WO2015053222A1 - AgCu系導電フィラー粉末 - Google Patents

AgCu系導電フィラー粉末 Download PDF

Info

Publication number
WO2015053222A1
WO2015053222A1 PCT/JP2014/076704 JP2014076704W WO2015053222A1 WO 2015053222 A1 WO2015053222 A1 WO 2015053222A1 JP 2014076704 W JP2014076704 W JP 2014076704W WO 2015053222 A1 WO2015053222 A1 WO 2015053222A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
agcu
conductive filler
atomized
based conductive
Prior art date
Application number
PCT/JP2014/076704
Other languages
English (en)
French (fr)
Inventor
哲嗣 久世
哲朗 仮屋
山本 隆久
Original Assignee
山陽特殊製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山陽特殊製鋼株式会社 filed Critical 山陽特殊製鋼株式会社
Publication of WO2015053222A1 publication Critical patent/WO2015053222A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0466Alloys based on noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid

Definitions

  • the present invention relates to an AgCu-based conductive filler powder that is excellent in conductivity and heat dissipation, has a low manufacturing cost, and is used for medical sensors, electronic devices, and the like.
  • silver particles are widely used as a conductive filler to be blended.
  • Silver itself is a metal excellent in thermal conductivity and electrical conductivity, and has an advantage that the extension of the oxide film layer formed on the surface of the silver particles is difficult to proceed.
  • silver is excellent in ductility and malleability, and after agglomeration due to contact between silver particles, the contact area between the silver particles easily expands, so that a conductive adhesive layer exhibiting good conductivity can be obtained. It is formed.
  • Such an Ag conductive filler powder is obtained by using pure Ag or coating Ag on Cu as a base material.
  • pure Ag is expensive in terms of raw material price, while Ag coating is expensive in process.
  • the Ag conductive filler powder is characterized in that the weight ratio of copper is 50 or less when the total weight of copper and silver is 100 (for example, Patent Document 1 (Japanese Patent Laid-Open No. 2003-32083). 2007-99851))).
  • Ag conductive filler powder having a core-shell structure in which silver particles are arranged on the surface of a copper-based metal as a core material is known to have an Ag coating layer between the metal as the core material and the Ag particles.
  • Patent Document 2 Japanese Patent Laid-Open No. 2011-249257
  • the Sn (tin) electrode used for the electrode of the electronic component is reduced to prevent galvanic corrosion.
  • the manufacturing method of coating silver on copper-based powder as described above is disadvantageous in terms of cost and time because an atomized powder is manufactured, recovered, and processed with an apparatus for coating. Further, it is further disadvantageous in terms of cost to use silver powder instead of copper-based powder in order to avoid the coating treatment.
  • the present inventors have obtained the knowledge that the presence of 10% or more of the above AgCu phase can provide an AgCu-based conductive filler powder having an excellent conductivity comparable to that of pure Ag only by an atomizing method without performing a coating treatment. .
  • an object of the present invention is to provide an AgCu-based conductive filler powder that exhibits the same degree of conductivity as that of pure Ag only by the atomizing method without performing a coating treatment.
  • X (M Ag / M Cu ) of Cu of 1.2 or more in the atomized powder outermost layer.
  • the AgCu phase having the ratio X of 1.2 or more is present in 10% or more of the powder outermost layer.
  • the atomized alloy powder may be a gas atomized alloy powder, a disk atomized alloy powder, or the like, but is not limited thereto.
  • the Ag and Cu are effective for the formation of a fine eutectic structure, and the AgCu phase with a large amount of Ag and a small amount of Cu occupies the powder surface layer, thereby reducing the contact resistance and increasing the electrical conductivity compared to pure Cu.
  • the mass ratio X of Ag to Cu in the outermost AgCu phase is 1.2 or more, it is possible to obtain excellent electrical conductivity substantially inferior to pure Ag. This is because when the ratio X is 1.2 or more, it becomes difficult to form an oxide, and even when an oxide is formed, the formation of Cu-based oxide having a high specific resistance is suppressed, and an Ag-based having a low specific resistance. This is because the oxide is formed.
  • the AgCu phase having a mass ratio X of Ag with respect to Cu of 1.2 or more occupies 10% or more of the area ratio of the powder surface layer, so that Cu present in the powder inner layer which is a CuAg phase with a small amount of Ag and a large amount of Cu. Can be prevented from being exposed to the atmosphere as much as possible. As a result, the metal bonding between Ag is performed well, and the bonding reliability can be ensured.
  • the present invention is extremely excellent in providing an AgCu-based conductive filler powder that has an electrical conductivity comparable to that of pure Ag and is an atomized alloy powder that does not require Ag coating. There is an effect.
  • FIG. 2 is an enlarged view of a powder outermost layer portion A surrounded by a circle in FIG. 1 (sectional schematic diagram of atomized alloy powder).
  • the powder according to the present invention is an AgCu-based conductive filler powder used for a conductive adhesive.
  • This AgCu-based conductive filler powder is an atomized alloy powder made of a Cu—Ag alloy having an Ag content of 1 to 30% by mass.
  • the powder outermost layer is a layer from the outermost surface of the atomized alloy powder to 20 nm inside.
  • the reason for adopting Ag in the conductive filler powder of the present invention is as follows. That is, the electrical conductivity of the conductive filler powder is determined by the amount of electron movement. There is a demand for a state in which a large amount of electrons are moved and there is no such thing that inhibits the movement. Therefore, pure Au, pure Ag or pure Cu may be used as the conductive filler material. However, pure Au and pure Ag have a problem in terms of cost, and pure Cu has a problem of being easily oxidized. Then, the research of the alloy which can move more electrons was advanced, and it turned out that the alloy which made Ag exist on the Cu type alloy surface among these alloys is promising. Therefore, Ag is adopted as described above.
  • the feature of the present invention is that an AgCu phase in which the mass ratio X of Ag to Cu is controlled to 1.2 or more is present in the outermost layer of the powder.
  • a preferable range of the mass ratio X of Ag with respect to Cu is 1.2 or more, more preferably 1.5 or more, and even more preferably 1.7 or more.
  • the AgCu phase having the ratio X of 1.2 or more is preferably 10% or more, more preferably 20% or more, and further preferably 30% or more of the outermost layer of the powder.
  • the AgCu-based conductive filler powder is 1 to 30% by mass, preferably 1 to 25% by mass, and more preferably 1 to 20% by mass.
  • the eutectic structure of Ag and Cu can be controlled by controlling the cooling rate during solidification after dissolving the raw metal in addition to the control of the components defined above.
  • Examples of the production method include a gas atomization method, a disk atomization method, and a water atomization method, but are not limited thereto.
  • the gas atomization method can change the solidification rate of the molten metal by adjusting the pressure of the spray gas when the molten metal is discharged. For example, by reducing the pressure of the atomizing gas and optimizing other manufacturing conditions, the cooling rate at which the molten metal solidifies is slowed down, and the AgCu phase with a large amount of Ag and a small amount of Cu tends to segregate on the surface layer of the AgCu powder. Become.
  • the disc atomization method does not use spray gas when pouring molten metal, so that the cooling rate can be controlled slower than the gas atomization method. From this, together with optimization of other production conditions, the AgCu phase with a large amount of Ag in the surface layer of the AgCu powder is likely to segregate.
  • an AgCu-based conductive filler powder produced by controlling the Ag ratio it is an alloy powder as obtained by atomization, does not require Ag coating, and exhibits excellent electrical conductivity comparable to pure Ag. A powder is obtained.
  • An AgCu-based conductive filler powder having the composition shown in Table 1 was produced by a gas atomizing method or a disk atomizing method.
  • a raw material having a predetermined composition is placed in a quartz crucible having pores at the bottom, heated and melted in a high-frequency induction melting furnace in an Ar gas atmosphere, and then heated in an Ar gas atmosphere by gas injection. Then, gas atomized fine powder was obtained by rapid solidification.
  • the rate of rapid solidification can be changed by adjusting the gas injection pressure.
  • the gas injection pressure When the gas injection pressure is lowered, the cooling of the molten metal by the gas is reduced, so that the rapid solidification rate is reduced.
  • the gas injection pressure when the gas injection pressure is increased, the cooling of the molten metal by the gas increases, so that the rapid solidification speed increases.
  • a raw material having a predetermined composition is placed in a quartz crucible having pores at the bottom, heated and melted in a high-frequency induction melting furnace in an Ar gas atmosphere, and then in an Ar gas atmosphere, 40000 to 60000 r. p. m.
  • the hot water was discharged onto a rotating disk of No. 1 and rapidly solidified to obtain a disk atomized fine powder.
  • the electric conductivity of the atomized alloy powder was measured using a 4-terminal sample holder for powder impedance measurement manufactured by Toyo Technica.
  • the atomized alloy powder used for electrical conductivity measurement is aligned to a particle size of 45 ⁇ m or less using a sieve, then filled into a cylindrical sample holder having a diameter of 25 mm and a height of 10 mm, and then 4 Newton meters from the top and bottom in the height direction. The load of was applied.
  • a positive terminal of current I and a positive terminal of voltage V are attached in the load direction, a negative terminal of current I and a negative terminal of voltage V are attached in the lower direction of load, and the voltage is measured by flowing current.
  • a four probe method was used.
  • Table 1 shows Examples 1 to 12 in the present invention, and Table 2 shows Comparative Examples 1 to 24. These characteristics are based on the following criteria: -Evaluation A: Ag with respect to the filler material of 1 mass% or more and 30 mass% or less, the ratio X is 1.2 or more, and exhibits an electrical conductivity of 4000 AV -1 m -1 or more comparable to Ag.
  • -Evaluation B Ag with respect to the filler material is 1% by mass or more and 30% by mass or less, the ratio X is 1.2 or more, and the electric conductivity is 3000 AV ⁇ 1 m ⁇ 1 or more and less than 4000 AV ⁇ 1 m ⁇ 1
  • - Evaluation C 30 wt% of Ag is 1 mass% or more with respect to the filler material or less, the ratio X is 1.2 or more, those electrical conductivity of less than 3000AV -1 m -1
  • - evaluation D for the filler material Rating was evaluated according to Ag of less than 1% by mass or more than 30% by mass, or ratio X of less than 1.2.
  • electric conductivity is simply described as conductivity.
  • the underline in the ratio X indicates that the value of the ratio X is less than 1.2
  • the underline of the Ag value in the filler material structure indicates less than 1% by mass or more than 30% by mass.
  • the best evaluation is the evaluation A, and the evaluation is lowered in the order of the evaluation B, the evaluation C, and the evaluation D.
  • Example 12 Ag with respect to the filler material is 30% by mass, the ratio X is 1.2 or more, and the abundance Y is 10% or more. Satisfying such conditions of the present invention and having an electric conductivity of 4140AV ⁇ 1 m ⁇ 1 showed the best characteristics.
  • Comparative Examples 1 to 24 do not satisfy this condition because the Ag content is less than 1% by mass or greater than 30% by mass, and the ratio X is less than 1.2.
  • the Ag content is 20% and the abundance Y is 14%, but the ratio X is not 1.2 or more, and the electric conductivity is 2210AV ⁇ 1 m ⁇ 1 . It does not show good characteristics.
  • the ratio X is 2.2
  • the abundance Y is 22%
  • the electrical conductivity is 4070AV ⁇ 1 m ⁇ 1 .
  • Ag with respect to the filler material is 90% by mass
  • Ag The content ratio of 1 to 30% by mass is not satisfied.
  • the abundance Y is a TEM in which an AgCu phase having a mass ratio X of Ag with respect to Cu of 1.2 or more is present in the outermost layer (20 nm from the surface to the inside) of one particle, and 20 points are measured at arbitrary points. It is obtained from the image analysis results.
  • the AgCu phase 3 having a mass ratio X of Ag with respect to Cu of 1.2 or more is present in the powder outermost layer 2 of the atomized alloy powder 1 shown in FIG.
  • an AgCu-based conductive filler powder that has an electrical conductivity comparable to that of pure Ag and is an atomized alloy powder that does not require Ag coating.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

 導電性接着剤に用いられるAgCu系導電フィラー粉末が提供される。このAgCu系導電フィラー粉末は、Ag含有率が1~30質量%のCu-Ag合金からなるアトマイズ合金粉末である。アトマイズ合金粉末は、アトマイズされたままであり、かつ、Cuに対するAgの質量比X=(MAg/MCu)が1.2以上のAgCu相をアトマイズ粉末最表層に有する。この粉末最表層は前記アトマイズ合金粉末の粉末最表面から内部に20nmまでの層である。本発明によれば、純Agと遜色ない電気伝導度をもち、かつアトマイズされたままの合金粉末で、Agコーティングが不要なAgCu系導電フィラー粉末が提供される。

Description

AgCu系導電フィラー粉末
 本発明は、導電性と放熱性に優れ、かつ製造コストが低く、医療用センサーや電子機器などに用いるAgCu系導電フィラー粉末に関する。
 従来、導電性接着剤として利用されるAg導電フィラー粉末では、配合される導電性フィラーとして、銀粒子が広く利用されている。銀自体、熱伝導性及び電気伝導性に優れた金属であり、また、銀粒子の表面に形成される酸化被膜層の伸長も進み難いという利点を備えている。加えて、銀は延性及び展性に優れており、銀粒子相互の接触で凝集後、その銀粒子相互の接触部面積の拡大が容易に進むため、良好な導電性を示す導電性接着層が形成される。
 このようなAg導電フィラー粉末は、純Agの使用、又は母材となるCuへのAgのコーティングにより得られる。しかしながら、純Agは原料価格面で高コストとなる一方、Agコーティングはプロセス面で高コストとなる。これらの問題を同時に解決する、急速冷却によって粉末表面にAgが濃化した導電フィラー用粉末の詳細な検討例は存在しない。
 現状、Ag導電フィラー粉末は、銅と銀との総重量を100としたとき、銅の重量比率が50以下であることを特徴とすることが知られている(例えば、特許文献1(特開2007-99851号公報)参照)。
 また、芯材である銅系金属の表面に銀粒子が配置されたコアシェル型構造をとるAg導電フィラー粉末は、芯材となる金属とAg粒子間にAg被覆層が存在することが知られている(例えば、特許文献2(特開2011-249257号公報)参照)。
 一方、粉末最表層にAgが濃化している合金粉末が記載されている(例えば、特許文献3(特開平10-21742号公報)参照)。しかし、粉末表層におけるAgとCuの比率やAgCu相の存在率が明確にされていない。
特開2007-99851号公報 特開2011-249257号公報 特開平10-21742号公報
 ところで、従来の銅系金属からなる芯材の表面を銀粒子で被覆してなる導電性フィラーでは、銅系金属を芯材にすることで、電子部品の電極に用いられるSn(スズ)電極とフィラーとの間の電位差を小さくし、ガルバニック腐食を防止するようにしている。
 しかしながら、このものは、芯材の表面に銀粒子を配置したものであるため、銅系粉末製造後に、得られた銅系粉末に銀をコーティングする製法が存在する。
 上記の様な、銅系粉末に銀をコーティングする製法は、アトマイズした粉末を製造し、回収後、コーティングを施す装置で処理するため、コストや時間の面で不利になる。また、コーティング処理を避けるために、銅系粉末の代わりに銀粉末を用いることは、尚更コスト面で不利になる。
 本発明者らは、今般、Ag含有率が1~30質量%のCu-Ag合金からなるアトマイズ合金粉末の最表層に、Cuに対するAgの質量比X=MAg/MCu)が1.2以上のAgCu相を10%以上存在させることにより、コーティング処理することなく、アトマイズ製法のみで、純Agと同程度の優れた伝導率をもつAgCu系導電フィラー粉末を提供できるとの知見を得た。
 したがって、本発明の目的は、コーティング処理することなく、アトマイズ製法のみで、純Agと同程度の伝導率を示す、AgCu系導電フィラー粉末を提供することにある。
 本発明の一態様によれば、導電性接着剤に用いられるAgCu系導電フィラー粉末であって、
 前記AgCu系導電フィラー粉末は、Ag含有率が1~30質量%のCu-Ag合金からなるアトマイズ合金粉末であり、
 前記アトマイズ合金粉末は、アトマイズされたままであり、かつ、Cuに対するAgの質量比X=(MAg/MCu)が1.2以上のAgCu相をアトマイズ粉末最表層に有し、該粉末最表層は前記アトマイズ合金粉末の粉末最表面から内部に20nmまでの層である、AgCu系導電フィラー粉末が提供される。
 本発明の好ましい態様によれば、前記アトマイズ合金粉末は、前記比Xが1.2以上のAgCu相が粉末最表層の10%以上に存在する。
 アトマイズ合金粉末は、ガスアトマイズ合金粉末、ディスクアトマイズ合金粉末等でありうるが、この限りではない。
 AgとCuは微細共晶組織の形成に有効であり、Agが多く、かつCuが少ないAgCu相が粉末表層を占めることで、純Cuよりも接触抵抗を減少させ、電気伝導度を高める。特に最表層のAgCu相のCuに対するAgの質量比Xが1.2以上の場合に、純Agとほぼ遜色ない優れた電気伝導度を得ることができる。これは、比Xが1.2以上の場合、酸化物を形成し難くなり、また酸化物を形成する場合でも、比抵抗の高いCu系の酸化物形成を抑制し、比抵抗の低いAg系の酸化物が形成されるためである。
 また、Cuに対するAgの質量比Xが1.2以上のAgCu相が粉末表層の面積比率が10%以上を占めることで、Agが少なく、かつCuが多いCuAg相である粉末内層に存在するCuが大気に露出することを極力防止することができる。その結果、Ag同士の金属接合が良好に行われ、接合の信頼性を確保できる。
 以上述べたように、本発明は純Agと遜色ない電気伝導度をもち、かつアトマイズされたまま(as atomized)の合金粉末で、Agコーティングが不要なAgCu系導電フィラー粉末を提供できる極めて優れた効果を奏するものである。
本発明に係るAgとCuの共晶合金のアトマイズ合金粉末の断面の模式図である。 図1(アトマイズ合金粉末の断面模式図)において円で囲まれる粉末最表層部分Aの拡大図である。
 本発明による粉末は、導電性接着剤に用いられるAgCu系導電フィラー粉末である。このAgCu系導電フィラー粉末は、Ag含有率が1~30質量%のCu-Ag合金からなるアトマイズ合金粉末である。このアトマイズ合金粉末は、アトマイズされたまま(as atomized)であり、かつ、Cuに対するAgの質量比X=(MAg/MCu)が1.2以上のAgCu相をアトマイズ粉末最表層に有する。ここで、粉末最表層はアトマイズ合金粉末の粉末最表面から内部に20nmまでの層である。
 本発明の導電フィラー粉末においてAgを採用した理由は以下のとおりである。すなわち、導電フィラー粉末の電気伝導度は電子の移動量で決まってくる。電子を多量に移動、かつ移動を阻害するようなものの存在がない状態が求められる。そこで、導電フィラー材料に純Au、純Ag又は純Cuを使用すればよいのだが、純Auと純Agはコスト面に、純Cuは酸化のされ易さに問題がある。そこで、電子をより多く移動できる合金の研究を進めたところ、それら合金の中でもCu系合金表面にAgを存在させた合金が有望であることがわかった。そこで、上記のとおりAgを採用するものとした。
 そして、本発明の特徴は、Cuに対するAgの質量比Xを1.2以上に制御したAgCu相を粉末最表層に存在させることである。Cuに対するAgの質量比Xの好ましい範囲は、1.2以上であり、より好ましくは1.5以上、さらに好ましくは1.7以上である。また、アトマイズ合金粉末は、上記比Xが1.2以上のAgCu相が粉末最表層の好ましくは10%以上、より好ましくは20%以上、さらに好ましくは30%以上に存在する。
 また、溶融金属が冷却される際、Cuが多くAgが少ないCuAgが高融点であるため先に凝固し始め、凝固したCuAgの周囲に、低融点であるAgが多くCuが少ないAgCuが覆う形で凝固する。
 上記のAgとCuの共晶組織に加えて、Agの比率を制御することで、さらにAgCu系導電フィラー粉末の改善が見込まれる。Ag含有率が少なすぎると、粉末表層にAgが多く、かつCuが少ないAgCu相が現れにくくなる。また、Ag含有率が多すぎると、粉末表層にAgが多く含まれるAgCu相が現れ易くなるが、コスト面で問題がある。このことより、粉末全体のAg含有率は1~30質量%、好ましくは1~25質量%、さらに好ましくは1~20質量%とする。
 AgとCuの共晶組織の制御については、上記に定めた成分の制御に加えて、原料金属を溶解した後の凝固時の冷却速度の制御によって可能である。製造方法としては、ガスアトマイズ法、ディスクアトマイズ法、水アトマイズ法等があるが、この限りではない。
 ガスアトマイズ法は、溶融金属を出湯する際に噴霧ガスの圧力を調整することで、溶融金属の凝固速度を変化させることができる。例えば、噴霧ガスの圧力を下げることや他の製造条件の最適化を図ることで、溶融金属の凝固する冷却速度が遅くなり、AgCu粉末の表層にAgが多くCuが少ないAgCu相が偏析しやすくなる。
 ディスクアトマイズ法は、溶融金属を出湯する際に噴霧ガスを用いないので、ガスアトマイズ法と比較すると冷却速度を遅く制御できる。これより、他の製造条件の最適化と合わせて、AgCu粉末の表層にAgが多くCuが少ないAgCu相が偏析しやすくなる。
 Agの比率を制御して作製したAgCu系導電フィラー粉末を用いることにより、アトマイズにより得られたままの合金粉末で、Agコーティングが不要であり、かつ純Agと遜色ない優れた電気伝導度を示す粉末が得られる。
 CuとAgの他に、低融点を示す金属やCu、Agと液相分離するZn、In、Ga、Sn、Bi、Pb等を添加してもよい。
 以下、本発明について、実施例により具体的に説明する。
 表1に示す組成のAgCu系導電フィラー粉末を、ガスアトマイズ法又はディスクアトマイズ法により作製した。
 ガスアトマイズ法については、所定組成の原料を、底部に細孔を設けた石英坩堝内に入れ、Arガス雰囲気中で高周波誘導溶解炉により加熱溶融した後、Arガス雰囲気中で、ガス噴射により出湯させて、急冷凝固することで、ガスアトマイズ微粉末を得た。
 ガス噴射圧を調整することで、急冷凝固する速度を変化させることができる。ガス噴射圧を下げると、ガスによる溶融金属の冷却が小さくなるので、急冷凝固する速度は遅くなる。対して、ガス噴射圧を上げると、ガスによる溶融金属の冷却が大きくなるので、急冷凝固する速度は早くなる。
 ディスクアトマイズ法については、所定組成の原料を、底部に細孔を設けた石英坩堝内に入れ、Arガス雰囲気中で高周波誘導溶解炉により加熱溶融した後、Arガス雰囲気中で、40000~60000r.p.m.の回転ディスク上に出湯させて、急冷凝固させることでディスクアトマイズ微粉末を得た。
 ガスアトマイズ法、ディスクアトマイズ法などで作製したアトマイズ合金粉末を評価するために、東陽テクニカ製の粉体インピーダンス測定用4端子サンプルホルダーを用いて、アトマイズ合金粉末の電気伝導度を測定した。
 電気伝導度測定に用いるアトマイズ合金粉末は、篩を用いて45μm以下の粒度に揃えた後、直径25mm、高さ10mmの円柱状のサンプルホルダーに充填させた後、高さ方向上下から4ニュートンメートルの荷重をかけた。
 電気伝導度測定は、荷重方向上に電流Iのプラス端子と電圧Vのプラス端子を、荷重方向下に電流Iのマイナス端子と電圧Vのマイナス端子を取り付けて、電流を流して電圧を測定する四端子法を用いた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1は本発明における実施例1~12を示し、表2は比較例1~24を示す。これらの特性を以下の基準:
‐評価A:フィラー材に対するAgが1質量%以上で30質量%以下、比Xが1.2以上で、Agと同程度の電気伝導度4000AV-1-1以上を示すもの、
‐評価B:フィラー材に対するAgが1質量%以上で30質量%以下、比Xが1.2以上で、電気伝導度が3000AV-1-1以上かつ4000AV-1-1未満のもの、
‐評価C:フィラー材に対するAgが1質量%以上で30質量%以下、比Xが1.2以上で、電気伝導度が3000AV-1-1未満のもの、及び
‐評価D:フィラー材に対するAgが1質量%未満もしくは30質量%超、または比Xが1.2未満
に従い格付け評価した。なお、表1及び表2では、電気伝導度を単に伝導度として記載している。また、表2において、比Xにおける下線は比Xの値が1.2未満を示し、また、フィラー材の組織におけるAgの値の下線は、1質量%未満または30質量%超を示す。
 すなわち、最も良い評価が評価Aであり、評価B、評価C、評価Dの順に評価が下がることとなる。
 例えば、実施例12は、フィラー材に対するAgが30質量%であり、比Xが1.2以上、存在率Yが10%以上の条件を満たしている。このような本発明の条件を満たし、かつ電気伝導度が4140AV-1-1と、一番良い特性を示した。
 比較例1~24はAg含有率が1質量%未満、あるいは30質量%よりも大きいため、また、比Xが1.2未満であるため本条件を満たさない。
 例えば、比較例4では、Ag含有率が20%、存在率Yが14%を満たしているが、比Xが1.2以上を満たしておらず、電気伝導度が2210AV-1-1と良い特性を示していない。
 比較例20では、比Xが2.2、存在率Yが22%、電気伝導度4070AV-1-1と良い特性を示しているが、フィラー材に対するAgが90質量%であるため、Agの含有率1~30質量%の条件を満たしていない。
 存在率Yは、Cuに対するAgの質量比Xが1.2以上のAgCu相が、粉末1粒子の最表層(表面から内部に20nm)中に存在する率を、任意箇所20点を計測したTEM像の分析結果より求めている。
 以上のように、本発明では、図2に示すように、Cuに対するAgの質量比Xが1.2以上のAgCu相3を、図1に示すアトマイズ合金粉末1の粉末最表層2に存在させるように制御することで、純Agと遜色ない電気伝導度を有し、かつアトマイズされたままの合金粉末で、Agコーティングが不要なAgCu系導電フィラー粉末の提供が可能となる。

Claims (8)

  1.  導電性接着剤に用いられるAgCu系導電フィラー粉末であって、
     前記AgCu系導電フィラー粉末は、Ag含有率が1~30質量%のCu-Ag合金からなるアトマイズ合金粉末であり、
     前記アトマイズ合金粉末は、アトマイズされたままであり、かつ、Cuに対するAgの質量比X=(MAg/MCu)が1.2以上のAgCu相をアトマイズ粉末最表層に有し、該粉末最表層は前記アトマイズ合金粉末の粉末最表面から内部に20nmまでの層である、AgCu系導電フィラー粉末。
  2.  前記アトマイズ合金粉末は、前記比Xが1.2以上のAgCu相が前記粉末最表層の10%以上に存在する、請求項1に記載のAgCu系導電フィラー粉末。
  3.  前記Cu-Ag合金のAg含有率が1~25質量%である、請求項1に記載のAgCu系導電フィラー粉末。
  4.  前記Cu-Ag合金のAg含有率が1~20質量%である、請求項1に記載のAgCu系導電フィラー粉末。
  5.  前記質量比Xが1.5以上である、請求項1に記載のAgCu系導電フィラー粉末。
  6.  前記質量比Xが1.7以上である、請求項1に記載のAgCu系導電フィラー粉末。
  7.  前記質量比Xが1.2以上のAgCu相が前記粉末最表層の20%以上に存在する、請求項1に記載のAgCu系導電フィラー粉末。
  8.  前記質量比Xが1.2以上のAgCu相が前記粉末最表層の30%以上に存在する、請求項1に記載のAgCu系導電フィラー粉末。
     
PCT/JP2014/076704 2013-10-09 2014-10-06 AgCu系導電フィラー粉末 WO2015053222A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013211920A JP2015074806A (ja) 2013-10-09 2013-10-09 AgCu系導電フィラー粉末
JP2013-211920 2013-10-09

Publications (1)

Publication Number Publication Date
WO2015053222A1 true WO2015053222A1 (ja) 2015-04-16

Family

ID=52813038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076704 WO2015053222A1 (ja) 2013-10-09 2014-10-06 AgCu系導電フィラー粉末

Country Status (3)

Country Link
JP (1) JP2015074806A (ja)
TW (1) TW201527458A (ja)
WO (1) WO2015053222A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108380868A (zh) * 2018-02-07 2018-08-10 海宁瑞兴材料科技有限公司 一种铜粉自动收集装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07331360A (ja) * 1994-06-06 1995-12-19 Asahi Chem Ind Co Ltd 新規な銅合金粉末及びその製造方法
JPH09219112A (ja) * 1996-02-08 1997-08-19 Asahi Chem Ind Co Ltd 異方導電性組成物
JPH09302403A (ja) * 1996-05-13 1997-11-25 Asahi Chem Ind Co Ltd 新規な銅合金微粉末及びその製造方法
JPH1030103A (ja) * 1996-07-19 1998-02-03 Asahi Chem Ind Co Ltd 金属粉体及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07331360A (ja) * 1994-06-06 1995-12-19 Asahi Chem Ind Co Ltd 新規な銅合金粉末及びその製造方法
JPH09219112A (ja) * 1996-02-08 1997-08-19 Asahi Chem Ind Co Ltd 異方導電性組成物
JPH09302403A (ja) * 1996-05-13 1997-11-25 Asahi Chem Ind Co Ltd 新規な銅合金微粉末及びその製造方法
JPH1030103A (ja) * 1996-07-19 1998-02-03 Asahi Chem Ind Co Ltd 金属粉体及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108380868A (zh) * 2018-02-07 2018-08-10 海宁瑞兴材料科技有限公司 一种铜粉自动收集装置

Also Published As

Publication number Publication date
JP2015074806A (ja) 2015-04-20
TW201527458A (zh) 2015-07-16

Similar Documents

Publication Publication Date Title
TWI535855B (zh) Solder alloy, solder composition, solder paste and electronic circuit substrate
JP6266137B2 (ja) 金属微粒子含有組成物
KR101671062B1 (ko) 무연 솔더 합금 조성물 및 무연 솔더 합금의 제조 방법
TW201408787A (zh) 焊錫合金、焊料糊及電子電路基板
JP5932638B2 (ja) 導電性ペースト用銅粉及び導電性ペースト
KR102040280B1 (ko) 무연솔더 합금 조성물 및 그 제조방법, 무연솔더 합금 조성물을 이용한 부재 간의 접합방법
WO2015053222A1 (ja) AgCu系導電フィラー粉末
CN108885948B (zh) 制备基于银氧化锡或银氧化锌的触点材料的方法及触点材料
JP6338846B2 (ja) 導電フィラー粉末
JP2015196877A (ja) AgCuBi系導電フィラー用粉末
JP6546384B2 (ja) 導電フィラー用粉末
JP6445854B2 (ja) 導電フィラー用粉末
WO2016052643A1 (ja) 導電フィラー用粉末
JP6581771B2 (ja) 導電フィラー用粉末
JP2017007885A (ja) 導電フィラー用粉末
JP6670114B2 (ja) 導電フィラー用粉末
WO2015190373A1 (ja) 導電フィラー用粉末
JP2015232160A (ja) 導電フィラー用粉末
JP5876609B1 (ja) 導電フィラー用粉末
JP6475531B2 (ja) フィラー用粉末
JP2018123375A (ja) 多孔質粉末及びその製造方法
JP6726020B2 (ja) 導電フィラー用粉末
JP6654922B2 (ja) 導電フィラー用粉末
JP6654880B2 (ja) 導電フィラー用粉末
JP2016097444A (ja) Pbを含まないSb−In系はんだ合金

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14852518

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14852518

Country of ref document: EP

Kind code of ref document: A1