ネオペンチルグリコールを20~60モル%、及びジエチレングリコールを1~5モル%含み、還元粘度が0.50dl/g以上であり、該共重合ポリエステル樹脂を0.8~0.9mmの厚さにしたサンプルから位相差光学顕微鏡を用いて観測される、1平方mm当たりの粒子径5μm以上の異物数が100個以下であることを特徴とする共重合ポリエステル樹脂。
  2.  カラーL値が60以上、かつカラーb値が6以下であることを特徴とする請求項1記載の共重合ポリエステル樹脂。
  3.  重合触媒として、アルミニウム化合物から選択される少なくとも1種、及びリン化合物から選択される少なくとも1種を共重合ポリエステル樹脂中に含有することを特徴とする請求項1又は2に記載の共重合ポリエステル樹脂。
  4.  ジカルボン酸成分とジオール成分をエステル化反応し、エステル化反応終了後の反応中間体オリゴマーのカルボン酸基末端濃度を400~900eq/ton、ヒドロキシル基末端濃度を700~1400eq/tonとした後、重縮合反応を行うことで得られることを特徴とする請求項1~3のいずれかに記載の共重合ポリエステル樹脂。
  5.  ジオール成分として、バイオマス資源由来のエチレングリコールを含むジオール成分を用いることを特徴とする請求項1~4のいずれかに記載の共重合ポリエステル樹脂。
  6.  請求項1~5のいずれかに記載の共重合ポリエステル樹脂からなる熱収縮性フィルム。
  7.  請求項1~5のいずれかに記載の共重合ポリエステル樹脂からなる成型品。
  8.  請求項1~5のいずれかに記載の共重合ポリエステル樹脂からなるシート。
  9.  請求項1~5のいずれかに記載の共重合ポリエステル樹脂からなる接着剤。
PCT/JP2014/078059 2013-10-24 2014-10-22 共重合ポリエステル樹脂 WO2015060335A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167012902A KR102222247B1 (ko) 2013-10-24 2014-10-22 공중합 폴리에스테르 수지
US15/029,699 US9868815B2 (en) 2013-10-24 2014-10-22 Copolymerized polyester resin
CN201480057671.XA CN105705549B (zh) 2013-10-24 2014-10-22 共聚聚酯树脂
JP2014561611A JP6500440B2 (ja) 2013-10-24 2014-10-22 共重合ポリエステル樹脂

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-221138 2013-10-24
JP2013221138 2013-10-24

Publications (1)

Publication Number Publication Date
WO2015060335A1 true WO2015060335A1 (ja) 2015-04-30

Family

ID=52992925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078059 WO2015060335A1 (ja) 2013-10-24 2014-10-22 共重合ポリエステル樹脂

Country Status (6)

Country Link
US (1) US9868815B2 (ja)
JP (1) JP6500440B2 (ja)
KR (1) KR102222247B1 (ja)
CN (1) CN105705549B (ja)
TW (1) TWI648305B (ja)
WO (1) WO2015060335A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016125829A1 (ja) * 2015-02-06 2016-08-11 東洋紡株式会社 共重合ポリエステル樹脂、及びその製造方法
US20190309161A1 (en) * 2016-12-28 2019-10-10 Skc Co., Ltd. Polyester resin, preparation method therefor, and copolymer polyester film manufacturing method using same
WO2020080051A1 (ja) * 2018-10-16 2020-04-23 東洋紡株式会社 熱収縮性フィルム用ポリエステル樹脂、熱収縮性フィルム、熱収縮性ラベル、及び包装体
JPWO2020166353A1 (ja) * 2019-02-14 2020-08-20
WO2021210512A1 (ja) * 2020-04-15 2021-10-21 東洋紡株式会社 共重合ポリエステル樹脂、熱収縮性フィルム、熱収縮性ラベル、および包装体

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018147249A1 (ja) * 2017-02-13 2019-02-14 東洋紡株式会社 非晶性のフィルム用共重合ポリエステル原料、熱収縮性ポリエステル系フィルム、熱収縮性ラベル、及び包装体
TWI652306B (zh) * 2017-11-28 2019-03-01 遠東新世紀股份有限公司 Heat shrinkable polyester film
US10543656B2 (en) 2018-01-11 2020-01-28 Eastman Chemical Company Tough shrinkable films
US12116452B2 (en) 2018-10-08 2024-10-15 Eastman Chemical Company Crystallizable shrinkable films and thermoformable sheets made from resins blends
WO2020090720A1 (ja) * 2018-10-31 2020-05-07 東洋紡株式会社 共重合ポリエステル樹脂、成形品、及び熱収縮性フィルム
US20230151207A1 (en) * 2020-04-15 2023-05-18 Toyobo Co., Ltd. Copolymerized polyester resin, molded product, heat-shrinkable film, and fiber
KR20220042008A (ko) 2020-09-25 2022-04-04 한화솔루션 주식회사 코폴리에스테르의 제조방법
CN113754871B (zh) * 2021-08-13 2023-06-13 浙江恒逸石化研究院有限公司 一种基于丙交酯-(脂环族-co-芳香族)-丙交酯的生物可降解嵌段共聚酯

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002088235A (ja) * 2000-09-19 2002-03-27 Toyobo Co Ltd 熱可塑性ポリエステル樹脂組成物
JP2008111076A (ja) * 2006-10-31 2008-05-15 Toyobo Co Ltd 共重合ポリエステルおよび被覆ポリエステルフィルム
JP2009073962A (ja) * 2007-09-21 2009-04-09 Toyobo Co Ltd 共重合ポリエステル
JP2011046860A (ja) * 2009-08-28 2011-03-10 Toyobo Co Ltd 共重合ポリエステル

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0159817B1 (en) 1984-03-22 1991-01-30 Toyo Boseki Kabushiki Kaisha Polyester composition
JPH0639521B2 (ja) 1984-04-27 1994-05-25 東洋紡績株式会社 ポリエステルの製造法
JPH0645175B2 (ja) 1986-04-15 1994-06-15 東洋紡績株式会社 ポリエステルフイルムの製造方法
JP4078582B2 (ja) 2001-02-22 2008-04-23 東洋紡績株式会社 ポリエステルの製造方法
JP2002322250A (ja) 2001-04-26 2002-11-08 Toyobo Co Ltd ポリエステルならびにポリエステルの製造方法
JP2002327052A (ja) 2001-04-27 2002-11-15 Toyobo Co Ltd ポリエステルならびにポリエステルの製造方法
WO2003085027A1 (fr) * 2002-04-11 2003-10-16 Toyo Boseki Kabushiki Kaisha Copeau de polyester amorphe, procede de production correspondant et procede de stockage de copeaux de polyester amorphe
JP2004256819A (ja) 2002-04-11 2004-09-16 Toyobo Co Ltd 非晶性ポリエステルチップ及びその製造方法、並びに、非晶性ポリエステルチップの保存方法
JP2004067733A (ja) 2002-08-01 2004-03-04 Toyobo Co Ltd 共重合ポリエステル及びその製造方法
JP2004137292A (ja) 2002-08-22 2004-05-13 Toyobo Co Ltd 共重合ポリエステル
JP4110462B2 (ja) 2002-08-22 2008-07-02 東洋紡績株式会社 共重合ポリエステルの製造方法
JP2004123984A (ja) 2002-10-04 2004-04-22 Toyobo Co Ltd 共重合ポリエステル

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002088235A (ja) * 2000-09-19 2002-03-27 Toyobo Co Ltd 熱可塑性ポリエステル樹脂組成物
JP2008111076A (ja) * 2006-10-31 2008-05-15 Toyobo Co Ltd 共重合ポリエステルおよび被覆ポリエステルフィルム
JP2009073962A (ja) * 2007-09-21 2009-04-09 Toyobo Co Ltd 共重合ポリエステル
JP2011046860A (ja) * 2009-08-28 2011-03-10 Toyobo Co Ltd 共重合ポリエステル

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016125829A1 (ja) * 2015-02-06 2016-08-11 東洋紡株式会社 共重合ポリエステル樹脂、及びその製造方法
JP6011742B1 (ja) * 2015-02-06 2016-10-19 東洋紡株式会社 共重合ポリエステル樹脂、及びその製造方法
US10266645B2 (en) 2015-02-06 2019-04-23 Toyobo Co., Ltd. Copolymerized polyester resin and method for producing the same
US20190309161A1 (en) * 2016-12-28 2019-10-10 Skc Co., Ltd. Polyester resin, preparation method therefor, and copolymer polyester film manufacturing method using same
WO2020080051A1 (ja) * 2018-10-16 2020-04-23 東洋紡株式会社 熱収縮性フィルム用ポリエステル樹脂、熱収縮性フィルム、熱収縮性ラベル、及び包装体
JP6741184B1 (ja) * 2018-10-16 2020-08-19 東洋紡株式会社 熱収縮性フィルム用ポリエステル樹脂、熱収縮性フィルム、熱収縮性ラベル、及び包装体
KR20210039504A (ko) * 2018-10-16 2021-04-09 도요보 가부시키가이샤 열수축성 필름용 폴리에스테르 수지, 열수축성 필름, 열수축성 라벨 및 포장체
KR102296003B1 (ko) 2018-10-16 2021-09-01 도요보 가부시키가이샤 열수축성 필름용 폴리에스테르 수지, 열수축성 필름, 열수축성 라벨 및 포장체
JPWO2020166353A1 (ja) * 2019-02-14 2020-08-20
WO2020166353A1 (ja) * 2019-02-14 2020-08-20 東洋紡株式会社 二軸延伸ポリエステルフィルム
JP7380601B2 (ja) 2019-02-14 2023-11-15 東洋紡株式会社 二軸延伸ポリエステルフィルム
WO2021210512A1 (ja) * 2020-04-15 2021-10-21 東洋紡株式会社 共重合ポリエステル樹脂、熱収縮性フィルム、熱収縮性ラベル、および包装体

Also Published As

Publication number Publication date
KR20160078378A (ko) 2016-07-04
CN105705549A (zh) 2016-06-22
KR102222247B1 (ko) 2021-03-02
US20160237207A1 (en) 2016-08-18
JPWO2015060335A1 (ja) 2017-03-09
TW201516072A (zh) 2015-05-01
TWI648305B (zh) 2019-01-21
CN105705549B (zh) 2020-04-24
JP6500440B2 (ja) 2019-04-17
US9868815B2 (en) 2018-01-16

Similar Documents

Publication Publication Date Title
JP6500440B2 (ja) 共重合ポリエステル樹脂
JP6083378B2 (ja) ポリエステル組成物およびポリエステルフィルム
KR20080048025A (ko) 폴리에스테르, 폴리에스테르의 제조방법, 및 폴리에스테르성형체
JP2008266359A (ja) ポリエステル重合触媒およびこれを用いて製造されたポリエステルならびにポリエステルの製造方法
JP4507131B1 (ja) ポリエステル組成物およびポリエステルフィルム
JP2005187556A (ja) ポリエステルならびにポリエステルの製造方法
JP2005187557A (ja) ポリエステルならびにポリエステルの製造方法
JP2005187559A (ja) ポリエステルならびにポリエステルの製造方法
JP5181409B2 (ja) ポリエステル重合触媒およびこれを用いて製造されたポリエステル並びにポリエステルの製造方法
JP2008266360A (ja) ポリエステル重合触媒およびこれを用いて製造されたポリエステル並びにポリエステルの製造方法
JP4552107B2 (ja) ポリエステルならびにポリエステルの製造方法
JP4670337B2 (ja) ポリエステルならびにポリエステルの製造方法
JP2006169432A (ja) ポリエステルならびにポリエステルの製造方法
JP4524572B2 (ja) ポリエステルならびにポリエステルの製造方法
JP2006096789A (ja) ポリエステルの製造方法
JP2006096790A (ja) ポリエステルの製造方法
TW202222902A (zh) 聚酯樹脂組成物及其製造方法以及使用其之聚酯薄膜
JP2006225585A (ja) ポリエステル重合触媒およびこれを用いて製造されたポリエステル並びにポリエステルの製造方法
JP2005325163A (ja) ポリエステル重合触媒およびこれを用いて製造されたポリエステル並びにポリエステルの製造方法
JP2005112875A (ja) ポリエステルならびにポリエステルの製造方法
JP2006089689A (ja) ポリエステル重縮合触媒およびこれを用いて製造されたポリエステル並びにそれらの製造方法
JP2005320432A (ja) ポリエステル重合触媒およびこれを用いて製造されたポリエステル並びにポリエステルの製造方法
JP2005325205A (ja) ポリエステルの製造方法及びポリエステルならびに成形体
JP2004107624A (ja) ポリエステル樹脂、及びそれからなるフィルム
JP2005226018A (ja) ポリエステルならびにポリエステルの製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014561611

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14856761

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15029699

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167012902

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14856761

Country of ref document: EP

Kind code of ref document: A1