WO2015056374A1 - シリコーンゲル組成物及びシリコーンゲル硬化物 - Google Patents

シリコーンゲル組成物及びシリコーンゲル硬化物 Download PDF

Info

Publication number
WO2015056374A1
WO2015056374A1 PCT/JP2014/003968 JP2014003968W WO2015056374A1 WO 2015056374 A1 WO2015056374 A1 WO 2015056374A1 JP 2014003968 W JP2014003968 W JP 2014003968W WO 2015056374 A1 WO2015056374 A1 WO 2015056374A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicone gel
group
cured
silicon atom
gel composition
Prior art date
Application number
PCT/JP2014/003968
Other languages
English (en)
French (fr)
Inventor
池野 正行
一安 佐藤
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=52827840&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2015056374(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to EP14854235.0A priority Critical patent/EP3059286B1/en
Priority to US15/025,479 priority patent/US9631062B2/en
Priority to JP2015542487A priority patent/JP6023894B2/ja
Publication of WO2015056374A1 publication Critical patent/WO2015056374A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/296Organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a silicone gel composition and a cured silicone gel obtained by curing the composition.
  • the silicone gel composition contains an organohydrogenpolysiloxane having a hydrogen atom (ie, SiH group) bonded to a silicon atom, an organopolysiloxane having an alkenyl group such as a vinyl group bonded to a silicon atom, and a platinum-based catalyst. And an addition reaction curable organopolysiloxane composition obtained by adding a hydrogen atom bonded to a silicon atom to an alkenyl group to obtain a cured product.
  • the silicone gel cured product cured by heating this silicone gel composition is excellent in heat resistance, weather resistance, oil resistance, cold resistance, electrical insulation, etc. It is used to protect electronic parts such as parts and consumer electronic parts.
  • the silicone gel cured product having a low elastic modulus and low stress is a feature not found in other elastomer products.
  • demands for heat resistance of cured silicone gels used for sealing have increased due to demands for higher reliability of in-vehicle electronic parts and consumer electronic parts.
  • the hydroxyl group in the composition is 150 ppm or less (see Patent Document 1).
  • a composition containing an alkoxysilane compound and an organic titanate in a specific organopolysiloxane is disclosed (see Patent Document 2).
  • a composition containing a reaction product obtained by high-temperature heat treatment of a specific metal carboxylate and an organopolysiloxane is disclosed.
  • the present invention has been made in view of the above circumstances, and provides a silicone gel composition that becomes a cured silicone gel having a low elastic modulus and low stress when cured and having excellent heat resistance at 230 ° C. Objective.
  • Such a silicone gel composition has a low elastic modulus and low stress when cured, and becomes a cured silicone gel excellent in heat resistance at 230 ° C.
  • the penetration (measure of softness) defined by JIS K 2220 (1/4 cone) when the silicone gel composition is cured is 10 to 200.
  • Such a silicone gel composition will surely become a cured silicone gel having a low elastic modulus and low stress when cured.
  • cured material formed by hardening
  • a silicone gel cured product having a change rate of -70% or more is provided.
  • the rate of change is ⁇ 70% or more means that the rate of change of the penetration does not become more negative than ⁇ 70% (that is, an increase in the hardness of the silicone gel after heating is suppressed). Mean).
  • the elastic modulus and stress of the cured silicone gel can be kept low even when left for a long time at 230 ° C. after curing.
  • the silicone gel composition of the present invention includes a carbon nanotube that has a low elastic modulus and low stress when cured, and imparts excellent heat resistance to the cured product, so that it can be obtained at 230 ° C. It becomes a silicone gel cured product having excellent heat resistance. Furthermore, the elastic modulus and stress of the cured silicone gel can be kept low even if the silicone gel is left for a long time at 230 ° C. after curing. Therefore, the silicone gel composition of the present invention can be suitably used for protecting electronic parts such as in-vehicle electronic parts and consumer electronic parts.
  • the inventors of the present invention have a low elastic modulus and low stress when cured because the addition reaction curable organopolysiloxane composition contains carbon nanotubes. It discovered that it became a silicone gel hardened
  • the present invention (A) Organopolysiloxane represented by the following general formula (1) having at least one alkenyl group bonded to a silicon atom in one molecule: 100 parts by mass R a R 1 b SiO (4-ab) / 2 (1) Wherein R is independently an alkenyl group, R 1 is independently a substituted or unsubstituted monovalent hydrocarbon group not containing an aliphatic unsaturated bond, and a is a positive number of 0.0001 to 0.2. (B is a positive number from 1.7 to 2.2, and a + b is from 1.9 to 2.4).
  • R is independently an alkenyl group
  • R 1 is independently a substituted or unsubstituted monovalent hydrocarbon group not containing an aliphatic unsaturated bond
  • a is a positive number of 0.0001 to 0.2.
  • B is a positive number from 1.7 to 2.2, and a + b is from 1.9 to 2.4).
  • the silicone gel composition of the present invention comprises the above components (A) to (D) as essential components.
  • cured material is a hardened
  • a cured product has, for example, a penetration of 10 to 200 according to JIS K 2220 (1/4 cone). Further, this corresponds to a rubber hardness measurement according to JIS K 6301 having a measured value (rubber hardness value) of 0, which is so low that it does not show an effective rubber hardness value (ie, soft). In this respect, it is different from a so-called cured silicone rubber (rubber-like elastic body).
  • a viscosity is a value in 25 degreeC.
  • the component (A) of the silicone gel composition of the present invention is the main component (base polymer) of the silicone gel composition.
  • This component (A) is an alkenyl group bonded to a silicon atom in one molecule represented by the following general formula (ie, average composition formula) (1) (referred to as “silicon atom-bonded alkenyl group” in the present specification). ) Is one or more organopolysiloxanes.
  • R a R 1 b SiO (4-ab) / 2 (1)
  • R is independently an alkenyl group
  • R 1 is independently a substituted or unsubstituted monovalent hydrocarbon group not containing an aliphatic unsaturated bond
  • a is a positive number of 0.0001 to 0.2.
  • B is a positive number from 1.7 to 2.2, and a + b is from 1.9 to 2.4).
  • R is independently an alkenyl group, and the number of carbon atoms is usually 2 to 6, preferably 2 to 4, and more preferably 2 to 3. Specific examples thereof include a vinyl group, an allyl group, a propenyl group, an isopropenyl group, a butenyl group, an isobutenyl group, and the like. Preferred R is a vinyl group.
  • R 1 independently represents a substituted or unsubstituted monovalent hydrocarbon group that does not contain an aliphatic unsaturated bond, and the number of carbon atoms is usually 1 to 10, preferably 1. ⁇ 6. Specific examples thereof include methyl groups, ethyl groups, propyl groups, isopropyl groups, butyl groups, isobutyl groups, tert-butyl groups, pentyl groups, hexyl groups, cyclohexyl groups, octyl groups, decyl groups and other alkyl groups; phenyl groups An aryl group such as a tolyl group; an aralkyl group such as a benzyl group or a phenylethyl group; a chloromethyl group in which some or all of the hydrogen atoms of these groups are substituted with a halogen atom such as chlorine, bromine or fluorine; Examples include 3,3-trifluoropropyl group. Among them
  • a is a positive number of 0.0001 to 0.2, preferably 0.0005 to 0.1, and more preferably 0.001 to 0.05.
  • b is a positive number of 1.7 to 2.2, and preferably a positive number of 1.9 to 2.02. Further, a + b needs to satisfy the range of 1.9 to 2.4, and preferably 1.95 to 2.05.
  • the component (A) must have an average of one or more silicon-bonded alkenyl groups in one molecule, preferably 2 or more, more preferably 2 to 50, and still more preferably 2 to 10 Have. What is necessary is just to select the value of said a and b so that the conditions of this silicon atom bond alkenyl group may be satisfy
  • the number of silicon atoms in one molecule of the organopolysiloxane component (A) (that is, the degree of polymerization) is usually 10 to 2,000, but the handling workability of the composition and the properties of the resulting cured product (low From the viewpoint of good elasticity and low stress, the number is preferably 20 to 1,000, more preferably 50 to 500.
  • the degree of polymerization can be determined, for example, as the number average degree of polymerization (or number average molecular weight) in terms of polystyrene in gel permeation chromatography (GPC) analysis using toluene or the like as a developing solvent.
  • the molecular structure of the organopolysiloxane of component (A) is not particularly limited, and even if it is linear, it is branched, for example, containing RSiO 3/2 units, R 1 SiO 3/2 units, SiO 2 units, etc.
  • the organopolysiloxane represented by the following general formula (1a) that is, the main chain is basically composed of repeating diorganosiloxane units, and both ends of the molecular chain are blocked with triorganosiloxy groups. It is preferably a chain diorganopolysiloxane.
  • each R 5 independently represents a substituted or unsubstituted monovalent hydrocarbon group that does not contain an aliphatic unsaturated bond
  • each R 6 independently represents a substituted or unsubstituted monovalent hydrocarbon group that does not contain an aliphatic unsaturated bond.
  • M is an integer from 0 to 50
  • n is an integer from 0 to 50
  • when neither R 6 at both ends of the molecular chain is an alkenyl group, k is 40 to 1,200.
  • M is an integer of 1 to 50, preferably an integer of 2 to 50, and n is an integer of 0 to 50.
  • the substituted or unsubstituted monovalent hydrocarbon group not containing an aliphatic unsaturated bond other than the alkenyl group represented by R 5 is usually 1 to 10 carbon atoms, preferably 1 to 1 carbon atom. 6 things. Specific examples thereof include those exemplified for R 1 in the general formula (1). Among them, a methyl group, a phenyl group or a 3,3,3-trifluoropropyl group is preferable from the viewpoint of easy synthesis and chemical stability at high temperatures.
  • the substituted or unsubstituted monovalent hydrocarbon group independently containing an aliphatic unsaturated bond represented by R 6 is usually 1 to 10 carbon atoms, preferably 1 ⁇ 6. Specific examples thereof include those exemplified for R 1 in the general formula (1). Among them, a methyl group, a phenyl group or a 3,3,3-trifluoropropyl group is preferable from the viewpoint of easy synthesis and chemical stability at high temperatures.
  • the alkenyl group represented by R 6 is usually one having 2 to 6, preferably 2 to 4, more preferably 2 to 3 carbon atoms. Specific examples thereof include a vinyl group, an allyl group, a propenyl group, an isopropenyl group, a butenyl group, and an isobutenyl group, and a vinyl group is particularly preferable.
  • organopolysiloxane represented by the general formula (1a) examples include a dimethylvinylsiloxy group-blocked dimethylpolysiloxane at both ends, a dimethylvinylsiloxy group-blocked dimethylsiloxane / methylvinylsiloxane copolymer at both ends, and dimethylvinyl at both ends.
  • silane-blocked dimethylsiloxane / diphenylsiloxane copolymer both ends dimethylvinylsiloxy group-blocked dimethylsiloxane / methylphenylsiloxane copolymer, both ends dimethylvinylsiloxy group-blocked dimethylsiloxane / methylvinylsiloxane / diphenylsiloxane copolymer, both Terminal dimethylvinylsiloxy group-blocked methyltrifluoropropylpolysiloxane, both ends dimethylvinylsiloxy group-blocked dimethylsiloxane / methyltrifluoropropylsiloxane copolymer , Both ends dimethylvinylsiloxy group-blocked dimethylsiloxane / methyltrifluoropropylsiloxane / methylvinylsiloxane copolymer, both ends trimethylsiloxy group-blocked
  • the viscosity of the organopolysiloxane of component (A) is not particularly limited, but the viscosity at 25 ° C. is 50 to 100, because the handling workability of the composition, the strength of the resulting cured product, and the fluidity are good. 000 mPa ⁇ s is preferred, and 100 to 10,000 mPa ⁇ s is more preferred.
  • the viscosity can be measured with a rotational viscometer (for example, BL type, BH type, BS type, cone plate type, rheometer, etc.).
  • the organopolysiloxane of component (A) may be a mixture of two or more.
  • the component (B) of the silicone gel composition of the present invention reacts with the component (A) to act as a crosslinking agent (curing agent), and the molecular structure of the organohydrogenpolysiloxane is , Linear, cyclic, branched, and three-dimensional network (resin).
  • This component (B) is an organohydrogenpolysiloxane having two or more hydrogen atoms (SiH groups) bonded to silicon atoms in one molecule, represented by the following general formula (ie, average composition formula) (2) It is.
  • R 2 c H d SiO (4-cd) / 2 (2) (Wherein R 2 independently represents a substituted or unsubstituted monovalent hydrocarbon group not containing an aliphatic unsaturated bond, c is a positive number of 0.7 to 2.2, and d is 0.001. (It is a positive number of ⁇ 1, and c + d is 0.8 to 3.)
  • the organohydrogenpolysiloxane has 2 or more silicon-bonded hydrogen atoms (SiH groups) in one molecule, preferably 3 to 500, more preferably 5 to 100, and particularly preferably 10 to 80. It is.
  • This silicon-bonded hydrogen atom (SiH group) may be either bonded to the silicon atom at the end of the molecular chain or bonded to the silicon atom at the non-terminal end of the molecular chain (in the middle of the molecular chain). It may be.
  • R 2 independently represents a substituted or unsubstituted monovalent hydrocarbon group that does not contain an aliphatic unsaturated bond, and the number of carbon atoms is usually 1 to 10, preferably 1 to 6. It is. Specific examples thereof include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, cyclohexyl group, octyl group, nonyl group, decyl group.
  • An alkyl group such as phenyl group, tolyl group, xylyl group, naphthyl group, etc .; aralkyl group such as benzyl group, phenylethyl group, phenylpropyl group, etc .; And a 3,3,3-trifluoropropyl group substituted with a halogen atom such as bromine and fluorine.
  • a halogen atom such as bromine and fluorine.
  • an alkyl group, an aryl group, and a 3,3,3-trifluoropropyl group are preferable, and a methyl group, a phenyl group, and a 3,3,3-trifluoropropyl group are more preferable.
  • c is a positive number of 0.7 to 2.2, and preferably a positive number of 1.0 to 2.1.
  • d is a positive number of 0.001 to 1, preferably 0.005 to 0.8, more preferably 0.01 to 0.6.
  • c + d is 0.8 to 3, preferably 1.0 to 2.7, more preferably 1.5 to 2.5.
  • the number of silicon atoms in one molecule of the organohydrogenpolysiloxane component (B) is usually 2 to 1,000, but the handling workability of the composition and the properties of the resulting cured product From the viewpoint of good (low elastic modulus, low stress), it is preferably 4 to 500, more preferably 10 to 200, and still more preferably 20 to 100.
  • the viscosity of the organohydrogenpolysiloxane of component (B) is not particularly limited, but for the same reason as above, the viscosity at 25 ° C. is 0.1 to 5,000 mPa ⁇ s, particularly 0.5 to 1,000 mPa. ⁇ S, preferably about 1 to 500 mPa ⁇ s.
  • organohydrogenpolysiloxane represented by the general formula (2) examples include 1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethyltetracyclosiloxane, and tris (dimethyl).
  • the amount of component (B) added is such that 0.6 to 3 hydrogen atoms bonded to silicon atoms per alkenyl group of component (A), preferably 0.7 to 2, More preferably, the amount is 0.8 to 1.5.
  • the (B) component organohydrogenpolysiloxane may be a mixture of two or more.
  • Component (C) of the silicone gel composition of the present invention is a catalyst for promoting the addition reaction between the silicon atom-bonded alkenyl group in component (A) and the silicon atom-bonded hydrogen atom in component (B). It is what is used.
  • the component (C) is a platinum-based catalyst (a platinum group metal compound selected from platinum and a platinum-based compound), and a known one can be used. Specific examples thereof include alcohol-modified products such as platinum black, chloroplatinic acid, and chloroplatinic acid; complexes of chloroplatinic acid and olefins, aldehydes, vinyl siloxanes, acetylene alcohols, and the like.
  • the compounding amount of the component (C) may be an effective amount and can be appropriately increased or decreased depending on the desired curing rate, but is usually the mass of the platinum atom with respect to the total amount of the component (A) and the component (B), Usually, it is in the range of 0.1 to 1,000 ppm, preferably 1 to 300 ppm. If the amount is too large, the heat resistance of the resulting cured product may decrease.
  • the component (D) of the silicone gel composition of the present invention is a component for imparting excellent heat resistance to the cured product of the silicone gel composition, and is a carbon nanotube.
  • a carbon nanotube is a substance in which a six-membered ring network (graphene sheet) made of carbon is a single-layer (single wall) or multi-wall (multi-wall) coaxial tube, and has a diameter of several nanometers to several hundred nanometers. It is known as a structure consisting of
  • the carbon nanotube used for the component (D) of the present invention preferably has a length of 0.1 to 30 ⁇ m, more preferably 0.1 to 15 ⁇ m. When the length is 0.1 ⁇ m or more, uniform dispersion is easy, and when the length is 30 ⁇ m or less, precipitation is difficult.
  • Carbon nanotubes are not limited in size as long as they have a diameter of 0.5 to 100 nm.
  • the carbon nanotube is not particularly limited to the production method, but for example, the carbon nanotube synthesized by plasma CVD (chemical vapor deposition) method, thermal CVD method, surface decomposition method, fluidized gas phase synthesis method, arc discharge method, etc. preferable.
  • the carbon nanotube a single wall nanotube (SWNT), a multi wall nanotube (MWNT), a double wall nanotube (DWNT), and the like are known depending on the structure, and any of these can be used.
  • commercially available carbon nanotubes can also be used as appropriate.
  • Component (D) is added in an amount of 0.01 to 3 parts by weight, preferably 0.02 to 2 parts by weight, more preferably 0.03 to 1 part by weight per 100 parts by weight of component (A). It is. If it is less than 0.01 part by mass, heat resistance cannot be obtained, and if it exceeds 3 parts by mass, no further effect is exhibited.
  • optional ingredients can be blended in the composition of the present invention as necessary.
  • this optional component include reaction inhibitors, inorganic fillers, organopolysiloxanes that do not contain silicon-bonded hydrogen atoms and silicon-bonded alkenyl groups, flame retardant agents, thixotropic agents, pigments, and dyes. Can be mentioned.
  • the reaction inhibitor is a component for suppressing the reaction of the composition, and specifically includes, for example, acetylene-based, amine-based, carboxylic acid ester-based, phosphite-based reaction inhibitor, and the like. It is done.
  • inorganic fillers examples include fumed silica, crystalline silica, precipitated silica, hollow filler, silsesquioxane, fumed titanium dioxide, magnesium oxide, zinc oxide, iron oxide, aluminum hydroxide, magnesium carbonate, and calcium carbonate.
  • inorganic fillers such as zinc carbonate, layered mica, carbon black, diatomaceous earth, and glass fiber; these fillers can be organic silicon compounds such as organoalkoxysilane compounds, organochlorosilane compounds, organosilazane compounds, and low molecular weight siloxane compounds. Examples thereof include a surface hydrophobized filler. Silicone rubber powder, silicone resin powder, and the like may also be blended.
  • organopolysiloxanes that do not contain silicon-bonded hydrogen atoms and silicon-bonded alkenyl groups, flame retardant imparting agents, thixotropic imparting agents, pigments, dyes and the like are not particularly limited, and known ones can be used. .
  • the composition of the present invention can be prepared by mixing the above components (A) to (D) (including optional components when optional components are blended) according to a conventional method. Thereafter, the silicone gel cured product is obtained by curing the composition of the present invention under normal temperature or a temperature condition according to the application.
  • the silicone gel composition of the present invention contains a carbon nanotube that has a low elastic modulus and low stress when cured, and imparts excellent heat resistance to the cured product, so The cured silicone gel is excellent in heat resistance.
  • the penetration of the silicone gel cured product as defined by JIS K 2220 (1/4 cone) is preferably 10 to 200. With such penetration, a cured silicone gel having a low elastic modulus and low stress is more surely obtained.
  • the rate of change of penetration (measure of softness) after heating the cured silicone gel at 230 ° C. for 1,000 hours is ⁇ 70% or more.
  • “change rate is ⁇ 70% or more” in the present invention means that the penetration value after heating is 30% or more of the penetration value before heating. This means that the rate of change in the degree of penetration does not become larger than minus 70% (that is, the increase in the hardness of the silicone gel after heating is suppressed).
  • the silicone gel composition of the present invention is a cured silicone gel having a low elastic modulus and low stress when cured and excellent heat resistance at 230 ° C. Furthermore, the elastic modulus and stress of the cured silicone gel can be kept low even if the silicone gel is left for a long time at 230 ° C. after curing. Therefore, the silicone gel composition of the present invention can be suitably used for protecting electronic parts such as in-vehicle electronic parts and consumer electronic parts.
  • Vi represents “vinyl group”.
  • a viscosity shows the measured value with a rotational viscometer in 25 degreeC.
  • Example 1 Of the two monofunctional siloxy units at both ends of the molecular chain, an average of 0.58 was blocked with a dimethylvinylsiloxy group, and the remaining 1.42 was blocked with a trimethylsiloxy group, and the viscosity was 800 mPa ⁇ s.
  • Example 2 A composition B was prepared in the same manner as in Example 1 except that 0.06 parts by mass of carbon nanotubes were used. When the obtained composition B was heat-cured at 120 ° C. for 30 minutes, a cured product B having a penetration of 66 was obtained.
  • Example 3 In Example 1, Composition C was prepared in the same manner except that 0.09 parts by mass of carbon nanotubes were used. When the obtained composition C was heated and cured at 120 ° C. for 30 minutes, a cured product C having a penetration of 67 was obtained.
  • composition D was prepared in the same manner as in Example 1 except that no carbon nanotube was used. When the obtained composition D was heat-cured at 120 ° C. for 30 minutes, a cured product D having a penetration of 65 was obtained.
  • the cured silicone gel before the heat resistance test has a low elastic modulus and low stress, and the needle after the heat resistance test.
  • the rate of change in the input is -60% to + 9%, and the silicone gel cured product retains its softness even when it is placed at a high temperature of 230 ° C for a long time, and the elastic modulus and stress are kept low. I was able to. Further, the penetration was not changed even after the cold resistance test, and the cold resistance was equivalent to that of Comparative Example 1.
  • Comparative Example 1 containing no carbon nanotube the cured product before the heat resistance test had a low elastic modulus and low stress, but the rate of change in the penetration after the heat resistance test was ⁇ 98%, which was 230 ° C.
  • the cured silicone gel was hardened by being placed under a high temperature condition for a long time, and the elastic modulus and stress increased.
  • the silicone gel composition of the present invention is a cured silicone gel having a low elastic modulus and low stress when cured and excellent heat resistance at 230 ° C. Furthermore, it was clarified that the cured silicone gel retains its softness even when it is placed at a high temperature of 230 ° C. for a long time after curing, and the elastic modulus and stress can be kept low.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Silicon Polymers (AREA)

Abstract

 本発明は、(A)下記一般式(1)で表される、一分子中にケイ素原子に結合したアルケニル基を1個以上有するオルガノポリシロキサン:100質量部、 R SiO(4-a-b)/2 (1) (B)下記一般式(2)で表される、一分子中にケイ素原子に結合した水素原子を2個以上有するオルガノハイドロジェンポリシロキサン:前記(A)成分中のケイ素原子に結合したアルケニル基1個あたり前記ケイ素原子に結合した水素原子が0.6~3個となる量、 R SiO(4-c-d)/2 (2) (C)白金系触媒:有効量、及び (D)カーボンナノチューブ:0.01~3質量部、 を含有するシリコーンゲル組成物である。 これにより、硬化した際に低弾性率かつ低応力であり、230℃での耐熱性に優れるシリコーンゲル硬化物となるシリコーンゲル組成物が提供される。

Description

シリコーンゲル組成物及びシリコーンゲル硬化物
 本発明は、シリコーンゲル組成物及びそれを硬化させてなるシリコーンゲル硬化物に関する。
 シリコーンゲル組成物は、ケイ素原子に結合した水素原子(即ち、SiH基)を有するオルガノハイドロジェンポリシロキサン、ケイ素原子に結合したビニル基等のアルケニル基を有するオルガノポリシロキサン、及び白金系触媒を含有し、上記ケイ素原子に結合した水素原子のアルケニル基への付加反応により硬化物を得る付加反応硬化型オルガノポリシロキサン組成物である。このシリコーンゲル組成物を加熱することにより硬化したシリコーンゲル硬化物は、耐熱性、耐候性、耐油性、耐寒性、電気絶縁性等に優れ、低弾性率かつ低応力であることにより、車載電子部品、民生用電子部品等の電子部品の保護に用いられている。特に、低弾性率かつ低応力であるというシリコーンゲル硬化物の特徴は他のエラストマー製品には見られない特徴である。また、近年では、車載電子部品や民生用電子部品の高信頼性化などの要求から、封止に用いられるシリコーンゲル硬化物に対する耐熱性の要求が高まってきている。
 シリコーンゲル硬化物の耐熱性を向上させる手段としては、組成物中のヒドロキシル基を150ppm以下にすることが開示されている(特許文献1参照)。また、特定のオルガノポリシロキサンにアルコキシシラン化合物と有機チタン酸エステルとを含む組成物が開示されている(特許文献2参照)。更に、特定の金属カルボン酸塩とオルガノポリシロキサンとを高温熱処理して得られた反応生成物を含む組成物(特許文献3参照)などが開示されている。
特開平2-269771号公報 特開2002-322364号公報 特開2008-291148号公報
 しかし、これらのいずれの特許文献においても、200℃までの耐熱性しか得られておらず、230℃での耐熱性は得られていない。そこで、硬化した際に230℃での耐熱性に優れるシリコーンゲル硬化物となるシリコーンゲル組成物の開発が求められていた。
 本発明は、上記事情を鑑みてなされたもので、硬化した際に低弾性率かつ低応力であり、230℃での耐熱性に優れるシリコーンゲル硬化物となるシリコーンゲル組成物を提供することを目的とする。
 上記課題を解決するために、本発明では、
 (A)下記一般式(1)で表される、一分子中にケイ素原子に結合したアルケニル基を1個以上有するオルガノポリシロキサン:100質量部、
  R SiO(4-a-b)/2     (1)
(式中、Rは独立にアルケニル基であり、Rは独立に脂肪族不飽和結合を含まない置換又は非置換の1価炭化水素基であり、aは0.0001~0.2の正数であり、bは1.7~2.2の正数であり、a+bは1.9~2.4である。)
(B)下記一般式(2)で表される、一分子中にケイ素原子に結合した水素原子を2個以上有するオルガノハイドロジェンポリシロキサン:前記(A)成分中のケイ素原子に結合したアルケニル基1個あたり前記ケイ素原子に結合した水素原子が0.6~3個となる量、
  R SiO(4-c-d)/2     (2)
(式中、Rは独立に脂肪族不飽和結合を含まない置換又は非置換の1価炭化水素基であり、cは0.7~2.2の正数であり、dは0.001~1の正数であり、c+dは0.8~3である。)
(C)白金系触媒:有効量、及び
(D)カーボンナノチューブ:0.01~3質量部、
を含有するシリコーンゲル組成物を提供する。
 このようなシリコーンゲル組成物であれば、硬化した際に低弾性率かつ低応力であり、230℃での耐熱性に優れるシリコーンゲル硬化物となる。
 またこのとき、前記シリコーンゲル組成物を硬化した際のJIS K 2220(1/4コーン)で規定される針入度(軟らかさの尺度)が、10~200のものであることが好ましい。
 このようなシリコーンゲル組成物であれば、硬化した際により確実に低弾性率かつ低応力のシリコーンゲル硬化物となる。
 さらに、本発明では、上記のシリコーンゲル組成物を硬化してなるシリコーンゲル硬化物であって、該シリコーンゲル硬化物を230℃で1,000時間加熱した後の針入度の加熱前からの変化率が-70%以上のシリコーンゲル硬化物を提供する。ここで、本発明において「変化率が-70%以上」とは、針入度の変化率が-70%よりもマイナス側に大きくならない(即ち、加熱後のシリコーンゲルの硬度の増大が抑制されている)ことを意味している。
 このようなシリコーンゲル硬化物であれば、硬化後230℃の高温条件下に長時間置かれても、シリコーンゲル硬化物の弾性率や応力を低く保つことができる。
 以上のように、本発明のシリコーンゲル組成物であれば、硬化した際に低弾性率かつ低応力であり、また硬化物に優れた耐熱性を付与するカーボンナノチューブを含むことで、230℃での耐熱性に優れるシリコーンゲル硬化物となる。さらに、硬化後230℃の高温条件下に長時間置かれても、シリコーンゲル硬化物の弾性率や応力を低く保つことができる。
 従って、このような本発明のシリコーンゲル組成物は、車載電子部品、民生用電子部品等の電子部品の保護に好適に用いることができる。
 上述のように、硬化した際に230℃での耐熱性に優れるシリコーンゲル硬化物となるシリコーンゲル組成物の開発が求められていた。
 本発明者らは、上記課題について鋭意検討を重ねた結果、付加反応硬化型オルガノポリシロキサン組成物がカーボンナノチューブを含むことで、硬化した際に低弾性率かつ低応力であり、230℃での耐熱性に優れるシリコーンゲル硬化物となることを見出し、本発明を完成させた。
 即ち、本発明は、
(A)下記一般式(1)で表される、一分子中にケイ素原子に結合したアルケニル基を1個以上有するオルガノポリシロキサン:100質量部、
  R SiO(4-a-b)/2     (1)
(式中、Rは独立にアルケニル基であり、Rは独立に脂肪族不飽和結合を含まない置換又は非置換の1価炭化水素基であり、aは0.0001~0.2の正数であり、bは1.7~2.2の正数であり、a+bは1.9~2.4である。)
(B)下記一般式(2)で表される、一分子中にケイ素原子に結合した水素原子を2個以上有するオルガノハイドロジェンポリシロキサン:前記(A)成分中のケイ素原子に結合したアルケニル基1個あたり前記ケイ素原子に結合した水素原子が0.6~3個となる量、
  R SiO(4-c-d)/2     (2)
(式中、Rは独立に脂肪族不飽和結合を含まない置換又は非置換の1価炭化水素基であり、cは0.7~2.2の正数であり、dは0.001~1の正数であり、c+dは0.8~3である。)
(C)白金系触媒:有効量、及び
(D)カーボンナノチューブ:0.01~3質量部、
を含有するシリコーンゲル組成物である。
 本発明のシリコーンゲル組成物は、上記の(A)~(D)成分を必須成分として含有してなるものである。なお、本発明において、シリコーンゲル硬化物とは、オルガノポリシロキサンを主成分とする架橋密度の低い硬化物である。このような硬化物は、例えばJIS K 2220(1/4コーン)による針入度が10~200のものである。また、これは、JIS K 6301によるゴム硬度測定では測定値(ゴム硬度値)が0となり、有効なゴム硬度値を示さない程低硬度(即ち、軟らか)であるものに相当するものであり、この点において、いわゆるシリコーンゴム硬化物(ゴム状弾性体)とは別異のものである。
 以下、本発明について詳細に説明するが、本発明はこれらに限定されるものではない。
 なお、本明細書において、粘度は25℃における値である。
〔(A)オルガノポリシロキサン〕
 本発明のシリコーンゲル組成物の(A)成分は、シリコーンゲル組成物の主剤(ベースポリマー)である。この(A)成分は、下記一般式(即ち、平均組成式)(1)で表される、一分子中にケイ素原子に結合したアルケニル基(本明細書中において「ケイ素原子結合アルケニル基」という)を1個以上有するオルガノポリシロキサンである。
  R SiO(4-a-b)/2     (1)
(式中、Rは独立にアルケニル基であり、Rは独立に脂肪族不飽和結合を含まない置換又は非置換の1価炭化水素基であり、aは0.0001~0.2の正数であり、bは1.7~2.2の正数であり、a+bは1.9~2.4である。)
 上記一般式(1)中、Rは独立にアルケニル基であり、その炭素原子数は、通常2~6、好ましくは2~4、より好ましくは2~3である。その具体例としては、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、イソブテニル基等が挙げられ、好ましいRはビニル基である。
 また、上記一般式(1)中、Rは独立に脂肪族不飽和結合を含まない置換又は非置換の1価炭化水素基であり、その炭素原子数は、通常1~10、好ましくは1~6である。その具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、オクチル基、デシル基等のアルキル基;フェニル基、トリル基等のアリール基;ベンジル基、フェニルエチル基等のアラルキル基;これらの基の水素原子の一部又は全部を、塩素、臭素、フッ素等のハロゲン原子で置換したクロロメチル基、3,3,3-トリフルオロプロピル基等が挙げられる。中でも合成が容易であり、また高温での化学的安定性の点から、メチル基、フェニル基又は3,3,3-トリフルオロプロピル基が好ましい。
 また、上記一般式(1)中、aは0.0001~0.2の正数であり、好ましくは0.0005~0.1、より好ましくは0.001~0.05の正数である。また、bは1.7~2.2の正数であり、好ましくは1.9~2.02の正数である。また、a+bは1.9~2.4の範囲を満たすことが必要であり、好ましくは1.95~2.05の範囲である。
 (A)成分は、一分子中にケイ素原子結合アルケニル基を平均して1個以上有することが必要であり、好ましくは2個以上、より好ましくは2~50個、更に好ましくは2~10個有する。このケイ素原子結合アルケニル基の条件を満たすように上記a及びbの値を選択すればよい。
 (A)成分のオルガノポリシロキサン一分子中のケイ素原子の数(即ち、重合度)は、通常10~2,000個であるが、組成物の取扱作業性及び得られる硬化物の特性(低弾性率、低応力)が良好となる点から、好ましくは20~1,000個、より好ましくは50~500個である。なお本発明において重合度(または分子量)は、例えば、トルエン等を展開溶媒としてゲルパーミエーションクロマトグラフィ(GPC)分析におけるポリスチレン換算の数平均重合度(又は数平均分子量)等として求めることができる。
(A)成分のオルガノポリシロキサンの分子構造は特に限定されず、直鎖状であっても、例えば、RSiO3/2単位、RSiO3/2単位、SiO単位等を含む分岐状であってもよいが、下記一般式(1a)で表されるオルガノポリシロキサン、即ち主鎖が基本的にジオルガノシロキサン単位の繰り返しからなり、分子鎖両末端がトリオルガノシロキシ基で封鎖された直鎖状のジオルガノポリシロキサンであることが好ましい。
Figure JPOXMLDOC01-appb-C000001
(式中、Rは各々独立に脂肪族不飽和結合を含まない置換又は非置換の1価炭化水素基であり、Rは各々独立に脂肪族不飽和結合を含まない置換又は非置換の1価炭化水素基もしくはアルケニル基であり、ただし1個以上のRはアルケニル基であり、分子鎖両末端のRのいずれかがアルケニル基である場合には、kは40~1,200の整数であり、mは0~50の整数であり、nは0~50の整数であり、分子鎖両末端のRのいずれもがアルケニル基でない場合には、kは40~1,200の整数であり、mは1~50の整数、好ましくは2~50の整数であり、nは0~50の整数である。)
 上記一般式(1a)中、Rで表されるアルケニル基以外の脂肪族不飽和結合を含まない置換又は非置換の1価炭化水素基は、通常炭素原子数1~10、好ましくは1~6のものである。その具体例としては、上記一般式(1)中のRで例示したものが挙げられる。中でも合成が容易であり、また高温での化学的安定性の点から、メチル基、フェニル基又は3,3,3-トリフルオロプロピル基が好ましい。
 また、上記一般式(1a)中、Rで表される各々独立に脂肪族不飽和結合を含まない置換又は非置換の1価炭化水素基は、通常炭素原子数1~10、好ましくは1~6のものである。その具体例としては、上記一般式(1)中のRで例示したものが挙げられる。中でも合成が容易であり、また高温での化学的安定性の点から、メチル基、フェニル基又は3,3,3-トリフルオロプロピル基が好ましい。Rで表されるアルケニル基は、通常炭素原子数2~6、好ましくは2~4、より好ましくは2~3のものである。その具体例としては、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、イソブテニル基等が挙げられ、特に好ましくはビニル基である。
 上記一般式(1a)中、分子鎖両末端のRのいずれかがアルケニル基である場合には、kは100~1,000の整数であり、mは0~40の整数であり、nは0であることが好ましく、分子鎖両末端のRのいずれもアルケニル基でない場合には、kは100~1,000の整数であり、mは2~40の整数であり、nは0であることが好ましい。
 上記一般式(1a)で表されるオルガノポリシロキサンとしては、例えば、両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン、両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・ジフェニルシロキサン共重合体、両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルフェニルシロキサン共重合体、両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン・ジフェニルシロキサン共重合体、両末端ジメチルビニルシロキシ基封鎖メチルトリフルオロプロピルポリシロキサン、両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルトリフルオロプロピルシロキサン共重合体、両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルトリフルオロプロピルシロキサン・メチルビニルシロキサン共重合体、両末端トリメチルシロキシ基封鎖ジメチルシロキサン・ビニルメチルシロキサン共重合体、両末端トリメチルシロキシ基封鎖ジメチルシロキサン・ビニルメチルシロキサン・ジフェニルシロキサン共重合体、両末端トリメチルシロキシ基封鎖ジメチルシロキサン・ビニルメチルシロキサン・メチルフェニルシロキサン共重合体、両末端トリメチルシロキシ基封鎖ビニルメチルシロキサン・メチルトリフルオロプロピルシロキサン共重合体、両末端トリメチルシロキシ基封鎖ジメチルシロキサン・ビニルメチルシロキサン・メチルトリフルオロプロピルシロキサン共重合体、片末端トリメチルシロキシ基封鎖・他方の片末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン、片末端トリメチルシロキシ基封鎖・他方の片末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、片末端トリメチルシロキシ基封鎖・他方の片末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・ジフェニルシロキサン共重合体、片末端トリメチルシロキシ基封鎖・他方の片末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルフェニルシロキサン共重合体、片末端トリメチルシロキシ基封鎖・他方の片末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・ジフェニルシロキサン・メチルビニルシロキサン共重合体、片末端トリメチルシロキシ基封鎖・他方の片末端ジメチルビニルシロキシ基封鎖メチルトリフルオロプロピルポリシロキサン、片末端トリメチルシロキシ基封鎖・他方の片末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルトリフルオロプロピルシロキサン共重合体、片末端トリメチルシロキシ基封鎖・他方の片末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルトリフルオロプロピルシロキサン・メチルビニルシロキサン共重合体、両末端メチルジビニルシロキシ基封鎖ジメチルポリシロキサン、両末端メチルジビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、両末端メチルジビニルシロキシ基封鎖ジメチルシロキサン・ジフェニルシロキサン共重合体、両末端メチルジビニルシロキシ基封鎖ジメチルシロキサン・メチルフェニルシロキサン共重合体、両末端メチルジビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン・ジフェニルシロキサン共重合体、両末端メチルジビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン・メチルフェニルシロキサン共重合体、両末端メチルジビニルシロキシ基封鎖メチルトリフルオロプロピルポリシロキサン、両末端メチルジビニルシロキシ基封鎖ジメチルシロキサン・メチルトリフルオロプロピルシロキサン共重合体、両末端メチルジビニルシロキシ基封鎖ジメチルシロキサン・メチルトリフルオロプロピルシロキサン・メチルビニルシロキサン共重合体、両末端トリビニルシロキシ基封鎖ジメチルポリシロキサン、両末端トリビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、両末端トリビニルシロキシ基封鎖ジメチルシロキサン・ジフェニルシロキサン共重合体、両末端トリビニルシロキシ基封鎖ジメチルシロキサン・メチルフェニルシロキサン共重合体、両末端トリビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン・ジフェニルシロキサン共重合体、両末端トリビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン・メチルフェニルシロキサン共重合体、両末端トリビニルシロキシ基封鎖メチルトリフルオロプロピルポリシロキサン、両末端トリビニルシロキシ基封鎖ジメチルシロキサン・メチルトリフルオロプロピルシロキサン共重合体、両末端トリビニルシロキシ基封鎖ジメチルシロキサン・メチルトリフルオロプロピルシロキサン・メチルビニルシロキサン共重合体等が挙げられる。
 (A)成分のオルガノポリシロキサンの粘度は、特に限定されないが、組成物の取扱作業性、得られる硬化物の強度、及び流動性が良好となる点から、25℃における粘度が50~100,000mPa・sであることが好ましく、100~10,000mPa・sであることがより好ましい。本発明において、粘度は回転粘度計(例えば、BL型、BH型、BS型、コーンプレート型、レオメーター等)により測定することができる。
 また、(A)成分のオルガノポリシロキサンは2種以上の混合物であってもよい。
〔(B)オルガノハイドロジェンポリシロキサン〕
 次に、本発明のシリコーンゲル組成物の(B)成分は、上記(A)成分と反応し、架橋剤(硬化剤)として作用するものであって、該オルガノハイドロジェンポリシロキサンの分子構造は、直鎖状、環状、分岐鎖状、三次元網状(レジン状)のいずれであってもよい。この(B)成分は、下記一般式(即ち、平均組成式)(2)で表される、一分子中にケイ素原子に結合した水素原子(SiH基)を2個以上有するオルガノハイドロジェンポリシロキサンである。
  R SiO(4-c-d)/2     (2)
(式中、Rは独立に脂肪族不飽和結合を含まない置換又は非置換の1価炭化水素基であり、cは0.7~2.2の正数であり、dは0.001~1の正数であり、c+dは0.8~3である。)
 このオルガノハイドロジェンポリシロキサンが一分子中に有するケイ素原子結合水素原子(SiH基)は2個以上であり、好ましくは3~500個、より好ましくは5~100個、特に好ましくは10~80個である。このケイ素原子結合水素原子(SiH基)は、分子鎖末端のケイ素原子に結合したもの、あるいは分子鎖非末端(分子鎖途中)のケイ素原子に結合したもののいずれであってもよく、これらの両者であってもよい。
 上記一般式(2)中、Rは独立に脂肪族不飽和結合を含まない置換又は非置換の一価炭化水素基であり、その炭素原子数は、通常1~10、好ましくは1~6である。その具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、へキシル基、シクロヘキシル基、オクチル基、ノニル基、デシル基等のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基;これらの基の水素原子の一部又は全部を、塩素、臭素、フッ素等のハロゲン原子で置換した3,3,3-トリフルオロプロピル基等が挙げられる。中でも好ましくはアルキル基、アリール基、3,3,3-トリフルオロプロピル基であり、より好ましくはメチル基、フェニル基、3,3,3-トリフルオロプロピル基である。
 また、上記一般式(2)中、cは0.7~2.2の正数であり、好ましくは1.0~2.1の正数である。dは0.001~1の正数であり、好ましくは0.005~0.8、より好ましくは0.01~0.6の正数である。また、c+dは0.8~3であり、好ましくは1.0~2.7、より好ましくは1.5~2.5の範囲である。
 (B)成分のオルガノハイドロジェンポリシロキサン一分子中のケイ素原子の数(即ち、重合度)は、通常2~1,000個であるが、組成物の取扱作業性及び得られる硬化物の特性(低弾性率、低応力)が良好となる点から、好ましくは4~500個、より好ましくは10~200個、更に好ましくは20~100個である。
 (B)成分のオルガノハイドロジェンポリシロキサンの粘度は、特に限定されないが、上記と同様の理由で、25℃における粘度が0.1~5,000mPa・s、特には0.5~1,000mPa・s、とりわけ1~500mPa・s程度であることが好ましい。
 上記一般式(2)で表されるオルガノハイドロジェンポリシロキサンとしては、例えば、1,1,3,3-テトラメチルジシロキサン、1,3,5,7-テトラメチルテトラシクロシロキサン、トリス(ジメチルハイドロジェンシロキシ)メチルシラン、トリス(ジメチルハイドロジェンシロキシ)フェニルシラン、メチルハイドロジェンシロキサン環状重合体、メチルハイドロジェンシロキサン・ジメチルシロキサン環状共重合体、両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェンポリシロキサン、両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン共重合体、両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン共重合体、両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェンシロキサン・メチルフェニルシロキサン共重合体、両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン・ジフェニルシロキサン共重合体、両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン・メチルフェニルシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・メチルフェニルシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン・ジメチルシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン・メチルフェニルシロキサン共重合体、(CHHSiO1/2単位と(CHSiO1/2単位とSiO4/2単位とからなる共重合体、(CHHSiO1/2単位とSiO4/2単位とからなる共重合体、(CHHSiO1/2単位とSiO4/2単位と(CSiO1/2単位とからなる共重合体、(CHHSiO1/2単位と(CHSiO1/2単位と(CH)SiO3/2単位ととからなる共重合体などや、これらの各例示化合物において、メチル基の一部又は全部が他のアルキル基やフェニル基等で置換されたもの等が挙げられる。
 (B)成分の添加量は、(A)成分のアルケニル基1個に対してケイ素原子に結合した水素原子が0.6~3個となる量であり、好ましくは0.7~2個、より好ましくは0.8~1.5個となる量である。この(B)成分からのケイ素原子に結合した水素原子が、(A)成分のアルケニル基1個に対して、0.6個より少なくなると、硬化物が得られなくなる。また、3個より多い場合は、硬化物の耐熱性が低下する。
 (B)成分のオルガノハイドロジェンポリシロキサンは2種以上の混合物であってもよい。
〔(C)白金系触媒〕
 本発明のシリコーンゲル組成物の(C)成分は、上記(A)成分中のケイ素原子結合アルケニル基と上記(B)成分中のケイ素原子結合水素原子との付加反応を促進させるための触媒として使用されるものである。この(C)成分は白金系触媒(白金及び白金系化合物から選ばれる白金族金属化合物)であり、公知のものを使用することができる。その具体例としては、白金ブラック、塩化白金酸、塩化白金酸等のアルコール変性物;塩化白金酸とオレフィン、アルデヒド、ビニルシロキサン又はアセチレンアルコール類等との錯体等が例示される。
 (C)成分の配合量は有効量でよく、所望の硬化速度により適宜増減することができるが、通常、(A)成分及び(B)成分の合計量に対して、白金原子の質量で、通常0.1~1,000ppm、好ましくは1~300ppmの範囲である。この配合量が多すぎると得られる硬化物の耐熱性が低下する場合がある。
〔(D)カーボンナノチューブ〕
 本発明のシリコーンゲル組成物の(D)成分は、シリコーンゲル組成物の硬化物に優れた耐熱性を付与するための成分で、カーボンナノチューブである。カーボンナノチューブは、炭素によって作られる六員環ネットワーク(グラフェンシート)が単層(シングルウォール)あるいは多層(マルチウォール)の同軸管状になった物質であり、直径数nm~数百nm程度の炭素原子からなる構造体として知られている。本発明の(D)成分に用いられるカーボンナノチューブとしては、長さが0.1~30μmのものが好ましく、0.1~15μmのものがより好ましい。長さが0.1μm以上であれば均一分散しやすく、30μm以下であれば沈降しにくい。また、カーボンナノチューブは、直径が0.5~100nmのものならその大きさには限定されない。
 また、上記カーボンナノチューブは、特に製法には限定されないが、例えばプラズマCVD(化学気相成長)法、熱CVD法、表面分解法、流動気相合成法、アーク放電法等により合成されたものが好ましい。またカーボンナノチューブは、構造により、シングルウォールナノチューブ(SWNT)、マルチウォールナノチューブ(MWNT)、ダブルウォールナノチューブ(DWNT)等が知られているが、これらのいずれも用いることができる。
 また、本発明においては、市販品のカーボンナノチューブを適宜使用することもできる。
 (D)成分のカーボンナノチューブの配合量は、(A)成分100質量部に対して0.01~3質量部、好ましくは0.02~2質量部、より好ましくは0.03~1質量部である。0.01質量部未満では耐熱性が得られず、3質量部を超えてもそれ以上の効果は発揮されない。
〔その他の任意成分〕
 本発明の組成物には、上記(A)~(D)成分以外にも、必要に応じて任意成分を配合することができる。この任意成分としては、例えば、反応抑制剤、無機質充填剤、ケイ素原子結合水素原子及びケイ素原子結合アルケニル基を含有しないオルガノポリシロキサン、難燃性付与剤、チクソ性付与剤、顔料、染料等が挙げられる。
 反応抑制剤は、上記組成物の反応を抑制するための成分であって、具体的には、例えば、アセチレン系、アミン系、カルボン酸エステル系、亜リン酸エステル系等の反応抑制剤が挙げられる。
 無機質充填剤としては、例えば、ヒュームドシリカ、結晶性シリカ、沈降性シリカ、中空フィラー、シルセスキオキサン、ヒュームド二酸化チタン、酸化マグネシウム、酸化亜鉛、酸化鉄、水酸化アルミニウム、炭酸マグネシウム、炭酸カルシウム、炭酸亜鉛、層状マイカ、カーボンブラック、ケイ藻土、ガラス繊維等の無機質充填剤;これらの充填剤をオルガノアルコキシシラン化合物、オルガノクロロシラン化合物、オルガノシラザン化合物、低分子量シロキサン化合物等の有機ケイ素化合物で表面疎水化処理した充填剤等が挙げられる。また、シリコーンゴムパウダー、シリコーンレジンパウダー等を配合してもよい。
 また、ケイ素原子結合水素原子及びケイ素原子結合アルケニル基を含有しないオルガノポリシロキサン、難燃性付与剤、チクソ性付与剤、顔料、染料等は特に限定されず、公知のものを使用することができる。
〔組成物の硬化〕
 本発明の組成物は、上記(A)~(D)成分(任意成分が配合される場合には、任意成分も含む)を常法に準じて混合することにより調製することができる。その後、本発明の組成物を常温もしくは用途に応じた温度条件下で硬化させることによりシリコーンゲル硬化物が得られる。
 上述したような本発明のシリコーンゲル組成物であれば、硬化した際に低弾性率かつ低応力であり、また硬化物に優れた耐熱性を付与するカーボンナノチューブを含むことで、230℃での耐熱性に優れるシリコーンゲル硬化物となる。
 また、このシリコーンゲル硬化物のJIS K 2220(1/4コーン)で規定される針入度は、10~200であることが好ましい。
 このような針入度であれば、より確実に低弾性率かつ低応力のシリコーンゲル硬化物となる。
 また、このシリコーンゲル硬化物を230℃で1,000時間加熱した後の針入度(軟らかさの尺度)の加熱前からの変化率が-70%以上であることが好ましい。ここで、針入度の変化率は、
変化率={(加熱後の針入度-加熱前の針入度)/(加熱前の針入度)}×100(%)
として計算することができる。この式からも判るように、本発明でいう「変化率が-70%以上」とは、加熱後の針入度値が加熱前の針入度値の30%以上を保持しており、針入度の変化率が-70%よりもマイナス側に大きくならない(即ち、加熱後のシリコーンゲルの硬度の増大が抑制されている)ことを意味している。
 このようなシリコーンゲル硬化物であれば、硬化後230℃の高温条件下に長時間置かれても針入度が低下しすぎない。即ち、シリコーンゲル硬化物の弾性率や応力を低く保つことができる。
 以上のように、本発明のシリコーンゲル組成物であれば、硬化した際に低弾性率かつ低応力であり、230℃での耐熱性に優れるシリコーンゲル硬化物となる。さらに、硬化後230℃の高温条件下に長時間置かれても、シリコーンゲル硬化物の弾性率や応力を低く保つことができる。
 従って、このような本発明のシリコーンゲル組成物は、車載電子部品、民生用電子部品等の電子部品の保護に好適に用いることができる。
 以下、実施例及び比較例を用いて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例中、「Vi」は「ビニル基」を表す。また、粘度は25℃における回転粘度計による測定値を示す。
[実施例1]
 分子鎖両末端の単官能性シロキシ単位2個のうち平均0.58個がジメチルビニルシロキシ基で封鎖され、かつ、残り平均1.42個がトリメチルシロキシ基で封鎖された、粘度が800mPa・sの直鎖状ジメチルポリシロキサン100質量部、粘度が100mPa・sである分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体(ケイ素原子結合水素原子の含有量=0.57質量%)0.88質量部((A)成分中のケイ素原子結合ビニル基に対する(B)成分中のケイ素原子結合水素原子のモル比:SiH/SiVi=1.13)、エチニルシクロヘキサノール0.05質量部、直径9.5nm、長さ1.5μmのカーボンナノチューブ(マルチウォールタイプ)0.03質量部、及び塩化白金酸/1,3-ジビニルテトラメチルジシロキサン錯体を白金原子含有量として1質量%含有するジメチルポリシロキサン溶液0.05質量部、を混合して組成物Aを調製した。得られた組成物Aを120℃で30分間加熱硬化したところ、針入度65の硬化物Aを得た。
[実施例2]
 実施例1において、カーボンナノチューブを0.06質量部用いる以外は同様にして、組成物Bを調製した。得られた組成物Bを120℃で30分間加熱硬化したところ、針入度66の硬化物Bを得た。
[実施例3]
 実施例1において、カーボンナノチューブを0.09質量部用いる以外は同様にして、組成物Cを調製した。得られた組成物Cを120℃で30分間加熱硬化したところ、針入度67の硬化物Cを得た。
[比較例1]
 実施例1において、カーボンナノチューブを用いなかった以外は同様にして、組成物Dを調製した。得られた組成物Dを120℃で30分間加熱硬化したところ、針入度65の硬化物Dを得た。
(耐熱性の評価)
 上記実施例1~3及び比較例1で得られた組成物A~Dを硬化した硬化物A~Dについて、初期(耐熱性試験前)、及び230℃で1,000時間加熱する耐熱性試験後のJIS K 2220(1/4コーン)で規定される針入度を評価した。結果を表1に示す。
(耐寒性の評価)
 上記実施例1~3及び比較例1で得られた組成物A~Dを硬化した硬化物A~Dについて、-40℃24時間放置した後、すぐにJIS K 2220(1/4コーン)で規定される針入度を評価した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、シリコーンゲル組成物にカーボンナノチューブを含む実施例1~3では、耐熱性試験前のシリコーンゲル硬化物は低弾性率及び低応力であり、また耐熱性試験後の針入度の変化率が-60%~+9%であり、230℃の高温条件下に長時間置かれても、シリコーンゲル硬化物は軟らかさを保持しており、弾性率や応力を低く保つことができた。また、耐寒性試験後も針入度が変わらず、比較例1と同等の耐寒性を有していた。
 一方、カーボンナノチューブを含まない比較例1では、耐熱性試験前の硬化物は低弾性率及び低応力であるものの、耐熱性試験後の針入度の変化率が-98%であり、230℃の高温条件下に長時間置かれることでシリコーンゲル硬化物が硬くなり、弾性率や応力が高くなった。
 以上のように、本発明のシリコーンゲル組成物であれば、硬化した際に低弾性率かつ低応力であり、230℃での耐熱性に優れるシリコーンゲル硬化物となる。さらに、硬化後長時間230℃の高温条件下に置かれても、シリコーンゲル硬化物が軟らかさを保持しており、弾性率や応力を低く保つことができることが明らかとなった。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (3)

  1.  (A)下記一般式(1)で表される、一分子中にケイ素原子に結合したアルケニル基を1個以上有するオルガノポリシロキサン:100質量部、
      R SiO(4-a-b)/2     (1)
    (式中、Rは独立にアルケニル基であり、Rは独立に脂肪族不飽和結合を含まない置換又は非置換の1価炭化水素基であり、aは0.0001~0.2の正数であり、bは1.7~2.2の正数であり、a+bは1.9~2.4である。)
    (B)下記一般式(2)で表される、一分子中にケイ素原子に結合した水素原子を2個以上有するオルガノハイドロジェンポリシロキサン:前記(A)成分中のケイ素原子に結合したアルケニル基1個あたり前記ケイ素原子に結合した水素原子が0.6~3個となる量、
      R SiO(4-c-d)/2     (2)
    (式中、Rは独立に脂肪族不飽和結合を含まない置換又は非置換の1価炭化水素基であり、cは0.7~2.2の正数であり、dは0.001~1の正数であり、c+dは0.8~3である。)
    (C)白金系触媒:有効量、及び
    (D)カーボンナノチューブ:0.01~3質量部、
    を含有するものであることを特徴とするシリコーンゲル組成物。
  2.  前記シリコーンゲル組成物を硬化した際のJIS K 2220(1/4コーン)で規定される針入度が、10~200のものであることを特徴とする請求項1に記載のシリコーンゲル組成物。
  3.  請求項1又は請求項2に記載のシリコーンゲル組成物を硬化してなるシリコーンゲル硬化物であって、該シリコーンゲル硬化物を230℃で1,000時間加熱した後の針入度の加熱前からの変化率が-70%以上のものであることを特徴とするシリコーンゲル硬化物。
PCT/JP2014/003968 2013-10-17 2014-07-29 シリコーンゲル組成物及びシリコーンゲル硬化物 WO2015056374A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14854235.0A EP3059286B1 (en) 2013-10-17 2014-07-29 Silicone gel composition, and silicone gel cured product
US15/025,479 US9631062B2 (en) 2013-10-17 2014-07-29 Silicone gel composition and silicone gel cured product
JP2015542487A JP6023894B2 (ja) 2013-10-17 2014-07-29 シリコーンゲル組成物及びシリコーンゲル硬化物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013215989 2013-10-17
JP2013-215989 2013-10-17

Publications (1)

Publication Number Publication Date
WO2015056374A1 true WO2015056374A1 (ja) 2015-04-23

Family

ID=52827840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003968 WO2015056374A1 (ja) 2013-10-17 2014-07-29 シリコーンゲル組成物及びシリコーンゲル硬化物

Country Status (4)

Country Link
US (1) US9631062B2 (ja)
EP (1) EP3059286B1 (ja)
JP (1) JP6023894B2 (ja)
WO (1) WO2015056374A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017014399A (ja) * 2015-07-01 2017-01-19 信越化学工業株式会社 耐熱性シリコーンゲル組成物
WO2019112227A1 (ko) * 2017-12-08 2019-06-13 주식회사 엘지화학 실리콘 복합재 및 이의 제조방법

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10631975B2 (en) * 2016-09-23 2020-04-28 Biosense Webster (Israel) Ltd. Detection of leakage in implants
TWI672217B (zh) * 2017-06-14 2019-09-21 台灣奈米碳素股份有限公司 胎面膠以及用於生產胎面膠的配方
KR102294864B1 (ko) * 2017-12-08 2021-08-30 주식회사 엘지화학 전도성 실리콘 조성물 및 이에 의해 제조된 실리콘 복합재
CN110862692A (zh) * 2019-11-19 2020-03-06 株洲时代新材料科技股份有限公司 一种igbt用耐高压有机硅凝胶及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02269771A (ja) 1989-04-12 1990-11-05 Shin Etsu Chem Co Ltd 耐熱性シリコーンゲル組成物
JP2002322364A (ja) 2001-04-26 2002-11-08 Dow Corning Toray Silicone Co Ltd シリコーンゲル組成物
JP2005206761A (ja) * 2004-01-26 2005-08-04 Ge Toshiba Silicones Co Ltd 耐熱性シリコーン組成物
JP2007126576A (ja) * 2005-11-04 2007-05-24 Shin Etsu Chem Co Ltd シリコーンゲル組成物
JP2008291148A (ja) 2007-05-25 2008-12-04 Shin Etsu Chem Co Ltd 耐熱性に優れたシリコーンゲル組成物
JP2010037537A (ja) * 2008-07-11 2010-02-18 Toyota Central R&D Labs Inc カーボンナノ複合体、それを含む分散液及び樹脂組成物、並びにカーボンナノ複合体の製造方法
JP2010174084A (ja) * 2009-01-28 2010-08-12 Panasonic Corp カーボンナノチューブを含有するインク
JP2012251116A (ja) * 2011-06-07 2012-12-20 Shin-Etsu Chemical Co Ltd シリコーンゲル組成物及び該組成物の硬化物で封止された電子回路

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5432280A (en) * 1992-07-03 1995-07-11 Shin-Etsu Chemical Co., Ltd. Gel-forming silicone composition
JP4796704B2 (ja) * 2001-03-30 2011-10-19 株式会社タイカ 押出可能な架橋済グリース状放熱材を充填・封入した容器の製法
US6902688B2 (en) * 2001-04-06 2005-06-07 World Properties, Inc. Electrically conductive silicones and method of manufacture thereof
US20030213939A1 (en) * 2002-04-01 2003-11-20 Sujatha Narayan Electrically conductive polymeric foams and elastomers and methods of manufacture thereof
CA2622559A1 (en) * 2005-09-16 2007-03-29 Hyperion Catalysis International, Inc. Conductive silicone and methods for preparing same
CN101296981B (zh) * 2005-10-28 2012-04-04 纳诺塞尔股份有限公司 耐火组合物
US8912268B2 (en) * 2005-12-21 2014-12-16 Dow Corning Corporation Silicone resin film, method of preparing same, and nanomaterial-filled silicone composition
US8258086B2 (en) * 2006-12-01 2012-09-04 Henkel Corporation Anti-seize composition with nano-sized lubricating solid particles
WO2013133884A1 (en) * 2011-12-19 2013-09-12 Dow Corning Corporation Method of forming a photovoltaic cell module having improved impact resistance
TWI616477B (zh) * 2012-12-28 2018-03-01 道康寧公司 用於轉換器之可固化有機聚矽氧烷組合物及該可固化聚矽氧組合物於轉換器之應用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02269771A (ja) 1989-04-12 1990-11-05 Shin Etsu Chem Co Ltd 耐熱性シリコーンゲル組成物
JP2002322364A (ja) 2001-04-26 2002-11-08 Dow Corning Toray Silicone Co Ltd シリコーンゲル組成物
JP2005206761A (ja) * 2004-01-26 2005-08-04 Ge Toshiba Silicones Co Ltd 耐熱性シリコーン組成物
JP2007126576A (ja) * 2005-11-04 2007-05-24 Shin Etsu Chem Co Ltd シリコーンゲル組成物
JP2008291148A (ja) 2007-05-25 2008-12-04 Shin Etsu Chem Co Ltd 耐熱性に優れたシリコーンゲル組成物
JP2010037537A (ja) * 2008-07-11 2010-02-18 Toyota Central R&D Labs Inc カーボンナノ複合体、それを含む分散液及び樹脂組成物、並びにカーボンナノ複合体の製造方法
JP2010174084A (ja) * 2009-01-28 2010-08-12 Panasonic Corp カーボンナノチューブを含有するインク
JP2012251116A (ja) * 2011-06-07 2012-12-20 Shin-Etsu Chemical Co Ltd シリコーンゲル組成物及び該組成物の硬化物で封止された電子回路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3059286A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017014399A (ja) * 2015-07-01 2017-01-19 信越化学工業株式会社 耐熱性シリコーンゲル組成物
WO2019112227A1 (ko) * 2017-12-08 2019-06-13 주식회사 엘지화학 실리콘 복합재 및 이의 제조방법
US11084929B2 (en) 2017-12-08 2021-08-10 Lg Chem, Ltd. Silicone composite material and manufacturing method thereof

Also Published As

Publication number Publication date
US20160229983A1 (en) 2016-08-11
EP3059286A4 (en) 2017-07-05
EP3059286A1 (en) 2016-08-24
EP3059286B1 (en) 2020-08-26
US9631062B2 (en) 2017-04-25
JPWO2015056374A1 (ja) 2017-03-09
JP6023894B2 (ja) 2016-11-09

Similar Documents

Publication Publication Date Title
JP6023894B2 (ja) シリコーンゲル組成物及びシリコーンゲル硬化物
JP5594232B2 (ja) 硬化性シリコーンゲル組成物
US7829648B2 (en) Silicone gel composition
JP6394517B2 (ja) 耐熱性シリコーンゲル硬化物の電気絶縁性を向上する方法
JP2008291148A (ja) 耐熱性に優れたシリコーンゲル組成物
EP3688097B1 (en) Silicone composition comprising filler
JP5168732B2 (ja) 変位耐久性を有する硬化物を与えるシリコーンゲル組成物
JP5962599B2 (ja) 耐熱性に優れたシリコーンゲル組成物
JP7314397B2 (ja) エラストマーフォーム用シリコーン組成物
JP2009114403A (ja) 熱硬化性シリコーンゴム組成物
JP4703374B2 (ja) シリコーンゲル組成物
JP2019001885A (ja) 自己接着性シリコーンゲル組成物及びその硬化物
JP2021042323A (ja) 硬化性シリコーンゲル組成物及びシリコーンゲル硬化物
JP6274082B2 (ja) 付加硬化性シリコーンゴム組成物
JP6409704B2 (ja) シリコーンゲル組成物及びシリコーンゲル硬化物
JP2005350494A (ja) 硬化性オルガノポリシロキサン組成物
JP2018119021A (ja) 自己接着性シリコーンゲル組成物及びその硬化物
JP5110308B2 (ja) 液状シリコーンゴム組成物の製造方法及び液状シリコーンゴム組成物
JP2018076407A (ja) 硬化性シリコーンゲル組成物
JP6245119B2 (ja) シリコーンゴム組成物及びシリコーンゴム硬化物の引裂き強度を向上させる方法
JP2018009127A (ja) シリコーンゲル組成物
JP5913153B2 (ja) オルガノハイドロジェンポリシロキサンの合成方法、該オルガノハイドロジェンポリシロキサンを用いた硬化性シリコーンゲル組成物及びシリコーンゲル
JP7116056B2 (ja) 定着部材形成用シリコーンゴム組成物および定着部材
JP7004936B2 (ja) シリコーンゲル組成物及びその硬化物並びにパワーモジュール
WO2022092244A1 (ja) 硬化性フロロシリコーン組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14854235

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015542487

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15025479

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014854235

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014854235

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE