WO2015050198A1 - 中栓、吸い上げ式液体容器 - Google Patents

中栓、吸い上げ式液体容器 Download PDF

Info

Publication number
WO2015050198A1
WO2015050198A1 PCT/JP2014/076396 JP2014076396W WO2015050198A1 WO 2015050198 A1 WO2015050198 A1 WO 2015050198A1 JP 2014076396 W JP2014076396 W JP 2014076396W WO 2015050198 A1 WO2015050198 A1 WO 2015050198A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
ring
container
absorbent core
protrusion
Prior art date
Application number
PCT/JP2014/076396
Other languages
English (en)
French (fr)
Inventor
馨 鶴見
奥家 孝博
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN201480054347.2A priority Critical patent/CN105593138B/zh
Priority to EP14850986.2A priority patent/EP3053853A4/en
Priority to US15/026,658 priority patent/US9987386B2/en
Publication of WO2015050198A1 publication Critical patent/WO2015050198A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/015Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone
    • A61L9/04Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone using substances evaporated in the air without heating
    • A61L9/12Apparatus, e.g. holders, therefor
    • A61L9/127Apparatus, e.g. holders, therefor comprising a wick
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M1/00Stationary means for catching or killing insects
    • A01M1/20Poisoning, narcotising, or burning insects
    • A01M1/2022Poisoning or narcotising insects by vaporising an insecticide
    • A01M1/2027Poisoning or narcotising insects by vaporising an insecticide without heating
    • A01M1/2044Holders or dispensers for liquid insecticide, e.g. using wicks
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M1/00Stationary means for catching or killing insects
    • A01M1/20Poisoning, narcotising, or burning insects
    • A01M1/2022Poisoning or narcotising insects by vaporising an insecticide
    • A01M1/2061Poisoning or narcotising insects by vaporising an insecticide using a heat source
    • A01M1/2077Poisoning or narcotising insects by vaporising an insecticide using a heat source using an electrical resistance as heat source

Definitions

  • the present invention relates to an inner stopper and a suction-type liquid container equipped with the inner stopper.
  • liquid transpiration device that evaporates liquid (eg, fragrance) in a container body to the outside of the container body by utilizing the capillary phenomenon due to the absorbent core of a porous material such as felt held by an inner stopper.
  • liquid eg, fragrance
  • the inner plug since the opening of the container body, the inner plug, and the liquid absorption core are in close contact with each other, if the inner plug does not have a ventilation structure, the volatilization rate is increased by the change in atmospheric pressure in the container body. It becomes uneven. Further, if the inner plug is not provided with a ventilation structure, the internal pressure of the container body rises excessively due to the influence of temperature or the like, and liquid leakage through the liquid absorption wick may occur. For this reason, in the conventional liquid transpiration apparatus, the inner plug has a ventilation structure, and the internal pressure in the container body is stably maintained.
  • the liquid storage container of Patent Document 1 includes a container main body that stores liquid, a holder that is fixed to the neck opening of the container main body, and a felt core that is held in the holder.
  • the liquid container has an air hole only on one side wall of the holder, and a liquid return groove communicating with the inside of the container body is formed in the vicinity of the air hole.
  • the suction-type container body of Patent Document 2 includes a container body in which an outer plug is detachably attached to an opening, and a suction core attached to an inner stopper held in the mouth of the container body, and a lower end of the suction core. Is immersed in the liquid in the container body, and the upper end protrudes outward from the upper end of the inner stopper.
  • the suction-type container body of Patent Document 2 is formed by forming a vent passage in the inner peripheral surface of the inner plug, opening the upper end of the vent passage upward from the upper end of the inner plug, and lowering the lower end of the vent passage.
  • the inner plug is communicated with a vent hole penetrating inward and outward, and the inner surface of the vent passage is formed by a suction core.
  • the liquid-absorbing core holding plug of Patent Document 3 has a cylindrical body portion that is inserted into the opening of the chemical solution container, and a locking portion that is continuous with one end of the cylindrical body portion. And the liquid absorption core holding plug of patent document 3 is formed with a groove on the outer periphery of the cylindrical body, and a vent hole communicating with the groove is formed in the locking portion, and the liquid absorption core holding plug is attached to the chemical container. In this state, the liquid absorption core is supported by penetrating the cylindrical body, and the internal space of the chemical liquid container communicates with the outside air through the groove and the vent hole.
  • JP 2003-341756 A publication date: December 3, 2003
  • JP 09-250756 release date: September 16, 1997)
  • Japanese Patent Laid-Open No. 11-253087 Release Date: September 21, 1999
  • Patent Documents 1 to 3 relate to a technique for preventing liquid leakage using a groove formed in the inner plug, a ventilation path, and the like.
  • the inner plug of the present application provides a liquid leakage prevention technique by a new method.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide an inner stopper that suppresses leakage of liquid and a suction-type liquid container including the inner stopper.
  • an inner plug is inserted into a container body of a suction-type liquid container, and an absorbent core that sucks up the liquid in the container body is an opening of the container body.
  • An inner plug main body held in the opening, a liquid absorbent core holding part for holding the liquid absorbent core connected to the inner plug main body, and the inner plug main body.
  • a movable part positioned in the internal space of the container body when held in the opening and movable in a direction along the liquid absorbent core holding part, and the inner plug body includes the container body.
  • a through hole is formed on the liquid side surface, which is the surface of the inner plug main body disposed on the side of the liquid to be accommodated, to communicate the internal space of the container main body with the outside air, and the movable part is the suction type When the liquid container lies on its side, the liquid side surface It is characterized in that contact.
  • a through-hole that allows the internal space of the container body to communicate with the outside air is formed on the liquid side surface of the inner stopper body. That is, in the inner plug according to the present invention, since the through hole functions as a ventilation structure, a decrease in the internal pressure of the container body due to liquid absorption by the liquid absorption part is suppressed. Further, in the inner plug according to the present invention, since the through hole functions as a ventilation structure, an increase in the internal pressure of the container body due to an increase in temperature or the like is suppressed. As described above, the inner plug according to the present invention has the through hole formed on the liquid side surface, thereby stabilizing the internal pressure of the container body and suppressing variations in the rate of liquid diffusion from the suction-type liquid container. Can do.
  • the inner stopper according to the present invention is located in the inner space of the container body when the inner stopper body is held in the opening, and when the suction-type liquid container is laid down, A movable part is provided close to the liquid side surface.
  • the internal stopper which concerns on this invention can suppress the leakage of the liquid from a suction-type liquid container.
  • the movable part when the suction-type liquid container is laid down, the movable part is close to the liquid side surface of the inner stopper main body due to gravity, so the clearance between the movable part and the liquid side surface is Narrow. And the liquid accommodated in the container main body rises between the movable part and the liquid side surface by capillary action, and fills the through-hole formed in the liquid side surface with the liquid.
  • the inner plug according to the present invention uses the capillary phenomenon to block the through-hole on the liquid side surface, in other words, the air path with the liquid when the suction-type liquid container lies sideways, and the container body Leakage of liquid from the can be suppressed.
  • the inner plug according to the present invention includes an inner plug body that is held in the opening, a liquid-absorbing core holding part that holds the liquid-absorbing core connected to the inner plug body, and the inner plug body is the opening.
  • a movable portion that is located in the internal space of the container body and is movable in a direction along the liquid-absorbent core holding portion when held by the inner plug body, and is accommodated in the container body.
  • a through-hole for communicating the internal space of the container body with the outside air is formed on the liquid side surface, which is the surface of the inner plug body disposed on the liquid side, and the movable part is configured by the suction-type liquid container. When lying on its side, it is close to the liquid side surface by gravity.
  • FIG. 10 is a diagram showing the position of the ring immediately after the suction type liquid container is laid down when the protrusion is positioned above the liquid absorption core when the suction type liquid container according to the present embodiment is laid down; is there.
  • FIG. 1 The position of the ring after the suction-type liquid container lies sideways and for some time when the protrusion is positioned above the liquid-absorbing core when the suction-type liquid container according to the present embodiment is laid down.
  • FIG. 1 The figure which shows the position of the ring immediately after the sucking-up type liquid container falls sideways, when a protrusion part is located below a liquid absorption core when the sucking-up type liquid container which concerns on this Embodiment falls sideways It is.
  • the suction-type liquid container according to the present embodiment is laid sideways, when the protrusion is positioned below the liquid-absorbing core, the suction-type liquid container is laid sideways and the ring after a while has passed It is a figure which shows a position.
  • (B) is a photograph showing the liquid level height at the opening of the container body when the suction-type liquid container is laid down. It is a figure for simplifying and explaining the mode of Drawing 14 (b). It is a figure explaining a mode that the ring fell down in the direction of a projection part, when a projection part is located below a liquid absorption core. It is a photograph explaining the liquid level height when there is no ring, and (a) is when the suction type liquid container is viewed from the opening side of the container body when the suction type liquid container is laid down. It is a photograph which shows a liquid level height, (b) is a photograph which shows the liquid level height in the opening part of a container main body when a sucking-up-type liquid container becomes sideways.
  • FIG. 6 is a diagram illustrating a state in which a ring has collapsed in the direction of the protrusion when the protrusion is positioned above the liquid absorption core. It is sectional drawing of the other ring which concerns on one Embodiment.
  • FIG. (B) is a bottom view of an inner stopper. It is an external view of the other inside plug concerning this embodiment, (a) is a front view of an inside plug, and Drawing (b) is a bottom view of an inside plug.
  • suction-type liquid container 1 according to the present embodiment will be described with reference to the drawings.
  • the same parts and components are denoted by the same reference numerals. Their names and functions are also the same. Therefore, detailed description thereof will not be repeated.
  • FIG. 2 is an external perspective view of the suction-type liquid container 1.
  • the suction-type liquid container 1 includes a container main body 2, an outer plug 3, an inner plug 10, and a liquid absorption core 30.
  • the suction-type liquid container 1 sucks up the liquid contained in the container main body 2 by a capillary phenomenon by the liquid-absorbing core 30, and diffuses the sucked-up liquid to the outside of the apparatus by heating, evaporation, vibration, or the like.
  • liquid refers to a liquid having aroma, deodorant, and insecticidal functions, including a fragrance, a deodorant, an insecticide and the like.
  • a liquid is not restricted to what has said each function.
  • the liquid may be water for humidification purposes.
  • the container body 2 contains a liquid inside.
  • the container body 2 may be formed of a material such as glass or plastic.
  • the container main body 2 has a cylindrical shape, and the opening is formed narrower than the body.
  • the container body 2 is mounted with an inner stopper 10 that holds the liquid absorbent core 30 inside the opening.
  • the container main body 2 equips the outer side of an opening part with the outer plug 3 which can be attached or detached.
  • the container body 2 is not limited to a cylindrical shape, and may be formed in various shapes, for example, a quadrangular prism shape, a spherical shape, a hemispherical shape, and the like, and may be freely designed according to the application, use state, design, and the like.
  • known methods such as screwing and fitting can be used as a method of attaching the outer plug 3 to the container body 2.
  • the outer plug 3 is detachably attached to the opening of the container body 2 and functions as a lid. That is, the outer plug 3 can also be said to be a cap that prevents leakage of liquid from the container body 2.
  • the outer plug 3 may be formed of a material such as glass or plastic.
  • FIG. 1 is an external view of the inner plug 10.
  • FIG. 3 is a cross-sectional view of the inner plug 10.
  • the gravity direction is defined as the downward direction
  • the direction opposite to the gravity direction is defined as the upward direction. 1 and 3
  • the lower side of the drawing is the direction of gravity (downward)
  • the container body 2 (not shown) is located below the inner plug 10.
  • the inner plug 10 holds the liquid absorption core 30 and is attached to the opening of the container body 2.
  • the inner stopper 10 includes an inner stopper main body 12, a bottle plug 14, a protruding portion 16, a liquid absorbent core holding portion 17, a ring 18 (movable portion), and a ring locking portion 20.
  • the inner plug main body 12, the bottle plug 14, the protrusion 16, the liquid absorbent core holding part 17, and the ring locking part 20 may be formed integrally or separately.
  • integral molding by injection molding with a plastic resin is preferable from the viewpoint of manufacturing, cost, and the like.
  • the inner plug main body 12, the bottle plug 14, the protruding portion 16, the liquid absorbent core holding portion 17, and the ring locking portion 20 are integrally formed.
  • the inner plug body 12 has the bottle plug 14 and the protrusion 16. It may be expressed that the liquid absorbent core holding part 17 and the ring locking part 20 are provided.
  • the inner plug main body 12, the bottle plug 14, the protrusion 16, the liquid absorbent core holding portion 17, the ring 18, and the ring locking portion 20 are not limited to plastic and may be formed of a material such as metal.
  • the inner plug body 12 is cylindrical and is slightly smaller than the diameter of the opening of the container body 2. Therefore, when the inner plug main body 12 is fitted into the opening of the container main body 2, the opening of the container main body 2 and the inner plug main body 12 are in close contact with each other. Thereby, even if the container main body 2 assumes an inverted posture, the liquid does not flow out between the container main body 2 and the inner stopper main body 12.
  • the inner plug body 12 is integrally provided with a bottle plug 14 and a liquid absorbent core holding part 17.
  • the bottle plug 14 and the liquid absorbent core holding part 17 can also be expressed as being connected to the inner stopper main body 12.
  • the facing surface facing the ring 18 of the inner plug main body 12 is flat or substantially flat (flat surface 15 in FIGS. 1 and 3).
  • the flat surface 15 is a surface of the inner stopper main body 12 and is a liquid side surface disposed on the liquid side accommodated in the container main body 2.
  • the inner stopper main body 12 is not limited to a cylindrical shape, and may have other shapes such as a square shape and a triangular shape. When the inner stopper main body 12 is fitted into the opening portion of the container main body 2, the opening portion of the container main body 2 and the inner stopper main body Any shape may be used as long as 12 is in close contact therewith.
  • the inner stopper main body 12 is hollow and communicates with the inside of the container main body 2 through a through hole penetrating the protrusion 16 in the vertical direction.
  • the bottle plug 14 is provided integrally with the inner stopper main body 12, and a gap G exists between the bottle plug 14 and the inner stopper main body 12.
  • the inner plug body 12 When the inner plug body 12 is fitted into the container body 2, the end of the opening of the container body 2 is fitted into the gap G.
  • the inside of the opening of the container body 2 is in close contact with the outer surface of the inner stopper main body 12, and the outside and upper end of the opening of the container body 2 are in close contact with the bottle plug 14.
  • the opening, the upper end, and the outer side of the container main body 2 are in close contact with the inner stopper main body 12 and / or the bottle plug 14. Therefore, even if the container body 2 is held in an inverted posture, leakage of liquid from between the opening of the container body 2 and the inner plug body 12 is suppressed.
  • FIG. 4 is an external view of the inner plug body 12 as viewed from below.
  • the protrusion 16 is formed on a flat surface (liquid side surface) 15 below the inner stopper main body 12, and is located in the inner space of the container main body 2 when the inner stopper main body 12 is held in the opening of the container main body 2. .
  • the protrusion 16 protrudes from the flat surface 15.
  • a through hole extending in the vertical direction is formed inside the protrusion 16 (see FIG. 3). In other words, the through hole is formed through the flat surface 15 and the protrusion 16. For this reason, when the inner stopper main body 12 is fitted into the opening of the container main body 2, the inside of the inner stopper main body 12 and the inside of the container main body 2 communicate with each other through the through hole of the protrusion 16.
  • the protrusion 16 may be formed at any position on the flat surface 15.
  • the through-hole formed in the protrusion 16 is preferably tapered so that the upper side is wide and the lower side is narrow when the suction-type liquid container 1 is erected (see FIG. 3).
  • the diameter of the through hole formed in the protrusion 16 is, for example, 2 mm on the upper side and 1.8 mm on the lower side.
  • the shape of the through hole is not limited to a circle, but may be other shapes such as a square shape and a triangular shape.
  • the height of the protrusion 16 is, for example, 0.5 mm to 1 mm from the flat surface 15.
  • the reason for forming the through hole in the protrusion 16 is as follows. When the liquid is diffused from the suction-type liquid container 1, the internal pressure of the container body 2 is reduced, and the liquid is less likely to be diffused from the suction-type liquid container 1. For this reason, by forming a through hole in the protrusion 16, the inside of the container body 2 is communicated with the outside air, the internal pressure is kept constant, and the amount of liquid diffused is stably maintained.
  • the liquid absorbent core holding portion 17 is formed integrally with the inner stopper main body 12 and elongated from the inside of the inner stopper main body 12 toward the container main body 2.
  • the liquid absorption core holding part 17 has a through hole in the longitudinal direction, and holds the liquid absorption core 30 inserted into the through hole by an inner wall of the through hole.
  • the liquid absorbent core holding part 17 has the liquid absorbent core such that one end of the liquid absorbent core 30 is located inside the inner stopper main body 12 and the other end of the liquid absorbent core 30 is located in the liquid in the container main body 2. 30 can be held.
  • the ring locking part 20 is provided in the liquid absorption core holding part 17, and restricts the downward movement of the ring 18 when the suction-type liquid container 1 is erected.
  • two ring locking portions 20 are provided on the liquid absorbent core holding portion 17.
  • the number of ring locking portions 20 is not limited to two, and there may be one or three or more.
  • the shape and structure of the ring locking portion 20 are not limited to a specific one as long as the downward movement of the ring 18 when the suction-type liquid container 1 is raised is restricted.
  • the liquid absorption core 30 is inserted into the container body 2, sucks up the liquid contained in the container body 2 from one end by capillary action, and sucks up the sucked liquid from the other end by heating, evaporation, vibration, etc. Dissipate outside the container 1.
  • Examples of the material of the liquid absorbing core 30 include a porous body having communication holes, a resin body having open cells, or an aggregate of resin fibers.
  • a resin body having open cells composed of polyurethane, polyethylene, polyethylene terephthalate, polyvinyl formal, polystyrene, etc., a porous body obtained by compressing and sintering a resin fine particle such as polyethylene, polypropylene, nylon, etc.
  • FIG. 5 is an external view of the ring 18.
  • the ring 18 is formed in an annular shape, and the liquid absorbent core holding part 17 is fitted into the inner periphery. In other words, the ring 18 has an annular shape surrounding the liquid absorbent core holding part 17.
  • the ring 18 is not fixed to the liquid absorbent core holding part 17, but is within a range regulated by the protrusion 16, the flat surface 15, and the ring locking part 20 along the longitudinal direction of the liquid absorbent core holding part 17. Moving.
  • the ring 18 is loosely attached to the liquid absorbent core holding part 17 in order to increase the mobility (slidability) with respect to the liquid absorbent core holding part 17.
  • the ring 18 moves downward due to its own gravity in the state in which the sucking-up type liquid container 1 stands, and the downward movement thereof is locked by the ring locking portion 20.
  • the ring 18 moves toward the flat surface 15 and the protruding portion 16 when the protruding portion 16 is positioned below the ring locking portion 20, for example, when the suction-type liquid container 1 is laid down. And close to the flat surface 15 and the protrusion 16.
  • the ring 18 is close to the flat surface 15 and the protruding portion 16” means that the ring 18 is in contact with the flat surface 15 and the protruding portion 16, exists at a very close position, and the like.
  • the ring 18 has a higher specific gravity than the liquid stored in the container body 2.
  • the ring 18 has a specific gravity greater than that of the liquid contained in the container body 2, so that the ring 18 is submerged in the liquid, and the function as a ventilation structure of the through hole formed in the protrusion 16 is maintained.
  • the plastic material can be selected as follows. preferable. That is, the material of the inner plug main body 12, the bottle plug 14, the protruding portion 16, the liquid absorbent core holding portion 17, and the ring locking portion 20 and the material of the ring 18 are formed of different plastic materials. Thereby, the ring 18 can improve the mobility with respect to the liquid absorption core holding
  • the inner plug main body 12, the bottle plug 14, the protrusion 16, the liquid absorbent core holding part 17, the ring 18, and the ring locking part 20 are formed of polypropylene, and the ring 18 is formed of polyacetal.
  • the ring 18 is formed of a material different from that of the liquid absorbent core holding part 17, so that the mobility and slidability with respect to the liquid absorbent core holding part 17 can be improved. This is because the molecular bonding force (Van der Waals force, etc.) is generally large when the same kind of material is used, and is small when the material is different.
  • the ring 18 and the liquid absorbent core holding part 17 may be made of different materials such as metal and resin.
  • the ring 18 is not limited to a specific thickness and material as long as it fulfills the function of [the operation of the ring 18 and its effect 2] (described later). Therefore, the ring 18 may be formed of a thin annular member such as a washer. Further, the ring 18 may not be a completely closed ring as long as it fulfills the function of [the operation of the ring 18 and its effect 2]. For example, the ring 18 has a partially cut shape (“C” in Roman letters). Etc.
  • the protruding portion 16 protrudes from the flat surface 15. The case where the protrusion 16 exists and the case where the protrusion 16 does not exist and only the through hole is formed in the flat surface 15 are compared.
  • the ring 18 may be difficult to dissociate from the flat surface 15 once the ring 18 sticks to the flat surface 15.
  • the through hole formed in the flat surface 15 loses the ventilation function of communicating the inner plug main body 12 and the container main body 2, and the stable operation of the suction-type liquid container 1 can be impaired.
  • the liquid accumulated in the inner stopper main body 12 cannot be refluxed to the container main body 2.
  • the suction-type liquid container 1 is provided with a protrusion 16 on the flat surface 15 to facilitate dissociation between the flat surface 15 and the ring 18.
  • the flat surface 15 does not need to have the protrusion 16. This is because dissociation between the flat surface 15 and the ring 18 can be promoted by forming minute irregularities on the flat surface 15.
  • the through hole of the protruding portion 16 can be replaced with a configuration formed in the flat surface 15.
  • FIG. 6 is a cross-sectional view of the inner plug 10.
  • the cross section shown in FIG. 6 is a cross-sectional view in which a cross section is perpendicular to the line connecting the center of the liquid absorbent core holding part 17 and the protrusion 16 and passes through the center of the liquid absorbent core hold part 17. is there.
  • the liquid absorption core holding portion 17 has two drain holes 22 formed therein.
  • the drainage holes 22 are formed at two locations on the wall surface of the liquid absorbent core holding portion 17 in the vicinity of the bottom surface portion of the inner plug main body 12 formed in a hollow shape and at positions facing each other.
  • the reason why the drain hole 22 is formed in the liquid absorbent core holding part 17 is as follows.
  • the suction-type liquid container 1 is laid down.
  • the liquid stored in the container body 2 can be sucked up by the liquid absorption core 30, and the sucked liquid can leak out of the container body 2. Therefore, due to the presence of the drainage hole 22, the liquid absorbed by the liquid absorption core 30 is drained from the drainage hole 22 to the inner plug main body 12 and collected in the inner plug main body 12.
  • the liquid accumulated in the inner stopper main body 12 is returned to the container main body 2 through the through hole of the protrusion 16.
  • the number of the drain holes 22 formed in the liquid absorption core holding part 17 is not limited to two, and may be one or three or more.
  • the position of the drainage hole 22 formed in the liquid absorbent core holding part 17 may not be a position facing each other but may be appropriately determined.
  • the diameter of the drain hole 22 may be about 0.5 mm to 1 mm.
  • the shape of the drainage hole 22 may be determined as appropriate, such as a square shape or a triangular shape, instead of a circular shape.
  • FIG. 7 shows the position of the ring 18 immediately after the sucking-up type liquid container 1 is laid down when the protrusion 16 is positioned above the liquid absorbing core 30 when the sucking-up type liquid container 1 is laid down.
  • FIG. 8 shows the ring after the suction-type liquid container 1 has been laid down for a while and the projection 16 is positioned above the liquid-absorbing core 30 when the suction-type liquid container 1 is laid down.
  • the ring 18 is separated from the protrusion 16 immediately after the suction-type liquid container 1 is laid down.
  • the ring 18 moves in the direction of the protrusion 16 due to gravity and contacts the protrusion 16 as shown in FIG. At this time, in FIG. 8, the ring 18 is in contact with the protruding portion 16 so as to close the through hole formed in the protruding portion 16. Thereby, in the suction-type liquid container 1, the leakage of the liquid through the through-hole formed in the projection part 16 is suppressed.
  • FIG. 9 shows the position of the ring 18 immediately after the sucking-up type liquid container 1 is laid down when the protrusion 16 is positioned below the liquid absorbing core 30 when the sucking-up type liquid container 1 is laid down.
  • FIG. FIG. 10 shows a case where the suction-type liquid container 1 lies sideways and a certain amount of time elapses when the protrusion 16 is positioned below the liquid-absorbing core 30 when the suction-type liquid container 1 is laid down. It is a figure which shows the position of the ring.
  • the ring 18 is separated from the protrusion 16 immediately after the suction-type liquid container 1 is laid down.
  • the ring 18 moves in the direction of the protrusion 16 due to gravity and contacts the protrusion 16. At this time, in FIG. 10, the ring 18 is in contact with the protruding portion 16 so as to close the through hole formed in the protruding portion 16. Thereby, in the suction-type liquid container 1, the leakage of the liquid through the through-hole formed in the projection part 16 is suppressed.
  • the ring 18 may not block the through hole formed in the protrusion 16 depending on how the ring 18 and the protrusion 16 contact each other and the remaining amount of liquid stored in the container body 2. Therefore, in the following [Relationship between gas-liquid exchange and liquid leakage] and [Operation of the ring 18 and its effect 2], the ring 18 does not completely block the through-hole formed in the protrusion 16. In the state, the principle that the suction-type liquid container 1 suppresses the leakage of the liquid from the through hole formed in the protrusion 16 will be described.
  • FIG. 11 is a diagram for explaining the relationship between the liquid level height (liquid level 1 and liquid level 2) and liquid leakage from the through hole H.
  • this corresponds to the case where the through hole H is positioned above the liquid absorption core 30 when the suction-type liquid container 1 is laid down.
  • the ring 18 is omitted for convenience of explanation.
  • the through hole H is formed directly on the flat surface 15 for convenience of explanation.
  • the liquid level 1 is higher than the through hole H. That is, the through hole H is filled with the liquid. In this case, gas-liquid exchange through the through hole H is difficult to be performed. Specifically, in the state of the liquid level 1 in FIG. 11, since the through hole H is filled with the liquid, it is difficult for air to move from the inner plug body 12 to the container body 2. It becomes difficult for the liquid to flow into the inner plug main body 12.
  • the through hole H is at the same height as the liquid level 2 and is not completely filled with liquid. In this case, gas-liquid exchange via the through hole H is easily performed. Specifically, in the state of the liquid level 2 in FIG. 11, since the through hole H is not filled with the liquid, the movement of air from the inner plug main body 12 to the container main body 2 is likely to occur. For this reason, the liquid easily flows from the container body 2 to the inner plug body 12.
  • the liquid when air moves from the inner stopper main body 12 to the container main body 2, the liquid easily flows from the container main body 2 toward the inner stopper main body 12.
  • the flow of air from the container main body 2 to the inner plug main body 12 may be suppressed in order to suppress the leakage of the liquid from the container main body 2 to the inner plug main body 12. Therefore, by setting the liquid level of the liquid in the container main body 2 to a position higher than the through-hole H as in the liquid level 1 of FIG. .
  • FIG. 12 is a view for explaining the relationship between the liquid level height (liquid level 3) and the liquid leakage from the through hole H.
  • this corresponds to the case where the through hole H is positioned below the liquid absorbent core 30 when the suction-type liquid container 1 is laid down.
  • the ring 18 is omitted for convenience of explanation.
  • the through hole H is directly formed in the flat surface 15 for convenience of explanation.
  • the liquid surface 3 is at the same height as the through-hole H and is not completely filled with liquid. In this case, gas-liquid exchange via the through hole H is easily performed. Further, when the through hole H is located below the liquid absorbent core 30, air enters the inside of the container body 2 through a gap between the liquid absorbent core 30 and the liquid absorbent core holding part 17, and liquid leakage occurs. Can occur. However, also in this case, when the ring 18 approaches the flat surface 15, the liquid level between the flat surface 15 and the ring 18 rises and liquid leakage from the through hole H is suppressed.
  • the suction-type liquid container 1 can suppress the leakage of the liquid from the container body 2 by a method described later with reference to FIG.
  • FIG. 13 is a diagram for explaining a state in which the ring 18 has fallen in the direction of the protrusion 16 when the protrusion 16 is located above the liquid absorption core 30.
  • the ring 18 does not completely block the through hole formed in the protrusion 16 after the suction-type liquid container 1 is laid down. Therefore, it is expected that the liquid leaks from the container body 2 through the through-hole formed in the protrusion 16 by gas-liquid exchange through the through-hole of the protrusion 16.
  • the ring 18 is close to the protrusion 16 by gravity. Therefore, the liquid rises between the flat surface 15 and the ring 18 due to capillary action, thereby forming a liquid film at a position indicated by a broken line in the drawing. That is, the position where the liquid film exists is the liquid level of the liquid between the carrier surface 15 and the ring 18.
  • the through hole of the protrusion 16 is filled with the liquid, and the gas-liquid exchange through the through hole of the protrusion 16 is difficult to be performed, and the leakage of the liquid from the container body 2 can be suppressed.
  • FIG. 14 is a photograph explaining the liquid level height when the ring 18 is close to the flat surface 15.
  • FIG. 14A is a photograph showing the liquid level when the suction-type liquid container 1 is viewed from the opening side of the container body 2 when the suction-type liquid container 1 is laid down.
  • FIG. 14B is a photograph showing the liquid level height at the opening of the container body 2 when the suction-type liquid container 1 is laid down.
  • FIG. 14A indicates the through hole of the protrusion 16.
  • the liquid level of the liquid in a container main body is lower than the position of the through-hole of the projection part 16 (L1 in a figure).
  • FIG. 15 is a diagram for explaining the state of FIG. 14B in a simplified manner.
  • a capillary phenomenon works between the flat surface 15 and the ring 18, and the liquid level rises from L 1 to L 2.
  • the through-hole of the projection part 16 will be in the state filled with the liquid.
  • gas-liquid exchange through the through hole of the protrusion 16 is less likely to occur, and as a result, leakage of liquid from the container body 2 to the inner plug body 12 is suppressed. .
  • This liquid leakage suppression effect is particularly effective when the liquid level is the liquid level 2 in FIG. 11 (that is, when the same position as the through hole of the protrusion 16 is the liquid level).
  • FIG. 16 is a diagram for explaining a state in which the ring 18 has fallen in the direction of the protrusion 16 when the protrusion 16 is positioned below the liquid absorption core 30.
  • FIG. 17 is a photograph explaining the liquid level height when the ring 18 is not present.
  • FIG. 17A is a photograph showing the liquid level when the suction-type liquid container 1 is viewed from the opening side of the container body 2 when the suction-type liquid container 1 is laid down.
  • FIG. 17B is a photograph showing the liquid level height at the opening of the container body 2 when the suction-type liquid container 1 is laid down.
  • FIG. 18 is a diagram for explaining the state of FIG. 17B in a simplified manner.
  • the suction type liquid container does not have the ring 18. Therefore, although the liquid level L3 increases from L3 to L4 due to surface tension (see FIG. 17B), the liquid level L4 does not become so high as to block the through hole of the protrusion 16. Therefore, the through hole of the protrusion 16 is not filled with the liquid. If the through hole of the protrusion 16 is not filled with liquid, gas-liquid exchange via the through hole of the protrusion 16 is likely to occur, and as a result, the liquid easily leaks from the container body 2 to the inner plug body 12.
  • the suction-type liquid container 1 utilizes the capillary phenomenon that occurs between the flat surface 15 and the ring 18 when the ring 18 falls into the flat surface 15 and the ring 18 approaches the flat surface 15.
  • the leakage of the liquid from the through hole of the protrusion 16 is suppressed.
  • simplification of the design is promoted by the inner stopper main body 12 and the suction-type liquid container 1 including the inner stopper main body 12.
  • the liquid to be used handles various liquids having different liquid properties such as a fragrance, a deodorant, an insecticide, and water.
  • the suction-type liquid container 1 uses the movable ring 18 and the ring 18 can be brought close to the flat surface 15, even if the liquid characteristics such as viscosity change, the liquid Can be effectively suppressed.
  • the suction-type liquid container 1 uses natural phenomena such as surface tension and capillary phenomenon, and is not a technique that considers only the action due to gravity.
  • the distance between the flat surface 15 and the ring 18 is a very large factor, and plays an important role in the stable operation of the suction type liquid container 1.
  • the suction-type liquid container 1 provides a liquid leakage suppression mechanism that incorporates capillary action by bringing the ring 18 close to the flat surface 15.
  • FIG. 19 is a cross-sectional view of the ring 18.
  • FIG. 20 is a cross-sectional view of the ring 40.
  • the ring 18 is a cylinder, and the liquid absorbent core holding part 17 is inserted into the cylinder.
  • the ring 18 is not fixed to the liquid absorbent core holding part 17, and is restricted by the protrusion 16 and the flat surface 15 and the ring locking part 20 along the longitudinal direction of the liquid absorbent core holding part 17. It can move inside.
  • the ring 18 is loosely attached to the liquid absorbent core holding part 17 in order to increase the mobility (slidability) with respect to the liquid absorbent core holding part 17.
  • a cylinder means a shape with a hollow inside such as a tube or a bowl.
  • the cylindrical body can make the cross-sectional shape of internal space into various shapes, such as circular, a square, and a triangle, and is not restricted to a specific shape.
  • the cylinder has a certain length (width) in the direction in which the cavity extends (longitudinal direction of the liquid absorbent core holding portion 17 in FIG. 18).
  • the cylinder is also annular.
  • the ring 18 and the rings 40 and 50 described later are all cylindrical bodies.
  • the surface of the ring 18 on the side facing the liquid absorbent core holding portion 17 is referred to as an inner peripheral surface.
  • the inner peripheral surface is formed flat. Specifically, no protrusions or grooves are formed on the inner peripheral surface of the ring 18. Therefore, when the ring 18 moves along the longitudinal direction of the liquid absorbent core holding part 17, the ring 18 contacts the liquid absorbent core holding part 17 on the entire inner peripheral surface.
  • the ring 40 has a protruding portion 41 protruding on the inner peripheral surface.
  • the protruding portion 41 protrudes toward the liquid absorbent core holding portion 17 side.
  • the protruding portion 41 is formed over the entire circumference of the inner peripheral surface of the ring 40 so as to surround the liquid absorbent core holding portion 17.
  • the ring 40 is loosely attached to the liquid absorbent core holding part 17 in order to increase the slidability with respect to the liquid absorbent core holding part 17.
  • it can be appropriately determined according to the distance between the inner peripheral surface of the ring 40 and the liquid absorbent core holding part 17.
  • the width of the protruding portion 41 in the longitudinal direction of the liquid absorbent core holding portion 17 is sufficiently shorter than the width of the inner peripheral surface of the ring 40 in the longitudinal direction of the liquid absorbent core holding portion 17.
  • the inner peripheral surface of the ring 40 is flat except for the protruding portion 41, and the protruding portion 41 is formed integrally with the inner peripheral surface, but is not limited thereto.
  • the protruding portion protruding on the inner peripheral surface means that the protruding portion protrudes from the inner peripheral surface.
  • “projecting on the inner peripheral surface” means that the end of the inner peripheral surface in the longitudinal direction of the liquid absorbent core holding portion 17 is the first end, and the other end is the second end. It means that the protruding portion protrudes toward the liquid absorbent core holding portion 17 side from the line connecting the end portion and the second end portion. The same applies to the vertex 51a of [Ring 50] described later.
  • the ring 18 does not include the projecting portion 41 and contacts the liquid absorbent core holding portion 17 with the inner peripheral surface itself as a contact surface.
  • the ring 40 the protruding portion 41 protruding on the inner peripheral surface comes into contact with the liquid absorbent core holding portion 17. Therefore, compared with the ring 18, the ring 40 can reduce the contact area with the liquid absorbent core holding part 17 when moving in the direction of the through hole of the protrusion 16.
  • the sliding resistance between the ring 18 and the liquid absorbent core holding part 17 is reduced, and when the suction-type liquid container 1 is laid down, the ring 40 is likely to be close to the through hole of the protrusion 16. .
  • the ring 40 can suppress the leakage of the liquid to the outside of the container body 2 more than the ring 18.
  • FIG. 21 and 22 are diagrams for explaining the operation of the ring 40 when the suction-type liquid container 1 is laid down.
  • FIG. 21 is a view showing the ring 40 immediately after the suction-type liquid container 1 is laid down.
  • FIG. 22 is a diagram showing the state of the ring 40 after a slight time has elapsed from the state of FIG.
  • the ring 18 is in contact with the liquid absorbent core holding portion 17 over the entire inner peripheral surface of the ring 18.
  • the protruding portion 41 protruding from the inner peripheral surface comes into contact with the liquid absorbent core holding portion 17. Therefore, compared with the ring 18, the ring 40 has a lower sliding resistance with respect to the liquid absorbent core holding portion 17, and the protrusion 16 is earlier than the ring 18 when the suction-type liquid container 1 is laid down. Can be close. As a result, by using the ring 40, it is possible to further suppress the liquid leakage through the through hole formed in the protrusion 16.
  • the width of the protrusion 41 in the longitudinal direction of the liquid absorbent core holding part 17 is smaller than the width in the longitudinal direction of the liquid absorbent core holding part 17 on the inner peripheral surface of the ring 40, so that the ring 40 and the liquid absorbent core are retained.
  • the sliding resistance with the part 17 can be reduced.
  • the protruding portion 41 may be formed continuously or intermittently over the entire inner peripheral surface of the ring 40 so as to surround the liquid absorbent core holding portion 17.
  • the thickness of the ring 40 changes along the longitudinal direction of the liquid absorbent core holding part 17.
  • the protrusion 16 side (the right side in the drawing) is thicker than the side opposite to the protrusion 16 (the left side in the drawing). Therefore, the position of the center of gravity of the ring 40 in the longitudinal direction of the liquid absorbent core holding part 17 is closer to the protruding part 16 side.
  • the center of gravity of the ring 40 in the longitudinal direction of the liquid absorbent core holding part 17 is indicated by CG (Center of Gravity).
  • FIG. 23 is a diagram illustrating a state in which the ring 40 has fallen in the direction of the protrusion 16 when the protrusion 16 is located above the liquid absorbent core 30.
  • the ring 40 is inclined with the protruding portion 41 as a fulcrum, and easily falls in the direction of the protruding portion 16. As a result, the ring 40 is likely to approach the through hole of the protrusion 16.
  • the liquid stored in the container body 2 rises between the ring 40 and the flat surface 15 by capillary action, fills the through hole of the protrusion 16 with the liquid, and leaks the liquid to the outside of the container body 2. Further suppression can be achieved.
  • the protrusion 16 side is thicker than the opposite side of the protrusion 16, but even when another ring having no difference in thickness is used, the protrusion 41 is based on CG.
  • the effect described above can be realized by being located on the side opposite to the protrusion 16.
  • the opposing surface is formed flat over the entire surface. Specifically, no protrusions or grooves are formed on the opposing surface of the ring 18.
  • a projecting portion 42 is formed on the opposing surface of the ring 40.
  • the protrusion 42 is positioned at a predetermined position on the facing surface.
  • the predetermined position is a position that faces the protrusion 16 or the through hole of the protrusion 16 when the ring 40 approaches the protrusion 16, and the protrusion 42 has an annular shape on the opposite surface. Is formed.
  • the opposing surface of the ring 40 may be formed flat except for the protruding portion 42.
  • the protrusion 42 may have a minute height.
  • the protrusion part 42 is integrally formed with the internal peripheral surface, it is not restricted to this.
  • the ring 40 has the protruding portion 42 that protrudes on the facing surface, thereby shortening the distance between the protruding portion 42 and the protruding portion 16 as compared with the ring 18 that does not have the protruding portion 42 on the facing surface. And can approach the protrusion 16 earlier. Thereby, the liquid accommodated in the container main body 2 is likely to permeate between the protruding portion 42 and the protruding portion 16, and the liquid can be easily sucked between the protruding portion 42 and the protruding portion 16. As a result, it is possible to further suppress liquid leakage through the through hole formed in the protrusion 16.
  • the ring 40 can further suppress the leakage of the liquid through the through hole formed in the protrusion 16 by adding various ideas to the ring 18.
  • FIG. 24 is a cross-sectional view of the ring 50. The description similar to that in ring 18 and ring 40 will not be repeated.
  • the ring 18 has a flat inner peripheral surface. That is, the inner diameter of the ring 18 is constant (or substantially constant) regardless of the position in the longitudinal direction of the liquid absorbent core holding part 17.
  • the ring 40 has a protrusion 41 formed on the inner peripheral surface.
  • the protrusion 41 is formed over the entire circumference of the inner peripheral surface of the ring 40.
  • the inner peripheral surface of the ring 40 is flat except for the protruding portion 41. That is, the inner diameter of the ring 40 is constant (or substantially constant) regardless of the position in the longitudinal direction of the liquid absorbent core holding part 17 except for the portion where the protruding part 41 is formed.
  • an inclination 51 is formed on the inner peripheral surface.
  • the inner diameter of the ring 50 becomes smaller in the direction of the vertex 51 a along the longitudinal direction of the liquid absorbent core holding part 17, and the ring 50 becomes closer to the direction away from the vertex 51 a.
  • the inner diameter increases.
  • the ring 50 has the inclination 51 on the inner peripheral surface, and thus comes into contact with the liquid absorbent core holding part 17 via the vertex 51 a that is the vertex of the inclination 51. Therefore, when the ring 50 moves in the direction of the through hole of the protrusion 16 as compared with the ring 18 that contacts the liquid absorbent core holding part 17 on the entire inner peripheral surface, the contact area with the liquid absorbent core holding part 17 is increased. Can be reduced. Thereby, compared with the ring 18, the ring 50 reduces sliding resistance with the liquid absorbent core holding part 17, and when the suction-type liquid container 1 is laid down, the ring 50 protrudes faster than the ring 18. It becomes close to the part 16 or easily falls into the protruding part 16. Therefore, by using the ring 50, it is possible to further suppress the liquid leakage through the through hole formed in the protrusion 16.
  • the ring 50 reduces the sliding resistance with the liquid absorbent core holding part 17 by reducing the contact area with the liquid absorbent core holding part 17. This further suppresses liquid leakage through the formed through-hole.
  • maintenance part 17 small is not restricted to said ring 40 and ring 50, Other structure As a matter of course, the ring 40 and the ring 50 are examples.
  • FIG. 25 is an external view of the inner plug 10
  • FIG. 25A is a front view of the inner plug 10
  • FIG. 25B is a bottom view of the inner plug 10.
  • 26 is an external view of the inner plug 10a
  • FIG. 26 (a) is a front view of the inner plug 10a
  • FIG. 26 (b) is a bottom view of the inner plug 10a.
  • the difference in configuration between the liquid absorbent core holding part 17 and the liquid absorbent core holding part 60 is that the liquid absorbent core holding part 60 is formed with a protrusion 24.
  • the protrusion 24 is not formed on the core holding part 17.
  • the protrusion part 24 may be formed continuously along the longitudinal direction of the liquid absorbent core holding part 17, or may be formed intermittently. In FIG. 24, two protrusions 24 are formed, but one or more than two may be formed. Further, the height of the protruding portion 24 may be appropriately determined according to the distance between the inner peripheral surface of the ring and the liquid absorbent core holding portion 17.
  • the liquid absorbent core holding part 60 contacts the inner peripheral surface of the ring 18 when the ring 18 moves in the direction of the through hole of the protrusion 16, the liquid absorbent core is retained. Compared with the portion 17, the contact area between the ring 18 and the liquid absorbent core holding portion 60 can be reduced. Thereby, the sliding resistance between the ring 18 and the liquid absorbent core holding part 60 is reduced, and the ring 18 is likely to be close to the through-hole of the protrusion 16 when the suction-type liquid container 1 is laid down. . Then, the liquid stored in the container body 2 rises between the ring 18 and the flat surface 15 by capillary action, fills the through hole of the protrusion 16 with the liquid, and leaks the liquid to the outside of the container body 2. Further suppression can be achieved.
  • the ring 18 may be rewritten as the ring 40 or the ring 50.
  • liquid absorbent core holding part 60 is an example thereof, and other configurations can naturally be adopted.
  • the suction-type liquid container 1 has the following uses. In addition, a use is not limited to the following uses.
  • one end of the liquid absorption core 30 is immersed in the liquid accommodated in the container body 2, and the other end extends above the inner plug body 12.
  • the suction-type liquid container 1 is incorporated into a heating transpiration device in which heat is applied to the other end of the liquid absorbent core 30 extending upward from the inner plug body 12 with a heater or the like, and liquid is evaporated from the other end of the liquid absorbent core 30.
  • the vibration plate is brought into contact with or close to the other end of the liquid absorption core 30 extending upward from the inner plug main body 12, and the vibration of the vibrator is transmitted to the vibration plate, and the liquid is discharged from the other end of the liquid absorption core 30.
  • the use which incorporates the suction-type liquid container 1 in the vibration spraying apparatus to spray is considered.
  • the use which incorporates the suction-type liquid container 1 in the liquid diffusion apparatus which diffuses a liquid to the exterior by spontaneously evaporating a liquid from the said other end of the liquid absorption core 30 can be considered.
  • the suction-type liquid container 1 is used for various applications, and in any application, the leakage of the liquid can be suppressed.
  • the present invention can also be configured as follows.
  • the movable part may be a cylindrical body, and the liquid absorbent core holding part may be inserted into the cylindrical body.
  • the suction-type liquid container is small, and there are large spatial restrictions in the internal space of the container body.
  • the movable part is a cylinder, and the liquid absorbent core holding part is inserted into the cylinder. Therefore, the inner plug main body does not need to be newly provided with a member for attaching the movable part. Thereby, a space is created in the opening of the container main body in which the inner plug main body is held, and the degree of freedom in design can be increased, for example, by increasing the size of the movable part.
  • a cylinder means a shape with a hollow inside such as a tube or a bowl.
  • the cylindrical body can make the cross-sectional shape of internal space into various shapes, such as circular, a square, and a triangle, and is not restricted to a specific shape.
  • the movable part includes a first projecting part projecting on an inner peripheral surface of the cylindrical body, and the first projecting part has the movable part on the liquid side surface.
  • maintenance part may be sufficient when moving to this direction.
  • the movable part does not include the first projecting part projecting on the inner peripheral surface of the cylindrical body.
  • the movable part contacts the liquid absorbent core holding part with the inner peripheral surface itself as a contact surface.
  • the movable part includes a first projecting part projecting on the inner peripheral surface of the cylindrical body, and the first projecting part holds the liquid absorption core when the movable part moves toward the liquid side surface.
  • the first protrusion comes into contact with the liquid absorbent core holding part. Therefore, the contact area between the movable part and the liquid absorbent core holding part can be reduced as compared with the case where the first projecting part does not exist on the inner peripheral surface of the movable part that is a cylindrical body.
  • the sliding resistance between the movable part and the liquid absorbent core holding part can be reduced, and the movable part is likely to be close to the through hole when the suction-type liquid container is laid down.
  • the liquid contained in the container body rises between the movable part and the liquid side surface by capillary action, fills the through-hole formed in the liquid side surface with the liquid, and leaks the liquid to the outside of the container body Can be further suppressed.
  • the first projecting portion is located on the opposite side of the through hole with respect to the center of gravity of the movable portion in the direction along the liquid absorbent core holding portion. It may be a configuration.
  • the movable portion is easily inclined with the first projecting portion as a fulcrum when the suction-type liquid container is laid down.
  • the movable part can be connected to the through-hole even if the slidability between the liquid-absorbing core holding part and the first projecting part is not good. It becomes easy to fall down in the direction of, and the distance between the movable part and the liquid side surface can be narrowed.
  • the liquid contained in the container body rises between the movable part and the liquid side surface by capillary action, fills the through-hole formed in the liquid side surface with the liquid, and leaks the liquid to the outside of the container body Can be further suppressed.
  • the movable part includes a second projecting part projecting on a surface facing the liquid side surface, and the second projecting part includes the second projecting part.
  • the configuration may be such that when it is close to the liquid side surface, it is positioned at a position facing the through hole.
  • the movable part has a second projecting part on the surface facing the liquid side surface (hereinafter referred to as an opposing surface), so that the movable part does not have the second projecting part on the opposing surface.
  • the distance between the second protrusion and the through hole can be further shortened.
  • the second protrusion is positioned at a position facing the through hole when the movable part is close to the liquid side surface.
  • the liquid stored in the container body rises between the movable part and the liquid side surface by capillary action, fills the through-hole formed in the liquid side surface with the liquid, and the liquid to the outside of the container body Leakage can be further suppressed.
  • the liquid absorbent core holding portion includes a third protruding portion protruding on a surface facing the inner peripheral surface of the movable portion, and the third protruding portion is
  • the movable part may be configured to come into contact with the movable part when moving in the direction of the liquid side surface.
  • the movable part moves in the direction of the liquid side surface compared to the case where the third protrusion does not exist. Furthermore, the contact area between the movable part and the liquid absorbent core holding part can be reduced.
  • the inner plug according to one aspect of the present invention may have a configuration in which a protrusion that facilitates dissociation between the liquid side surface and the movable part may be provided on the liquid side surface.
  • the movable part comes close to the liquid side surface of the inner stopper main body. At this time, it is also conceivable that the movable part sticks to the liquid side surface and is difficult to come off from the liquid side surface.
  • the through hole formed in the liquid side surface does not function as an air path, and does not function as a ventilation function that stably maintains the internal pressure of the container body. .
  • the inner plug according to one embodiment of the present invention facilitates dissociation between the liquid-side surface and the movable part by including the above-described configuration.
  • the through-hole formed in the liquid side surface can hold
  • the through hole may be formed to penetrate the protrusion.
  • the inner stopper includes the protrusion portion in which the through hole that communicates the internal space of the container body with the outside air is formed.
  • the protrusion itself can have both a ventilation function for stably holding the internal pressure of the container body and a function for facilitating dissociation between the liquid side surface and the movable part.
  • the structure of the liquid side surface of an inside plug main body can be simplified by the said structure.
  • the movable portion may be formed of a material different from that of the liquid absorbent core holding portion.
  • the movable part comes close to the liquid side surface when the suction liquid container is laid down.
  • the movable part can improve the mobility and slidability with respect to the liquid absorbent core hold part.
  • the movable part is made of a material having a specific gravity greater than that of the liquid in the suction-type liquid container, and is made of a material different from the liquid absorbent core holding part.
  • the movable part may be annular, and the liquid absorbent core holding part may be fitted in the inner periphery.
  • the suction-type liquid container is small, and there are large spatial restrictions in the internal space of the container body.
  • the movable part is annular, and the liquid absorbent core holding part is inserted into the inner periphery. Therefore, the inner plug main body does not need to be newly provided with a member for attaching the movable part. Thereby, a space is created in the opening of the container main body in which the inner plug main body is held, and the degree of freedom in design can be increased, for example, by increasing the size of the movable part.
  • suction-type liquid container may be configured to include any of the above-described inner stoppers.
  • the present invention relates to an inner plug and can be used for a suction-type liquid container.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Insects & Arthropods (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Closures For Containers (AREA)
  • Catching Or Destruction (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Packaging Of Annular Or Rod-Shaped Articles, Wearing Apparel, Cassettes, Or The Like (AREA)

Abstract

 中栓(10)は、開口部に保持される中栓本体(12)と、吸液芯保持部(17)と、吸液芯保持部(17)に保持され、中栓本体(12)が開口部に保持されたときに容器本体(2)の内部空間に位置し、吸い上げ式液体容器(1)が横倒しになったときに、重力により平坦面(15)に近接するリング(18)とを備える。

Description

中栓、吸い上げ式液体容器
 本発明は、中栓、および当該中栓を備えた吸い上げ式液体容器に関する。
 従来より、中栓で保持したフェルト等の多孔質材料の吸液芯による毛細管現象を利用して、容器本体中の液体(例、芳香剤等)を容器本体の外部へ蒸散する液体蒸散装置が知られている。
 液体蒸散装置では、容器本体の開口部、中栓、および吸液芯が互いに密着状態になっていることから、中栓が通気構造を備えていないと、容器本体内の気圧変化により揮散速度が不均一になる。また、中栓が通気構造を備えていないと、気温等の影響により容器本体の内気圧が上昇しすぎ、吸液芯を通じた液漏れが発生することもある。そのため、従来の液体蒸散装置は、中栓が通気構造を備え、容器本体内の内気圧を安定に保持している。
 その一方で、液体蒸散装置は、内栓に通気孔が形成されていることにより、当該通気孔を通して容器本体の横転時に液漏れが発生しうる。この点、従来の液体蒸散装置では、液漏れ対策を行っている。そのような技術が特許文献1~3に開示されている。
 特許文献1の液体収納容器は、液体を収容する容器本体と、容器本体の首部開口に固定されるホルダーと、ホルダー内に保持されるフェルト芯とを備える。この液体収容容器は、ホルダーの一方側壁側のみに空気孔を設けると共に、空気孔近傍に容器本体内と連通する液戻し用溝が形成されている。
 特許文献2の吸い上げ式容器本体は、開口部に外栓を着脱自在に取り付けた容器本体と、容器本体の口部に保持した中栓に装着した吸上芯とを備え、吸上芯の下端を容器本体内の液体に没し、上端を中栓の上端から外方に突出させている。そして、特許文献2の吸い上げ式容器本体は、中栓の内周面に通気通路を凹設して形成し、通気通路の上端を中栓の上端から上方に開放し、通気通路の下端を、中栓を内外に貫通する通気孔に連通させ、通気通路の内面を吸上芯で形成している。
 特許文献3の吸液芯保持栓は、薬液容器の開口部に嵌挿される筒状胴部と、筒状胴部の一端に連なる係止部とを有する。そして、特許文献3の吸液芯保持栓は、筒状胴部の外周に溝が形成され、該溝に連通する通気孔が係止部に形成され、吸液芯保持栓が薬液容器に装着された状態で、吸液芯が筒状胴部を貫通して支えられ、薬液容器の内部空間が前記溝と通気孔とによって外気に連通する。
特開2003‐341756号(公開日:2003年12月3日) 特開平09‐250756号 (公開日:1997年9月16日) 特開平11-253087号 (公開日:1999年9月21日)
 しかしながら、特許文献1~3の技術はいずれも、中栓に形成された溝、通気経路等を利用して液漏れを防止する技術に関するものである。この点、本願の中栓は、新たな方法による液漏れ防止技術を提供するものである。
 本発明は、上記の問題を解決するためになされたものであり、その目的は、液体の漏出を抑制する中栓、および当該中栓を備えた吸い上げ式液体容器を提供することにある。
 本発明の一態様に係る中栓は、上記の課題を解決するために、吸い上げ式液体容器の容器本体内に挿入され、当該容器本体内の液体を吸い上げる吸液芯を当該容器本体の開口部において保持するための中栓であって、上記開口部に保持される中栓本体と、上記中栓本体に連結する、上記吸液芯を保持する吸液芯保持部と、上記中栓本体が上記開口部に保持されたときに上記容器本体の内部空間に位置し、上記吸液芯保持部に沿う方向に移動可能な可動部と、を備え、上記中栓本体には、上記容器本体に収容される液体の側に配置される当該中栓本体の表面である液側表面に、上記容器本体の内部空間を外気に連通させる貫通孔が形成されており、上記可動部は、上記吸い上げ式液体容器が横倒しになったときに、重力により上記液側表面に近接することを特徴としている。
 本発明に係る中栓は、中栓本体の液側表面に、容器本体の内部空間を外気に連通させる貫通孔が形成されている。つまり、本発明に係る中栓では、上記貫通孔が通気構造として機能することから、吸液部が吸液することによる容器本体の内圧の低下は抑制される。また、本発明に係る中栓では、上記貫通孔が通気構造として機能することから、気温の上昇等による容器本体の内圧の増加は抑制される。このように、本発明に係る中栓は、液側表面に上記貫通孔が形成されていることで、容器本体の内圧を安定させ、吸い上げ式液体容器からの液体の放散速度のばらつきを抑えることができる。
 さらに、本発明に係る中栓は、上記中栓本体が上記開口部に保持されたときに上記容器本体の内部空間に位置し、上記吸い上げ式液体容器が横倒しになったときに、重力により上記液側表面に近接する可動部を備える。これにより、本発明に係る中栓は、吸い上げ式液体容器からの液体の漏出を抑制することができる。
 この効果を説明するために、吸い上げ式液体容器が横倒しになったときを考える。
 一般に、吸い上げ式液体容器が横倒しになったとき、容器本体の外部から内部への空気経路が存在する場合に、言い換えれば、容器本体の外部から内部へ空気が流入する場合に、容器本体に収容された液体は容器本体の外部へ漏出しやすくなる。そのため、吸い上げ式液体容器が横倒しになったときには、液側表面に形成された貫通孔を介して容器本体の外部から内部へ空気が流入し、容器本体の外部へ液体が漏出する。また、貫通孔が液側表面に複数形成されている場合には、吸い上げ式液体容器が横倒しになったときに、液面よりも上方に位置する貫通孔を介して容器本体の外部から内部へ空気が流入し、それにより容器本体の外部へ液体が漏出する。
 しかしながら、本発明に係る中栓では、吸い上げ式液体容器が横倒しになったとき、重力により可動部が中栓本体の液側表面に近接するため、可動部と液側表面との間のクリアランスは狭くなる。そして、容器本体に収容された液体は、毛細管現象によって可動部と液側表面との間を上昇し、液側表面に形成された貫通孔を液体で満たすことになる。
 このように、本発明に係る中栓は、吸い上げ式液体容器が横倒しになったときには、毛細管現象を利用して、液側表面の貫通孔、言い換えれば、空気経路を液体で遮断し、容器本体からの液体の漏出を抑制することができる。
 本発明に係る中栓は、上記開口部に保持される中栓本体と、上記中栓本体に連結する、上記吸液芯を保持する吸液芯保持部と、上記中栓本体が上記開口部に保持されたときに上記容器本体の内部空間に位置し、上記吸液芯保持部に沿う方向に移動可能な可動部と、を備え、上記中栓本体には、上記容器本体に収容される液体の側に配置される当該中栓本体の表面である液側表面に、上記容器本体の内部空間を外気に連通させる貫通孔が形成されており、上記可動部は、上記吸い上げ式液体容器が横倒しになったときに、重力により上記液側表面に近接する構成である。
 それゆえ、液体の漏出を抑制する中栓を提供することができるという効果を奏する。
本実施の形態に係る中栓の外観図である。 本実施の形態に係る吸い上げ式液体容器の外観斜視図を示す。 本実施の形態に係る中栓の断面図である。 中栓本体を下方から視たときの外観図である。 リングの外観図である。 本実施の形態に係る中栓の断面図である。 本実施の形態に係る吸い上げ式液体容器が横倒しになったときに突起部が吸液芯よりも上側に位置する場合の、吸い上げ式液体容器が横倒しになった直後のリングの位置を示す図である。 本実施の形態に係る吸い上げ式液体容器が横倒しになったときに突起部が吸液芯よりも上側に位置する場合の、吸い上げ式液体容器が横倒しになりしばらく時間が経過した後におけるリングの位置を示す図である。 本実施の形態に係る吸い上げ式液体容器が横倒しになったときに突起部が吸液芯よりも下側に位置する場合の、吸い上げ式液体容器が横倒しになった直後のリングの位置を示す図である。 本実施の形態に係る吸い上げ式液体容器が横倒しになったときに突起部が吸液芯よりも下側に位置する場合の、吸い上げ式液体容器が横倒しになりしばらく時間が経過した後におけるリングの位置を示す図である。 液面高さ(液面1、液面2)と貫通孔からの液体漏出の関係を説明するための図である。 液面高さ(液面3)と貫通孔からの液体漏出の関係を説明するための図である。 突起部が吸液芯よりも上側に位置する場合において、リングが突起部の方向に倒れ込んだ様子を説明する図である。 リングが平坦面に近接したときの液面高さを説明する写真であり、(a)は、吸い上げ式液体容器が横倒しになったときの、容器本体の開口部側から吸い上げ式液体容器を視たときの液面高さを示す写真であり、(b)は、吸い上げ式液体容器が横倒しになったときの、容器本体の開口部における液面高さを示す写真である。 図14(b)の様子を簡略化して説明するための図である。 突起部が吸液芯よりも下側に位置する場合において、リングが突起部の方向に倒れ込んだ様子を説明する図である。 リングが存在しない場合の液面高さを説明する写真であり、(a)は、吸い上げ式液体容器が横倒しになったときの、容器本体の開口部側から吸い上げ式液体容器を視たときの液面高さを示す写真であり、(b)は、吸い上げ式液体容器が横倒しになったときの、容器本体の開口部における液面高さを示す写真である。 図17(b)の様子を簡略化して説明するための図である。 本実施の一形態に係るリングの断面図である。 本実施の一形態に係る他のリングの断面図である。 本実施の一形態に係る吸い上げ式液体容器が横倒しになった直後のリングを示す図である。 図21の状態から僅かに時間が経過した後のリングの様子を示す図である。 突起部が吸液芯よりも上側に位置する場合において、リングが突起部の方向に倒れ込んだ様子を示す図である。 本実施の一形態に係るさらに他のリングの断面図である。 本実施の一形態に係る中栓の外観図であり、(a)は中栓の正面図であり、図(b)は中栓の下面図である。 本実施の一形態に係る他の中栓の外観図であり、(a)は中栓の正面図であり、図(b)は中栓の下面図である。
 以下、図面を参照しつつ、本実施の形態に係る吸い上げ式液体容器1について説明する。以下の説明では、同一の部品および構成要素には同一の符号を付している。それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰り返さない。
 〔吸い上げ式液体容器1の構成〕
 図2は、吸い上げ式液体容器1の外観斜視図を示す。吸い上げ式液体容器1は、容器本体2と、外栓3と、中栓10と、吸液芯30とを備える。吸い上げ式液体容器1は、容器本体2に収容された液体を吸液芯30による毛細管現象により吸い上げ、吸い上げた液体を、加熱、蒸発、振動等によって装置外部へと放散する。
 ここで、本実施の形態において、「液体」とは、芳香剤、消臭剤、殺虫剤などを含む、芳香、消臭、殺虫機能を有する液体をいう。ただし、液体は、上記の各機能を有するものに限られない。例えば、液体は、加湿目的の水であってもよい。
 容器本体2は、内部に液体を収容する。容器本体2は、ガラス、プラスチック等の材質で形成されてよい。容器本体2は、円筒状であり、開口部が胴体部よりも幅狭に形成されている。容器本体2は、吸液芯30を保持する中栓10を開口部の内側に装着する。また、容器本体2は、着脱自在の外栓3を開口部の外側に装着する。
 容器本体2は、円筒状に限らず種々の形状で形成されてよく、例えば、四角柱状、球状、半球状など、用途や使用状態、デザイン等に対応して自由に設計されてよい。また、容器本体2に外栓3を装着する方法として、螺着、嵌め込みなどの周知の方法を用いることができる。
 外栓3は、容器本体2の開口部に着脱自在に装着され、蓋として機能する。つまり、外栓3は、容器本体2からの液体の漏出を防止するキャップともいえる。外栓3は、ガラス、プラスチック等の材質で形成されてよい。
 次に、中栓10を図1等により説明する。図1は、中栓10の外観図である。図3は、中栓10の断面図である。
 ここで、本実施の形態において、重力方向を下方向、重力方向と反対の方向を上方向と規定する。図1、図3では、図面下側が重力方向(下方向)であり、図示しない容器本体2は中栓10の下側に位置する。
 中栓10は、吸液芯30を保持し、かつ、容器本体2の開口部に装着される。中栓10は、中栓本体12と、ボトルプラグ14と、突起部16と、吸液芯保持部17と、リング18(可動部)と、リング係止部20と、を備える。
 ここで、中栓本体12、ボトルプラグ14、突起部16、吸液芯保持部17、およびリング係止部20は、一体で形成されてもよいし、別々に形成されていてもよい。ただし、プラスチック樹脂による射出成型で一体成形する方が、製造、コスト等の観点で好ましい。以下では、中栓本体12、ボトルプラグ14、突起部16、吸液芯保持部17、およびリング係止部20は、一体成形されているものとして説明する。また、中栓本体12、ボトルプラグ14、突起部16、吸液芯保持部17、およびリング係止部20が一体で形成されている場合、中栓本体12は、ボトルプラグ14、突起部16、吸液芯保持部17、およびリング係止部20を備える、と表現されてもよい。
 なお、中栓本体12、ボトルプラグ14、突起部16、吸液芯保持部17、リング18、およびリング係止部20は、プラスチックに限らず、金属等の材質で形成されてよい。
 以下、図1、図3により各部材を説明する。
 中栓本体12は、円筒状であり、容器本体2の開口部の口径よりも僅かに小さい。そのため、容器本体2の開口部に中栓本体12を嵌め込むと、容器本体2の開口部と中栓本体12とは密着する。これにより、容器本体2が逆さ姿勢になっても、容器本体2と中栓本体12との間から液体が流出することはない。
 中栓本体12には、ボトルプラグ14、および、吸液芯保持部17が一体に設けられている。あるいは、ボトルプラグ14、および、吸液芯保持部17は、中栓本体12に連結されているとも表現できる。中栓本体12は、リング18と対向する対向面が、平坦、あるいは、略平坦である(図1、図3の平坦面15)。言い換えると、平坦面15は、中栓本体12の表面であって、容器本体2に収容される液体の側に配置される液側表面である。
 中栓本体12は、円筒状に限らず、四角状、三角状等の他の形状であってよく、容器本体2の開口部に嵌め込まれたときに、容器本体2の開口部と中栓本体12とが密着する形状であればよい。
 また、中栓本体12は中空であり、突起部16に上下方向に貫通する貫通孔を介して、容器本体2の内部と連通する。
 ボトルプラグ14は、中栓本体12に一体に設けられ、また、中栓本体12との間に隙間Gが存在する。中栓本体12が容器本体2に嵌め込まれると、容器本体2の開口部の端部が隙間Gに嵌入される。このとき、容器本体2の開口部の内側が中栓本体12の外表面に密着し、容器本体2の開口部の外側および上端部がボトルプラグ14に密着する。これにより、容器本体2が中栓本体12に嵌め込まれたとき、容器本体2の開口部は、内側、上端部、外側が中栓本体12および/またはボトルプラグ14と密着する。それゆえ、容器本体2を逆さの姿勢に保持しても、容器本体2の開口部と中栓本体12との間からの液体の漏出が抑制される。
 次に、突起部16を図4により説明する。図4は、中栓本体12を下方から視たときの外観図である。
 突起部16は、中栓本体12の下部の平坦面(液側表面)15に形成され、中栓本体12が容器本体2の開口部に保持されたときに容器本体2の内部空間に位置する。突起部16は、平坦面15から突起している。突起部16の内部には、上下方向に延びる貫通孔が形成されている(図3参照)。言い換えると、貫通孔は、平坦面15および突起部16を貫通して形成されている。このため、容器本体2の開口部に中栓本体12が嵌め込まれると、中栓本体12の内部と容器本体2の内部とが突起部16の貫通孔を介して連通する。突起部16は、平坦面15の何れの位置に形成されてもよい。
 突起部16に形成される貫通孔には、好ましくは、吸い上げ式液体容器1を起立させたときに、上側が幅広、下側が幅狭となるようテーパが付けられている(図3参照)。突起部16は、内部に形成された貫通孔の直径が、例えば、上側で2mm、下側で1.8mmである。
 貫通孔の形状は、円形に限らず、四角状、三角状等の他の形状であってもよい。突起部16は、その高さが、例えば平坦面15から0.5mm~1mmに形成されている。
 突起部16に貫通孔を形成する理由は次のとおりである。吸い上げ式液体容器1から液体が放散されると、容器本体2の内圧が低下し、吸い上げ式液体容器1から液体が放散されにくくなる。そのため、突起部16に貫通孔を形成することで、容器本体2の内部を外気に連通させて内圧を一定に保ち、液体の放散量を安定に保持している。
 図3に示すように、吸液芯保持部17は、中栓本体12と一体に、かつ、中栓本体12の内部から容器本体2の方向に向かって細長に形成されている。吸液芯保持部17は、長手方向に貫通孔が形成されており、その貫通孔に差し込まれた吸液芯30を貫通孔の内壁等により保持する。これにより、吸液芯保持部17は、中栓本体12の内部に吸液芯30の一端が位置し、容器本体2内の液体中に吸液芯30の他端が位置するよう吸液芯30を保持することができる。
 リング係止部20は、吸液芯保持部17に設けられ、吸い上げ式液体容器1を起立させたときのリング18の下方向への移動を規制する。図1では、リング係止部20は、吸液芯保持部17に2つ設けられている。しかしながら、リング係止部20は、2個に限られず、1個、あるいは3個以上存在してもよい。また、リング係止部20は、吸い上げ式液体容器1を起立させたときのリング18の下方向への移動を規制するのであれば、その形状、構造は特定のものに限定されない。
 吸液芯30は、容器本体2に挿入されており、一端から容器本体2に収容された液体を毛細管現象によって吸い上げ、他端から、吸い上げた液体を、加熱、蒸発、振動等によって吸い上げ式液体容器1の外部へ放散する。
 吸液芯30の材質としては、連通孔を有する多孔質体、連続気泡を有する樹脂体又は樹脂繊維の集合体が好ましいものとして例示できる。具体的には、ポリウレタン、ポリエチレン、ポリエチレンテレフタレート、ポリビニルホルマール、ポリスチレン等からなる連続気泡を有する樹脂体、ポリエチレン、ポリプロピレン、ナイロン等の樹脂微粒子を主成分として打錠焼結させた多孔質体、ポリフッ化エチレン等からなる多孔質体、ポリエステル、ポリプロピレン、ナイロン、アクリル、レーヨン、ウール等からなるフェルト部材、あるいはポリオレフィン繊維、ポリエステル繊維、ナイロン繊維、レーヨン繊維、アクリル繊維、ビニロン繊維、ポリフラール繊維、アラミド繊維等からなる不織布等の樹脂繊維の集合体、セラミック等の無機粉体を主成分として打錠焼結した多孔質の無機粉焼結体が例示できるが、何らこれらに限定されるものではない。また、これらに界面活性剤を処理したものでもよい。
 次に、リング18を図5、図1により説明する。図5は、リング18の外観図である。
 リング18は、環状に形成され、内周内に吸液芯保持部17が嵌入される。言い換えれば、リング18は、吸液芯保持部17を取り囲む環状である。リング18は、吸液芯保持部17には固定されず、吸液芯保持部17の長手方向に沿って、突起部16および平坦面15とリング係止部20とに規制される範囲内を移動する。リング18は、吸液芯保持部17に対する可動性(摺動性)を高くするために、吸液芯保持部17に対して緩めに取り付けられている。
 これにより、リング18は、吸い上げ式液体容器1が起立した状態では、自身の重力により下方向へ移動し、その下方への動きは、リング係止部20により係止される。一方、リング18は、突起部16がリング係止部20よりも下方に位置するとき、例えば、吸い上げ式液体容器1が横倒しになったとき、平坦面15および突起部16の方向に向かって移動し、平坦面15および突起部16に近接する。
 ここで、「近接」とは、接近すること、すぐ近くで接している状態、すぐ近くに存在することを言う。したがって、「リング18が平坦面15および突起部16に近接する」とは、リング18が平坦面15および突起部16に接していること、極めて近い位置に存在すること、などを意味する。
 リング18は、容器本体2に収容される液体よりも比重が大きい。リング18は、容器本体2に収容される液体よりも比重を大きくすることで、リング18を液中に沈め、突起部16に形成された貫通孔の通気構造としての機能を維持させている。
 また、中栓本体12、ボトルプラグ14、突起部16、吸液芯保持部17、リング18、およびリング係止部20がプラスチックで形成される場合、次のようにプラスチック材料を選定することが好ましい。すなわち、中栓本体12、ボトルプラグ14、突起部16、吸液芯保持部17、およびリング係止部20の材質と、リング18の材質とを異なるプラスチック材料で形成する。これにより、リング18は、吸液芯保持部17等に対する移動性、摺動性を高めることができる。一例として、中栓本体12、ボトルプラグ14、突起部16、吸液芯保持部17、リング18、およびリング係止部20がポリプロピレンにより形成され、リング18がポリアセタールにより形成される。
 なお、リング18は、吸液芯保持部17と異なる材質で形成されることで、吸液芯保持部17に対する移動性、摺動性を高めることができる。これは、分子的な結合力(ファンデルワールス力など)が、一般的には同種材間の場合は大きく、異種材間の場合は小さいことによる。リング18および吸液芯保持部17は、例えば、金属、樹脂など異種材料であってもよい。
 リング18は、〔リング18の動作とその効果2〕(後述)の機能を果たすのであれば、厚み、材質は特定のものに限られない。したがって、リング18は、ワッシャ等の薄い環状の部材で形成されていてもよい。また、リング18は、〔リング18の動作とその効果2〕の機能を果たすのであれば、完全に閉じた環状でなくともよく、例えば、一部が欠けた形状(ローマ字の「C」状)等であってもよい。
 ここで、リング18との関係において、突起部16を設ける理由を説明する。上述したように、突起部16は、平坦面15から突起している。突起部16が存在する場合と、突起部16が存在せず平坦面15に貫通孔のみが形成されている場合とを比較する。
 突起部16が存在せず平坦面15に貫通孔のみが形成されている場合、リング18が平坦面15に一旦張り付くと、リング18が平坦面15から解離しにくくなる場合がある。この場合、平坦面15に形成された貫通孔は、中栓本体12と容器本体2とを連通するという通気機能を失い、吸い上げ式液体容器1の安定運転が損なわれうる。さらに、この場合、中栓本体12の内部に溜まった液体を容器本体2に還流させることができなくなる。このような理由から、吸い上げ式液体容器1では、平坦面15に突起部16を設け、平坦面15とリング18との解離を容易にしている。
 ただし、平坦面15は、突起部16を備えている必要はない。平坦面15に微小の凹凸を形成しておくことで、平坦面15とリング18との解離を促すことができるためである。平坦面15が突起部16を備えていない場合には、突起部16の貫通孔は、平坦面15に形成された構成で代替されうる。
 次に、吸液芯保持部17に形成される排液孔22について、図6を用いて説明する。図6は、中栓10の断面図である。なお、図6に示す断面は、吸液芯保持部17の中心と突起部16とを結ぶ線分に垂直で、かつ、吸液芯保持部17の中心を通る面を断面とする断面図である。
 図示するように、吸液芯保持部17には排液孔22が2か所形成されている。排液孔22は、中空に形成された中栓本体12の底面部近傍の吸液芯保持部17の壁面であって、かつ、互いに対向する位置に2か所形成されている。排液孔22を吸液芯保持部17に形成する理由は次のとおりである。
 吸い上げ式液体容器1が横倒しになったときを考える。このとき、容器本体2に収容された液体が吸液芯30に吸い上げられ、吸い上げられた液体が容器本体2から漏出しうる。そこで、排液孔22が存在することにより、吸液芯30が吸収した液体は、排液孔22から中栓本体12に排液され、中栓本体12の内部に溜まる。中栓本体12の内部に溜まった液体は、突起部16の貫通孔を通って容器本体2に還流される。こうして、吸い上げ式液体容器1が横倒しになったときであっても、排液孔22を設けることにより、吸い上げ式液体容器1の外部への液体の漏出を抑制することができる。
 特に、吸い上げ式液体容器1からの液体の放散量が多い場合には、毛細管現象による吸液芯30の吸液速度を高める必要があり、吸液芯30の空隙率を高くすることになる。このとき、吸い上げ式液体容器1が横倒しになったとき、吸液芯30を介した液体の漏出が問題となりやすい。そこで、吸液芯保持部17に排液孔22を形成することで、吸い上げ式液体容器1からの液体の漏洩を抑え、かつ、漏洩した液体を早期に容器本体2の内部に還流することができる。
 なお、吸液芯保持部17に形成される排液孔22の数は、2つに限らず、1、または3以上であってもよい。また、吸液芯保持部17に形成される排液孔22の位置も、互いに対向する位置ではなく、適宜決められてよい。排液孔22の直径は0.5mm~1mm程度でよい。排液孔22の形状は、円状でなくとも、四角状、三角状など、適宜決められてよい。
 〔リング18の動作とその効果1〕
 吸い上げ式液体容器1が横倒しになったときのリング18の動作を図7等により説明する。図7は、吸い上げ式液体容器1が横倒しになったときに突起部16が吸液芯30よりも上側に位置する場合の、吸い上げ式液体容器1が横倒しになった直後のリング18の位置を示す図である。図8は、吸い上げ式液体容器1が横倒しになったときに突起部16が吸液芯30よりも上側に位置する場合の、吸い上げ式液体容器1が横倒しになりしばらく時間が経過した後におけるリング18の位置を示す図である。
 図7に示すように、吸い上げ式液体容器1が横倒しになった直後、リング18は、突起部16から離間している。
 しかしながら、吸い上げ式液体容器1が横倒しになりしばらく時間が経過した後では、図8に示すように、リング18は、重力により突起部16の方向に移動し、突起部16と接触する。このとき、図8では、リング18は、突起部16に形成された貫通孔を塞ぐように、突起部16と接触している。これにより、吸い上げ式液体容器1では、突起部16に形成された貫通孔を介した液体の漏出が抑制される。
 次に、吸い上げ式液体容器1が横倒しになったときに突起部16が吸液芯30よりも下側に位置する場合を図9、図10により説明する。図9は、吸い上げ式液体容器1が横倒しになったときに突起部16が吸液芯30よりも下側に位置する場合の、吸い上げ式液体容器1が横倒しになった直後のリング18の位置を示す図である。図10は、吸い上げ式液体容器1が横倒しになったときに突起部16が吸液芯30よりも下側に位置する場合の、吸い上げ式液体容器1が横倒しになりしばらく時間が経過した後におけるリング18の位置を示す図である。
 図9に示すように、吸い上げ式液体容器1が横倒しになった直後、リング18は、突起部16から離間している。
 しかしながら、吸い上げ式液体容器1が横倒しになりしばらく時間が経過した後では、図10に示すように、リング18は、重力により突起部16の方向に移動し、突起部16と接触する。このとき、図10では、リング18は、突起部16に形成された貫通孔を塞ぐように、突起部16と接触している。これにより、吸い上げ式液体容器1では、突起部16に形成された貫通孔を介した液体の漏出が抑制される。
 このように、吸い上げ式液体容器1では、リング18が突起部16に形成された貫通孔を塞ぐ場合には、突起部16に形成された貫通孔を介した液体の漏出は抑制される。
 ただし、リング18と突起部16との接触の仕方、容器本体2に収容された液体の残量によっては、リング18が突起部16に形成された貫通孔を塞がない場合もある。そこで、以下の〔気液交換と液体の漏出との関係について〕、および、〔リング18の動作とその効果2〕では、リング18が突起部16に形成された貫通孔を完全に塞いでいない状態において、吸い上げ式液体容器1が、突起部16に形成された貫通孔からの液体の漏出を抑制する原理を説明する。
 〔気液交換と液体の漏出との関係について〕
 容器本体2に収容された液体が貫通孔を通って容器本体の外部へ漏出する様子を、容器本体2内の液面高さとの関係で図11により説明する。
 図11は、液面高さ(液面1、液面2)と貫通孔Hからの液体漏出の関係を説明するための図である。なお、図11では、吸い上げ式液体容器1が横倒しになったときに貫通孔Hが吸液芯30よりも上側に位置する場合に該当する。また、図11では、説明の便宜のため、リング18の記載は省略している。また、図11では、説明の便宜のため、平坦面15に直接貫通孔Hが形成されている。
 図示するように、液面1は、貫通孔Hよりも高い位置にある。つまり、貫通孔Hは液体で満たされている。この場合、貫通孔Hを介した気液交換は行われにくい。具体的に、図11の液面1の状態では、貫通孔Hが液体で満たされていることから、中栓本体12から容器本体2への空気の移動が生じにくく、そのため、容器本体2から中栓本体12へ液体が流れにくくなる。
 次に、液面2の場合を考える。貫通孔Hは、液面2と同じ高さにあり、液体によって完全に満たされた状態にはない。この場合、貫通孔Hを介した気液交換が行われやすい。具体的には、図11の液面2の状態では、貫通孔Hが液体で満たされた状態にないことから、中栓本体12から容器本体2への空気の移動が生じやすい。このため、容器本体2から中栓本体12へ液体が流れやすくなる。
 つまり、中栓本体12から容器本体2へ空気が移動するとき、容器本体2から中栓本体12へ向かって液体が流れやすくなる。逆に言えば、容器本体2から中栓本体12への液体の漏出を抑制するためには、容器本体2から中栓本体12への空気の流れを抑制すればよい。そのため、図11の液面1のように、容器本体2中の液体の液面高さを貫通孔Hよりも高い位置にすることで、容器本体2からの液体の漏出を抑制することができる。
 ここで、図11とは異なるケースを図12により説明する。図12は、液面高さ(液面3)と貫通孔Hからの液体漏出の関係を説明するための図である。なお、図12では、吸い上げ式液体容器1が横倒しになったときに貫通孔Hが吸液芯30よりも下側に位置する場合に該当する。また、図12では、説明の便宜のため、リング18の記載は省略している。また、図12では、説明の便宜のため、平坦面15に直接貫通孔Hが形成されている。
 図示するように、液面3は、貫通孔Hと同じ高さにあり、液体によって完全に満たされた状態にはない。この場合、貫通孔Hを介した気液交換が行われやすい。また、貫通孔Hは吸液芯30よりも下側に位置する場合には、吸液芯30と吸液芯保持部17との隙間等から空気が容器本体2の内部に入り込み、液漏れが発生しうる。しかしながら、この場合にも、リング18が平坦面15に近接することにより、平坦面15とリング18との間の液面が上昇し、貫通孔Hからの液漏れが抑制される。
 〔リング18の動作とその効果2〕
 上記の〔リング18の動作とその効果1〕では、吸い上げ式液体容器1が横倒しになった後に、リング18が突起部16に形成された貫通孔を塞ぐことで、容器本体2からの液体の漏出が抑制されることを説明した。
 しかしながら、吸い上げ式液体容器1が横倒しになった後に、リング18が突起部16に形成された貫通孔を完全に塞ぐことができない場合もある。そのような場合においても、吸い上げ式液体容器1は、図13等を用いて後述する方法によって、容器本体2からの液体の漏出を抑制することができる。
 図13は、突起部16が吸液芯30よりも上側に位置する場合において、リング18が突起部16の方向に倒れ込んだ様子を説明する図である。
 図示する例では、吸い上げ式液体容器1が横倒しになった後に、リング18は、突起部16に形成された貫通孔を完全に塞いではいない。そのため、突起部16の貫通孔を介した気液交換によって、突起部16に形成された貫通孔を介して、容器本体2から液体が漏出することが予想される。
 しかしながら、リング18は、重力によって突起部16に対して近接している。そのため、平坦面15とリング18との間を毛細管現象により液体が上昇し、それにより図中の破線で示す位置に液体膜が形成される。つまり、その液体膜の存在する位置が、坦面15とリング18との間にある液体の液面高さとなる。
 これにより、突起部16の貫通孔は液体で満たされ、突起部16の貫通孔を介した気液交換が行われにくくなり、容器本体2からの液体の漏出を抑制することができる。
 図14は、リング18が平坦面15に近接したときの液面高さを説明する写真である。このうち、図14(a)は、吸い上げ式液体容器1が横倒しになったときの、容器本体2の開口部側から吸い上げ式液体容器1を視たときの液面高さを示す写真である。図14(b)は、吸い上げ式液体容器1が横倒しになったときの、容器本体2の開口部における液面高さを示す写真である。
 図14(a)の矢印は、突起部16の貫通孔を示す。図14(a)に示すように、容器本体中の液体の液面は、突起部16の貫通孔の位置よりも低い(図中のL1)。
 しかしながら、図14(b)に示すように、容器本体2の開口部では、液面高さは、L1からL2へと変化し、L2は突起部16の貫通孔の位置よりも高くなっている。これは、リング18が平坦面15に対して近接することで、平坦面15とリング18との間を毛細管現象により液体が上昇したことによる。その結果、容器本体2の開口部において、液面高さがL1からL2へと上昇している。その結果、上述したように、吸い上げ式液体容器1では、容器本体2から中栓本体12への液体の漏出が抑制される。
 図15は、図14(b)の様子を簡略化して説明するための図である。図示するように、リング18が平坦面15に近接することで、平坦面15とリング18との間で毛細管現象が働き、液面高さがL1からL2へと上昇している。そして、突起部16の貫通孔は、液体で満たされた状態となる。突起部16の貫通孔が液体で満たされると、突起部16の貫通孔を介した気液交換が起こりにくくなり、その結果、容器本体2から中栓本体12への液体の漏出が抑制される。この液体の漏出抑制効果は、液面高さが図11の液面2(つまり、突起部16の貫通孔と同じ位置が液面高さとなる場合)の場合に特に有効である。
 図16は、突起部16が吸液芯30よりも下側に位置する場合において、リング18が突起部16の方向に倒れ込んだ様子を説明する図である。
 この場合においても、図13~図15により説明した理由により、リング18が平坦面15に近接することで生じる毛細管現象によって容器本体2からの液体の漏出が抑制される。
 次に、図14、図15の比較例として、リングが存在しない場合の液体漏出を図17、図18により説明する。
 図17は、リング18が存在しない場合の液面高さを説明する写真である。このうち、図17(a)は、吸い上げ式液体容器1が横倒しになったときの、容器本体2の開口部側から吸い上げ式液体容器1を視たときの液面高さを示す写真である。図17(b)は、吸い上げ式液体容器1が横倒しになったときの、容器本体2の開口部における液面高さを示す写真である。図18は、図17(b)の様子を簡略化して説明するための図である。
 図17では、吸い上げ式液体容器はリング18を有していない。そのため、液面L3は表面張力によって液面高さがL3からL4へと高くなるものの(図17(b)参照)、液面L4は、突起部16の貫通孔を塞ぐほどには高くならない。そのため、突起部16の貫通孔は、液体で満たされない状態となる。突起部16の貫通孔が液体で満たされていないと、突起部16の貫通孔を介した気液交換が起こりやすく、その結果、容器本体2から中栓本体12へ液体が漏出しやすくなる。
 このように、吸い上げ式液体容器1は、リング18が平坦面15に倒れ込み、リング18が平坦面15に近接する場合に、平坦面15とリング18との間に生じる毛細管現象を利用して、突起部16の貫通孔からの液体の漏出を抑制する。このことは、吸い上げ式液体容器1が横倒しになったときにリング18が突起部16の貫通孔を完全に塞ぐように吸い上げ式液体容器1を詳細に設計することが不要であることを意味する。この点においても、中栓本体12、および中栓本体12を備えた吸い上げ式液体容器1によって、設計の簡略化が促進される。
 また、吸い上げ式液体容器1では、使用する液体は、芳香剤、消臭剤、殺虫剤、水など液体特性の異なる様々な液体を扱う。この点、吸い上げ式液体容器1は、可動のリング18を利用するため、また、リング18を平坦面15に近接させることができるため、粘度等の液体特性が変化する場合であっても、液体の漏出を効果的に抑制することができる。
 このように、本実施の形態に係る吸い上げ式液体容器1は、表面張力、毛細管現象といった自然現象を利用するものであり、重力による作用のみを考慮する技術ではない。表面張力、毛細管現象は、平坦面15とリング18との距離が非常に大きなファクターとなるものであり、吸い上げ式液体容器1が安定的な運転を行う上で重要な役割を果たしている。この点、吸い上げ式液体容器1は、リング18を平坦面15に近接させることで、毛細管現象を取り入れた液体の漏出抑制機構を提供している。
 〔リング40〕
  〔突出部41(第1突出部)について〕
 次に、リング18と比較しつつ、リング18とは異なる他のリング40を説明する。図19は、リング18の断面図である。図20は、リング40の断面図である。
 リング18は、筒体であって、筒体内に吸液芯保持部17が嵌入される。リング18は、吸液芯保持部17には固定されておらず、吸液芯保持部17の長手方向に沿って、突起部16および平坦面15とリング係止部20とによって規制される範囲内を移動可能である。リング18は、吸液芯保持部17に対する可動性(摺動性)を高くするために、吸液芯保持部17に対して緩めに取り付けられている。
 なお、筒体とは、管、くだのように、中が空洞になっている形状をいう。また、筒体は、内部空間の断面形状を、円形、四角形、三角形等の種々の形状とすることができ、特定の形状に限られない。また、筒体は、その空洞が伸びる方向(図18の、吸液芯保持部17の長手方向)に一定の長さ(幅)を有する。また、筒体は環状でもある。
 ただし、以下では、リング18、および後述するリング40、リング50はいずれも円筒体であるものとして説明する。また、以下の説明では、吸液芯保持部17と対向する側のリング18の面を内周面と称している。
 リング18では、内周面は平らに形成されている。具体的には、リング18の内周面には突出部や溝などは形成されていない。そのため、リング18は、吸液芯保持部17の長手方向に沿って移動するときに、内周面全体で吸液芯保持部17と接触する。
 次にリング40を説明する。なお、リング18における説明と同様の説明は繰り返さない。
 図20に示すように、リング40は、内周面において突出する突出部41を有する。突出部41は、吸液芯保持部17側に突出している。突出部41は、吸液芯保持部17を取り囲むようにリング40の内周面の全周にわたって形成されている。
 リング40は、吸液芯保持部17に対する摺動性を高くするために、吸液芯保持部17に対して緩めに取り付けられており、突出部41の高さは、吸液芯保持部17に対するリング40の摺動性を損なわないよう、リング40の内周面と吸液芯保持部17との間の距離に応じて適宜決められうる。また、吸液芯保持部17の長手方向における突出部41の幅は、リング40の内周面の吸液芯保持部17の長手方向の幅に比べて十分に短い。
 なお、リング40の内周面は突出部41以外が平らであり、突出部41は内周面と一体に形成されているが、これに限られない。
 ここで、「内周面において突出する」突出部とは、当該突出部が、内周面から突き出ていることを示す。言い換えると、「内周面において突出する」とは、吸液芯保持部17の長手方向における内周面の端部を第1端部、他端を第2端部としたときに、第1端部と第2端部とを結ぶ線よりも突出部が吸液芯保持部17側に突き出ていることを言う。このことは、後述する〔リング50〕の頂点51aについても同様である。
 リング40が内周面において突出する突出部41を有することの効果は次のとおりである。
 まず、リング18を考える。リング18は、突出部41を備えておらず、内周面そのものを接触面として吸液芯保持部17と接触する。
 一方、リング40は、内周面において突出する突出部41が吸液芯保持部17と接触する。そのため、リング40は、リング18と比べると、突起部16の貫通孔の方向へ移動するときに、吸液芯保持部17との接触面積を小さくすることができる。
 これにより、リング18と吸液芯保持部17との間の摺動抵抗は低減し、吸い上げ式液体容器1が横倒しになったときに、リング40が突起部16の貫通孔に近接しやすくなる。その結果、リング40は、リング18よりも、容器本体2の外部への液体の漏出を抑制することができる。
 図21、図22は吸い上げ式液体容器1が横倒しになったときのリング40の動作を説明するための図である。図21は、吸い上げ式液体容器1が横倒しになった直後のリング40を示す図である。図22は、図21の状態から僅かに時間が経過した後のリング40の様子を示す図である。
 上述したように、リング18は、リング18の内周面全体で吸液芯保持部17と接触する。これに対して、リング40は、内周面から突出した突出部41が吸液芯保持部17と接触する。そのため、リング40は、リング18と比べて、吸液芯保持部17との間の摺動抵抗が低減し、吸い上げ式液体容器1が横倒しになったときに、リング18よりも早く突起部16に近接しうる。その結果、リング40を用いることで、突起部16に形成された貫通孔を介した液体の漏出をさらに抑制することができる。
 なお、吸液芯保持部17の長手方向における突出部41の幅は、リング40の内周面の吸液芯保持部17の長手方向の幅に比べて短くなるほど、リング40と吸液芯保持部17との間の摺動抵抗を低減することができる。
 また、突出部41は、吸液芯保持部17を取り囲むようにリング40の内周面の全周にわたって、連続的に形成されていてもよいし、断続的に形成されていてもよい。
  〔突出部41と重心位置との関係について〕
 続いて、リング40の他の構成と効果を説明する。
 図20に示すように、リング40は、吸液芯保持部17の長手方向に沿って厚みが変化している。リング40では、突起部16側(図面右側)が突起部16とは反対の側(図面左側)よりも厚みがある。そのため、吸液芯保持部17の長手方向におけるリング40の重心位置は、突起部16側寄りとなる。図20では、吸液芯保持部17の長手方向におけるリング40の重心位置がCG(Center of Gravity)で示されている。
 そして、突出部41は、CGを基準に、突起部16とは反対側に位置する。これにより、リング40は、吸い上げ式液体容器1が横倒しになったときに、突出部41を支点にして傾きやすくなる。そのため、たとえ吸液芯保持部17と突出部41との間の摺動性が芳しくないときであっても、リング40が突起部16の方向に倒れ込みやすくなる。その様子が図23に記載されている。図23は、突起部16が吸液芯30よりも上側に位置する場合において、リング40が突起部16の方向に倒れ込んだ様子を示す図である。
 図23に示すように、リング40は、吸い上げ式液体容器1が横倒しになったときに、突出部41を支点にして傾き、突起部16の方向に倒れ込みやすくなる。これにより、リング40は突起部16の貫通孔に近接しやすくなる。そして、容器本体2に収容された液体は、毛細管現象によってリング40と平坦面15との間を上昇し、突起部16の貫通孔を液体で満たし、容器本体2の外部への液体の漏出をさらに抑制することができる。
 なお、リング40では、突起部16側が突起部16とは反対の側よりも厚みがあるが、厚みに差がない他のリングを使用した場合であっても、突出部41がCGを基準に突起部16とは反対側に位置するようにすることで、上記の効果を実現することができる。
  〔突出部42(第2突出部)について〕
 続いて、図19のリング18と対比しつつ、リング40のさらに他の構成と効果を説明する。なお、以下の説明では、リング18およびリング40における突起部16に対向する側の面を対向面と称している。
 図19に示すように、リング18では、対向面は、全面にわたって平らに形成されている。具体的には、リング18の対向面には突出部や溝などは形成されていない。
 これに対して、図20に示すように、リング40の対向面には突出部42が形成されている。突出部42は、対向面の所定の位置に位置決めされている。ここで、所定の位置とは、リング40が突起部16に近接したときに、突起部16、または、突起部16の貫通孔に対向する位置であり、突出部42は、対向面上を環状に形成されている。
 なお、リング40の対向面は、突出部42以外は平らに形成されていてよい。また、突出部42は、微小の高さであってもよい。また、突出部42は、内周面と一体に形成されているが、これに限られない。
 リング40が対向面に突出部42を有することの効果は次のとおりである。
 リング40は、対向面において突出する突出部42を有することにより、突出部42を対向面に有していないリング18と比べて、突出部42と突起部16との間の距離を短くすることができ、かつ、突起部16へより早く近接することができる。これにより、容器本体2に収容された液体は突出部42と突起部16との間に浸透されやすくなり、突出部42と突起部16との間への液体の吸い上げが容易になる。その結果、突起部16に形成された貫通孔を介した液体の漏出をさらに抑制することができる。
 このように、リング40は、リング18に対して種々の工夫を加えることで、突起部16に形成された貫通孔を介した液体の漏出をさらに抑制することを可能としている。
 〔リング50〕
 次に、リング18およびリング40と比較しつつ、さらに他のリング50を説明する。図24は、リング50の断面図である。なお、リング18およびリング40における説明と同様の説明は繰り返さない。
 上述したように、リング18は、内周面が平らに形成されている。つまり、吸液芯保持部17の長手方向の位置によらず、リング18の内径は一定(あるいは、略一定)である。
 また、リング40は、内周面上に突出部41が形成されている。突出部41は、リング40の内周面の全周にわたって形成されている。リング40の内周面は、突出部41以外は平らである。つまり、リング40の内径は、突出部41が形成された箇所を除き、吸液芯保持部17の長手方向の位置にかかわらず、一定(あるいは、略一定)である。
 一方、リング50では、内周面上に傾斜51が形成されている。具体的に、図24に示すように、吸液芯保持部17の長手方向に沿って、頂点51aの方向に向かうほどリング50の内径は小さくなり、頂点51aから離れる方向に向かうほどリング50の内径は大きくなる。
 リング50が内周面上に傾斜51、および傾斜51の頂点51aを有することによる効果は次のとおりである。
 リング50は、内周面上に傾斜51を有することにより、傾斜51の頂点である頂点51aを介して吸液芯保持部17と接触する。そのため、リング50は、内周面全体で吸液芯保持部17と接触するリング18と比べて、突起部16の貫通孔の方向へ移動するときに、吸液芯保持部17との接触面積を小さくすることができる。これにより、リング50は、リング18と比べて、吸液芯保持部17との間の摺動抵抗が低減し、吸い上げ式液体容器1が横倒しになったときに、リング18よりも早く、突起部16に近接する、あるいは、突起部16へ倒れ込みやすくなる。それゆえ、リング50を用いることで、突起部16に形成された貫通孔を介した液体の漏出をさらに抑制することができる。
 このように、リング50は、リング40と同様に、吸液芯保持部17との接触面積を小さくすることで吸液芯保持部17との間の摺動抵抗を低減し、突起部16に形成された貫通孔を介した液体の漏出をさらに抑制するというものである。
 なお、吸液芯保持部17との接触面積を小さくすることで吸液芯保持部17との間の摺動抵抗を低減する構成は、上記のリング40およびリング50に限らず、他の構成を採用することも当然に可能であり、リング40およびリング50はその一例である。
 〔吸液芯保持部60の突出部24(第3突出部)について〕
 次に、吸液芯保持部17と比較しつつ、吸液芯保持部17とは異なる他の吸液芯保持部60を説明する。図25は、中栓10の外観図であり、図25(a)は中栓10の正面図であり、図25(b)は中栓10の下面図である。また、図26は、中栓10aの外観図であり、図26(a)は、中栓10aの正面図であり、図26(b)は中栓10aの下面図である。
 図25および図26に示すように、吸液芯保持部17と吸液芯保持部60との構成上の差異は、吸液芯保持部60には突出部24が形成されており、吸液芯保持部17には突出部24が形成されていないという点にある。
 具体的に、図26(a)に示すように、吸液芯保持部60では、リングの内周面と対向する面において、吸液芯保持部17の長手方向に沿って2つの突出部24が形成されている。また、図26(b)に示すように、突出部24は、リングの内周面と対向する面において、微小な高さで形成されている。
 なお、突出部24は、吸液芯保持部17の長手方向に沿って連続的に形成されてもよいし、断続的に形成されてもよい。また、図24では、突出部24は2つ形成されているが、1つ、あるいは3以上の複数が形成されていてもよい。また、突出部24の高さは、リングの内周面と吸液芯保持部17との間の距離に応じて適宜決められてよい。
 吸液芯保持部60が突出部24を有することの効果は次のとおりである。
 上記の構成によれば、リング18が突起部16の貫通孔の方向へ移動するときに、吸液芯保持部60の突出部24がリング18の内周面と接触するため、吸液芯保持部17と比べて、リング18と吸液芯保持部60との接触面積を小さくすることができる。これにより、リング18と吸液芯保持部60との間の摺動抵抗は低減し、吸い上げ式液体容器1が横倒しになったときに、リング18が突起部16の貫通孔に近接しやすくなる。そして、容器本体2に収容された液体は、毛細管現象によってリング18と平坦面15との間を上昇し、突起部16の貫通孔を液体で満たし、容器本体2の外部への液体の漏出をさらに抑制することができる。
 なお、上記の説明において、リング18は、リング40またはリング50と書き換えられてもよい。
 このように、リング40、リング50だけではなく、吸液芯保持部に対する工夫によっても、吸液芯保持部とリングとの間の接触面積を小さくし、容器本体2の外部への液体の漏出をさらに抑制する効果を実現することができる。吸液芯保持部60はその一例であって、他の構成を採用することも当然に可能である。
 〔用途〕
 本実施の形態に係る吸い上げ式液体容器1には以下の用途がある。なお、用途は、以下の用途に限定されない。
 吸い上げ式液体容器1では、吸液芯30は、一端が容器本体2に収容された液体中に浸漬し、他端が中栓本体12の上方へ伸長する。
 そこで、中栓本体12の上方へ伸長する吸液芯30の他端にヒータ等で熱を加え、吸液芯30の他端から液体を蒸散させる加熱蒸散装置に吸い上げ式液体容器1を組み込む用途が考えられる。あるいは、中栓本体12の上方へ伸長する吸液芯30の他端に振動板を接触、または、近接させて、振動子の振動を振動板に伝え、吸液芯30の他端から液体を噴霧させる振動噴霧装置に吸い上げ式液体容器1を組み込む用途が考えられる。あるいは、吸液芯30の上記他端から液体を自然蒸発させることで、液体を外部へ放散させる液体放散装置に吸い上げ式液体容器1を組み込む用途が考えられる。
 このように、吸い上げ式液体容器1は、種々の用途に用いられ、何れの用途においても、液体の漏出を抑制することができる。
 〔補足〕
 本発明は、以下のように構成することもできる。
 また、本発明の一態様に係る中栓では、上記可動部は、筒体であり、当該筒体内に上記吸液芯保持部が嵌入される構成であってもよい。
 一般に、吸い上げ式液体容器は小型であって、容器本体の内部空間における空間的制約は大きい。
 この点、可動部は、筒体であり、筒体内に吸液芯保持部が嵌入される。そのため、中栓本体は、可動部を取り付けるための部材を新たに備える必要がない。これにより、中栓本体が保持される容器本体の開口部には空間的に余裕が生まれ、可動部のサイズを大きくするなど、設計の自由度を高めることができる。
 なお、筒体とは、管、くだのように、中が空洞になっている形状をいう。また、筒体は、内部空間の断面形状を、円形、四角形、三角形等の種々の形状とすることができ、特定の形状に限られない。
 また、本発明の一態様に係る中栓では、上記可動部は、上記筒体の内周面において突出する第1突出部を備え、上記第1突出部は、上記可動部が上記液側表面の方向へ移動するときに、上記吸液芯保持部と接触する構成であってもよい。
 上記可動部が筒体の内周面において突出する第1突出部を備えていない場合を考える。この場合、上記可動部は、内周面そのものを接触面として上記吸液芯保持部と接触する。
 一方、上記可動部が筒体の内周面において突出する第1突出部を備え、上記第1突出部が、上記可動部が上記液側表面の方向へ移動するときに、上記吸液芯保持部と接触する場合を考える。この場合、上記可動部が上記液側表面の方向へ移動するときに、第1突出部が上記吸液芯保持部と接触する。そのため、筒体である可動部の内周面に第1突出部が存在しない場合と比べると、上記可動部と上記吸液芯保持部との接触面積を小さくすることができる。
 これにより、上記可動部と上記吸液芯保持部との間の摺動抵抗を低減することができ、吸い上げ式液体容器が横倒しになったときに、上記可動部が上記貫通孔に近接しやすくなる。そして、容器本体に収容された液体は、毛細管現象によって可動部と液側表面との間を上昇し、液側表面に形成された貫通孔を液体で満たし、容器本体の外部への液体の漏出をさらに抑制することができる。
 また、本発明の一態様に係る中栓では、上記第1突出部は、上記吸液芯保持部に沿う方向における上記可動部の重心位置を基準に、上記貫通孔とは反対側に位置する構成であってもよい。
 上記の構成により、上記可動部は、上記吸い上げ式液体容器が横倒しになったときに、上記第1突出部を支点として傾きやすくなる。これにより、吸い上げ式液体容器が横倒しになったときに、たとえ吸液芯保持部と上記第1突出部との間の摺動性が芳しくないときであっても、上記可動部は上記貫通孔の方向に倒れ込みやすくなり、可動部と液側表面との間の距離を狭くすることができる。そして、容器本体に収容された液体は、毛細管現象によって可動部と液側表面との間を上昇し、液側表面に形成された貫通孔を液体で満たし、容器本体の外部への液体の漏出をさらに抑制することができる。
 また、本発明の一態様に係る中栓では、上記可動部は、上記液側表面と対向する側の表面において突出する第2突出部を備え、上記第2突出部は、上記可動部が上記液側表面に近接したときに、上記貫通孔と対向する位置に位置決めされている構成であってもよい。
 上記可動部は、上記液側表面と対向する側の表面(以下、対向面と称する)に第2突出部を有することにより、第2突出部を対向面に有していない可動部と比べて、上記第2突出部と上記貫通孔との間の距離をさらに短くすることができる。加えて、第2突出部は、上記可動部が上記液側表面に近接したときに、上記貫通孔と対向する位置に位置決めされている。
 これにより、容器本体に収容された液体は、毛細管現象によって可動部と液側表面との間を上昇し、液側表面に形成された貫通孔を液体で満たし、容器本体の外部への液体の漏出をさらに抑制することができる。
 また、本発明の一態様に係る中栓では、上記吸液芯保持部は、上記可動部の内周面と対向する面において突出する第3突出部を備え、上記第3突出部は、上記可動部が上記液側表面の方向へ移動するときに、上記可動部と接触する構成であってもよい。
 上記構成によれば、上記第3突出部が上記可動部の内周面と接触するため、第3突出部が存在しない場合と比べて、上記可動部が上記液側表面の方向へ移動するときに、上記可動部と上記吸液芯保持部との接触面積を小さくすることができる。
 これにより、上記可動部と上記吸液芯保持部との間の摺動抵抗は低減し、吸い上げ式液体容器が横倒しになったときに、上記可動部が上記貫通孔に近接しやすくなる。その結果、容器本体の外部への液体の漏出をさらに抑制することができる。
 また、本発明の一態様に係る中栓では、上記液側表面に、上記液側表面と上記可動部との解離を容易にする突起部を備える構成であってよい。
 本発明に係る中栓では、吸い上げ式液体容器が横倒しになると、可動部が中栓本体の液側表面に近接する。このとき、可動部が、液側表面に張り付き、液側表面から外れにくくなることも考えられる。可動部が液側表面に張り付いて解離しなくなると、液側表面に形成された貫通孔は、空気経路として機能しなくなり、容器本体の内圧を安定に保持する通気機能としての役割を果たさなくなる。
 そこで、本発明の一態様に係る中栓は、上記構成を備えることにより、上記液側表面と上記可動部との解離を容易にする。これにより、液側表面に形成された貫通孔は、容器本体の内圧を安定にする通気機能を保持することができる。
 また、本発明の一態様に係る中栓では、上記貫通孔は、上記突起部を貫通して形成されている構成であってよい。
 上記の構成によれば、本発明の一態様に係る中栓は、容器本体の内部空間を外気に連通させる貫通孔が形成された突起部を備える。
 これにより、突起部は、それ自体で、容器本体の内圧を安定に保持する通気機能、および、上記液側表面と上記可動部との解離を容易にする機能を兼ね備えることができる。そして、上記構成により、中栓本体の液側表面の構造を簡素化することができる。
 また、本発明の一態様に係る中栓では、上記可動部は、上記吸液芯保持部とは異なる材質で形成されている構成であってもよい。
 上記可動部は、上記吸い上げ式液体容器が横倒しになると上記液側表面に近接する。
 この点、上記吸液芯保持部とは異なる材質で上記可動部を形成することで、上記可動部は、上記吸液芯保持部に対する移動性、摺動性を高めることができる。一例として、可動部は、吸い上げ式液体容器内の液体よりも比重が大きい材質であって、上記吸液芯保持部とは異なる材質で形成される。
 また、本発明の一態様に係る中栓では、上記可動部は、環状であり、内周内に上記吸液芯保持部が嵌入される構成であってもよい。
 一般に、吸い上げ式液体容器は小型であって、容器本体の内部空間における空間的制約は大きい。
 この点、可動部は、環状であり、内周内に吸液芯保持部が嵌入される。そのため、中栓本体は、可動部を取り付けるための部材を新たに備える必要がない。これにより、中栓本体が保持される容器本体の開口部には空間的に余裕が生まれ、可動部のサイズを大きくするなど、設計の自由度を高めることができる。
 また、本発明の一態様に係る吸い上げ式液体容器では、上記何れかの中栓を備える構成であってよい。
 これにより、上述した種々の効果を奏する吸い上げ式液体容器をユーザに提供することができる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 本発明は、中栓に関し、吸い上げ式液体容器に利用することができる。
1 吸い上げ式液体容器
2 容器本体
3 外栓
10 中栓
12 中栓本体
14 ボトルプラグ
15 平坦面(液側表面)
16 突起部
17、60 吸液芯保持部
18、40、50 リング(可動部)
20 リング係止部
22 排液孔
24 突出部(第3突出部)
30 吸液芯
41 突出部(第1突出部)
42 突出部(第2突出部)
51 傾斜
51a 頂点

Claims (11)

  1.  吸い上げ式液体容器の容器本体内に挿入され、当該容器本体内の液体を吸い上げる吸液芯を当該容器本体の開口部において保持するための中栓であって、
     上記開口部に保持される中栓本体と、
     上記中栓本体に連結する、上記吸液芯を保持する吸液芯保持部と、
     上記中栓本体が上記開口部に保持されたときに上記容器本体の内部空間に位置し、上記吸液芯保持部に沿う方向に移動可能な可動部と、を備え、
     上記中栓本体には、上記容器本体に収容される液体の側に配置される当該中栓本体の表面である液側表面に、上記容器本体の内部空間を外気に連通させる貫通孔が形成されており、
     上記可動部は、上記吸い上げ式液体容器が横倒しになったときに、重力により上記液側表面に近接することを特徴とする中栓。
  2.  上記可動部は、筒体であり、当該筒体内に上記吸液芯保持部が嵌入されることを特徴とする請求項1に記載の中栓。
  3.  上記可動部は、上記筒体の内周面において突出する第1突出部を備え、
     上記第1突出部は、上記可動部が上記液側表面の方向へ移動するときに、上記吸液芯保持部と接触することを特徴とする請求項2に記載の中栓。
  4.  上記第1突出部は、上記吸液芯保持部に沿う方向における上記可動部の重心位置を基準に、上記貫通孔とは反対側に位置することを特徴とする請求項3に記載の中栓。
  5.  上記可動部は、上記液側表面と対向する側の表面において突出する第2突出部を備え、
     上記第2突出部は、上記可動部が上記液側表面に近接したときに、上記貫通孔と対向する位置に位置決めされていることを特徴とする請求項2から4の何れか1項に記載の中栓。
  6.  上記吸液芯保持部は、上記可動部の内周面と対向する面において突出する第3突出部を備え、
     上記第3突出部は、上記可動部が上記液側表面の方向へ移動するときに、上記可動部と接触することを特徴とする請求項2から5の何れか1項に記載の中栓。
  7.  上記液側表面に、上記液側表面と上記可動部との解離を容易にする突起部を備えることを特徴とする請求項1から6の何れか1項に記載の中栓。
  8.  上記貫通孔は、上記突起部を貫通して形成されていることを特徴とする請求項7に記載の中栓。
  9.  上記可動部は、上記吸液芯保持部とは異なる材質で形成されていることを特徴とする請求項1から8の何れか1項に記載の中栓。
  10.  上記可動部は、環状であり、内周内に上記吸液芯保持部が嵌入されることを特徴とする請求項1に記載の中栓。
  11.  請求項1から10の何れか1項に記載の中栓を備えることを特徴とする吸い上げ式液体容器。
PCT/JP2014/076396 2013-10-03 2014-10-02 中栓、吸い上げ式液体容器 WO2015050198A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480054347.2A CN105593138B (zh) 2013-10-03 2014-10-02 内塞、上吸式液体容器
EP14850986.2A EP3053853A4 (en) 2013-10-03 2014-10-02 Inside plug and suction-type liquid container
US15/026,658 US9987386B2 (en) 2013-10-03 2014-10-02 Inside plug and suction-type liquid container

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013208596 2013-10-03
JP2013-208596 2013-10-03
JP2014-006782 2014-01-17
JP2014006782A JP6242216B2 (ja) 2013-10-03 2014-01-17 中栓、吸い上げ式液体容器

Publications (1)

Publication Number Publication Date
WO2015050198A1 true WO2015050198A1 (ja) 2015-04-09

Family

ID=52778783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076396 WO2015050198A1 (ja) 2013-10-03 2014-10-02 中栓、吸い上げ式液体容器

Country Status (5)

Country Link
US (1) US9987386B2 (ja)
EP (1) EP3053853A4 (ja)
JP (1) JP6242216B2 (ja)
CN (1) CN105593138B (ja)
WO (1) WO2015050198A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3085393A1 (en) * 2015-04-21 2016-10-26 Personnel Hygiene Services Limited Fragrance dispenser

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD751229S1 (en) * 2012-12-29 2016-03-08 Mary Elle Fashions, Inc. LED night-light
USD751228S1 (en) * 2012-12-29 2016-03-08 Mary Elle Fashions, Inc. LED night-light
ES2564395B1 (es) * 2014-08-19 2017-01-02 Zobele España, S.A. Dispositivo evaporador de sustancias volátiles
US11986577B2 (en) * 2016-06-16 2024-05-21 Ctr, Lda Wicking device for evaporation of a fragrance with a wick holder
CN109260495B (zh) * 2017-07-18 2021-08-13 东莞亿得电器制品有限公司 具有多层透气膜的香氛胶囊及使用该香氛胶囊的加热器
JP7504598B2 (ja) * 2020-01-21 2024-06-24 藤森工業株式会社 ノズルを構成する中栓及び点眼剤容器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0271545U (ja) * 1988-11-18 1990-05-31
JPH09250756A (ja) 1996-03-18 1997-09-22 Tokyo Gas Co Ltd 炎漏出防止型コンロ
JPH11253087A (ja) 1998-03-09 1999-09-21 Earth Chem Corp Ltd 薬液加熱蒸散装置の薬液容器用吸液芯保持栓
JP2003341756A (ja) 2002-05-23 2003-12-03 Cci Corp 液体収納容器
JP2004267470A (ja) * 2003-03-07 2004-09-30 Kao Corp 芳香器
JP2007261658A (ja) * 2006-03-29 2007-10-11 Tokyo Raito Kogyo Kk 揮散具
JP2010215273A (ja) * 2009-03-17 2010-09-30 Lion Corp 揮散容器
JP2011006132A (ja) * 2009-06-29 2011-01-13 Yoshino Kogyosho Co Ltd 揮散液の揮散用容器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4729628U (ja) * 1971-04-21 1972-12-04
JPS5938194Y2 (ja) * 1980-05-31 1984-10-24 東芝電気器具株式会社 ポツト
US5909845A (en) * 1996-06-28 1999-06-08 S. C. Johnson & Son, Inc. Wick-based liquid emanation system with child-resistant overcap
US20040074982A1 (en) 2002-10-08 2004-04-22 Kotary Kara L. Wick-based delivery system with wick having small porosity sections
US20070290066A1 (en) * 2003-12-02 2007-12-20 Givaudan Sa Apparatus
JP4666568B2 (ja) * 2004-03-19 2011-04-06 花王株式会社 芳香器
WO2006032709A1 (es) 2004-08-13 2006-03-30 Zobele España, S.A. Aparato difusor de múltiples sustancias volátiles
GB0508544D0 (en) 2005-04-28 2005-06-01 Givaudan Sa Apparatus
US20090101730A1 (en) * 2007-10-19 2009-04-23 Davis Brian T Vented Dispensing Bottle/Cap Assembly
CN202590010U (zh) * 2012-04-18 2012-12-12 中山富士化工有限公司 一种新型防漏的香薰瓶

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0271545U (ja) * 1988-11-18 1990-05-31
JPH09250756A (ja) 1996-03-18 1997-09-22 Tokyo Gas Co Ltd 炎漏出防止型コンロ
JPH11253087A (ja) 1998-03-09 1999-09-21 Earth Chem Corp Ltd 薬液加熱蒸散装置の薬液容器用吸液芯保持栓
JP2003341756A (ja) 2002-05-23 2003-12-03 Cci Corp 液体収納容器
JP2004267470A (ja) * 2003-03-07 2004-09-30 Kao Corp 芳香器
JP2007261658A (ja) * 2006-03-29 2007-10-11 Tokyo Raito Kogyo Kk 揮散具
JP2010215273A (ja) * 2009-03-17 2010-09-30 Lion Corp 揮散容器
JP2011006132A (ja) * 2009-06-29 2011-01-13 Yoshino Kogyosho Co Ltd 揮散液の揮散用容器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3053853A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3085393A1 (en) * 2015-04-21 2016-10-26 Personnel Hygiene Services Limited Fragrance dispenser

Also Published As

Publication number Publication date
US9987386B2 (en) 2018-06-05
EP3053853A4 (en) 2017-07-05
CN105593138B (zh) 2017-06-09
JP2015091716A (ja) 2015-05-14
EP3053853A1 (en) 2016-08-10
CN105593138A (zh) 2016-05-18
JP6242216B2 (ja) 2017-12-06
US20160250371A1 (en) 2016-09-01

Similar Documents

Publication Publication Date Title
JP6242216B2 (ja) 中栓、吸い上げ式液体容器
US20070290065A1 (en) Volatile Material Dispensing Apparatus
TWI543820B (zh) 液體容器、超音波霧化裝置及吸收體
JPH06504480A (ja) 連続的および瞬間的機能を組合わせて使用できるディスペンサー
KR20080009698A (ko) 휘발성 액체 살포 장치
JPH04293568A (ja) 泡噴出ポンプ容器
JP4221738B2 (ja) 液体収納容器
WO2021261335A1 (ja) 薬液揮散器
JP5244660B2 (ja) 揮散容器
JP6626305B2 (ja) 薬液揮散器及びこれに用いられる容器の製造方法
JP2016166046A (ja) 乗物用芳香器具
US5299736A (en) Air freshener device with a ceramic container and an absorbent pad
KR20070050069A (ko) 휘발성 물질 살포 장치
JP2003226091A (ja) 塗布具
JP3868292B2 (ja) 液体供給装置
JP6147159B2 (ja) 液体揮散容器
JP2022002973A (ja) 薬液揮散器
JP2022002977A (ja) 薬液揮散器
JP2022002974A (ja) 薬液揮散器
JPS5850917Y2 (ja) 揮発性液剤分与器
JP2017052542A (ja) 液体揮散具および該液体揮散具を備える液体揮散装置
JPH0734838U (ja) 揮発装置
JP2017095122A (ja) 薬液揮散器
JP6143352B2 (ja) 液体揮散容器
US8464965B1 (en) Non-dripping and spillage and leakage-proof air-scenting method and device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14850986

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15026658

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014850986

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014850986

Country of ref document: EP