WO2015056461A1 - 予備発泡粒子の嵩密度測定装置及び予備発泡粒子の製造方法 - Google Patents

予備発泡粒子の嵩密度測定装置及び予備発泡粒子の製造方法 Download PDF

Info

Publication number
WO2015056461A1
WO2015056461A1 PCT/JP2014/060111 JP2014060111W WO2015056461A1 WO 2015056461 A1 WO2015056461 A1 WO 2015056461A1 JP 2014060111 W JP2014060111 W JP 2014060111W WO 2015056461 A1 WO2015056461 A1 WO 2015056461A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
expanded particles
bulk density
stage
pressure
Prior art date
Application number
PCT/JP2014/060111
Other languages
English (en)
French (fr)
Inventor
恭亮 村上
忍 落越
吉田 融
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to ES14854571T priority Critical patent/ES2800604T3/es
Priority to US15/029,784 priority patent/US10131076B2/en
Priority to CN201480053184.6A priority patent/CN105579827B/zh
Priority to MX2016003400A priority patent/MX2016003400A/es
Priority to EP14854571.8A priority patent/EP3059573B1/en
Publication of WO2015056461A1 publication Critical patent/WO2015056461A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/60Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3461Making or treating expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/02Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity by measuring weight of a known volume
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0063Density
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/02Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity by measuring weight of a known volume
    • G01N2009/022Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity by measuring weight of a known volume of solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/02Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity by measuring weight of a known volume
    • G01N2009/022Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity by measuring weight of a known volume of solids
    • G01N2009/024Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity by measuring weight of a known volume of solids the volume being determined directly, e.g. by size of container

Definitions

  • the present invention relates to an apparatus for measuring the bulk density of pre-expanded particles, particularly two-stage expanded particles, and a method for producing the pre-expanded particles using the apparatus. And as said pre-expanded particle, the case where a polyolefin resin expanded particle is used is more suitable.
  • An in-mold foam molded body made of pre-expanded particles is obtained by foaming resin particles (raw material particles) as raw materials using a pre-foaming device, a pressure-reducing foaming device, etc., to produce pre-foamed particles having a predetermined bulk density.
  • Various shapes and applications buffer materials, heat insulating materials, automotive interior materials, automotive bumper core materials, cushion packaging materials, Box).
  • a method for producing the pre-expanded particles having a high expansion ratio a method for obtaining the pre-expanded particles having a high expansion ratio in a normal pre-expanding apparatus or a decompression foaming apparatus is of course used.
  • a two-stage foaming method is known in which the pre-foamed particles are further foamed using a two-stage foaming machine to obtain pre-foamed particles (two-stage foamed particles) having a larger expansion ratio.
  • pre-expanded particles one-stage expanded particles
  • an internal pressure of 0.50 MPa or less are charged into a two-stage expansion machine and heated with water vapor or the like.
  • a batch-type method is known in which foaming is performed with a medium to a predetermined bulk density.
  • the two-stage foamed two-stage foam particles are collected, the bulk density is measured, and based on the deviation from the target value, the second stage of the next batch is measured.
  • the bulk density of the two-stage expanded particles is frequently adjusted by changing the operating conditions.
  • Patent Document 1 a bulk density measuring device and a measurement method for the two-stage expanded particles are disclosed.
  • the bulk density can be stably measured in the case of the two-stage expanded particles with a low expansion ratio having a bulk density of 30 g / L or more.
  • the pre-expanded particles with a high expansion ratio for example, two-stage expanded particles
  • the pre-expanded particles (two-stage expanded particles) immediately after the second-stage expansion contract. Since the bulk density of the original pre-expanded particles (two-stage expanded particles) cannot be measured, after drying for a long time and recovering from shrinkage, the bulk density is measured and based on the deviation from the target value.
  • the two-stage foaming conditions must be changed.
  • the actual condition is that the production conditions are determined and the two-stage expanded particles are manufactured based on past visual observation experience.
  • Patent Document 3 Although a method for suppressing the shrinkage of the pre-expanded particles as much as possible has been proposed, if the shrinkage cannot be suppressed well and has contracted, as described above. After taking measures such as drying for a long time to recover the shrinkage, it is necessary to measure the bulk density.
  • the purpose of the present invention is to measure the bulk density of pre-foamed particles (two-stage foam particles) with a high expansion ratio such as a bulk density of less than 30 g / L, in a short time, in measuring the bulk density of the pre-foamed particles. And a method for measuring bulk density using the device.
  • the object of the present invention is to feed back the measurement result of the bulk density of the obtained pre-expanded particles (two-stage expanded particles) to the operating conditions of a foaming apparatus such as a two-stage expander, thereby to obtain the pre-expanded particles (two-stage It is necessary to stably produce pre-expanded particles (two-stage expanded particles) having a uniform bulk density without requiring selection of production conditions by experienced persons by visual determination of the shape of the expanded particles).
  • the inventors of the present invention have taken a predetermined volume fraction of the pre-expanded particles once contracted in a state of being expanded under reduced pressure, so that the bulk of the original (that is, before contraction) pre-expanded particles can be stably obtained in a short time.
  • the present inventors have found that the density can be measured and completed the present invention.
  • the bulk density measuring device for pre-expanded particles is as follows.
  • An apparatus for measuring the bulk density of pre-expanded particles A container A capable of expanding the contracted pre-expanded particles and recovering the contraction, with the internal pressure of the container being reduced to a pressure lower than atmospheric pressure;
  • the pre-expanded particles after being expanded in the container A are filled in a depressurized state in which the internal pressure of the container is less than atmospheric pressure, and a container B capable of taking a fixed volume,
  • Decompression means 8 capable of adjusting the container internal pressures of the containers A and B to less than atmospheric pressure;
  • a weigh scale 6 capable of measuring the weight of the pre-expanded particles filled in the container B;
  • a bulk density measuring device comprising: [2] A container A discharge valve 3 is provided between the container A and the container B so that the pre-expanded particles stored in the container A can be discharged by free fall and the pre-expanded particles can be filled into the container B.
  • the bulk density measuring device according to [1]. [3] The bulk density measuring apparatus according to [1] or [2], further comprising a container B discharge valve 4 capable of discharging the pre-expanded particles filled in the container B to the weighing scale 6. [4] The bulk density measuring device according to any one of [1] to [3], comprising means capable of making the internal pressures of the container A and the container B different. [5] The bulk density according to any one of [1] to [4], wherein the container A has a conical portion, and the angle ⁇ of the conical portion is 60 ° or more and 120 ° or less. measuring device.
  • the pipe connecting the container A and the decompression means 8 and / or the pipe connecting the container B and the decompression means 8 is provided with at least one valve for controlling the internal pressure of the container, [1 ]
  • the container B is provided with a forced discharge means 9 capable of forcibly discharging the pre-expanded particles filled therein.
  • a method for measuring the bulk density of contracted pre-expanded particles (A) collecting part or all of the contracted pre-expanded particles and transferring them to the container A; (B) A step of expanding the contracted pre-expanded particles to recover the contraction, with the internal pressure of the container A being a reduced pressure state less than atmospheric pressure, (C) a step of bringing the internal pressure of the container B into a reduced pressure state less than atmospheric pressure; (D) Open the valve 3 between the container A and the container B, and fill the container B with the pre-expanded particles after being expanded in the container A in a reduced pressure state where the container internal pressure is less than atmospheric pressure.
  • a method for measuring the bulk density of pre-expanded particles comprising: [10] The bulk density measuring method for pre-expanded particles according to [9], wherein in step (c), the internal pressure of the container B is set higher than the internal pressure of the container A. [11] The method for measuring the bulk density of pre-expanded particles according to [9], wherein in the step (c), the internal pressure of the container B is set lower than the internal pressure of the container A.
  • step (c) The method for measuring bulk density of pre-expanded particles according to [9], wherein in step (c), the internal pressures of the container A and the container B are set uniformly.
  • step (c) The pre-expanded particles according to any one of [9] to [12], wherein the internal pressure of the container A and the container B is 10 ⁇ 10 3 Pa or more and 90 ⁇ 10 3 Pa or less. Bulk density measurement method.
  • the step (a) the bulk volume of the contracted pre-expanded particles transferred to the container A is 20% to 80% of the internal volume of the container A, [9] to [13] ]
  • the pre-expanded particles are filled in the container B by free-falling.
  • the method for measuring bulk density of pre-expanded particles according to any one of [9] to [14], wherein [16] The bulk density measuring method for pre-expanded particles according to any of [9] to [15], wherein the pre-expanded particles are polyolefin resin pre-expanded particles.
  • a method for producing pre-expanded particles After measuring the bulk density of the pre-expanded particles by the measurement method according to any of [9] to [16], A method for producing pre-expanded particles, wherein the measurement result is compared with a target bulk density, the result is fed back to a pre-expanding device, and the expansion conditions of the pre-expanded particles in the pre-expanding device are adjusted.
  • pre-expanded particles are polyolefin resin pre-expanded particles having a bulk density of 8 g / L or more and less than 30 g / L.
  • Pre-expanded particles that tend to shrink for example, two-stage expanded particles with a high expansion ratio such as a bulk density of 8 g / L or more and less than 30 g / L shrink immediately after production (immediately after the second-stage expansion), and the original bulk density Can not be measured in a short time after production, and it takes time to set the conditions for the next production.
  • the original bulk density can be stably measured in a short time after production. Further, by feeding back the measurement result of the bulk density to the operating conditions of a pre-foaming apparatus, for example, a two-stage foaming machine, it becomes easy to produce two-stage foamed particles having a predetermined original bulk density.
  • FIG. 1 is an overall flowchart in one embodiment of the bulk density measuring apparatus of the present invention.
  • the decompression means 8 vacuum pump
  • the can internal pressures (internal pressures) of the containers A and B can be equalized via the three-way valve 7.
  • FIG. 2 is an overall flow diagram in another embodiment of the bulk density measuring apparatus of the present invention.
  • the automatic valves 11 and 12 are disposed, the internal pressures of the container A and the container B can be easily varied.
  • the forced discharge means 9 that can blow air into the container B is provided, the entire amount can be easily discharged when discharging the two-stage expanded particles contained in the container B.
  • FIG. 3 is an overall flow diagram of a conventional bulk density measuring apparatus.
  • FIG. 1 and FIG.2 typically showed the flow of the whole bulk density measuring apparatus which measures the bulk density of the two-stage expanded particle immediately after discharging
  • the bulk density measuring device of the present invention is A charging hopper 1 for charging two-stage expanded particles;
  • a container A capable of expanding the contracted two-stage expanded particles and recovering the contraction, with the container internal pressure being a reduced pressure state lower than atmospheric pressure,
  • the pre-expanded particles after being expanded in the container A are filled in a depressurized state in which the internal pressure of the container is less than atmospheric pressure, and a container B capable of taking a fixed volume,
  • Decompression means 8 capable of adjusting the container internal pressures of the containers A and B to less than atmospheric pressure;
  • a weigh scale 6 capable of measuring the weight of the pre-expanded particles filled in the container B; It is an apparatus provided with.
  • the charging hopper 1 is a hopper for charging the container A with the two-stage expanded particles discharged from the two-stage expansion machine.
  • the shape of the charging hopper 1 is not particularly limited as long as the two-stage expanded particles do not stay in the hopper, but in particular, the conical type is preferable because the two-stage expanded particles do not stay.
  • the capacity of the charging hopper 1 is not particularly limited, but is preferably 0.5 to 5 times, more preferably 1.5 to 4 times the capacity of the container B described later. If the capacity of the charging hopper is less than 0.5 times the capacity of the container B, the amount of the two-stage expanded particles is small, and the measurement accuracy of the bulk density tends to decrease. If the capacity exceeds 5 times, the equipment itself becomes large and expensive. Tend to be.
  • Container A is a container capable of recovering contraction by expanding the contracted two-stage expanded particles with the internal pressure of the container being less than atmospheric pressure.
  • the shape of the container A only needs to be a structure in which the measurement sample of the expanded two-stage expanded particles does not stay in the container A at the time of discharge, is preferably a conical type (conical type), and more preferably has no straight body part.
  • the angle ⁇ (see FIG. 2) of the conical portion of the container A is preferably 60 ° or more and 120 ° or less, and more preferably 80 ° or more and 100 ° or less.
  • the angle ⁇ of the conical portion of the container A is less than 60 °, the two-stage expanded particles are pressed against each other and are also pressed against the inner wall of the container A when the two-stage expanded particles are expanded at a pressure less than atmospheric pressure. In other words, the container A is too tightly packed and easily blocked, and tends to be difficult to be discharged into the container B.
  • the angle ⁇ exceeds 120 ° it is difficult to slip or roll in the container A, and it tends to stay and tends to be difficult to be discharged from the container A to the container B.
  • the capacity of the container A is not particularly limited, but is preferably 1 to 5 times the capacity of the container B described later, and more preferably 2 to 4 times. When the capacity of the container A is less than 1 times the capacity of the container B, the amount of the two-stage expanded particles is small, and the measurement accuracy of the bulk density tends to decrease. Tend.
  • the container A can be provided with a container A input valve 2 and a container A discharge valve 3 at the upper end and the lower end, respectively.
  • the diameter of the container A charging valve 2 is not particularly limited as long as it has a size that does not block the two-stage expanded particles. For example, if the diameter of the two-stage expanded particles is about 5 mm, the diameter can be collected without clogging if the diameter is 20 A (inner diameter is about 20 mm) or more. Further, if the diameter of the two-stage expanded particles is about 10 mm, it can be collected without clogging if the diameter is 50 A (inner diameter is about 50 mm) or more.
  • the container A discharge valve 3 can be provided between the container A and the container B.
  • the diameter of the container A discharge valve 3 only needs to be large enough to prevent the expanded second-stage expanded particles from being blocked. If the expanded second-stage expanded particles have a diameter of about 8 mm, for example, 20A (inner diameter is about 20 mm). That is all. Further, when the expanded two-stage expanded particle has a diameter of, for example, about 13 mm, it can be transferred at 50 A (inner diameter of about 50 mm) or more without being blocked.
  • the charging hopper 1 for charging the two-stage expanded particles discharged from the two-stage foaming machine into the container A is described above, the charging hopper 1 is not always necessary.
  • the two-stage foamed particles can be introduced into the container A without the introduction hopper 1 by connecting a transfer hose and emptying the two-stage foam particles through the transfer hose.
  • the container A is provided with a level switch capable of controlling the storage amount of the two-stage expanded particles to be stored.
  • the amount of storage controlled by the level switch depends on the shrinkage rate of the two-stage expanded particles to be added and also the shape of the container A, etc., and may be adjusted as appropriate, but 20% or more and 80% or less of the capacity of the container A It is preferable to set so as to be accommodated with a capacity of. When the storage amount is less than 20% of the capacity of the container A, the amount may not reach a sufficient amount to fill the container B. When the storage amount exceeds 80%, when the two-stage expanded particles are expanded under reduced pressure, Tends to block.
  • the container B is a container for filling the two-stage expanded particles after being expanded in the container A in a reduced pressure state where the internal pressure of the container is less than atmospheric pressure, and taking a predetermined volume.
  • the container B can be connected to the container A through, for example, the container A discharge valve 3.
  • the shape of the container B is not particularly limited as long as the expanded two-stage expanded particles can be packed as closely as possible, but a straight barrel type is preferable.
  • the capacity of the container B is not limited, it is preferably 0.1 L or more and 30 L or less, and more preferably 0.5 L or more and 20 L or less.
  • the capacity of the container B is less than 0.1 L, the accuracy of the measured bulk density tends to decrease.
  • the capacity of the container B exceeds 30L, the device itself tends to be large and expensive, and a large installation space is required, and there is a tendency that it cannot be installed unless it is a large site.
  • the volume of the container B should just seal the inside of the container B with water, the volume of the water in that case should just be measured, and let the volume of the container B be V (L).
  • the upper end of the container B is connected to the container A via the container A discharge valve 3, and the container B discharge valve 4 can be provided at the lower end.
  • the diameter of the container B discharge valve 4 only needs to be large enough not to block the two-stage expanded particles. If the diameter of the two-stage expanded particles is, for example, about 8 mm, the diameter may be 20 A (inner diameter: about 20 mm) or more. Further, when the diameter of the two-stage expanded particles is, for example, about 13 mm, it can be transferred at 50 A (inner diameter of about 50 mm) or more without being blocked.
  • the decompression means 8 is not particularly limited as long as the internal pressure of the container A and the container B can be adjusted to less than atmospheric pressure ( ⁇ 10 5 Pa).
  • the ultimate pressure of the decompression means 8 is preferably 1 Pa or more and 20 ⁇ 10 3 Pa or less. If the ultimate pressure of the decompression means 8 is less than 1 Pa, the degree of vacuum in the container A and the container B will increase, but the equipment itself tends to be expensive. If it exceeds 20 ⁇ 10 3 Pa, the airtightness of the container will increase. When lowered, the measurement sample of the contracted two-stage expanded particles cannot be sufficiently expanded, and the measurement accuracy of the bulk density tends to be lowered.
  • the containers A and B and the decompression means 8 are connected by piping, and a valve 7 (for example, between the decompression means 8 and the junction of each pipe connected to the container A and the container B is connected.
  • a three-way valve can be installed.
  • a mesh is provided in a connection hole between the container A side and the container B side of the pipe.
  • the mesh is not particularly limited with respect to the wire diameter and the mesh opening as long as the two-stage expanded particles cannot pass therethrough and only the air sucked by the vacuum pump can pass through.
  • the method in which the container A and the container B are depressurized by the single depressurization means 8 is described.
  • the decompression means 8 independent for each of the containers A and B.
  • the internal pressure of the container A and the container B is set to a reduced pressure state less than atmospheric pressure.
  • the internal pressure of the container A and the container B is not limited particularly if it is less than atmospheric pressure, absolute 10 ⁇ 10 3 Pa or more as the pressure is preferably 90 ⁇ 10 3 Pa or less, 10 ⁇ 10 3 Pa or more, 60 ⁇ 10 3 Pa or less is more preferable, and 10 ⁇ 10 3 Pa or more and 30 ⁇ 10 3 Pa or less is most preferable. If the internal pressure of container A and container B is less than 10 ⁇ 10 3 Pa, the internal pressure in container A and container B will decrease, but the decompression device tends to be expensive, and if it exceeds 90 ⁇ 10 3 Pa, the internal pressure As a result, the measurement sample of the contracted two-stage expanded particles cannot be sufficiently expanded, and the accuracy of the bulk density tends to decrease.
  • the internal pressures of the container A and the container B may be set differently or the same.
  • the internal pressure of the container B may be higher or lower than the internal pressure of the container A.
  • the container A discharge valve 3 is opened to transfer the two-stage expanded particles expanded and contracted in the container A to the container B, Even if the air blows out from the container B side to the container A side and the two-stage foamed particles seem to be blocked near the bottom of the container A, the blockage is released by the pressure difference (air jet), and then the free fall Thus, the container B is easily filled, and the filling state in the container B is stabilized, so that the measurement error is reduced, which is a preferable mode.
  • the pressure difference when the pressure in the container B is increased is preferably 5 ⁇ 10 3 Pa or more and 30 ⁇ 10 3 Pa or less, preferably 7 ⁇ 10 3 Pa or more. 15 ⁇ 10 3 Pa or less is more preferable. If the pressure difference is within this range, the two-stage expanded particles are easily clogged in the vicinity of the bottom of the container A, and the pre-expanded particles are less likely to be re-contracted after the container A discharge valve 3 is opened. This is preferable in that the density can be measured.
  • the pressure difference in the case of increasing the pressure of the fluid vessel A 5 ⁇ 10 3 Pa or more, preferably 30 ⁇ 10 3 Pa or less, 5 ⁇ 10 3 Pa or more 10 ⁇ 10 3 Pa or less is more preferable. If the pressure difference is within this range, the two-stage expanded particles are easily clogged in the vicinity of the bottom of the container A, and the pre-expanded particles are less likely to be re-contracted after the container A discharge valve 3 is opened. This is preferable in that the density can be measured.
  • the pressure reducing means 8 is driven with the valves 2, 3 and 4 closed, Since it is possible to make the internal pressures of the container A and the container B the same (equal pressure) through the three-way valve 7, it is not necessary to provide means for differentiating the internal pressures of the container A and the shaper B.
  • This is a preferred embodiment from the viewpoint of easy design.
  • the shape of the container A, the diameter of the container A discharge valve 3 and the like are sufficiently studied, and two-stage foaming is performed near the bottom of the container A. It is necessary to adjust so that the blockage of particles can be sufficiently suppressed.
  • the means for adjusting the internal pressure of the container A and the container B is not particularly limited, for example, (A) As shown in FIG. 2, a pressure gauge and / or a pressure sensor (not shown) is attached to the containers A and B in advance, and when the desired pressure is reached, the three-way valve 7 and the container A A method of closing the valve 11 provided in the pipe between the two and the valve 12 provided in the pipe between the three-way valve 7 and the container B; (B) As shown in FIG. 2, a forced discharge means 9 (piping) and a valve 10 to be described later are connected to the container B, the container B is depressurized to a certain pressure, and then the valve 10 is appropriately opened.
  • A As shown in FIG. 2, a pressure gauge and / or a pressure sensor (not shown) is attached to the containers A and B in advance, and when the desired pressure is reached, the three-way valve 7 and the container A A method of closing the valve 11 provided in the pipe between the two and the valve 12 provided in the pipe between the three-way valve 7 and the
  • a method of adjusting the internal pressure of the container B (C) As shown in FIG. 2, a method of adjusting the internal pressure of the container A by reducing the container A to a certain pressure and then opening the valve 2 as appropriate. (D) As shown in FIG. 2, a method of adjusting the internal pressure of the container A by reducing the container A to a certain pressure and then opening the valve 11 and the valve 7 as appropriate. Etc. In the method (A), it is preferable to use an automatic valve that automatically closes the valves when the containers A and B reach a desired pressure.
  • the weigh scale 6 is a device for measuring the weight of the two-stage expanded particles discharged from the container B through the container B discharge valve 4 and collects all the two-stage expanded particles discharged by installing a discharge tray 5 or the like. And measure its weight.
  • the forced discharge means 9 In the measurement of the weight of the two-stage expanded particles, it is a preferable aspect to provide the forced discharge means 9 so that the two-stage expanded particles can be completely discharged from the container B.
  • the forced discharge means 9 for example, when a pipe is connected to the container B and the two-stage expanded particles are discharged from the container B discharge valve 4, air is ejected from the pipe and the two-stage expanded particles are utilized using the air.
  • a method of forcibly discharging the gas from the container B can be employed. By this method, even if the two-stage expanded particles are charged and are not easily discharged from the container B, the two-stage expanded particles can be efficiently discharged.
  • the bulk density measurement of the pre-expanded particles, particularly the two-stage expanded particles, using the bulk density measuring device of the present invention can be performed through the following steps. That is, the bulk density measuring method of the pre-expanded particles using the bulk density measuring device of the present invention is: (A) collecting part or all of the contracted pre-expanded particles and transferring them to the container A; (B) A step of expanding the contracted pre-expanded particles to recover the contraction, with the internal pressure of the container A being a reduced pressure state less than atmospheric pressure, (C) a step of bringing the internal pressure of the container B into a reduced pressure state less than atmospheric pressure; (D) Open the valve 3 between the container A and the container B, and fill the container B with the pre-expanded particles after being expanded in the container A in a reduced pressure state where the container internal pressure is less than atmospheric pressure.
  • the two-stage expanded particles adhere to the inner walls of the input hopper, container A, and container B due to static electricity or the like.
  • the particles may repel each other and the correct bulk density may not be measured.
  • the bulk density can be normally measured by removing static electricity as follows before the measurement operation.
  • Specific measures for the static electricity removal method include, for example, a method of adding (spraying) an antistatic agent to the two-stage expanded particles, a method of grounding the bulk density measuring device, or a jet of compressed air, etc.
  • a method of forcibly removing for example, the above-described forced discharge means 9) can be used.
  • an antistatic agent a commercially available antistatic agent, surfactant, etc. can be used as an antistatic agent.
  • the two-stage expanded particles immediately after being discharged from the two-stage foaming machine are expanded below atmospheric pressure, and a sample is collected in a container of a constant volume.
  • the original bulk density can be calculated by measuring the weight of the two-stage expanded particles having a constant volume.
  • Pre-foaming is performed by inputting the bulk density measurement result by the bulk density measuring device of the present invention as an electrical signal to a personal computer, a sequencer, etc., and performing comparison calculation with a target bulk density value using bulk density comparison calculation software. It can be used to control the production conditions of particles and two-stage expanded particles.
  • the time (foaming time) for discharging to a pressure range lower than the internal pressure of the sealed container may be several minutes or longer. If the bulk density measurement result is different from the target bulk density, a new pressure is applied to the pressure setter or temperature setter that controls the pressure and temperature in the closed container so that the target bulk density is reached. Or a temperature setpoint signal is sent and the bulk density can be controlled continuously while foaming by releasing into a low pressure region.
  • thermoplastic resin expanded particles pre-expanded particles
  • thermoplastic resin expanded particles which are discharged into a pressure region lower than the internal pressure of the closed container and which use water and / or carbon dioxide gas contained in the aqueous dispersion medium as a foaming agent.
  • the case is particularly preferable when the polyolefin resin pre-expanded particles are produced.
  • thermoplastic resin particles polymerized in the polymerization vessel are impregnated with a foaming agent to obtain expandable thermoplastic resin particles, and then a pre-foaming machine, etc. And heating with a heating medium such as water vapor to produce pre-expanded particles having a predetermined bulk density.
  • a heating medium such as water vapor
  • pre-expanded particles having a predetermined bulk density.
  • the pre-expanded particles thus obtained can be made into pre-expanded particles (two-stage expanded particles) at a higher magnification using a two-stage expansion machine.
  • the pre-expanded particles obtained separately and previously applied with the internal pressure are put into the can of the two-stage foaming machine.
  • the application of the internal pressure to the pre-expanded particles can be easily performed by a conventionally known method such as filling the pre-expanded particles in a pressure-resistant airtight container and performing a pressure treatment with air or the like. It is also possible to obtain multi-stage expanded particles such as three-stage expanded particles by repeating the method for producing the two-stage expanded particles.
  • Examples of the resin used as a base material for the pre-expanded particles used in the present invention include polypropylene resins, polyethylene resins, ethylene-vinyl acetate copolymer resins, polystyrene resins, high impact polystyrene resins, and styrene (meth).
  • Acrylic acid copolymer resins, acrylonitrile-styrene copolymer resins, methacrylic acid ester resins, vinylidene chloride resins, polyphenylene ether resins, and the like may be used.
  • the mixture examples include a mixed resin of polyphenylene ether and polystyrene, and a composite resin (styrene-modified polyolefin-based resin) in which a vinyl monomer is graft-copolymerized on a part of polyolefin.
  • the base resin of the pre-expanded particles is a polyolefin resin such as a polypropylene resin or a polyethylene resin, When producing these two-stage expanded particles, it is preferable to use the bulk density measuring device of the present invention.
  • the bulk density changes relatively sensitively depending on the two-stage foam setting pressure, and two-stage expansion for each batch Where the set pressure must be adjusted frequently and appropriately, according to the present invention, these can be easily controlled, and two-stage expanded particles with uniform bulk density can be obtained.
  • the bulk density of the polyolefin resin pre-expanded particles is not particularly limited, but the polyolefin resin pre-expanded particles that have a bulk density of 8 g / L or more and less than 30 g / L due to multi-stage foaming such as two-stage foaming are obtained by multi-stage foaming. It is easy to shrink and the variation in bulk density tends to increase. According to the present invention, after expanding and recovering such shrinkage, the bulk density is measured, and the result is fed back to the next batch production conditions and continued. In addition, since the bulk density can be controlled, a stable multistage foaming with a uniform bulk density is possible, which is a preferable mode.
  • polyolefin resin composition made of polypropylene resin or polyethylene resin as polyolefin resin particles and foaming the polyolefin resin particles.
  • a polyolefin-based resin composition is a resin composition containing a polyolefin resin as a main raw material and blended with a hydrophilic substance such as polyethylene glycol, glycerin or melamine as necessary, and melted by using an extruder or the like.
  • a polyolefin resin particle having a desired particle shape such as a columnar shape is used.
  • a polyolefin resin is obtained by heating a dispersion in which the polyolefin resin particles are dispersed in water together with a foaming agent such as carbon dioxide gas in a pressure vessel to a temperature in the range of the melting point of the polyolefin resin particles -20 ° C to the melting point + 20 ° C.
  • a foaming agent such as carbon dioxide gas
  • the polyolefin resin particles are released under a lower pressure atmosphere than in the container.
  • Polyolefin resins include homopropylene resins, propylene-ethylene random copolymers, propylene-butene random copolymers, polypropylene resins such as propylene-ethylene-butene terpolymers, high-density polyethylene resins, medium density Examples thereof include polyethylene resins such as polyethylene resins, low density polyethylene resins, and linear low density polyethylene resins.
  • the blend is supplied to a 50 ⁇ single-screw extruder at a discharge rate of 40 kg / hour, melt-kneaded at a resin temperature of 220 ° C., water-cooled, cut with a pelletizer, and cylindrical linear low-density polyethylene.
  • System resin particles (4.5 mg / grain) were obtained.
  • ⁇ Production of single-stage expanded particles 100 parts by weight of the obtained linear low density polyethylene resin particles, 200 parts by weight of pure water, 0.5 parts by weight of tertiary calcium phosphate and 0.05 parts by weight of sodium n-paraffin sulfonate were charged in a pressure-resistant sealed container, While stirring, 7.5 parts by weight of carbon dioxide was introduced into a pressure-tight sealed container, heated to 122 ° C., and held for 30 minutes. The pressure in the pressure-tight airtight container at this time was 3.5 MPa (gauge pressure).
  • bulb of the lower part of the airtight container was opened, and it released to atmospheric pressure through the orifice board, and obtained the polyethylene-type resin pre-expanded particle of the bulk density 60g / L.
  • the obtained polyethylene resin pre-expanded particles are dried and then put into a pressure vessel, and the internal pressure is set to 0.39 MPa (absolute pressure) using pressurized air, and then put into a can of a two-stage foaming machine. Then, it was heated by contact with heated steam of 0.07 MPa (gauge pressure) for 30 seconds to produce two-stage expanded particles. The obtained two-stage expanded particles were contracted.
  • the bulk density of the two-stage foamed particles discharged from the two-stage foaming machine was measured using the bulk density measuring apparatus of the present invention shown in FIG. (A)
  • the shrinking two-stage expanded particles were charged until the charging hopper 1 (capacity 3 L) was almost full with the container A charging valve 2 closed.
  • the container A charging valve 2 inner diameter 50 mm
  • the container A discharge valve 3 is closed
  • the A input valve 2 was closed.
  • the measurement result was compared with the target value by using a bulk density comparison operation device composed of a personal computer with a built-in analog signal input / output terminal.
  • the measured value of the bulk density of the first batch (shot) of the two-stage foaming was 14 g / L which was heavier than 12 g / L which is the target median value of 10 to 14 g / L. Therefore, a signal to raise the set pressure of the heating steam pressure of the two-stage foaming machine is sent to the pressure setter, and then the bulk density of the two-stage foamed particles is measured every even shot, and the bulk density is brought close to the target median value.
  • the correction signal was sent and the adjustment continued until the 80th shot.
  • the bulk density was within the target range of 10 to 14 g / L from 1 shot to 80 shots, and was stable.
  • blockage of the two-stage expanded particles occurred once in the container A, and at that time, the measurement of the bulk density was interrupted, and the blockage of the two-stage expanded particles in the container A was released and restarted.
  • Table 1, Table 2, and FIG. 4 show the results of bulk density measurement for every 10 shots and the state of two-stage foaming.
  • Example 1 The bulk density of the two-stage expanded particles produced in Example 1 was measured using a known bulk density measuring apparatus shown in FIG.
  • the known bulk density measuring device has a configuration in which the container B is connected to the charging hopper 21 via the charging valve 22 and is a device for fractionating the two-stage expanded particles under atmospheric pressure.
  • the bulk density of the first shot of the two-stage foaming is 16 g / L, which is heavier than the target 10 to 14 g / L.
  • a signal for raising the heating water vapor pressure of the two-stage foaming machine is sent to the pressure setting device, and the bulk density of the two-stage foamed particles is measured every tenth shot, and 80 shots are taken so that the bulk density approaches the target median value.
  • the correction signal was sent to the eye and the adjustment continued.
  • the bulk density measurement results are shown in Table 1, Table 2, and FIG.
  • Example 1 The two-stage expanded particles collected in Example 1 were allowed to stand for 4 hours in a dryer adjusted at 80 ° C. for the purpose of recovering from shrinkage, and then a known bulk density measuring device shown in FIG. 3 was used. The bulk density was measured. The bulk density measurement results are shown in Table 1.
  • the bulk density of the two-stage expanded particles allowed to stand for 4 hours in a dryer adjusted at 80 ° C. and recovered from shrinkage is the same as the bulk density (Example 1) measured by the bulk density measuring device of the present invention. Shows that the bulk density within the target is obtained. That is, it can be seen that the bulk density measured by the bulk density measuring apparatus of the present invention can measure the bulk density of the original two-stage expanded particles.
  • the bulk density of the two-stage expanded particles allowed to stand for 4 hours in a drier adjusted at 80 ° C. and recovered from shrinkage is compared with the bulk density (Comparative Example 1) measured with a conventional bulk density measuring device while shrinking. And light bulk density. That is, it can be seen that the bulk density of the two-stage expanded particles (Comparative Example 1) measured by the conventional method is different from the bulk density of the original two-stage expanded particles (Reference Example 2). Further, the deviation from the target bulk density was large.
  • the measured value is heavy due to shrinkage in the conventionally known bulk density measuring device, whereas in the bulk density measuring device of the present invention, the pressure is reduced.
  • the original bulk density can be measured with good reproducibility because it is expanded below to recover the original expanded particle state.
  • the bulk density of the two-stage expanded particles when using the bulk density measuring device of the present invention is 1 shot to 80 shots. Until then, it was within the target 10-14 g / L and was stable. On the other hand, when a conventionally known bulk density measuring device was used, the two-stage foamed particles discharged from the two-stage foaming machine contracted, the original bulk density could not be measured, and the fluctuation from shot to shot was large. . In addition, the bulk density of the two-stage expanded particles recovered from the shrinkage by the heat treatment was only obtained with large variation.
  • Example 2 In ⁇ Measurement of Bulk Density of Two-Stage Foamed Particles>, two-stage foaming is performed by the same operation as in Example 1 except that measurement is performed as follows using the bulk density measuring device of the present invention shown in FIG. evaluated. The evaluation results are shown in Table 2.
  • (1) The contracted two-stage expanded particles were charged until the charging hopper 1 (capacity 3 L) was almost full with the container A charging valve 2 closed.
  • the container A charging valve 2 inner diameter 50 mm
  • the A input valve 2 was closed.
  • valve 11 (automatic valve) provided in the pipe connecting the three-way valve 7 and the container A, and the three-way valve 7 and the container B are The valve 12 (automatic valve) provided in the connecting pipe is opened, the decompression means 8 (vacuum pump) is driven, and the internal pressures of the containers A and B are reduced via the three-way valve 7 (the internal pressure of the container A is 20). ⁇ 10 3 Pa, the internal pressure of the container B is 30 ⁇ 10 3 Pa). At this time, the automatic valves 11 and 12 were set to close when the containers A and B reached the internal pressures shown in Table 2.
  • the two-stage expanded particles in the container A were expanded and the contraction was recovered.
  • the container B discharge valve 4 (inner diameter 50 mm) is opened, the entire amount of the two-stage expanded particles is discharged to the discharge tray 5, and the weight [W (g)] of the discharged particles is measured using the weighing scale 6.
  • the bulk density [W / V (g / L)] was calculated.
  • the valve 10 When paying out to the discharge tray 5, the valve 10 was opened and air was blown into the container B from the outside through the forced discharge means 9 (pipe) so that the two-stage expanded particles did not remain in the container B. (5) After the bulk density measurement, the valve 2, the valve 3 and the valve 4 were opened, and the two-stage expanded particles remaining in the charging hopper 1 and the container A were discharged. As described above, when two-stage foaming of 80 shots was performed, the bulk density was within the target range of 10 to 14 g / L from 1 shot to 80 shots, and was stable. In addition, there was no problem such as blockage of the two-stage expanded particles in the apparatus.
  • Example 3 Two-stage foaming was performed and evaluated in the same manner as in Example 2 except that the bulk density measuring device having an angle ⁇ of the conical portion of the container A of 60 ° was used. The evaluation results are shown in Table 2. When two-stage foaming of 80 shots was performed, the bulk density was within the target 10 to 14 g / L from 1 shot to 80 shots, and there was no problem of blocking.
  • Example 4 Two-stage foaming was performed and evaluated in the same manner as in Example 2 except that the bulk density measuring device having an angle ⁇ of the conical portion of the container A of 50 ° was used. The evaluation results are shown in Table 2. When two-stage foaming of 80 shots was performed, the bulk density was within the target range of 10 to 14 g / L from 1 shot to 80 shots, and was stable. However, clogging of the two-stage expanded particles occurred in the container A twice, and each time the bulk density measurement was interrupted, the clogging of the two-stage expanded particles in the container A was released and restarted.
  • Example 5 Two-stage foaming was performed and evaluated in the same manner as in Example 2 except that the bulk density measuring device having an angle ⁇ of the conical portion of the container A of 130 ° was used. The evaluation results are shown in Table 2. When two-stage foaming of 80 shots was performed, the bulk density was within the target range of 10 to 14 g / L from 1 shot to 80 shots, and was stable. However, when the two-stage expanded particles in the container A were to be discharged and cleaned after the bulk density measurement, the two-stage expanded particles remained in the conical part of the container A, and it took time for cleaning.
  • Example 6 The bulk density measuring device was an angle ⁇ of the conical portion of the container A of 60 °, and the containers A and B were set to the internal pressures shown in Table 2 (both the containers A and B were under a uniform pressure of 30 ⁇ 10 3 Pa). Except for the above, two-stage foaming was performed by the same operation as in Example 1, and evaluated. The evaluation results are shown in Table 2. When two-stage foaming of 80 shots was performed, the bulk density was within the target range of 10 to 14 g / L from 1 shot to 80 shots, and was stable. However, clogging of the two-stage expanded particles occurred in the container A twice, and each time the bulk density measurement was interrupted, the clogging of the two-stage expanded particles in the container A was released and restarted.
  • Example 7 A bulk density measuring device having an angle ⁇ of the conical portion of the container A of 50 ° was set, and the containers A and B were set to the internal pressure shown in Table 2 (both the containers A and B were under a uniform pressure of 30 ⁇ 10 3 Pa). Except for the above, two-stage foaming was performed by the same operation as in Example 1, and evaluated. The evaluation results are shown in Table 2. When two-stage foaming of 80 shots was performed, the bulk density was within the target range of 10 to 14 g / L from 1 shot to 80 shots, and was stable. However, clogging of the two-stage expanded particles occurred in the container A four times, and each time the bulk density measurement was interrupted, the clogging of the two-stage expanded particles in the container A was released and restarted.
  • Example 8 The bulk density measuring device has an angle ⁇ of the conical portion of the container A of 60 °, and the containers A and B are set to the internal pressures shown in Table 2 (the internal pressure of the container A is 30 ⁇ 10 3 Pa and the internal pressure of the container B is 20 ⁇ 10 3 Except for setting to Pa), two-stage foaming was performed by the same operation as in Example 2, and evaluated. The evaluation results are shown in Table 2. When two-stage foaming of 80 shots was carried out, the bulk density was within the target 10-14 g / L from 1 shot to 80 shots. However, the bulk density was heavier than Example 1 as a whole. It changed.
  • a Container A B Container B DESCRIPTION OF SYMBOLS 1 Input hopper 2 Input valve 3 Container A discharge valve 4 Container B discharge valve 5 Discharge pan 6 Weigh scale 7 Three-way valve 8 Pressure reducing means (vacuum pump) 9 Forced discharge means (piping) 10 Valve 11 provided in forced discharge means Valve 12 provided in piping between three-way valve 7 and container A Valve provided in piping between three-way valve 7 and container B

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

 予備発泡粒子の嵩密度を測定する装置であって、容器内圧を大気圧未満の減圧状態として、収縮した予備発泡粒子を膨張させ収縮を回復させることが可能な容器Aと、容器Aで膨張させた後の予備発泡粒子を、容器内圧が大気圧未満の減圧状態で充填して、一定容積分取可能な容器Bと、容器Aと容器Bの容器内圧を大気圧未満に調整することができる減圧手段8と、容器Bに充填された予備発泡粒子の重量を測定できる重量計6と、を備えていることを特徴とする、嵩密度測定装置、及び測定方法を提供する。この嵩密度測定装置及び測定方法によれば、製造直後に収縮しやすい予備発泡粒子本来の嵩密度を、製造後に短時間で安定的に、測定することができ、即座に、次生産の運転条件にフィードバックすることができる。

Description

予備発泡粒子の嵩密度測定装置及び予備発泡粒子の製造方法
 本発明は、予備発泡粒子、特に二段発泡粒子の嵩密度を測定するための装置及び該装置を使用した予備発泡粒子の製造方法に関する。そして、前記予備発泡粒子としては、ポリオレフィン系樹脂発泡粒子を用いた場合が、より好適である。
 予備発泡粒子からなる型内発泡成形体は、原料となる樹脂粒子(原料粒子)を予備発泡装置や除圧発泡装置等を用いて発泡させ、所定の嵩密度の予備発泡粒子を製造し、これを型内成形機の金型に充填して型内発泡成形することで得られ、多種多様の形状・用途(緩衝材、断熱材、自動車内装部材、自動車バンパー用芯材、緩衝包装材、通い箱等)に使用されている。
 特に、高発泡倍率の予備発泡粒子の製造方法としては、通常の予備発泡装置や除圧発泡装置等において高発泡倍率の予備発泡粒子を得る方法は勿論であるが、一旦低発泡倍率の予備発泡粒子を得た後、該予備発泡粒子を、二段発泡機を用いて更に発泡させ、より大きな発泡倍率の予備発泡粒子(二段発泡粒子)を得る二段発泡方法が知られている。
 この際、二段発泡粒子の嵩密度を一定にすることが重要であり、これにより成形機に供給される二段発泡粒子の量を安定化させることができ、成形体の品質を安定化させることが可能となる。
 一般的に、二段発泡粒子を製造する方法としては、例えば、予め0.50MPa以下の内圧を付与させた予備発泡粒子(一段発泡粒子)を二段発泡機中に投入し、水蒸気などの加熱媒体により所定の嵩密度まで発泡させるバッチ式の方法が知られている。この場合、二段発泡粒子の嵩密度を調整する方法としては、二段発泡した二段発泡粒子を採取し、その嵩密度を測定し、目標値との乖離に基づいて、次バッチの二段発泡機の運転条件(例えば、予備発泡粒子の内圧、二段発泡時の加熱水蒸気圧力、等)を変更する必要があり、成形体品質の安定化の為に、このような二段発泡機の運転条件の変更により二段発泡粒子の嵩密度の調整が頻繁に行われている。
 二段発泡直後に二段発泡粒子自体が体積収縮しないような、低発泡倍率の二段発泡粒子に関しては、二段発泡粒子に対する嵩密度測定装置及びその測定方法が開示されている(特許文献1、特許文献2参照)。これらに開示されている嵩密度測定装置及び測定方法は、大気圧下で、一定体積(V)の容器に、二段発泡粒子を採取し、採取された二段発泡粒子の重量(W)を測定することにより、嵩密度(=W/V)を計算するものである。
 一方、予備発泡時の乾燥工程で収縮しやすい予備発泡粒子に対し、乾燥工程前に一定時間サンプル採取容器内で保持した後、乾燥工程に供することにより、予備発泡粒子の収縮を極力抑制した上で予備発泡粒子の嵩密度を測定する方法も開示されている(特許文献3参照)。
 収縮した予備発泡粒子の収縮を回復させた場合の嵩密度測定方法としては、予備発泡粒子の重量wを測定するとともに、その全量をメスシリンダーに投入し、メスシリンダー内を減圧することで収縮を回復させ、メスシリンダーの目盛りを読んで予備発泡粒子の体積vを測定し、w/vの嵩密度を測定する方法が知られている(特許文献4及び5参照)。
特開平6-80816号公報 国際公開第2005/087475号 特開2007-218588号公報 国際公開第2011/086938号 特開2006-96805号公報
 前記従来公知の二段発泡粒子に対する嵩密度測定装置では、30g/L以上の嵩密度を有する低発泡倍率の二段発泡粒子の場合であれば、嵩密度を安定的に測定することができる。これに対して、30g/L未満の嵩密度を有する高発泡倍率の予備発泡粒子(例えば二段発泡粒子)を製造した場合、二段発泡直後の予備発泡粒子(二段発泡粒子)が収縮してしまい、本来の予備発泡粒子(二段発泡粒子)の嵩密度を測定できない為に、長時間乾燥させて、収縮から回復させた後に、その嵩密度を測定し、目標値との乖離に基づいて、二段発泡条件を変更しなければならないといった課題がある。
 現状では、過去の目視観察の経験から、生産条件を決定し、二段発泡粒子を製造しているのが実情である。
 一方、特許文献3のように、極力、予備発泡粒子の収縮を抑制する方法も提案されているものの、うまく収縮を抑制することができず、収縮してしまった場合には、やはり上述の通り長時間乾燥させるなどの手段をとり、収縮を回復させた後に、その嵩密度を測定する必要がある。
 本発明の目的は、予備発泡粒子の嵩密度測定において、特に、30g/L未満の嵩密度を有するような高発泡倍率の予備発泡粒子(二段発泡粒子)の嵩密度を、短時間で測定できる装置、ならびに、該装置を用いた嵩密度の測定方法を提供することである。更には、本発明の目的は、得られる予備発泡粒子(二段発泡粒子)の嵩密度の測定結果を二段発泡機などの発泡装置の運転条件にフィードバックすることによって、予備発泡粒子(二段発泡粒子)の形状の目視判定等による経験者の生産条件の選定を必要とせず、嵩密度が揃った予備発泡粒子(二段発泡粒子)を安定的に製造することである。
 本発明者らは、一旦収縮した予備発泡粒子を、減圧下で膨張させた状態で一定容積分取することにより、短時間で安定的に、本来の(すなわち収縮前の)予備発泡粒子の嵩密度を測定することができることを見出し、本発明を完成させた。
 本発明にかかる予備発泡粒子の嵩密度測定装置は、以下のとおりである。
[1] 予備発泡粒子の嵩密度を測定する装置であって、
 容器内圧を大気圧未満の減圧状態として、収縮した予備発泡粒子を膨張させ収縮を回復させることが可能な容器Aと、
 容器Aで膨張させた後の予備発泡粒子を、容器内圧が大気圧未満の減圧状態で充填して、一定容積分取可能な容器Bと、
 容器Aと容器Bの容器内圧を大気圧未満に調整することができる減圧手段8と、
 容器Bに充填された予備発泡粒子の重量を測定できる重量計6と、
 を備えていることを特徴とする、嵩密度測定装置。
[2] 容器Aと容器Bの間に、容器Aに収納した予備発泡粒子を自由落下で排出可能であると共に、予備発泡粒子を容器Bへ充填可能な容器A排出バルブ3を備えることを特徴とする、[1]に記載の嵩密度測定装置。
[3] 容器Bに充填した予備発泡粒子を重量計6へ排出可能な容器B排出バルブ4を備えることを特徴とする、[1]または[2]に記載の嵩密度測定装置。
[4] 容器Aと容器Bの内圧を異ならせることが可能な手段を備えることを特徴とする、[1]~[3]のいずれかに記載の嵩密度測定装置。
[5] 容器Aが円錐形状部分を有しており、円錐部分の角度αが60°以上120°以下であることを特徴とする、[1]~[4]のいずれかに記載の嵩密度測定装置。
[6] 容器Aと減圧手段8を結ぶ配管、及び/または、容器Bと減圧手段8を結ぶ配管に、容器内圧を制御するバルブが少なくとも一つ配置されていることを特徴とする、[1]~[5]のいずれかに記載の嵩密度測定装置。
[7] 容器Bに、それに充填された予備発泡粒子を強制排出可能な強制排出手段9を備えることを特徴とする、[1]~[6]のいずれかに記載の嵩密度測定装置。
[8]収納する予備発泡粒子の収納量を制御可能なレベルスイッチが、容器Aに備わっていることを特徴とする、[1]~[7]のいずれかに記載の嵩密度測定装置。
[9]収縮した予備発泡粒子の嵩密度を測定する方法であって、
(a)収縮した予備発泡粒子の一部または全部を採取して容器Aに移送する工程、
(b)容器Aの内圧を大気圧未満の減圧状態として、収縮した予備発泡粒子を膨張させ収縮を回復させる工程、
(c)容器Bの内圧を大気圧未満の減圧状態とする工程、
(d)容器Aと容器Bの間のバルブ3を開け、容器Aで膨張させた後の予備発泡粒子を、容器内圧が大気圧未満の減圧状態で容器Bに充填して、一定容積分取する工程、
(e)容器Bの内圧を大気圧に戻すとともに、容器Bに充填した予備発泡粒子を排出して予備発泡粒子の重量を重量計6で測定する工程、
 を含むことを特徴とする予備発泡粒子の嵩密度測定方法。
[10] (c)工程において、容器Bの内圧を容器Aの内圧よりも高く設定することを特徴とする、[9]に記載の予備発泡粒子の嵩密度測定方法。
[11](c)工程において、容器Bの内圧を容器Aの内圧よりも低く設定することを特徴とする、[9]に記載の予備発泡粒子の嵩密度測定方法。
[12](c)工程において、容器Aと容器Bの内圧を均一に設定することを特徴とする、[9]に記載の予備発泡粒子の嵩密度測定方法。
[13] 容器A及び容器Bの内圧が、10×103Pa以上、90×103Pa以下であることを特徴とする、[9]~[12]のいずれかに記載の予備発泡粒子の嵩密度測定方法。
[14] (a)工程において、容器Aに移送する収縮した予備発泡粒子の嵩容積が、容器Aの内容積の20%以上80%以下であることを特徴とする、[9]~[13]のいずれかに記載の予備発泡粒子の嵩密度測定方法。
[15] (d)工程において、容器Bへの予備発泡粒子の充填が自由落下で行われる工程であり、(e)工程において、容器Bからの予備発泡粒子の排出が少なくとも強制排出手段9を用いて行われる工程、であることを特徴とする、[9]~[14]のいずれかに記載の予備発泡粒子の嵩密度測定方法。
[16] 予備発泡粒子が、ポリオレフィン系樹脂予備発泡粒子であることを特徴とする、[9]~[15]のいずれかに記載の予備発泡粒子の嵩密度測定方法。
[17] 予備発泡粒子の製造方法であって、
予備発泡粒子の嵩密度を、[9]~[16]のいずれかに記載の測定方法により測定した後、
 該測定結果を目標の嵩密度と比較して、その結果を予備発泡装置にフィードバックさせ、予備発泡装置での予備発泡粒子の発泡条件を調整することを特徴とする、予備発泡粒子の製造方法。
[18] 予備発泡装置が、二段発泡機であることを特徴とする、[17]に記載の予備発泡粒子の製造方法。
[19] 予備発泡粒子が、嵩密度8g/L以上30g/L未満のポリオレフィン系樹脂予備発泡粒子であることを特徴とする、[17]または[18]に記載の予備発泡粒子の製造方法。
 収縮しやすい予備発泡粒子、例えば、嵩密度8g/L以上30g/L未満のような高発泡倍率の二段発泡粒子は、製造直後(二段発泡直後)に収縮してしまい、本来の嵩密度を、製造後、短時間に測定することができず、次生産への条件設定に手間取る。しかし、本発明の予備発泡粒子の嵩密度測定装置及び測定方法によれば、本来の嵩密度を、製造後、短時間で安定的に、測定することが可能となる。
 さらに、前記嵩密度の測定結果を予備発泡装置、例えば二段発泡機の運転条件にフィードバックすることにより、所定の本来の嵩密度を有する二段発泡粒子の製造が容易となる。
図1は、本発明の嵩密度測定装置における一実施形態での全体フロー図である。本実施形態では、減圧手段8(真空ポンプ)を駆動させて、三方バルブ7を介して、容器A及び容器Bの缶内圧力(内圧)を均圧状態とすることができる。 図2は、本発明の嵩密度測定装置における別の実施形態での全体フロー図である。本実施形態では、自動バルブ11及び12を配したことから、容器A及び容器Bの内圧を容易に異ならせることができる。また、容器B中へエアを吹き付けることのできる強制排出手段9を設けたため、容器Bに収容した二段発泡粒子を排出する際に、容易に全量を排出することができる。 図3は、従来方法の嵩密度測定装置における全体フロー図である。 図4は、本発明の嵩密度測定装置を用いた二段発泡粒子の嵩密度測定結果に基づき、二段発泡製造条件にフィードバックすることによりバッチ毎(ショット毎)の二段発泡粒子の嵩密度を調整して製造した実施例における、ショット毎の二段発泡粒子の嵩密度変化と、従来公知の嵩密度測定装置を用いた二段発泡粒子の嵩密度測定結果に基づき、二段発泡製造条件にフィードバックすることにより二段発泡粒子の嵩密度を調整して製造した比較例における、ショット毎の二段発泡粒子の嵩密度変化を示すグラフである。また、比較例で得られた二段発泡粒子を加熱処理した後の嵩密度も併せて示した。
 以下、本発明の嵩密度測定装置を、図1または図2に基づいて説明する。
 なお、以下では、主に二段発泡粒子の場合について説明するが、本発明における予備発泡粒子は、二段発泡粒子に限定されるものではない。
 図1及び図2は、本発明の実施形態の一例として、二段発泡機から、排出された直後の二段発泡粒子の嵩密度を測定する嵩密度測定装置全体のフローを模式的に示したものである。
 本発明の嵩密度測定装置は、
 二段発泡粒子を投入する投入ホッパー1と、
 容器内圧を大気圧未満の減圧状態として、収縮した二段発泡粒子を膨張させ収縮を回復させることが可能な容器Aと、
 容器Aで膨張させた後の予備発泡粒子を、容器内圧が大気圧未満の減圧状態で充填して、一定容積分取可能な容器Bと、
 容器Aと容器Bの容器内圧を大気圧未満に調整することができる減圧手段8と、
 容器Bに充填された予備発泡粒子の重量を測定できる重量計6と、
 を備える装置である。
 投入ホッパー1は、二段発泡機から排出された二段発泡粒子を容器Aに投入する為のホッパーである。
 投入ホッパー1の形状は、二段発泡粒子がホッパー内で滞留しない構造であれば特に限定しないが、特に、二段発泡粒子が滞留しない点から、コニカル型が好ましい。
 投入ホッパー1の容量には、特に限定はないが、後述する容器Bの容量の0.5倍以上5倍以下が好ましく、1.5倍以上4倍以下がより好ましい。投入ホッパーの容量が容器Bの容量の0.5倍未満では、二段発泡粒子量が少なく、嵩密度の測定精度が低下する傾向があり、5倍を超えると、機器自体が大型になり高価となる傾向がある。
 容器Aは、容器内圧を大気圧未満の減圧状態として、収縮した二段発泡粒子を膨張させ収縮を回復させることが可能な容器である。
 容器Aの形状は、膨張した二段発泡粒子の測定サンプルが排出時に容器A内で滞留しない構造であればよく、円錐型(コニカル型)が好ましく、なおかつ、直胴部がないほうがより好ましい。
 容器Aの円錐部分の角度α(図2参照)は、60°以上120°以下が好ましく、80°以上100°以下がより好ましい。
 容器Aの円錐部分の角度αが60°未満では、二段発泡粒子を大気圧未満の圧力で膨張させた際に、二段発泡粒子がお互いに押し合うと共に、容器Aの内壁にも押されることになり、容器A内で密に詰まりすぎて閉塞しやすくなり、容器Bへ排出され難くなる傾向がある。一方、角度αが120°を超えると、容器A中で滑りにくい、あるいは転がりにくくなり、滞留しやすくなって、やはり容器Aから容器Bへ排出され難くなる傾向がある。
 容器Aの容量としては、特に限定はないが、後述する容器Bの容量の1倍以上5倍以下が好ましく、2倍以上4倍以下がより好ましい。容器Aの容量が容器Bの容量の1倍未満では、二段発泡粒子量が少なく、嵩密度の測定精度が低下する傾向があり、5倍を超えると、機器自体が大型になり高価となる傾向がある。
 容器Aは、上端部及び下端部にそれぞれ、容器A投入バルブ2及び容器A排出バルブ3を設けることができる。
 容器A投入バルブ2の口径は、二段発泡粒子が閉塞しない大きさがあれば特に限定しない。例えば、二段発泡粒子の直径が5mm程度であれば、その口径は20A(内径およそ20mm)以上とすれば、閉塞することなく採取できる。また、二段発泡粒子の直径が10mm程度であれば、50A(内径およそ50mm)以上とすれば、閉塞することなく採取できる。
 容器A排出バルブ3は、容器Aと容器Bとの間に設けることができる。
 容器A排出バルブ3の口径は、膨張させた二段発泡粒子が閉塞しない大きさがあればよく、膨張させた二段発泡粒子の直径が、例えば8mm程度であれば、20A(内径およそ20mm)以上とすればよい。また、膨張させた二段発泡粒子の直径が、例えば13mm程度であれば、50A(内径およそ50mm)以上で、閉塞することなく移送できる。
 なお、二段発泡機から排出された二段発泡粒子を容器Aに投入する為の投入ホッパー1を備え付ける例を上記したが、投入ホッパー1は必ずしも必要ではなく、例えば、容器A投入バルブ2に移送ホースを接続しておき、移送ホースを通して二段発泡粒子を空送する等して、投入ホッパー1を介さず容器Aに二段発泡粒子を投入することもできる。
 容器Aには、収納する二段発泡粒子の収納量を制御可能なレベルスイッチを備えておくことが好ましい。レベルスイッチにより制御する収納量は、投入する二段発泡粒子の収縮率、さらには容器Aの形状等にも依存し、適宜調整すればよいが、容器Aの容量の20%以上、80%以下の容量で収納されるよう設定しておくことが好ましい。収納量が容器Aの容量の20%未満では、容器Bを満たすに十分な量に達しない場合があり、80%を超えると、減圧して二段発泡粒子が膨張した際に、容器A中で閉塞しやすい傾向がある。
 容器Bは、容器Aで膨張させた後の二段発泡粒子を、容器内圧が大気圧未満の減圧状態で充填して、一定容積分取するための容器である。容器Bは、例えば容器A排出バルブ3を介して容器Aと接続することができる。
 容器Bの形状は、膨張した二段発泡粒子が可能な限り最密充填できる構造であれば特に限定しないが、直胴型が好ましい。
 容器Bの容量の限定はないが、0.1L以上、30L以下が好ましく、0.5L以上、20L以下がより好ましい。
 容器Bの容量が0.1L未満の場合は、測定される嵩密度の精度が低下する傾向がある。
 容器Bの容量が30Lを超えると、機器自体が大型になり高価となる傾向があると共に、大きな設置スペースが必要となり、広い敷地でなければ設置できない傾向がある。
 なお、容器Bの容積は、容器B内を水で封入し、その際の水の体積を測定すればよく、容器Bの容積をV(L)とする。
 容器Bは、上端部が容器A排出バルブ3を介して容器Aと接続され、下端部に容器B排出バルブ4を設けることができる。容器B排出バルブ4の口径は、二段発泡粒子が閉塞しない大きさがあればよく、二段発泡粒子の直径が、例えば8mm程度であれば、20A(内径およそ20mm)以上とすればよい。また、二段発泡粒子の直径が、例えば13mm程度であれば、50A(内径およそ50mm)以上で、閉塞することなく移送できる。
 なお、容器A及び容器Bの側面に、覗き窓が備えてあれば、二段発泡粒子の膨張・収縮状態、払い出し状態の状況を確認できる為、好ましい。
 減圧手段8は、容器A及び容器Bの内圧を大気圧(≒105Pa)未満に調節できるものであれば、特に限定されない。
 なお、減圧手段8の到達圧力としては、1Pa以上、20×103Pa以下が好ましい。減圧手段8の到達圧力が1Pa未満であれば、容器A及び容器B内の真空度は上がるものの、機器自体が高価となる傾向があり、20×103Paを超えると、容器の気密性が低下した際に、収縮した二段発泡粒子の測定サンプルを十分に膨張できなくなり、嵩密度の測定精度が低下する傾向がある。
 容器A及び容器Bと減圧手段8(例えば真空ポンプ)は、配管にて結ばれ、容器Aと容器Bに接続したそれぞれの配管の合流部と減圧手段8との間に、バルブ7(例えば、三方バルブ)を設置することができる。該配管の容器A側と容器B側との接続穴には、メッシュが設けられている。該メッシュは、二段発泡粒子が通過できず、真空ポンプで吸引される空気のみが通過できるものであれば、線径ならびに目開きに関しては特に限定されない。
 なお、上記例では、容器Aと容器Bを一つの減圧手段8で減圧する方法を記載したが、容器Aと容器Bのそれぞれに独立した減圧手段8を設けることも可能である。
 本発明の、収縮した予備発泡粒子の嵩密度を測定する方法においては、容器Aと容器Bの内圧は、大気圧未満の減圧状態とする。
 本発明において、容器Aと容器Bの内圧は大気圧未満であれば特に限定されないが、絶対圧力として10×103Pa以上、90×103Pa以下が好ましく、10×103Pa以上、60×103Pa以下がより好ましく、10×103Pa以上、30×103Pa以下が最も好ましい。
 容器Aと容器Bの内圧が10×103Pa未満であれば、容器A及び容器B内の内圧は下がるものの、減圧装置が高価となる傾向があり、90×103Paを超えると、内圧が上がり、収縮した二段発泡粒子の測定サンプルを十分に膨張できなくなり、嵩密度の精度が低下する傾向がある。
 本発明において、該容器Aと容器Bの内圧は、異なるように設定しても、同じになるよう設定しても良い。容器Aと容器Bの内圧を異なるよう設定する場合は、容器Bの内圧が容器Aの内圧より高くても、あるいは、低くても構わない。
 ここで、容器Bの内圧を容器Aの内圧より高く設定する場合、容器Aで膨張して収縮が回復した二段発泡粒子を容器Bに移す為に容器A排出バルブ3を開けた際、一旦、容器B側から容器A側に空気が噴き出し、仮に容器Aの底付近で二段発泡粒子が閉塞気味であったとしても、圧力差(空気の噴出)により閉塞が解かれ、その後、自由落下により容器Bに充填されやすくなり、容器Bでの充填状態が安定することから測定誤差が小さくなり、好ましい態様である。
 容器Aと容器Bの内圧に差を設ける場合で、容器Bの圧力を高くする場合の圧力差としては、5×103Pa以上、30×103Pa以下が好ましく、7×103Pa以上、15×103Pa以下がより好ましい。圧力差が当該範囲内であると容器Aの底付近で二段発泡粒子の閉塞が解かれやすく、また容器A排出バルブ3を開けた後の予備発泡粒子の再収縮が起こり難く、精度良く嵩密度が測定できる点で好ましい。
 逆に、容器Bの内圧を容器Aの内圧より低く設定した場合も、仮に容器Aの底付近で二段発泡粒子が閉塞気味であったとしても、圧力差(空気の噴出)により閉塞が解かれる点から好ましい態様である。但し、得られる嵩密度が本来の嵩密度に比べ重めになる傾向がある。従って、容器Bの内圧を容器Aの内圧より高く設定する場合の方がより好ましい態様である。
 容器Aと容器Bの内圧に差を設ける場合で、容器Aの圧力を高くする場合の圧力差としては、5×103Pa以上、30×103Pa以下が好ましく、5×103Pa以上、10×103Pa以下がより好ましい。圧力差が当該範囲内であると容器Aの底付近で二段発泡粒子の閉塞が解かれやすく、また容器A排出バルブ3を開けた後の予備発泡粒子の再収縮が起こり難く、精度良く嵩密度が測定できる点で好ましい。
 一方、容器Aと容器Bの内圧を同じとする(均圧とする)態様は、図1に示すように、バルブ2、3、4が閉である状態で、減圧手段8を駆動させて、三方バルブ7を介して、容器Aと容器Bの内圧を同じとする(均圧とする)ことが可能である為、容器Aと形器Bの内圧を異ならせる手段を設ける必要がなく、設備設計が容易になる点から好ましい態様である。
 ただし、容器Aと容器Bの内圧を同じとする(均圧とする)場合には、容器Aの形状や容器A排出バルブ3の口径等を十分検討し、容器Aの底付近で二段発泡粒子の閉塞を十分抑制できるよう調整することが必要である。
 本発明の嵩密度測定装置において、容器Aと容器Bの内圧を調整する手段としては、特に制限は無く、例えば、
(A)図2に示すように、予め容器Aと容器Bに圧力計及び/または圧力センサー(図示せず)を取り付けておき、所望の圧力になった時点で、三方バルブ7と容器Aの間の配管に設けられたバルブ11や、三方バルブ7と容器Bの間の配管に設けられたバルブ12を閉じる方法;
(B)図2に示すように、後述する強制排出手段9(配管)及びバルブ10を容器Bに接続しておき、容器Bをある圧力に減圧しておき、その後、バルブ10を適宜開けることで、容器Bの内圧を調整する方法、
(C)図2に示すように、容器Aをある圧力に減圧しておき、その後、バルブ2を適宜開けることで、容器Aの内圧を調整する方法、
(D)図2に示すように、容器Aをある圧力に減圧しておき、その後、バルブ11及びバルブ7を適宜開けることで、容器Aの内圧を調整する方法、
等が挙げられる。
 方法(A)においては、容器AとBが所望の圧力に達した時点で、自動的にバルブが閉じる自動バルブを用いる方法が好ましい。
 重量計6は、容器B排出バルブ4を通して容器Bから排出された二段発泡粒子の重量を測定する機器であり、排出受け皿5を設置するなどして排出される二段発泡粒子をもれなく捕集し、その重量を測定する。
 なお、二段発泡粒子の重量測定において、容器Bから二段発泡粒子が完全に排出できるよう、強制排出手段9を設けることは好ましい態様である。
 強制排出手段9としては、例えば、容器Bに配管を接続し、二段発泡粒子を容器B排出バルブ4から排出する際に、該配管からエアを噴出させ、エアを利用して二段発泡粒子を容器Bから強制的に排出させる方法を採用することができる。該方法により、二段発泡粒子が帯電し、容器Bから排出されにくい状態であっても、効率よく二段発泡粒子を排出させることができる。
 本発明の嵩密度測定装置を用いる予備発泡粒子、特に二段発泡粒子の嵩密度測定は、以下の工程を経て行うことができる。
 すなわち、本発明の嵩密度測定装置を用いる予備発泡粒子の嵩密度測定方法は、
(a)収縮した予備発泡粒子の一部または全部を採取して容器Aに移送する工程、
(b)容器Aの内圧を大気圧未満の減圧状態として、収縮した予備発泡粒子を膨張させ収縮を回復させる工程、
(c)容器Bの内圧を大気圧未満の減圧状態とする工程、
(d)容器Aと容器Bの間のバルブ3を開け、容器Aで膨張させた後の予備発泡粒子を、容器内圧が大気圧未満の減圧状態で容器Bに充填して、一定容積分取する工程、
(e)容器Bの内圧を大気圧に戻すとともに、容器Bに充填した予備発泡粒子を排出して予備発泡粒子の重量を重量計6で測定する工程、
 を経る、嵩密度測定方法である。
 本発明の嵩密度測定装置を用いる予備発泡粒子(二段発泡粒子)の嵩密度測定操作においては、静電気等により、二段発泡粒子が投入ホッパー・容器A・容器Bの内壁部に付着したり、粒子同士が反発して、正しい嵩密度を測定できない場合がある。
 この場合、測定操作前に、以下のような静電気除去を施しておくことにより、正常に嵩密度を測定できる。静電気除去方法の具体策としては、例えば、二段発泡粒子に帯電防止剤を添加(噴霧)する方法、嵩密度測定装置をアース(接地)しておく方法、あるいは、圧縮空気の噴射等により、強制的に排除する方法(例えば、上述した強制排出手段9)、等があげられる。
 なお、帯電防止剤としては、市販の帯電防止剤、界面活性剤等を使用することができる。
 以上のように、本発明の嵩密度測定装置を用いて、二段発泡機から排出された直後の二段発泡粒子を、大気圧未満で膨張させて、一定体積の容器内にサンプルを採取し、一定体積の二段発泡粒子の重量を測定することにより、本来の嵩密度を計算できる。
 本発明の嵩密度測定装置による嵩密度測定結果を、電気信号としてパソコン、シーケンサなどに入力して、嵩密度比較演算ソフトを用いて、目標とする嵩密度値と比較演算することにより、予備発泡粒子や二段発泡粒子の製造条件の制御に活用することができる。
 例えば、特開2009-161738号公報に記載の予備発泡粒子製造方法であれば、密閉容器の内圧よりも低い圧力域に放出する時間(発泡時間)が数分以上に及ぶことがあり、ある時点の嵩密度測定結果が目標の嵩密度と異なっている場合は、密閉容器内の圧力や温度等を制御する圧力設定器または温度設定器等に、目標の嵩密度になるように、新たな圧力や温度設定値の信号が送られ、低い圧力域に放出して発泡している間に、継続的に嵩密度を制御することができる。
 一方、特開2009-263639号公報記載の予備発泡粒子製造方法、または二段発泡粒子の製造方法であれば、あるバッチ(ショット)の嵩密度測定結果が目標の嵩密度と異なっている場合は、予備発泡機または二段発泡機における缶内加熱蒸気圧を制御する圧力設定器に、目標の嵩密度になるように、新たな圧力設定値の信号が送られ、次バッチ製造条件へフィードバックされ、継続的に嵩密度を制御することができる。
 具体的には、ある時点で得られた予備発泡粒子または二段発泡粒子の嵩密度が、目標嵩密度に対して重い場合は、嵩密度を軽くするように、次バッチでは、前バッチでの加熱蒸気圧より高い設定値信号が送られ、逆に、目標嵩密度に対して軽い場合は、前バッチでの加熱蒸気圧より低い設定値信号が送られ、目標嵩密度に近似した一定範囲の嵩密度の予備発泡粒子または二段発泡粒子を得ることができる。
 なお、嵩密度比較演算ソフトとしては、公知のソフトを用いることができる。
 本発明の嵩密度測定装置に供される予備発泡粒子を製造する方法としては、従来公知の製造方法を採用することができる。
 例えば、上述の特開2009-161738号公報に記載のように、密閉容器内に熱可塑性樹脂粒子を水系分散媒に分散させ、熱可塑性樹脂粒子の軟化温度以上の温度まで加熱、加圧した後、密閉容器の内圧よりも低い圧力域に放出する、水系分散媒に含まれる水及び/または炭酸ガス等を発泡剤とする熱可塑性樹脂発泡粒子(予備発泡粒子)の製造方法が挙げられ、この場合は、特にポリオレフィン系樹脂予備発泡粒子を製造する場合に好ましい。
 また、上述の特開2009-263639号公報に記載のように、重合容器内で重合された熱可塑性樹脂粒子に発泡剤を含浸させて発泡性熱可塑性樹脂粒子を得た後、予備発泡機等を用いて水蒸気等の加熱媒体で加熱し、所定の嵩密度の予備発泡粒子を製造する方法が挙げられる。この場合は、特にポリスチレン系樹脂予備発泡粒子や、スチレン改質ポリオレフィン系樹脂予備発泡粒子を製造する場合に好ましい。
 一方、このようにして得られた予備発泡粒子を、二段発泡機を用いて更に高い倍率の予備発泡粒子(二段発泡粒子)とすることも可能である。
 本発明の嵩密度測定装置に供される二段発泡粒子の製造方法としては、例えば、別途得られた予備発泡粒子に予め内圧を付与したものを、二段発泡機の缶内へ投入し、加熱水蒸気と接触させる方法、等があり、これらの方法により、予備発泡粒子よりもさらに高発泡倍率の二段発泡粒子を得ることができる。
 なお、予備発泡粒子への内圧の付与は、予備発泡粒子を耐圧密閉容器内に充填し、空気等で加圧処理を行うなど、従来公知の方法で、容易に実施できる。また、二段発泡粒子を製造する方法を繰り返し、三段発泡粒子等の多段発泡粒子を得ることも可能である。
 本発明に用いられる予備発泡粒子の基材となる樹脂としては、ポリプロピレン系樹脂、ポリエチレン系樹脂、エチレン-酢酸ビニル共重合体系樹脂、ポリスチレン系樹脂、耐衝撃性ポリスチレン系樹脂、スチレン-(メタ)アクリル酸共重合体系樹脂、アクリロニトリル-スチレン共重合体系樹脂、メタクリル酸エステル系樹脂、塩化ビニリデン系樹脂、ポリフェニレンエーテル系樹脂、等が挙げられ、これらの混合物であってもよい。混合物としては、例えば、ポリフェニレンエーテルとポリスチレンとの混合樹脂、ポリオレフィンの一部にビニル単量体がグラフト共重合している複合樹脂(スチレン改質ポリオレフィン系樹脂)等が挙げられる。
 本発明における嵩密度が揃った予備発泡粒子が得られるという効果が、より発揮される点からは、予備発泡粒子の基材樹脂としてはポリプロピレン系樹脂やポリエチレン系樹脂等のポリオレフィン系樹脂を用い、これらの二段発泡粒子を製造する際に、本発明の嵩密度測定装置を用いることが好ましい。ポリプロピレン系樹脂予備発泡粒子やポリエチレン系樹脂予備発泡粒子等のポリオレフィン系樹脂予備発泡粒子の二段発泡においては、二段発泡設定圧力よって比較的敏感に嵩密度が変化し、バッチ毎の二段発泡設定圧力を頻繁かつ適正に調整しなければならないところ、本発明によればこれらを容易に制御できることになり、嵩密度が揃った二段発泡粒子が得られる。
 このようなポリオレフィン系樹脂予備発泡粒子の嵩密度に特に制限はないが、二段発泡等の多段発泡により嵩密度8g/L以上30g/L未満となるポリオレフィン系樹脂予備発泡粒子は、多段発泡により収縮しやすく、嵩密度のばらつきが大きくなりやすいところ、本発明によればこのような収縮を膨張、回復させた後に嵩密度を測定し、かつ、その結果を次バッチ製造条件へフィードバックさせ、継続的に嵩密度を制御することができるため、嵩密度が揃った、安定した多段発泡が可能となることから、好ましい態様である。
 このようなポリプロピレン系樹脂予備発泡粒子やポリエチレン系樹脂予備発泡粒子を得る方法としては、具体的には既述の特開2009-161738号公報記載の方法を採用することができる。
 例えば、ポリプロピレン系樹脂やポリエチレン系樹脂からなるポリオレフィン系樹脂組成物をポリオレフォン系樹脂粒子とし、該ポリオレフィン系樹脂粒子を発泡させることにより得ることができる。
 ポリオレフィン系樹脂組成物は、ポリオレフィン樹脂を主原料とし、必要に応じてポリエチレングリコール、グリセリンやメラミンのような親水性物質等を配合した樹脂組成物であり、押出機等を用いて溶融し、円柱状等のような所望の粒子形状のポリオレフィン系樹脂粒子とする。
 前記ポリオレフィン系樹脂粒子を炭酸ガス等の発泡剤と共に耐圧容器内で水中に分散させた分散物をポリオレフィン系樹脂粒子の融点-20℃~融点+20℃の範囲の温度に加熱して、ポリオレフィン系樹脂粒子に発泡剤を含浸させ、発泡剤の示す蒸気圧以上の加圧下で容器内の温度、圧力を一定に保持しながら、ポリオレフィン系樹脂粒子を容器内よりも低圧の雰囲気下に放出することで、本発明の対象となる、元のポリオレフィン系樹脂予備発泡粒子が得られる。
 ポリオレフィン系樹脂とは、ホモプロピレン樹脂、プロピレン-エチレンランダム共重合体、プロピレン-ブテンランダム共重合体、プロピレン-エチレン-ブテン三元共重合体等のポリプロピレン系樹脂、高密度ポリエチレン系樹脂、中密度ポリエチレン系樹脂、低密度ポリエチレン系樹脂、直鎖状低密度ポリエチレン系樹脂等のポリエチレン系樹脂が挙げられる。
 以下に、実施例により本発明を更に説明するが、本発明はこれらの実施例に限定されるものではない。
 (実施例1)
<樹脂粒子の作製>
 直鎖状低密度ポリエチレン系樹脂[MI=2.0g/10分、融点122℃]100重量部に対して、グリセリン[ライオン(株)製、精製グリセリンD]を0.2重量部、タルク0.03重量部をドライブレンドした。該ブレンド物を50φ単軸押出機に、吐出量40kg/時間で供給し、樹脂温度220℃にて溶融混練した後、水冷後、ペレタイザーを用いて切断し、円柱状の直鎖状低密度ポリエチレン系樹脂粒子(4.5mg/粒)を得た。
<一段発泡粒子の作製>
 得られた直鎖状低密度ポリエチレン系樹脂粒子100重量部、純水200重量部、第3リン酸カルシウム0.5重量部及びn-パラフィンスルホン酸ソーダ0.05重量部を、耐圧密閉容器に仕込み、攪拌しながら、二酸化炭素7.5重量部を耐圧密閉容器内に導入し、122℃に加熱し、30分間保持した。この時の耐圧密閉容器内の圧力は3.5MPa(ゲージ圧)であった。
 その後、密閉容器下部のバルブを開いて、オリフィス板を通して大気圧に放出することによって、嵩密度60g/Lのポリエチレン系樹脂予備発泡粒子を得た。
<二段発泡粒子の作製>
 得られたポリエチレン系樹脂予備発泡粒子を乾燥した後、耐圧容器内に投入し、加圧空気を用いて、内圧を0.39MPa(絶対圧)にした後、二段発泡機の缶内に投入し、0.07MPa(ゲージ圧)の加熱蒸気に30秒間接触加熱させて、二段発泡粒子を製造した。得られた二段発泡粒子は収縮していた。
 <二段発泡粒子の嵩密度測定>
 二段発泡機から排出された二段発泡粒子の嵩密度は、図1に示す本発明の嵩密度測定装置を用いて測定した。
(a)収縮している二段発泡粒子を、容器A投入バルブ2が閉の状態で、投入ホッパー1(容量3L)がほぼ一杯になるまで投入した。
 次いで、容器A投入バルブ2(内径50mm)を開として、容器A排出バルブ3を閉の状態で、容器A(容量4L、円錐部分の角度α=90°)に二段発泡粒子を仕込み、容器A投入バルブ2を閉とした。
(b)その後、容器B排出バルブ4が閉であることを確認後、減圧手段8(真空ポンプ)を駆動させて、三方バルブ7を介して、容器A及び容器Bの缶内圧力を均圧状態で30×103Paまで減圧し、容器A内の二段発泡粒子を膨張させた。
(c)三方バルブ7を操作して容器A及び容器Bの内圧を30×103Paに保ちつつ減圧手段8との接続を遮断した後、容器A排出バルブ3を開とし、容器A内の膨張させた二段発泡粒子を、容積V=1Lである容器Bに自由落下により移送して充填し、容器A排出バルブ3を閉とした。
(d)その後、三方バルブ7を操作して、容器A及び容器Bの内圧を大気圧に戻し、容器B内の膨張させた二段発泡粒子を、元の二段発泡粒子に収縮させた。
 その後、容器B排出バルブ4を開として、二段発泡粒子全量を排出受け皿5に払い出し、重量計6を用いて、払い出し粒子の重量[W(g)]を測定して、嵩密度[W/V(g/L)]を算出した。
 <二段発泡機へのフィードバック>
 次いで、上記算出結果を、アナログ信号入出力端子を内蔵したパーソナルコンピューターからなる嵩密度比較演算装置を用いて、測定結果と目標値を比較した。
 二段発泡1バッチ(ショット)目の嵩密度の測定値は、目標とする10~14g/Lの中央値である12g/Lよりも重い14g/Lであった。そこで、二段発泡機の加熱水蒸気圧の設定圧力を上げる信号を圧力設定器に送り、その後、偶数ショット目毎に二段発泡粒子の嵩密度を測定し、嵩密度を目標の中央値に近づけるように、80ショット目迄、修正信号を送り、調整を続けた。
 80ショットの二段発泡を実施したところ、嵩密度は、1ショット~80ショットまで、目標とする10~14g/Lに収まっており、安定していた。しかし、容器A内において二段発泡粒子の閉塞が1回発生し、その際、嵩密度測定を中断して容器A内の二段発泡粒子の閉塞を解いて再スタートした。
 このときの10ショット毎の嵩密度測定結果及び二段発泡の状況を表1、表2及び図4に示す。
Figure JPOXMLDOC01-appb-T000001
 (比較例1)
 実施例1で試作した二段発泡粒子を、従来から知られている、図3で示される公知の嵩密度測定装置を用いて、嵩密度を測定した。ここで、公知の嵩密度測定装置とは、投入ホッパー21に投入バルブ22を介して容器Bが接続した構成からなるもので、大気圧下で二段発泡粒子を分取する装置である。
 従来の嵩密度装置を使用した場合、二段発泡1ショット目の嵩密度は、16g/Lで、目標とする10~14g/Lより、重い嵩密度である。そこで、二段発泡機の加熱水蒸気圧を上げる信号を圧力設定器に送り、10ショット目毎に二段発泡粒子の嵩密度を測定し、嵩密度を目標の中央値に近づけるように、80ショット目迄、修正信号を送り、調整を続けた。
その嵩密度測定結果を、表1、表2及び図4に示す。
 (参考例1)
 実施例1において採取した二段発泡粒子を、収縮から回復させることを目的として、80℃で調整した乾燥機中に4時間静置した後、図3で示される公知の嵩密度測定装置を用いて、その嵩密度を測定した。
 その嵩密度測定結果を、表1に示す。
 80℃で調整した乾燥機中に4時間静置して収縮から回復させた二段発泡粒子の嵩密度は、本発明の嵩密度測定装置で測定した嵩密度(実施例1)と同じ値を示し、目標内の嵩密度を得ている。すなわち、本発明の嵩密度測定装置で測定した嵩密度は、本来の二段発泡粒子の嵩密度を測定できていることが判る。
 (参考例2)
 比較例1において採取した二段発泡粒子を、収縮から回復させることを目的として、80℃に調整した乾燥機中に4時間静置した後、図3で示される公知の嵩密度測定装置を用いて、その嵩密度を測定した。
 その嵩密度測定結果を、表1及び図4に示す。
 80℃で調整した乾燥機中に4時間静置して収縮から回復させた二段発泡粒子の嵩密度は、収縮したまま従来の嵩密度測定装置で測定した嵩密度(比較例1)に対して軽い嵩密度であった。即ち、従来の方法によって測定した二段発泡粒子の嵩密度(比較例1)は、本来の二段発泡粒子の嵩密度(参考例2)と乖離していることがわかる。更に、目標の嵩密度に対して外れ、バラツキが大きかった。
 表1での1ショット目の測定結果からも明らかなように、従来公知の嵩密度測定装置では収縮の為に測定値が重くなっていたのに対して、本発明の嵩密度測定装置では減圧下で膨張させて本来の発泡粒子状態に回復させている為、本来の嵩密度を、再現性よく測定することができる。
 さらに、嵩密度の測定結果に基づくフィードバック結果に関しても、表1及び図4に示すように、本発明の嵩密度測定装置を用いた場合の二段発泡粒子の嵩密度は、1ショット~80ショットまで、目標とする10~14g/Lに収まっており、安定していた。
 これに対して、従来公知の嵩密度測定装置を用いた場合、二段発泡機から排出した二段発泡粒子が収縮し、本来の嵩密度を測定できておらず、ショット毎の変動が大きかった。また、加熱処理により収縮から回復させた二段発泡粒子の嵩密度も、バラツキの大きいものしか得られなかった。
Figure JPOXMLDOC01-appb-T000002
 (実施例2)
<二段発泡粒子の嵩密度測定>において、図2に示す本発明の嵩密度測定装置を用いて、以下のように測定した以外は、実施例1と同様の操作により二段発泡を行い、評価した。評価結果を、表2に示す。
(1)収縮している二段発泡粒子を、容器A投入バルブ2が閉の状態で、投入ホッパー1(容量3L)がほぼ一杯になるまで投入した。
 次いで、容器A投入バルブ2(内径50mm)を開として、容器A排出バルブ3を閉の状態で、容器A(容量4L、円錐部分の角度α=90°)に二段発泡粒子を仕込み、容器A投入バルブ2を閉とした。
(2)その後、容器B排出バルブ4、及びバルブ10が閉であることを確認後、三方バルブ7と容器Aをつなぐ配管に設けたバルブ11(自動バルブ)、及び三方バルブ7と容器Bをつなぐ配管に設けたバルブ12(自動バルブ)を開け、減圧手段8(真空ポンプ)を駆動させて、三方バルブ7を介して、容器A及び容器Bの内圧を減圧した(容器Aの内圧は20×103Pa、容器Bの内圧は30×103Pa)。この際、容器A及び容器Bが表2記載の内圧に到達した時点で、自動バルブ11、12がそれぞれ閉じるように設定した。これにより、容器A内の二段発泡粒子を膨張させ、収縮を回復させた。
(3)容器A排出バルブ3(内径50mm)を開とし、容器A内の膨張させた二段発泡粒子を、容量V=1Lである容器Bに自由落下により移送して充填し、容器A排出バルブ3を閉とした。
(4)その後、容器B排出バルブ4(内径50mm)を開として、二段発泡粒子全量を排出受け皿5に払い出し、重量計6を用いて、払い出し粒子の重量[W(g)]を測定して、嵩密度[W/V(g/L)]を算出した。排出受け皿5に払い出す際には、バルブ10を開け、強制排出手段9(配管)を通して外部から容器B内にエアを噴きつけ、容器B内に二段発泡粒子が残らないようにした。
(5)嵩密度測定後、バルブ2、バルブ3及びバルブ4を開け、投入ホッパー1及び容器Aに残る二段発泡粒子を排出した。
 以上のように80ショットの二段発泡を実施したところ、嵩密度は、1ショット~80ショットまで、目標とする10~14g/Lに収まっており、安定していた。また、装置内で二段発泡粒子が閉塞するなどの問題は全く発生しなかった。
 (実施例3)
 容器Aの円錐部分の角度αが60°の嵩密度測定装置とした以外は、実施例2と同様の操作により二段発泡を行い、評価した。評価結果を、表2に示す。
 80ショットの二段発泡を実施したところ、嵩密度は、1ショット~80ショットまで、目標とする10~14g/Lに収まっており閉塞する問題もなかった。
 (実施例4)
 容器Aの円錐部分の角度αが50°の嵩密度測定装置とした以外は、実施例2と同様の操作により二段発泡を行い、評価した。評価結果を、表2に示す。
 80ショットの二段発泡を実施したところ、嵩密度は、1ショット~80ショットまで、目標とする10~14g/Lに収まっており、安定していた。しかし、容器A内において二段発泡粒子の閉塞が2回発生し、その都度、嵩密度測定を中断して容器A内の二段発泡粒子の閉塞を解いて再スタートした。
 (実施例5)
 容器Aの円錐部分の角度αが130°の嵩密度測定装置とした以外は、実施例2と同様の操作により二段発泡を行い、評価した。評価結果を、表2に示す。
 80ショットの二段発泡を実施したところ、嵩密度は、1ショット~80ショットまで、目標とする10~14g/Lに収まっており、安定していた。しかし、嵩密度測定後、容器A内の二段発泡粒子を排出・掃除しようとした際に、容器Aのコニカル部に二段発泡粒子が残り、掃除に時間を要した。
 (実施例6)
 容器Aの円錐部分の角度αが60°の嵩密度測定装置とし、容器A及び容器Bを表2記載の内圧(容器Aと容器B共に30×103Paの均圧下とした)に設定した以外は、実施例1と同様の操作により二段発泡を行い、評価した。評価結果を、表2に示す。
 80ショットの二段発泡を実施したところ、嵩密度は、1ショット~80ショットまで、目標とする10~14g/Lに収まっており、安定していた。しかし、容器A内において二段発泡粒子の閉塞が2回発生し、その都度、嵩密度測定を中断して容器A内の二段発泡粒子の閉塞を解いて再スタートした。
 (実施例7)
 容器Aの円錐部分の角度αが50°の嵩密度測定装置とし、容器A及び容器Bを表2記載の内圧(容器Aと容器B共に30×103Paの均圧下とした)に設定した以外は、実施例1と同様の操作により二段発泡を行い、評価した。評価結果を、表2に示す。
 80ショットの二段発泡を実施したところ、嵩密度は、1ショット~80ショットまで、目標とする10~14g/Lに収まっており、安定していた。しかし、容器A内において二段発泡粒子の閉塞が4回発生し、その都度、嵩密度測定を中断して容器A内の二段発泡粒子の閉塞を解いて再スタートした。
 (実施例8)
 容器Aの円錐部分の角度αが60°の嵩密度測定装置とし、容器A及び容器Bを表2記載の内圧(容器Aの内圧は30×103Pa、容器Bの内圧は20×103Pa)に設定した以外は、実施例2と同様の操作により二段発泡を行い、評価した。評価結果を、表2に示す。
 80ショットの二段発泡を実施したところ、嵩密度は、1ショット~80ショットまで、目標とする10~14g/Lに収まっていたが、実施例1よりも全体的に重めの嵩密度で推移した。容器Aから容器Bへの充填時に一部の二段発泡粒子が自由落下ではなく強制的に充填され、若干過密気味に容器Bに充填されたと考えられる。なお、装置内で二段発泡粒子が閉塞するなどの問題は全く発生しなかった。
A  容器A
B  容器B
1  投入ホッパー
2  投入バルブ
3  容器A排出バルブ
4  容器B排出バルブ
5  排出受け皿
6  重量計
7  三方バルブ
8  減圧手段(真空ポンプ)
9  強制排出手段(配管)
10 強制排出手段に設けられたバルブ
11 三方バルブ7と容器Aの間の配管に設けられたバルブ
12 三方バルブ7と容器Bの間の配管に設けられたバルブ

Claims (19)

  1.  予備発泡粒子の嵩密度を測定する装置であって、
     容器内圧を大気圧未満の減圧状態として、収縮した予備発泡粒子を膨張させ収縮を回復させることが可能な容器Aと、
     容器Aで膨張させた後の予備発泡粒子を、容器内圧が大気圧未満の減圧状態で充填して、一定容積分取可能な容器Bと、
     容器Aと容器Bの容器内圧を大気圧未満に調整することができる減圧手段8と、
     容器Bに充填された予備発泡粒子の重量を測定できる重量計6と、
     を備えていることを特徴とする、嵩密度測定装置。
  2.  容器Aと容器Bの間に、容器Aに収納した予備発泡粒子を自由落下で排出可能であると共に、予備発泡粒子を容器Bへ充填可能な容器A排出バルブ3を備えることを特徴とする、請求項1に記載の嵩密度測定装置。
  3.  容器Bに充填した予備発泡粒子を重量計6へ排出可能な容器B排出バルブ4を備えることを特徴とする、請求項1または2に記載の嵩密度測定装置。
  4.  容器Aと容器Bの内圧を異ならせることが可能な手段を備えることを特徴とする、請求項1~3のいずれか一項に記載の嵩密度測定装置。
  5.  容器Aが円錐形状部分を有しており、円錐部分の角度αが60°以上120°以下であることを特徴とする、請求項1~4のいずれか一項に記載の嵩密度測定装置。
  6.  容器Aと減圧手段8を結ぶ配管、及び/または、容器Bと減圧手段8を結ぶ配管に、容器内圧を制御するバルブが少なくとも一つ配置されていることを特徴とする、請求項1~5のいずれか一項に記載の嵩密度測定装置。
  7.  容器Bに、それに充填された予備発泡粒子を強制排出可能な強制排出手段9を備えることを特徴とする、請求項1~6のいずれか一項に記載の嵩密度測定装置。
  8.  収納する予備発泡粒子の収納量を制御可能なレベルスイッチが、容器Aに備わっていることを特徴とする、請求項1~7のいずれか一項に記載の嵩密度測定装置。
  9.  収縮した予備発泡粒子の嵩密度を測定する方法であって、
    (a)収縮した予備発泡粒子の一部または全部を採取して容器Aに移送する工程、
    (b)容器Aの内圧を大気圧未満の減圧状態として、収縮した予備発泡粒子を膨張させ収縮を回復させる工程、
    (c)容器Bの内圧を大気圧未満の減圧状態とする工程、
    (d)容器Aと容器Bの間のバルブ3を開け、容器Aで膨張させた後の予備発泡粒子を、容器内圧が大気圧未満の減圧状態で容器Bに充填して、一定容積分取する工程、
    (e)容器Bの内圧を大気圧に戻すとともに、容器Bに充填した予備発泡粒子を排出して予備発泡粒子の重量を重量計6で測定する工程、
     を含むことを特徴とする予備発泡粒子の嵩密度測定方法。
  10.  (c)工程において、容器Bの内圧を容器Aの内圧よりも高く設定することを特徴とする、請求項9に記載の予備発泡粒子の嵩密度測定方法。
  11.  (c)工程において、容器Bの内圧を容器Aの内圧よりも低く設定することを特徴とする、請求項9に記載の予備発泡粒子の嵩密度測定方法。
  12.  (c)工程において、容器Aと容器Bの内圧を均一に設定することを特徴とする、請求項9に記載の予備発泡粒子の嵩密度測定方法。
  13.  容器A及び容器Bの内圧が、10×103Pa以上、90×103Pa以下であることを特徴とする、請求項9~12のいずれか一項に記載の予備発泡粒子の嵩密度測定方法。
  14.  (a)工程において、容器Aに移送する収縮した予備発泡粒子の嵩容積が、容器Aの内容積の20%以上80%以下であることを特徴とする、請求項9~13のいずれか一項に記載の予備発泡粒子の嵩密度測定方法。
  15.  (d)工程において、容器Bへの予備発泡粒子の充填が自由落下で行われる工程であり、(e)工程において、容器Bからの予備発泡粒子の排出が少なくとも強制排出手段9を用いて行われる工程、であることを特徴とする、請求項9~14のいずれか一項に記載の予備発泡粒子の嵩密度測定方法。
  16.  予備発泡粒子が、ポリオレフィン系樹脂予備発泡粒子であることを特徴とする、請求項9~15のいずれか一項に記載の予備発泡粒子の嵩密度測定方法。
  17.  予備発泡粒子の製造方法であって、
     予備発泡粒子の嵩密度を、請求項9~16のいずれか一項に記載の測定方法により測定した後、
     該測定結果を目標の嵩密度と比較して、その結果を予備発泡装置にフィードバックさせ、予備発泡装置での予備発泡粒子の発泡条件を調整することを特徴とする、予備発泡粒子の製造方法。
  18.  予備発泡装置が、二段発泡機であることを特徴とする、請求項17に記載の予備発泡粒子の製造方法。
  19.  予備発泡粒子が、嵩密度8g/L以上30g/L未満のポリオレフィン系樹脂予備発泡粒子であることを特徴とする、請求項17または18に記載の予備発泡粒子の製造方法。
PCT/JP2014/060111 2013-10-18 2014-04-07 予備発泡粒子の嵩密度測定装置及び予備発泡粒子の製造方法 WO2015056461A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
ES14854571T ES2800604T3 (es) 2013-10-18 2014-04-07 Dispositivo de medida de densidad aparente para partículas pre-expandidas y método para medir la densidad aparente de partículas pre-expandidas
US15/029,784 US10131076B2 (en) 2013-10-18 2014-04-07 Bulk-density measuring device for pre-expanded particles and method for manufacturing pre-expanded particles
CN201480053184.6A CN105579827B (zh) 2013-10-18 2014-04-07 预发泡粒子的假密度测定装置及预发泡粒子的制造方法
MX2016003400A MX2016003400A (es) 2013-10-18 2014-04-07 Dispositivo de medicion de la densidad aparente de las particulas pre-expandidas y metodo para la fabricacion de particulas pre-expandidas.
EP14854571.8A EP3059573B1 (en) 2013-10-18 2014-04-07 Bulk density measuring device for pre-expanded particles and method for measuring bulk density of pre-expanded particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-217500 2013-10-18
JP2013217500A JP6331323B2 (ja) 2012-10-18 2013-10-18 予備発泡粒子の嵩密度測定装置及び予備発泡粒子の製造方法

Publications (1)

Publication Number Publication Date
WO2015056461A1 true WO2015056461A1 (ja) 2015-04-23

Family

ID=52828160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060111 WO2015056461A1 (ja) 2013-10-18 2014-04-07 予備発泡粒子の嵩密度測定装置及び予備発泡粒子の製造方法

Country Status (9)

Country Link
US (1) US10131076B2 (ja)
EP (1) EP3059573B1 (ja)
JP (1) JP6331323B2 (ja)
CN (1) CN105579827B (ja)
ES (1) ES2800604T3 (ja)
MX (1) MX2016003400A (ja)
MY (1) MY177929A (ja)
TW (1) TWI616301B (ja)
WO (1) WO2015056461A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7525336B2 (ja) 2020-08-27 2024-07-30 株式会社カネカ ポリオレフィン系樹脂発泡粒子の製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT14418U1 (de) * 2014-06-05 2015-11-15 Binder Co Ag Verfahren zur Expansion von sandkornförmigem Rohmaterial
CN109883604B (zh) * 2019-02-19 2020-09-22 无锡会通轻质材料股份有限公司 一种聚合物发泡珠粒内压估算方法
CN110346239B (zh) * 2019-07-10 2022-02-11 国家纳米科学中心 一种纳米材料密度的检测方法
JP7372083B2 (ja) * 2019-08-30 2023-10-31 株式会社カネカ 発泡粒子の製造装置および製造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326549A (ja) * 1986-07-18 1988-02-04 Kanegafuchi Chem Ind Co Ltd 発泡粒子の自動比重測定方法及び装置
JPH0680816A (ja) 1992-08-31 1994-03-22 Daikai Kogyo Kk 自動倍率測定装置
WO2005087475A1 (ja) 2004-03-15 2005-09-22 Kaneka Corporation 予備発泡粒子の嵩密度測定装置及び測定方法ならびに予備発泡粒子の製造方法
JP2006096805A (ja) 2004-09-28 2006-04-13 Kaneka Corp ポリプロピレン系樹脂予備発泡粒子および型内発泡成形体
JP2007218588A (ja) 2006-02-14 2007-08-30 Kaneka Corp 予備発泡粒子の嵩密度測定方法
JP2009161738A (ja) 2007-12-11 2009-07-23 Kaneka Corp 熱可塑性樹脂発泡粒子の製造方法
JP2009263639A (ja) 2008-03-31 2009-11-12 Sekisui Plastics Co Ltd 発泡性スチレン改質ポリオレフィン系樹脂粒子、その製造方法、予備発泡粒子及び発泡成形体
JP2010209286A (ja) * 2009-03-12 2010-09-24 Kaneka Corp ポリオレフィン系樹脂発泡粒子
WO2011086938A1 (ja) 2010-01-15 2011-07-21 株式会社カネカ 無架橋ポリエチレン系樹脂発泡粒子及び無架橋ポリエチレン系樹脂発泡成形体

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE448357B (sv) * 1982-09-14 1987-02-16 Korpela Heikki Sett och anordning for metning och reglering av volymvikten hos ett expanderat partikulert material
JPH0739503B2 (ja) * 1987-12-11 1995-05-01 鐘淵化学工業株式会社 ポリプロピレン系樹脂予備発泡粒子及びその製造方法
DE3933764A1 (de) * 1989-10-10 1991-04-18 Eberhard Jost Einrichtung zum bestimmen des spezifischen gewichts leichter schuettgueter
JPH03166923A (ja) * 1989-11-25 1991-07-18 Kanegafuchi Chem Ind Co Ltd 樹脂発泡成形体の製造方法及びその装置
JPH05112666A (ja) * 1991-10-19 1993-05-07 Toyo Mach & Metal Co Ltd 予備発泡粒子の自動倍率測定装置
JPH07116312B2 (ja) * 1991-12-27 1995-12-13 積水化成品工業株式会社 発泡性樹脂粒子の予備発泡方法
US5423216A (en) * 1992-12-24 1995-06-13 Shin-Etsu Chemical Co., Ltd. Apparatus for automatically determining bulk specific gravity of powdery product
DE59408842D1 (de) * 1993-11-29 1999-11-25 Greiner & Soehne C A Formteil aus Kunststoffschaum sowie Verfahren und Vorrichtung zu dessen Herstellung
JPH1010032A (ja) * 1996-06-20 1998-01-16 Tousei Denki Kk アスファルト混合物の密度測定方法
JP2005069951A (ja) * 2003-08-26 2005-03-17 Kyocera Corp 粉粒体用密度計及び粉粒体の密度測定方法
JP4717001B2 (ja) * 2004-09-06 2011-07-06 積水化成品工業株式会社 スチレン改質直鎖状低密度ポリエチレン系樹脂粒子、スチレン改質直鎖状低密度ポリエチレン系発泡性樹脂粒子、それらの製造方法、予備発泡粒子及び発泡成形体
JP2009002824A (ja) * 2007-06-22 2009-01-08 Shimadzu Corp 乾式密度測定方法および気孔率測定方法
JP2010280112A (ja) * 2009-06-04 2010-12-16 Japan Polypropylene Corp 発泡体成形用押出成形機の原料投入用ホッパー

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326549A (ja) * 1986-07-18 1988-02-04 Kanegafuchi Chem Ind Co Ltd 発泡粒子の自動比重測定方法及び装置
JPH0680816A (ja) 1992-08-31 1994-03-22 Daikai Kogyo Kk 自動倍率測定装置
WO2005087475A1 (ja) 2004-03-15 2005-09-22 Kaneka Corporation 予備発泡粒子の嵩密度測定装置及び測定方法ならびに予備発泡粒子の製造方法
JP2006096805A (ja) 2004-09-28 2006-04-13 Kaneka Corp ポリプロピレン系樹脂予備発泡粒子および型内発泡成形体
JP2007218588A (ja) 2006-02-14 2007-08-30 Kaneka Corp 予備発泡粒子の嵩密度測定方法
JP2009161738A (ja) 2007-12-11 2009-07-23 Kaneka Corp 熱可塑性樹脂発泡粒子の製造方法
JP2009263639A (ja) 2008-03-31 2009-11-12 Sekisui Plastics Co Ltd 発泡性スチレン改質ポリオレフィン系樹脂粒子、その製造方法、予備発泡粒子及び発泡成形体
JP2010209286A (ja) * 2009-03-12 2010-09-24 Kaneka Corp ポリオレフィン系樹脂発泡粒子
WO2011086938A1 (ja) 2010-01-15 2011-07-21 株式会社カネカ 無架橋ポリエチレン系樹脂発泡粒子及び無架橋ポリエチレン系樹脂発泡成形体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7525336B2 (ja) 2020-08-27 2024-07-30 株式会社カネカ ポリオレフィン系樹脂発泡粒子の製造方法

Also Published As

Publication number Publication date
EP3059573B1 (en) 2020-05-13
MX2016003400A (es) 2016-06-30
EP3059573A1 (en) 2016-08-24
TWI616301B (zh) 2018-03-01
CN105579827B (zh) 2019-07-30
CN105579827A (zh) 2016-05-11
JP6331323B2 (ja) 2018-05-30
US20160229096A1 (en) 2016-08-11
EP3059573A4 (en) 2017-07-05
MY177929A (en) 2020-09-28
US10131076B2 (en) 2018-11-20
TW201515812A (zh) 2015-05-01
JP2014098693A (ja) 2014-05-29
ES2800604T3 (es) 2021-01-04

Similar Documents

Publication Publication Date Title
WO2015056461A1 (ja) 予備発泡粒子の嵩密度測定装置及び予備発泡粒子の製造方法
EP0095109B1 (en) Process for producing expanded particles of a polyolefin resin
JPH0446217B2 (ja)
JPH0313057B2 (ja)
WO2019187986A1 (ja) ポリオレフィン系樹脂発泡粒子の製造方法および製造装置
JP5536357B2 (ja) スチレン改質ポリエチレン系樹脂予備発泡粒子の製造方法及びスチレン改質ポリエチレン系樹脂発泡成形体
JP5470127B2 (ja) 熱可塑性樹脂予備発泡粒子の製造方法、熱可塑性樹脂予備発泡粒子の製造装置
JP2002226621A (ja) ポリオレフィン系樹脂予備発泡粒子およびその製造方法
JP5603628B2 (ja) 発泡性ポリスチレン系樹脂粒子とその製造方法、ポリスチレン系樹脂予備発泡粒子の製造方法及びポリスチレン系樹脂発泡成形体の製造方法
JP4135958B2 (ja) 予備発泡粒子の嵩密度測定装置及び測定方法ならびに予備発泡粒子の製造方法
JPS5912455B2 (ja) ポリオレフイン系合成樹脂発泡成形体の製造方法及び装置
JP6081266B2 (ja) 発泡成形体
JP4090932B2 (ja) 熱可塑性樹脂予備粒子の予備発泡方法
JP2014065868A (ja) 熱可塑性樹脂粒子とその製造方法、発泡性熱可塑性樹脂粒子とその製造方法、予備発泡粒子及び発泡成形体
WO2022186281A1 (ja) ポリエチレン系樹脂発泡粒子、ポリエチレン系樹脂型内発泡成形体及びそれらの製造方法
JP2006255993A (ja) ポリプロピレン系樹脂発泡成形体の製造方法
JP3536875B2 (ja) 発泡成形方法
JPS63178029A (ja) 熱可塑性樹脂発泡粒子の型内成形法
JPH0416330A (ja) 熱可塑性樹脂発泡粒子の型内成形法
JP5470120B2 (ja) 熱可塑性樹脂予備発泡粒子の製造方法
JPH0432852B2 (ja)
JPS6010048B2 (ja) 無架橋高密度ポリエチレン予備発泡粒子およびその製法
JP2006316240A (ja) 発泡スチレン系ブロック成形品
JP2011016903A (ja) スチレン改質ポリエチレン系樹脂予備発泡粒子の製造方法及びスチレン改質ポリエチレン系樹脂発泡成形体
JPS62233231A (ja) 合成樹脂発泡粒子の成形法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480053184.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14854571

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/003400

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 15029784

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014854571

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014854571

Country of ref document: EP