WO2015046428A1 - 光学ガラスおよびその製造方法 - Google Patents

光学ガラスおよびその製造方法 Download PDF

Info

Publication number
WO2015046428A1
WO2015046428A1 PCT/JP2014/075631 JP2014075631W WO2015046428A1 WO 2015046428 A1 WO2015046428 A1 WO 2015046428A1 JP 2014075631 W JP2014075631 W JP 2014075631W WO 2015046428 A1 WO2015046428 A1 WO 2015046428A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
melting
optical glass
content
optical
Prior art date
Application number
PCT/JP2014/075631
Other languages
English (en)
French (fr)
Inventor
修平 三上
Original Assignee
Hoya株式会社
修平 三上
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社, 修平 三上 filed Critical Hoya株式会社
Priority to KR1020167006655A priority Critical patent/KR102142175B1/ko
Priority to US14/917,841 priority patent/US9834465B2/en
Priority to CN201480053465.1A priority patent/CN105593181B/zh
Priority to JP2015539381A priority patent/JP5964518B2/ja
Publication of WO2015046428A1 publication Critical patent/WO2015046428A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/18Stirring devices; Homogenisation
    • C03B5/193Stirring devices; Homogenisation using gas, e.g. bubblers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/06Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in pot furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/167Means for preventing damage to equipment, e.g. by molten glass, hot gases, batches
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/007Other surface treatment of glass not in the form of fibres or filaments by thermal treatment
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/127Silica-free oxide glass compositions containing TiO2 as glass former
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/21Silica-free oxide glass compositions containing phosphorus containing titanium, zirconium, vanadium, tungsten or molybdenum
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • High refractive index optical glass usually contains a large amount of a high refractive index component such as Ti, Nb, W, or Bi as a glass component. These components are easily reduced during the melting process of the glass, and these reduced components absorb light on the short wavelength side in the visible light region, so that the glass is colored (hereinafter referred to as “reduced color”). ) Will increase.
  • Patent Document 1 proposes a technique for reducing the reduction color of glass in the melting process by generating an oxidizing gas from the glass raw material in the melting process and suppressing the reduction of the high refractive index component. . According to such a technique, an optical glass having a reduced reduction color can be produced even with a glass composition containing a large amount of a high refractive index component such as bismuth borate glass.
  • a noble metal material such as platinum having excellent heat resistance and corrosion resistance is widely used as a material constituting a melting vessel such as a crucible.
  • a precious metal melting instrument is required to produce a large amount of highly homogenous glass such as optical glass.
  • a noble metal such as platinum may react with oxygen contained in the melting atmosphere (for example, in the air) due to the high temperature during melting, and may generate a noble metal oxide (for example, PtO 2 or the like). Such noble metal oxides dissolve into the glass through the surface of the melt.
  • the noble metal material may be oxidized and dissolved in the molten glass as noble metal ions (for example, Pt 4+ ).
  • noble metal ions including noble metal oxides
  • coloring coloration derived from noble metal ions
  • optical glass containing a noble metal such as platinum causes deterioration of the transmittance of the glass due to ultraviolet irradiation (solarization). Therefore, in the production of optical glass, it is required to suppress the elution of noble metals into the molten glass.
  • the amount of noble metal that is melted into the molten glass tends to increase as the melting temperature of the glass increases. Therefore, it is necessary to set the melting temperature higher than that of the bismuth borate glass (glass transition temperature Tg). In the production of phosphate-based optical glass, the penetration of noble metals into the molten glass becomes a more serious problem.
  • Patent Document 2 proposes a technique that achieves both a reduction in reduction color and a reduction in the amount of precious metal penetration in the production of phosphate optical glass. According to this method, by bubbling non-oxidizing gas in the melted glass, discharge of excess oxygen components in the melting atmosphere can be promoted, and the precious metal constituting the melting vessel is prevented from eluting into the glass. it can. Furthermore, according to this method, since the concentration of the oxygen component in the molten glass can be appropriately adjusted, it is possible to prevent the oxygen component from being excessively discharged from the molten glass, and it is possible to suppress the reduction of the high refractive index component.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide an optical glass having a high refractive index and excellent transmittance in a phosphate glass and a method for producing the same.
  • the inventors of the present invention have made a phosphate glass containing a large amount of a high refractive index component. Based on this finding, by performing at least one of the processes of bubbling water vapor into the object, it is possible to effectively prevent the penetration of the noble metal derived from the melting vessel and to improve the color improvement effect of the glass after the heat treatment.
  • the present invention has been completed.
  • the gist of the present invention is as follows.
  • the total content (HR) of TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 is 35 mol% or more,
  • the noble metal content is less than 2.0 ppm
  • ⁇ OH ⁇ [ln (B / A)] / t (1)
  • t represents the thickness (mm) of the glass used for the measurement of external transmittance
  • A represents external transmission at a wavelength of 2500 nm when light is incident on the glass in parallel with the thickness direction.
  • B represents the external transmittance (%) at a wavelength of 2900 nm when light is incident on the glass in parallel to the thickness direction.
  • ln is a natural logarithm.
  • a glass raw material containing phosphorus and a glass raw material containing at least one component of TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 are heated and melted in a precious metal melting vessel. , Having a melting step to obtain molten glass, The total content (HR) of TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 in the glass raw material is 35 mol% or more, A method for producing optical glass, wherein in the melting step, at least one of a process (ia) for adding water vapor to the melting atmosphere and a process (ib) for bubbling water vapor into the melt is performed.
  • the proportion of water vapor in the supplied gas is 3% by volume or more and less than 100% by volume, and the proportion of non-oxidizing gas is more than 0% by volume and 97% by volume or less, 3] or the method for producing a glass according to [4].
  • Such an optical glass of the present invention has extremely excellent transmittance particularly after heat treatment.
  • the optical glass according to the present invention is at least one selected from TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 as a glass component.
  • a phosphate-based glass containing various kinds of oxides hereinafter sometimes simply referred to as “high refractive index component”
  • the total content of TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 (Hereinafter, simply referred to as “HR”) is 35 mol% or more
  • the noble metal content is less than 2 ppm
  • the ⁇ OH value represented by the following formula (1) is 0.1 mm ⁇ 1 or more. It is characterized by being.
  • ⁇ OH ⁇ [ln (B / A)] / t (1)
  • t represents the thickness (mm) of the glass used for measuring the external transmittance
  • A represents a wavelength of 2500 nm when light is incident on the glass in parallel with the thickness direction.
  • B represents the external transmittance (%) at a wavelength of 2900 nm when light is incident on the glass in parallel to the thickness direction.
  • ln is a natural logarithm.
  • the unit of ⁇ OH is mm ⁇ 1 .
  • the “external transmittance” is the ratio (Iout / Iin) of the intensity Iout of the transmitted light transmitted through the glass to the intensity Iin of the incident light incident on the glass, that is, the transmittance considering the surface reflection on the surface of the glass.
  • the “internal transmittance” described later is the transmittance when there is no surface reflection on the surface of the glass (that is, the transmittance of the glass material itself constituting the glass). Each transmittance is obtained by measuring a transmission spectrum using a spectrophotometer.
  • the “phosphate glass” contains P 2 O 5 as a glass component, and in terms of mol%, the content of P 2 O 5 is larger than the content of SiO 2 and the content of B 2 O 3 More than the amount of the optical glass, for example, the above glass, and an optical glass having a content of P 2 O 5 of 5 mol% or more is included.
  • a preferable glass as the phosphate optical glass is a glass having a P 2 O 5 content higher than the total content of SiO 2 and B 2 O 3 in terms of mol%.
  • the optical glass according to the present embodiment is the high refractive index glass, rich in high refractive index component, the total content of TiO 2, Nb 2 O 5, WO 3 and Bi 2 O 3 (HR) is It is 35 mol% or more.
  • the lower limit of HR is 37 mol%, more preferably 38 mol%, more preferably 38.5 mol%, even more preferably 39 mol%, even more preferably 40 mol%, even more preferably 43 mol%, Even more preferably, it is 50 mol%.
  • the upper limit of HR is preferably 85 mol%, more preferably 80 mol%, and still more preferably 75 mol%.
  • the optical glass according to the present embodiment has a noble metal content of less than 2 ppm. That is, the optical glass according to the present embodiment contains a noble metal, but its content is less than 2 ppm, and the amount of noble metal such as platinum used as a glass melting container material or a melting instrument material is extremely small.
  • the lower limit of the noble metal content of the optical glass according to the present embodiment is preferably as low as possible from the viewpoints of reduction of coloration of glass caused by noble metal ions, reduction of solarization, reduction of noble metal foreign matter, and improvement of transmittance.
  • 1.8 ppm, 1.6 ppm, 1.4 ppm, 1.2 ppm, 1.1 ppm, 1.0 ppm, 0.9 ppm in order of lowering the upper limit value is even more preferable.
  • the lower limit of the noble metal content is not particularly limited, but is inevitably about 0.001 ppm.
  • the noble metal examples include single metals such as Pt, Au, Rh, and Ir, and alloys such as Pt alloy, Au alloy, Rh alloy, and Ir alloy.
  • a melting container material or a melting instrument material among precious metals, Pt or Pt alloy having excellent heat resistance and corrosion resistance is preferable.
  • the content of Pt contained in the glass is less than 2 ppm for the glass produced using a melting container or a melting instrument made of Pt or Pt alloy.
  • the more preferable upper limit of content of Pt it is the same as the more preferable upper limit of content of the noble metal contained in glass.
  • the lower limit of the Pt content is not particularly limited, but unavoidably includes about 0.001 ppm.
  • the value of ⁇ OH represented by the above formula (1) is 0.1 mm ⁇ 1 or more.
  • Such an optical glass according to the present embodiment can efficiently reduce the color by heat treatment even if it has a phosphate-based composition containing a large amount of high refractive index components such as Ti, Nb, W, and Bi as glass components. Can be reduced.
  • the glass color can be reduced by heat-treating the optical glass exhibiting a reduced color in an oxidizing atmosphere.
  • Such a phenomenon is considered to be due to the fact that each ion such as Ti, Nb, W, Bi, etc. in the reduced state is oxidized and the visible light absorption of each ion is weakened.
  • H + is suitable as such an ion.
  • [Beta] OH represented by the above formula (1) means absorbance due to a hydroxyl group. Therefore, by evaluating ⁇ OH, the concentration of water (and / or hydroxide ions, hereinafter simply referred to as “water”) contained in the glass can be evaluated. That is, glass having a high ⁇ OH means that the concentration of water contained in the glass is high.
  • the lower limit of ⁇ OH from the viewpoint of improving transmittance after heat treatment, preferably not 0.12 mm -1 or higher, 0.15 mm -1 or higher, 0.18 mm -1 or higher, 0.20 mm -1 or higher, 0.23 mm -1 or higher, 0.25 mm -1 or higher, 0.28 mm -1 or higher, 0.30 mm -1 or higher, 0.33 mm -1 or higher, 0.35 mm -1 or higher, 0.37 mm -1 or higher, 0 It is more preferable that the lower limit value is larger in the order of 40 mm ⁇ 1 or more.
  • ⁇ OH varies depending on the type of glass and production conditions, and is not particularly limited. However, as ⁇ OH is increased, the amount of volatiles from the molten glass tends to increase. From the viewpoint of suppressing the volatilization of the glass component, ⁇ OH is preferably 10 mm ⁇ 1 or less, more preferably 8 mm ⁇ 1 or less, further preferably 6 mm ⁇ 1 or less, more preferably 5 mm ⁇ 1 or less, and even more preferably 4 mm ⁇ 1. In the following, it is more preferably 3 mm ⁇ 1 or less, still more preferably 2 mm ⁇ 1 or less, particularly preferably 1.0 mm ⁇ 1 or less, and most preferably 0.4 mm ⁇ 1 or less.
  • the upper limit of ⁇ OH may be determined by the relationship with the HR and the refractive index nd of the glass.
  • the following formula (A) or the following formula (B) is preferably satisfied, and more preferably the following formula (A) and the following formula (B) are satisfied.
  • the ⁇ OH of the glass may be measured using either a transparent glass that has undergone a heat treatment (a treatment that reduces coloration) or a deeply colored glass that has not undergone a heat treatment. That is, the optical glass according to the present embodiment is not particularly limited as long as ⁇ OH is 0.1 mm ⁇ 1 or more, and may be subjected to heat treatment (reduction of reduced color) or not. May be.
  • the optical glass according to the present embodiment is excellent in clarity.
  • the optical glass manufacturing process (especially the melting process) according to the present embodiment it is considered that the amount of dissolved gas in the molten glass is increased because a process of adding water vapor to the molten atmosphere is performed.
  • the time required for the clarification step can be shortened in the production process, and productivity is improved.
  • the refractive index nd of the optical glass according to the present embodiment is preferably 1.75 or more. Further, a more preferable lower limit of the refractive index nd is 1.80, more preferably 1.85, and particularly preferably 1.90.
  • the upper limit of the refractive index nd is not limited as long as glass is obtained, but can be about 2.5, for example.
  • the glass transition temperature of the optical glass according to the present embodiment is preferably 400 ° C. or higher, more preferably 500 ° C. or higher, further preferably 550 ° C. or higher, more preferably 570 ° C. or higher, and still more preferably 600 ° C. or higher. It is.
  • the heat treatment temperature of the glass in the oxidizing atmosphere can be increased, and the color reduction can be efficiently performed.
  • the workability of the glass such as grinding and polishing can be improved.
  • the optical glass according to the present embodiment has a coloring degree ⁇ 70 of preferably 600 nm or less, more preferably 540 nm or less, and further preferably 500 nm or less.
  • coloring degree (lambda) 70 is a wavelength from which the spectral transmittance of optical glass (thickness 10mm +/- 0.1mm plate glass sample) becomes 70%.
  • a glass raw material containing phosphorus and a glass raw material containing at least one component of TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 are heated and melted in a precious metal melting vessel, and molten glass is obtained.
  • a melting step (i) to obtain The total content (HR) of TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 in the glass raw material is 35 mol% or more,
  • at least one of a process (ia) for adding water vapor to the melting atmosphere and a process (ib) for bubbling water vapor into the melt is performed.
  • a high refractive index containing a large amount of high refractive index components such as TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 (HR is 35 mol% or more) using a melting vessel made of a noble metal such as platinum.
  • a melting vessel made of a noble metal such as platinum.
  • the penetration of noble metal ions (noble metal ions constituting the melting vessel) into the molten glass can be suppressed.
  • the molten container may be alloyed by the reduced high refractive index component.
  • the high refractive index component tends to be reduced in a non-oxidizing atmosphere, so that the degree of coloring (reduced color) of the glass increases. Even if the glass having a too strong reduction color is subjected to a heat treatment in a subsequent process, the effect of reducing the coloration remains small.
  • the present inventors have melted the precious metal material constituting the melting vessel in a state where it is ionized and does not melt into the molten glass.
  • the effect of reducing the coloring (reduced color) is considered to be important, and the present invention has been completed.
  • the optical glass manufacturing method in the melting step, a process of adding water vapor to the melting atmosphere (hereinafter, simply referred to as “water vapor addition”) and a process of bubbling water vapor into the melt (hereinafter referred to as “water vapor addition”)
  • water vapor addition a process of adding water vapor to the melting atmosphere
  • water vapor addition a process of bubbling water vapor into the melt
  • the amount of noble metal derived from the melting vessel in the melting process is extremely low, the transmittance after the heat treatment can be dramatically improved, the coloring is small, An optical glass having an extremely excellent transmittance can be obtained.
  • the manufacturing method of the present embodiment it is possible to effectively prevent the noble metal (for example, platinum) derived from the melting vessel or the like from being melted into the glass, and in the obtained optical glass, the coloring derived from the noble metal ion can be further reduced. .
  • the noble metal for example, platinum
  • the melting vessel is platinum (Pt)
  • Pt platinum
  • glass is melted in an air atmosphere, and oxygen in the air may react with a noble metal material such as platinum which is a material of the melting vessel.
  • a noble metal material such as platinum which is a material of the melting vessel.
  • platinum dioxide PtO 2
  • platinum ions Pt 4+
  • the optical glass manufacturing method in the melting step, at least one of a process for adding water vapor to the melting atmosphere and a process for bubbling water vapor into the melt is performed.
  • the oxygen partial pressure is reduced and the platinum material constituting the melting vessel is prevented from being oxidized.
  • the platinum dioxide and platinum ions (Pt 4+ ) produced by the reaction of oxygen in the molten atmosphere with the platinum material and the like in the melt (glass).
  • the amount of platinum (Pt) penetration is further reduced.
  • the noble metal content of the obtained optical glass can be preferably less than 2 ppm.
  • the supply of water vapor is considered to have the following effects in addition to the effect of reducing the oxygen partial pressure in the molten atmosphere.
  • H 2 O reaches the surface of platinum, it is considered that it is decomposed into H + and OH ⁇ by the catalytic effect of platinum, and a part of OH ⁇ is combined with platinum ions to prevent platinum oxidation.
  • the above effect cannot be expected for an inert gas such as argon or nitrogen.
  • the content of noble metals such as platinum in the glass can be further reduced as compared with supplying a non-oxidizing gas in a dry state.
  • the optical glass produced by the production method of the present embodiment has a very low content of noble metals such as Pt derived from production equipment such as a melting vessel. Therefore, there is little coloring of the glass by ultraviolet irradiation called solarization. Therefore, when such glass is used as, for example, an optical element, the secular change in transmittance is small. Further, when the optical element is fixed using the ultraviolet curable adhesive, there is an effect that the transmittance does not decrease even if the optical element is irradiated with ultraviolet rays.
  • noble metals such as Pt derived from production equipment such as a melting vessel. Therefore, there is little coloring of the glass by ultraviolet irradiation called solarization. Therefore, when such glass is used as, for example, an optical element, the secular change in transmittance is small. Further, when the optical element is fixed using the ultraviolet curable adhesive, there is an effect that the transmittance does not decrease even if the optical element is irradiated with ultraviolet rays.
  • the amount of water in the obtained optical glass can be increased, and the transmittance after heat treatment can be dramatically improved.
  • the water content of the glass obtained by a normal manufacturing method is extremely small.
  • a raw material component having a high water content such as a hydroxide such as orthophosphoric acid, aluminum hydroxide, and calcium hydroxide, may be used as the glass raw material.
  • Moisture will evaporate in the process of melting glass to form molten glass or in the state of high-temperature molten glass.
  • the water content of the glass tends to be further reduced.
  • glass is melted in an air atmosphere, but the air contains some moisture.
  • the non-oxidizing gas melting atmosphere such as a reducing gas or an inert gas, which is usually a dry gas. The water content becomes even smaller.
  • Such a glass having a low water content has a small effect of reducing coloring even when heat treatment is performed in an oxidizing atmosphere.
  • the manufacturing method of the optical glass which concerns on this embodiment, a water
  • the optical glass obtained by the manufacturing method of the present embodiment has a ⁇ OH value of 0.1 mm ⁇ 1 or more.
  • the clarity can be greatly improved.
  • glass manufacturing requires glass that is homogeneous and has few bubbles. In order to obtain such a glass with less bubbles, it is common to provide a clarification step for releasing (defoaming) the dissolved gas in the molten glass. Depends on the amount of dissolved gas. Such a dissolved gas amount is greatly influenced by the glass composition (particularly the type of raw material), the melting time and the number of times of melting of the glass.
  • the glass produced by the manufacturing method according to the present embodiment is obtained by performing at least one of a process of adding water vapor to the melting atmosphere and a process of bubbling water vapor into the melt in the melting step. It is thought that it can raise. That is, it is considered that water (for example, water vapor) actively introduced into the molten glass plays a role as a dissolved gas and improves the clarity of the glass.
  • the glass since the glass has excellent clarification, it is possible to efficiently produce a homogeneous glass with few bubbles in a short clarification time, and the productivity is high. improves. Furthermore, since the time required for the refining process can be shortened, the contact time between the molten glass and the melting vessel can be reduced, and the penetration of the noble metal ions into the melt can be further reduced.
  • the precious metal material constituting the melting vessel is ionized and maintained in a state where it is not melted into the molten glass, and the obtained glass is colored (reduced) after heat treatment.
  • a process of adding water vapor to the melting atmosphere hereinafter sometimes simply referred to as “water vapor addition”
  • a process of bubbling water vapor into the melt hereinafter simply referred to as “ At least one of “water vapor bubbling”.
  • the method of adding water vapor to the melting atmosphere is not particularly limited.
  • a connecting pipe is inserted into the crucible from an opening provided in the melting apparatus, and a gas containing water vapor is passed through the pipe as necessary.
  • the method etc. which supply to the space in a crucible are mentioned.
  • the flow rate of the gas containing water vapor supplied to the space in the crucible is not particularly limited, and can be adjusted based on the measurement result of ⁇ OH of glass produced experimentally.
  • glass having a desired ⁇ OH can be obtained by supplying a relatively small amount of water vapor.
  • the volume in the glass melting furnace becomes larger than the volume in the crucible.
  • a relatively large amount of water vapor is supplied into the glass melting furnace.
  • a glass having a desired ⁇ OH can be produced by feeding back the supply amount of water vapor, that is, the gas flow rate to the next production.
  • the gas flow rate, water vapor flow rate, atmosphere addition flow rate, and water vapor supply amount are values converted to 25 ° C. and 1 atmosphere.
  • the bubbling method is not particularly limited, and a known method can be used.
  • Examples include a method of attaching a pipe and blowing a gas containing water vapor into the melt from this pipe.
  • the bubble diameter of the gas containing water vapor blown into the melt is preferably 0.01 to 100 mm, more preferably 0.1 to 30 mm. By setting it as the said range, it is thought that the moisture content in a molten glass can be raised effectively. When the bubble diameter is too small, there is a problem that the bubbling tube inserted into the melt is likely to be clogged.
  • the flow rate of the gas containing water vapor blown into the melt is not particularly limited, and can be adjusted based on the measurement result of ⁇ OH of glass produced experimentally. For example, when the ⁇ OH of a glass produced experimentally is measured and the measurement result is smaller than the desired value, the gas flow rate is increased. Conversely, when the measurement result is larger than the desired ⁇ OH value, the gas flow rate is increased. Make adjustments to reduce. In this way, ⁇ OH of the glass is obtained experimentally, and the gas flow rate may be adjusted from the measurement result. Thus, based on the measured value of ⁇ OH of the glass produced on a trial basis, the glass having the desired ⁇ OH can be produced by feeding back the supply amount of water vapor, that is, the gas flow rate, to the next production.
  • the content of water vapor in the gas containing water vapor is preferably 3% by volume or more.
  • the water vapor content is preferably as high as possible, preferably 10% by volume or more, more preferably 20% by volume or more, further preferably 30% by volume or more, more preferably 40% by volume or more, and still more preferably 50% by volume or more. Even more preferably, it is 60% by volume or more, still more preferably 70% by volume or more, particularly preferably 80% by volume or more, and even more preferably 90% by volume or more.
  • the gas containing water vapor may be a generated gas or a commercially available gas, and may be a mixed gas with other gases.
  • the other gas include non-oxidizing gas and air. Among these, non-oxidizing gas is preferable.
  • steam Is preferably supplied.
  • the non-oxidizing gas is not particularly limited, and examples thereof include argon, nitrogen, carbon monoxide, carbon dioxide, hydrogen, helium and iodine.
  • An inert gas such as argon is preferable.
  • the supply amount of the non-oxidizing gas is not particularly limited, but preferably, when the volume of the gas to be supplied (the gas containing water vapor) is 100% by volume, the proportion occupied by the non-oxidizing gas exceeds 0% by volume. 97 volume% or less, and a more preferable upper limit is 90 volume%, 80 volume%, 70 volume%, 60 volume%, 50 volume%, 40 volume%, 30 volume%, 20 volume%, 10 volume%. In order to increase the coloring reduction effect by heat treatment, the lower the upper limit, the better.
  • the lower limit of the ratio occupied by the non-oxidizing gas is 10 volume%, 20 volume%, 30 volume%, 40 volume%, 50 volume%, 60 volume%, 70 volume%, 80 volume%, and 90 volume% in this order.
  • the larger the lower limit the more preferable for suppressing volatilization of the glass component from the molten glass.
  • steam at the time of supplying non-oxidizing gas becomes like this.
  • it is 3 volume% or more and less than 100 volume%.
  • the glass raw material adjustment method, the glass raw material heating method, the melting method, and the molten glass forming method are known methods. Can be adopted as appropriate.
  • a well-known material can be suitably utilized also about the glass raw material used for the manufacturing method of the optical glass which concerns on this embodiment, and the material which comprises a melting container.
  • a material constituting the melting vessel used for producing the glass a material having heat resistance and corrosion resistance at a temperature and atmosphere in which the molten glass is melted (for example, a metal material or a quartz material) is usually used. It can be used as appropriate.
  • a molten product exhibiting significant erodibility may be generated, or the molten glass may react with a material constituting the melting vessel and the melting vessel may be melted. Therefore, when selecting the material which comprises a melting container etc., it is preferable to select a material suitably according to a glass composition.
  • phosphate glass containing a high refractive index component glass containing P 2 O 5 and at least one oxide selected from TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3
  • a melted product exhibiting remarkable erodibility is produced. Since such a melted product tends to corrode even materials having excellent corrosion resistance such as platinum, noble metal materials such as platinum are corroded by the above melted product and melted into the melt and generated as foreign matter. Or increase the coloration of the glass.
  • a material such as a melting container separately from the latter half of the melting process or the refining process for the melting container when heating and melting the batch raw material. It is preferable to do.
  • a refractory container or instrument such as quartz is suitable. This is because a refractory material such as quartz is corroded by the molten product, but even if it is corroded and mixed in the melt, it becomes a part of the glass composition, and therefore there are few problems such as noble metal materials. In the latter half of the melting process, the refining process, and the like, there is little problem that the melted product also corrodes the noble metal material. Therefore, it is preferable to use a container or instrument made of noble metal such as platinum or platinum alloy.
  • B 2 O 3 and borate glass glass containing at least one oxide selected from TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3
  • a high refractive index component such as the phosphate glass
  • the molten product such as the phosphate glass also corrodes the noble metal material.
  • refractory containers such as quartz tend to be significantly eroded. Therefore, it is preferable to use a container or instrument made of noble metal such as platinum or platinum alloy which is not easily eroded during the glass production process as the melting container or the like.
  • a metal material as the material constituting the melting vessel used for producing the glass.
  • at least one selected from noble metals and noble metal alloys as the metal material.
  • a process of adding water vapor to the melting atmosphere is performed, so that the oxygen partial pressure in the melting atmosphere can be reduced without using an excessive reducing atmosphere.
  • the above-mentioned noble metal or noble metal alloy is not attacked by the molten glass, and the molten glass can be maintained in a redox state in which the reduced high refractive index component is not alloyed with the material constituting the melting vessel.
  • platinum, gold or the like as the noble metal and platinum alloy or gold alloy as the noble metal alloy.
  • the heating and melting step is usually a clarification step that promotes defoaming of the molten glass in addition to the melting step of melting the glass raw material by heating the glass raw material.
  • a homogenization step of lowering the temperature of the clarified molten glass to a viscosity suitable for molding and homogenizing by stirring.
  • a raw material corresponding to a glass component and a mixed raw material (batch raw material) obtained by thoroughly mixing the raw materials corresponding to the glass component and a mixed cullet can be used so that an optical glass having desired characteristics can be obtained.
  • cullet When cullet is used as the glass raw material, a culleting process (rough melt process) in which batch raw materials are roughly melted to form cullet is performed before the melting process (remelt process).
  • the cullet is preferably subjected to refractive index measurement in advance. If the measured value of the refractive index is equal to the desired value, the cullet is directly used as a blended cullet, and if the measured value of the refractive index deviates from the desired value, the cullet having a refractive index higher than the desired value and the desired value A cullet having a low refractive index is mixed to obtain a mixed cullet.
  • the cullet is made of glass, but it need not be homogeneous glass. Further, the cullet may contain bubbles. Furthermore, the raw material of a batch raw material may be included. The composition and optical properties of the cullet (for example, refractive index, Abbe number, etc.) are obtained by re-melting the cullet to make a glass that is homogeneous and free of bubbles. To do.
  • the melting vessel is composed of a metal material
  • the heating temperature of the glass during the heating and melting process is set to 800 to 1500 ° C. from the viewpoint of suppressing the ionization of the metal material and ensuring the water content in the glass. It is preferable to maintain, more preferably 1400 ° C. or less, and further preferably 1300 ° C. or less.
  • the heating temperature of the glass during the heating / melting process is highest in the fining process. It is preferable to melt the glass at a clarification temperature or lower.
  • the time from the start to the end of the heating / melting process is lengthened, the reduction of the high refractive index component, the ionization of the metal material when the melting vessel is made of a metal material, the water content in the glass tends to decrease Will be shown. For this reason, it is preferable that the time from the start to the end of the heating / melting process be within 100 hours. The time from the start to the end of the heating / melting process may be adjusted as appropriate depending on the capacity of the melting container.
  • the optical glass manufacturing method according to the present embodiment is more preferably performed by a rough melt-remelt method. That is, the manufacturing method of the optical glass according to the present embodiment preferably A rough melt process for melting a blended material to obtain a cullet, and a remelt process for remelting the cullet to obtain a glass, In at least one of the rough melt process and the remelt process, at least one of a process (ia) for adding water vapor to the molten atmosphere and a process (ib) for bubbling water vapor into the melt is performed. It is characterized by.
  • the melting temperature (rough melting temperature) of the batch raw material during rough melting is preferably in the range of 800 to 1400 ° C.
  • the temperature of the melt in the rough melt process must be equal to or lower than the melting temperature of the cullet (remelting temperature) in the remelt process in order to further enhance the fining effect. It is preferable to make it lower than the refining temperature in the remelt process.
  • the melting time in the rough melt process can be appropriately adjusted in consideration of the capacity of the crucible and the input amount of the batch raw material into the crucible.
  • the melting time is 0.1 to 100 hours, more preferably 0.1 to 20 hours. It is good also as the range.
  • the melting temperature (remelting temperature) of the mixed cullet in the remelt process is preferably in the range of 800 to 1500 ° C. However, in order to further enhance the clarification effect, it is preferable to set the remelting temperature lower than the clarification temperature.
  • the melting time in the remelt process can be appropriately adjusted in consideration of the capacity of the crucible and the input amount of the mixed cullet into the crucible. For example, the melting time during remelting is 0.1 to 100 hours, more preferably 2 to 20 hours. It is good also as a range.
  • the atmosphere during melting is not particularly limited, but water vapor is added to the molten atmosphere from the viewpoint of effectively increasing the amount of water in the molten glass. It is preferable.
  • melting may be started in a melting atmosphere other than water vapor such as air atmosphere or nitrogen atmosphere, and steam may be added to the melting atmosphere in the middle, or the melting atmosphere may be adjusted to the water vapor atmosphere in advance. Good.
  • the partial pressure of water vapor in the molten atmosphere when performing a treatment for adding water vapor to the molten atmosphere is higher than the partial pressure of water vapor in the atmosphere, more preferably higher than the partial pressure of oxygen.
  • the upper limit of the water vapor partial pressure is not particularly limited, and for example, the entire melting atmosphere can be replaced with water vapor.
  • the clarification improvement effect is enhanced.
  • the melting process can be accompanied by stirring the melt for the purpose of homogenizing the melt.
  • a stirring method a known method can be used, and examples thereof include a method of bubbling a gas into a melt and a method of stirring with a stirring rod.
  • bubbling using a gas containing water vapor and stirring of the melt in a molten atmosphere to which water vapor has been added are suitable from the viewpoint of homogenizing the melt and increasing the amount of water in the molten glass.
  • the manufacturing method of an optical glass according to the present embodiment preferably, a glass raw material containing phosphorus, a glass raw material containing at least one or more components of TiO 2, Nb 2 O 5, WO 3 and Bi 2 O 3
  • the melting step (i) of heating and melting in a melting vessel to obtain a molten glass the step (ii) of flowing the molten glass out of the melting vessel and the step of molding the molten glass (iii)
  • the clarified and homogenized molten glass flows out from the glass outflow pipe attached to the bottom of the melting vessel.
  • the temperature of the glass outlet pipe is adjusted and maintained so that the flowing molten glass does not devitrify and has a viscosity suitable for molding.
  • any known forming method can be used as long as the molten glass in the melting vessel can be formed into a predetermined shape.
  • the molten glass may be poured into a mold to form a block shape, or a linear molten glass flow that has been caused to flow down from a pipe may be cut into a glass lump by cutting at a certain length (a certain amount).
  • molding process may vary greatly.
  • the obtained glass may be deeply colored, and coloring can be reduced by performing a heat treatment in a subsequent step.
  • the optical glass manufacturing method it is preferable to perform at least one of the outflow step (ii) and the forming step (iii) in an oxidizing atmosphere. Thereby, the reduced color of glass can be reduced efficiently.
  • the reduced color derived from the high refractive index component can be reduced by heat-treating the glass in an oxidizing atmosphere.
  • oxidation of Ti, Nb, W, Bi and the like tends to proceed more rapidly as the glass temperature is higher.
  • the glass as hot as possible that is, the glass in the melting step (i) may be exposed to an oxidizing atmosphere.
  • the melting vessel, the clarification tank, or the like is made of a noble metal material or the like, the glass in the melting step (i) is in contact with the noble metal material.
  • the noble metal ions are dissolved in the glass by reacting with oxygen in the glass.
  • the glass in the outflow step (ii) and the forming step (iii) has a lower temperature than the glass in the melting step (i), but is still kept sufficiently high compared to the glass that has been cooled after forming. It can be said. Therefore, even in these steps, the effect of reducing the coloration of the glass by exposing the glass to an oxidizing atmosphere can be sufficiently expected. Further, in the outflow step (ii) and the forming step (iii), the glass does not come into contact with the noble metal material constituting the melting vessel or the like, so that the above-described problems are unlikely to occur.
  • the molten glass flow can reduce the reduced color more efficiently because the surface area of the glass exposed to the oxidizing atmosphere per unit volume is larger than the glass block in the mold.
  • the reduction color of the glass is reduced in at least one of the outflow step (ii) and the forming step (iii), so that bubbles and precipitates are formed in the glass after the forming step (iii). Inspection of the inside of the glass, such as the presence or absence, can be done easily. As a result, high-quality glass can be scrutinized at an early stage, and the yield can be improved.
  • the optical glass manufacturing method according to the present embodiment preferably includes a heat treatment step (iv) for heat-treating the formed glass.
  • the heat treatment is preferably performed in an oxidizing atmosphere. Thereby, coloring of the glass obtained can be significantly reduced.
  • the glass obtained through the heat treatment step has little coloration and high transparency, that is, high transmittance in the visible region.
  • the heat treatment temperature and the heat treatment time may be appropriately set so as to obtain desired optical characteristics.
  • the heat treatment temperature is preferably a temperature lower than the glass softening point and 100 ° C. lower than the glass transition temperature Tg (Tg ⁇ 100 ° C.) or higher.
  • the heat treatment time can be shortened.
  • the heat treatment time can be shortened even if the oxygen partial pressure in the oxidizing atmosphere is increased.
  • the heat treatment time is preferably 0.1 to 100 hours.
  • the oxidizing atmosphere is an air atmosphere or an atmosphere having a higher oxygen partial pressure than air, and preferably oxygen than air.
  • the atmosphere has a high partial pressure.
  • the method for obtaining an oxidizing atmosphere is not particularly limited, and examples thereof include a method of supplying an oxidizing atmosphere gas.
  • the oxidizing atmosphere gas may be a gas containing oxygen, and the oxygen concentration may be about the same as or higher than that of air, for example.
  • Examples of such an oxidizing atmosphere gas include air, a gas obtained by adding oxygen to air, and a gas that is substantially composed only of oxygen.
  • the content of glass component, the total content, content of the additive is displayed in mole percent on an oxide basis.
  • the optical glass according to the present embodiment is phosphate-based glass, and at least one oxide selected from TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 as a glass component (hereinafter referred to as “glass component”). , Sometimes referred to as “high refractive index component”).
  • the total content of TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 contained in the glass is 35% or more, preferably 37 mol% or more, more preferably 38 mol% or more, More preferably, it is 38.5 mol% or more, More preferably, it is 39 mol% or more, More preferably, it is 40 mol% or more, More preferably, it is 43 mol% or more, More preferably, it is 50 mol% or more.
  • the total content of 2 O 5 , WO 3 and Bi 2 O 3 is preferably 85% or less, more preferably 80% or less, and even more preferably 75% or less.
  • the phosphate glass is also preferable from the viewpoint of increasing the contents of TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 in the glass.
  • the movement speed of H + during heat treatment is high, and coloring can be reduced by heat treatment in a short time compared to other composition systems.
  • the glass in terms of mol%, has a P 2 O 5 content larger than the SiO 2 content and a B 2 O 3 content, or a P 2 O 5 content. Mention may be made of glasses having a content greater than the total content of SiO 2 and B 2 O 3 .
  • This embodiment can be applied to glass compositions including known compositions in which the contents of TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 are in the above ranges in addition to the compositions exemplified in the examples.
  • P 2 O 5 is a glass network forming component and has a function of maintaining the thermal stability of the glass. If the content of P 2 O 5 is less than 7%, the thermal stability tends to decrease, so the content of P 2 O 5 is preferably 7% or more. When the content of P 2 O 5 is larger than 40%, the refractive index is lowered. Therefore, the content of P 2 O 5 is preferably in the range of 7 to 40%.
  • the more preferred lower limit of the content of P 2 O 5 is 10%, the still more preferred lower limit is 12%, the still more preferred lower limit is 15%, and the still more preferred lower limit is 18%.
  • a more preferable upper limit of the content of P 2 O 5 is 35%, a further preferable upper limit is 33%, a more preferable upper limit is 30%, and a still more preferable upper limit is 28%.
  • SiO 2 is difficult to dissolve in a glass having a P 2 O 5 system composition, and when introduced in a large amount, it remains undissolved and tends to deteriorate the homogeneity of the glass.
  • the melting temperature is increased so that no unmelted residue is generated, the noble metal content increases and the coloration of the glass also increases. Therefore, the content of SiO 2 is less than the content (M) of P 2 O 5 .
  • the preferable range of the content of SiO 2 is 0% to 0.8 ⁇ M [%]
  • a more preferable range is 0% to 0.5 ⁇ M [%]
  • a further preferable range is 0% to 0.3 ⁇ M [%]
  • a more preferable range is 0% to 0.15 ⁇ M [%].
  • B 2 O 3 functions to improve devitrification resistance by containing a small amount.
  • the range of the content of B 2 O 3 is 0% or more and less than M [%].
  • the preferred range is 0% to 0.9 ⁇ M [%]
  • the more preferred range is 0% to 0.7 ⁇ M [%]
  • the still more preferred range is 0% to 0.6 ⁇ M [%]
  • the range is 0% to 0.5 ⁇ M [%]
  • a more preferable range is 0% to 0.4 ⁇ M [%]
  • an even more preferable range is 0% to 0.35 ⁇ M [%].
  • TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 are components that function to increase the refractive index, increase dispersion, and improve chemical durability. However, when the contents of TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 increase, the devitrification resistance tends to deteriorate.
  • the preferable upper limit of the content of TiO 2 is 40%, the more preferable upper limit is 35%, the still more preferable upper limit is 33%, and the more preferable upper limit is 30%. From the top to obtain the effect of introducing TiO 2, preferable lower limit of the content of TiO 2 1%, more preferred lower limit is 3%.
  • the content of TiO 2 may be 0%.
  • the preferable upper limit of the content of Nb 2 O 5 is 45%, the more preferable upper limit is 40%, and the more preferable upper limit is 35%. From the top to obtain the effect of introducing Nb 2 O 5, preferable lower limit is 5% of the content of Nb 2 O 5, more preferred lower limit is 8%, more preferred lower limit is 11%.
  • the content of Nb 2 O 5 can also be set to 0%.
  • a preferred range for the content of WO 3 is 0-30%. From the viewpoint of obtaining the effect of introducing the WO 3, preferable lower limit is 1% of the content of WO 3, and more preferable lower limit is 3%, more preferred lower limit is 5%. On the other hand, in order to maintain devitrification resistance, the preferable upper limit of the content of WO 3 is 27%, the more preferable upper limit is 24%, the still more preferable upper limit is 20%, and the still more preferable upper limit is 18%.
  • the content of WO 3 can also be 0%.
  • a preferable range of the content of Bi 2 O 3 is 0 to 35%.
  • Bi 2 O 3 preferred lower limit is 1% of the content of, and more preferable lower limit is 3%, more preferred lower limit is 5%.
  • the preferable upper limit of the Bi 2 O 3 content is 30%, the more preferable upper limit is 28%, and the further preferable upper limit is 24%.
  • the content of Bi 2 O 3 can be reduced to 0%.
  • a preferable range of the total content of Bi 2 O 3 and B 2 O 3 is less than 50%, a more preferable range is less than 45%, and a further preferable range is 40%.
  • Divalent metal components such as BaO, SrO, CaO, MgO and ZnO serve to improve the meltability of the glass and reduce the coloration of the glass. Moreover, if it is an appropriate amount, it works to improve devitrification resistance. However, since the refractive index decreases and the devitrification resistance tends to deteriorate due to the excessive content, the total content of BaO, SrO, CaO, MgO and ZnO is preferably 0 to 40%. More preferably, it is ⁇ 32%.
  • a preferable upper limit of the total content of BaO, SrO, CaO, MgO and ZnO is 30%, a more preferable upper limit is 27%, and a further preferable upper limit is 25%.
  • a preferable lower limit of the total content of BaO, SrO, CaO, MgO and ZnO is 0.1%, a more preferable lower limit is 0.5%, and a further preferable lower limit is 1%.
  • BaO is an effective component for maintaining a high refractive index
  • the BaO content is preferably in the range of 0 to 40%, and in the range of 0 to 32%. More preferably.
  • a preferable upper limit of the content of BaO is 30%, a more preferable upper limit is 27%, and a further preferable upper limit is 25%.
  • a preferable lower limit of the BaO content is 0.1%, a more preferable lower limit is 0.5%, and a further preferable lower limit is 1%.
  • the BaO content may be 0%.
  • Alkali metal oxides such as Li 2 O, Na 2 O and K 2 O serve to improve the meltability of the glass and reduce the coloration of the glass. It also serves to lower the glass transition temperature and softening temperature and lower the glass heat treatment temperature.
  • the total content of Li 2 O, Na 2 O and K 2 O is preferably 0 to 40% because the refractive index decreases and the devitrification resistance tends to deteriorate due to the excessive content. 0 to 35% is more preferable, 0 to 32% is still more preferable, and 0 to 30% is still more preferable.
  • the contents of Li 2 O, Na 2 O and K 2 O can each be 0%.
  • the content thereof is more preferably more than 0% and less than 10% in the glass to be produced. More preferably, it is more than 9% and more preferably more than 0% and not more than 8%.
  • Al 2 O 3 works to improve devitrification resistance if it is in a small amount, but the refractive index is lowered by the excessive content. Therefore, the preferable range of the content of Al 2 O 3 is 0 to 12%, the more preferable range is 0 to 7%, and the further preferable range is 0 to 3%.
  • ZrO 2 works to increase the refractive index, and if small, works to improve devitrification resistance. However, since the devitrification resistance and the meltability tend to deteriorate due to the excessive content, the preferred range of the content of ZrO 2 is 0 to 16%, the more preferred range is 0 to 12%, and the more preferred range is 0. -7%, more preferably 0-3%.
  • GeO 2 functions to increase the refractive index while maintaining devitrification resistance.
  • GeO 2 has a function of increasing the refractive index, but unlike TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 , it does not increase the coloring of the glass.
  • the content of GeO 2 is preferably as small as possible in order to reduce the manufacturing cost of glass. Therefore, in order to widely spread high refractive index glass products, it is desired to provide a high refractive index glass having excellent transmittance while reducing the content of GeO 2 .
  • by making the total content of TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 20% or more excellent transmittance can be obtained without using a large amount of GeO 2.
  • High refractive index glass can be provided.
  • the preferred range of the GeO 2 content is 0 to 10%, more preferred range is 0 to 5%, still more preferred range is 0 to 3%, even more preferred range is 0 to 2%, even more preferred.
  • the range is 0 to 1%, and an even more preferable range is 0 to 0.5%, and GeO 2 may not be contained. If the production cost is not taken into consideration, the effective amount can be suitably used.
  • TeO 2 functions to increase the refractive index while maintaining devitrification resistance.
  • the preferable range of TeO 2 content is 0 to 10%, more preferably 0 to 5%, still more preferably 0 to 3%, and still more preferably 0 to 2%. %, A still more preferable range is 0 to 1%, and an even more preferable range is 0 to 0.5%, and TeO 2 may not be contained.
  • Sb 2 O 3 has an oxidizing action and acts to suppress the reduction of TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 .
  • Sb 2 O 3 itself has absorption in the visible range, and its oxidation action oxidizes the precious metal melting vessel to promote the precious metal ions to be melted into the molten glass. Therefore, the preferable range of the content of Sb 2 O 3 is 0 ppm or more and less than 1000 ppm.
  • the upper limit of the content of Sb 2 O 3 is more preferable as the value decreases in the order of 900 ppm, 800 ppm, 700 ppm, 600 ppm, 500 ppm, 400 ppm, 300 ppm, 200 ppm, and 100 ppm. Sb 2 O 3 may not be contained.
  • the devitrification resistance of the glass deteriorates and the liquidus temperature tends to increase. Therefore, the glass melting temperature must be increased, the corrosion of the precious metal melting vessel is increased, and the amount of the precious metal dissolved in the glass is increased. Also, the reduced colors of TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 are increased.
  • P 2 O 5, SiO 2 , B 2 O 3, TiO 2, Nb 2 O 5, WO 3, Bi 2 O 3, MgO, CaO , SrO, BaO, ZnO, Li 2 O, Na 2 O, K 2 O, Al 2 O 3 , ZrO 2 , GeO 2 , TeO 2 and Sb 2 O 3 are preferably 90% or more in total. 92% or more, more preferably 95% or more, still more preferably 96% or more, still more preferably 97% or more, and even more preferably 98% or more. More preferably, it is more preferably over 99%. The total content may be 100%.
  • Ta 2 O 5 , Y 2 O 3 , La 2 O 3 , Gd 2 O 3 , Yb 2 O 3 , In 2 O 3 , Ga 2 O 3 , SnO 2 , CeO 2 , F, and the like are contained in a small amount. be able to.
  • the total content of Ta 2 O 5 , Y 2 O 3 , La 2 O 3 , Gd 2 O 3 , Yb 2 O 3 , In 2 O 3 , Ga 2 O 3 and F is 0 to 10%. 0 to 7% is more preferable, 0 to 5% is further preferable, 0 to 3% is still more preferable, 0 to 1% is still more preferable, and 0 to 0. 0%. Even more preferably 5%.
  • F is not a component to be contained in a large amount from the viewpoint of increasing the volatility of the molten glass and obtaining a homogeneous glass or obtaining a glass having stable optical properties.
  • a preferred range for the content of F is 0 to 3%, a more preferred range is 0 to 1%, and a further preferred range is 0 to 0.5%.
  • Pb, As, Cd, U, Th, and Tl are not substantially contained.
  • the components and additives having absorption in the visible region such as Cu, Cr, Mn, Fe, Co, Ni, V, Mo, Nd, Eu, Er, Tb, Ho, and Pr are substantially added. It is preferable not to contain it.
  • the optical glass according to this embodiment does not exclude the inclusion of inevitable impurities.
  • substantially not containing can be taken as a guide when the content is less than 0.5 mol%.
  • the components and additives that are not substantially contained are preferably not contained in the glass, and therefore the content is preferably less than 0.1 mol%, more preferably less than 0.08 mol%, More preferably, it is less than 0.05 mol%, more preferably less than 0.01 mol%, and even more preferably less than 0.005 mol%.
  • Glass materials include oxide, phosphoric acid, phosphate (polyphosphate, metaphosphate, pyrophosphate, etc.), boric acid, boric anhydride, carbonate, nitrate, sulfuric acid, depending on the glass component
  • Known glass raw materials such as salts and hydroxides can be used.
  • a known method may be applied.
  • a glass material for press molding is produced by molding molten glass.
  • this glass material is reheated and press-molded to produce an optical element blank.
  • a molten glass is formed to produce a glass material for press molding, and this glass material is heated and precision press molded to produce an optical element.
  • a molten glass may be molded to produce a glass molded body, and the glass molded body may be processed to produce a press-molding glass material.
  • molten glass is formed to produce a glass molded body, and this molded body is processed to produce an optical element.
  • the optical functional surface of the manufactured optical element may be coated with an antireflection film, a total reflection film, or the like according to the purpose of use.
  • the optical element include various lenses such as a spherical lens, an aspheric lens, a macro lens, and a lens array, a prism, and a diffraction grating.
  • the optical glass according to the present embodiment is suitable as a material for an optical element, it is preferably an amorphous glass.
  • a method of manufacturing a glass optical element for example, there is a method of forming by heating and softening a glass material. Crystallized glass having a crystal phase dispersed in glass is not suitable for the molding method. In addition, the crystal phase in the crystallized glass may scatter light, thereby reducing the performance as an optical element. Amorphous glass does not have this problem.
  • a method for producing optical glass a method of melting raw materials mainly using a crucible is illustrated, but as a melting vessel, a quartz tube or the like having both ends opened is used. Also good.
  • a quartz tube or the like is fixed in an inclined state in a glass melting furnace.
  • an opening is provided at a position corresponding to the lower part of the opening end on the low position side of the tube.
  • a raw material (batch raw material or cullet) is introduced into the tube from the open end on the high position side of the tube, and melted (or melted) in the tube to obtain a melt.
  • the melt flows slowly in the tube and flows out one after another from the opening side on the low position side of the tube.
  • the effluent passes through the opening at the bottom of the furnace and is dropped one after another into the water in the water tank previously arranged below the opening at the bottom of the glass melting furnace. Become a caret.
  • the raw material is melted using a tube made of quartz or the like, but a crucible made of quartz or the like may be used instead of the tube.
  • a crucible made of quartz or the like may be used instead of the tube.
  • Example 1 [Preparation of batch materials] First, when producing optical glass with desired characteristics, the raw materials of glass are phosphoric acid, barium metaphosphate, titanium oxide, niobium oxide, tungsten oxide, bismuth oxide, boric acid, barium carbonate, sodium carbonate, potassium carbonate And silicon oxide were prepared respectively. Next, batch raw materials I to VI are prepared by appropriately selecting and weighing the above raw materials so that the glass composition of the optical glass finally obtained becomes the oxide compositions I to VI shown in Table 1. did.
  • the cullet taken out from the water is dried, a part of the cullet is sampled for refractive index measurement, put into a platinum crucible and melted, the obtained glass melt is clarified and homogenized, and then cast into a mold. After being molded and maintained at a temperature near the glass transition temperature, it was cooled at a temperature decrease rate of ⁇ 30 ° C./hour.
  • the refractive index nd of the sample for refractive index measurement thus obtained was measured by the refractive index measurement method defined by the Japan Optical Glass Industry Association standard.
  • a cullet was prepared so as to have a desired refractive index, and a mixed cullet for optical glass production was obtained.
  • the temperature of the crucible was raised to the clarification temperature (range of 900 to 1450 ° C.) for clarification (clarification step). Subsequently, the temperature of the crucible was lowered to the homogenization temperature, and the mixture was stirred and homogenized with a stirrer (homogenization step).
  • the volume in the melting furnace (volume of the refractory furnace space that houses the crucible) and the residence time of the melt in the melting furnace (the cullet is charged into the platinum melting container and then melted from the melting container) The time until the glass flows out is shown in Table 2.
  • a platinum pipe is inserted from outside the melting furnace into a platinum crucible disposed in the furnace, and water vapor (H 2 O 100% by volume) is passed through the platinum pipe into the space inside the platinum crucible. And supplied.
  • water vapor H 2 O 100% by volume
  • the addition of water vapor to the melting atmosphere was performed by adding water vapor to the atmosphere.
  • the flow rate of the supplied water vapor is shown in Table 2.
  • the flow rate of water vapor shown in Table 2 is a value converted to a flow rate at normal temperature and normal pressure, and the unit is liter / minute.
  • the molten glass homogenized in this way flows out from the platinum glass outflow pipe attached to the bottom of the crucible in the atmosphere (outflow process), and then flows into a mold placed below the outflow pipe.
  • a glass block (width 150 mm ⁇ thickness 10 mm) was molded (molding step).
  • the glass block is heated at a rate of + 100 ° C./hour in the air atmosphere, held at the vicinity of each glass transition temperature for 1.5 to 8 hours, and cooled at a rate of ⁇ 10 ° C./hour. (Annealing step) An optical glass sample from which distortion was removed was obtained.
  • the optical glass sample was processed to produce a cylindrical sample for measurement (diameter 5 mm, height 20 mm).
  • glass transition temperature Tg was measured on the conditions of temperature increase rate +10 degree-C / min using the thermomechanical analyzer (TMA).
  • ln is a natural logarithm
  • the thickness t corresponds to the interval between the two planes.
  • the external transmittance includes a reflection loss on the surface of the glass sample and is a ratio of transmitted light intensity to transmitted light intensity (transmitted light intensity / incident light intensity).
  • ⁇ OH the more water is contained in the glass.
  • T450 (H) The optical glass sample was heated at a rate of + 100 ° C./hour in the air atmosphere, held at a predetermined holding temperature for 100 hours, and cooled at a rate of ⁇ 30 ° C./hour, followed by heat treatment. In addition, since holding temperature changes with compositions, it was set as the temperature shown in Table 4 according to the oxide composition of each optical glass sample.
  • the optical glass sample after the heat treatment was processed to prepare a plate-like glass sample having a thickness of 10 mm whose surfaces were optically polished parallel and flat to each other.
  • the external transmittance T450 (H) at 450 nm was determined using a spectrophotometer. A larger value of T450 (H) means that the transmittance is excellent and the coloration of the glass is reduced. The results are shown in Table 6.
  • T450 (L) 0.5 to 0.7 cc of molten glass that has been subjected to a homogenization process when producing an optical glass sample is collected, and a mold for flotation molding (a recess for receiving the molten glass is formed of a porous body.
  • the gas was injected from the surface of the concave portion into the concave portion of the mold), the gas was ejected from the concave portion, an upward wind pressure was applied to the molten glass lump on the concave portion, and the glass lump was molded in a floating state.
  • the glass lump is heated at a speed of + 100 ° C./hour, held at a predetermined holding temperature and holding time, and cooled at a speed of ⁇ 30 ° C./hour to obtain a spherical optical glass sample after heat treatment. It was. In addition, since holding temperature and holding time differ according to a composition, it was set as the temperature and time shown in Table 5 according to the oxide composition of each optical glass sample.
  • the obtained spherical optical glass sample was processed to prepare a plate-like glass sample having a thickness of 5 mm, whose surfaces were optically polished parallel and flat to each other.
  • the external transmittance T450 (L) at 450 nm was determined using a spectrophotometer. The larger the value of T450 (L), the better the transmittance, and it means that the coloration of the glass is reduced even after a short heat treatment.
  • Bubble breakage 40 cc of molten glass (glass melt) before starting the clarification process when producing an optical glass sample is clarified in a separate platinum crucible for a certain period of time in the air, It was cooled in a platinum crucible and solidified. In this process, coloring was reduced to such an extent that the number of bubbles contained in the glass could be counted. Next, the solidified glass was taken out from the platinum crucible.
  • the inside of the glass was magnified (100 times) using an optical microscope (magnification 20 to 100 times), and the number of bubbles contained in the glass was counted.
  • the same observation was performed for each of the measurement samples having different clarification times, and the clarification time of the measurement sample in which the number of bubbles remaining in the glass was 100 pieces / kg or less was evaluated as the time of bubble removal. The shorter the bubble-out time, the better the clarity. The results are shown in Table 6.
  • the optical glass sample according to the present invention has a noble metal content derived from the melting vessel as low as less than 2 ppm and a ⁇ OH value of 0.1 mm ⁇ 1 or more. Dramatically improved transmittance.
  • the optical glass sample according to the present invention since the optical glass sample according to the present invention has a significantly reduced noble metal content, the transmittance deterioration due to the noble metal is small and the transmittance is extremely excellent after the heat treatment.
  • the optical glass of the present invention As can be seen from the result of T450 (L) in particular, the higher the water content of the obtained optical glass (the larger the ⁇ OH value of the glass), the more dramatic the heat treatment in a shorter time.
  • the transmittance can be improved.
  • the optical glass of the present invention is excellent in clarity. Therefore, a sufficient transmittance improvement effect can be obtained by a short time heat treatment, and the time required for blowing bubbles is short. Therefore, according to the optical glass of the present invention, the time required for the refining step and the heat treatment step can be remarkably shortened, and the production cost can be reduced and the productivity can be improved in the production of the optical glass.
  • Example 2 Next, nitrogen gas was supplied as a non-oxidizing gas together with water vapor to produce an optical glass sample.
  • Optical glass samples were prepared in the same manner as in Example 1 except that the oxide compositions I, III, and V were set to the conditions shown in Table 7 (Samples 11a to 15a, Samples 30a to 39a, and Samples 41a to 41a). 45a).
  • the refractive index nd, Abbe number ⁇ d, and glass transition temperature Tg were substantially the same as the values shown in the oxide composition V of Example 1.
  • Table 7 shows the results of the contents of ⁇ OH and Pt.
  • the optical glass sample according to the present invention has an extremely low transmittance after heat treatment because the optical glass sample has an extremely small content of noble metal and can dramatically improve the transmittance by heat treatment.
  • the glass composition of each sample is as shown in Table 8, and the starting material was prepared by the same method as in Example 1 and the like.
  • Example 1 For sample CE1, the sample of Example 1 was used except that Ar gas (100% by volume) was bubbled into the molten glass in the melting tank at a supply rate of 1.5 L / min instead of adding water vapor to the molten atmosphere.
  • An optical glass sample was produced in the same manner as in No.33.
  • samples CE2 to CE4 optical glass samples were prepared in the same manner as sample 33 in Example 1 except that no steam was added to the molten atmosphere (the atmosphere was changed to an atmospheric atmosphere).
  • T450 (L) instead of the temperature and time shown in Table 5, the holding temperature was 600 ° C. and the holding time was 3 hours. Otherwise, T450 (L) was measured under the same conditions as in Example 1.
  • Samples 33 and 43 are optical glass samples according to examples of the present invention, which are produced by adding water vapor to the molten atmosphere, and are samples having compositions relatively close to the compositions of samples CE1 to CE4.
  • Sample CE1 is an optical glass sample prepared by bubbling Ar gas into a melt
  • samples CE2 to CE4 are optical glass samples prepared using a melting atmosphere as an air atmosphere. However, neither the process of adding water vapor to the molten atmosphere nor the process of bubbling water vapor into the melt is performed.
  • such samples CE1 to CE4 have a ⁇ -OH value of less than 0.1 mm ⁇ 1 and correspond to comparative examples of the present invention.
  • the sample CE1 produced by bubbling Ar gas in the molten glass has a lower ⁇ -OH value than the samples CE2 to CE4 produced in the air atmosphere.
  • This difference in ⁇ -OH is considered to be because the water vapor concentration in the melting atmosphere of the sample CE1 was lower than that in the melting atmosphere of the samples CE2-4.
  • the atmosphere contains a slight amount of water vapor in addition to oxygen, carbon dioxide, nitrogen and the like.
  • Ar gas is a dry gas. Therefore, supplying the dried Ar gas decreases the concentration of air in the melting atmosphere and relatively decreases the concentration of water vapor.
  • the melting atmosphere of the sample CE1 is lower than the melting atmosphere of the samples CE2 to CE4. Therefore, it can be said that the concentration of water vapor in the melting atmosphere of the sample CE1 is lower than the melting atmosphere of the samples CE2 to CE4.
  • the value of ⁇ -OH depends on the amount of water vapor in the molten atmosphere if the glass composition is the same. Therefore, it is considered that the sample CE1 in which the amount of water vapor in the melting atmosphere is low is lower in the amount of water contained in the glass and the value of ⁇ -OH is smaller than the sample CE2 having the same composition.
  • the same relationship as above can be said for the oxygen concentration in the molten atmosphere. That is, when the concentration of air in the melting atmosphere decreases, the concentration of oxygen also decreases. Therefore, it is considered that the sample CE1 having a low atmospheric concentration has a lower oxygen concentration than the melting atmosphere of the samples CE2 to CE4.
  • the higher the oxygen concentration in the melting atmosphere the easier it is for Pt to dissolve.
  • the sample CE1 and the sample CE2 having the same glass composition have a small Pt penetration amount in the sample CE1 having a lower oxygen concentration in the melting atmosphere.
  • the oxygen concentration in the molten atmosphere is reduced, the amount of Pt penetration can be reduced.
  • the atmosphere in the molten atmosphere is replaced with an inert gas such as Ar gas. It was confirmed that the ⁇ -OH value of the obtained glass tends to be smaller than when it is melted.
  • the amount of Pt is reduced to 2 ppm or less, and ⁇ - The value of OH can also be increased to 0.1 mm ⁇ 1 or more (Samples 33 and 43). That is, according to the manufacturing method of the present invention, it is possible to simultaneously realize a low Pt amount and a high ⁇ -OH value (and thus an excellent transmittance improvement effect).
  • the samples 33 and 43 according to the examples of the present invention have an effect of reducing the transmittance and the amount of Pt compared to the samples CE1 to 4 corresponding to the comparative examples of the present invention. All of the reduction effects are excellent.
  • the sample 43 having the highest HR among the six types of glass has the lowest T450 (L) according to the normal manufacturing method.
  • T450 (L) was higher than Samples CE1 to CE4 having smaller HR.
  • the sample (sample 33 and sample 43) according to the embodiment of the present invention in which steam was added to the melting atmosphere and ⁇ -OH was increased, and the process of adding steam was not performed in the melt.
  • the difference in the value of T450 (L) is very different from the samples according to the comparative examples (samples CE1 to CE4) in which the bubbling of Ar gas or the melting atmosphere is an air atmosphere and ⁇ -OH is less than 0.1 mm ⁇ 1. It is remarkable. That is, in Sample 33 and Sample 43, a value of T450 (L) that is twice or more higher than Samples CE1 to CE4 has been confirmed.
  • the optical glass with high ⁇ -OH has a dramatic effect of improving the transmittance by heat treatment compared with the optical glass with ⁇ -OH of less than 0.1 mm ⁇ 1 . Even in the treatment, a significant improvement in transmittance can be expected.
  • a preferred optical glass in this embodiment is a glass having a total content of TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 contained in the glass of 35 mol% or more, and 37 mol% or more of glass is more preferable.
  • 38 mol% or more glass is more preferable, 38.5 mol% or more glass is more preferable, 39 mol% or more glass is more preferable, 40 mol% or more glass is further more preferable, 43 mol% or more More preferably, glass of 50 mol% or more is particularly preferable.
  • a preferable optical glass in this embodiment is a glass in which the content of P 2 O 5 in terms of mol% is larger than the content of SiO 2 .
  • a preferable optical glass in the present embodiment is a glass in which the content of P 2 O 5 in terms of mol% is larger than the content of B 2 O 3 .
  • a preferred optical glass is a glass having a P 2 O 5 content in terms of mol% higher than the total content of SiO 2 and B 2 O 3 .
  • a preferable optical glass in this embodiment is a glass having a P 2 O 5 content of 10 mol% or more.
  • a preferable optical glass in this embodiment is a glass having a P 2 O 5 content of 40 mol% or less.
  • the optical glass preferred in this embodiment has a GeO 2 content of 0 to 10 mol%, more preferably 0 to 5 mol%, still more preferably 0 to 3 mol%, more preferably 0 to 2 mol%, and much more.
  • the content is preferably 0 to 1 mol%, and more preferably 0 to 0.5 mol%.
  • the preferred optical glass has a TeO 2 content of 0 to 10 mol%, more preferably 0 to 5 mol%, still more preferably 0 to 3 mol%, and still more preferably 0 to It is 2 mol%, more preferably 0 to 1 mol%, still more preferably 0 to 0.5 mol%.
  • a preferable optical glass has a Sb 2 O 3 content of 0 ppm or more and less than 1000 ppm, a more preferable optical glass has a Sb 2 O 3 content of 900 ppm or less, and a more preferable optical glass is Sb 2 O.
  • 3 is 800 ppm or less, more preferably the glass has a Sb 2 O 3 content of 700 ppm or less, and an even more preferable optical glass has a Sb 2 O 3 content of 600 ppm or less, and an even more preferable optical glass
  • the Sb 2 O 3 content is 500 ppm or less, and the smaller values in the order of 400 ppm, 300 ppm, 200 ppm, and 100 ppm are more preferable.
  • Sb 2 O 3 may not be contained.
  • Preferred optical glasses in this embodiment are P 2 O 5 , SiO 2 , B 2 O 3 , TiO 2 , Nb 2 O 5 , WO 3 , Bi 2 O 3 , MgO, CaO, SrO, BaO, ZnO, Li 2.
  • the total content of O, Na 2 O, K 2 O, Al 2 O 3 , ZrO 2 , GeO 2 , TeO 2 and Sb 2 O 3 is 90 mol% or more, more preferably 92 mol% or more, More preferably, it is 95 mol% or more, more preferably 96 mol% or more, still more preferably 97 mol% or more, still more preferably 98 mol% or more, still more preferably more than 99 mol%. It is.
  • Pb, As, Cd, U, Th, and Tl are not substantially contained.
  • the preferred optical glass in this embodiment is a glass that substantially does not contain Cu, Cr, Mn, Fe, Co, Ni, V, Mo, Nd, Eu, Er, Tb, Ho, and Pr.
  • the preferred optical glass in this embodiment contains a noble metal, and the content of the noble metal is less than 2 ppm.
  • the more preferable upper limit of the content of the noble metal contained in the glass is 1.8 ppm, 1.6 ppm, 1.4 ppm, 1.2 ppm, 1.1 ppm, 1.0 ppm, 0.9 ppm in order of decreasing the upper limit value. Even more preferred.
  • a preferred optical glass in this embodiment contains a noble metal, the noble metal content is 1.6 ppm or less, and the ⁇ OH value shown in the above formula (1) is 0.1 to 0.4 mm ⁇ 1 .
  • Preferred optical glass in this embodiment contains Pt, and the Pt content is less than 2 ppm.
  • the more preferable upper limit of the content of Pt contained in the glass is 1.8 ppm, 1.6 ppm, 1.4 ppm, 1.2 ppm, 1.1 ppm, 1.0 ppm, 0.9 ppm in order of lower upper limit value. Even more preferred.
  • the preferred optical glass in this embodiment has a refractive index nd of 1.75 or more, more preferably 1.80 or more, still more preferably 1.85 or more, and still more preferably 1.90 or more.
  • the glass material for press molding of this embodiment is made of the optical glass of this embodiment.
  • the optical element of the present embodiment is made of the optical glass of the present embodiment.
  • the melting container is made of a noble metal material.
  • the oxygen partial pressure in the melting vessel in the melting step (i) is lower than the oxygen partial pressure in the atmosphere.
  • step (iv) of heat-treating the glass is performed in an oxidizing atmosphere.
  • the oxidizing atmosphere is an air atmosphere or an atmosphere having a higher oxygen partial pressure than the air.
  • the optical element of this embodiment includes a step of producing glass by the production method according to this embodiment, And further forming or processing the glass.
  • the glass material for press molding of this embodiment is made of the optical glass of this embodiment.
  • the optical element of the present embodiment is made of the optical glass of the present embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Glass Compositions (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

【課題】 リン酸塩系ガラスにおいて、高屈折率で透過率に優れた光学ガラスを提供することを目的とする。 【解決手段】 TiO、Nb、WOおよびBiから選択される少なくともいずれか1種の酸化物を含むリン酸塩系ガラスであって、前記TiO、Nb、WOおよびBiの合計含有量(HR)が35モル%以上であり、貴金属含有量が2.0ppm未満であり、下記式(1)に示すβOHの値が、0.1mm-1以上である、光学ガラス。 βOH=-[ln(B/A)]/t ・・・(1)

Description

光学ガラスおよびその製造方法
 近年、撮像光学系、投射光学系等の装置の高機能化、コンパクト化に伴い、有効な光学素子の材料として、高屈折率の光学ガラスの需要が高まってきている。
 高屈折率の光学ガラス(以下、単に「ガラス」ということがある。)は、通常、ガラス成分としてTi、Nb、W、Bi等の高屈折率成分を多量に含有している。これらの成分は、ガラスの熔融過程で還元されやすく、還元されたこれらの成分は、可視光域の短波長側の光を吸収するため、ガラスの着色(以下、「還元色」ということがある)が増加する問題がある。
 このような問題を解決する手段として、着色したガラスを再度熱処理し、還元色を低減する技術が知られている。しかし、この方法では、熱処理前のガラスの着色が濃すぎると、熱処理を施しても還元色が十分に低減されない問題があった。そのため、高屈折率成分を多量に含むガラス組成ほど、還元色を低減するのが困難であった。
 これに対し、特許文献1では、熔融工程においてガラス原料から酸化性ガスを発生させて高屈折率成分の還元を抑制することで、熔融工程でガラスの還元色を低減する技術が提案されている。このような技術によれば、ホウ酸ビスマス系ガラスのように高屈折率成分を多量に含むガラス組成であっても、還元色を低減した光学ガラスを製造できる。
 しかし、このような技術を用いてリン酸塩系の光学ガラスを製造する場合には、熔融容器を構成する貴金属材料が、熔融ガラス中に溶け込む問題が顕著となる。
 一般に、坩堝等の熔融容器を構成する材料としては、耐熱性や耐蝕性に優れる白金等の貴金属材料が広く用いられる。貴金属製の熔融器具は、光学ガラスのように均質性の極めて高いガラスを多量に製造する上で必要とされている。しかし、熔融時の高温により、白金等の貴金属は、熔融雰囲気中(例えば大気中)に含まれる酸素と反応し、貴金属酸化物(例えばPtO等)を生じることがある。このような貴金属酸化物は、熔融物の表面を介してガラス中に溶け込む。また、高屈折率成分を多量に含むガラスを熔融する際には、貴金属材料は、酸化されて貴金属イオン(例えばPt4+等)として熔融ガラス中に溶け込むことがある。
 熔融ガラス中に溶け込んだ貴金属イオン(貴金属酸化物を含む)は、可視光を吸収するため、最終製品である光学ガラスにおいて着色(貴金属イオンに由来する着色)の増加を招く。また、白金等の貴金属を含む光学ガラスは、紫外線照射に伴いガラスの透過率の劣化を招く(ソラリゼーション)。そのため、光学ガラスの製造においては、熔融ガラス中への貴金属の溶出を抑制することが求められる。
 通常、熔融ガラス中への貴金属の溶け込み量は、ガラスの熔融温度が高くなるほど、多くなる傾向にあるため、ホウ酸ビスマス系ガラスに比べて熔融温度を高く設定する必要がある(ガラス転移温度Tgが高い)リン酸塩系の光学ガラスの製造の際には、熔融ガラスへの貴金属の溶け込みは、より深刻な問題となる。
 このようなリン酸塩系の光学ガラスの製造の場合には、特許文献1の技術(熔融工程においてガラス原料から酸化性ガスを発生させること)により、ガラスの還元色を低減できても、熔融ガラスへの貴金属の溶け込みは助長されるため、十分な透過率改善は望めない。
 これに対して、特許文献2では、リン酸塩系の光学ガラスの製造において、還元色の低減と、貴金属の溶け込み量の低減を両立させる技術が提案されている。この方法によれば、熔解したガラス中で非酸化性ガスをバブリングすることで、熔融雰囲気中の余分な酸素成分の排出を促進でき、熔融容器を構成する貴金属がガラス中に溶出することを防止できる。さらに、この方法によれば、熔融ガラス中の酸素成分の濃度を適度に調節できるため、熔融ガラスから酸素成分が過剰に排出されることを防止でき、高屈折率成分の還元も抑制できる。
 しかし、非酸化性ガスとして還元ガス(一酸化炭素等)を用いる場合には、熔融ガラス中のTi、Nb、W、Bi等の金属イオンが過剰に還元され、還元された金属と熔融容器を構成する貴金属とが合金化し、熔融容器の強度、耐久性が著しく低下する問題ある。また、Ar等の不活性ガスは他のガスに比べて高価であるため、非酸化性ガスとして不活性ガスを用いる場合には、コストの増大を招く問題がある。
 さらに、このような方法では、熔融ガラス中への貴金属の溶け込み量の低減は可能であるが、酸素分圧の低い熔融雰囲気中で熔融するために、高屈折率成分の還元が進行し、ガラスの着色が濃くなり、このようなガラスに熱処理を施しても着色を十分に改善できない。
 そのため、貴金属含有量を低く維持しつつ、ガラスの還元色を大幅に低減できるガラス(ひいては、優れた透過率を有する高屈折率の光学ガラス)およびその製造方法が求められていた。
特開2011-042556号公報 特開2011-246344号公報
 本発明は、このような事情に鑑みてなされたもので、リン酸塩系ガラスにおいて高屈折率で透過率に優れた光学ガラスおよびその製造方法を提供することを目的とする。
 本発明者らは、上記目的を達成するために鋭意研究を重ねた結果、高屈折率成分を多量に含むリン酸塩系ガラスにおいて、熔融工程おいて、熔融雰囲気に水蒸気を付加する処理および熔融物内に水蒸気をバブリングする処理の少なくとも一方を行うことにより、熔融容器に由来する貴金属の溶け込みを有効に防止できると共に、熱処理後のガラスの着色改善効果を向上できることを見出し、この知見に基づいて本発明を完成するに至った。
 すなわち、本発明の要旨は以下の通りである。
[1] TiO、Nb、WOおよびBiから選択される少なくともいずれか1種の酸化物を含むリン酸塩系ガラスであって、
 上記TiO、Nb、WOおよびBiの合計含有量(HR)が35モル%以上であり、
 貴金属含有量が2.0ppm未満であり、
 下記式(1)に示すβOHの値が、0.1mm-1以上である、光学ガラス。
 βOH=-[ln(B/A)]/t          ・・・(1)
〔式(1)中、tは外部透過率の測定に用いる上記ガラスの厚み(mm)を表し、Aは上記ガラスに対してその厚み方向と平行に光を入射した際の波長2500nmにおける外部透過率(%)を表し、Bは上記ガラスに対してその厚み方向と平行に光を入射した際の波長2900nmにおける外部透過率(%)を表す。また、式(1)中、lnは自然対数である。〕
[2] リンを含むガラス原料と、TiO、Nb、WOおよびBiの少なくとも一種以上の成分を含むガラス原料とを、貴金属製の熔融容器内にて加熱、熔融し、熔融ガラスを得る熔融工程を有し、
 上記ガラス原料における、TiO、Nb、WOおよびBiの合計含有量(HR)が35モル%以上であり、
 上記熔融工程において、熔融雰囲気に水蒸気を付加する処理(ia)、および、熔融物内に水蒸気をバブリングする処理(ib)、の少なくともいずれか一方を行う、光学ガラスの製造方法。
[3] 上記処理(ia)および処理(ib)のいずれかまたは両方において、水蒸気と共に非酸化性ガスを供給する、上記[2]に記載の光学ガラスの製造方法。
[4] 上記非酸化性ガスは、アルゴン、窒素、一酸化炭素、二酸化炭素、水素、ヘリウムおよびヨウ素からなる群から選択される少なくとも1種以上である、上記[3]に記載の光学ガラスの製造方法。
[5] 供給するガス中における、水蒸気が占める割合が3体積%以上、100体積%未満であり、かつ非酸化性ガスが占める割合が0体積%を超え、97体積%以下である、上記[3]または[4]に記載のガラスの製造方法。
[6] 上記光学ガラスがリン酸塩系ガラスである、上記[2]~[5]のいずれかに記載の光学ガラスの製造方法。
[7] 上記光学ガラスを、酸化性雰囲気下で熱処理する工程をさらに有する上記[2]~[6]のいずれかに記載の光学ガラスの製造方法。
 本発明によれば、熔融容器に由来する貴金属含有量が極めて少なく、さらに、熱処理後の透過率改善効果が非常に大きい、リン酸塩系ガラスからなる高屈折率の光学ガラスが得られる。このような本発明の光学ガラスは、特に熱処理後において、極めて優れた透過率を有する。
光学ガラス
 本発明に係る光学ガラス(以下、単に「ガラス」ということがある。)は、ガラス成分として、TiO、Nb、WOおよびBiから選択される少なくともいずれか1種の酸化物(以下、単に「高屈折率成分」ということがある)を含むリン酸塩系ガラスであって、上記TiO、Nb、WOおよびBiの合計含有量(以下、単に「HR」ということがある)が35モル%以上であり、貴金属の含有量は2ppm未満であり、かつ、下記式(1)に示すβOHの値が0.1mm-1以上であることを特徴とする。
 βOH=-[ln(B/A)]/t          ・・・(1)
 ここで、上記式(1)中、tは外部透過率の測定に用いる上記ガラスの厚み(mm)を表し、Aは上記ガラスに対してその厚み方向と平行に光を入射した際の波長2500nmにおける外部透過率(%)を表し、Bは上記ガラスに対してその厚み方向と平行に光を入射した際の波長2900nmにおける外部透過率(%)を表す。また、上記式(1)中、lnは自然対数である。βOHの単位はmm-1である。
 なお、「外部透過率」とは、ガラスに入射する入射光の強度Iinに対するガラスを透過した透過光の強度Ioutの比(Iout/Iin)、すなわち、ガラスの表面における表面反射も考慮した透過率であり、後述する「内部透過率」とは、ガラスの表面における表面反射がない場合の透過率(すなわちガラスを構成するガラス材料自体の透過率)である。それぞれの透過率は、分光光度計を用いて、透過スペクトルを測定することにより得られる。
 また、「リン酸塩系ガラス」は、ガラス成分としてPを含有し、モル%表示において、Pの含有量がSiOの含有量よりも大きくかつBの含有量よりも多い光学ガラスであり、例えば、上記ガラスであって、Pの含有量が5モル%以上の光学ガラスが含まれる。リン酸塩系光学ガラスとして好ましいガラスは、モル%表示において、Pの含有量がSiOとBの合計含有量よりも多いガラスである。
 また、本実施形態に係る光学ガラスは、高屈折率ガラスであるため、高屈折率成分を多く含み、TiO、Nb、WOおよびBiの合計含有量(HR)が35モル%以上である。好ましくは、HRの下限は37モル%、より好ましくは38モル%、さらに好ましくは38.5モル%、一層好ましくは39モル%、より一層好ましくは40モル%、さらに一層好ましくは43モル%、なお一層好ましくは50モル%である。また、HRの上限は、好ましくは85モル%、より好ましくは80モル%、さらに好ましくは75モル%である。
 本実施形態に係る光学ガラスは、貴金属含有量は、2ppm未満である。すなわち、本実施形態に係る光学ガラスは、貴金属を含有するが、その含有量が2ppm未満であり、ガラスの熔融容器材料や熔融器具材料として使用される白金等の貴金属の溶け込み量が極めて少ない。
 通常、熔融ガラス中に溶け込んだ貴金属イオンは可視光を吸収するため、ガラスの着色が増加する問題がある。しかし、本実施形態に係る光学ガラスは、上述のように貴金属の含有量が十分に低減されているため、貴金属イオンに由来する着色やソラリゼーションが少なく、貴金属異物も低減されていることから、透過率に優れる。
 特に、貴金属イオンに起因するガラスの着色の低減、ソラリゼーションの低減、貴金属異物の低減、透過率の改善などの観点から、本実施形態に係る光学ガラスの貴金属含有量の上限値は、低いほど好ましく、1.8ppm、1.6ppm、1.4ppm、1.2ppm、1.1ppm、1.0ppm、0.9ppmの順に上限値が低いほどより一層好ましい。貴金属の含有量の下限は、特に制限されないが不可避的に0.001ppm程度は含まれる。
 貴金属としては、Pt、Au、Rh、Ir等の金属単体、Pt合金、Au合金、Rh合金、Ir合金などの合金を例示することができる。熔融容器材料や熔融器具材料としては、貴金属の中でも、耐熱性、耐蝕性に優れるPtまたはPt合金が好ましい。
 したがって、PtまたはPt合金製の熔融容器、熔融器具を用いて作製したガラスについては、ガラス中に含まれるPtの含有量が2ppm未満であることが好ましい。Ptの含有量のより好ましい上限については、ガラス中に含まれる貴金属の含有量のより好ましい上限と同じである。また、Ptの含有量の下限は、特に制限されないが、不可避的に0.001ppm程度は含まれる。
 さらに、本実施形態に係る光学ガラスは、上記式(1)に示すβOHの値が0.1mm-1以上である。このような本実施形態に係る光学ガラスは、ガラス成分としてTi、Nb、W、Bi等の高屈折率成分を多量に含むリン酸塩系の組成あっても、熱処理によって、効率よく還元色を低減できる。
 本実施形態に係る光学ガラスにおいて、熱処理後に還元色を劇的に改善できる理由は定かではないが、本発明者は次のように考えている。
 一般に、ガラス成分としてTi、Nb、W、Bi等の高屈折率成分を多量に含有しているガラス組成の場合、ガラスの熔融過程でこれらの高屈折率成分が還元され、可視光域の短波長側の光を吸収するため、得られた光学ガラスにおいて着色(以下、還元色ということがある。)が増加する問題がある。
 このような問題に対しては、還元色を呈した光学ガラスを酸化性雰囲気下で熱処理することで、ガラスの着色を低減できる。このような現象は、還元状態のTi、Nb、W、Bi等の各イオンが酸化され、各イオンの可視光吸収が弱まることによると考えられる。
 しかし、酸化性雰囲気下でガラスを熱処理しても、ガラス中のTi、Nb、W、Bi等を酸化する速度が遅い場合には、着色の低減効果は小幅なものに留まっていた。そのため、短時間で着色を低減するには、熱処理時のTi、Nb、W、Bi等の酸化速度を速くする必要があった。
 これらの酸化速度を上げるためには、熱処理時に、ガラス中を速やかに移動でき、電荷を受け渡すことでTi、Nb、W、Bi等を酸化できるイオンの存在が重要である。このようなイオンとしてはHが適していると考えられる。
 Hをより移動しやすくするためには、ガラス構造中にOHを導入し、OHを起点にHがホッピングできるようにすることが有効である。これにより熱処理時の酸化速度を増加させることができると考えられる。このような現象は、リン酸塩系のガラスにおいて特に顕著である。つまり、リン酸塩系のガラス中にできるだけ多くのH+とOH-とを導入する(すなわち、光学ガラスの含水量をできるだけ大きくする)ことで、光学ガラスを熱処理した際に、その着色を劇的に低減できると考えた。
 上記式(1)で表されるβOHは、水酸基に起因する吸光度を意味する。そのため、βOHを評価することにより、ガラス中に含まれる水(および/または水酸化物イオン、以下、単に「水」という。)の濃度を評価できる。すなわち、βOHが高いガラスは、ガラス中に含まれる水の濃度が高いことを意味している。
 したがって、βOHの値が0.1mm-1以上である本実施形態に係る光学ガラスでは、ガラス中に水に由来するHが存在するといえる。そのため、熱処理によって、Hがガラス中を速やかに移動して、電荷を受け渡し、Ti、Nb、W、Bi等の各イオンを効率的に酸化できる。これにより、本実施形態に係る光学ガラスでは、短時間の熱処理で劇的に着色を低減でき、熱処理後のガラスは、優れた透過率を有する。
 なお、βOHの下限は、熱処理後の透過率改善の観点から、好ましくは、0.12mm-1以上であり、0.15mm-1以上、0.18mm-1以上、0.20mm-1以上、0.23mm-1以上、0.25mm-1以上、0.28mm-1以上、0.30mm-1以上、0.33mm-1以上、0.35mm-1以上、0.37mm-1以上、0.40mm-1以上の順に下限値が大きいほど一層好ましい。
 また、βOHの上限は、ガラスの種類や製造条件によって異なり、特に制限されるものではないが、βOHを高めていくと、熔融ガラスからの揮発物量が増加する傾向にあるため、熔融ガラスからのガラス成分の揮発を抑制する上から、好ましくはβOHが10mm-1以下、より好ましくは8mm-1以下、さらに好ましくは6mm-1以下、一層好ましくは5mm-1以下、より一層好ましくは4mm-1以下、さらに一層好ましくは3mm-1以下、なお一層好ましくは2mm-1以下、特に好ましくは1.0mm-1以下、最も好ましくは0.4mm-1以下とすることができる。
 熔融ガラスからのガラス成分の揮発を抑制する上から、βOHの上限を上記HRやガラスの屈折率ndとの関係により定めてもよい。例えば、熔融ガラスからのガラス成分の揮発を抑制する上から、下記式(A)あるいは下記式(B)を満たすことが好ましく、下記式(A)および式(B)を満たすことがより好ましい。
 βOH<C×ln(1/HR)+C                ・・・(A)
(上記式(A)中のlnは自然対数であり、定数Cは0.4891mm-1、定数Cは2.48mm-1である。)
 βOH<D×nd-3-D×nd-2+D×nd-1-D      ・・・(B)
(上記式(B)中の定数Dは181.39mm-1、定数Dは325.75mm-1、定数Dは194.85mm-1、定数Dは38.1mm-1である。)
 なお、赤外光は、濃く着色したガラスであっても透過するため、βOHはガラスの着色の有無(還元色の有無)によらず評価できる。また、通常、熱処理はガラスの軟化点よりも低い温度で行われるため、その前後でガラスのβOHの値は実質的に変化せず、熱処理の前後いずれで測定してもよい。したがって、ガラスのβOHは、熱処理(着色の低減する処理)を経た透明なガラス、および熱処理を経ていない濃く着色しているガラスのいずれで測定してもよい。すなわち、本実施形態に係る光学ガラスは、βOHが0.1mm-1以上である限り、特に限定されず、熱処理(還元色を低減する処理)を経ていてもよいし、この処理を経ていなくてもよい。
 また、本実施形態に係る光学ガラスは、清澄性に優れている。本実施形態に係る光学ガラスの製造工程(特に熔融工程)では、熔融雰囲気に水蒸気を付加する処理等が行われているため、熔融ガラス中の溶存ガス量が高められていると考えられる。その結果、本実施形態に係る光学ガラスでは、優れた清澄性により、その製造過程において、清澄工程に要する時間を短縮でき、生産性が向上する。
 また、本実施形態に係る光学ガラスの屈折率ndは、1.75以上であることが好ましい。また、屈折率ndのより好ましい下限は1.80、さらに好ましくは1.85、特に好ましくは1.90である。また、屈折率ndの上限は、ガラスが得られる限り制限はないが、例えば2.5程度とすることができる。屈折率の高い光学ガラスからなる光学素子を用い、光学系を構成することによって、光学系のコンパクト化、高機能化が可能なる。このような観点から、屈折率ndは高いほど好ましい。しかし、屈折率を高めるとガラスの耐失透性が低下する傾向を示す。そのため、耐失透性を維持する上から、屈折率ndの好ましい上限は2.4、より好ましくは2.3である。
 また、本実施形態に係る光学ガラスのガラス転移温度は、好ましくは400℃以上、より好ましくは、500℃以上、さらに好ましくは550℃以上、一層好ましくは570℃以上、より一層好ましくは600℃以上である。ガラス転移温度が上記範囲であると、酸化性雰囲気中におけるガラスの熱処理温度を高くすることができ、着色低減を効率良く行うことができる。また、研削、研磨等のガラスの加工性を改善することもできる。
 また、本実施形態に係る光学ガラスは、着色度λ70が、好ましくは600nm以下、より好ましくは540nm以下、さらに好ましくは500nm以下である。なお、着色度λ70は、光学ガラス(厚さ10mm±0.1mmの板状ガラス試料で)の分光透過率が70%となる波長である。
光学ガラスの製造方法
 本実施形態に係る光学ガラスの製造方法は、
 リンを含むガラス原料と、TiO、Nb、WOおよびBiの少なくとも一種以上の成分を含むガラス原料とを、貴金属製の熔融容器内にて加熱、熔融し、熔融ガラスを得る熔融工程(i)を有し、
 上記ガラス原料における、TiO、Nb、WOおよびBiの合計含有量(HR)が35モル%以上であり、
 上記熔融工程において、熔融雰囲気に水蒸気を付加する処理(ia)、および、熔融物内に水蒸気をバブリングする処理(ib)、の少なくともいずれか一方を行うことを特徴とする。
 一般に、白金などの貴金属製の熔融容器を用いて、TiO、Nb、WOおよびBiなどの高屈折率成分を多量に(HRが35モル%以上)含む高屈折率のガラスを熔融する場合に、大気雰囲気で熔融すると、熔融雰囲気中に含まれる酸素が熔融容器を構成する貴金属と反応し、得られるガラスにおいて貴金属含有量が増加する問題があった。
 上述のように、貴金属がガラス中に多量に存在すると、透過率劣化やソラリゼーション等の問題の原因となるため、従来から、熔融雰囲気を調整することにより、熔融容器を構成する金属材料がイオン化して熔融ガラスに溶け込まない状態を作る技術が提案されていた。
 例えば、熔融雰囲気を還元側にしてガラスを熔融すると、熔融ガラスへの貴金属イオン(熔融容器を構成する貴金属のイオン)の溶け込みは抑制できる。しかし、熔融ガラスを過剰に還元側にすると、還元された高屈折率成分により熔融容器が合金化されることがある。さらに、過剰に還元側にしないまでも、非酸化性雰囲気下では高屈折率成分は還元される傾向にあるため、ガラスの着色(還元色)の度合は強まる。還元色があまりに強いガラスは、後工程において熱処理を施しても、着色の低減の効果は小幅なものに留まる。
 そのため、上記のような問題を改善するにあたり、本発明者は、熔融容器を構成する貴金属材料がイオン化して熔融ガラスに溶け込まない状態で熔融し、かつ、得られたガラスにおいて、熱処理後のガラスの着色(還元色)の低減効果が大きいことが重要であると考え、本発明を完成させるに至った。
 本実施形態に係る光学ガラスの製造方法では、熔融工程において、熔融雰囲気に水蒸気を付加する処理(以下、単に「水蒸気付加」ということがある。)および熔融物内に水蒸気をバブリングする処理(以下、単に「水蒸気バブリング」ということがある。)の少なくとも一方を行うことにより、熔融工程において熔融容器に由来する貴金属量が極めて低く、熱処理後の透過率を劇的に改善でき、着色が少なく、極めて優れた透過率を有する光学ガラスが得られる。
 本実施形態の製造方法によれば、熔融容器等に由来する貴金属(例えば白金等)のガラス中への溶け込みを有効に防止でき、得られる光学ガラスにおいて、貴金属イオンに由来する着色を一層低減できる。
 以下の説明では、熔融容器が白金(Pt)の場合を例にとるが、白金以外の貴金属等の金属材料からなる熔融容器等を用いる場合についても同様である。
 通常、ガラスの熔融は大気雰囲気中で行われ、大気中の酸素が熔融容器の材料である白金等の貴金属材料と反応することがある。特に、熔融容器が白金系材料である場合、二酸化白金(PtO)が生成し熔融物中に溶け込む、あるいは、熔融物と白金系材料との界面から白金イオン(Pt4+)として熔融物に溶け込むことがある。熔融ガラス中に溶け込んだ貴金属イオンは可視光を吸収するため、ガラスの着色が増加する傾向にある。
 このような白金イオンに由来する着色を低減するためには、熔融雰囲気を還元雰囲気にすることで、熔融ガラスへの貴金属イオンの溶け込みを抑制する方法等が挙げられる。しかし、熔融ガラスを過剰に還元側にすると、熔融容器が合金化し、熔融容器の強度、耐久性が著しく低下する。また、熔融雰囲気を不活性ガスで置換する方法等もあるが、Arなどの不活性ガスは高価で、長時間の熔融に適さない。
 これに対し、本実施形態に係る光学ガラスの製造方法では、熔融工程において、熔融雰囲気に水蒸気を付加する処理および熔融物内に水蒸気をバブリングする処理の少なくとも一方を行うことより、熔融雰囲気中の酸素分圧を低減し、熔融容器を構成する白金材料が酸化されるのを防止する。その結果、熔融雰囲気中の酸素が白金材料等と反応して生成する二酸化白金や白金イオン(Pt4+)が、熔融物(ガラス)中に溶け込むことを有効に防止でき、得られる光学ガラスにおいて、白金(Pt)の溶け込み量が一層低減される。その結果、得られる光学ガラスの貴金属含有量を好ましくは2ppm未満とすることができる。
 水蒸気の供給には、熔融雰囲気中の酸素分圧低減効果に加え、次の効果があると考えられる。HOが白金の表面に到達すると、白金の触媒効果によってHとOHに分解し、OHの一部が白金イオンと結合し、白金の酸化を防ぐと考えられる。アルゴン、窒素などの不活性ガスには、上記効果を期待できない。実際、水蒸気を含むガスを供給することにより、乾燥状態の非酸化性ガスを供給するよりも、ガラス中の白金等の貴金属含有量を一層低減することができる。
 このように本実施形態の製造方法により作製された光学ガラスは、熔融容器等の製造器具に由来するPtなどの貴金属の含有量が極めて少ない。したがって、ソラリゼーションと呼ばれる紫外線照射によるガラスの着色が少ない。そのため、このようなガラスを例えば光学素子として用いた場合には、透過率の経年変化が少ない。また、紫外線硬化型接着剤を用いて光学素子を固定するとき、光学素子に紫外線を照射しても、透過率が低下しないという効果も得られる。
 また、本実施形態に係る光学ガラスの製造方法によれば、得られる光学ガラスにおいて水分量を高めることができ、熱処理後の透過率を劇的に改善できる。
 上述のように、短時間のガラスの着色を低減するには、熱処理時のTi、Nb、W、Bi等の酸化速度を速くする必要があり、ガラス中にできるだけ多くのHとOHとが存在すること(光学ガラスの含水量が高いこと)が望ましいと考えられる。
 しかし、通常の製造方法により得られるガラスの含水量は、極めて小さくなる。一般に、ガラス原料から光学ガラスを作製する場合において、ガラス原料として正リン酸、水酸化アルミニウム、水酸化カルシウムなどの水酸化物のように含水量の多い原料成分を用いてもよいが、ガラス原料を熔解して熔融ガラスとする過程や、高温の熔融ガラスの状態において水分が蒸散してしまう。また、化合物を調合してバッチ原料とし、このバッチ原料を粗熔解してカレットを作り、このカレットを再調合して熔融容器中で再熔融することでガラスを得る場合でも、バッチ原料中に当初含まれていた水分はカレット化する際に失われ、さらに熔融容器中で再熔融する過程でも、水分が失われる。したがって、いずれの方法を用いても、ガラスの含水量は低下する傾向にある。
 さらに、熔融容器に由来する貴金属の溶出を防止するため、非酸化性雰囲気下でガラスを熔融する場合には、ガラスの含水量はより一層小さくなる傾向にある。一般に、ガラスの熔融は大気雰囲気下で行われるが、大気中には多少水分が含まれている。しかし、熔融雰囲気を非酸化性雰囲気とする場合、通常乾燥ガスである還元ガスや不活性ガスなどの非酸化性ガス熔融雰囲気を置換する必要があるため、大気雰囲気下で熔融されたガラスよりも、含水量はさらに小さくなる。
 このような含水量の低いガラスは、酸化性雰囲気下で熱処理を行っても着色低減の効果が小幅に留まる。
 これに対し、本実施形態に係る光学ガラスの製造方法によれば、熔融ガラスに対して外部から水分を供給でき、高温の熔融ガラスから蒸散して失われた水分を補うことができる。そのため、この製造方法によれば、光学ガラスの含水量を容易に高めることができ、熱処理後の着色を大幅に低減できる。好ましくは、本実施形態の製造方法により得られる光学ガラスは、βOHの値が0.1mm-1以上となる。
 さらに、本実施形態に係る光学ガラスの製造方法によれば、清澄性を大幅に改善できる。
 一般に、ガラスの製造では、均質で泡の少ないガラスが求められる。このような泡の少ないガラスを得るためには、通常、熔融ガラス中の溶存ガスを放出(脱泡)させる清澄工程を設けるのが一般的であるが、ガラスの清澄性は、熔融ガラス中の溶存ガス量に依存する。このような溶存ガス量は、ガラスの組成(特に原材料の種類)や、ガラスの熔融時間や熔融回数に大きな影響を受ける。
 清澄性が悪いガラスは、得られる光学ガラスにおいて泡が残るばかりでなく、清澄時間を長くとる必要があり生産性の低下を招く。さらに、清澄工程を行う清澄槽も、通常、白金や白金合金等の貴金属材料により構成されるのが一般的であるため、清澄工程が長時間になるほど、白金イオンの熔融物への溶け込みによる透過率劣化等の問題が顕著となる。しかし、このような清澄性の問題は、熔融工程において溶存ガスを補うことができれば解決される。
 本実施形態の製造方法により作製されるガラスは、熔融工程において、熔融雰囲気に水蒸気を付加する処理および熔融物内に水蒸気をバブリングする処理の少なくとも一方を行うことにより、熔融ガラス中の溶存ガス量を高めることができると考えられる。すなわち、熔融ガラス中に積極的に導入された水分(例えば、水蒸気)は、溶存ガスとしての役割を果たし、ガラスの清澄性を改善すると考えられる。
 このような本実施形態に係る光学ガラスの製造方法によれば、ガラスが優れた清澄性を有することから、泡の少ない均質なガラスを、短時間の清澄時間で効率よく作製でき、生産性が向上する。さらに、清澄工程に要する時間を短縮できるため、熔融ガラスと熔融容器等との接触時間を低減でき、貴金属イオンの熔融物への溶け込みを、より一層低減できる。
 本実施形態に係る光学ガラスの製造方法では、熔融容器を構成する貴金属材料がイオン化して熔融ガラスに溶け込まない状態を維持しつつ、かつ、得られたガラスにおいて、熱処理後のガラスの着色(還元色)の低減効果を高める観点から、熔融工程において、熔融雰囲気に水蒸気を付加する処理(以下、単に「水蒸気付加」ということがある)および熔融物内に水蒸気をバブリングする処理(以下、単に「水蒸気バブリング」ということがある)の少なくとも一方を行う。
 熔融雰囲気に水蒸気を付加する方法は、特に限定されるものではないが、例えば、熔融装置に設けた開口部から連結パイプを坩堝内へ挿入し、必要に応じてこのパイプを通して水蒸気を含むガスを坩堝内の空間へと供給する方法等が挙げられる。
 坩堝内の空間に供給する水蒸気を含むガスの流量は、特に限定されず、試験的に作製したガラスのβOHの測定結果をもとに調整できる。例えば、略密閉された熔融容器内に水蒸気を供給する場合は、比較的少量の水蒸気を供給すれば、所望のβOHを有するガラスが得られる。一方、蓋をしない坩堝をガラス熔融炉内に配置してガラスを熔融する場合は、ガラス熔融炉内の体積が坩堝内の体積に比べて大きくなるため、βOHを所望の値にするには、ガラス熔融炉内に比較的多量の水蒸気を供給することになる。このような実験結果に基づいて、水蒸気の供給量、すなわち、ガスの流量を次の生産にフィードバックすることで、所望のβOHを有するガラスを生産できる。なお、以下、ガスの流量、水蒸気の流量、雰囲気付加流量、水蒸気の供給量は、25℃、1気圧に換算した値である。
 また、バブリング方法としては、特に限定されるものではなく、公知の方法を用いることができる。例えば、白金製または白金合金製のパイプを熔融容器中の熔融物中に差し込み、パイプを通して水蒸気を含むガスを熔融物中に吹き込む方法、熔融容器の底部付近に熔融容器の材料と同じ材料からなるパイプを取り付け、このパイプから熔融物中に水蒸気を含むガスを吹き込む方法などが挙げられる。
 熔融物中に吹き込む水蒸気を含むガスの気泡径は、好ましくは直径0.01~100mmであり、より好ましくは0.1~30mmである。上記範囲とすることで、熔融ガラス中の水分量を効果的に高めることができると考えられる。なお、気泡径が小さすぎる場合には、熔融物に挿入するバブリング用の管が詰まりやすい等の問題がある。
 熔融物中に吹き込む水蒸気を含むガスの流量は、特に限定されず、試験的に作製したガラスのβOHの測定結果をもとに調整できる。例えば、試験的に作製したガラスのβOHを測定し、測定結果が所望の値よりも小さい場合は、ガスの流量を増加させ、逆に測定結果が所望のβOH値より大きい場合は、ガスの流量を減少させる調整を行う。このように試験的にガラスのβOHを求め、測定結果からガスの流量を調整すればよい。このように、試験的に作製したガラスのβOHの測定値に基づいて、水蒸気の供給量、すなわち、ガスの流量を次の生産にフィードバックすることで、所望のβOHを有するガラスを生産できる。
 水蒸気を含むガス中の水蒸気の含有量は、好ましくは3体積%以上である。水蒸気の含有量は、高いほど好ましく、好ましくは10体積%以上、より好ましくは20体積%以上、さらに好ましくは30体積%以上、一層好ましくは40体積%以上、より一層好ましくは50体積%以上、さらに一層好ましくは60体積%以上、なお一層好ましくは70体積%以上、特に好ましくは80体積%以上、さらに特に好ましくは90体積%以上である。特に上記範囲とすることで、最終的に得られるガラスにおいて、着色の低減効果を高めることができると共に、貴金属の含有量を低減でき、かつ清澄性を改善できる。
 なお、水蒸気を含むガスは、生成したものや、市販のものを用いることができ、他のガスとの混合ガスであってもよい。他のガスとしては、例えば、非酸化性ガスや空気等が挙げられる。中でも、非酸化性ガスが好ましい。
 また、本実施形態に係る光学ガラスの製造方法では、上記処理水蒸気を付加する処理(ia)および熔融物内に水蒸気をバブリングする処理(ib)のいずれかまたは両方において、水蒸気と共に非酸化性ガスを供給するのが好ましい。
 本実施形態では、熔融雰囲気および/または熔融物中に水蒸気を供給することで、ガラスのβOHを高め、熱処理による還元色の低減効果を高めている。しかし、多量に水蒸気を供給し続けると、熔融ガラスからのガラス成分の揮発が増加する傾向を示す。
 そのため、本実施形態では、熔融ガラスからのガラス成分の揮発を抑制する観点から、供給する水蒸気の一部を、非酸化性ガスに置換することが好ましい。これにより、過剰な水分供給を抑えることができ、ガラス成分の揮発を抑制できる。また、置換するガスを非酸化性ガスとすることで、貴金属の含有量を低減効果は維持できる。
 非酸化性ガスとしては、特に限定されないが、例えば、アルゴン、窒素、一酸化炭素、二酸化炭素、水素、ヘリウムおよびヨウ素などが挙げられる。好ましくは、アルゴンなどの不活性ガスである。
 非酸化性ガスの供給量は、特に限定されないが、好ましくは、供給するガス(水蒸気を含むガス)の体積を100体積%とした場合に、非酸化性ガスが占める割合が0体積%を超え、97体積%以下であり、より好ましい上限は90体積%、以下、80体積%、70体積%、60体積%、50体積%、40体積%、30体積%、20体積%、10体積%の順に上限が小さくなるほど、熱処理による着色低減効果を大きくする上から好ましい。一方、非酸化性ガスが占める割合の下限は、10体積%、20体積%、30体積%、40体積%、50体積%、60体積%、70体積%、80体積%、90体積%の順に下限が大きくのるほど、熔融ガラスからのガラス成分の揮発を抑制する上で好ましい。なお、非酸化性ガスを供給する際の水蒸気を含むガスにおける水蒸気が占める割合は、好ましくは3体積%以上、100体積%未満である。
 なお、本実施形態に係る光学ガラスの製造方法において、本願明細書において説明した事項以外については、ガラス原料の調整法、ガラス原料の加熱法、熔融法、熔融ガラスの成形法については公知の方法が適宜採用できる。また、本実施形態に係る光学ガラスの製造方法に用いられるガラス原料や熔融容器を構成する材料についても公知の材料が適宜利用できる。
 ここで、ガラスの作製に際して用いられる熔融容器等を構成する材料としては、通常、熔融ガラスを熔融する温度・雰囲気において耐熱性と耐侵蝕性と有する材料(例えば、金属材料や石英材料等)を適宜利用できる。
 ただし、作製しようとするガラス組成によっては、著しい侵蝕性を示す熔融生成物が生成したり、熔融ガラスが熔融容器等を構成する材料と反応し、熔融容器が溶けたりする場合もある。そのため、熔融容器等を構成する材料を選択する際には、ガラス組成に応じて適宜材料を選択することが好ましい。
 例えば、高屈折率成分を含有するリン酸塩ガラス(Pと、TiO、Nb、WOおよびBiから選択される少なくとも1種の酸化物とを含むガラス)の場合、特に、バッチ原料を加熱・熔解する際に、著しい侵蝕性を示す熔解生成物が生成する。このような熔融生成物は、白金等の耐蝕性に優れた材料をも侵蝕する傾向があるため、白金等の貴金属材料は、上記熔融生成物により侵蝕され、熔融物中に溶け込み、異物として生成したり、ガラスの着色を増大させたりする問題がある。
 そのため、高屈折率成分を含有するリン酸塩ガラスの場合には、バッチ原料を加熱・熔解する際の熔融容器は、熔融工程の後半や清澄工程等とは別に、熔融容器等の材料を選択することが好ましい。バッチ原料を加熱・熔解する際に用いる熔融容器等としては、石英製など、耐火物製の容器や器具が好適である。石英などの耐火物は、上記熔融生成物により侵蝕されるが、侵蝕されて熔融物中に混入してもガラス組成物の一部となるため、貴金属材料のような問題は少ないためである。熔融工程の後半や清澄工程等では、熔融生成物が貴金属材料をも侵蝕するという問題は少ないため、白金製や白金合金製等の貴金属製の容器や器具を用いるのが好適である。
 他方、Bと、高屈折率成分を含有するホウ酸塩ガラス(TiO、Nb、WOおよびBiから選択される少なくとも1種の酸化物を含むガラス)の場合には、上記リン酸塩ガラスのような熔融生成物が貴金属材料をも侵蝕するという問題は少ない。むしろ、ホウ酸ガラスの場合、石英などの耐火物容器は著しく侵蝕される傾向にある。そのため、熔融容器等としては、ガラスの製造過程で侵蝕され難い白金製や白金合金製等の貴金属製の容器や器具を用いるのが好適である。
 本実施形態に係る光学ガラスの製造方法では、ガラスの作製に際して用いられる熔融容器を構成する材料としては、金属材料を使用することが好ましい。ここで、金属材料は、貴金属および貴金属合金から選択される少なくとも1種を使用することが好ましい。本実施形態に係る光学ガラスの製造方法では、熔融雰囲気に水蒸気を付加する処理等を行うため、過剰な還元雰囲気にすることなく、熔融雰囲気の酸素分圧を低減できる。これにより熔融ガラスによって上述の貴金属あるいは貴金属合金が侵蝕されず、かつ還元された高屈折率成分が熔融容器を構成する材料と合金化されない酸化還元状態に、熔融ガラスを維持できる。なお、耐侵蝕性、耐熱性が特に優れる観点から、貴金属としては白金、金などを、貴金属合金としては白金合金、金合金などを用いることが好ましい。
 本実施形態に係る光学ガラスの製造方法では、加熱・熔融工程は、通常、ガラス原料を加熱することで熔解して熔融ガラスにする熔解工程に加えて、熔融ガラスの脱泡を促進する清澄工程と、清澄後の熔融ガラスを降温して成形に適した粘度にするとともに攪拌して均質化する均質化工程とを含むことが好ましい。
 ガラス原料としては、所望の特性の光学ガラスが得られるように、ガラス成分に対応する原材料を秤量し、十分混合して得られた調合原料(バッチ原料)や、調合カレットを用いることができる。
 ガラス原料としてカレットを使用する場合には、バッチ原料を粗熔解してカレット化するカレット化工程(ラフメルト工程)が、熔解工程(リメルト工程)の前に実施される。また、カレットは、好ましくは事前に屈折率測定の測定が行われている。屈折率の測定値が所望の値と等しい場合、カレットをそのまま調合カレットとし、屈折率の測定値が所望の値からずれている場合、所望の値より高い屈折率を有するカレットと所望の値より低い屈折率を有するカレットを混合して、調合カレットとする。
 なお、カレットはガラスからなるが、均質なガラスである必要はない。また、カレットは気泡を含むものであってもよい。さらに、バッチ原料の未熔解物を含むものであってもよい。カレットの組成、光学特性(例えば、屈折率、アッベ数など)は、カレットを再熔融して均質で泡を含まないガラスを作り、このガラスの組成、光学特性をそれぞれカレットの組成、光学特性とする。
 カレットを作製する方式(ラフメルトーリメルト方式)であっても、バッチ原料を直接熔解工程で熔解する方式(バッチダイレクト方式)であっても、Ti、Nb、WおよびBiの過剰な還元を抑えるとともに、熔融容器が金属材料から構成される場合にその金属材料のイオン化を抑制し、ガラス中の含水量を確保する観点から、加熱・熔融工程中のガラスの加熱温度は、800~1500℃に維持することが好ましく、より好ましくは1400℃以下、さらに好ましくは1300℃以下に維持することが好ましい。さらに清澄性を改善しつつ、ガラスを酸化性雰囲気中で熱処理した際の着色の大幅な低減を容易とする観点からは、加熱・熔融工程中のガラスの加熱温度が清澄工程で最も高くなるように設定する、すなわち、清澄温度以下でガラスを熔融することが好ましい。
 また、加熱・熔融工程の開始から終了までの時間を長くすると、高屈折率成分の還元、熔融容器が金属材料からなる場合においてその金属材料のイオン化を助長し、ガラス中の含水量も低下傾向を示すことになる。このため、加熱・熔融工程の開始から終了までの時間は100時間以内にすることが好ましい。なお、加熱・熔融工程の開始から終了までの時間は熔融容器の容量の大小などにより適宜調整すればよい。
 本実施形態に係る光学ガラスの製造方法は、より好ましくは、ラフメルト-リメルト方式で行われる。
 すなわち、本実施形態に係る光学ガラスの製造方法は、好ましくは、
調合材料を熔融してカレットを得るラフメルト工程と、上記カレットを再熔融してガラスを得るリメルト工程と、を有し、
 上記ラフメルト工程および上記リメルト工程のうち少なくともいずれか一方において、熔融雰囲気に水蒸気を付加する処理(ia)、および、熔融物内に水蒸気をバブリングする処理(ib)、の少なくともいずれか一方を行うことを特徴とする。
 特に、ラフメルト-リメルト方式でガラスを作製する場合には、ラフメルト時のバッチ原料の熔解温度(粗熔解温度)は、800~1400℃の範囲とすることが好ましい。ただし、溶存ガスの溶解度は熔融物の温度上昇とともに減少するため、清澄効果をより高める上で、ラフメルト工程における熔融物の温度は、リメルト工程におけるカレットの熔融温度(再熔解温度)以下であることが好ましく、特にリメルト工程における清澄温度よりも低くすることが好ましい。
 また、ラフメルト工程における熔解時間は、坩堝の容量、バッチ原料の坩堝への投入量を考慮して適宜調整でき、例えば、熔解時間を0.1~100時間、より好ましくは0.1~20時間の範囲としてもよい。
 また、リメルト工程における調合カレットの熔解温度(再熔解温度)は、800~1500℃の範囲にすることが好ましい。ただし、清澄効果をより高める上から、この再熔解温度を清澄温度よりも低くすることが好ましい。リメルト工程における熔解時間は坩堝の容量、調合カレットの坩堝への投入量を考慮して適宜調整でき、例えば、再熔融時の熔解時間を0.1~100時間、より好ましくは2~20時間の範囲としてもよい。
 なお、本実施形態に係る光学ガラスの製造方法において、熔融時の雰囲気は、特に限定されるものではないが、熔融ガラス中の水分量を効果的に高める観点から、熔融雰囲気に水蒸気が付加されていることが好ましい。
 熔融雰囲気は、はじめ大気雰囲気や窒素雰囲気などの水蒸気以外の熔融雰囲気で熔融を開始し、途中から熔融雰囲気に水蒸気が付加されてもよいし、熔融雰囲気を予め水蒸気雰囲気に調整しておいてもよい。
 熔融雰囲気に水蒸気を付加する処理等を行う際の、熔融雰囲気の水蒸気分圧は、大気中の水蒸気分圧よりも高く、より好ましくは酸素分圧よりも高い。さらに、水蒸気分圧の上限は、特に限定されるものではなく、例えば熔融雰囲気を全て水蒸気で置換することもできる。
 また、熔融工程全体を通して、熔融雰囲気中の水蒸気分圧が高いことで、酸素が白金等の貴金属材料からなる熔融容器と反応することを有効に防止でき、ガラス中へのPt等の溶け込み量を低減でき、透過率の劣化(低下)を効果的に防ぐことができる。さらに、溶存ガス量を清澄工程の直前まで維持することで、清澄性の改善効果が高まる。
 また、熔融工程は、熔融物の均質化を目的として、熔融物の攪拌を伴うこともできる。攪拌方法としては、公知の方法を用いることができ、例えば、気体を熔融物にバブリングする方法や攪拌棒により攪拌する方法などが挙げられる。
 特に、水蒸気を含むガスを用いたバブリングや、水蒸気を付加した熔融雰囲気中での熔融物の攪拌は、熔融物の均質化を図ると共に、熔融ガラス中の水分量を高める観点で好適である。
 また、本実施形態に係る光学ガラスの製造方法は、好ましくは、リンを含むガラス原料と、TiO、Nb、WOおよびBiの少なくとも一種以上の成分を含むガラス原料を熔融容器内にて加熱、熔融し、熔融ガラスを得る熔融工程(i)の後に、さらに上記熔融ガラスを上記熔融容器外に流出する工程(ii)、および上記熔融ガラスを成形する工程(iii)を有する。
 流出工程(ii)では、清澄・均質化した熔融ガラスを熔融容器底部に取り付けたガラス流出パイプより流出する。ガラス流出パイプの温度は、流れる熔融ガラスが失透しない温度域であって、成形に適した粘度になるように調整、維持する。
 成形工程(iii)では、熔融容器内の熔融ガラスを所定の形状に成形できるのであれば公知の如何様な成形方法も利用できる。例えば、熔融ガラスを、鋳型に流し込んでブロック状としてもよく、パイプから流下させた線状の熔融ガラス流を、一定の長さ(一定の量)ごとに切断してガラス塊としてもよい。また、後工程において、より精度の高い形状加工を行う場合は、成形工程を経て得られる個々のガラスの形状は大きくばらついていてもよい。また、得られたガラスは濃く着色していてもよく、後工程において、熱処理を行うことにより着色は低減できる。
 本実施形態に係る光学ガラスの製造方法では、流出工程(ii)および成形工程(iii)の少なくともいずれか一つの工程を酸化性雰囲気下で行うことが好ましい。これにより、ガラスの還元色を効率よく低減できる。
 通常、高屈折率成分に由来する還元色は、ガラスを酸化性雰囲気で熱処理することで低減できる。特に、Ti、Nb、WおよびBi等の酸化は、ガラスの温度が高いほど速やかに進む傾向にある。
 そのため、できるだけ高温のガラス、すなわち熔融工程(i)のガラスを酸化性雰囲気に晒すとよいとも考えられる。しかし、熔融容器や清澄槽等が貴金属材料等で構成されている場合、熔融工程(i)のガラスは、貴金属材料と接する状態にあるため、熔融雰囲気を酸化性雰囲気にすると、貴金属材料が雰囲気中の酸素と反応し、ガラス中に貴金属のイオンが溶け込む等の問題がある。
 一方、流出工程(ii)および成形工程(iii)のガラスは、熔融工程(i)のガラスに比べて温度が低いが、成形後に降温したガラスに比べれば、なお十分に高温に保たれているといえる。そのため、これらの工程でも、ガラスを酸化性雰囲気に晒すことによるガラスの着色低減の効果は十分に期待できる。さらに、流出工程(ii)および成形工程(iii)では、ガラスが熔融容器等を構成する貴金属材料と接触することもないため、上記のような問題は生じ難いと考えられる。
 そのため、流出工程(ii)および成形工程(iii)の少なくともいずれか一つの工程を酸化性雰囲気とすることで、熔融ガラスへの貴金属材料等の溶け込みを危惧することなく、効率よく還元色を低減できる。
 また、熔融ガラス流の方が、鋳型中のガラスブロックよりも、単位体積あたり、酸化性雰囲気に晒されるガラスの表面積が大きくなるため、より効率よく還元色を低減できる。
 また、流出工程(ii)および成形工程(iii)の少なくともいずれか一つの工程で、ガラスの還元色の低減が図られていることにより、成形工程(iii)後のガラスについて、気泡や析出物の有無などガラス内部の検査が容易にできる。その結果、早い段階で良質のガラスを精査でき、歩留まりも向上する。
 また、本実施形態に係る光学ガラスの製造方法は、好ましくは、成形されたガラスを熱処理する熱処理工程(iv)を有する。熱処理は、酸化性雰囲気中で行うことが好ましい。これにより得られるガラスの着色を大幅に低減できる。熱処理工程を経て得られたガラスは、着色が少なく透明度が高い、すなわち、可視域における透過率が高い。
 熱処理工程(iv)において、熱処理温度および熱処理時間は、所望の光学特性が得られるように適宜設定すればよい。例えば、熱処理温度は、ガラスの軟化点よりも低く、ガラス転移温度Tgよりも100℃低い温度(Tg-100℃)以上の温度が好ましい。
 なお、ガラスの着色を所定のレベルまで低減する際、熱処理温度が高ければ、熱処理時間を短縮できる。また、酸化性雰囲気中の酸素分圧を高めても熱処理時間を短縮できる。このように熱処理時間は、熱処理温度や酸化性雰囲気中の酸素分圧により変わるが、ガラスの着色が所望のレベルになるように設定すればよい。熱処理時間は、典型的には、0.1時間~100時間であることが好ましい。
 なお、上記流出工程(ii)、成形工程(iii)および熱処理工程(iv)において、酸化性雰囲気とは、大気雰囲気、または大気よりも酸素分圧が高い雰囲気であり、好ましくは大気よりも酸素分圧が高い雰囲気である。
 酸化性雰囲気とするための方法は、特に限定されるものではないが、例えば酸化性雰囲気ガスを供給する方法などが挙げられる。酸化性雰囲気ガスとしては、酸素を含むガスであればよく、酸素濃度は、例えば、空気と同程度前後かそれ以上であればよい。このような酸化性雰囲気ガスとしては、例えば、空気、空気に酸素を加えたガス、実質的に酸素のみからなるガスなどを挙げることができる。
ガラス組成について
 以下、特記しない限り、ガラス成分の含有量、合計含有量、添加剤の含有量は、酸化物換算のモル%で表示する。
 本実施形態に係る光学ガラスは、リン酸塩系ガラスであり、ガラス成分として、TiO、Nb、WOおよびBiから選択される少なくともいずれか1種の酸化物(以下、「高屈折率成分」ということがある)を含有する。好ましくは、ガラス中に含まれるTiO、Nb、WOおよびBiの合計含有量は、35%以上であり、好ましくは37モル%以上、より好ましくは38モル%以上、さらに好ましくは38.5モル%以上、一層好ましくは39モル%以上、より一層好ましくは40モル%以上、さらに一層好ましくは43モル%以上、なお一層好ましくは50モル%以上である。TiO、Nb、WOおよびBiの合計含有量が85%を超えると耐失透性が悪化傾向を示すため、耐失透性を維持する観点から、TiO、Nb、WOおよびBiの合計含有量は85%以下であることが好ましく、80%以下であることがより好ましく、75%以下であることがさらに好ましい。
 リン酸塩系ガラスであることは、ガラス中のTiO、Nb、WOおよびBiの含有量を高める観点からも好ましい。リン酸塩系ガラス中では、加熱処理時のHの移動速度が速く、他の組成系に比べると短時間の加熱処理で着色を低減できる。
 このようなガラスとしては、モル%表示において、Pの含有量がSiOの含有量よりも大きくかつBの含有量よりも多いガラスや、Pの含有量がSiOとBの合計含有量よりも多いガラスを挙げることができる。
 本実施態様は、実施例に例示する組成に加え、TiO、Nb、WOおよびBiの含有量が上記範囲にある公知の組成を含むガラス組成に適用できる。
 次に、本実施態様における好ましいガラス組成について説明する。
 Pは、ガラスネットワーク形成成分であり、ガラスの熱的安定性を維持する働きがある。Pの含有量が7%未満であると、熱的安定性が低下傾向を示すため、Pの含有量を7%以上にすることが好ましい。Pの含有量が40%より大きいと、屈折率が低下する。したがって、Pの含有量を7~40%の範囲にすることが好ましい。Pの含有量のより好ましい下限は10%、さらに好ましい下限は12%、一層好ましい下限は15%、より一層好ましい下限は18%である。Pの含有量のより好ましい上限は35%、さらに好ましい上限は33%、一層好ましい上限は30%、より一層好ましい上限は28%である。
 SiOは、P系組成のガラスには溶け難く、多量に導入すると溶け残りが生じてガラスの均質性が悪化する傾向を示す。溶け残りが生じないよう熔融温度を高めると、貴金属含有量が増加し、ガラスの着色も増大する。そのため、SiOの含有量は、Pの含有量(M)よりも少ない。SiOの含有量を上記M(Pの含有量[%])との関係を表すと、好ましいSiOの含有量の範囲は0%~0.8×M[%]であり、より好ましい範囲は0%~0.5×M[%]、さらに好ましい範囲は0%~0.3×M[%]、一層好ましい範囲は0%~0.15×M[%]である。
 Bは、少量を含有させることにより耐失透性を改善する働きをする。Bの含有量を上記M(Pの含有量[%])との関係を表すと、Bの含有量の範囲は0%以上、M[%]未満であり、好ましい範囲は0%~0.9×M[%]、より好ましい範囲は0%~0.7×M[%]、さらに好ましい範囲は0%~0.6×M[%]、一層好ましい範囲は0%~0.5×M[%]、より一層好ましい範囲は0%~0.4×M[%]、さらに一層好ましい範囲は0%~0.35×M[%]である。
 TiO、Nb、WOおよびBiは屈折率を高めるとともに、分散を高める働きをし、化学的耐久性を改善する働きをする成分である。しかし、TiO、Nb、WOおよびBiの含有量がそれぞれ多くなると耐失透性が悪化する傾向を示す。
 耐失透性を維持する観点から、TiOの含有量の好ましい上限は40%、より好ましい上限は35%、さらに好ましい上限は33%、一層好ましい上限は30%である。TiOの導入効果を得る上から、TiOの含有量の好ましい下限は1%、より好ましい下限は3%である。TiOの含有量を0%にすることもできる。
 耐失透性を維持する観点から、Nbの含有量の好ましい上限は45%、より好ましい上限は40%、さらに好ましい上限は35%である。Nbの導入効果を得る上から、Nbの含有量の好ましい下限は5%、より好ましい下限は8%、さらに好ましい下限は11%である。Nbの含有量を0%にすることもできる。
 WOの含有量の好ましい範囲は0~30%である。上記WOの導入効果を得る観点から、WOの含有量の好ましい下限は1%、より好ましい下限は3%、さらに好ましい下限は5%である。一方、耐失透性を維持する上で、WOの含有量の好ましい上限は27%、より好ましい上限は24%、さらに好ましい上限は20%、一層好ましい上限は18%である。WOの含有量を0%にすることもできる。
 Biの含有量の好ましい範囲は0~35%である。上記Biの導入効果を得る上で、Biの含有量の好ましい下限は1%、より好ましい下限は3%、さらに好ましい下限は5%である。一方、耐失透性を維持する観点から、Biの含有量の好ましい上限は30%、より好ましい上限は28%、さらに好ましい上限は24%である。Biの含有量を0%にすることもできる。
 BiとBの合計含有量の好ましい範囲は、50%未満、より好ましい範囲は45%未満、さらに好ましい範囲は40%である。
 BaO、SrO、CaO、MgO、ZnO等の二価金属成分は、ガラスの熔融性を改善し、ガラスの着色を低減する働きをする。また、適量であれば耐失透性を改善する働きをする。しかし、過剰量の含有により屈折率が低下し、耐失透性が悪化する傾向を示すため、BaO、SrO、CaO、MgOおよびZnOの合計含有量が0~40%であることが好ましく、0~32%であることがより好ましい。BaO、SrO、CaO、MgOおよびZnOの合計含有量の好ましい上限は30%、より好ましい上限は27%、さらに好ましい上限は25%である。BaO、SrO、CaO、MgOおよびZnOの合計含有量の好ましい下限は0.1%、より好ましい下限は0.5%、さらに好ましい下限は1%である。
 これら2価金属成分のうち、BaOは高屈折率を維持する上で有効な成分であることから、BaOの含有量を0~40%の範囲にすることが好ましく、0~32%の範囲にすることがより好ましい。BaOの含有量の好ましい上限は30%、より好ましい上限は27%、さらに好ましい上限は25%である。BaOの含有量の好ましい下限は0.1%、より好ましい下限は0.5%、さらに好ましい下限は1%である。BaOの含有量を0%にすることもできる。
 LiO、NaO、KO等のアルカリ金属酸化物はガラスの熔融性を改善し、ガラスの着色を低減する働きをする。またガラス転移温度、軟化温度を低下させ、ガラスの加熱処理温度を低下させる働きもする。しかし、過剰量の含有により屈折率が低下し、耐失透性が悪化する傾向を示すため、LiO、NaOおよびKOの合計含有量が0~40%であることが好ましく、0~35%であることがより好ましく、0~32%であることがさらに好ましく、0~30%であることが一層好ましい。LiO、NaOおよびKOの含有量をそれぞれ0%にすることもできる。特に、アルカリ金属酸化物としてLiOを用いる場合、高屈折率ガラスを得る観点から、その含有量は製造されるガラス中において0%を超え10%未満であることがより好ましく、0%を超え9%以下であることがさらに好ましく、0%を超え8%以下であることが特に好ましい。
 Alは少量であれば耐失透性を改善する働きをするが、過剰量の含有により屈折率が低下する。したがって、Alの含有量の好ましい範囲は0~12%、より好ましい範囲は0~7%、さらに好ましい範囲は0~3%である。
 ZrOは屈折率を高める働きをし、少量であれば耐失透性を改善する働きをする。しかし、過剰量の含有により、耐失透性や熔融性が悪化傾向を示すため、ZrOの含有量の好ましい範囲は0~16%、より好ましい範囲は0~12%、さらに好ましい範囲は0~7%、一層好ましい範囲は0~3%である。
 GeOは耐失透性を維持しつつ、屈折率を高める働きをする。また、GeOは屈折率を高める働きを有するが、TiO、Nb、WOおよびBiと異なり、ガラスの着色を増大させない。しかし、他の成分と比較して非常に高価な成分であるため、ガラスの製造コストを低減する上からGeOの含有量は少ないほどよい。したがって、高屈折率ガラス製品を広く普及するためには、GeOの含有量を削減しつつ、透過率の優れた高屈折率ガラスを提供することが望まれる。本実施態様によれば、TiO、Nb、WOおよびBiの合計含有量を20%以上とすることにより、多量のGeOを使用しなくても、透過率の優れた高屈折率ガラスを提供できる。
 このような観点から、GeOの含有量の好ましい範囲は0~10%、より好ましい範囲は0~5%、さらに好ましい範囲は0~3%、一層好ましい範囲は0~2%、より一層好ましい範囲は0~1%、さらに一層好ましい範囲は0~0.5%であり、GeOを含有しなくてもよい。なお、製造コストを考慮しなければ、有効量で好適に用いることができる。
 TeOは耐失透性を維持しつつ、屈折率を高める働きをする。しかし、環境への負荷を軽減する上からTeOの含有量の好ましい範囲は0~10%、より好ましい範囲は0~5%、さらに好ましい範囲は0~3%、一層好ましい範囲は0~2%、より一層好ましい範囲は0~1%、さらに一層好ましい範囲は0~0.5%であり、TeOを含有しなくてもよい。
 Sbは酸化作用を有し、TiO、Nb、WOおよびBiの還元を抑制する働きをする。しかし、Sb自体が可視域に吸収を有し、その酸化作用により貴金属製の熔融容器を酸化して貴金属イオンの熔融ガラスへの溶け込みを助長する。したがって、Sbの含有量の好ましい範囲は0ppm以上1000ppm未満である。上記観点から、Sbの含有量の上限は、900ppm、800ppm、700ppm、600ppm、500ppm、400ppm、300ppm、200ppm、100ppmの順に少ない値ほど一層好ましい。Sbを含有させなくてもよい。
 上記成分以外の成分を多量に含有させると、ガラスの耐失透性が悪化し、液相温度が上昇する傾向を示す。そのため、ガラス熔融温度を高めなければならず、貴金属製熔融容器の侵蝕が増大し、ガラスに溶け込む貴金属の量が増加する。また、TiO、Nb、WOおよびBiの還元色も増大する。
 こうした貴金属量の増加を抑制し、ガラスの着色を抑制する上から、P、SiO、B、TiO、Nb、WO、Bi、MgO、CaO、SrO、BaO、ZnO、LiO、NaO、KO、Al、ZrO、GeO、TeOおよびSbの合計含有量を90%以上とすることが好ましく、92%以上とすることがより好ましく、95%以上とすることがさらに好ましく、96%以上とすることが一層好ましく、97%以上とすることがより一層好ましく、98%以上とすることがさらに一層好ましく、99%超とすることがなお一層好ましい。なお、上記合計含有量を100%としてもよい。
 Ta、Y、La、Gd、Yb、In、Ga、SnO、CeO、Fなども少量であれば含有させることができる。Ta、Y、La、Gd、Yb、In、GaおよびFの合計含有量を0~10%とすることが好ましく、0~7%とすることがより好ましく、0~5%とすることがさらに好ましく、0~3%とすることが一層好ましく、0~1%とすることがより一層好ましく、0~0.5%とすることがさらに一層好ましい。
 Fは、熔融ガラスの揮発性を高め、均質なガラスを得る上からも、安定した光学特性を有するガラスを得る上からも、多量に含有させるべき成分ではない。Fの含有量の好ましい範囲は0~3%、より好ましい範囲は0~1%、さらに好ましい範囲は0~0.5%であり、実質的にFを含まないことが一層好ましい。
 環境への負荷を低減する上から、Pb、As、Cd、U、Th、Tlを実質的に含有しないことが好ましい。
 ガラスの着色を低減する上から、Cu、Cr、Mn、Fe、Co、Ni、V、Mo、Nd、Eu、Er、Tb、Ho、Prなどの可視域に吸収を有する成分、添加剤を実質的に含有しないことが好ましい。
 しかしながら、本実施形態に係る光学ガラスにおいて、不可避的不純物の含有を排除するものではない。
 なお、「実質的に含有しない」とは、含有量が0.5モル%未満であることを目安にすることができる。実質的に含有しない成分や添加剤は、ガラスに含まれないことが好ましいから、その含有量が0.1モル%未満であることが好ましく、0.08モル%未満であることがより好ましく、0.05モル%未満であることがさらに好ましく、0.01モル%未満であることが一層好ましく、0.005モル%未満であることがより一層好ましい。
 なお、ガラス原料としては、ガラス成分に応じて、酸化物、リン酸、リン酸塩(ポリリン酸塩、メタリン酸塩、ピロリン酸塩など)、ホウ酸、無水ホウ酸、炭酸塩、硝酸塩、硫酸塩、水酸化物など、公知のガラス原料を使用することができる。
 光学素子の製造
 上記の光学ガラスを使用して光学素子を作るには、公知の方法を適用すればよい。例えば、熔融ガラスを成形してプレス成形用ガラス素材を作製する。次に、このガラス素材を再加熱、プレス成形して光学素子ブランクを作製する。さらに光学素子ブランクの研磨を含む工程により加工して光学素子を作製する。
 あるいは、熔融ガラスを成形してプレス成形用ガラス素材を作製し、このガラス素材を加熱、精密プレス成形して光学素子を作製する。
 上記の各工程において、熔融ガラスを成形してガラス成形体を作製し、ガラス成形体を加工してプレス成形用ガラス素材を作製してもよい。
 あるいは、熔融ガラスを成形してガラス成形体を作製し、この成形体を加工して光学素子を作製する。
 作製した光学素子の光学機能面には使用目的に応じて、反射防止膜、全反射膜などをコーティングしてもよい。
 光学素子としては、球面レンズ、非球面レンズ、マクロレンズ、レンズアレイなどの各種レンズ、プリズム、回折格子などを例示することができる。
 以上、本発明の実施形態について説明してきたが、本発明はこうした実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々なる態様で実施し得ることは勿論である。
 また、本実施形態に係る光学ガラスは、光学素子用の材料として好適であるため、非晶質性(アモルファス)のガラスであることが好ましい。ガラス製の光学素子を作製する方法には、例えば、ガラス材料を加熱、軟化させて成形する方法がある。ガラス質の中に結晶相が分散した結晶化ガラスは、上記成形方法には不向きである。また、結晶化ガラス中の結晶相が光を散乱し、光学素子としての性能を低下させることもある。非晶質性ガラスには、このような問題はない。
 また、本実施形態では、光学ガラスの製造方法の一例として、主として坩堝を用いて原材料を熔融する方法を例示しているが、熔融容器としては、両端が開口した石英製のチューブ等を用いてもよい。
 具体的には、ガラス熔解炉内に、石英製等のチューブを傾斜状態で固定する。ガラス熔解炉の底部には、チューブの低位置側の開口端下方に相当する位置に開口部を設けておく。チューブの高位置側の開口端からチューブ内に原材料(バッチ原料、またはカレット)を導入し、チューブ内で熔解(または熔融)して熔融物とする。熔融物はチューブ中をゆっくりと流動し、チューブの低位置側の開口側から次々に流出する。
 例えば、ラフメルト工程で上記チューブ等を用いる場合には、流出物は炉底の開口部を通過し、予めガラス熔解炉の底部の開口部下方に配置した水槽中の水へと、次々に滴下され、カレットになる。
 上記の方法では、石英製等のチューブを用いて原材料を熔融したが、チューブの替わりに、石英製等の坩堝を用いてもよい。まず石英製等の坩堝の中に原材料を入れて加熱、熔融し、熔融物とし、次いで、熔融物を水中にキャストしたり、冷却した耐熱板上に流し出したりしてカレットを作製してもよい。
 以下、実施例により本発明をより詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
(実施例1)
[バッチ原料の調製]
 まず、所望の特性を備えた光学ガラスを作製するにあたり、ガラスの原材料として、リン酸、メタリン酸バリウム、酸化チタン、酸化ニオブ、酸化タングステン、酸化ビスマス、ホウ酸、炭酸バリウム、炭酸ナトリウム、炭酸カリウムおよび酸化ケイ素をそれぞれ準備した。次に、最終的に得られる光学ガラスのガラス組成が、表1に示す酸化物組成I~VIとなるように、上記原材料を適宜選択、秤量し、十分混合してバッチ原料I~VIを作製した。
Figure JPOXMLDOC01-appb-T000001
[カレットおよび調合カレットの作製(ラフメルト工程)]
 調合されたバッチ原料I~VIを、各光学ガラスのガラス原料とした。このガラス原料を石英製坩堝に投入し、大気雰囲気中で900~1350℃で熔解して熔融物を得た。このようにして得られた熔融物を水中に滴下してカレットを得た。
 水中から取り出したカレットを乾燥させ、カレットの一部を屈折率測定用にサンプリングし、白金製坩堝に入れて熔解し、得られたガラス融液を清澄、均質化した後、鋳型に鋳込んで成形し、ガラス転移温度付近の温度で保持した後、-30℃/時の降温速度で冷却した。このようにして得た屈折率測定用試料の屈折率ndを日本光学硝子工業会規格で定められた屈折率測定法により測定した。
 次に、測定した屈折率ndに応じて、所望の屈折率となるようにカレットを調合し、光学ガラス製造用の調合カレットを得た。
[光学ガラスの作製(リメルト工程)]
 次に、調合カレットを白金製坩堝(熔融容器)に投入し、800~1350℃の範囲内で白金製坩堝内の調合カレットを加熱、熔融し、熔融ガラスとした(熔融工程)。
 その後、坩堝の温度を清澄温度(900~1450℃の範囲)にまで昇温し、清澄した(清澄工程)。続けて、坩堝の温度を均質化温度にまで降温し、攪拌器具で攪拌して均質化した(均質化工程)。
 なお、熔融炉内の容積(坩堝を収納する耐火物製の炉内空間の体積)、および熔融炉内での熔融物の滞在時間(白金熔融容器にカレットを投入してから、熔融容器から熔融ガラスを流出するまでの時間)は、表2に示す。
 また、熔融工程、清澄工程、均質化工程の実施に際しては、熔融雰囲気に水蒸気を付加する処理(ia)、および、熔融物内に水蒸気をバブリングする処理(ib)、の少なくともいずれか一方を行った。
 具体的には、熔融炉外から白金製パイプを、炉内に配置した白金製坩堝内に挿入し、この白金製パイプを通して、水蒸気(HO 100体積%)を白金製坩堝内の空間へと供給した。このように、熔融雰囲気への水蒸気の付加は、大気に水蒸気を付加することにより行った。供給した水蒸気の流量は、表2に示す。
 また、必要に応じて、坩堝の下部に設置した管から、熔融物中に水蒸気(HO 100体積%)をバブリングした。このように、熔融物内への水蒸気バブリングは、大気雰囲気中の熔融物、または、大気に水蒸気を付加した熔融雰囲気中の熔融物に対して水蒸気バブリングすることにより行った。供給した水蒸気の流量は、表2に示す。
 なお、表2中に示す、水蒸気の流量は常温、常圧での流量に換算した値であり、単位はリットル/分である。
 また、坩堝内に水蒸気を供給しない場合は、白金製の蓋はせずに、熔融容器を開放した状態で、熔解工程から清澄工程を経て均質化工程に至るまで、全て大気雰囲気下で行った。
Figure JPOXMLDOC01-appb-T000002
 このようにして均質化した熔融ガラスを、大気雰囲気中で、坩堝底部に取り付けた白金製のガラス流出パイプより流出し(流出工程)、流出パイプの下方に配置した鋳型に流し込むことで、長尺のガラスブロック(幅150mm×厚10mm)を成形した(成形工程)。
 その後、上記ガラスブロックを、大気雰囲気中で、+100℃/時の速度で昇温し、それぞれのガラス転移温度付近で1.5~8時間保持し、-10℃/時の速度で降温して(アニール工程)、歪を除去した光学ガラスサンプルを得た。
[光学ガラスの評価]
 得られた光学ガラスサンプル(試料11~試料63)の各種物性は、以下のように測定、評価した。
[1]ガラス組成
 光学ガラスサンプルを適量採取し、これを酸およびアルカリ処理し、誘導結合プラズマ質量分析法(ICP-MS法)、イオンクロマトグラフフィー法を用いて、各成分の含有量を定量することで測定し、酸化物組成I~VIと一致していることを確認した。
[2]屈折率nd、アッベ数νdおよびガラス転移温度Tg
 光学ガラスサンプルを作製する際の、均質化工程を経た熔融ガラスを、鋳型に鋳込んで成形し、ガラス転移温度付近の温度で保持した後、-10℃/時の降温速度で冷却し、測定用試料を作製した。得られた測定用試料について、日本光学硝子工業会規格で定められた屈折率測定法により、屈折率nd、ng、nF、ncを測定した。さらに、これら屈折率の測定値より、アッベ数νdを算出した。
 次に、光学ガラスサンプルを加工して、円柱形状の測定用試料(直径5mm、高さ20mm)を作製した。得られた測定用試料について、熱機械分析装置(TMA)を用い、昇温速度+10℃/分の条件で、ガラス転移温度Tgを測定した。
 なお、これらの特性値は、ガラス組成に起因するため、同じバッチ原料をガラス原料としている光学ガラスサンプルでは、実質的に同じ値となることが確認された。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
[3]βOH
 光学ガラスサンプルを加工して、両面が互いに平行かつ平坦に光学研磨された厚さ1mmの板状ガラス試料を準備した。この板状ガラス試料の研磨面に垂直方向から光を入射して、波長2500nmにおける外部透過率Aおよび波長2900nmにおける外部透過率Bを、分光光度計を用いてそれぞれ測定し、下記式(1)により、βOHを算出した。
 βOH=-[ln(B/A)]/t   ・・・(1)
 上記式(1)中、lnは自然対数であり、厚さtは上記2つの平面の間隔に相当する。また、外部透過率は、ガラス試料表面における反射損失も含み、ガラス試料に入射する入射光の強度に対する透過光の強度の比(透過光強度/入射光強度)である。また、βOHの値は、高いほど、ガラス中に水が多く含まれていることを意味する。結果を表6に示す。
[4]T450(H)
 光学ガラスサンプルを、大気雰囲気中で、+100℃/時の速度で昇温し、所定の保持温度で100時間保持して、-30℃/時の速度で降温して、熱処理した。なお、保持温度は、組成に応じて異なるため、それぞれの光学ガラスサンプルの酸化物組成に応じて、表4に示す温度とした。
Figure JPOXMLDOC01-appb-T000004
 熱処理後の光学ガラスサンプルを加工して、両面が互いに平行かつ平坦に光学研磨された厚さ10mmの板状ガラス試料を準備した。このようにして得られた板状ガラス試料について、分光光度計を用いて450nmにおける外部透過率T450(H)を求めた。T450(H)の値が大きいほど、透過率に優れ、ガラスの着色は低減されていることを意味する。結果を表6に示す。
[5]Pt含有量
 光学ガラスサンプルを適量採取し、これをアルカリ融解して、Ptを分離する処理した後、ICP-MS法によりガラス中のPt量を定量した。結果を表6に示す。
[6]着色度λ70
 まず、光学ガラスサンプルを、T450(H)の場合と同様の条件で熱処理した。
 熱処理後の光学ガラスサンプルを加工して、両面が互いに平行かつ平坦に光学研磨された厚さ10mm±0.1mmの板状ガラス試料を準備した。この板状ガラス試料の研磨面に垂直方向から光を入射して、波長280nm~700nmの範囲で表面反射損失を含む分光透過率を、分光光度計を用いて測定し、分光透過率(外部透過率)が70%になる波長を、着色度λ70とした。λ70の値は、小さいほど、ガラスの着色が少ないことを意味する。結果を表6に示す。
[7]T450(L)
 光学ガラスサンプルを作製する際の、均質化工程を経た熔融ガラスを、0.5~0.7cc採取し、浮上成形用の鋳型(熔融ガラスを受ける凹部が多孔質体で形成され、多孔質体を通して凹部表面からガスが噴出する構造になっている鋳型)の凹部に流し込み、凹部からガスを噴出し、凹部上の熔融ガラス塊に上向きの風圧を加え、ガラス塊を浮上状態で成形した。
 その後、上記ガラス塊を、+100℃/時の速度で昇温し、所定の保持温度および保持時間で保持し、-30℃/時の速度で降温して、熱処理後の球状光学ガラスサンプルを得た。なお、保持温度および保持時間は、組成に応じて異なるため、それぞれの光学ガラスサンプルの酸化物組成に応じて、表5に示す温度および時間とした。
Figure JPOXMLDOC01-appb-T000005
 得られた球状光学ガラスサンプルを加工して、両面が互いに平行かつ平坦に光学研磨された厚さ5mmの板状ガラス試料を準備した。このようにして得られた板状ガラス試料について、分光光度計を用いて450nmにおける外部透過率T450(L)を求めた。T450(L)の値は、大きいほど透過率に優れ、短時間の熱処理でもガラスの着色が低減されていることを意味する。
[8]泡切れ
 光学ガラスサンプルを作製する際の、清澄工程を開始する前の熔融ガラス(ガラス融液)を40cc採取し、大気中で別の白金坩堝で一定時間清澄し、ガラス融液を白金坩堝中で冷却し、固化させた。この過程で、ガラス中に含まれる泡の数をカウントできる程度に着色を低減した。次に固化したガラスを白金坩堝から取り出した。
 このようにして得られた測定用サンプルについて、光学顕微鏡(倍率20~100倍)を用いてガラス内部を拡大観察(100倍)し、ガラス中に含まれる泡の数をカウントした。清澄時間の異なる測定用サンプルのそれぞれについて同様の観察を行い、ガラス中に残留する泡数が100個/kg以下になる測定用試料の清澄時間を、泡切れの時間として評価した。泡切れ時間は、短いほど清澄性に優れている。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 表6に示すように、本発明の製造方法によれば、熔融容器であるPtが熔融ガラス中に溶け込むことを有効に防止することができ、得られる光学ガラスサンプルにおいて、貴金属の含有量を低減できることが確認された。また、本発明の製造方法によれば、得られる光学ガラスサンプルの含水量を高めることができ、このような光学ガラスサンプルは熱処理を施すことで透過率を劇的に改善し得ることが確認された。さらに、本発明の製造方法によれば、熔融ガラス中の溶存ガスを補うことができ、光学ガラスサンプルの含水量を高める程に、清澄性が改善されることも確認された。
 このように、本発明に係る光学ガラスサンプルは、熔融容器に由来する貴金属含有量が2ppm未満と低く、かつβOHの値が0.1mm-1以上であり、表6に示されるように熱処理後の透過率が劇的に向上する。特に、本発明に係る光学ガラスサンプルは、貴金属含有量が大幅に低減されていることから、貴金属に由来する透過率劣化が少なく、熱処理後は極めて透過率に優れる。
 また、本発明の光学ガラスでは、特に、T450(L)の結果からもわかるように、得られる光学ガラスの含水量が高い(ガラスのβOHの値が大きい)ほど、短時間の熱処理で劇的に透過率を改善できる。また、本発明の光学ガラスは、清澄性に優れている。したがって、短時間の熱処理で十分な透過率の向上効果が得られると共に、泡切れに要する時間も短い。そのため、本発明の光学ガラスによれば、清澄工程および熱処理工程に要する時間を格段に短縮することができ、光学ガラスの製造において、生産コストを低減させると共に、生産性を向上させることができる。
(実施例2)
 次に、水蒸気とともに、非酸化性ガスとして窒素ガスを供給して光学ガラスサンプルを作製した。酸化物組成I、IIIおよびVについて、表7に示す条件とした以外は、実施例1と同様の方法で光学ガラスサンプルを作製した(試料11a~試料15a、試料30a~39a、および試料41a~45a)。
[光学ガラスの評価]
 得られた光学ガラスサンプル(試料11a~試料15a、試料30a~39a、および試料41a~45a)の各種物性は、実施例1の場合と同様の条件により測定、評価した。
 その結果、屈折率nd、アッベ数νdおよびガラス転移温度Tgは、実施例1の酸化物組成Vに示す値と実質的に同じであった。βOHとPtの含有量の結果を表7に示す。
Figure JPOXMLDOC01-appb-T000007
 表7に示すように、熔融雰囲気に水蒸気と共に非酸化性ガスを供給して作製した光学ガラスサンプル(試料11a~試料15a、試料30a~試料39a、および試料41a~試料45a)では、水蒸気のみ供給して作製した光学ガラスサンプル(試料11~試料13、試料31~試料34、試料51および試料52)と同程度の特性が得られた。
 実施例1および2に示されるように、本発明の製造方法によれば、熔融容器であるPtが熔融ガラス中に溶け込むことを有効に防止でき、かつ、得られる光学ガラスサンプルにおいて、含水量を高めることができる。そのため、本発明に係る光学ガラスサンプルは、貴金属の含有量が極めて少なく、かつ、熱処理により透過率を劇的に改善できるため、熱処理後は極めて透過率に優れる。
(比較実験)
 次に、光学ガラスサンプルを作製する際に、熔融物にArガスをバブリングして作製された光学ガラスサンプル(試料CE1)と、熔融雰囲気を大気雰囲気として作製された光学ガラスサンプル(試料CE2~4)を準備した。
 なお、各試料のガラス組成を表8のとおりであり、実施例1等と同様の方法により、出発原料を調整した。
Figure JPOXMLDOC01-appb-T000008
 また、試料CE1については、熔融雰囲気への水蒸気付加に代えて、熔融槽中の熔融ガラスに供給速度1.5L/minでArガス(100体積%)をバブリングした以外は、実施例1の試料33と同様の方法で光学ガラスサンプルを作製した。
 また、試料CE2~4については、熔融雰囲気への水蒸気付加を行わなかった(大気雰囲気とした)以外は、実施例1の試料33と同様の方法で光学ガラスサンプルを作製した。
[光学ガラスの評価]
 得られた光学ガラスサンプル(試料CE1~4)の各種物性は、原則として実施例1の試料33の場合と同様の条件で測定、評価した。
 ただし、T450(L)については、表5に示す温度および時間に代えて、保持温度を600℃、保持時間を3時間とした。その他は、実施例1と同様の条件でT450(L)を測定した。
 屈折率nd、アッベ数νdおよびガラス転移温度Tgの結果は表8に、βOH、Pt量およびT450(L)の結果は表9に示す。
 なお、表9には、比較のために、本発明の実施例に係る試料33および試料43の結果(表6に示したデータ)も合わせて示した。試料33および試料43は、熔融雰囲気への水蒸気付加を行って作製された本発明の実施例に係る光学ガラスサンプルであり、試料CE1~4の組成と比較的近い組成の試料である。
Figure JPOXMLDOC01-appb-T000009
 試料CE1は、熔融物にArガスをバブリングして作製された光学ガラスサンプルであり、また試料CE2~4は、熔融雰囲気を大気雰囲気として作製された光学ガラスサンプルであり、いずれの試料の熔融工程でも、熔融雰囲気に水蒸気を付加する処理および熔融物内に水蒸気をバブリングする処理は、どちらも行われていない。
 このような試料CE1~CE4は、表9に示されるように、β-OHの値が0.1mm-1未満であり、本発明の比較例に相当する試料である。
 特に、熔融ガラス中にArガスをバブリングして作製された試料CE1は、大気雰囲気中で作製された試料CE2~4よりも、さらにβ-OHの値が低いことが確認されている。このようなβ-OHの違いは、試料CE1の熔融雰囲気中の水蒸気濃度が、試料CE2~4の熔融雰囲気よりも、低かったためと考えられる。
 上述のように試料CE1の熔融時には、熔融物中にArガスがバブリングされている。熔融物中にバブリングされたArガスは、熔融炉内の大気と置換して、熔融炉内に滞留するため、試料CE1の熔融雰囲気はAr雰囲気に近くなる。その結果、試料CE2~4の熔融雰囲気に比べて、CE1の熔融雰囲気では、大気の濃度が低下する。
 通常、大気中には、酸素や二酸化炭素、窒素等の他にも、わずかに水蒸気が含まれている。また、一般的に用いられるArガスは乾燥ガスである。そのため、乾燥したArガスを供給することで、熔融雰囲気中の大気の濃度が低下し、相対的に水蒸気の濃度も低下することになる。
 上述のように、試料CE1の熔融雰囲気は、試料CE2~4の熔融雰囲気に比べて、大気の濃度が低い。それ故、試料CE1の熔融雰囲気中の水蒸気の濃度は、試料CE2~4の熔融雰囲気よりも低くなるといえる。
 通常、β-OHの値は、ガラス組成が同じであれば、熔融雰囲気中の水蒸気の量に依存する。そのため、熔融雰囲気中の水蒸気量が低かった試料CE1は、組成が同じ試料CE2に比べて、ガラスに含まれる水分量も低くなり、β-OHの値が小さくなったものと考えられる。
 一方、熔融雰囲気中の酸素濃度についても、上記と同じような関係がいえる。すなわち、熔融雰囲気中の大気の濃度が下がれば、酸素の濃度も低下する。それ故、大気の濃度が低い試料CE1は、試料CE2~4の熔融雰囲気に比べて、酸素濃度も低いと考えられる。
 一般に、同じガラス組成であれば、熔融雰囲気中の酸素濃度が高いほど、Ptは溶け込みやすくなる。表9に示されるように、ガラス組成が同じ試料CE1と試料CE2とでは、熔融雰囲気中の酸素濃度がより低い試料CE1において、Ptの溶け込み量が少ないことが確認されている。
 このように、熔融雰囲気中の酸素濃度を低減すれば、Ptの溶け込み量を低減できるが、酸素濃度の低減に当たり、熔融雰囲気中の大気をArガス等の不活性ガスで置換すると、大気雰囲気で熔融される場合に比べて、得られるガラスのβ-OHの値がより小さくなる傾向にあることが確認された。
 これに対し、熔融雰囲気に水蒸気を付加する処理および熔融物内に水蒸気をバブリングする処理の何れか一方を行う本発明に係る製造方法によれば、Pt量を2ppm以下に低減しつつ、β-OHの値も0.1mm-1以上に高めることができる(試料33および43)。すなわち、本発明に係る製造方法によれば、低いPt量と、高いβ-OHの値(ひいては優れた透過率の改善効果)とを同時に実現することが可能となる。
 このような本発明の実施例に係る試料33および43は、表9に示されるように、本発明の比較例に相当する試料CE1~4と比較して、透過率の低減効果およびPt量の低減効果のいずれもが優れている。
 一般に、ガラスの作製条件が同じであれば、HRの値が大きいほど、450(L)は低下する傾向にある。これは、ガラス中のTi、Nb、WおよびBiが可視光における波長の短い帯域の光を吸収するためであり、HRが増加すると、光の吸収も増加するためである。
 そのため、6種類のガラスの中で最も高いHRを有する試料43は、通常の製造方法によれば、T450(L)は最も低いと考えられる。しかし、表9に示されるように、本発明の実施例に係る試料43では、よりHRが小さい試料CE1~CE4に比べて、T450(L)はより高い値であった。
 また、このような傾向は、Ptの含有量についても同様である。通常HRの値が大きいほど、Ptは溶け込みやすい傾向にある。そのため、6種類のガラスの中で最も高いHRを有する試料43は、通常の製造方法によれば、Ptの溶け込み量が最も多いと考えられる。しかし、表9に示されるように、HRが小さい試料CE1~CE4に比べて、よりHRが大きい試料43において、大幅にPt量が低減していた。
 このように、比較的HRが大きい光学ガラスであっても、β-OHの値を高めることにより、より高い透過率が実現され、さらにPt含有量も大幅に低減できることが確認された。
 特に、熔融雰囲気に水蒸気を付加する処理を行い、β-OHを高めた本発明の実施例に係る試料(試料33および試料43)と、水蒸気を付加する処理等を行わず、熔融物中にArガスをバブリングまたは熔融雰囲気を大気雰囲気として、β-OHが0.1mm-1未満となった比較例に係る試料(試料CE1~CE4)とでは、T450(L)の値の違いが非常に顕著である。すなわち、試料33および試料43では、試料CE1~CE4に比べて、2倍以上も高いT450(L)の値が確認されている。
 このことからもわかるように、β-OHが高い光学ガラスは、β-OHが0.1mm-1未満の光学ガラスに比べて、熱処理による透過率の改善効果が劇的であり、短時間の処理でも大幅な透過率の改善効果が期待できる。
 以下、本実施態様について総括する。
 本実施態様において好ましい光学ガラスは、ガラス中に含まれるTiO、Nb、WOおよびBiの合計含有量35モル%以上のガラスであり、37モル%以上のガラスがより好ましく、38モル%以上のガラスがさらに好ましく、38.5モル%以上のガラスが一層好ましく、39モル%以上のガラスがより一層好ましく、40モル%以上のガラスがさらに一層好ましく、43モル%以上のガラスがなお一層好ましく、50モル%以上のガラスが特に好ましい。
 本実施態様において好ましい光学ガラスは、モル%表示におけるPの含有量がSiOの含有量よりも大きいガラスである。
 本実施態様において好ましい光学ガラスは、モル%表示におけるPの含有量がBの含有量よりも大きいガラスである。
 本実施態様において好ましい光学ガラスは、モル%表示におけるPの含有量がSiOとBの合計含有量よりも多いガラスである。
 本実施態様において好ましい光学ガラスは、Pの含有量が10モル%以上のガラスである。
 本実施態様において好ましい光学ガラスは、Pの含有量が40モル%以下のガラスである。
 本実施態様において好ましい光学ガラスは、GeOの含有量が0~10モル%、より好ましくは0~5モル%、さらに好ましくは0~3モル%、一層好ましくは0~2モル%、より一層好ましくは0~1モル%、さらに一層好ましくは0~0.5モル%である。
 本実施態様において好ましい光学ガラスは、TeOの含有量が0~10モル%であり、より好ましくは0~5モル%であり、さらに好ましくは0~3モル%であり、一層好ましくは0~2モル%であり、より一層好ましくは0~1モル%であり、さらに一層好ましくは0~0.5モル%である。
 本実施態様において好ましい光学ガラスは、Sbの含有量が0ppm以上1000ppm未満であり、さらに好ましい光学ガラスはSbの含有量が900ppm以下であり、一層好ましい光学ガラスはSbの含有量が800ppm以下であり、より一層好ましくガラスはSbの含有量が700ppm以下であり、さらに一層好ましい光学ガラスはSbの含有量が600ppm以下、なお一層好ましい光学ガラスはSbの含有量が500ppm以下であり、以下、400ppm、300ppm、200ppm、100ppmの順に少ない値ほど一層好ましい。Sbを含有させなくてもよい。
 本実施態様における好ましい光学ガラスは、P、SiO、B、TiO、Nb、WO、Bi、MgO、CaO、SrO、BaO、ZnO、LiO、NaO、KO、Al、ZrO、GeO、TeOおよびSbの合計含有量が90モル%以上であり、より好ましくは92モル%以上であり、さらに好ましくは95モル%以上であり、一層好ましくは96モル%以上であり、より一層好ましくは97モル%以上であり、さらに一層好ましくは98モル%以上であり、なお一層好ましくは99モル%超である。
 環境への負荷を低減する上から、Pb、As、Cd、U、Th、Tlを実質的に含有しないことが好ましい。
 本実施態様における好ましい光学ガラスは、Cu、Cr、Mn、Fe、Co、Ni、V、Mo、Nd、Eu、Er、Tb、Ho、Prを実質的に含有しないガラスである。
 本実施態様における好ましい光学ガラスは、貴金属を含み、貴金属の含有量が2ppm未満である。ガラス中に含まれる貴金属の含有量のより好ましい上限量は、1.8ppm、1.6ppm、1.4ppm、1.2ppm、1.1ppm、1.0ppm、0.9ppmの順に上限値が低いほど一層好ましい。
 本実施態様における好ましい光学ガラスは、貴金属を含み、貴金属の含有量が1.6ppm以下であり、かつ上記式(1)に示すβOHの値が0.1~0.4mm-1である。
 本実施態様における好ましい光学ガラスは、Ptを含み、Ptの含有量が2ppm未満である。ガラス中に含まれるPtの含有量のより好ましい上限量は、1.8ppm、1.6ppm、1.4ppm、1.2ppm、1.1ppm、1.0ppm、0.9ppmの順に上限値が低いほど一層好ましい。
 本実施態様における好ましい光学ガラスは、屈折率ndが1.75以上であり、より好ましくは1.80以上、さらに好ましくは1.85以上、一層好ましくは1.90以上である。
 別の局面では、本実施形態のプレス成形用ガラス素材は、本実施形態の光学ガラスからなる。
 さらに別の局面では、本実施形態の光学素子は、本実施形態の光学ガラスからなる。
 また、本実施形態における好ましい光学ガラスの製造方法では、熔融容器は、貴金属材料からなる。
 本実施形態における好ましい光学ガラスの製造方法では、熔融工程(i)における熔融容器内の酸素分圧は、大気中の酸素分圧よりも低い。
 本実施形態における好ましい光学ガラスの製造方法では、
 上記熔融ガラスを上記熔融容器外に流出する工程(ii)、
 上記熔融ガラスを成形する工程(iii)をさらに有し、
 上記工程(ii)および上記工程(iii)の少なくともいずれか一つの工程を酸化性雰囲気下で行う。
 本実施形態における好ましい光学ガラスの製造方法では、
 上記ガラスを熱処理する工程(iv)をさらに有し、
 上記工程(iv)を酸化性雰囲気下で行う。
 本実施形態における好ましい光学ガラスの製造方法では、上記酸化性雰囲気が、大気雰囲気、または大気よりも酸素分圧が高い雰囲気である。
 別の局面では、本実施形態の光学素子は、本実施形態に係る製造方法によりガラスを製造する工程と、
 上記ガラスを、さらに成形または加工する工程と、を有する。
 別の局面では、本実施形態のプレス成形用ガラス素材は、本実施形態の光学ガラスからなる。
 さらに別の局面では、本実施形態の光学素子は、本実施形態の光学ガラスからなる。

Claims (7)

  1.  TiO、Nb、WOおよびBiから選択される少なくともいずれか1種の酸化物を含むリン酸塩系ガラスであって、
     前記TiO、Nb、WOおよびBiの合計含有量(HR)が35モル%以上であり、
     貴金属含有量が2.0ppm未満であり、
     下記式(1)に示すβOHの値が、0.1mm-1以上である、光学ガラス。
     βOH=-[ln(B/A)]/t          ・・・(1)
    〔式(1)中、tは外部透過率の測定に用いる前記ガラスの厚み(mm)を表し、Aは前記ガラスに対してその厚み方向と平行に光を入射した際の波長2500nmにおける外部透過率(%)を表し、Bは前記ガラスに対してその厚み方向と平行に光を入射した際の波長2900nmにおける外部透過率(%)を表す。また、式(1)中、lnは自然対数である。〕
  2.  リンを含むガラス原料と、TiO、Nb、WOおよびBiの少なくとも一種以上の成分を含むガラス原料とを、貴金属製の熔融容器内にて加熱、熔融し、熔融ガラスを得る熔融工程を有し、
     前記ガラス原料における、TiO、Nb、WOおよびBiの合計含有量(HR)が35モル%以上であり、
     前記熔融工程において、熔融雰囲気に水蒸気を付加する処理(ia)、および、熔融物内に水蒸気をバブリングする処理(ib)、の少なくともいずれか一方を行う、光学ガラスの製造方法。
  3.  前記処理(ia)および処理(ib)のいずれかまたは両方において、水蒸気と共に非酸化性ガスを供給する、請求項2に記載の光学ガラスの製造方法。
  4.  前記非酸化性ガスは、アルゴン、窒素、一酸化炭素、二酸化炭素、水素、ヘリウムおよびヨウ素からなる群から選択される少なくとも1種以上である、請求項3に記載の光学ガラスの製造方法。
  5.  供給するガス中における、水蒸気が占める割合が3体積%以上、100体積%未満であり、かつ非酸化性ガスが占める割合が0体積%を超え、97体積%以下である、請求項3または4に記載の光学ガラスの製造方法。
  6.  前記光学ガラスがリン酸塩系ガラスである、請求項2~5のいずれかに記載の光学ガラスの製造方法。
  7.  前記光学ガラスを、酸化性雰囲気下で熱処理する工程をさらに有する、請求項2~6のいずれかに記載の光学ガラスの製造方法。
PCT/JP2014/075631 2013-09-30 2014-09-26 光学ガラスおよびその製造方法 WO2015046428A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167006655A KR102142175B1 (ko) 2013-09-30 2014-09-26 광학 유리 및 그 제조 방법
US14/917,841 US9834465B2 (en) 2013-09-30 2014-09-26 Optical glass and method for producing the same
CN201480053465.1A CN105593181B (zh) 2013-09-30 2014-09-26 光学玻璃及其制造方法
JP2015539381A JP5964518B2 (ja) 2013-09-30 2014-09-26 光学ガラスおよびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013205170 2013-09-30
JP2013-205170 2013-09-30

Publications (1)

Publication Number Publication Date
WO2015046428A1 true WO2015046428A1 (ja) 2015-04-02

Family

ID=52743554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075631 WO2015046428A1 (ja) 2013-09-30 2014-09-26 光学ガラスおよびその製造方法

Country Status (6)

Country Link
US (1) US9834465B2 (ja)
JP (2) JP5964518B2 (ja)
KR (1) KR102142175B1 (ja)
CN (1) CN105593181B (ja)
TW (1) TWI642642B (ja)
WO (1) WO2015046428A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017006998A1 (ja) * 2015-07-07 2017-01-12 Hoya株式会社 ガラス、光学ガラス、リン酸塩光学ガラス、研磨用ガラス素材、プレス成形用ガラス素材および光学素子
EP3573934B1 (en) 2017-01-25 2021-11-03 Corning Incorporated High refractive index titanium-niobium phosphate glass
WO2022215505A1 (ja) * 2021-04-07 2022-10-13 日本電気硝子株式会社 ガラスの製造方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015093280A1 (ja) * 2013-12-18 2015-06-25 Hoya株式会社 光学ガラスおよび光学素子
JP6283512B2 (ja) * 2013-12-19 2018-02-21 Hoya株式会社 ガラスの製造方法および光学素子の製造方法
US10234630B2 (en) * 2017-07-12 2019-03-19 Applied Materials, Inc. Method for creating a high refractive index wave guide
JP6517411B2 (ja) * 2017-07-20 2019-05-22 Hoya株式会社 光学ガラスおよび光学素子
WO2019017205A1 (ja) * 2017-07-20 2019-01-24 Hoya株式会社 光学ガラスおよび光学素子
JP7540944B2 (ja) 2018-01-15 2024-08-27 ディディピー スペシャルティ エレクトロニック マテリアルズ ユーエス,エルエルシー 流量制限器及びセンサが組み込まれたスパイラル型アセンブリ
US11760678B2 (en) * 2018-04-20 2023-09-19 Corning Incorporated Apparatus and method for controlling an oxygen containing atmosphere in a glass manufacturing process
JP6964050B2 (ja) * 2018-07-20 2021-11-10 オリンパス株式会社 光学素子の製造方法
WO2020117651A1 (en) * 2018-12-07 2020-06-11 Corning Incorporated High-refractive index phosphate glass
JP7409636B2 (ja) * 2019-11-27 2024-01-09 株式会社住田光学ガラス 多成分系酸化物ガラス、光学素子、光ファイバ、及び多成分系酸化物ガラスの製造方法
US20220190213A1 (en) * 2020-12-15 2022-06-16 Lumileds Llc Material stack for leds with a dome
EP4281420A1 (en) 2021-01-22 2023-11-29 Corning Incorporated Phosphate glasses with high refractive index and low density
CN116802162A (zh) 2021-01-22 2023-09-22 康宁股份有限公司 具有高折射率和色散减小的磷酸盐玻璃
JP2024505204A (ja) 2021-01-22 2024-02-05 コーニング インコーポレイテッド カルシウム含有高屈折率リン酸塩ガラス
CN115903120A (zh) 2021-09-30 2023-04-04 肖特股份有限公司 用于增强现实设备的导光板
CN113735414A (zh) * 2021-10-19 2021-12-03 西安宏星电子浆料科技股份有限公司 一种消除介质浆料用高铋玻璃粉中气泡的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007265803A (ja) * 2006-03-28 2007-10-11 National Institute Of Advanced Industrial & Technology プロトン伝導性結晶化ガラス固体電解質
JP2010057893A (ja) * 2008-08-06 2010-03-18 Nippon Electric Glass Co Ltd 封止ガラス
JP2011046550A (ja) * 2009-08-26 2011-03-10 Nippon Electric Glass Co Ltd 封止ガラスの製造方法および封止ガラス
WO2012018026A1 (ja) * 2010-08-03 2012-02-09 旭硝子株式会社 近赤外線カットフィルタガラスおよびその製造方法
JP2014024748A (ja) * 2012-06-22 2014-02-06 Hoya Corp 光学ガラス、プレス成形用ガラス素材および光学素子
JP2014024749A (ja) * 2012-06-22 2014-02-06 Hoya Corp 光学ガラス、プレス成形用ガラス素材および光学素子
JP2014224024A (ja) * 2012-06-22 2014-12-04 Hoya株式会社 ガラスおよび光学素子の製造方法
JP2014224025A (ja) * 2013-04-26 2014-12-04 Hoya株式会社 ガラス、光学ガラス、プレス成形用ガラス素材および光学素子
JP2014224026A (ja) * 2013-04-26 2014-12-04 Hoya株式会社 ガラス、光学ガラス、プレス成形用ガラス素材および光学素子

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9302204A (pt) * 1992-06-05 1993-12-14 Praxair Technology Inc Processo para producao de vidro
EP0915062A1 (de) * 1997-10-23 1999-05-12 Pichanon Dipl.-Ing Suwannathada Verfahren zur Steuerung des Redoxzustandes, der Farbe und Verarbeitkeit von Glasschmelzen
DE19933673C2 (de) * 1999-07-17 2002-03-21 Sorg Gmbh & Co Kg Verfahren zum Schmelzen von Glas, Anwendung des Verfahrens und Schmelzofen hierfür
US6786064B2 (en) 2000-10-23 2004-09-07 Hoya Corporation Process for the production of glass molded article
US6722161B2 (en) * 2001-05-03 2004-04-20 The Boc Group, Inc. Rapid glass melting or premelting
JP5105571B2 (ja) * 2003-10-10 2012-12-26 日本電気硝子株式会社 無アルカリガラスの製造方法
JP5740778B2 (ja) 2009-07-24 2015-07-01 日本電気硝子株式会社 光学ガラスの製造方法
JP2011246344A (ja) * 2010-04-30 2011-12-08 Ohara Inc ガラス成形体の製造方法、光学素子及び光学機器
WO2013191271A1 (ja) * 2012-06-22 2013-12-27 Hoya株式会社 ガラス、光学ガラス、プレス成形用ガラス素材および光学素子

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007265803A (ja) * 2006-03-28 2007-10-11 National Institute Of Advanced Industrial & Technology プロトン伝導性結晶化ガラス固体電解質
JP2010057893A (ja) * 2008-08-06 2010-03-18 Nippon Electric Glass Co Ltd 封止ガラス
JP2011046550A (ja) * 2009-08-26 2011-03-10 Nippon Electric Glass Co Ltd 封止ガラスの製造方法および封止ガラス
WO2012018026A1 (ja) * 2010-08-03 2012-02-09 旭硝子株式会社 近赤外線カットフィルタガラスおよびその製造方法
JP2014024748A (ja) * 2012-06-22 2014-02-06 Hoya Corp 光学ガラス、プレス成形用ガラス素材および光学素子
JP2014024749A (ja) * 2012-06-22 2014-02-06 Hoya Corp 光学ガラス、プレス成形用ガラス素材および光学素子
JP2014224024A (ja) * 2012-06-22 2014-12-04 Hoya株式会社 ガラスおよび光学素子の製造方法
JP2014224025A (ja) * 2013-04-26 2014-12-04 Hoya株式会社 ガラス、光学ガラス、プレス成形用ガラス素材および光学素子
JP2014224026A (ja) * 2013-04-26 2014-12-04 Hoya株式会社 ガラス、光学ガラス、プレス成形用ガラス素材および光学素子

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017006998A1 (ja) * 2015-07-07 2017-01-12 Hoya株式会社 ガラス、光学ガラス、リン酸塩光学ガラス、研磨用ガラス素材、プレス成形用ガラス素材および光学素子
JP2020019710A (ja) * 2015-07-07 2020-02-06 Hoya株式会社 ガラス、光学ガラス、リン酸塩光学ガラス、研磨用ガラス素材、プレス成形用ガラス素材および光学素子
EP3573934B1 (en) 2017-01-25 2021-11-03 Corning Incorporated High refractive index titanium-niobium phosphate glass
WO2022215505A1 (ja) * 2021-04-07 2022-10-13 日本電気硝子株式会社 ガラスの製造方法

Also Published As

Publication number Publication date
KR20160061996A (ko) 2016-06-01
JP6009709B1 (ja) 2016-10-19
US9834465B2 (en) 2017-12-05
JP5964518B2 (ja) 2016-08-03
TWI642642B (zh) 2018-12-01
TW201524933A (zh) 2015-07-01
CN105593181A (zh) 2016-05-18
US20160214881A1 (en) 2016-07-28
KR102142175B1 (ko) 2020-08-06
JP2016190788A (ja) 2016-11-10
JPWO2015046428A1 (ja) 2017-03-09
CN105593181B (zh) 2018-10-09

Similar Documents

Publication Publication Date Title
JP6009709B1 (ja) 光学ガラスおよびその製造方法
CN105366938B (zh) 玻璃、光学玻璃、模压成型用玻璃坯料和光学元件
JP5826428B1 (ja) ガラス、光学ガラス、プレス成形用ガラス素材および光学素子
JP2020002010A (ja) 光学ガラスおよび光学素子
JP5826429B1 (ja) ガラス、光学ガラス、プレス成形用ガラス素材および光学素子
JP2019123667A (ja) 光学ガラスおよび光学素子
WO2013191271A1 (ja) ガラス、光学ガラス、プレス成形用ガラス素材および光学素子
TW201908258A (zh) 光學玻璃及光學元件
JP6283512B2 (ja) ガラスの製造方法および光学素子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14847859

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14917841

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167006655

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015539381

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14847859

Country of ref document: EP

Kind code of ref document: A1