WO2015058636A1 - 一种甲烷直接转化制芳烃的方法 - Google Patents

一种甲烷直接转化制芳烃的方法 Download PDF

Info

Publication number
WO2015058636A1
WO2015058636A1 PCT/CN2014/088599 CN2014088599W WO2015058636A1 WO 2015058636 A1 WO2015058636 A1 WO 2015058636A1 CN 2014088599 W CN2014088599 W CN 2014088599W WO 2015058636 A1 WO2015058636 A1 WO 2015058636A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
methane
catalyst
hzsm
aromatic hydrocarbon
Prior art date
Application number
PCT/CN2014/088599
Other languages
English (en)
French (fr)
Inventor
张燚
刘洋
陈建峰
Original Assignee
北京化工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京化工大学 filed Critical 北京化工大学
Publication of WO2015058636A1 publication Critical patent/WO2015058636A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/76Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen
    • C07C2/82Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen oxidative coupling
    • C07C2/84Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen oxidative coupling catalytic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/86Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon
    • C07C2/862Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only oxygen as hetero-atoms
    • C07C2/864Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only oxygen as hetero-atoms the non-hydrocarbon is an alcohol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C07C2529/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11 containing iron group metals, noble metals or copper
    • C07C2529/46Iron group metals or copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C07C2529/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65
    • C07C2529/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention relates to a method for directly converting methane to aromatic hydrocarbons, in particular to a method for directly converting methane to aromatic hydrocarbons by simultaneously performing methane aerobic aromatization reaction and aromatic hydrocarbon alkylation reaction.
  • Methane is the main component of natural gas and gas layers.
  • the rapid development of “shale gas” instead of conventional natural gas resources has changed the world energy landscape.
  • the development and utilization of natural gas has become a research hotspot.
  • natural gas is mainly used for heating and power generation.
  • the natural gas used in the industry accounts for 22%, and the natural gas-based chemical products account for 5%, which is a huge waste of resources.
  • Oxygen-free aromatization of methane is one of the important ways of direct conversion of methane. Under the action of catalyst, methane is directly converted into aromatic compounds such as benzene, toluene and naphthalene.
  • Aromatic hydrocarbons (especially benzene, toluene, xylene) are important chemical raw materials.
  • Aromatic hydrocarbons originate from coal tar. Modern is mainly derived from catalytic reforming and cracking in the petrochemical industry. Recently, as global crude oil prices continue to rise and demand for aromatics downstream products increases, the prices of benzene and other aromatics are high. No, it is very important to find suitable aromatics preparation routes for non-petroleum sources. Therefore, the direct conversion of methane to aromatics has great economic value. At the same time, methane is the most stable hydrocarbon molecule and is difficult to activate. Therefore, the direct conversion of methane to aromatics not only has industrial potential value, but also has important significance for catalytic science research.
  • the research mainly focuses on three aspects: adding a second metal component auxiliary; changing the catalyst carrier, mainly the acidity and skeleton metal of the molecular sieve; adding other gas components in the raw material gas, mainly for eliminating carbon deposits in situ .
  • the first two types of carbon deposits deactivate the catalyst carbon deposit.
  • the first type of carbon deposit is the main cause of catalyst deactivation, while the oligomeric polycyclic aromatic hydrocarbons are mainly produced by relatively unstable aromatic hydrocarbons such as benzene and toluene.
  • the technical problem to be solved by the present invention is to propose a method for directly converting methane to aromatic hydrocarbons by simultaneously performing an aerobic aromatization reaction of methane with an alkylation reaction of an aromatic hydrocarbon.
  • the method combines the aerobic aromatization reaction of methane with the alkylation reaction of an aromatic hydrocarbon, which not only breaks the thermodynamic equilibrium of the reaction, but also effectively inhibits carbon deposition by consuming benzene, toluene and the like.
  • the present invention provides a method for directly converting methane to aromatic hydrocarbons, comprising the steps of: simultaneously placing a catalyst in a reactor, passing a mixture of CH 4 and an alkylating agent to carry out a reaction, and realizing two reactions. The coupling is carried out to obtain an aromatic hydrocarbon.
  • the product was analyzed on-line by chromatography and collected in a cold trap for analysis.
  • the catalyst may be a single methane aerobic aromatization catalyst because the carrier is a molecular sieve and also has an aromatic hydrocarbon alkylation reaction catalytic activity. .
  • step 1) only a methane aromatization reaction is carried out as a comparative example, the catalyst being selected from one of the following: Mo/HZSM-5, W/HZSM-5, Re/HZSM-5, Mo /MCM-22, Mo/HZRP-1, etc.
  • the catalyst when coupling the methane aromatization reaction and the aromatic alkylation reaction, the catalyst comprises at least one methane aerobic aromatization catalyst and at least one aromatic alkylation catalyst;
  • the methane aerobic aromatization catalyst can be any known methane aerobic aromatization catalyst.
  • the methane aerobic aromatization catalyst is selected from one or more of the following: Mo/HZSM-5, W/HZSM-5, Re/HZSM-5, Mo/MCM-22, Mo /HZRP-1 and so on.
  • the aromatic alkylation catalyst can be any one or more of the known aromatic alkylation catalysts.
  • the aromatic alkylation catalyst is selected from one or more of the group consisting of aluminum chloride, sulfuric acid, phosphoric acid, HZSM-5, ZSM-5, ZSM-11, MCM-22, MCM-49. Wait.
  • the reaction temperature is 700-800 ° C
  • the volume ratio of the alkylating agent to the methane is 1:10-1:1
  • the reaction pressure is 0.1-1 Mpa
  • the space velocity is 1000-2000 ml/g. .cat.h.
  • the alkylating agent is selected from one or more of the group consisting of an alkyl halide, an acid anhydride, a cyclic ether, an ethylene oxide, an olefin, an alcohol.
  • the carrier of the catalyst of the present invention is a common molecular sieve or a multi-stage pore molecular sieve.
  • the two reactions in the present invention are coordinated, wherein the aromatic hydrocarbon in the alkylation reaction is a product of an aerobic aromatization reaction of methane, which breaks the thermodynamic equilibrium of the reaction and can significantly increase the conversion of methane and the yield of aromatic hydrocarbons. .
  • benzene and toluene are consumed, which inhibits the formation of oligomeric polycyclic aromatic hydrocarbons and prolongs the reminder.
  • the life of the agent; the method of the invention reacts within 30 min, the conversion rate can be stable at 25-45%; when the reaction time reaches 1200 h, the conversion rate remains stable and the catalyst is not deactivated;
  • the anaerobic aromatization reaction of methane is an endothermic reaction, and the alkylation reaction of aromatic hydrocarbons is an exothermic reaction.
  • the two reactions are carried out simultaneously, and heat coupling can be achieved; the temperature, space velocity and raw materials of the two reactions are within a certain range. Coordinated within;
  • the carrier of the catalyst of the present invention may be commercially available or may be directly prepared as follows:
  • HZ20 (I) zeolite molecular sieve product having a Si/Al ratio of 20 was obtained, which was designated as HZ20 (I).
  • the carrier of the catalyst of the present invention may be commercially available or may be directly prepared as follows:
  • the product was repeatedly rinsed with deionized water to a pH of 9-10, and the solid product was centrifuged.
  • the obtained product was dried in an oven at 100 ° C, and then calcined at 600 ° C for 6 h in a muffle furnace at a temperature of 1 ° C / min to obtain a zeolite molecular sieve product having a Si/Al ratio of 40, which was designated as HZ40 (I).
  • the carrier of the catalyst of the present invention may be commercially available or may be directly prepared as follows:
  • TPAOH templating agent tetrapropylammonium hydroxide
  • TEOS tetrapropylammonium hydroxide
  • the resulting synthetic liquid was slowly poured into a stainless steel autoclave lined with polytetrafluoroethylene and sealed. Then, the stainless steel autoclave was placed in an oven at 120 ° C for 120 hours, and then taken out, and quenched to room temperature.
  • HZ50 (I) zeolite molecular sieve product having a Si/Al ratio of 50
  • the carrier of the catalyst of the present invention may be commercially available or may be directly prepared as follows:
  • TPAOH templating agent tetrapropylammonium hydroxide
  • TEOS tetrapropylammonium hydroxide
  • PDDA polydimethyldiallyl ammonium chloride
  • the stainless steel autoclave was placed in an oven at 120 ° C for 120 hours, and then taken out, and quenched to room temperature.
  • the product was repeatedly rinsed with deionized water to a pH of 9-10, and the solid product was centrifuged, and the obtained product was dried in an oven at 100 ° C, and then calcined at a temperature of 1 ° C / min to 600 ° C in a muffle furnace. 6h, the organic template was removed, and the above-prepared multistage pore molecular sieve having a Si/Al ratio of 20 was HZ20 (II).
  • the carrier of the catalyst of the present invention may be commercially available or may be directly prepared as follows:
  • TPAOH templating agent tetrapropylammonium hydroxide
  • TEOS tetraethyl orthosilicate
  • PDDA polydimethyldiallyl ammonium chloride
  • the stainless steel autoclave was placed in an oven at 120 ° C for 120 hours, and then taken out, and quenched to room temperature.
  • the product was repeatedly rinsed with deionized water to a pH of 9-10, and the solid product was centrifuged, and the obtained product was dried in an oven at 100 ° C, and then calcined at a temperature of 1 ° C / min to 600 ° C in a muffle furnace. 6h, the organic template was removed, and the multistage pore molecular sieve prepared with the Si/Al ratio of 40 was prepared as HZ40 (II).
  • the carrier of the catalyst of the present invention may be commercially available or may be directly prepared as follows:
  • TPAOH templating agent tetrapropylammonium hydroxide
  • TEOS tetrapropylammonium hydroxide
  • PDDA polydimethyldiallyl ammonium chloride
  • the stainless steel autoclave was placed in an oven at 120 ° C for 120 hours, and then taken out, and quenched to room temperature.
  • the product was repeatedly rinsed with deionized water to a pH of 9-10, and the solid product was centrifuged, and the obtained product was dried in an oven at 100 ° C, and then calcined at a temperature of 1 ° C / min to 600 ° C in a muffle furnace. 6h, the organic template was removed, and the multistage pore molecular sieve prepared with the Si/Al ratio of 50 was prepared as HZ50 (II).
  • W can also be used as the active component of the reaction catalyst, but its activity is obviously inferior to Mo, and after the introduction of methanation, the conversion of methane is also greatly improved, and the activity and stability of the catalyst are improved.
  • the improvement indicates that the introduction of methanation reaction is of great significance for the anaerobic aromatization reaction of methane.
  • 0.2 g of 6Mo/HZ20 (I) and 0.1 g of HZ20 (I) were separately weighed and filled into a fixed bed reactor.
  • the reaction temperature was 700 ° C
  • the pressure was 0.1 Mpa
  • the reaction mixture was CH 3 OH/CH 4
  • the volume ratio was 1:3
  • the gas flow rate was 10 ml/min
  • the reaction space velocity was 2000 ml/g.cat.h.
  • the reaction results were similar to those in Example 7, and the conversion rate was slightly lowered.
  • the Si/Al ratio is an important factor affecting the activity of the catalyst, and the Si/Al ratio is different from that of the catalyst.
  • reaction results were similar to those of Example 7, and the methane conversion rate was lowered because the space velocity was increased and the contact time of the catalyst with the reaction gas was decreased.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种甲烷直接转化制芳烃的方法,包括如下步骤:在一个反应器中放置催化剂,同时通入CH4和烷基化试剂的混合气进行反应,实现两个反应的耦合进行,得到芳烃。本发明的有益效果是:本发明能显著提高甲烷的转化率及芳烃的收率,抑制了低聚稠环芳烃的生成,延长催化剂寿命;本发明的方法在30min内反应,转化率可稳定的在25-45%;当反应时间达到1200h后,转化率保持稳定,催化剂仍未失活;甲烷无氧芳构化反应和芳烃烷基化反应同时进行,可实现热量耦合;这两个反应的温度、空速和原料在一定范围内得到协调;反应进行后产物种类不变,便于分析比较;反应中消耗了苯、甲苯等,生成了二甲苯、三甲苯等,价值更高。

Description

一种甲烷直接转化制芳烃的方法 技术领域
本发明涉及一种甲烷直接转化制芳烃的方法,具体说是涉及一种将甲烷无氧芳构化反应和芳烃烷基化反应同时进行的甲烷直接转化制芳烃的方法。
背景技术
甲烷是天然气及煤气层的主要成分,而非常规天然气资源“页岩气”的快速发展改变了世界能源格局,对天然气的开发和利用成为研究的热点。目前,天然气主要用于取暖和发电,工业中应用的天然气占22%,以天然气为原料的化工产品占5%,这是对资源的巨大浪费。甲烷无氧芳构化是甲烷直接转化的重要途径之一,甲烷在催化剂作用下,直接转化成苯、甲苯和萘等芳香族化合物。芳香烃(特别是苯、甲苯、二甲苯)是重要的化工原料。芳香烃起始来源于煤焦油,现代主要来源于石油化工工业中的催化重整和裂化,最近随着全球原油价格的持续上涨及芳烃下游产品需求量的增加,苯及其他芳烃的价格居高不下,非常有必要寻找适宜的非石油来源的芳烃制备路线。所以,甲烷直接转换为芳烃具有巨大的经济价值。同时,甲烷是最稳定的烃类分子,很难活化。因此,甲烷直接转化制芳烃不仅具有工业上的潜在价值,而且对于催化科学研究具有重要意义。
1993年wang等(Catal.lett.1993,21,35-41),报道了在无氧条件下,大气压和700℃下,在Mo/HZSM-5催化剂上,甲烷能部分转化为苯,虽然转化率低于10%,但苯的选择性为100%。随后,其他研究者重复上述工作并发现Wang等并没有完全识别出全部反应产物(萘和其他),苯的选择性降为60-70%范围内。随后,研究表明,Mo是该反应的最佳活性组分,但该反应存在着亟待解决的问题:催化剂的活性不高及积碳导致催化剂快速失活。据验证:此反应在30min内反应,转化率可达14.46%;反应时间达到1h,转化率下降到10.73%;当反应时间达到20h后,催化剂失活(转化率在4%以下)。
对甲烷无氧芳构化制芳烃催化反应的改进始终在进行中。研究主要集中在三个方面:添加第二金属组分助剂;改变催化剂载体,主要是分子筛的酸性质和骨架金属;在原料气中添加其他气体组分,主要是用于原位消除积碳。
李爽等发现在不同过渡金属离子交换后的HZSM-5上制得的Mo基催化 剂,其甲烷芳构化反应性能均有一定的改善[S.Li,C.Zhang,Q.Kan,D.Wang and T.Wu,”The function of Cu(Ⅱ)ions in the Mo/CuHZSM-5 catalyst for methane conversion undernon-oxidative condition”,Appl.Catal.A:General,187(1999):199-206]。许多研究者对HZSM-5与HMCM-22分子筛做了大量的改性工作,以期在相应的Mo基催化剂上获得更好的甲烷芳构化反应性能。吕元等通过对HZSM-5分子筛进行适当的水蒸气处理使Mo基催化剂的反应活性和稳定性得到显著的提高。作者认为这是通过水蒸气脱铝使分子筛的部分酸中心减少,而这部分减少有利于提高芳烃收率和抑制积碳的生成[Y.Lu,D.Ma,X.Bao and L.Lin,”A high coking-resistance catalyst for methane aromatization”,J.Chen.Soc:Chem.Commum.,(2002):2048-2049]。1999年,袁山东等人报道了适量氧存在对无氧芳构化反应的促进作用[S.Yuan,J.Li,Z.Hao,Z.Feng,Q.Xin,P.Ying,C.Li,“The Effect of Oxygen on the Aromatization of Methane over Mo/Hzsm-5 Catalyst”Catalysis Letters,63(1999)73]。但是由于该反应的热力学特性的限制,这些改进方法的效果都非常有限。研究发现,该反应催化剂上的积碳有三种:低聚稠环芳烃;石墨前驱态;及Mo2C和/或Mo2OxCy,其中第三类积碳是反应的活性物种,而前两种积碳会使催化剂积碳失活,第一种积碳是催化剂失活的主要原因,而低聚稠环芳烃主要由苯、甲苯等相对不稳定的芳烃生成。
发明内容
本发明要解决的技术问题是提出一种甲烷无氧芳构化反应与芳烃烷基化反应同时进行,将甲烷直接转化制芳烃的方法。本方法将甲烷无氧芳构化反应与芳烃烷基化反应串联起来,不仅打破了反应的热力学平衡,也通过消耗苯、甲苯等,有效抑制积碳。
为解决上述技术问题,本发明一种甲烷直接转化制芳烃的方法,包括如下步骤:在一个反应器中同时放置催化剂,通入CH4和烷基化试剂的混合气进行反应,实现两个反应的耦合进行,得到芳烃。
优选地,具体步骤如下:
1)将催化剂置于反应器中;
2)升温,通入甲烷对催化剂进行活化;
3)当反应器内温度升到600-900℃时,将甲烷与气态的烷基化试剂同时通入反应器中进行反应,烷基化试剂与甲烷体积比为1:99-1:1,反应压力为0.1-5MPa,空速为1000-10000ml/g.cat.h。
用色谱对产物进行在线分析,并用冷阱收集后进行分析计算。
优选地,将甲烷芳构化反应和芳烃烷基化反应耦合进行时,所述催化剂可为单一甲烷无氧芳构化反应催化剂,因其载体为分子筛,同时也具有芳烃烷基化反应催化活性。
优选地,步骤1)中,只进行甲烷芳构化反应作为对比例,所述催化剂选自下列物质中的一种:Mo/HZSM-5、W/HZSM-5、Re/HZSM-5、Mo/MCM-22、Mo/HZRP-1等。
优选地,将甲烷芳构化反应和芳烃烷基化反应耦合进行时,所述催化剂包括至少一种甲烷无氧芳构化反应催化剂和至少一种芳烃烷基化反应催化剂;
所述甲烷无氧芳构化反应催化剂可以是任意一种已知的甲烷无氧芳构化催化剂。优选地,所述甲烷无氧芳构化反应催化剂选自下列物质中的一种或多种:Mo/HZSM-5、W/HZSM-5、Re/HZSM-5、Mo/MCM-22、Mo/HZRP-1等。
所述芳烃烷基化反应催化剂可以是任意一种或多种已知的芳烃烷基化反应催化剂。优选地,所述芳烃烷基化反应催化剂选自下列物质中的一种或多种:氯化铝、硫酸、磷酸、HZSM-5、ZSM-5、ZSM-11、MCM-22、MCM-49等。
优选地,步骤3)中,所述反应温度为700-800℃,烷基化试剂与甲烷体积比为1:10-1:1,反应压力为0.1-1Mpa,空速为1000-2000ml/g.cat.h。
优选地,步骤3)中,所述的烷基化试剂选自下列物质中的一种或多种:卤代烷、酸酐、环醚、环氧乙烷、烯烃、醇。
本发明所述催化剂的载体为普通分子筛或多级孔分子筛。
本发明的有益效果是:
1)本发明中两个反应协调进行,其中烷基化反应中的芳烃为甲烷无氧芳构化反应的产物,打破了该反应的热力学平衡,能显著提高甲烷的转化率及芳烃的收率。同时消耗了苯和甲苯,抑制了低聚稠环芳烃的生成,延长了催 化剂寿命;本发明的方法在30min内反应,转化率可稳定的在25-45%;当反应时间达到1200h后,转化率保持稳定,催化剂仍未失活;
2)甲烷无氧芳构化反应为吸热反应,而芳烃烷基化反应为放热反应,两个反应同时进行,可实现热量耦合;这两个反应的温度、空速和原料在一定范围内得到协调;
3)两个反应同时进行后产物种类不变,便于进行分析比较;
4)反应中消耗了苯、甲苯等,生成了二甲苯、三甲苯等,其经济价值更高。
具体实施方式
下面结合附图及实施例对本发明进一步加以说明。
实施例1
本发明的催化剂的载体可以采用现有市售商品,也可以按下述方法直接制备:
取16.288g模板剂四丙基氢氧化铵(TPAOH),加入42.084g水中,室温下在磁力搅拌器上搅拌,而后加入1.8757g硝酸铝,搅拌至完全溶解后,逐滴加入20.833g正硅酸乙酯(TEOS)并不断搅拌,待充分水解后搅拌20h,静止放置陈化4h,将所得合成液缓慢倒入带有聚四氟乙烯内衬的不锈钢高压釜中,密封。而后将不锈钢高压釜置于120℃的烘箱中晶化120h后取出,急冷至室温。得到产物用去离子水反复冲洗至PH值为9-10,离心分离固体产物,将所得产品置于100℃烘箱中烘干,再于马弗炉中以1℃/min程序升温至600℃焙烧6h,得到Si/Al比为20的沸石分子筛产物,记为HZ20(Ⅰ)。
实施例2
本发明的催化剂的载体可以采用现有市售商品,也可以按下述方法直接制备:
取16.288g模板剂四丙基氢氧化铵(TPAOH),加入42.084g水中,室温下在磁力搅拌器上搅拌,而后加入0.9378g硝酸铝,搅拌至完全溶解后,逐滴加入20.833g正硅酸乙酯(TEOS)并不断搅拌,待充分水解后搅拌20h,静止放置陈化4h,将所得合成液缓慢倒入带有聚四氟乙烯内衬的不锈钢高压釜中,密封。而后将不锈钢高压釜置于120℃的烘箱中晶化120h后取出,急冷至室温。得到产物用去离子水反复冲洗至PH值为9-10,离心分离固体产物, 将所得产品置于100℃烘箱中烘干,再于马弗炉中以1℃/min程序升温至600℃焙烧6h,得到Si/Al比为40的沸石分子筛产物,记为HZ40(Ⅰ)。
实施例3
本发明的催化剂的载体可以采用现有市售商品,也可以按下述方法直接制备:
取16.288g模板剂四丙基氢氧化铵(TPAOH),加入42.084g水中,室温下在磁力搅拌器上搅拌,而后加入0.7504g硝酸铝,搅拌至完全溶解后,逐滴加入20.833g正硅酸乙酯(TEOS)并不断搅拌,待充分水解后搅拌20h,静止放置陈化4h,将所得合成液缓慢倒入带有聚四氟乙烯内衬的不锈钢高压釜中,密封。而后将不锈钢高压釜置于120℃的烘箱中晶化120h后取出,急冷至室温。得到产物用去离子水反复冲洗至PH值为9-10,离心分离固体产物,将所得产品置于100℃烘箱中烘干,再于马弗炉中以1℃/min程序升温至600℃焙烧6h,得到Si/Al比为50的沸石分子筛产物,记为HZ50(Ⅰ)。
实施例4
本发明的催化剂的载体可以采用现有市售商品,也可以按下述方法直接制备::
取16.288g模板剂四丙基氢氧化铵(TPAOH),加入42.084g水中,室温下在磁力搅拌器上搅拌,而后加入1.8757g硝酸铝,搅拌至完全溶解后,逐滴加入20.833g正硅酸乙酯(TEOS)并不断搅拌,待充分水解后搅拌20h,加入6g聚二甲基二烯丙基氯化铵(PDDA)并继续搅拌3h,静止放置陈化4h,将所得合成液缓慢倒入带有聚四氟乙烯内衬的不锈钢高压釜中,密封。而后将不锈钢高压釜置于120℃的烘箱中晶化120h后取出,急冷至室温。得到产物用去离子水反复冲洗至PH值为9-10,离心分离固体产物,将所得产品置于100℃烘箱中烘干,再于马弗炉中以1℃/min程序升温至600℃焙烧6h,除去有机模板剂,记上述制备得Si/Al比为20的多级孔分子筛为HZ20(Ⅱ)。
实施例5
本发明的催化剂的载体可以采用现有市售商品,也可以按下述方法直接制备:
取16.288g模板剂四丙基氢氧化铵(TPAOH),加入42.084g水中,室温下在磁力搅拌器上搅拌,而后加入0.9378g硝酸铝,搅拌至完全溶解后,逐滴加 入20.833g正硅酸乙酯(TEOS)并不断搅拌,待充分水解后搅拌20h,加入6g聚二甲基二烯丙基氯化铵(PDDA)并继续搅拌3h,静止放置陈化4h,将所得合成液缓慢倒入带有聚四氟乙烯内衬的不锈钢高压釜中,密封。而后将不锈钢高压釜置于120℃的烘箱中晶化120h后取出,急冷至室温。得到产物用去离子水反复冲洗至PH值为9-10,离心分离固体产物,将所得产品置于100℃烘箱中烘干,再于马弗炉中以1℃/min程序升温至600℃焙烧6h,除去有机模板剂,记上述制备得Si/Al比为40的多级孔分子筛为HZ40(Ⅱ)。
实施例6
本发明的催化剂的载体可以采用现有市售商品,也可以按下述方法直接制备:
取16.288g模板剂四丙基氢氧化铵(TPAOH),加入42.084g水中,室温下在磁力搅拌器上搅拌,而后加入0.7504g硝酸铝,搅拌至完全溶解后,逐滴加入20.833g正硅酸乙酯(TEOS)并不断搅拌,待充分水解后搅拌20h,加入6g聚二甲基二烯丙基氯化铵(PDDA)并继续搅拌3h,静止放置陈化4h,将所得合成液缓慢倒入带有聚四氟乙烯内衬的不锈钢高压釜中,密封。而后将不锈钢高压釜置于120℃的烘箱中晶化120h后取出,急冷至室温。得到产物用去离子水反复冲洗至PH值为9-10,离心分离固体产物,将所得产品置于100℃烘箱中烘干,再于马弗炉中以1℃/min程序升温至600℃焙烧6h,除去有机模板剂,记上述制备得Si/Al比为50的多级孔分子筛为HZ50(Ⅱ)。
实施例7
分别称取0.2g 6wt%Mo/HZSM-5(Ⅰ)【即6Mo/HZ40(Ⅰ)】和0.1gHZSM-5【即HZ40(Ⅰ)】混合后填装入固定床反应器中(石英管,10mm)。反应温度为700℃,压力为0.1MPa,反应混合气为CH3OH/CH4,体积比为1:3,流速为10ml/min,反应空速为2000ml/g.cat.h。反应结果如表1所示。
对比例7
称取0.3g 6Mo/HZ40(Ⅰ),填装入固定床反应器中,反应温度为700℃,压力为0.1MPa,原料气为CH4,流速为10ml/min,反应空速为2000ml/g.cat.h。反应结果如表1所示。
表1 实施例7与对比例7反应结果对比
Figure PCTCN2014088599-appb-000001
从上面的比较可以得出:当只发生甲烷无氧芳构化反应时,无CO生成,而引入烷基化反应后,产生了CO。同时,苯和甲苯的选择性降低,而二甲苯及以上都有所升高,说明苯、甲苯通过烷基化反应转化为二甲苯等。将甲烷芳构化反应与芳烃烷基化反应耦合进行,甲烷转化率和芳烃收率显著提高,积碳量明显降低,催化剂的活性和稳定性都得到了很大的改善,催化剂寿命得到大大延长。
实施例8
分别称取0.2g 6Mo/HZ40(Ⅱ)和0.1g HZ40(Ⅱ)混合后填装入固定床反应器中。反应温度为700℃,压力为0.1Mpa,反应混合气为CH3OH/CH4,体积比为1:3,气体流量为10ml/min,反应空速为2000ml/g.cat.h。反应结果如表2所示。
对比例8
称取0.3g 6Mo/HZ40(Ⅱ),填装入固定床反应器中,反应温度为700℃,原料气为CH4,压力为0.1MPa,气体流量为10ml/min,反应空速为2000ml/g.cat.h。反应结果如表2所示。
表2 实施例8和对比例8反应结果对比
Figure PCTCN2014088599-appb-000002
Figure PCTCN2014088599-appb-000003
从上面的比较可以得出:使用多级孔分子筛作载体,提高了催化剂的活性和稳定性,积碳量也明显减少,且其效果比普通分子筛效果更好,这是因为多级孔分子筛中存在大量介孔结构,使金属组分高度分散,且有利于产物的外扩散。
实施例9
分别称取0.2g 6Mo/HZ40(Ⅰ)和0.1g HZ40(Ⅰ)混合后填装入固定床反应器中。反应温度为700℃,压力为0.1Mpa,反应混合气为C2H5Cl/CH4,体积比为1:3,气体流量为10ml/min,反应空速为2000ml/g.cat.h。反应结果如表3所示。
对比例9
称取0.3g 6Mo/HZ40(Ⅰ),填装入固定床反应器中,反应温度为700℃,原料气为CH4,压力为0.1MPa,气体流量为10ml/min,反应空速为2000ml/g.cat.h。反应结果如表3所示。
表3 实施例9和对比例9反应结果对比
Figure PCTCN2014088599-appb-000004
从上面的比较可以得出:用卤代烃做烷基化试剂,结果与使用甲醇相似,但其效果稍好,产物分布基本不变。
实施例10
称取0.3g 6Mo/HZ40(Ⅰ),填装入固定床反应器中。反应温度为700℃,压力为0.1Mpa,反应混合气为CH3OH/CH4,体积比为1:3,气体流量为10ml/min,反应空速为2000ml/g.cat.h。反应结果如表4所示。
对比例10
称取0.3g 6Mo/HZ 40(Ⅰ),填装入固定床反应器中,反应温度为700℃,压力为0.1MPa,原料气为CH4,气体流量为10ml/min,反应空速为2000ml/g.cat.h。反应结果如表4所示。
表4 实施例10和对比例10反应结果对比
Figure PCTCN2014088599-appb-000005
从上面的比较可以得出:当只使用单一甲烷无氧芳构化反应催化剂时,反应结果实施例8相似,而引入烷基化反应后,甲烷转化率仅提高了6%左右,效果次于使用两种催化剂。甲烷无氧芳构化催化剂载体为分子筛,而分子筛是烷基化反应的催化剂,所以仅使用单一催化剂也可提高甲烷转化率,但单一催化剂金属组分可能覆盖了部分活性中心,所以效果较差。
实施例11
分别称取0.2g 6W/HZ40(Ⅰ)和0.1g HZ40(Ⅰ)混合后填装入固定床反应器中。反应温度为700℃,压力为0.1MPa,反应混合气为CH3OH/CH4,体积比为1:3,气体流量为10ml/min,反应空速为2000ml/g.cat.h。反应结果如表5所示。
对比例11
称取0.3g 6W/HZ40(Ⅰ),填装入固定床反应器中,反应温度为700℃,压力为0.1Mpa,原料气为CH4,气体流量为10ml/min,反应空速为 2000ml/g.cat.h。反应结果如表5所示。
表5 实施例11和对比例11反应结果对比
Figure PCTCN2014088599-appb-000006
从上面的比较可以得出:W也可作为该反应催化剂的活性组分,但其活性明显不如Mo,而引入甲烷化反应后,甲烷的转化率也得到了大幅度提高,催化剂活性和稳定性得到改善,说明引入甲烷化反应对于甲烷无氧芳构化反应具有重要意义。
实施例12
分别称取0.2g 6Re/HZ40(Ⅰ)和0.1g HZ40(Ⅰ)混合后填装入固定床反应器中。反应温度为700℃,压力为0.1MPa,反应混合气为C2H4O/CH4,体积比为1:3,气体流量为10ml/min,反应空速为2000ml/g.cat.h。反应结果与实施例11类似,甲烷转化率较Mo低。
对比例12
称取0.3g 6Re/HZ40(Ⅰ),填装入固定床反应器中,反应温度为700℃,压力为0.1Mpa,原料气为CH4,气体流量为10ml/min,反应空速为2000ml/g.cat.h。反应结果与对比例11相似。
实施例13
分别称取0.2g 6Mo/HZ40(Ⅰ)和0.1g AlCl3混合后填装入固定床反应器中。反应温度为700℃,压力为0.1MPa,反应混合气为C2H4O/CH4,体积比为1:3,气体流量为10ml/min,反应空速为2000ml/g.cat.h。反应结果与实施例9类似。
对比例13
称取0.3g 6Mo/HZ40(Ⅰ),填装入固定床反应器中,反应温度为700℃,压力为0.1Mpa,原料气为CH4,气体流量为10ml/min,反应空速为2000ml/g.cat.h。反应结果与对比例9相似。
实施例14
称取0.3g 6Mo/MCM-22,填装入固定床反应器中。反应温度为700℃,压力为0.1MPa,反应混合气为C2H5Cl/CH4,体积比为1:3,气体流量为10ml/min,反应空速为2000ml/g.cat.h。反应结果与实施例10类似。
对比例14
称取0.3g 6Mo/MCM-22,填装入固定床反应器中,反应温度为700℃,压力为0.1Mpa,原料气为CH4,气体流量为10ml/min,反应空速为2000ml/g.cat.h。反应结果与对比例10相似。
实施例15
称取0.3g 6Mo/HZRP-1/AlCl3,填装入固定床反应器中。反应温度为700℃,压力为0.1MPa,反应混合气为C2H5Cl/CH4,体积比为1:3,气体流量为10ml/min,反应空速为2000ml/g.cat.h。反应结果与实施例10类似。
对比例15
称取0.3g 6Mo/HZRP-1,填装入固定床反应器中,反应温度为700℃,压力为0.1Mpa,原料气为CH4,气体流量为10ml/min,反应空速为2000ml/g.cat.h。反应结果与对比例10相似。
实施例16
分别称取0.2g 6Mo/HZ40(Ⅰ)和0.1g HZ40(Ⅰ)混合后填装入固定床反应器中。反应温度为900℃,压力为0.1Mpa,反应混合气为CH3OH/CH4,体积比为1:3,气体流量为10ml/min,反应空速为2000ml/g.cat.h。反应结果与实施例7相似,甲烷转化率稍高,因为该反应为吸热反应,温度升高,转化率提高。
对比例16
称取0.3g 6Mo/HZ40(Ⅰ),填装入固定床反应器中,反应温度为900℃,原料气为CH4,压力为0.1MPa,气体流量为10ml/min,反应空速为2000ml/g.cat.h。反应结果与对比例7相似。
实施例17
分别称取0.2g 6Mo/HZ40(Ⅰ)和0.1g HZ40(Ⅰ)混合后填装入固定床反应器中。反应温度为600℃,压力为0.1Mpa,反应混合气为CH3OH/CH4,体积比为1:3,气体流量为10ml/min,反应空速为2000ml/g.cat.h。反应结果与实施例7相似,转化率稍降。
对比例17
称取0.3g 6Mo/HZ40(Ⅰ),填装入固定床反应器中,反应温度为600℃,原料气为CH4,压力为0.1MPa,气体流量为10ml/min,反应空速为2000ml/g.cat.h。反应结果与对比例7相似。
实施例18
分别称取0.2g 6Mo/HZ20(Ⅰ)和0.1g HZ20(Ⅰ)混合后填装入固定床反应器中。反应温度为700℃,压力为0.1Mpa,反应混合气为CH3OH/CH4,体积比为1:3,气体流量为10ml/min,反应空速为2000ml/g.cat.h。反应结果与实施例7相似,转化率稍降。Si/Al比是影响催化剂活性的重要因素,不同Si/Al比催化剂活性和选择性不同。
对比例18
称取0.3g 6Mo/HZ20(Ⅰ),填装入固定床反应器中,反应温度为700℃,原料气为CH4,压力为0.1MPa,气体流量为10ml/min,反应空速为2000ml/g.cat.h。反应结果与对比例7相似。
实施例19
分别称取0.2g 6Mo/HZ50(Ⅰ)和0.1g HZ50(Ⅰ)混合后填装入固定床反应器中。反应温度为700℃,压力为0.1Mpa,反应混合气为CH3OH/CH4,体积比为1:3,气体流量为10ml/min,反应空速为2000ml/g.cat.h。反应结果与实施例7相似。
对比例19
称取0.3g 6Mo/HZ50(Ⅰ),填装入固定床反应器中,反应温度为700℃,原料气为CH4,压力为0.1MPa,气体流量为10ml/min,反应空速为2000ml/g.cat.h。反应结果与对比例7相似。
实施例20
分别称取0.2g 6Mo/HZ40(Ⅰ)和0.1g HZ40(Ⅰ)混合后填装入固定床反应器中。反应温度为700℃,压力为5Mpa,反应混合气为CH3OH/CH4,体积比为 1:3,气体流量为10ml/min,反应空速为2000ml/g.cat.h。反应结果与实施例7相似,甲烷转化率降低,因为该反应为增分子反应,压力增大,反而不利于芳构化反应的发生。
对比例20
称取0.3g 6Mo/HZ40(Ⅰ),填装入固定床反应器中,反应温度为700℃,原料气为CH4,压力为5MPa,气体流量为10ml/min,反应空速为2000ml/g.cat.h。反应结果与对比例7相似。
实施例21
分别称取0.2g 6Mo/HZ40(Ⅱ)和0.1g HZ40(Ⅱ)混合后填装入固定床反应器中。反应温度为700℃,压力为0.1Mpa,反应混合气为CH3OH/CH4,体积比为1:3,气体流量为30ml/min,反应空速为6000ml/g.cat.h。反应结果与实施例7相似,甲烷转化率降低,因为空速增大,催化剂与反应气接触时间减少。
对比例21
称取0.3g 6Mo/HZ40(Ⅱ),填装入固定床反应器中,反应温度为700℃,原料气为CH4,压力为0.1MPa,气体流量为30ml/min,反应空速为6000ml/g.cat.h。反应结果与对比例7相似。
实施例22
分别称取0.2g 6Mo/HZ40(Ⅱ)和0.1g HZ40(Ⅱ)混合后填装入固定床反应器中。反应温度为700℃,压力为0.1Mpa,反应混合气为CH3OH/CH4,体积比为1:3,气体流量为50ml/min,反应空速为10000ml/g.cat.h。反应结果与实施例7相似,甲烷转化率降低。
对比例22
称取0.3g 6Mo/HZ40(Ⅱ),填装入固定床反应器中,反应温度为700℃,原料气为CH4,压力为0.1MPa,气体流量为50ml/min,反应空速为10000ml/g.cat.h。反应结果与对比例7相似。
实施例23
分别称取0.2g 6Mo/HZ40(Ⅰ)和0.1g HZ40(Ⅰ)混合后填装入固定床反应器中。反应温度为700℃,压力为0.1Mpa,反应混合气为CH3OH/CH4,体积比为1:99,气体流量为10ml/min,反应空速为2000ml/g.cat.h。反应结果与实施例7相似。
对比例23
称取0.3g 6Mo/HZ40(Ⅰ),填装入固定床反应器中,反应温度为700℃,原料气为CH4,压力为0.1MPa,气体流量为10ml/min,反应空速为2000ml/g.cat.h。反应结果与对比例7相似。
实施例24
分别称取0.2g 6Mo/HZ40(Ⅰ)和0.1g HZ40(Ⅰ)混合后填装入固定床反应器中。反应温度为700℃,压力为0.1Mpa,反应混合气为CH3OH/CH4,体积比为1:10,气体流量为10ml/min,反应空速为2000ml/g.cat.h。反应结果与实施例7相似。
对比例24
称取0.3g 6Mo/HZ40(Ⅰ),填装入固定床反应器中,反应温度为700℃,原料气为CH4,压力为0.1MPa,气体流量为10ml/min,反应空速为2000ml/g.cat.h。反应结果与对比例7相似。
实施例25
分别称取0.2g 6Mo/HZ40(Ⅰ)和0.1g HZ40(Ⅰ)混合后填装入固定床反应器中。反应温度为700℃,压力为0.1Mpa,反应混合气为CH3OH/CH4,体积比为1:1,气体流量为10ml/min,反应空速为2000ml/g.cat.h。反应结果与实施例7相似。
对比例25
称取0.3g 6Mo/HZ40(Ⅰ),填装入固定床反应器中,反应温度为700℃,原料气为CH4,压力为0.1MPa,气体流量为10ml/min,反应空速为2000ml/g.cat.h。反应结果与对比例7相似。
实施例26
分别称取0.2g 3wt%Mo-0.3Fe/HZSM-5(Ⅰ)(3Mo-0.3Fe/HZ40(Ⅰ))和0.1gHZSM-5(HZ40(Ⅰ))混合后填装入固定床反应器中。反应温度为700℃,压力为0.1MPa,反应混合气为CH3OH/CH4,体积比为1:3,反应空速为2000ml/g.cat.h。反应结果与实施例7相似。
对比例26
称取0.3g 3wt%Mo-0.3Fe/HZSM-5(Ⅰ)(3Mo-0.3Fe/HZ 20(Ⅰ)),填装入固定床反应器中,反应温度为700℃,压力为0.1Mpa,原料气为CH4,反应空速 为2000ml/g.cat.h。反应结果与对比例7相似。
实施例27
分别称取0.2g 3Mo/HZ40(Ⅰ)和0.1g HZ40(Ⅰ)混合后填装入固定床反应器中。反应温度为700℃,压力为0.1Mpa,反应混合气为CH3OH/CH4,体积比为1:3,气体流量为10ml/min,反应空速为2000ml/g.cat.h。反应结果与实施例7相似。
对比例27
称取0.3g 3Mo/HZ40(Ⅰ),填装入固定床反应器中,反应温度为700℃,原料气为CH4,压力为0.1MPa,气体流量为10ml/min,反应空速为2000ml/g.cat.h。反应结果与对比例7相似。
实施例28
4分别称取0.2g 20Mo/HZ40(Ⅰ)和0.1g HZ40(Ⅰ)混合后填装入固定床反应器中。反应温度为700℃,压力为0.1Mpa,反应混合气为CH3OH/CH4,体积比为1:3,气体流量为10ml/min,反应空速为2000ml/g.cat.h。反应结果与实施例7相似。
对比例28
称取0.3g 20Mo/HZ40(Ⅰ),填装入固定床反应器中,反应温度为700℃,原料气为CH4,压力为0.1MPa,气体流量为10ml/min,反应空速为2000ml/g.cat.h。反应结果与对比例7相似。
本文中所采用的描述方位的词语“上”、“下”、“左”、“右”等均是为了说明的方便基于附图中图面所示的方位而言的,在实际装置中这些方位可能由于装置的摆放方式而有所不同。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无法对所有的实施方式予以穷举。凡是属于本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列。

Claims (9)

  1. 一种甲烷直接转化制芳烃的方法,其特征在于,包括如下步骤:在一个反应器中放置催化剂,同时通入CH4和烷基化试剂的混合气进行反应,实现两个反应的耦合进行,得到芳烃。
  2. 根据权利要求1所述的甲烷直接转化制芳烃的方法,其特征在于,优选地,具体步骤如下:
    1)将催化剂置于反应器中;
    2)升温,通入甲烷对催化剂进行活化;
    3)当反应器内温度升到600-900℃时,将甲烷与气态的烷基化试剂同时通入反应器中进行反应,烷基化试剂与甲烷的体积比为1:99-1:1,反应压力为0.1-5MPa,空速为1000-10000ml/g.cat.h。
  3. 根据权利要求1或2所述的甲烷直接转化制芳烃的方法,其特征在于:优选地,将甲烷芳构化反应和芳烃烷基化反应耦合进行时,所述催化剂可为单一甲烷无氧芳构化反应催化剂,因其载体为分子筛,同时对该催化剂也具有芳烃烷基化反应催化活性。
  4. 根据权利要求3所述的甲烷直接转化制芳烃的方法,其特征在于:优选地,所述催化剂选自下列物质中的一种:Mo/HZSM-5、W/HZSM-5、Re/HZSM-5、Mo/MCM-22、Mo/HZRP-1等,活性金属负载量为3%~20%。
  5. 根据权利要求1或2所述的甲烷直接转化制芳烃的方法,其特征在于:优选地,将甲烷芳构化反应和芳烃烷基化反应耦合进行时,所述催化剂包括至少一种甲烷无氧芳构化反应催化剂和至少一种芳烃烷基化反应催化剂。
  6. 根据权利要求5所述的甲烷直接转化制芳烃的方法,其特征在于:优选地,所述甲烷无氧芳构化反应催化剂选自下列物质中的一种或多种:Mo/HZSM-5、W/HZSM-5、Re/HZSM-5、Mo/MCM-22、Mo/HZRP-1等;
    优选地,所述芳烃烷基化反应催化剂选自下列物质中的一种或多种:氯化铝、硫酸、磷酸、HZSM-5、ZSM-5、ZSM-11、MCM-22、MCM-49等。
  7. 根据权利要求2所述的甲烷直接转化制芳烃的方法,其特征在于:优选地,步骤3)中,所述反应温度为700-800℃,烷基化试剂与甲烷体积比为1:10-1:1,反应压力为0.1-1Mpa,空速为1000-2000ml/g.cat.h。
  8. 根据权利要求1或2所述的甲烷直接转化制芳烃的方法,其特征在于:优选地,所述的烷基化试剂选自下列物质中的一种或多种:卤代烷、酸酐、环醚、环氧乙烷、烯烃、醇等。
  9. 根据权利要求1或2所述的甲烷直接转化制芳烃的方法,其特征在于:所述催化剂的载体为普通分子筛或多级孔分子筛,分子筛载体的SiO2/Al2O3比范围为10-100。
PCT/CN2014/088599 2013-10-21 2014-10-15 一种甲烷直接转化制芳烃的方法 WO2015058636A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310495618.5 2013-10-21
CN201310495618.5A CN104557423B (zh) 2013-10-21 2013-10-21 一种甲烷直接转化制芳烃的方法

Publications (1)

Publication Number Publication Date
WO2015058636A1 true WO2015058636A1 (zh) 2015-04-30

Family

ID=52992250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/088599 WO2015058636A1 (zh) 2013-10-21 2014-10-15 一种甲烷直接转化制芳烃的方法

Country Status (2)

Country Link
CN (1) CN104557423B (zh)
WO (1) WO2015058636A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113941360A (zh) * 2021-10-19 2022-01-18 郑州大学 一种甲烷无氧芳构化用催化剂及其制备方法和应用
CN115109608A (zh) * 2022-05-19 2022-09-27 中国科学院大连化学物理研究所 一种制备低芳烃含量液体燃料的方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106540742B (zh) * 2015-09-18 2019-04-09 北京化工大学 一种高催化活性的多级孔甲烷无氧芳构化和芳烃烷基化耦合催化剂及其制备方法和应用
CN105622305B (zh) * 2016-02-02 2018-08-10 北京化工大学 一种合成气直接转化制芳烃联产甲烷的方法
CN106391097B (zh) * 2016-09-23 2019-10-11 常州大学 多孔ZSM-5沸石与γ-Al2O3复合材料的合成及制备加氢脱硫催化剂
CN106966849A (zh) * 2017-03-10 2017-07-21 浙江大学 一种提高含氧化合物芳构化收率的方法
KR102186041B1 (ko) * 2018-10-31 2020-12-04 한국화학연구원 메탄의 비산화 직접전환용 촉매 및 이의 제조방법
CN111977663A (zh) * 2020-08-25 2020-11-24 西北大学 一种多级孔道结构沸石分子筛及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101124184A (zh) * 2004-12-22 2008-02-13 埃克森美孚化学专利公司 从甲烷生产烷基化的芳烃
JP2009028710A (ja) * 2007-06-29 2009-02-12 Meidensha Corp 低級炭化水素の芳香族化触媒
CN102267862A (zh) * 2011-06-10 2011-12-07 湖南大学 一种以天然气甲烷为原料催化制备对二甲苯的耦合方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2116301A4 (en) * 2007-03-20 2011-01-12 Meidensha Electric Mfg Co Ltd CATALYST FOR AROMATISING LOW CARBON DIOXIDES AND METHOD FOR PRODUCING AROMATIC COMPOUNDS
CN102531825B (zh) * 2010-12-29 2014-04-23 中国科学院大连化学物理研究所 一种促进丙烷转化制芳烃的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101124184A (zh) * 2004-12-22 2008-02-13 埃克森美孚化学专利公司 从甲烷生产烷基化的芳烃
JP2009028710A (ja) * 2007-06-29 2009-02-12 Meidensha Corp 低級炭化水素の芳香族化触媒
CN102267862A (zh) * 2011-06-10 2011-12-07 湖南大学 一种以天然气甲烷为原料催化制备对二甲苯的耦合方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SUN, YONGTAI, THE NEW PROCESS IN THE DEVELOPMENT OF CARBON DIOXIDE CHEMICAL INDUSTRY, vol. 32, no. 3, 30 June 2003 (2003-06-30), pages 16 - 18 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113941360A (zh) * 2021-10-19 2022-01-18 郑州大学 一种甲烷无氧芳构化用催化剂及其制备方法和应用
CN115109608A (zh) * 2022-05-19 2022-09-27 中国科学院大连化学物理研究所 一种制备低芳烃含量液体燃料的方法
CN115109608B (zh) * 2022-05-19 2023-10-24 中国科学院大连化学物理研究所 一种制备低芳烃含量液体燃料的方法

Also Published As

Publication number Publication date
CN104557423A (zh) 2015-04-29
CN104557423B (zh) 2017-05-03

Similar Documents

Publication Publication Date Title
WO2015058636A1 (zh) 一种甲烷直接转化制芳烃的方法
CN104148106B (zh) 合成气生产低碳烯烃的催化剂及其制备方法
Wang et al. Low temperature hydrodeoxygenation of guaiacol into cyclohexane over Ni/SiO 2 catalyst combined with Hβ zeolite
CN101618336B (zh) 一种金属负载型mcm-22分子筛空心球双功能催化剂制备及应用
CN105728020B (zh) 一种核壳型碳化铁催化剂制备方法
CN104148107B (zh) 一种由合成气一步转化制柴油馏分的催化剂及其制备方法
CN102516004A (zh) 一种以生物质合成气为原料经二甲醚两步法制备低碳烯烃的方法
CN103058814B (zh) 一种由液化气生产芳烃和烯烃的方法
CN108212204B (zh) 一种微波辅助甲烷直接制备高碳烯烃的催化剂及催化工艺
CN108080020B (zh) 一种用于费托-齐聚耦合反应的Fe基-分子筛催化剂及其制备方法和应用
WO2016180000A1 (zh) 一种纤维素两步法制备乙二醇和1,2-丙二醇的方法
Shang et al. A review of the recent progress on direct heterogeneous catalytic CO 2 hydrogenation to gasoline-range hydrocarbons
CN105435801A (zh) 负载型铁催化剂及其制备方法和应用
CN102531825B (zh) 一种促进丙烷转化制芳烃的方法
CN101279881A (zh) 催化裂解石脑油生产乙烯丙烯的方法
KR20210045671A (ko) 메탄의 탈수소방향족화 반응용 촉매 및 이을 이용한 방향족화 화합물의 제조방법
JP2014051472A (ja) 炭化水素の製造方法
CN104692994B (zh) 通过微通道反应器合成乙叉降冰片烯的方法
CN101870632A (zh) 生产低碳烯烃的方法
CN106966849A (zh) 一种提高含氧化合物芳构化收率的方法
CN108452822B (zh) 一种以mcm-41为载体的微波辅助制备高碳烯烃用催化剂及催化工艺
CN114054023A (zh) 一种合金单原子催化剂的制备方法和应用
CN114054079A (zh) 一种乙醇脱氢制备乙醛催化剂的制备方法与应用
CN109304215B (zh) 合成气一步法制低碳烯烃的催化剂
CN101293800A (zh) 含氧化合物与轻烃转化集成制取小分子烯烃的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14855084

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14855084

Country of ref document: EP

Kind code of ref document: A1