WO2017006998A1 - ガラス、光学ガラス、リン酸塩光学ガラス、研磨用ガラス素材、プレス成形用ガラス素材および光学素子 - Google Patents

ガラス、光学ガラス、リン酸塩光学ガラス、研磨用ガラス素材、プレス成形用ガラス素材および光学素子 Download PDF

Info

Publication number
WO2017006998A1
WO2017006998A1 PCT/JP2016/070156 JP2016070156W WO2017006998A1 WO 2017006998 A1 WO2017006998 A1 WO 2017006998A1 JP 2016070156 W JP2016070156 W JP 2016070156W WO 2017006998 A1 WO2017006998 A1 WO 2017006998A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
cation
content
tio
optical
Prior art date
Application number
PCT/JP2016/070156
Other languages
English (en)
French (fr)
Inventor
将士 金子
蜂谷 洋一
Original Assignee
Hoya株式会社
将士 金子
蜂谷 洋一
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社, 将士 金子, 蜂谷 洋一 filed Critical Hoya株式会社
Priority to CN201680032788.1A priority Critical patent/CN107614449B/zh
Priority to CN202010752612.1A priority patent/CN111892297B/zh
Priority to JP2017527497A priority patent/JP6639053B2/ja
Publication of WO2017006998A1 publication Critical patent/WO2017006998A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/21Silica-free oxide glass compositions containing phosphorus containing titanium, zirconium, vanadium, tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements

Definitions

  • the present invention comprises the first invention and the second invention.
  • the first invention relates to a phosphate optical glass having excellent transparency, high dispersion, and suppressing an increase in refractive index, and an optical element made of such phosphate optical glass.
  • the second invention also relates to glass, optical glass, glass material for polishing, glass material for press molding, and an optical element capable of easily reducing the reduction color.
  • High-dispersion glass lenses are used to correct chromatic aberration by combining them with low-dispersion glass lenses to form pair lenses.
  • High dispersion glass generally has a high refractive index
  • low dispersion glass generally has a low refractive index. For this reason, when both are combined to form a pair lens, there is a problem that the curvature of field appears strongly due to a large difference in refractive index.
  • Patent Document 1 discloses a glass having a low Abbe number ⁇ d, that is, a high dispersion glass.
  • the refractive index is too high, there is a problem of curvature of field when used in the above-described pair lens.
  • the high dispersion glass usually contains a large amount of components such as TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 (hereinafter sometimes referred to as “high dispersion components”) as glass components. is doing. These highly dispersed components are easily reduced during the glass melting process. When the highly dispersed component is reduced, light on the short wavelength side in the visible light region is absorbed, and the glass is colored (hereinafter sometimes referred to as “reduced color”).
  • high dispersion components such as TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3
  • Patent Document 2 such coloration of glass is reduced by heat-treating the glass. This is presumably because visible light absorption is weakened due to oxidation of ions such as Ti, Nb, W, and Bi in a reduced state by heating.
  • JP 2013-212935 A Japanese Patent Application Laid-Open No. 6-345481
  • the first invention as a first problem, it is possible to provide a phosphate optical glass having excellent transparency, high dispersion, and suppressed increase in refractive index, and such phosphate It aims at providing the optical element and optical glass raw material which consist of optical glass.
  • an object is to provide a glass capable of shortening the heat treatment time when reducing the reduced color by heat treatment.
  • the present inventors adjust the content ratio of various glass constituent components (hereinafter referred to as glass components) constituting the glass for the first problem.
  • glass components various glass constituent components constituting the glass for the first problem.
  • the inventors have found that the object can be achieved, and have completed the first invention based on this finding.
  • the object can be achieved by containing Li 2 O in a predetermined ratio with respect to the highly dispersed component, and the second invention has been completed based on this finding. It came to do.
  • the gist of the present invention is as follows.
  • Abbe number ⁇ d is 16.70 or less
  • Refractive index nd is 2.1000 or less
  • Including P 2 O 5 , TiO 2 and Nb 2 O 5 Including P 2 O 5 , TiO 2 and Nb 2 O 5 ,
  • the Abbe number ⁇ d is 16.70 or less
  • the content of Bi 2 O 3 is 29.0% by mass or less
  • the total content of TiO 2 and WO 3 the mass ratio of the content of Nb 2 O 5 [(TiO 2 + WO 3) / Nb 2 O 5] is 0.15 or more (1) - ( The phosphate optical glass according to any one of 3).
  • a glass material for press molding comprising the phosphate optical glass according to any one of (1) to (4) above.
  • An optical element comprising the phosphate optical glass according to any one of (1) to (4) above.
  • Abbe number ⁇ d is 18.10 or less
  • the total content [TiO 2 + Nb 2 O 5 + WO 3 + Bi 2 O 3 ] of TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 is 30% by mass or more, and the content of Bi 2 O 3 is 38% by mass.
  • Abbe number ⁇ d is 18.10 or less
  • a phosphate glass comprising at least one oxide selected from TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 , Remelt for 90 minutes at a temperature 110 to 120 ° C higher than the liquidus temperature LT in an air atmosphere, In an air atmosphere, a glass obtained by maintaining for 15 minutes at a holding temperature 0 to 20 ° C. lower than the glass transition temperature Tg and gradually cooling the glass to 120 ° C.
  • a glass edge is a portion that is a distance of 0 to 5 mm from the longitudinal end and a distance of 0 to 5 mm from the lateral end.
  • the glass center portion is a portion that is a distance of 6 to 11 mm from the longitudinal end and 4 to 9 mm from the lateral end in top view
  • the external transmission of the glass edge T A and the external transmittance T B is formula of the glass center (2) with a value above T 1 is calculated at a wavelength of 656nm ,And, Until the difference (T A ⁇ T B ) between the external transmittance T A at the glass edge and the external transmittance T B at the glass center is 5% or less, Heat treatment at a heating rate of 100 ° C./h in an air atmosphere and maintained at a heat treatment temperature 5-15 ° C.
  • T 1 0.83 ⁇ [1-[(n C ⁇ 1) / (n C +1)] 2 ] 2 ⁇ 98 (2)
  • n C represents the heat treatment until the difference (T A ⁇ T B ) between the external transmittance T A at the glass edge and the external transmittance T B at the glass center becomes 5% or less.
  • D represents the external transmittance (%) at a wavelength of 2900 nm when light is incident on the glass in parallel with the thickness direction.
  • (12) The glass according to any one of (7) to (11), which contains Nb2O5 as a glass component.
  • An optical glass comprising the glass according to any one of (7) to (13).
  • (15) A polishing glass material comprising the glass according to any one of (7) to (13).
  • (16) A press-molding glass material comprising the glass according to any one of (7) to (13).
  • (17) A polishing glass material comprising the optical glass according to (14).
  • (18) A glass material for press molding comprising the optical glass according to (14).
  • the difference in Abbe number is large, so that it is highly effective in correcting chromatic aberration. Even when a pair lens is combined with a low-dispersion glass lens having a low refractive index, the curvature of field is suppressed because the difference in refractive index is small.
  • the heat treatment time can be shortened.
  • optical glass is a glass composition containing a plurality of types of glass constituent components (glass components), and unless otherwise specified, forms (lumps, plates, spheres, etc.) It is used as a general term regardless of application (material for optical elements, optical elements, etc.) and size.
  • optical glass there is no restriction
  • size are contained in the optical glass in this invention.
  • the optical glass may be simply referred to as “glass”.
  • (numerical value 1) may be used to represent a numerical range such as “(numerical value 1) or less”.
  • the range represented in this way is a numerical range in which a numerical range smaller than (numerical value 1) and (numerical value 1) are combined.
  • the numerical range expressed as “less than (numerical value 1)” is a numerical range smaller than (numerical value 1) and does not include (numerical value 1).
  • (Numerical value 2) may be used to represent a numerical range such as “(Numerical value 2) or more”.
  • the range represented in this way is a numerical range in which a numerical range larger than (numerical value 2) and (numerical value 2) are combined.
  • a numerical range may be expressed as “(numerical value 2) over”.
  • the range represented in this way is a numerical range larger than (numerical value 2) and does not include (numerical value 2).
  • the optical glass according to the present invention will be described mainly based on the content of each glass component in terms of mass%.
  • % represents mass%.
  • cation% is also described.
  • the mass% display means the percentage of the content of each glass component when the total content of all glass components is 100% by mass for each glass component represented by an oxide or fluoride. Means to display.
  • the total content in terms of mass% refers to the total content of a plurality of types of glass components (including the case where the content is 0%).
  • mass ratio means the ratio (ratio) of glass component content (a total content of multiple types of components is also included) in the mass% display.
  • the cation% display means a mole percentage when the total content of all cation components is 100%.
  • the total content in terms of cation% refers to the total content of plural types of cation components (including the case where the content is 0%).
  • the cation ratio refers to the ratio (ratio) of the content of cation components (including the total content of plural types of cation components) in cation% display.
  • the valence of the cation component (for example, the valence of P 5+ is +5, the valence of Si 4+ is +4, and the valence of La 3+ is +3) is a value determined by customs.
  • P, Si, and La are expressed on an oxide basis, this is the same as P 2 O 5 , SiO 2 , and La 2 O 3 . Therefore, when analyzing a glass composition, it is not necessary to analyze to the valence of a cation component.
  • the valence of the anion component e.g.
  • O 2- of valence over 2) is also a value definite
  • a glass component in the oxide basis, as described above, for example, P 2 O 5, SiO 2, La This is the same as 2 O 3 . Therefore, when analyzing a glass composition, it is not necessary to analyze to the valence of an anion component.
  • Sb 2 O 3 , SnO 2 , and CeO 2 may be added in a small amount to the glass as a fining agent.
  • the total content of all glass components does not include the contents of Sb 2 O 3 , SnO 2 and CeO 2 . That, Sb 2 O 3 in the glass component, SnO 2, each content of CeO 2 is, Sb 2 O 3, SnO 2 and Sb in a total content of all glass components other than CeO 2 2 O 3, SnO 2 , And displayed as each content of CeO 2 .
  • extra division such a notation is referred to as extra division.
  • the first embodiment is an embodiment of the first invention
  • the second embodiment is an embodiment of the second invention.
  • first embodiment A first embodiment and a first to second embodiment (hereinafter may be collectively referred to as “first embodiment”) will be described in detail.
  • the glass composition of the optical glass according to the first embodiment can be quantified by ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry) or ICP-MS (Inductively Coupled Plasma-Mass Mass Spectrometry).
  • the analysis value obtained by ICP-AES may include a measurement error of about ⁇ 5% of the analysis value, for example.
  • the content of the glass component being 0% or not means that the glass does not substantially contain this component, and the content of this component is about the impurity level. Indicates the following.
  • the optical glass of the 1-1 embodiment of the present invention is Abbe number ⁇ d is 16.70 or less, Refractive index nd is 2.1000 or less, Including P 2 O 5 , TiO 2 and Nb 2 O 5 , It is a phosphate optical glass having a mass ratio [TiO 2 / Nb 2 O 5 ] between the content of TiO 2 and the content of Nb 2 O 5 of 0.15 or more.
  • the Abbe number ⁇ d is 16.70 or less.
  • the upper limit of the Abbe number ⁇ d is preferably 16.68, and more preferably in the order of 16.66, 16.64, 16.62, 16.60, 16.58, 16.56, 16.54.
  • the lower limit of the Abbe number is preferably 15.50, and more preferably larger values in the order of 15.55, 15.60, 15.65, and 15.70.
  • the Abbe number ⁇ d is set to 16.70 or less, when the pair lens is combined with the low-dispersion glass lens, the difference in Abbe number becomes large, and a high effect is obtained in correcting chromatic aberration.
  • the refractive index nd is 2.1000 or less.
  • the upper limit of the refractive index is preferably 2.0950, and further in the order of 2.0900, 2.0850, 2.0800, 2.0750, 2.0500, 2.0300, 2.0100, 2.0000. Is more preferable.
  • the lower limit of the refractive index is preferably 1.8800, and more preferably larger values in the order of 1.9000, 1.9200, 1.9400, 1.9600.
  • the refractive index nd By setting the refractive index nd to 2.1000 or less, even when a pair lens is combined with a low-dispersion glass lens having a low refractive index, the difference in refractive index is small, so that field curvature is suppressed.
  • the optical glass according to the 1-1 embodiment includes P 2 O 5 , TiO 2 and Nb 2 O 5 .
  • P 2 O 5 , TiO 2 and Nb 2 O 5 an optical glass having high dispersion and suppressing an increase in the refractive index nd can be obtained.
  • the mass ratio of the content of content and Nb 2 O 5 of TiO 2 [TiO 2 / Nb 2 O 5] is 0.15 or more.
  • the optical glass according to the 1-1 embodiment includes P 2 O 5 and TiO 2 , but increasing the P 2 O 5 and TiO 2 reduces the meltability of the glass, and the liquidus temperature is The problem of rising. Therefore, by containing Nb 2 O 5 that contributes to high dispersion at a specific ratio with respect to TiO 2 , the rise of the liquidus temperature was prevented and this problem was solved.
  • the lower limit of the mass ratio [TiO 2 / Nb 2 O 5 ] between the content of TiO 2 and the content of Nb 2 O 5 is preferably 0.16, Furthermore, 0.17, 0.18, 0.19, 0.20, and 0.23 are more preferable in this order.
  • the upper limit of the mass ratio [TiO 2 / Nb 2 O 5 ] is preferably 4.50, and further 4.40, 4.30, 4.20, 4.10, 4.00, 3.80. 3. The order of 3.60 is more preferable.
  • the cation ratio [Ti 4+ / Nb 5] between the Ti 4+ content and the Nb 5+ content is shown. + ] Is preferably 6.00, and more preferably in the order of 5.90, 5.80, 5.70, 5.65, 5.60.
  • the lower limit of the cation ratio [Ti 4+ / Nb 5+ ] is preferably 0.40, and more preferably 0.41 and 0.42.
  • the cation ratio [Ti 4+ / Nb 5+ ] is preferably in the above range.
  • the optical glass according to Embodiment 1-1 is phosphate optical glass.
  • the phosphate optical glass refers to an optical glass mainly containing phosphate as a glass network forming component. Therefore, the optical glass according to Embodiment 1-1 includes a phosphate as a network forming component, and the content thereof is expressed as the content of P 2 O 5 .
  • As glass network forming components P 2 O 5 , Al 2 O 3 , B 2 O 3 , SiO 2 and the like are known.
  • the phrase “mainly including phosphate as a network-forming component of glass” means that the content of P 2 O 5 in terms of mass% is from any content of Al 2 O 3 , B 2 O 3 , and SiO 2. Means a lot of glass.
  • the lower limit of the content of P 2 O 5 is preferably 7.0%, and further 8.0%, 9.0%, 10.0%, It is more preferable in the order of 11.0%, 12.0%, 12.5%, 13.0%.
  • the upper limit of the content of P 2 O 5 is preferably 35.0%, and more preferably in the order of 34.5%, 34.0%, 33.5%, and 33.0%.
  • P 2 O 5 is an essential component for suppressing an increase in the refractive index nd and containing many highly dispersed components in the glass. On the other hand, if P 2 O 5 is contained excessively, the meltability deteriorates. Therefore, in the optical glass according to this embodiment, the content of P 2 O 5 is preferably in the above range.
  • the upper limit of the P 5+ content is preferably 45.00 cation%, and further 44. 50 cation%, 44.00 cation%, 43.50 cation%, 43.00 cation%, 42.50 cation%, 42.00 cation%, 41.50 cation%, 41.00 cation%, 40.50 cation %, 40.00 cation%, 39.50 cation%, 39.00 cation%, 38.50 cation%, in this order.
  • the lower limit of the content of P 5+ is preferably 20.00 cation%, and further 20.50 cation%, 21.00 cation%, 21.50 cation%, 22.00 cation%, 22.50 cation. %, 23.00 cation%, 23.50 cation%, 24.00 cation%, 24.50 cation%, 25.00 cation%, 25.50 cation%, in this order.
  • P 5+ is an essential component for suppressing an increase in the refractive index nd and containing many highly dispersed components in the glass. On the other hand, if P 5+ is contained excessively, the meltability deteriorates. Therefore, in the optical glass according to the present embodiment, the content of P 5+ is preferably in the above range.
  • the upper limit of the content of Bi 2 O 3 is preferably 29.0%, and further 28.5%, 28.0%, 27.5%, 27.0%, 25.0%, 20.0%, 15.0%, 10.0%, 6.0%, 5.0% are more preferable in this order.
  • the lower limit of the Bi 2 O 3 content is preferably 0%.
  • the content of Bi 2 O 3 may be 0%.
  • Bi 2 O 3 has a function of improving the thermal stability of the glass by containing an appropriate amount.
  • the content of Bi 2 O 3 is increased, the refractive index increases and the coloration of the glass increases. Therefore, the content of Bi 2 O 3 is preferably within the above range.
  • the upper limit of the Bi 3+ content is preferably 20.00 cation%. 50 cation%, 19.00 cation%, 18.50 cation%, 18.00 cation%, 17.50 cation%, 17.00 cation%, 16.50 cation% are more preferable in this order.
  • the lower limit of the Bi 3+ content is preferably 3.00 cation%, and more preferably in the order of 1.50 cation%, 1.00 cation%, and 0.40 cation%.
  • the content of Bi 3+ may be 0 cation%.
  • Bi 3+ has a function of improving the thermal stability of the glass by containing an appropriate amount.
  • the Bi 3+ content is preferably within the above range.
  • the lower limit of the mass ratio [(TiO 2 + WO 3 ) / Nb 2 O 5 ] between the total content of TiO 2 and WO 3 and the content of Nb 2 O 5 is: Preferably it is 0.15, Furthermore, 0.17, 0.19, 0.20, 0.21, 0.23, 0.25, 0.26, 0.28, 0.30, 0.35 0.40, 0.45, 0.50, 0.55, 0.56, 0.57, 0.58, 0.59, 0.60, 0.61, 0.62, 0.63, 0 .64, 0.65 in order.
  • the upper limit of the mass ratio [(TiO 2 + WO 3 ) / Nb 2 O 5 ] is preferably 8.00, and further 7.90, 7.80, 7.70, 7.60, 7. More preferable in the order of 40, 7.20, and 7.00.
  • the cation ratio of the total content of Ti 4+ and W 6+ to the content of Nb 5+ [( Ti 4+ + W 6+ ) / Nb 5+ ] is preferably 7.70, and further 7.60, 7.50, 7.40, 7.35, 7.30, 7.28, More preferred in the order of 7.26.
  • the lower limit of the cation ratio [(Ti 4+ + W 6+ ) / Nb 5+ ] is preferably 0.40, more preferably 0.41 and 0.42.
  • the mass of the total content of TiO 2 , Nb 2 O 5 and WO 3 and the total content of TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 The lower limit of the ratio [(TiO 2 + Nb 2 O 5 + WO 3 ) / (TiO 2 + Nb 2 O 5 + WO 3 + Bi 2 O 3 )] is preferably 0.45, and further 0.50, 0.55 , 0.60, 0.65, 0.70, 0.75, 0.80, 0.85 in this order.
  • the upper limit of the mass ratio [(TiO 2 + Nb 2 O 5 + WO 3 ) / (TiO 2 + Nb 2 O 5 + WO 3 + Bi 2 O 3 )] is preferably 1.00.
  • the content of Bi 2 O 3 may be 0%.
  • Mass ratio [(TiO 2 + Nb 2 O 5 + WO 3 ) / (TiO 2 + Nb 2 O 5 + WO 3 + Bi 2 O 3 )]
  • the lower limit of the total content [TiO 2 + Nb 2 O 5 + WO 3 ] of TiO 2 , Nb 2 O 5 and WO 3 is preferably 43.0%, Is more preferable in the order of 45.0%, 46.0%, 47.0%, 48.0%, 49.0%, 50.0%, 52.0%.
  • the upper limit of the total content [TiO 2 + Nb 2 O 5 + WO 3 ] is preferably 85.0%, and further 84.0%, 83.0%, 82.0%, 81.0%. 79.0%, 77.0% in this order.
  • TiO 2 , Nb 2 O 5, and WO 3 are all glass components that contribute to high dispersion, but also cause increased coloring. Therefore, the total content [TiO 2 + Nb 2 O 5 + WO 3 ] is preferably in the above range.
  • the content of the glass component when the content of the glass component is expressed in terms of cation% and the content of W 6+ exceeds 0 cation%, the content of Ba 2+ the upper limit of the cation ratio of [Ba 2+ / W 6+] between the content of 6+ is preferably 0.14, more in the order of 0.13,0.12,0.11,0.10 preferable.
  • Ba 2+ is a component that contributes to low dispersion. Therefore, in the optical glass according to the first to first embodiments, desired high dispersibility can be obtained by adding W 6+ that is a high dispersion component to the above cation ratio with respect to the content of Ba 2+ . Can be maintained.
  • the upper limit of the total content of Ti 4+ and Bi 3+ [Ti 4+ + Bi 3+ ] is preferably 35.00 cation%, and further 34.00 cation%, 33 0.000%, 32.50%, 32.30%, 32.00%, 31.80%, 31.60%, 31.40%, 31.20%, 31.00% More preferred in the order of cation%, 30.80 cation%, 30.60 cation%, 30.40 cation%, 30.20 cation%, 30.10 cation%, 30.00 cation%.
  • the lower limit of the total content [Ti 4+ + Bi 3+ ] is preferably 21.00 cation%, and further 21.20 cation%, 21.40 cation%, 21.60 cation%, 21.80 cation%. 22.00 cation%, 22.20 cation%, 22.40 cation%, 22.60 cation%, 22.80 cation%, 23.00 cation%, 23.10 cation%, 23.20 cation%, 23 .30 cation%, 23.40 cation%, and 23.50 cation% in this order.
  • the optical glass according to the first to first embodiments can contain the following glass components.
  • the optical glass according to Embodiment 1-1 can contain B 2 O 3 , SiO 2 , and Al 2 O 3 as glass network forming components other than P 2 O 5 .
  • the upper limit of the content of B 2 O 3 is preferably 4.0%, and further, 3.0%, 2.0%, and 1.0%. More preferred in order.
  • the content of B 2 O 3 may be 0%.
  • B 2 O 3 is a glass network forming component and has a function of improving the meltability of the glass and suppressing the increase in the refractive index.
  • the upper limit of the content of B 2 O 3 is preferably in the above range from the viewpoint of improving the thermal stability, meltability, moldability, and the like of the glass while suppressing the increase in the refractive index.
  • the lower limit of the content of B 2 O 3 is preferably in the above range.
  • the upper limit of the content of SiO 2 is preferably 8.0%, and further 7.0%, 6.0%, 5.5%, and 5. It is more preferable in the order of 0%, 4.5%, 4.0%, 3.5%, 3.0%.
  • the content of SiO 2 may be 0%.
  • SiO 2 is a glass network-forming component, and has a function of improving the thermal stability, chemical durability, and weather resistance of the glass, increasing the viscosity of the molten glass, and facilitating molding of the molten glass.
  • the upper limit of the SiO 2 content is preferably in the above range from the viewpoint of improving the meltability, low-temperature softening property and the like of the glass.
  • the upper limit of the content of Al 2 O 3 is preferably 5.0%, and further 4.0%, 3.5%, 2.5%, 2.0%, 1.5%, 1.0%, and 0.5% are more preferable in this order.
  • the content of Al 2 O 3 may be 0%.
  • Al 2 O 3 is a glass component that functions to suppress the increase in refractive index and improve the chemical durability and weather resistance of glass, and can be considered as a network forming component.
  • the content of Al 2 O 3 is increased, the thermal stability of the glass is lowered, the glass transition temperature Tg is increased, and the meltability is liable to occur.
  • the upper limit of the content of Al 2 O 3 is preferably within the above range.
  • the total content of P 2 O 5 , B 2 O 3 , SiO 2 and Al 2 O 3 which are glass network forming components [P 2 O 5 + B 2 O 3 + SiO 2 + Al 2 O 3 ] is preferably 45.0%, and further 43.0%, 41.0%, 39.0%, 37.0%, 35.0%, 33.0% % Order is more preferable.
  • the lower limit of the total content [P 2 O 5 + B 2 O 3 + SiO 2 + Al 2 O 3 ] is preferably 10.0%, and further 11.0%, 12.0%, 12.5 %, 13.0%, 14.0%, 15.0% in this order.
  • the refractive index can be easily maintained in a desired range.
  • the lower limit of the total content [P 2 O 5 + B 2 O 3 + SiO 2 + Al 2 O 3 ] in the above range the thermal stability of the glass is improved and the devitrification of the glass is further suppressed. It becomes easy.
  • the mass ratio of the content of P 2 O 5 to the total content of P 2 O 5 , B 2 O 3 , SiO 2 and Al 2 O 3 is preferably 0.70, more preferably 0.75, 0.80, 0.85, 0.90. More preferred in order.
  • the mass ratio [P 2 O 5 / (P 2 O 5 + B 2 O 3 + SiO 2 + Al 2 O 3 )] can also be set to 1.00.
  • the lower limit of the mass ratio [P 2 O 5 / (P 2 O 5 + B 2 O 3 + SiO 2 + Al 2 O 3 )] is within the above range from the viewpoint of maintaining high dispersion of the glass and good meltability. Preferably there is.
  • the lower limit of the content of TiO 2 is preferably 1.0%, and further, 3.0%, 5.0%, 6.0%, 7. It is more preferable in the order of 0%, 8.0%, 9.0%, 10.0%.
  • the upper limit of the content of TiO 2 is preferably 45.0%, and further 44.0%, 43.0%, 42.0%, 41.0%, 40.0%, 39. More preferable in the order of 0%.
  • TiO 2 suppresses the increase in refractive index compared to Nb 2 O 5 and Bi 2 O 3 and greatly contributes to high dispersion. On the other hand, TiO 2 tends to increase the coloring of the glass relatively. In addition, TiO 2 promotes crystal formation in the glass and lowers the transparency of the glass (white turbidity) in the process of forming an optical glass by forming and gradually cooling the molten glass. Therefore, in the optical glass according to the present embodiment, the content of TiO 2 is preferably in the above range.
  • the upper limit of the Ti 4+ content is preferably 48.00 cation%, and further 47. 00 cation%, 46.00 cation%, 45.50 cation%, 45.00 cation%, 44.50 cation%, 44.00 cation%, 43.50 cation%, 43.00 cation%, 42.50 cation %, 42.00 cation% in this order.
  • the lower limit of the content of Ti 4+ is preferably 10.00 cation%, and further 11.00 cation%, 11.50 cation%, 12.00 cation%, 12.50 cation%, 13.00 cation %, 13.50 cation%, 14.00 cation%, 14.50 cation%, 15.00 cation%, and 15.50 cation%, in this order.
  • Ti 4+ suppresses an increase in refractive index compared to Nb 5+ and Bi 3+ and greatly contributes to high dispersion. On the other hand, Ti 4+ tends to increase the coloring of the glass relatively. Further, Ti 4+ promotes crystal formation in the glass and lowers the transparency of the glass (white turbidity) in the process of forming and gradually cooling the molten glass to obtain an optical glass. Therefore, in the optical glass according to the present embodiment, the content of Ti 4+ is preferably in the above range.
  • the upper limit of the mass ratio [TiO 2 / P 2 O 5 ] between the content of TiO 2 and the content of P 2 O 5 is preferably 4.50, Furthermore, 4.00, 3.50, 3.00, 2.50, 2.00, and 1.50 are more preferable in this order.
  • the lower limit of the mass ratio [TiO 2 / P 2 O 5 ] is preferably 0.04, and further 0.08, 0.12, 0.16, 0.20, 0.24,. 28, 0.32, 0.36, 0.40, 0.44, 0.48, and 0.52 are more preferable in this order.
  • the cation ratio [Ti 4+ / P 5 between the content of Ti 4+ and the content of P 5+]. + ] Is preferably 1.50, and further 1.40, 1.30, 1.29, 1.28, 1.27, 1.26, 1.25, 1.24, 1. More preferred in the order of 23, 1.22.
  • the lower limit of the cation ratio [Ti 4+ / P 5+ ] is preferably 0.50, and more preferably in the order of 0.51, 0.52, and 0.53.
  • the lower limit of the Nb 2 O 5 content is preferably 5.5%, and further 6.0%, 6.5%, 7.0%, It is more preferable in the order of 7.5%, 8.0%, and 8.5%.
  • the upper limit of the content of Nb 2 O 5 is preferably 55.0%, and further 54.0%, 53.0%, 52.0%, 51.0%, 50.0%, It is more preferable in the order of 49.0% and 48.0%.
  • Nb 2 O 5 is a component that contributes to high dispersion. It is also a glass component that improves the thermal stability and chemical durability of the glass. On the other hand, if the content of Nb 2 O 5 is too large, the thermal stability of the glass tends to decrease, and the color of the glass tends to increase. Therefore, in the optical glass according to the present embodiment, the content of Nb 2 O 5 is preferably in the above range.
  • the upper limit of the Nb 5+ content is preferably 45.00 cation%, and further 44. 00 cation%, 43.50 cation%, 43.00 cation%, 42.50 cation%, 42.00 cation%, 41.50 cation%, 41.00 cation%, 40.50 cation%, 40.00 cation %, 39.50 cation%, 39.00 cation%, 38.50 cation%, in this order.
  • the lower limit of the Nb 5+ content is preferably 1.00 cation%, and further 2.00 cation%, 2.50 cation%, 3.00 cation%, 3.50 cation%, 4.00 cation. %, 4.50 cation%, 5.00 cation%, 5.50 cation%, 6.00 cation%, and 6.50 cation% in this order.
  • Nb 5+ is a component that contributes to high dispersion. It is also a glass component that improves the thermal stability and chemical durability of the glass. On the other hand, if the content of Nb 5+ increases too much, the thermal stability of the glass tends to decrease, and the glass tends to become more colored. Therefore, in the optical glass according to the present embodiment, the Nb 5+ content is preferably within the above range.
  • the upper limit of the content of WO 3 is preferably 45.0%, and further 44.5%, 44.0%, 43.5%, 43. It is more preferable in the order of 0%, 42.0%, 41.0%, and 40.0%.
  • the lower limit of the content of WO 3 is preferably 9.0%, and 7.0%, 5.0%, 3.0%, 1.0%, 0.5%, 0.00%. It is more preferable in the order of 3% and 0.1%.
  • the content of WO 3 may be 0%.
  • WO 3 suppresses an increase in refractive index and greatly contributes to high dispersion, but is more likely to cause coloration of glass as compared with TiO 2 , Nb 2 O 5 and Bi 2 O 3 and deteriorates transmittance. Therefore, the content of WO 3 is preferably within the above range.
  • the upper limit of the content of W 6+ is preferably 30.00 cation%, and 29. 00 cation%, 28.50 cation%, 28.00 cation%, 27.50 cation%, 27.00 cation%, 26.50 cation%, 26.00 cation%, 25.50 cation%, 25.00 cation %, 24.50 cation% in this order.
  • the lower limit of the content of W 6+ is preferably 0.40 cation%, and more preferably in the order of 0.20 cation% and 0.10 cation%.
  • the content of W 6+ may be 0 cation%.
  • W 6+ suppresses an increase in refractive index and greatly contributes to high dispersion, but is more likely to cause glass coloring and deteriorates the transmittance as compared with Ti 4+ , Nb 5+ and Bi 3+ . Therefore, the content of W 6+ is preferably within the above range.
  • the upper limit of the total content [TiO 2 + Nb 2 O 5 + WO 3 + Bi 2 O 3 ] of TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 is preferably Is 86.0%, more preferably in the order of 85.5%, 85.0%, 84.5%, 84.0%, 83.5%, 83.0%.
  • the lower limit of the total content [TiO 2 + Nb 2 O 5 + WO 3 + Bi 2 O 3 ] is preferably 55.0%, and further 55.5%, 56.0%, 56.5%, 57.0%, 57.5%, 58.0%, 58.5%, 59.0%, 59.5%, 60.0%, 60.5%, 61.0%, 61.5%, 62.0%, 62.5%, 63.0%, 63.5%, and 64.0% are more preferable in this order.
  • TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 contribute to high dispersion of the glass. Moreover, it has the function which improves the thermal stability of glass by containing a suitable quantity.
  • Bi 2 O 3 has a stronger function of increasing the refractive index than TiO 2 , Nb 2 O 5 and WO 3 . Therefore, the upper limit of the total content [TiO 2 + Nb 2 O 5 + WO 3 + Bi 2 O 3 ] is preferably within the above range from the viewpoint of suppressing the increase in refractive index and the increase in coloration of the glass. Further, from the viewpoint of highly dispersing the glass and improving the thermal stability of the glass, the lower limit of the total content [TiO 2 + Nb 2 O 5 + WO 3 + Bi 2 O 3 ] is preferably in the above range.
  • the total content of Ti 4+ , Nb 5+ , W 6+ and Bi 3+ [Ti 4+ + Nb 5+ + W 6+ + Bi 3+ ] is preferably 75.00 cation%, and 74.50 cation%, 74.00 cation%, 73.50 cation%, 73.00 cation%, 72 More preferred are .50 cation%, 72.00 cation%, 71.50 cation%, 71.00 cation%, and 70.50 cation%.
  • the lower limit of the total content [Ti 4+ + Nb 5+ + W 6+ + Bi 3+ ] is preferably 52. 0 cation%, and further 52.10 cation%, 52.15 cation%, 52.20 cation%. 52.25 cation% and 52.30 cation% are more preferable in this order.
  • Ti 4+ , Nb 5+ , W 6+ and Bi 3+ contribute to high dispersion of the glass. Moreover, it has the function which improves the thermal stability of glass by containing a suitable quantity. Therefore, the lower limit of the total content [Ti 4+ + Nb 5+ + W 6+ + Bi 3+ ] is preferably within the above range. On the other hand, Ti 4+ , Nb 5+ , W 6+ and Bi 3+ increase the coloration of the glass. Therefore, the upper limit of the total content [Ti 4+ + Nb 5+ + W 6+ + Bi 3+ ] is preferably within the above range.
  • the upper limit of the Li 2 O content is preferably 1.2%, and 1.1%, 1.0%, 0.8%, 0 .6%, 0.4% in order.
  • the content of Li 2 O may be 0%.
  • Li 2 O functions to suppress an increase in the refractive index and improve the meltability of the glass. Therefore, the content of Li 2 O is preferably in the above range from the viewpoint of ensuring meltability while maintaining required optical characteristics.
  • the upper limit of the content of Na 2 O is preferably 6.0%, and further 5.0%, 4.5%, 4.0%, 3% .5%, 3.0% in order.
  • the lower limit of the content of Na 2 O is preferably 0%.
  • the content of Na 2 O may be 0%.
  • the upper limit of the content of K 2 O is preferably 12.0%, and further 11.0%, 10.0%, 9.0%, 8 More preferable in the order of 0.5% and 8.0%.
  • the lower limit of the content of K 2 O is preferably 0.1% in order to maintain good thermal stability of the glass and suppress an increase in the liquidus temperature, and further 0.3% 0.5%, 1.0%, 1.5%, 2.0%, 2.5% in this order.
  • the content of K 2 O may be 0%.
  • Both Na 2 O and K 2 O have a function of suppressing an increase in the refractive index and improving the meltability of the glass. However, when these contents increase, the thermal stability and chemical durability of the glass are increased. And weather resistance are reduced. Therefore, each content of Na 2 O and K 2 O is preferably within the above range.
  • the upper limit of the total content [Li 2 O + Na 2 O + K 2 O] of Li 2 O, Na 2 O and K 2 O is preferably 15.0%, Is more preferable in the order of 14.0%, 13.0%, 12.0%, 11.0%, 10.0%, 9.0%.
  • the lower limit of the total content [Li 2 O + Na 2 O + K 2 O] is preferably 0.1% in order to maintain good thermal stability of the glass and suppress an increase in the liquidus temperature, Is more preferable in the order of 0.3%, 0.5%, 1.0%, 1.5%, 2.0%, 2.5%.
  • the total content [Li 2 O + Na 2 O + K 2 O] may be 0%.
  • Li 2 O, Na 2 O and K 2 O all have a function of suppressing the increase in refractive index and improving the meltability of glass.
  • the thermal stability, chemical durability, and weather resistance of the glass decrease. Therefore, the total content [Li 2 O + Na 2 O + K 2 O] of Li 2 O, Na 2 O and K 2 O is preferably in the above range.
  • the upper limit of the content of Rb 2 O is preferably 2.0%, and further in the order of 1.0%, 0.5%, 0.1%. Is more preferable. Further, the lower limit of the content of Rb 2 O is preferably 0%. The content of Rb 2 O may be 0%.
  • the upper limit of the content of Cs 2 O is preferably 6.0%, and further 5.0%, 4.5%, 4.0%, 3% More preferable in order of 5%. Further, the lower limit of the content of Cs 2 O is preferably 0%. The content of Cs 2 O may be 0%.
  • Rb 2 O and Cs 2 O both have a function of suppressing the increase in refractive index and improving the meltability of the glass, but when these contents increase, the thermal stability and chemical durability of the glass are increased. And weather resistance are reduced. Therefore, each content of Rb 2 O and Cs 2 O is preferably in the above range.
  • the upper limit of the content of MgO is preferably 5.0%, and further 4.0%, 3.0%, 2.0%, 1.0% % Order is more preferable. Further, the lower limit of the content of MgO is preferably 0%. The content of MgO may be 0%.
  • the upper limit of the content of CaO is preferably 5.0%, and further 4.0%, 3.0%, 2.0%, 1.0% % Order is more preferable.
  • the lower limit of the CaO content is preferably 0%.
  • the content of CaO may be 0%.
  • the upper limit of the SrO content is preferably 6.0%, and further 5.8%, 5.7%, 5.6%, 5.5 %, 5.0%, 4.5%, 4.0%, 3.5%, 3.0%, 2.5% in this order.
  • the lower limit of the SrO content is preferably 0%.
  • the SrO content may be 0%.
  • the upper limit of the BaO content is preferably 6.0%, and further 5.8%, 5.7%, 5.6%, 5.5 %, 5.0%, 4.5%, and 4.0% in this order.
  • the lower limit of the BaO content is preferably 0%.
  • the content of BaO may be 0%.
  • MgO, CaO, SrO, and BaO are all glass components that have a function of improving the thermal stability and meltability of the glass.
  • each content of these glass components is the said range, respectively.
  • the upper limit of the Ba 2+ content is preferably 13.00 cation%, and further 12. 00 cation%, 11.00 cation%, 10.00 cation%, 9.00 cation%, 8.00 cation%, 7.50 cation%, 7.00 cation%, 6.50 cation%, 6.00 cation %, 5.50 cation%, 5.00 cation%, 4.50 cation%, 4.00 cation%, and 3.50 cation% in this order.
  • the lower limit of the Ba 2+ content is preferably 0 cation%.
  • the Ba 2+ content may be 0 cation%.
  • Mg 2+ , Ca 2+ , Sr 2+ , and Ba 2+ are all glass components that have a function of improving the thermal stability and meltability of the glass.
  • each content of these glass components is the said range, respectively.
  • the upper limit of the total content [MgO + CaO + SrO + BaO] of MgO, CaO, SrO and BaO is preferably 10 from the viewpoint of maintaining thermal stability without preventing high dispersion. 0.0%, more preferably 9.0%, 8.0%, 7.0%, 6.0%, 5.5%, 5.0% in this order.
  • the lower limit of the total content [MgO + CaO + SrO + BaO] is preferably 0%.
  • the total content [MgO + CaO + SrO + BaO] may be 0%.
  • the upper limit of the ZnO content is preferably 5.0%, and further 4.0%, 3.0%, 2.0%, 1.0% % Order is more preferable.
  • the lower limit of the ZnO content is preferably 0%.
  • the content of ZnO may be 0%.
  • ZnO is a glass component having a function of promoting melting of a glass raw material (that is, a function of improving meltability) when melting glass.
  • ZnO has a stronger function of improving the thermal stability of the glass and lowering the liquidus temperature compared to other divalent metal components such as alkaline earth metals. Therefore, from the viewpoint of improving the meltability and thermal stability of the glass, the lower limit of the ZnO content is preferably in the above range. Further, from the viewpoint of suppressing the low dispersion of the glass, the upper limit of the ZnO content is preferably in the above range.
  • the upper limit of the content of ZrO 2 is preferably 6.0%, and further 5.0%, 4.5%, 4.0%, and 3. It is more preferable in the order of 0% and 2.0%. Further, the lower limit of the content of ZrO 2 is preferably 0%. The content of ZrO 2 may be 0%.
  • ZrO 2 is a glass component having a function of improving the thermal stability of the glass.
  • the content of ZrO 2 is too large, the refractive index increases and the thermal stability of the glass tends to decrease.
  • the glass raw material tends to remain unmelted. Therefore, the upper limit of the content of ZrO 2 is preferably in the above range from the viewpoint of maintaining good meltability and thermal stability of the glass and realizing required optical characteristics.
  • the lower limit of the content of ZrO 2 is preferably in the above range.
  • the upper limit of the content of Ta 2 O 5 is preferably 9.0%, and further, 8.0%, 7.0%, 6.0%, It is more preferable in the order of 5.0%, 4.0%, and 3.0%. Further, the lower limit of the content of Ta 2 O 5 is preferably 0%. The content of Ta 2 O 5 may be 0%.
  • Ta 2 O 5 is a glass component having a function of improving the thermal stability of the glass.
  • Ta 2 O 5 increases the refractive index and lowers the dispersion of the glass.
  • Ta 2 O 5 is an extremely expensive component compared to other glass components, and the glass production cost increases as the content of Ta 2 O 5 increases.
  • Ta 2 O 5 has a higher molecular weight than other glass components, it increases the specific gravity of the glass and consequently increases the weight of the glass optical element.
  • the content of Ta 2 O 5 is preferably in the above range.
  • the upper limit of the content of Ga 2 O 3 is preferably 4.0%, and further, 3.5%, 3.0%, 2.5%, 2.0%, 1.5%, 1.0%, 0.5%, and 0.1% are more preferable in this order. Further, the lower limit of the content of Ga 2 O 3 is preferably 0%. The content of Ga 2 O 3 may be 0%.
  • the upper limit of the content of In 2 O 3 is preferably 5.0%, and further 4.5%, 4.0%, 3.5%, More preferable in the order of 3.0%. Further, the lower limit of the content of In 2 O 3 is preferably 0%. The content of In 2 O 3 may be 0%.
  • the upper limit of the content of Sc 2 O 3 is preferably 5.0%, and further 4.0%, 3.0%, 2.0%, More preferable in the order of 1.0%.
  • the lower limit of the content of Sc 2 O 3 is preferably 0%.
  • the content of Sc 2 O 3 may be 0%.
  • the upper limit of the content of HfO 2 is preferably 8.0%, and further 7.0%, 6.5%, 6.0%, 5. 5%, 5.0%, 4.5%, 4.0%, 3.5%, 3.0%, 2.5%, 2.0%, 1.5%, 1.0%,. It is more preferable in the order of 5% and 0.1%.
  • the lower limit of the content of HfO 2 is preferably 0%.
  • the content of HfO 2 may be 0%.
  • Ga 2 O 3 , In 2 O 3 , Sc 2 O 3 , and HfO 2 all have a function of increasing the refractive index nd and are expensive components. Therefore, each content of Ga 2 O 3 , In 2 O 3 , Sc 2 O 3 , and HfO 2 is preferably in the above range.
  • the upper limit of the content of Lu 2 O 3 is preferably 5.0%, and further 4.5%, 4.0%, 3.5%, More preferable in the order of 3.0%. Further, the lower limit of the content of Lu 2 O 3 is preferably 0%. The content of Lu 2 O 3 may be 0%.
  • Lu 2 O 3 has a function of increasing the refractive index nd. It is also a glass component that increases the specific gravity of glass because of its high molecular weight. Therefore, it is preferable to reduce the content of Lu 2 O 3, it is preferable that the content of Lu 2 O 3 is within the above range.
  • the upper limit of the GeO 2 content is preferably 6.0%, and further 5.0%, 4.0%, 3.0%, and 2.%. It is more preferable in the order of 0%, 1.5%, 1.0%, 0.5%, and 0.1%. Further, the lower limit of the GeO 2 content is preferably 0%. The content of GeO 2 may be 0%.
  • GeO 2 has a function of increasing the refractive index nd, and is a prominently expensive component among commonly used glass components. Therefore, from the viewpoint of reducing the manufacturing cost of glass, the GeO 2 content is preferably in the above range.
  • the upper limit of the content of La 2 O 3 is preferably 5.0%, and further 4.5%, 4.0%, 3.5%, 3.0%, 2.5%, 2.0%, 1.5%, 1.0%, and 0.5% are more preferable in this order.
  • the lower limit of the content of La 2 O 3 is preferably 0%.
  • the content of La 2 O 3 may be 0%.
  • the content of La 2 O 3 is preferably in the above range.
  • the upper limit of the content of Gd 2 O 3 is preferably 8.0%, and further 7.0%, 6.0%, 5.0%, It is more preferable in the order of 4.0%, 3.0%, 2.0%, 1.5%, 1.0%.
  • the lower limit of the content of Gd 2 O 3 is preferably 0%.
  • the content of Gd 2 O 3 may be 0%.
  • the content of Gd 2 O 3 is preferably within the above range from the viewpoint of suppressing the increase in specific gravity while maintaining the thermal stability of the glass well.
  • the upper limit of the content of Y 2 O 3 is preferably 5.0%, and further 4.5%, 4.0%, 3.5%, It is more preferable in the order of 3.0%, 2.5%, and 2.0%.
  • the lower limit of the content of Y 2 O 3 is preferably 0%.
  • the content of Y 2 O 3 may be 0%.
  • the content of Y 2 O 3 is preferably in the above range.
  • the upper limit of the content of Yb 2 O 3 is preferably 5.0%, and further 4.5%, 4.0%, 3.5%, It is more preferable in the order of 3.0%, 2.0%, 1.0%, 0.5% and 0.1%.
  • the lower limit of the content of Yb 2 O 3 is preferably 0%.
  • the content of Yb 2 O 3 may be 0%.
  • Yb 2 O 3 Since Yb 2 O 3 has a higher molecular weight than La 2 O 3 , Gd 2 O 3 , and Y 2 O 3 , it increases the specific gravity of the glass. As the specific gravity of the glass increases, the mass of the optical element increases. For example, if a lens with a large mass is incorporated into an autofocus imaging lens, the power required to drive the lens during autofocus increases, and battery consumption becomes severe. Therefore, it is desirable to reduce the content of Yb 2 O 3 and suppress the increase in the specific gravity of the glass.
  • the content of Yb 2 O 3 is preferably in the above range.
  • the optical glass according to the 1-1 embodiment is mainly composed of the above glass components, that is, P 2 O 5 , B 2 O 3 , SiO 2 , Al 2 O 3 , TiO 2 , Nb 2 O 5 , WO 3 , Bi 2.
  • O 3 Li 2 O, Na 2 O, K 2 O, Rb 2 O, Cs 2 O, MgO, CaO, SrO, BaO, ZnO, ZrO 2 , Ta 2 O 5 , Ga 2 O 3 , In 2 O 3 , Sc 2 O 3 , HfO 2 , Lu 2 O 3 , GeO 2 , La 2 O 3 , Gd 2 O 3 , Y 2 O 3 , and Yb 2 O 3 , preferably the glass component described above
  • the total content is preferably greater than 95%, more preferably greater than 98%, even more preferably greater than 99%, and even more preferably greater than 99.5%. .
  • the upper limit of the TeO 2 content is preferably 5.0%, and 4.5%, 4.0%, 3.5%, and 3. It is more preferable in the order of 0%, 2.5%, 2.0%, 1.5%, 1.0%, 0.5%, 0.1%.
  • the lower limit of the TeO 2 content is preferably 0%.
  • the content of TeO 2 may be 0%.
  • TeO 2 is a component that increases the refractive index nd and has toxicity, so it is preferable to reduce the content of TeO 2 . Therefore, the content of TeO 2 is preferably in the above range.
  • the anion component that is, the anion component is mainly oxygen ions, but contains a small amount of halogen ions such as chlorine ions, iodine ions, bromine ions, etc. as other anions. be able to.
  • the oxide content in all glass components is preferably greater than 95% by mass.
  • the lower limit of the oxide content in all glass components is preferably in the order of 97% by mass, 99% by mass, 99.5% by mass, 99.9% by mass, 99.95% by mass, and 99.99% by mass.
  • the content of oxides in all glass components may be 100% by mass. Glass whose oxide content in all glass components is 100% by mass is substantially free of halide.
  • the upper limit of the halogen ion content is preferably 4 anion%, and further 3 anion%, 2 anion%, 1 anion%, 0.5 anion. % Order is more preferable.
  • the halogen ion content may be 0 anion%.
  • Anion% is a mole percentage when the total content of all anion components contained in the glass is 100%.
  • the optical glass according to the 1-1 embodiment is preferably basically composed of the above glass components, but may contain other components as long as the effects of the present invention are not hindered. is there. In the present invention, the inclusion of inevitable impurities is not excluded.
  • the optical glass according to Embodiment 1-1 does not contain these elements as glass components.
  • the optical glass according to Embodiment 1-1 does not contain these elements as glass components.
  • Sb (Sb 2 O 3 ), Sn (SnO 2 ), and Ce (CeO 2 ) are arbitrarily added elements that function as a fining agent.
  • Sb (Sb 2 O 3 ) is a fining agent having a large fining effect.
  • Sb (Sb 2 O 3 ) is highly oxidizable, and increasing the amount of Sb (Sb 2 O 3 ) is not preferable because the coloration of the glass increases due to light absorption by Sb ions.
  • Sb is present in the melt when melting the glass, elution of platinum constituting the glass melt crucible into the melt is promoted, and the platinum concentration in the glass increases.
  • the content of Sb 2 O 3 is displayed on an external basis. That is, when the total content of all glass components other than Sb 2 O 3 , SnO 2 and CeO 2 is 100% by mass, the content of Sb 2 O 3 is preferably less than 1% by mass, more preferably 0.8%. It is less than 5% by mass, more preferably less than 0.1% by mass.
  • the content of Sb 2 O 3 may be 0% by mass.
  • the content of SnO 2 is also shown as an outside display. That is, when the total content of all glass components other than SnO 2 , Sb 2 O 3 and CeO 2 is 100% by mass, the content of SnO 2 is preferably less than 2% by mass, more preferably less than 1% by mass. More preferably, it is in the range of less than 0.5% by mass, more preferably less than 0.1% by mass.
  • the content of SnO 2 may be 0% by mass.
  • the content of CeO 2 is also displayed on the outside. That is, the content of CeO 2 when the total content of CeO 2, Sb 2 O 3, all-glass components other than SnO 2 and 100% by weight, preferably less than 2 wt%, more preferably less than 1 wt% More preferably, it is in the range of less than 0.5% by mass, more preferably less than 0.1% by mass.
  • the CeO 2 content may be 0% by mass.
  • the upper limit of the glass transition temperature Tg of the optical glass according to Embodiment 1-1 is preferably 750 ° C., and more preferably in the order of 740 ° C., 730 ° C., 720 ° C., 710 ° C., and 700 ° C.
  • the lower limit of the glass transition temperature Tg is preferably 520 ° C., and more preferably in the order of 540 ° C., 560 ° C., 580 ° C., and 600 ° C.
  • the upper limit of the glass transition temperature Tg satisfies the above range, the increase in the annealing temperature of the glass can be suppressed, and the thermal damage of the annealing equipment such as a continuous annealing called a rare or a batch annealing furnace can be reduced. can do.
  • the light transmittance can be evaluated by the coloring degree ⁇ 5.
  • the coloring degree ⁇ 5 Using glass with two planes parallel to each other and optically polished (thickness 10.0 mm ⁇ 0.1 mm), light is incident perpendicularly to this plane from one of the two planes. Let Then, the ratio (Iout / Iin) of the intensity Iout of the transmitted light emitted from the other plane and the intensity Iin of the incident light, that is, the external transmittance is calculated.
  • the external transmittance is measured while scanning the wavelength of incident light in the range of, for example, 280 to 700 nm, thereby obtaining a spectral transmittance curve.
  • the external transmittance increases as the wavelength of incident light goes from the absorption edge on the short wavelength side of the glass toward the long wavelength side, and shows a high value.
  • ⁇ 5 is a wavelength at which the external transmittance is 5%.
  • the external transmittance of the glass on the longer wavelength side than ⁇ 5 shows a value larger than 5%.
  • optical glass having a shorter wavelength of ⁇ 5 By using optical glass having a shorter wavelength of ⁇ 5, an optical element that enables suitable color reproduction can be provided.
  • the range of ⁇ 5 is preferably 440 nm or less, more preferably 435 nm or less, 430 nm or less, 425 nm or less, 420 nm or less, 415 nm or less, and 410 nm or less.
  • a guideline for the lower limit of ⁇ 5 is 380 nm.
  • the optical glass according to the 1-1 embodiment is a high dispersion glass that suppresses an increase in the refractive index, but does not have a large specific gravity.
  • the specific gravity of glass can be reduced, the weight of the lens can be reduced. As a result, it is possible to reduce the power consumption of the autofocus drive of the camera lens equipped with the lens.
  • the specific gravity is reduced too much, the thermal stability is lowered. Therefore, the upper limit of the specific gravity d is preferably 5.80, and 5.60, 5.30, 5.00, 4.80, 4.60, 4.40, 4.20, 4.00. More preferred in the order of 3.80 and 3.70. From the viewpoint of improving thermal stability, the lower limit of the specific gravity d is preferably 2.80, and more preferably in the order of 2.90, 3.00, 3.10, and 3.20.
  • the upper limit of the liquidus temperature of the optical glass according to Embodiment 1-1 is preferably 1350 ° C., and more preferably in the order of 1340 ° C., 1330 ° C., 1320 ° C., 1310 ° C., and 1300 ° C.
  • the lower limit of the liquidus temperature is preferably 1000 ° C., and more preferably in the order of 1020 ° C., 1040 ° C., 1060 ° C., 1080 ° C., 1100 ° C., 1130 ° C., and 1150 ° C.
  • a highly dispersed glass in which the thermal stability of the glass is improved and the increase in the refractive index is suppressed can be obtained.
  • the liquidus temperature is determined as follows. 10 cc (10 ml) of glass is put into a platinum crucible, melted at 1250 ° C. to 1350 ° C. for 20 to 30 minutes, cooled to a glass transition temperature Tg or lower, and the glass is put together with the platinum crucible in a melting furnace at a predetermined temperature and held for 2 hours. To do.
  • the holding temperature is 1000 ° C. or higher, in increments of 5 ° C. or 10 ° C., held for 2 hours, cooled, and the presence or absence of crystals inside the glass is observed with a 100 ⁇ optical microscope.
  • the lowest temperature at which no crystals are deposited is defined as the liquidus temperature.
  • the optical glass according to the embodiment of the present invention may be prepared according to a known glass manufacturing method using a glass raw material prepared by preparing a glass raw material so as to have the predetermined composition.
  • a glass raw material prepared by preparing a glass raw material so as to have the predetermined composition.
  • a plurality of types of compounds are prepared and mixed sufficiently to obtain a batch raw material, and the batch raw material is placed in a quartz crucible or a platinum crucible and roughly melted (rough melt).
  • the melt obtained by rough melting is rapidly cooled and pulverized to produce cullet. Further, the cullet is placed in a platinum crucible and heated and re-melted (remelted) to obtain a molten glass.
  • the molten glass is formed and slowly cooled to obtain an optical glass.
  • a publicly known method may be applied to forming molten glass and slow cooling.
  • the compound used when preparing the batch raw material is not particularly limited. Examples thereof include phosphoric acid, metaphosphate, diphosphorus pentoxide, carbonate, nitrate, hydroxide, and fluoride.
  • a known method may be applied.
  • a glass raw material is melted to form a molten glass, and the molten glass is poured into a mold and formed into a plate shape to produce a glass material made of the optical glass according to the present invention.
  • the obtained glass material is appropriately cut, ground, and polished to produce a glass material for press molding having a size and shape suitable for press molding.
  • a glass material for press molding is heated and softened, and press-molded by a known method to produce an optical element blank that approximates the shape of the optical element.
  • the optical element blank is annealed and ground and polished by a known method to produce an optical element.
  • the optical functional surface of the manufactured optical element may be coated with an antireflection film, a total reflection film or the like according to the purpose of use.
  • optical element examples include various lenses such as a spherical lens, a prism, and a diffraction grating.
  • the optical glass of the 1-2 embodiment of the present invention Abbe number ⁇ d is 16.70 or less, The content of Bi 2 O 3 is 29.0% by mass or less, This phosphate optical glass has a total content of TiO 2 , Nb 2 O 5 and WO 3 of 45.0% by mass or more.
  • the Abbe number ⁇ d is 16.70 or less.
  • the upper limit of the Abbe number ⁇ d is preferably 16.68, and more preferably in the order of 16.66, 16.64, 16.62, 16.60, 16.58, 16.56, 16.54.
  • the lower limit of the Abbe number is preferably 15.50, and more preferably larger values in the order of 15.55, 15.60, 15.65, and 15.70.
  • the Abbe number ⁇ d is set to 16.70 or less, when the pair lens is combined with the low-dispersion glass lens, the difference in Abbe number becomes large, and a high effect is obtained in correcting chromatic aberration.
  • the content of Bi 2 O 3 is 29.0% or less.
  • the upper limit of the Bi 2 O 3 content is preferably 28.5%, and further 28.0%, 27.5%, 27.0%, 25.0%, 20.0%, 15.0%, 10.0%, 6.0%, 5.0% are more preferable in this order.
  • the lower limit of the Bi 2 O 3 content is preferably 0%.
  • the content of Bi 2 O 3 may be 0%.
  • Bi 2 O 3 has a function of improving the thermal stability of the glass by containing an appropriate amount.
  • the content of Bi 2 O 3 is increased, the refractive index increases and the coloration of the glass increases. Therefore, the Bi 2 O 3 content is set in the above range.
  • the upper limit of the Bi 3+ content is preferably 20.00 cation%. 50 cation%, 19.00 cation%, 18.50 cation%, 18.00 cation%, 17.50 cation%, 17.00 cation%, 16.50 cation% are more preferable in this order.
  • the lower limit of the Bi 3+ content is preferably 3.00 cation%, and more preferably in the order of 1.50 cation%, 1.00 cation%, and 0.40 cation%.
  • the content of Bi 3+ may be 0 cation%.
  • Bi 3+ has a function of improving the thermal stability of the glass by containing an appropriate amount.
  • the Bi 3+ content is preferably within the above range.
  • the total content [TiO 2 + Nb 2 O 5 + WO 3 ] of TiO 2 , Nb 2 O 5 and WO 3 is 45.0% or more.
  • the lower limit of the total content [TiO 2 + Nb 2 O 5 + WO 3 ] of TiO 2 , Nb 2 O 5 and WO 3 is preferably 46.0%, Is more preferable in the order of 47.0%, 48.0%, 49.0%, 50.0%.
  • the upper limit of the total content [TiO 2 + Nb 2 O 5 + WO 3 ] is preferably 85.0%, and further 84.0%, 83.0%, 82.0%, 81.0%. 79.0%, 77.0% in this order.
  • TiO 2 , Nb 2 O 5 and WO 3 suppress the increase in the refractive index nd and contribute to high dispersion of the glass. Moreover, it has the function which improves the thermal stability of glass by containing a suitable quantity. From the viewpoint of highly dispersing the glass and improving the thermal stability of the glass, the lower limit of the total content [TiO 2 + Nb 2 O 5 + WO 3 ] is within the above range. Further, from the viewpoint of suppressing the increase in refractive index and the increase in coloration of the glass, the upper limit of the total content [TiO 2 + Nb 2 O 5 + WO 3 ] is preferably in the above range.
  • the optical glass according to the first to second embodiments is a phosphate optical glass.
  • the phosphate optical glass refers to an optical glass mainly containing phosphate as a glass network forming component. Therefore, the optical glass according to the first to second embodiments includes a phosphate as a network forming component, and the content thereof is expressed as the content of P 2 O 5 .
  • As glass network forming components P 2 O 5 , Al 2 O 3 , B 2 O 3 , SiO 2 and the like are known.
  • the phrase “mainly including phosphate as a network-forming component of glass” means that the content of P 2 O 5 in terms of mass% is from any content of Al 2 O 3 , B 2 O 3 , and SiO 2. Means a lot of glass.
  • the lower limit of the content of P 2 O 5 is preferably 7.0%, and further 8.0%, 9.0%, 10.0%, It is more preferable in the order of 10.5% and 11.0%.
  • the upper limit of the content of P 2 O 5 is preferably 35.0%, and more preferably in the order of 34.5%, 34.0%, 33.5%, and 33.0%.
  • P 2 O 5 is a component necessary for the glass to contain many highly dispersed components. On the other hand, if P 2 O 5 is contained excessively, the meltability deteriorates. Therefore, in the glass according to the present embodiment, the content of P 2 O 5 is preferably in the above range.
  • the upper limit of the P 5+ content is preferably 45.00 cation%, and further 44. 50 cation%, 44.00 cation%, 43.50 cation%, 43.00 cation%, 42.50 cation%, 42.00 cation%, 41.50 cation%, 41.00 cation%, 40.50 cation %, 40.00 cation%, 39.50 cation%, 39.00 cation%, 38.50 cation%, in this order.
  • the lower limit of the content of P 5+ is preferably 20.00 cation%, and further 20.50 cation%, 21.00 cation%, 21.50 cation%, 22.00 cation%, 22.50 cation. %, 23.00 cation%, 23.50 cation%, 24.00 cation%, 24.50 cation%, 25.00 cation%, 25.50 cation%, in this order.
  • P 5+ is an essential component for suppressing an increase in the refractive index nd and containing many highly dispersed components in the glass. On the other hand, if P 5+ is contained excessively, the meltability deteriorates. Therefore, in the optical glass according to the present embodiment, the content of P 5+ is preferably in the above range.
  • the mass of the total content of TiO 2 , Nb 2 O 5 and WO 3 and the total content of TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 The lower limit of the ratio [(TiO 2 + Nb 2 O 5 + WO 3 ) / (TiO 2 + Nb 2 O 5 + WO 3 + Bi 2 O 3 )] is preferably 0.45, and further 0.50, 0.55 , 0.60, 0.65, 0.70, 0.75, 0.80, 0.85 in this order.
  • the upper limit of the mass ratio [(TiO 2 + Nb 2 O 5 + WO 3 ) / (TiO 2 + Nb 2 O 5 + WO 3 + Bi 2 O 3 )] is preferably 1.00.
  • the content of Bi 2 O 3 may be 0%.
  • the lower limit of the mass ratio [TiO 2 / Nb 2 O 5 ] between the content of TiO 2 and the content of Nb 2 O 5 is preferably 0.15, Furthermore, 0.16, 0.17, 0.18, 0.19, 0.20, and 0.23 are more preferable in this order.
  • the upper limit of the mass ratio [TiO 2 / Nb 2 O 5 ] is preferably 4.50, and further 4.40, 4.30, 4.20, 4.10, 4.00, 3.80. 3. The order of 3.60 is more preferable.
  • TiO 2 tends to lower the meltability of the glass and raise the liquidus temperature.
  • Nb 2 O 5 suppresses a decrease in liquidus temperature and an increase in refractive index and contributes to high dispersion. Therefore, by containing Nb 2 O 5 at a constant ratio with respect to TiO 2 , it is possible to suppress a decrease in glass meltability and an increase in liquidus temperature. Therefore, in the optical glass according to the present embodiment, the mass ratio [TiO 2 / Nb 2 O 5 ] is preferably in the above range.
  • the cation ratio [Ti 4+ / Nb 5 ] between the content of Ti 4+ and the content of Nb 5+. + ] Is preferably 6.00, and more preferably in the order of 5.90, 5.80, 5.70, 5.65, 5.60.
  • the lower limit of the cation ratio [Ti 4+ / Nb 5+ ] is preferably 0.40, and more preferably 0.41 and 0.42.
  • the cation ratio [Ti 4+ / Nb 5+ ] is preferably in the above range.
  • the lower limit of the mass ratio [(TiO 2 + WO 3 ) / Nb 2 O 5 ] between the total content of TiO 2 and WO 3 and the content of Nb 2 O 5 is: Preferably it is 0.15, Furthermore, 0.17, 0.19, 0.20, 0.21, 0.23, 0.25, 0.26, 0.28, 0.30, 0.35 0.40, 0.45, 0.50, 0.55, 0.56, 0.57, 0.58, 0.59, 0.60, 0.61, 0.62, 0.63, 0 .64, 0.65 in order.
  • the upper limit of the mass ratio [(TiO 2 + WO 3 ) / Nb 2 O 5 ] is preferably 8.00, and further 7.90, 7.80, 7.70, 7.60, 7. More preferable in the order of 40, 7.20, and 7.00.
  • the cation ratio of the total content of Ti 4+ and W 6+ to the content of Nb 5+ [( Ti 4+ + W 6+ ) / Nb 5+ ] is preferably 7.70, and further 7.60, 7.50, 7.40, 7.35, 7.30, 7.28, More preferred in the order of 7.26.
  • the lower limit of the cation ratio [(Ti 4+ + W 6+ ) / Nb 5+ ] is preferably 0.40, more preferably 0.41 and 0.42.
  • the content of the glass component when the content of the glass component is expressed in terms of cation% and the content of W 6+ exceeds 0 cation%, the content of Ba 2+ the upper limit of the cation ratio of [Ba 2+ / W 6+] between the content of 6+ is preferably 0.14, more in the order of 0.13,0.12,0.11,0.10 preferable.
  • Ba 2+ is a component that contributes to low dispersion. Therefore, in the optical glass according to the first to second embodiments, desired high dispersibility can be obtained by adding W 6+ that is a high dispersion component to the above cation ratio with respect to the content of Ba 2+ . Can be maintained.
  • the glass component content when the glass component content is expressed as cation%, the W 6+ content is 0 cation% and the Ba 2+ content is 0 cation%.
  • the upper limit of the total content of Ti 4+ and Bi 3+ [Ti 4+ + Bi 3+ ] is preferably 35.00 cation%, and further 34.00 cation%, 33.00.
  • the lower limit of the total content [Ti 4+ + Bi 3+ ] is preferably 21.00 cation%, and further 21.20 cation%, 21.40 cation%, 21.60 cation%, 21.80 cation%.
  • the upper limit of the refractive index nd is preferably 2.1500, and further, 2.1300, 2.1100, 2.1000, 2.0900, 2.0700, 2.0500, 2.0300, 2.0140, and 2.0000 are more preferable in this order. Further, the lower limit of the refractive index nd is preferably 1.8800, and more preferably smaller values in the order of 1.9000, 1.9200, 1.9400, 1.9600.
  • the glass component composition other than the above in the 1-2 embodiment can be the same as in the 1-1 embodiment. Further, the glass characteristics, the production of optical glass, and the production of optical elements and the like in the 1-2 embodiment can be the same as those in the 1-1 embodiment.
  • the 2-1 embodiment and the 2-2 embodiment (hereinafter may be collectively referred to as “second embodiment”) below the second embodiment are glass, optical glass,
  • the present invention relates to a glass material for polishing, a glass material for press molding, and an optical element.
  • the high-dispersion glass usually does not contain Li 2 O.
  • TiO 2 , Nb 2 O 5 , WO can be obtained by adding Li 2 O as a glass component while maintaining high dispersibility by reducing the Abbe number ⁇ d. It is possible to shorten the heat treatment time required to reduce the reduced color caused by highly dispersed components such as 3 and Bi 2 O 3 .
  • the melting temperature is lowered, and the glass transition temperature Tg is also lowered accordingly.
  • Some conventional precision press glasses contain Li 2 O in order to lower the glass transition temperature Tg to facilitate processing.
  • the glass containing Li 2 O in order to lower the glass transition temperature Tg since the melting temperature is low, the reduction reaction of the highly dispersed component does not proceed so much in the melting process, so the degree of coloring of the glass is light, Long heat treatment is not required. Therefore, as in the conventional glass, when Li 2 O is contained in order to lower the melting temperature, it does not require heat treatment for a long time so as to affect the production process, so it is necessary to reduce the reduction color. The problem of shortening the heat treatment time was not recognized.
  • the second embodiment of the present invention is a high dispersion glass in which reduced color caused by high dispersion components such as TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 is a problem. It is based on the finding that the heat treatment time required to reduce the reduction color can be shortened by containing Li 2 O that is not usually contained, and obtained by containing Li 2 O as a glass component. As an effect, a very novel effect is used.
  • the heat treatment time can be shortened.
  • the content of Li 2 O is quantified by ICP-MS (Inductively Coupled Plasma-Mass Spectrometry), and the content of glass components other than Li 2 O is ICP-AES. Quantify by (Inductively Coupled Plasma-Atomic Emission Spectrometry).
  • the analysis value obtained by ICP-AES may include a measurement error of about ⁇ 5% of the analysis value, for example.
  • the content of the glass component being 0% or not means that the glass does not substantially contain this component, and the content of this component is about the impurity level. Indicates the following.
  • the glass of the 2-1 embodiment of the present invention is Abbe number ⁇ d is 18.10 or less,
  • the total content [TiO 2 + Nb 2 O 5 + WO 3 + Bi 2 O 3 ] of TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 is 30% by mass or more, and the content of Bi 2 O 3 is 38% by mass.
  • the value obtained by multiplying 100 by 100 is 0.015 to 0.770.
  • the Abbe number ⁇ d is 18.10 or less.
  • the upper limit of the Abbe number ⁇ d is preferably 18.05, and further, 18.00, 17.90, 17.80, 17.70, 17.60, 17.50, 17.40, 17.30. , 17.20, 17.10, 17.00, 16.90, 16.80, 16.78, in this order.
  • the lower limit of the Abbe number is preferably 15.00, and further 15.10, 15.20, 15.25, 15.30, 15.35, 15.40, 15.45, 15.50. , 15.52, 15.54, 15.56, 15.58, 15.60 in this order.
  • the Abbe number ⁇ d By setting the Abbe number ⁇ d to 18.10 or less, when a pair lens is combined with a low dispersion glass lens, the difference in Abbe number becomes large, and a high effect is obtained in correcting chromatic aberration.
  • the total content [TiO 2 + Nb 2 O 5 + WO 3 + Bi 2 O 3 ] of TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 is 30% or more.
  • the lower limit of the total content [TiO 2 + Nb 2 O 5 + WO 3 + Bi 2 O 3 ] is preferably 35%, and 36%, 38%, 40%, 42%, 44%, 46%, 48 %, 50%, 52%, 54%, 56%, 58%, 60%, 62%, 64% in this order.
  • the upper limit of the total content [TiO 2 + Nb 2 O 5 + WO 3 + Bi 2 O 3 ] is preferably 90%, and further 88%, 86%, 85%, 84%, 83%, 82%. 81%, 80%, 79%, 78%, 77% in this order.
  • TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 contribute to high dispersion of the glass. Moreover, it has the function which improves the thermal stability of glass by containing a suitable quantity. Therefore, the lower limit of the total content [TiO 2 + Nb 2 O 5 + WO 3 + Bi 2 O 3 ] is preferably within the above range. On the other hand, TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 increase the coloration of the glass. Therefore, the upper limit of the total content [TiO 2 + Nb 2 O 5 + WO 3 + Bi 2 O 3 ] is preferably within the above range.
  • the total content of Ti 4+ , Nb 5+ , W 6+ and Bi 3+ [Ti 4+ + Nb 5 + + W 6+ + Bi 3+ ] is preferably 75.00 cation%, and 74.50 cation%, 74.00 cation%, 73.50 cation%, 73.00 cation%, 72. 50 cation%, 72.00 cation%, 71.50 cation%, 71.00 cation%, and 70.50 cation% are more preferable in this order.
  • the lower limit of the total content [Ti 4+ + Nb 5+ + W 6+ + Bi 3+ ] is preferably 52. 0 cation%, and further 52.10 cation%, 52.15 cation%, 52.20 cation%. 52.25 cation% and 52.30 cation% are more preferable in this order.
  • Ti 4+ , Nb 5+ , W 6+ and Bi 3+ contribute to high dispersion of the glass. Moreover, it has the function which improves the thermal stability of glass by containing a suitable quantity. Therefore, the lower limit of the total content [Ti 4+ + Nb 5+ + W 6+ + Bi 3+ ] is preferably within the above range. On the other hand, Ti 4+ , Nb 5+ , W 6+ and Bi 3+ increase the coloration of the glass. Therefore, the upper limit of the total content [Ti 4+ + Nb 5+ + W 6+ + Bi 3+ ] is preferably within the above range.
  • the content of Bi 2 O 3 is 38% or less.
  • the upper limit of the Bi 2 O 3 content is preferably 35%, and more preferably 33%, 30%, 28%, 25%, 23%, and 20%.
  • the lower limit of the Bi 2 O 3 content is preferably 0%.
  • the content of Bi 2 O 3 may be 0%.
  • Bi 2 O 3 is a component that contributes to high dispersion. Further, the content of Bi 2 O 3 within the above range, an increase and a decrease in the glass transition temperature Tg of the specific gravity can be suppressed. As the specific gravity of the glass increases, the mass of the optical element increases. For example, if a lens with a large mass is incorporated in an autofocus imaging lens, the power required to drive the lens during autofocus increases, and battery consumption becomes significant. Therefore, the content of Bi 2 O 3 is preferably within the above range.
  • Bi 2 O 3 has a function of significantly increasing the refractive index as compared with other highly dispersed components TiO 2 , Nb 2 O 5 , and WO 3 .
  • the refractive index increases significantly, when used in correction of chromatic aberration in combination with a low-dispersion glass lens with a low refractive index, the curvature of field tends to appear strongly because of the large difference in refractive index. Therefore, the content of Bi 2 O 3 is preferably within the above range.
  • the upper limit of the Bi 3+ content is preferably 10.00 cation%, and further 9.00.
  • the content of Bi 3+ may be 0 cation%.
  • Bi 3+ is a component that contributes to high dispersion. Moreover, the increase in specific gravity and the fall of glass transition temperature Tg can be suppressed by making content of Bi3 + into the said range. As the specific gravity of the glass increases, the mass of the optical element increases. For example, if a lens with a large mass is incorporated in an autofocus imaging lens, the power required to drive the lens during autofocus increases, and battery consumption becomes significant. Therefore, the Bi 3+ content is preferably within the above range.
  • Bi 3+ has a function of significantly increasing the refractive index as compared with other highly dispersed components Ti 4+ , Nb 5+ and W 6+ .
  • the Bi 3+ content is preferably within the above range.
  • the glass according to the 2-1 embodiment is phosphate glass.
  • the phosphate glass refers to a glass mainly containing phosphate as a glass network forming component. Therefore, the glass according to the 2-1 embodiment mainly contains a phosphate as a network forming component, and the content thereof is expressed as the content of P 2 O 5 .
  • As glass network forming components P 2 O 5 , Al 2 O 3 , B 2 O 3 , SiO 2 and the like are known.
  • the phrase “mainly including phosphate as a network-forming component of glass” means that the content of P 2 O 5 in terms of mass% is from any content of Al 2 O 3 , B 2 O 3 , and SiO 2. Means a lot of glass.
  • the lower limit of the content of P 2 O 5 is preferably 7.0%, and further, 8.0%, 9.0%, 10.0%, 11 0.0%, 12.0%, 13.0%, 14.0%, 15.0%, 16.0%, 17.0%, 18.0%, 19.0%, 20.0% Is more preferable.
  • the upper limit of the content of P 2 O 5 is preferably 37.0%, and further, 36.0%, 35.0%, 34.5%, 34.0%, 33.5%, 33.0%, 32.5%, 32.0%, 31.5%, 31.0%, 30.5%, and 30.0% are more preferable in this order.
  • P 2 O 5 is a component necessary for the glass to contain many highly dispersed components. On the other hand, if P 2 O 5 is contained excessively, the meltability deteriorates. Therefore, in the glass according to the present embodiment, the content of P 2 O 5 is preferably in the above range.
  • the upper limit of the content of P 5+ is preferably 42.00 cation%, and further 41.50. Cation%, 41.00 cation%, 40.50 cation%, 40.00 cation%, 39.50 cation%, 39.00 cation%, 38.50 cation%, 38.00 cation%, 37.50 cation% 37.00 cation%, 36.50 cation%, and 36.00 cation% in this order.
  • the lower limit of the content of P 5+ is preferably 25.00 cation%, and further 25.50 cation%, 26.00 cation%, 26.50 cation%, 27.00 cation%, 27.50 cation. %, 28.00 cation%, 28.50 cation%, 29.00 cation%, 29.30 cation%, in this order.
  • P 5+ is an essential component for suppressing an increase in the refractive index nd and containing many highly dispersed components in the glass. On the other hand, if P 5+ is contained excessively, the meltability deteriorates. Therefore, in the optical glass according to the present embodiment, the content of P 5+ is preferably in the above range.
  • the mass ratio of the content and the total content of TiO 2, Nb 2 O 5, WO 3 and Bi 2 O 3 of Li 2 O [Li 2 O / (TiO 2 + Nb 2 O 5 + WO 3 + Bi 2 O 3 )] multiplied by 100 is 0.015 to 0.770.
  • the lower limit of the value obtained by multiplying the mass ratio [Li 2 O / (TiO 2 + Nb 2 O 5 + WO 3 + Bi 2 O 3 )] by 100 is preferably 0.017, and further 0.019, 0.021 0.023, 0.025, 0.027, 0.030 in this order.
  • the upper limit of the value obtained by multiplying the mass ratio [Li 2 O / (TiO 2 + Nb 2 O 5 + WO 3 + Bi 2 O 3 )] by 100 is preferably 0.750, and further 0.730, 0 .710, 0.700, 0.680, 0.650, 0.600, 0.550 in this order.
  • the content of the glass component when the content of the glass component is expressed in terms of cation%, and the content of W 6+ exceeds 0 cation%, the content of Ba 2+ and W 6
  • the upper limit of the cation ratio [Ba 2+ / W 6+ ] to the + content is preferably 0.14, and more preferably in the order of 0.13, 0.12, 0.11, and 0.10. .
  • Ba 2+ is a component that contributes to low dispersion. Therefore, in the glass according to the embodiment 2-1, the desired high dispersibility can be obtained by adding W 6+ that is a highly dispersed component to the above cation ratio with respect to the content of Ba 2+. Can be maintained.
  • the content of the glass component when the content of the glass component is expressed in terms of cation%, the content of W 6+ is 0 cation% and the content of Ba 2+ is 0 cation. %,
  • the upper limit of the total content of Ti 4+ and Bi 3+ [Ti 4+ + Bi 3+ ] is preferably 35.00 cation%, and further 34.00 cation%, 33.
  • the lower limit of the total content [Ti 4+ + Bi 3+ ] is preferably 21.00 cation%, and further 21.20 cation%, 21.40 cation%, 21.60 cation%, 21.80 cation%.
  • Glass component A preferable aspect of the glass according to the above-mentioned 2-1 embodiment will be described in detail below.
  • the lower limit of the content of Li 2 O is preferably 0.010%, and 0.012%, 0.014%, 0.016%,. It is more preferable in order of 018% and 0.020%.
  • the upper limit of the content of Li 2 O is preferably 0.640%, and further, 0.630%, 0.620%, 0.610%, 0.600%, 0.580%, 0.560 %, 0.540%, 0.520%, 0.500%, 0.490%, 0.480%, 0.470%, 0.460%, 0.450%, 0.440%, 0.430 %, 0.420%, 0.410%, 0.400%, 0.390%, 0.380%, 0.370%, 0.360%, 0.350%, 0.340% in this order. .
  • the heat treatment time required to reduce the reduced color caused by highly dispersed components such as TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 can be shortened. . Moreover, the fall of glass transition temperature Tg can be suppressed. On the other hand, if the content of Li 2 O is too large, the Abbe number ⁇ d increases, and the thermal stability of the glass may decrease.
  • the lower limit of the value of ⁇ OH represented by the following formula (1) is preferably 0.05 mm ⁇ 1 , and further, 0.10 mm ⁇ 1 , 0.15 mm ⁇ . 1 , 0.20 mm ⁇ 1 , 0.25 mm ⁇ 1 , 0.30 mm ⁇ 1 , 0.35 mm ⁇ 1 are more preferable in this order.
  • the upper limit value of ⁇ OH is preferably 4.00 mm -1, further, 3.90mm -1, 3.80mm -1, 3.70mm -1, 3.60mm -1, 3.50mm - 1, 3.40mm -1, 3.30mm -1, 3.20mm -1, 3.10mm -1, 3.00mm -1, 2.90mm -1, 2.80mm -1, 2.70.mm - 1, 2.60mm -1, 2.50mm -1, 2.40mm -1, 2.30mm -1, 2.25mm -1, 2.20mm -1, 2.10mm -1, of 2.00 mm -1 More preferred in order.
  • ⁇ OH ⁇ [ln (D / C)] / t (1)
  • t represents the thickness (mm) of the glass used for measuring the external transmittance
  • C represents a wavelength of 2500 nm when light is incident on the glass in parallel with the thickness direction.
  • D represents the external transmittance (%) at a wavelength of 2900 nm when light is incident on the glass in parallel to the thickness direction.
  • the unit of ⁇ OH is mm ⁇ 1 .
  • the “external transmittance” is the ratio (Iout / Iin) of the intensity Iout of the transmitted light transmitted through the glass to the intensity Iin of the incident light incident on the glass, that is, the transmittance considering the surface reflection on the surface of the glass. It is.
  • the transmittance is obtained by measuring a transmission spectrum using a spectrophotometer. As a spectroscopic device, “UV-3100 (Shimadzu)” can be used.
  • ⁇ OH represented by the above formula (1) is defined on the basis that the transmittance changes due to the absorption of light caused by the hydroxyl group. Therefore, by evaluating ⁇ OH, the concentration of water (and / or hydroxide ions) contained in the glass can be evaluated. That is, a glass having a high ⁇ OH means that the concentration of water (and / or hydroxide ions) contained in the glass is high.
  • the value of ⁇ OH within the above range, the amount of precious metals such as platinum that are derived from glass melting containers etc. can be reduced, and the reduced color is reduced, that is, the transmittance after heat treatment is improved. it can. Furthermore, the heat treatment time required for reducing the reduced color can be further shortened. On the other hand, if the value of ⁇ OH is too large, the devitrification resistance of the glass may be lowered, and the amount of volatile matter from the molten glass may be increased.
  • the method for increasing the ⁇ OH value of the glass is not particularly limited, but a method for increasing the moisture content in the molten glass is preferable in the melting step.
  • a method for increasing the amount of moisture in the molten glass for example, a process of adding water vapor to the molten atmosphere or a process of bubbling a gas containing water vapor in the molten glass can be mentioned.
  • the glass according to the 2-1 embodiment preferably contains Nb 2 O 5 .
  • the lower limit of the content of Nb 2 O 5 is preferably 5.0%, and 5.5%, 6.0%, 6.5%, 7.0%. 7.5%, 8.0%, 8.5%, 9.0%, 9.5%, 10.0%, 10.5%, 11.0%, 11.5%, 12.0% 12.5%, 13.0%, 13.5%, 14.0%, 14.5%, 15.5%, 16.0%, 16.5%, 17.0%, 17.5% 18.0%, 18.5%, 19.0%, 19.5%, 20.0%, 20.5%, 21.0%, 21.5%, 22.0%, 22.5% 23.0% in order.
  • the upper limit of the content of Nb 2 O 5 is preferably 60.0%, and further, 59.0%, 58.0%, 57.0%, 56.0%, 55.0%, 54.0%, 53.0%, 52.0%, 51.0%, 50.0%, 49.0%, 48.0%, 47.0%, 46.0%, 45.0%, 44.0%, 43.0%, 42.0%, 41.0%, 40.0%, 39.0%, 38.0%, and 37.0% are more preferable in this order.
  • Nb 2 O 5 is a component that contributes to high dispersion. It is also a glass component that improves the thermal stability and chemical durability of the glass. On the other hand, when the content of Nb 2 O 5 is too large, it decreases the thermal stability of the glass, also tend to coloration of the glass is intensified. Therefore, in the glass according to the present embodiment, the content of Nb 2 O 5 is preferably in the above range.
  • the upper limit of the Nb 5+ content is preferably 30.00 cation%, and moreover 29.00.
  • the lower limit of the Nb 5+ content is preferably 10.00 cation%, and moreover 11.00 cation%, 12.00 cation%, 12.50 cation%, 13.00 cation%, 13.50 cation %, 14.00 cation%, 14.50 cation%, 15.00 cation%, 15.50 cation%, 16.00 cation%, 16.50 cation%, 17.00 cation%, 17.50 cation% More preferred in order.
  • Nb 5+ is a component that contributes to high dispersion. It is also a glass component that improves the thermal stability and chemical durability of the glass. On the other hand, if the content of Nb 5+ is too large, the thermal stability of the glass tends to decrease, and the color of the glass tends to increase. Therefore, in the glass according to the present embodiment, the Nb 5+ content is preferably within the above range.
  • the glass according to the 2-1 embodiment preferably contains TiO 2 .
  • the lower limit of the content of TiO 2 is preferably 5.0%, and further 6.0%, 7.0%, 8.0%, 9.0%, 10% 0.0%, 11.0%, 12.0%, 13.0%, 14.0%, 15.0%, 16.0%, 17.0%, 18.0%, 19.0% Is more preferable.
  • the upper limit of the content of TiO 2 is preferably 50.0%, and further 49.0%, 48.0%, 47.0%, 46.0%, 45.0%, 44.%. 0%, 43.0%, 42.0%, 41.0%, 40.0%, 39.0%, 38.0%, 37.0%, 36.0%, 35.0%, 34. It is more preferable in the order of 0%, 33.0%, 32.0%, 31.0%.
  • TiO 2 greatly contributes to high dispersion, like Nb 2 O 5 , WO 3 and Bi 2 O 3 .
  • TiO 2 tends to increase the coloring of the glass relatively. Therefore, in the glass according to the present embodiment, the content of TiO 2 is preferably in the above range.
  • the upper limit of the content of Ti 4+ is preferably 40.00 cation%, and further 39.00.
  • the lower limit of the Ti 4+ content is preferably 20.00 cation%, and further 21.00 cation%, 21.50 cation%, 22.00 cation%, 22.50 cation%, 23.00 cation. %, 23.50 cation%, 24.00 cation%, 24.50 cation%, 25.00 cation%, in this order.
  • Ti 4+ greatly contributes to high dispersion, like Nb 5+ , W 6+ and Bi 3+ .
  • TiO 2 tends to increase the coloring of the glass relatively. Therefore, in the glass according to the present embodiment, the content of Ti 4+ is preferably within the above range.
  • the lower limit of the mass ratio [TiO 2 / Nb 2 O 5 ] between the content of TiO 2 and the content of Nb 2 O 5 is preferably 0.16, Is more preferable in the order of 0.17, 0.18, 0.19, 0.20, 0.23.
  • the upper limit of the mass ratio [TiO 2 / Nb 2 O 5 ] is preferably 4.50, and further 4.40, 4.30, 4.20, 4.10, 4.00, 3.80. 3. The order of 3.60 is more preferable.
  • TiO 2 tends to lower the meltability of the glass and raise the liquidus temperature.
  • Nb 2 O 5 suppresses a decrease in liquidus temperature and an increase in refractive index and contributes to high dispersion. Therefore, by containing NNb 2 O 5 at a constant ratio with respect to TiO 2 , it is possible to suppress a decrease in glass meltability and an increase in liquidus temperature. Therefore, in the glass according to the present embodiment, the cation ratio [TiO 2 / Nb 2 O 5 ] is preferably in the above range.
  • the cation ratio of the content and Nb 5+ content of Ti 4+ [Ti 4+ / Nb 5+ ] Is preferably 6.00, and more preferably in the order of 5.90, 5.80, 5.70, 5.65, 5.60.
  • the lower limit of the cation ratio [Ti 4+ / Nb 5+ ] is preferably 0.40, and more preferably 0.41 and 0.42.
  • Ti 4+ tends to lower the meltability of the glass and raise the liquidus temperature.
  • Nb 5+ suppresses a decrease in liquidus temperature and an increase in refractive index, and contributes to high dispersion. Therefore, by containing Nb 5+ at a constant ratio with respect to Ti 4+ , it is possible to suppress a decrease in glass meltability and an increase in liquidus temperature. Therefore, in the glass according to this embodiment, the cation ratio [Ti 4+ / Nb 5+ ] is preferably in the above range.
  • the glass according to the 2-1 embodiment can contain B 2 O 3 , SiO 2 , and Al 2 O 3 as glass network forming components other than P 2 O 5 .
  • the upper limit of the content of B 2 O 3 is preferably 8.0%, and further 7.0%, 6.0%, 5.0%, 4% 0.0%, 3.0%, 2.0%, and 1.0% are more preferable in this order.
  • the content of B 2 O 3 may be 0%.
  • B 2 O 3 is a glass network-forming component and has a function of improving the meltability of glass.
  • the upper limit of the content of B 2 O 3 is preferably in the above range.
  • the upper limit of the content of SiO 2 is preferably 8.0%, and further 7.0%, 6.0%, 5.0%, 4.0 %, 3.5%, 3.0%, 2.5%, 2.0%, 1.5%, 1.0% in this order.
  • the content of SiO 2 may be 0%.
  • SiO 2 is a glass network-forming component, and has a function of improving the thermal stability, chemical durability, and weather resistance of the glass, increasing the viscosity of the molten glass, and facilitating molding of the molten glass.
  • the upper limit of the content of SiO 2 is preferably in the above range.
  • the upper limit of the content of Al 2 O 3 is preferably 5.0%, and further 4.0%, 3.5%, 3.0%, 2% .5%, 2.0%, 1.5%, 1.0% and 0.5% are more preferable in this order.
  • the content of Al 2 O 3 may be 0%.
  • Al 2 O 3 is a glass component having a function of improving the chemical durability and weather resistance of glass, and can be considered as a network forming component.
  • the upper limit of the content of Al 2 O 3 is preferably within the above range.
  • the total content of P 2 O 5 , B 2 O 3 , SiO 2 and Al 2 O 3 which are glass network forming components [P 2 O 5 + B 2 O 3 + SiO 2 + Al 2 O 3 ] is preferably 45.0%, and further 44.0%, 43.0%, 42.0%, 41.0%, 40.0%, 39.0%. 38.0%, 37.0%, 36.0%, 35.0%, 34.0%, 33.0%, 32.0%, 31.0%, 30.0%, in this order.
  • the lower limit of the total content [P 2 O 5 + B 2 O 3 + SiO 2 + Al 2 O 3 ] is preferably 10.0%, and further 11.0%, 12.0%, 13.0 %, 14.0%, 15.0%, 16.0%, 17.0%, 18.0%, 19.0%, 20.0% in this order.
  • the total content [P 2 O 5 + B 2 O 3 + SiO 2 + Al 2 O 3] in the above range, to improve the thermal stability of the glass can be suppressed devitrification of the glass.
  • the mass ratio of the content of P 2 O 5 to the total content of P 2 O 5 , B 2 O 3 , SiO 2 and Al 2 O 3 [P 2 O 5 / (P 2 O 5 + B 2 O 3 + SiO 2 + Al 2 O 3 )] is preferably 0.55, and further 0.60, 0.65, 0.70, 0.75, 0 .80, 0.85, 0.90, 0.95 in order.
  • the mass ratio [P 2 O 5 / (P 2 O 5 + B 2 O 3 + SiO 2 + Al 2 O 3 )] can also be set to 1.00.
  • the lower limit of the mass ratio [P 2 O 5 / (P 2 O 5 + B 2 O 3 + SiO 2 + Al 2 O 3 )] is within the above range from the viewpoint of maintaining high dispersion of the glass and good meltability. Preferably there is.
  • the upper limit of the mass ratio [TiO 2 / P 2 O 5 ] between the content of TiO 2 and the content of P 2 O 5 is preferably 4.50, Is more preferable in the order of 4.00, 3.50, 3.00, 2.50, 2.00, 1.50.
  • the lower limit of the mass ratio [TiO 2 / P 2 O 5 ] is preferably 0.04, and further 0.08, 0.12, 0.16, 0.20, 0.24,. 28, 0.32, 0.36, 0.40, 0.44, 0.48, and 0.52 are more preferable in this order.
  • the cation ratio of the content between P 5+ of Ti 4+ [Ti 4+ / P 5+ ] Is preferably 1.50, and further 1.40, 1.30, 1.29, 1.28, 1.27, 1.26, 1.25, 1.24, 1.23. 1.22 in order.
  • the lower limit of the cation ratio [Ti 4+ / P 5+ ] is preferably 0.50, and more preferably in the order of 0.51, 0.52, and 0.53.
  • the upper limit of the content of WO 3 is preferably 50.0%, and further 49.0%, 48.0%, 47.0%, 46.0 %, 45.0%, 44.0%, 43.0%, 42.0%, 41.0%, 40.0%, 39.0%, 38.0%, 37.0%, 36.0 %, 35.0%, 34.0%, 33.0%, 32.0%, 31.0%, 30.0% in this order.
  • the lower limit of the content of WO 3 is preferably 0.01%, and further in the order of 0.1%, 0.3%, 0.5%, 0.7%, 1.0%. preferable.
  • the content of WO 3 may be 0%.
  • WO 3 greatly contributes to high dispersion, but tends to cause the coloring of the glass as compared with TiO 2 , Nb 2 O 5 and Bi 2 O 3 and deteriorates the transmittance. Therefore, the content of WO 3 is preferably within the above range.
  • the upper limit of the content of W 6+ is preferably 20.00 cation%, and further 19.00.
  • the lower limit of the content of W 6+ is preferably 0.40 cation%, and more preferably in the order of 0.20 cation% and 0.10 cation%.
  • the content of W 6+ may be 0 cation%.
  • W 6+ greatly contributes to high dispersion, but tends to cause coloring of the glass as compared with Ti 4+ , Nb 5+ and Bi 3+ and deteriorates the transmittance. Therefore, the content of W 6+ is preferably within the above range.
  • the lower limit of the mass ratio [(TiO 2 + WO 3 ) / Nb 2 O 5 ] between the total content of TiO 2 and WO 3 and the content of Nb 2 O 5 is preferably Is 0.15, and further 0.17, 0.19, 0.20, 0.21, 0.23, 0.25, 0.26, 0.28, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.56, 0.57, 0.58, 0.59, 0.60, 0.61, 0.62, 0.63, 0. 64, 0.65 in order.
  • the upper limit of the mass ratio [(TiO 2 + WO 3 ) / Nb 2 O 5 ] is preferably 8.00, and further 7.90, 7.80, 7.70, 7.60, 7. More preferable in the order of 40, 7.20, and 7.00.
  • the cation ratio of the total content of Ti 4+ and W 6+ and the content of Nb 5+ [(Ti 4+ + W 6+ ) / Nb 5+ ] is preferably 7.70, and further 7.60, 7.50, 7.40, 7.35, 7.30, 7.28, 7 .26 order is more preferred.
  • the lower limit of the cation ratio [(Ti 4+ + W 6+ ) / Nb 5+ ] is preferably 0.40, more preferably 0.41 and 0.42.
  • the upper limit of the content of Na 2 O is preferably 10.0%, and further, 9.0%, 8.0%, 7.0%, 6. It is more preferable in the order of 0%, 5.0%, 4.0%, and 3.0%.
  • the content of Na 2 O may be 0%.
  • the upper limit of the Na + content is preferably 13.00 cation%, and more preferably 12.00.
  • Cation%, 11.50 cation%, 11.00 cation%, 10.50 cation%, 10.00 cation%, 9.50 cation%, 9.00 cation%, 8.50 cation%, 8.00 cation% Is more preferable.
  • the lower limit of the content of Na + is preferably 1.50 cation%, and further 1.30 cation%, 1.00 cation%, 0.70 cation%, 0.50 cation%, 0.30 cation%. Is more preferable.
  • the Na + content may be 0 cation%.
  • the upper limit of the content of K 2 O is preferably 15.0%, and further 14.0%, 13.0%, 12.0%, 11. It is more preferable in the order of 0%, 10.0%, 9.0%, 8.0%, 7.0%, 6.0%, 5.0%.
  • the lower limit of the content of K 2 O is preferably 0.01%, and more preferably in the order of 0.1%, 0.3%, and 0.4%.
  • the content of K 2 O may be 0%.
  • the upper limit of the K + content is preferably 15.00 cation%, and further 14.50. More preferred in the order of cation%, 14.00 cation%, 13.50 cation%, 13.00 cation%, 12.50 cation%, 12.00 cation%, 11.50 cation%, 11.00 cation%.
  • the lower limit of the content of K + is preferably 1.00 cation%, and more preferably 0.70 cation%, 0.50 cation%, and 0.30 cation%.
  • the K + content may be 0 cation%.
  • Na 2 O and K 2 O, or Na + and K + have the effect of helping to shorten the heat treatment time required to reduce the reduced color due to the highly dispersed components.
  • Na 2 O and K 2 O towards Na 2 O is high, the effect, in the Na + and K + city, its high effect towards Na +. Moreover, the effect becomes large, so that there is much these content, However, When there is too much content, the thermal stability, chemical durability, and weather resistance of glass will fall. Therefore, each content of Na 2 O and K 2 O, Na + and K + is preferably within the above range.
  • the upper limit of the total content [Li 2 O + Na 2 O + K 2 O] of Li 2 O, Na 2 O and K 2 O is preferably 20.0%, 19.0%, 18.0%, 17.0%, 16.0%, 15.0%, 14.0%, 13.0%, 12.0%, 11.0%, 10.0% 9.0%, 8.0%, 7.0%, 6.0% in this order.
  • the lower limit of the total content [Li 2 O + Na 2 O + K 2 O] is preferably 0.01%, and further, 0.02%, 0.03%, 0.04%, 0.05%, It is more preferable in the order of 0.06%, 0.07%, 0.08%, 0.09%, 0.10%, 0.20%, 0.30%, 0.40%, 0.50%.
  • Li 2 O, Na 2 O and K 2 O have functions of shortening the heat treatment time required for reducing the reduced color due to the highly dispersed component and improving the meltability of the glass.
  • the total content [Li 2 O + Na 2 O + K 2 O] of Li 2 O, Na 2 O and K 2 O is preferably in the above range.
  • the upper limit of the total content [Li + + Na + + K + ] of Li + , Na + and K + is Preferably it is 22.00 cation%, Furthermore, 21.00 cation%, 20.00 cation%, 19.00 cation%, 18.00 cation%, 17.00 cation%, 16.50 cation%, 16. 00 cation%, 15.50 cation%, 15.00 cation%, 14.50 cation%, 14.00 cation%, 13.50 cation%, 13.00 cation%, 12.50 cation% 12.00 cation% , 11.50 cation% in order.
  • the lower limit of the total content [Li + + Na + + K + ] is preferably 1.00 cation%, and more preferably 0.70 cation%, 0.50 cation%, and 0.30 cation% in this order.
  • the total content [Li + + Na + + K + ] may be 0 cation%.
  • Li + , Na + and K + have a function of shortening the heat treatment time required for reducing the reduced color caused by the highly dispersed component and improving the meltability of the glass.
  • the total content [Li + + Na + + K + ] of Li + , Na + and K + is preferably in the above range.
  • the content of Li 2 O and Li 2 O, the mass ratio of the total content of Na 2 O and K 2 O [Li 2 O / (Li 2 O + Na 2 O + K 2 O )] Is preferably 0.0012, and further 0.0013, 0.0014, 0.0015, 0.0016, 0.0017, 0.0018, 0.0019, 0.0020, 0. .0021, 0.0022, 0.0023, 0.0024, 0.0025, 0.0026, 0.0027, 0.0028, 0.0029, 0.0030, 0.0032, 0.0035, 0.0037 , 0.0040 in order.
  • the upper limit of the mass ratio [Li 2 O / (Li 2 O + Na 2 O + K 2 O)] is preferably 1.00, and further 0.80, 0.60, 0.50, 0.40, 0. More preferable in the order of 30, 0.20, 0.18, and 0.16.
  • the upper limit of the content of Rb 2 O is preferably 5.0%, and 4.0%, 3.0%, 2.0%, and 1.%. It is more preferable in the order of 0%, 0.7%, 0.5%, 0.3%, and 0.1%. Further, the lower limit of the content of Rb 2 O is preferably 0%. The content of Rb 2 O may be 0%.
  • the upper limit of the Cs 2 O content is preferably 10.0%, and 9.0%, 8.0%, 7.0%, 6. It is more preferable in the order of 0%, 5.0%, 4.5%, 4.0%, 3.5%, 3.0%.
  • the lower limit of the content of Cs 2 O is preferably 0%.
  • the content of Cs 2 O may be 0%.
  • Rb 2 O and Cs 2 O like Na 2 O and K 2 O, have the effect of helping to shorten the heat treatment time required to reduce the reduced color due to the highly dispersed component, but the effect is Less than Na 2 O and K 2 O. Moreover, when these content increases, the thermal stability, chemical durability, and weather resistance of glass will fall. Therefore, each content of Rb 2 O and Cs 2 O is preferably in the above range.
  • the upper limit of the content of MgO is preferably 5.0%, and further 4.0%, 3.0%, 2.0%, 1.0% Is more preferable. Further, the lower limit of the content of MgO is preferably 0%. The content of MgO may be 0%.
  • the upper limit of the content of CaO is preferably 6.0%, and further 5.0%, 4.0%, 3.0%, 2.0% , 1.0% in order.
  • the lower limit of the CaO content is preferably 0%.
  • the content of CaO may be 0%.
  • the upper limit of the content of SrO is preferably 7.0%, and further 6.0%, 5.0%, 4.0%, 3.0% 2.0% and 1.0% in this order.
  • the lower limit of the SrO content is preferably 0%.
  • the SrO content may be 0%.
  • the upper limit of the content of BaO is preferably 10.0%, and further, 9.0%, 8.0%, 7.0%, 6.0% , 5.0%, 4.0%, 3.0%, 2.0%, 1.0% in this order.
  • the lower limit of the BaO content is preferably 0%.
  • the content of BaO may be 0%.
  • MgO, CaO, SrO, and BaO are all glass components that have a function of improving the thermal stability and meltability of the glass.
  • each content of these glass components is the said range, respectively.
  • the upper limit of the Ba 2+ content is preferably 10.00 cation%, and further 9.00.
  • the lower limit of the Ba 2+ content is preferably 0 cation%.
  • the Ba 2+ content may be 0 cation%.
  • Ba 2+ is a glass component having a function of improving the thermal stability and meltability of the glass.
  • the content of these glass components is increased, the high dispersibility is impaired, the thermal stability of the glass is lowered, and the glass is easily devitrified. Therefore, it is preferable that each content of these glass components is the said range, respectively.
  • the upper limit of the total content [MgO + CaO + SrO + BaO] of MgO, CaO, SrO and BaO is preferably 17. from the viewpoint of maintaining thermal stability without preventing high dispersion. 0%, and further 16.0%, 15.0%, 14.0%, 13.0%, 12.0%, 11.0%, 10.0%, 9.0%, 8. It is more preferable in the order of 0%, 7.0%, 6.0%, 5.0%, 4.0%, 3.0%, 2.0%, 1.0%. Moreover, the lower limit of the total content [MgO + CaO + SrO + BaO] is preferably 0%.
  • the total content [MgO + CaO + SrO + BaO] may be 0%.
  • the glass according to the 2-1 embodiment is mainly composed of the above-described glass components, that is, P 2 O 5 , B 2 O 3 , SiO 2 , Al 2 O 3 , TiO 2 , Nb 2 O 5 , WO 3 , Bi 2 O.
  • the total content of the glass components is preferably more than 95%, more preferably more than 98%, still more preferably more than 99%, and still more preferably more than 99.5%.
  • glass component compositions in the 2-1 embodiment can be the same as those in the 1-1 embodiment.
  • the upper limit of the glass transition temperature Tg of the glass according to Embodiment 2-1 is preferably 750 ° C., and more preferably in the order of 740 ° C., 730 ° C., 720 ° C., 710 ° C., and 700 ° C.
  • the lower limit of the glass transition temperature Tg is preferably 500 ° C, and further 510 ° C, 520 ° C, 530 ° C, 540 ° C, 550 ° C, 560 ° C, 570 ° C, 580 ° C, 590 ° C, 600 ° C, It is more preferable in the order of 610 ° C., 620 ° C., and 630 ° C.
  • the upper limit of the glass transition temperature Tg satisfies the above range, an increase in the heat treatment temperature of the glass can be suppressed, and thermal damage in annealing equipment such as a continuous annealing furnace called a rare or a batch annealing furnace can be reduced. In addition, the power consumption of the furnace can be reduced.
  • the upper limit of the refractive index n d at the wavelength 587.56nm is preferably 2.1500, more, 2.1400,2.1300,2.1200,2.1100 2.1000, 2.0900, 2.0800, 2.0700, 2.0600, 2.0500, 2.0400 in this order.
  • the lower limit of n d is preferably 1.8800, and further 1.8900, 1.9000, 1.9100, 1.9200, 1.9300, 1.9350, 1.9400, 1.9450, 1 Larger values in the order of .9500, 1.9600, and 1.9700 are more preferable.
  • the upper limit of the refractive index n C at a wavelength of 656.27 nm is preferably 2.1350, and further, 2.1250, 2.1150, 2.1050, 2.0950 2.0850, 2.0750, 2.0650, 2.0550, 2.0450, 2.0350, 2.0250, 2.0150, in this order.
  • the lower limit of the refractive index is preferably 1.8650, and further, 1.8750, 1.8850, 1.8950, 1.9050, 1.9150, 1.9200, 1.9250, 1.9350. Larger values in the order of 1.9400, 1.9450, and 1.9550 are more preferable.
  • the light transmittance can be evaluated by the coloring degree ⁇ 5 as in the 1-1 embodiment.
  • the upper limit of ⁇ 5 is preferably 460 nm, and more preferably in the order of 455 nm, 450 nm, 445 nm, 440 nm, 435 nm, 430 nm, 425 nm, and 420 nm.
  • a guideline for the lower limit of ⁇ 5 is 360 nm.
  • the glass according to the 2-1 embodiment is a highly dispersed glass, the specific gravity is not large. Usually, if the specific gravity of glass can be reduced, the weight of the lens can be reduced. As a result, it is possible to reduce the power consumption of the autofocus drive of the camera lens equipped with the lens. On the other hand, if the specific gravity is reduced too much, the thermal stability is lowered. Therefore, the upper limit of the specific gravity d is preferably 5.60, and 5.50, 5.40, 5.30, 5.20, 5.10, 5.00, 4.90, 4.80. 4.70, 4.60, 4.50, 4.40, 4.30, 4.20, 4.10, 4.00, 3.90, 3.80, 3.70 in order. From the viewpoint of improving thermal stability, the lower limit of the specific gravity d is preferably 2.80, and more preferably in the order of 2.90, 3.00, 3.10, and 3.20.
  • the upper limit of the liquidus temperature of the glass according to the 2-1 embodiment is preferably 1400 ° C, and further, 1390 ° C, 1380 ° C, 1370 ° C, 1360 ° C, 1350 ° C, 1340 ° C, 1330 ° C, 1320 ° C. , 1310 ° C. and 1300 ° C. in this order.
  • the lower limit of the liquidus temperature is preferably 1000 ° C., and further 1010 ° C., 1020 ° C., 1030 ° C., 1040 ° C., 1050 ° C., 1060 ° C., 1070 ° C., 1080 ° C., 1090 ° C., 1100 ° C., 1110 ° C. , 1120, 1130, 1140, 1150, 1160, 1170, and 1180 ° C in this order.
  • a highly dispersed glass in which the thermal stability of the glass is improved can be obtained.
  • the liquidus temperature is determined as follows. 10 cc (10 ml) of glass is put into a platinum crucible, melted at 1250 ° C. to 1350 ° C. for 20 to 30 minutes, cooled to a glass transition temperature Tg or lower, and the glass is put together with the platinum crucible in a melting furnace at a predetermined temperature and held for 2 hours. To do.
  • the holding temperature is 1000 ° C. or higher, in increments of 5 ° C. or 10 ° C., held for 2 hours, cooled, and the presence or absence of crystals inside the glass is observed with a 100 ⁇ optical microscope.
  • the lowest temperature at which no crystals are deposited is defined as the liquidus temperature.
  • the glass according to the 2-1 embodiment of the present invention may be prepared according to a known glass manufacturing method by preparing glass raw materials so as to have the above-mentioned predetermined composition and using the prepared glass raw materials. For example, a plurality of kinds of compounds are prepared and mixed sufficiently to obtain a batch raw material. After the batch raw material is put into a melting vessel and melted, clarified and homogenized, a molten glass is formed and slowly cooled to obtain a glass. Alternatively, the batch raw material is put into a melting vessel and roughly melted (rough melt). The melt obtained by rough melting is rapidly cooled and pulverized to produce cullet.
  • the cullet is put in a melting vessel and heated and re-melted (remelted) to form a molten glass. Further, after clarification and homogenization, the molten glass is formed and slowly cooled to obtain glass.
  • a publicly known method may be applied to forming molten glass and slow cooling.
  • the lower limit of the melting temperature at the time of rough melting is preferably 1000 ° C., 1050 ° C., 1100 ° C., 1150 ° C., 1200 ° C., 1250 ° C. and 1300 ° C. are more preferable in this order.
  • the upper limit of the melting temperature is preferably 1500 ° C., and more preferably in the order of 1450 ° C., 1400 ° C., and 1350 ° C.
  • the lower limit of the melting temperature of the cullet when the cullet is melted, clarified and molded to produce the glass according to the 2-1 embodiment is preferably 1000 ° C., and further 1050 ° C., 1100 ° C., 1150 It is more preferable in the order of ° C, 1200 ° C, 1250, and 1300 ° C.
  • the upper limit of the melting temperature is preferably 1500 ° C., and more preferably in the order of 1450 ° C., 1400 ° C., and 1350 ° C.
  • the lower limit of the melting temperature of the batch raw material in the case of producing the glass according to the embodiment 2-1 by melting, clarifying, and forming the batch raw material without cullet is preferably 1000 ° C., 1050 ° C., 1100 ° C., 1150 ° C., 1200 ° C., 1250 ° C. and 1300 ° C. are more preferable in this order.
  • the upper limit of the melting temperature is preferably 1500 ° C., and more preferably in the order of 1450 ° C., 1400 ° C., and 1350 ° C.
  • the lower limit of the refining temperature when refining the molten glass is preferably 1000 ° C., and further 1050 ° C., 1100 ° C., 1150 ° C., 1200 ° C., 1250 ° C. It is preferable in order of 1300 degreeC.
  • the upper limit of the refining temperature is preferably 1500 ° C, and more preferably in the order of 1450 ° C, 1400 ° C, and 1350 ° C.
  • the lower limit of the outflow temperature when the molten glass is poured out into the mold is preferably 1000 ° C, and further 1050 ° C, 1100 ° C, 1150 ° C, 1200 ° C. It is preferable in the order of 1250 ° C. and 1300 ° C.
  • the upper limit of the outflow temperature is preferably 1500 ° C., and more preferably in the order of 1450 ° C., 1400 ° C., and 1350 ° C.
  • the compound used when preparing the batch raw material is not particularly limited as long as a desired glass component can be introduced into the glass so as to have a desired content.
  • a desired glass component examples include oxide, orthophosphoric acid, metaphosphate, diphosphorus pentoxide, carbonate, nitrate, hydroxide, fluoride, and the like.
  • the glass according to the 2-1 embodiment of the present invention can be used as it is.
  • the glass according to the present embodiment can be heat-treated to reduce the reduced color to obtain an optical glass.
  • a heat treatment method a known method can be used. For example, there is a method in which the glass is heated to a temperature 5 to 20 ° C. lower than the glass transition temperature Tg and held until the coloring is sufficiently reduced.
  • distortion of glass can be removed by performing a slow cooling process.
  • a known method can be used. For example, a method of gradually lowering the temperature to 100 to 150 ° C. lower than the heating temperature in the heat treatment can be mentioned.
  • polishing glass material and the press-molding glass material according to the 2-1 embodiment of the present invention can be manufactured from either the glass or the optical glass according to the 2-1 embodiment.
  • the glass material for polishing is made by dividing glass or optical glass into cut pieces. If necessary, each cut piece is roughly polished (barrel polishing) to equalize the weight and attach a release agent to the surface.
  • the glass that has been made easy, reheated, and softened can be manufactured by press molding into a desired shape. Alternatively, in a glass or optical glass manufacturing process, a predetermined weight of molten glass may be separated on a mold and directly press molded.
  • the glass material for press molding can be manufactured by subdividing glass or optical glass into a predetermined volume, and grinding and polishing the surface. Or in the manufacturing process of glass or optical glass, a molten glass may be dripped and the molten glass drop may be shape
  • heat treatment for reducing the reduction color may be performed.
  • the heat treatment method is the same as the heat treatment method in the production of the optical glass.
  • the heat treatment can be performed either after molding or before and after grinding and polishing.
  • optical element according to the 2-1 embodiment of the present invention can be manufactured from any of the glass, optical glass, polishing glass material and press-molding glass material according to the 2-1 embodiment of the present invention.
  • the optical element according to Embodiment 2-1 of the present invention can be manufactured by subdividing glass or optical glass into a predetermined volume, and grinding and polishing the surface. Moreover, glass or optical glass is subdivided to produce cut pieces, and each cut piece is roughly polished (barrel polishing) as necessary to equalize the weight and make it easy to attach a release agent to the surface. It can also be manufactured by press-molding reheated and softened glass into a shape approximating the shape of the desired optical element, and finally grinding and polishing. Alternatively, in the glass or optical glass manufacturing process, a predetermined weight of molten glass may be separated on a mold, directly press-molded, and finally ground and polished.
  • the optical element according to Embodiment 2-1 of the present invention can be manufactured by grinding and polishing the polishing glass material. Further, the optical element according to Embodiment 2-1 of the present invention can be manufactured by precision pressing the above glass material for press molding. The press-molding glass material may be manufactured by precision pressing after heating.
  • a heat treatment for reducing the reduction color may be performed.
  • the heat treatment method is the same as the heat treatment method in the production of the optical glass.
  • the heat treatment can be performed after press molding or after precision pressing, and can be performed either before or after grinding and polishing.
  • centering may be performed as necessary.
  • the optical function surface of the manufactured optical element can be coated with an antireflection film, a total reflection film, or the like according to the purpose of use.
  • optical elements include various lenses such as aspherical lenses, microlenses, and lens arrays, and diffraction gratings.
  • the glass of the 2-2 embodiment of the present invention is Abbe number ⁇ d is 18.10 or less, A phosphate glass comprising at least one oxide selected from TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 , Remelt for 90 minutes at a temperature 110 to 120 ° C higher than the liquidus temperature LT in an air atmosphere, In an air atmosphere, a glass obtained by maintaining for 15 minutes at a holding temperature 0 to 20 ° C. lower than the glass transition temperature Tg and gradually cooling to a temperature 120 ° C.
  • a glass edge is a portion that is a distance of 0 to 5 mm from the longitudinal end and a distance of 0 to 5 mm from the lateral end.
  • the glass center portion is a portion that is a distance of 6 to 11 mm from the longitudinal end and 4 to 9 mm from the lateral end in top view.
  • T 1 0.83 ⁇ ⁇ 1-[(n C ⁇ 1) / (n C +1)] 2 ] 2 ⁇ 98 (2)
  • n C is the heat treatment until the difference (T A ⁇ T B ) between the external transmittance T A at the glass edge and the external transmittance T B at the glass center is 5% or less.
  • the Abbe number ⁇ d is 18.10 or less.
  • the upper limit of the Abbe number ⁇ d is preferably 18.05, and further, 18.00, 17.90, 17.80, 17.70, 17.60, 17.50, 17.40, 17.30. 17.20, 17.10, 17.00, 16.90, 16.80, 16.78, 16.76, 16.74, 16.72, 16.70, 16.68, 16.66, 16 .64, 16.62, 16.60, 16.58, 16.56, 16.54, 16.52, 16.50, in this order.
  • the lower limit of the Abbe number is preferably 15.00, and further 15.10, 15.20, 15.25, 15.30, 15.35, 15.40, 15.45, 15.50. , 15.52, 15.54, 15.56, 15.58, 15.60 in this order.
  • the glass according to the 2-2 embodiment includes at least one oxide selected from TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 .
  • the glass according to the 2-2 embodiment is phosphate glass. Therefore, the glass according to the 2-2 embodiment mainly includes phosphate as a network forming component, and the content thereof is expressed as the content of P 2 O 5 .
  • the lower limit of the content of P 2 O 5 is preferably 7.0%, and further, 8.0%, 9.0%, 10.0%, 11 0.0%, 12.0%, 13.0%, 14.0%, 15.0%, 16.0%, 17.0%, 18.0%, 19.0%, 20.0% Is more preferable.
  • the upper limit of the content of P 2 O 5 is preferably 37.0%, and further, 36.0%, 35.0%, 34.5%, 34.0%, 33.5%, 33.0%, 32.5%, 32.0%, 31.5%, 31.0%, 30.5%, and 30.0% are more preferable in this order.
  • P 2 O 5 is a component necessary for the glass to contain many highly dispersed components. On the other hand, if P 2 O 5 is contained excessively, the meltability deteriorates. Therefore, in the glass according to the present embodiment, the content of P 2 O 5 is preferably in the above range.
  • the upper limit of the content of P 5+ is preferably 42.00 cation%, and further 41.50. Cation%, 41.00 cation%, 40.50 cation%, 40.00 cation%, 39.50 cation%, 39.00 cation%, 38.50 cation%, 38.00 cation%, 37.50 cation% 37.00 cation%, 36.50 cation%, and 36.00 cation% in this order.
  • the lower limit of the content of P 5+ is preferably 25.00 cation%, and further 25.50 cation%, 26.00 cation%, 26.50 cation%, 27.00 cation%, 27.50 cation. %, 28.00 cation%, 28.50 cation%, 29.00 cation%, 29.30 cation%, in this order.
  • P 5+ is an essential component for suppressing an increase in the refractive index nd and containing many highly dispersed components in the glass. On the other hand, if P 5+ is contained excessively, the meltability deteriorates. Therefore, in the optical glass according to the present embodiment, the content of P 5+ is preferably in the above range.
  • the glass according to the 2-2 embodiment can reduce the reduced color caused by highly dispersed components such as TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 relatively uniformly, and also reduces the reduced color. It is a glass that can shorten the heat treatment time required for the heat treatment. Specifically, when the glass is heat-treated by a predetermined operation, the reduction color is reduced to a level at which there is no problem within 48 hours of holding time at the heat-treatment temperature (hereinafter sometimes referred to as “fading time”). It is a glass that can be reduced. This will be described in detail below.
  • the fading time until the transmittance of the glass falls within a predetermined range varies depending on the coloring state of the glass and the size of the glass.
  • the fading time is evaluated using a reduced glass sample obtained by reducing and coloring the glass according to this embodiment under a certain condition and processing it into a predetermined size.
  • the reduced glass sample used for the measurement was formed by remelting the glass according to the present embodiment for 90 minutes at a temperature 110 to 120 ° C. higher than the liquidus temperature LT in the air atmosphere, and the glass transition temperature in the same air atmosphere.
  • a glass obtained by holding at a holding temperature 0 to 20 ° C. lower than Tg for 15 minutes and gradually cooling to a temperature lower by 120 ° C. than the holding temperature at a cooling rate of 30 ° C./h is processed into a length of 17 mm, a width of 13 mm, and a thickness of 10 mm. Get.
  • the glass In order to remelt the glass at a temperature 110 to 120 ° C. higher than the liquidus temperature LT in an air atmosphere, the glass is put in a platinum crucible and heated and remelted (remelted) to obtain a molten glass. At this time, coloring due to the highly dispersed component occurs.
  • the molten glass is poured into a mold and formed into a plate shape. This is kept for 15 minutes at a holding temperature lower by 0 to 20 ° C. than the glass transition temperature Tg in the air atmosphere, and gradually cooled to a temperature lower by 120 ° C. than the holding temperature at a temperature lowering rate of 30 ° C./h to reduce the glass distortion. remove.
  • the glass from which distortion has been removed is subdivided, polished, and processed into a size of 17 mm in length, 13 mm in width, and 10 mm in thickness. At this time, a reduced glass sample is obtained by optically polishing the upper and lower surfaces (surfaces of 17 mm length and 13 mm width).
  • the reduced glass sample thus obtained is subjected to heat treatment and slow cooling treatment under the following conditions to evaluate the fading time. That is, heat treatment in an air atmosphere at a heating rate of 100 ° C./h and maintained at a heat treatment temperature 5 to 15 ° C. lower than the glass transition temperature Tg, and 120 ° C. lower than the heat treatment temperature at a cooling rate of 30 ° C./h Slow cooling treatment is performed to gradually cool to temperature. By the heat treatment, coloring caused by a highly dispersed component is reduced.
  • the heat treatment and the slow cooling treatment are performed until the reduced glass sample is discolored to a level where there is no practical problem. That is, when the incident light parallel to the thickness direction of the sample after processing, the external transmittance T B of the external transmittance T A and glass center portion of the glass edge in the wavelength 656nm is calculated by the following formula (2) that value above T 1, and performed until the difference between the external transmittance T B of the external transmittance T a and glass center of the glass end (T a -T B) is 5% or less.
  • T 1 0.83 ⁇ ⁇ 1- ⁇ (n C ⁇ 1) / (n C +1) ⁇ 2 ⁇ 2 ⁇ 98 (2)
  • n C in the above formula (2) is heat treated to the difference between the external transmittance T B of the external transmittance T A and glass center of the glass end (T A -T B) is less than 5% And the refractive index at a wavelength of 656.27 nm when annealing is performed.
  • the refractive index n C is measured based on the Japan Optical Glass Industry Association standard (JOGIS 01-2003).
  • the above heat treatment and slow cooling treatment may be performed once or a plurality of times.
  • the color fading time when the heat treatment and the slow cooling treatment are performed a plurality of times may be different each time.
  • the total color fading time in the heat treatment is within 48 hours, preferably within 46 hours, more preferably within 44 hours, within 42 hours, within 40 hours, within 38 hours, Within 36 hours, within 34 hours, within 32 hours, within 30 hours, within 29 hours, within 28 hours, within 27 hours, within 26 hours, within 25 hours, and within 24 hours are preferred.
  • the total fading time is the fading time at one time when the heat treatment and the slow cooling treatment are performed once, and the fading time at each time when the heat treatment and the slow cooling treatment are performed a plurality of times. Is the sum of For example, when the first fading time is 12 hours and the second fading time is 6 hours, the total fading time is 18 hours.
  • the heat treatment temperature is 5 to 15 ° C. lower than the glass transition temperature Tg in consideration of heat treatment of a plurality of glasses having different glass transition temperatures Tg at a time. Therefore, in the glass according to the present embodiment, if the reduced glass sample obtained as described above is heat-treated at a heat treatment temperature lower by 5 to 15 ° C. than the glass transition temperature Tg, the fading time can be sufficiently reduced within 48 hours.
  • the color can be reduced, that is, if the heat treatment is performed at a heat treatment temperature at least 15 ° C. lower than the glass transition temperature Tg, the reduction color can be sufficiently reduced within 48 hours.
  • the glass edge portion is a portion having a distance of 0 to 5 mm from the vertical end and a distance of 0 to 5 mm from the horizontal end in a top view.
  • the distance is 6 to 11 mm from the vertical end, and the distance is 4 to 9 mm from the horizontal end.
  • External transmittance T B of the external transmittance T A and glass center portion of the glass edge at a wavelength of 656 nm is preferably the following formula (3) the value T 2 or more calculated by, more preferably the following formula (4) in the calculated value T 3 or more, still more preferably the following equation (5) the value T 4 or more order calculated by.
  • T 2 0.84 ⁇ ⁇ 1-[(n C ⁇ 1) / (n C +1)] 2 ] 2 ⁇ 98 (3)
  • T 3 0.85 ⁇ ⁇ 1-[(n C ⁇ 1) / (n C +1)] 2 ] 2 ⁇ 98 (4)
  • T 4 0.86 ⁇ ⁇ 1-[(n C ⁇ 1) / (n C +1)] 2 ] 2 ⁇ 98 (5)
  • the reduction of the reduced color of the glass proceeds from the surface of the glass to the center. Therefore, during the heat treatment, the glass center is darker than the glass edge. Reducing color of the glass center portion, while reducing to the same extent as the glass edge, i.e., when the reduced color was uniformly reduced, the external transmittance of the external transmittance T A and glass center portion of the glass edge T The difference from B (T A ⁇ T B ) is 5% or less.
  • heat treatment and slow cooling process calculates the external transmittance T B of the external transmittance T A and glass center portion of the glass edge at a wavelength of 656nm is in the above formula (2) is the is the value above T 1, performed until the difference (T a -T B) is 5% or less.
  • the external transmittance T A and the external transmittance T B are not less than the value T 1 calculated by the above formula (2), and the difference (T A ⁇ T B ) is not more than 4%. Until it becomes 3% or less, 2% or less, 1% or less, or 0.5% or less. The smaller the difference (T A ⁇ T B ), the more preferable.
  • the external transmittance T B is the formula of the external transmittance T A and glass center portion of the glass edge at a wavelength of 656 nm (3 ) when the value T 2 or more calculated by, performed until the difference (T a -T B) is 5% or less. More preferably, in the heat treatment and the slow cooling treatment, the external transmittance T A and the external transmittance T B are not less than the value T 2 calculated by the above formula (3), and the difference (T A ⁇ T B ) is 4%. Until it becomes below, it is further carried out until it becomes 3% or less, 2% or less, 1% or less, 0.5% or less. The smaller the difference (T A ⁇ T B ), the more preferable.
  • the external transmittance T B is the formula of the external transmittance T A and glass center portion of the glass edge at a wavelength of 656 nm (4)
  • the calculation is repeated until the calculated value is T 3 or more and the difference (T A ⁇ T B ) is 5% or less.
  • the external transmittance T A and the external transmittance T B are not less than the value T 3 calculated by the above formula (4), and the difference (T A ⁇ T B ) is 4%. Until it becomes below, it is further carried out until it becomes 3% or less, 2% or less, 1% or less, 0.5% or less. The smaller the difference (T A ⁇ T B ), the more preferable.
  • the external transmittance T B is the formula of the external transmittance T A and glass center portion of the glass edge at a wavelength of 656nm (5)
  • the calculation is repeated until the calculated value is T 4 or more and the difference (T A ⁇ T B ) is 5% or less.
  • the external transmittance T A and the external transmittance T B are not less than the value T 4 calculated by the above formula (5), and the difference (T A ⁇ T B ) is 4%. Until it becomes below, it is further carried out until it becomes 3% or less, 2% or less, 1% or less, 0.5% or less. The smaller the difference (T A ⁇ T B ), the more preferable.
  • the shorter the fading time the better.
  • the external transmittance T B is the formula of the external transmittance T A and glass center portion of the glass edge at a wavelength of 656 nm (5)
  • the value calculated in step T4 is equal to or greater than T 4
  • the difference (T A ⁇ T B ) is equal to or less than 0.5%.
  • External transmittance is measured based on the Japan Optical Glass Industry Association standard (JOGIS 02-2003).
  • incident light is irradiated perpendicularly to the upper surface (a surface having a length of 17 mm and a width of 13 mm). Further, the incident light is irradiated so as to be within the region of the glass end portion and the glass center portion, that is, a range of 5 mm ⁇ 5 mm.
  • the lower limit of the total content [TiO 2 + Nb 2 O 5 + WO 3 + Bi 2 O 3 ] of TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 is preferably 35%, and 36%, 38%, 40%, 42%, 44%, 46%, 48%, 50%, 52%, 54%, 56%, 58%, 60%, 62%, 64% in order.
  • the upper limit of the total content [TiO 2 + Nb 2 O 5 + WO 3 + Bi 2 O 3 ] is preferably 90%, and further 88%, 86%, 85%, 84%, 83%, 82%. 81%, 80%, 79%, 78%, 77% in this order.
  • TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 contribute to high dispersion of the glass. Moreover, it has the function which improves the thermal stability of glass by containing a suitable quantity. Therefore, the lower limit of the total content [TiO 2 + Nb 2 O 5 + WO 3 + Bi 2 O 3 ] is preferably within the above range. On the other hand, TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 increase the coloration of the glass. Therefore, the upper limit of the total content [TiO 2 + Nb 2 O 5 + WO 3 + Bi 2 O 3 ] is preferably within the above range.
  • the total content of Ti 4+ , Nb 5+ , W 6+ and Bi 3+ [Ti 4+ + Nb 5 + + W 6+ + Bi 3+ ] is preferably 52.00 cation%, and further 52.10 cation%, 52.15 cation%, 52.20 cation%, 52.25 cation%, 52. More preferred is the order of 30 cation%.
  • the upper limit of the total content [Ti 4+ + Nb 5+ + W 6+ + Bi 3+ ] is preferably 75.00 cation%, and further 74.50 cation%, 74.00 cation%, 73.50 cation%. 73.000 cation%, 72.50 cation%, 72.00 cation%, 71.50 cation%, 71.00 cation%, and 70.50 cation%, in this order.
  • Ti 4+ , Nb 5+ , W 6+ and Bi 3+ contribute to high dispersion of the glass. Moreover, it has the function which improves the thermal stability of glass by containing a suitable quantity. Therefore, the lower limit of the total content [Ti 4+ + Nb 5+ + W 6+ + Bi 3+ ] is preferably within the above range. On the other hand, Ti 4+ , Nb 5+ , W 6+ and Bi 3+ increase the coloration of the glass. Therefore, the upper limit of the total content [Ti 4+ + Nb 5+ + W 6+ + Bi 3+ ] is preferably within the above range.
  • the upper limit of the Bi 2 O 3 content is preferably 38%, and further 35%, 33%, 30%, 28%, 25%, 23%, More preferable in the order of 20%.
  • the lower limit of the Bi 2 O 3 content is preferably 0%.
  • the content of Bi 2 O 3 may be 0%.
  • Bi 2 O 3 is a component that contributes to high dispersion. Further, the content of Bi 2 O 3 within the above range, an increase and a decrease in the glass transition temperature Tg of the specific gravity can be suppressed. As the specific gravity of the glass increases, the mass of the optical element increases. For example, if a lens with a large mass is incorporated in an autofocus imaging lens, the power required to drive the lens during autofocus increases, and battery consumption becomes significant. Therefore, the content of Bi 2 O 3 is preferably within the above range.
  • the upper limit of the Bi 3+ content is preferably 10.00 cation%, and further 9.00.
  • the content of Bi 3+ may be 0 cation%.
  • Bi 3+ is a component that contributes to high dispersion. Moreover, the increase in specific gravity and the fall of glass transition temperature Tg can be suppressed by making content of Bi3 + into the said range. As the specific gravity of the glass increases, the mass of the optical element increases. For example, if a lens with a large mass is incorporated in an autofocus imaging lens, the power required to drive the lens during autofocus increases, and battery consumption becomes significant. Therefore, the Bi 3+ content is preferably within the above range.
  • the mass ratio of the content and the total content of TiO 2, Nb 2 O 5, WO 3 and Bi 2 O 3 of Li 2 O [Li 2 O / (TiO 2 + Nb 2 O 5 + WO 3 + Bi 2 O 3 )]] multiplied by 100 is preferably 0.017, and further 0.019, 0.021, 0.023, 0.025, 0. It is more preferable in the order of 027 and 0.030.
  • the upper limit of the value obtained by multiplying the mass ratio [Li 2 O / (TiO 2 + Nb 2 O 5 + WO 3 + Bi 2 O 3 )] by 100 is preferably 0.750, and further 0.730, 0 .710, 0.700, 0.680, 0.650, 0.600, 0.550 in this order.
  • the content of the glass component when the content of the glass component is expressed in terms of cation% and the content of W 6+ exceeds 0 cation%, the content of Ba 2+ and W 6
  • the upper limit of the cation ratio [Ba 2+ / W 6+ ] to the + content is preferably 0.14, and more preferably in the order of 0.13, 0.12, 0.11, and 0.10. .
  • Ba 2+ is a component that contributes to low dispersion. Therefore, in the glass according to the 2-2 embodiment, the desired high dispersibility can be obtained by adding W 6+ that is a highly dispersed component to the above cation ratio with respect to the content of Ba 2+. Can be maintained.
  • the content of the glass component is expressed in terms of cation%, the W 6+ content is 0 cation% and the Ba 2+ content is 0 cation. %
  • the upper limit of the total content of Ti 4+ and Bi 3+ [Ti 4+ + Bi 3+ ] is preferably 35.00 cation%, and further 34.00 cation%, 33.
  • the lower limit of the total content [Ti 4+ + Bi 3+ ] is preferably 21.00 cation%, and further 21.20 cation%, 21.40 cation%, 21.60 cation%, 21.80 cation%.
  • glass components in the 2-2 embodiment can be the same as those in the 2-1 embodiment.
  • the glass characteristics, glass, optical glass, polishing glass material, press-molding glass material, optical element and the like in the 2-2 embodiment can be manufactured in the same manner as in the 2-1 embodiment.
  • Examples 1-1 to 1-3 are examples corresponding to the first embodiment.
  • Examples 2-1 to 2-4 are examples corresponding to the second embodiment.
  • Example 1-1 Nos. Shown in Table 1-1-1, Table 1-1-4 and Table 1-1-5, Table 1-2-1, Table 1-2-3 and Table 1-2-4.
  • Compound raw materials corresponding to each component that is, raw materials such as phosphates, carbonates, oxides, and the like were weighed and mixed well so as to obtain a glass having a composition of 1 to 129 to obtain a preparation raw material.
  • Table 1-1-1, Table 1-1-4, and Table 1-1-5 are expressed in mass%, and Table 1-2-1, Table 1-2-3, and Table 1-2-4 are shown. Indicates cation%, A glass composition of 1 to 129 is indicated. That is, in Table 1-1-1-1, Table 1-1-4 and Table 1-1-5, Table 1-2-1, Table 1-2-3 and Table 1-2-4, Although the method is different, the same No. These optical glasses have the same composition. Therefore, Table 1-1-1-1, Table 1-1-4, Table 1-1-5 and Table 1-2-1, Table 1-2-3 and Table 1-2-4 are substantially the same. Optical glass is shown.
  • the glass composition is expressed in terms of cation% when the total amount of the anion component is O 2 ⁇ . That is, in Table 1-2-1, Table 1-2-3 and Table 1-2-4, the content of O 2 ⁇ is 100 anion%.
  • the total content of the glass components described in Table 1-1-2, Table 1-1-3 and Table 1-1-6 to 1-1-9, and the ratio between the glass component contents are as follows. These values are calculated based on the contents of the glass components described in Table 1-1-1, Table 1-1-4, and Table 1-1-5. Similarly, the total content of the glass components described in Table 1-2-2, Table 1-2-5 and Table 1-2-6, and the ratio between the glass component contents are shown in Table 1-2. -1, a value calculated based on the content of each glass component described in Table 1-2-3 and Table 1-2-4.
  • the above prepared raw materials were put into a platinum crucible, heated to 1200 ° C. to 1350 ° C., melted, stirred and clarified, and then molten glass was cast from the crucible into a mold and formed into a glass block.
  • optical glass No. Examples 1 to 6 and 12 to 129 are examples of the first to first embodiments.
  • Reference numerals 1 to 129 are examples of the first to second embodiments.
  • the refractive index nd, Abbe number ⁇ d, glass transition temperature, specific gravity, ⁇ 5, and liquid phase temperature of 1 to 129 are shown in Table 1-3, Table 1-4-1, and Table 1-4-2.
  • the refractive index nd, Abbe number ⁇ d, glass transition temperature, specific gravity, ⁇ 5, and liquidus temperature were measured as follows. The blank in Table 1-3 indicates that no measurement has been performed.
  • ⁇ 5 ⁇ 5 was measured as follows. Spectral transmittances in the wavelength range from 280 nm to 700 nm were measured using glass samples having a plane parallel to each other and optically polished having a thickness of 10 mm. The spectral transmittance was calculated from B / A by measuring the intensity B of a light beam incident on an optically polished plane perpendicular to one plane and measuring the intensity B emitted from the other plane. Therefore, the spectral transmittance includes a reflection loss of light rays on the sample surface. The wavelength at which the spectral transmittance is 5% is ⁇ 5. The measurement results are shown in Table 1-3, Table 1-4-1 and Table 1-4-2.
  • Liquidus temperature LT The glass sample was placed in a furnace heated to a predetermined temperature and held for 2 hours. After cooling, the inside of the glass was observed with a 100 ⁇ optical microscope, and the liquidus temperature was determined from the presence or absence of crystals. The measurement results are shown in Table 1-3, Table 1-4-1 and Table 1-4-2.
  • Example 1-2 In the same manner as in Example 1-1, the optical glass no.
  • the glass raw material was heated, melted, clarified and homogenized so as to obtain 1 to 129, and the obtained molten glass was poured into a mold and rapidly cooled to form a glass block. Next, after annealing the glass block, it was cut and ground to produce a glass material for press molding.
  • Example 1-3 The glass material for press molding made of various optical glasses prepared in Example 1-2 is heated and softened, and is press-molded by a known method using a press mold to produce an optical element blank such as a lens blank or a prism blank. did.
  • the optical element blank was precisely annealed and the refractive index was precisely adjusted to obtain the required refractive index, and then a concave lens, a convex lens and a prism were produced by known grinding and polishing methods.
  • Examples 2-1 and 2-2 are examples corresponding to the 2-1 embodiment, and Examples 2-3 and 2-4 are examples corresponding to the 2-2 embodiment.
  • Table 2-1A shows the glass composition of the glass samples A to D by mass%
  • Table 2-1B shows the cation%. That is, the display method of the glass composition is different between Table 2-1A and Table 2-1B, but the glass with the same number has the same composition. Therefore, Table 2-1A and Table 2-1B show substantially the same glass.
  • Tables 2-3A-1 to 2-3A-8 are expressed in terms of mass%
  • Tables 2-3B-1 to 2-3B-8 are expressed in terms of cation%
  • glass samples A glass composition of 1 to 109 is indicated.
  • the glass composition display methods differ between Tables 2-3A-1 to 2-3A-8 and Tables 2-3B-1 to 2-3B-8, but the glasses with the same number have the same composition. Therefore, Tables 2-3A-1 to 2-3A-8 and Tables 2-3B-1 to 2-3B-8 show substantially the same glass.
  • the glass composition is expressed in terms of cation% when the total amount of the anion component is O 2 ⁇ . That is, in Table 2-1B and Tables 2-3B-1 to 2-3B-8, the content of O 2 ⁇ is 100 anion%.
  • Example 2-1 [Production of glass samples] The raw materials were weighed and prepared so that the resulting glass had the compositions shown in Table 2-1A and Table 2-1B, and the resulting prepared raw material (batch raw material) was charged into a platinum crucible. It was melted by heating at 1350 ° C. for 90 minutes in an air atmosphere, and homogenized and clarified by stirring to obtain a molten glass. A molten glass was cast into a mold, formed, slowly cooled, and ground and polished to a length of 17 mm, a width of 12 mm, and a thickness of 10 mm to obtain a glass sample. At this time, the upper and lower surfaces (surfaces of 17 mm length and 12 mm width) were optically polished. The obtained glass sample had a reduced color.
  • a glass sample having a liquid phase temperature of 10 cc (10 ml) is put into a platinum crucible, melted at 1250 ° C. to 1350 ° C. for 20 to 30 minutes, cooled to a glass transition temperature Tg or less, and the glass is heated to a predetermined temperature together with the platinum crucible. Placed in melting furnace and held for 2 hours. The holding temperature was 1000 ° C. or more and in increments of 10 ° C., and the lowest temperature at which crystals did not precipitate after holding for 2 hours was defined as the liquidus temperature. The results are shown in Table 2-1A.
  • Example 2-2 [Production of glass samples] A glass sample was prepared in the same manner as in Example 2-1, except that the composition of the obtained glass was as shown in Table 3 and that steam was added to the melting atmosphere to obtain a molten glass. The obtained glass sample had a reduced color.
  • Example 2-3 [Production of reduced glass sample]
  • the glass samples (samples A to D) obtained in Example 2-1 were remelted by heating at 1300 ° C. for 90 minutes in an air atmosphere, and homogenized and clarified by stirring to obtain a molten glass.
  • Molten glass is cast into a mold and molded for 15 minutes at a holding temperature 0 to 20 ° C. lower than the glass transition temperature Tg for each sample in the air atmosphere, and at a cooling rate of 30 ° C./h, 120 ° C. above the holding temperature.
  • the glass was slowly cooled to a low temperature and ground and polished to a length of 17 mm, a width of 12 mm, and a thickness of 10 mm to obtain a reduced glass sample.
  • the upper and lower surfaces were optically polished.
  • the obtained reduced glass sample had a reduced color.
  • the obtained reduced glass sample is heated in an air atmosphere at a heating rate of 100 ° C./hour, heat-treated at a heat treatment temperature 5 to 15 ° C. lower than the glass transition temperature Tg for a predetermined time, and at a cooling rate of 30 ° C./hour. Slow cooling treatment was performed to a temperature 120 ° C. lower than the heat treatment temperature. Until the difference between the external transmittance T B of the external transmittance T A and glass center of the glass end (T A -T B) is 5% or less, was repeated heat treatment and slow cooling process.
  • the external transmittances T A and T B were measured by using a spectrophotometer (UV-3150, manufactured by Shimadzu Corporation) with light incident in a direction perpendicular to the optically polished surface and a wavelength of 656 nm. .
  • Example 2-4 [Production of reduced glass sample]
  • the glass samples (sample Nos. 1 to 20, 22 to 32, 42, 44 to 52, 54, 57 to 80, 88 to 95) obtained in Example 2-2 were prepared in the same manner as in Example 2-3. Remelted to obtain a reduced glass sample. The obtained reduced glass sample had a reduced color.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

【課題】 透過性に優れ、高分散で屈折率の上昇を抑えたリン酸塩光学ガラスを提供する。また、係るリン酸塩光学ガラスからなる光学素子および光学ガラス素材を提供する。 【解決手段】 アッベ数νdが16.70以下であり、屈折率ndが2.1000以下であって、P25、TiO2およびNb25を含み、TiO2の含有量とNb25の含有量との質量比[TiO2/Nb25]が0.15以上であるリン酸塩光学ガラス。

Description

ガラス、光学ガラス、リン酸塩光学ガラス、研磨用ガラス素材、プレス成形用ガラス素材および光学素子
 本発明は、第1発明および第2発明からなる。第1発明は、透過性に優れ、高分散で屈折率の上昇を抑えたリン酸塩光学ガラス、および、係るリン酸塩光学ガラスからなる光学素子に関する。また、第2発明は、還元色を容易に低減できるガラス、光学ガラス、研磨用ガラス素材、プレス成形用ガラス素材、および光学素子に関する。
 高分散ガラス製のレンズは、低分散ガラス製のレンズと組み合わせてペアレンズとすることで、色収差の補正に用いられている。高分散ガラスは一般に高屈折率であり、低分散ガラスは一般に低屈折率である。このため、両者を組み合わせてペアレンズとすると、屈折率の差が大きいために像面湾曲が強く表れるという問題があった。
 例えば、特許文献1には、アッベ数νdの低い、すなわち高分散ガラスが開示されているが、屈折率が高すぎるため、上述のペアレンズに使用すると像面湾曲の問題が生じる。
 また、高分散ガラスは、通常、ガラス成分としてTiO2、Nb25、WO3およびBi23等の成分(以下、「高分散成分」と記載することがある。)を多量に含有している。これら高分散成分は、ガラスの熔融過程で還元されやすい。高分散成分が還元されると、可視光域の短波長側の光を吸収して、ガラスに着色(以下、「還元色」ということがある)が生じる。
 特許文献2では、ガラスを熱処理することで、このようなガラスの着色を低減している。これは、還元状態のTi、Nb、W、Bi等のイオンが加熱により酸化されることで、可視光吸収が弱まるためと考えられる。
 すなわち、ガラス成分としてTiO2、Nb25、WO3およびBi23等の高分散成分を多量に含有する高分散ガラスでは、熱処理により還元色を低減することで、必要な透明性を得ることができる。しかし、この熱処理では長時間ガラスを加熱する必要があるため、生産性および経済性の観点から改善が求められている。特にアッベ数νdが18.1以下の高分散ガラスではより濃く着色するため、着色低減のための熱処理に長時間を要する。
特開2013-212935号公報 特開平6-345481号公報
 このような実状に鑑みて、第1発明では、第1の課題として、透過性に優れ、高分散で屈折率の上昇を抑えたリン酸塩光学ガラスを提供すること、および、係るリン酸塩光学ガラスからなる光学素子および光学ガラス素材を提供することを目的とする。第2発明では、第2の課題として、熱処理により還元色を低減する際に、その熱処理時間を短縮できるガラスを提供することを目的とする。
 本発明者らは、上記目的を達成するために鋭意研究を重ねた結果、第1の課題に対しては、ガラスを構成する各種ガラス構成成分(以下、ガラス成分という)の含有比率を調整することにより、その目的を達成し得ることを見出し、この知見に基づいて第1本発明を完成するに至った。また、第2の課題に対しては、高分散成分に対し、所定の比率でLi2Oを含有させることにより、その目的を達成し得ることを見出し、この知見に基づいて第2発明を完成するに至った。
 すなわち、本発明の要旨は以下のとおりである。
(1)アッベ数νdが16.70以下であり、
 屈折率ndが2.1000以下であって、
 P25、TiO2およびNb25を含み、
 TiO2の含有量とNb25の含有量との質量比[TiO2/Nb25]が0.15以上であるリン酸塩光学ガラス。
(2)Bi23の含有量が29.0質量%以下である(1)に記載のリン酸塩光学ガラス。
(3)アッベ数νdが16.70以下であり、
 Bi23の含有量が29.0質量%以下であって、
 TiO2、Nb25およびWO3の合計含有量が45.0質量%以上であるリン酸塩光学ガラス。
(4)TiO2およびWO3の合計含有量と、Nb25の含有量との質量比[(TiO2+WO3)/Nb25]が0.15以上である(1)~(3)のいずれかに記載のリン酸塩光学ガラス。
(5)上記(1)~(4)のいずれかに記載のリン酸塩光学ガラスからなるプレス成形用ガラス素材。
(6)上記(1)~(4)のいずれかに記載のリン酸塩光学ガラスからなる光学素子。
(7)アッベ数νdが18.10以下であり、
 TiO2、Nb25、WO3およびBi23の合計含有量[TiO2+Nb25+WO3+Bi23]が30質量%以上、かつ
 Bi23の含有量が38質量%以下のリン酸塩ガラスであって、
 Li2Oの含有量とTiO2、Nb25、WO3およびBi23の合計含有量との質量比[Li2O/(TiO2+Nb25+WO3+Bi23)]に100を掛けた値が0.015~0.770である、ガラス。
(8)アッベ数νdが18.10以下であり、
 TiO2、Nb25、WO3およびBi23から選択される少なくとも1種の酸化物を含むリン酸塩ガラスであって、
 大気雰囲気下で、液相温度LTより110~120℃高い温度で90分間リメルトして成形し、
 大気雰囲気下で、ガラス転移温度Tgより0~20℃低い保持温度で15分間保ち、降温速度30℃/hで前記保持温度より120℃低い温度まで徐冷して得られるガラスを、縦17mm、横13mm、厚み10mmに加工したものにおいて、
 上面視で、縦方向の端から0~5mmの距離であり、かつ横方向の端から0~5mmの距離の範囲にある部分をガラス端部とし、
 上面視で、縦方向の端から6~11mmの距離であり、かつ横方向の端から4~9mmの距離の範囲にある部分をガラス中心部とした場合に、
 厚み方向と平行に光を入射した際の、波長656nmにおける前記ガラス端部の外部透過率TAおよび前記ガラス中心部の外部透過率TBが下記式(2)で計算される値T1以上、かつ、
 前記ガラス端部の外部透過率TAと前記ガラス中心部の外部透過率TBとの差(TA-TB)が5%以下となるまで、
 大気雰囲気下で、昇温速度100℃/hで加熱してガラス転移温度Tgより5~15℃低い熱処理温度で保持する熱処理、および降温速度30℃/hで前記熱処理温度より120℃低い温度まで徐冷する徐冷処理を、1回または複数回繰り返すときの、
 前記熱処理における前記熱処理温度での保持時間の合計が、48時間以内であるガラス。
 T1=0.83×[1-[(nC-1)/(nC+1)]2]2×98 ・・・(2)
〔式(2)中、nCは前記ガラス端部の外部透過率TAと前記ガラス中心部の外部透過率TBとの差(TA-TB)が5%以下になるまで前記熱処理および徐冷処理を行った場合の、波長656.27nmにおける屈折率である。〕
(9)Li2Oの含有量が0.010質量%以上である、(7)または(8)に記載のガラス。
(10)Li2Oの含有量が0.640質量%以下である、(7)~(9)のいずれかに記載のガラス。
(11)下記式(1)に示すβOHの値が0.05mm-1以上である、(7)~(10)のいずれかに記載のガラス。
 βOH=-[ln(D/C)]/t ・・・(1)
〔式(1)中、tは外部透過率の測定に用いる前記ガラスの厚み(mm)を表し、Cは前記ガラスに対してその厚み方向と平行に光を入射した際の波長2500nmにおける外部透過率(%)を表し、Dは前記ガラスに対してその厚み方向と平行に光を入射した際の波長2900nmにおける外部透過率(%)を表す。〕
(12)ガラス成分としてNb2O5を含む、(7)~(11)のいずれかに記載のガラス。
(13)ガラス成分としてTiO2を含む、(7)~(12)のいずれかに記載のガラス。
(14)上記(7)~(13)のいずれかに記載のガラスからなる光学ガラス。
(15)上記(7)~(13)のいずれかに記載のガラスからなる研磨用ガラス素材。
(16)上記(7)~(13)のいずれかに記載のガラスからなるプレス成形用ガラス素材。
(17)上記(14)に記載の光学ガラスからなる研磨用ガラス素材。
(18)上記(14)に記載の光学ガラスからなるプレス成形用ガラス素材。
(19)上記(7)~(13)のいずれかに記載のガラスからなる光学素子。
(20)上記(14)に記載の光学ガラスからなる光学素子。
(21)上記(15)または(17)に記載の研磨用ガラス素材からなる光学素子。
(22)上記(16)または(18)に記載のプレス成形用ガラス素材からなる光学素子。
 第1発明によれば、低分散ガラス製レンズと組み合わせてペアレンズとしたときに、アッベ数の差が大きいため、色収差の補正において高い効果を奏する。また、屈折率の低い低分散ガラス製レンズと組み合わせてペアレンズとした場合でも、屈折率の差が小さいために、像面湾曲が抑制される。
 第2発明によれば、高分散ガラスにおいて熱処理により還元色を低減する際に、その熱処理時間を短縮できる。
 以下、本発明を実施するための形態(以下、単に「実施形態」という。)について詳細に説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明は、その要旨の範囲内で適宜に変形して実施できる。さらに、説明が重複する箇所については、適宜説明を省略する場合があるが、発明の趣旨を限定するものではない。なお、本明細書において、「光学ガラス」は、複数種のガラス構成成分(ガラス成分)を含むガラス組成物であって、特に記載しない限り、形態(塊り状、板状、球状など)や用途(光学素子用素材、光学素子など)、大きさを問わない総称として用いている。すなわち、光学ガラスの形態や用途、大きさに制限はなく、いかなる形態の光学ガラスも、またいかなる用途の光学ガラスも、そしていかなる大きさの光学ガラスも本発明における光学ガラスに含まれる。また、本明細書において、光学ガラスは、単に「ガラス」と称されることがある。
 また、本明細書において、(数値1)を用いて、「(数値1)以下」のように数値範囲を表すことがある。このように表される範囲は、(数値1)よりも小さい数値範囲と(数値1)を合わせた数値範囲である。「(数値1)未満」と表される数値範囲は、(数値1)よりも小さい数値範囲であり、(数値1)を含まない。(数値2)を用いて、「(数値2)以上」のように数値範囲を表すことがある。このように表される範囲は、(数値2)よりも大きい数値範囲と(数値2)を合わせた数値範囲である。「(数値2)超」のように数値範囲を表すことがある。このように表される範囲は、(数値2)よりも大きい数値範囲であり、(数値2)を含まない。
 本明細書では、主に質量%表示での各ガラス成分の含有量に基づいて、本発明に係る光学ガラスを説明する。以下、特記しない限り、「%」は質量%を表す。また、一部のガラス成分については、カチオン%表示での含有量も記載する。
 本明細書において、質量%表示とは、酸化物やフッ化物で表される各ガラス成分について、全てのガラス成分の合計含有量を100質量%としたときの各ガラス成分の含有量を質量百分率により表示することをいう。また、質量%表示での合計含有量とは、複数種のガラス成分の含有量(含有量が0%である場合も含む)の合計量をいう。また、質量比とは、質量%表示におけるガラス成分の含有量(複数種の成分の合計含有量も含む)同士の割合(比)をいう。
 また、本明細書において、カチオン%表示とは、全てのカチオン成分の含有量の合計を100%としたときのモル百分率をいう。カチオン%表示での合計含有量とは、複数種のカチオン成分の含有量(含有量が0%である場合も含む)の合計量をいう。また、カチオン比とは、カチオン%表示において、カチオン成分同士の含有量(複数種のカチオン成分の合計含有量も含む)の割合(比)をいう。
 なお、カチオン成分の価数(例えばP5+の価数は+5、Si4+の価数は+4、La3+の価数は+3)は、慣習により定まった値であり、ガラス成分としてのP、Si、Laを酸化物基準で表記する際、P25、SiO2、La23と表記するのと同様である。したがって、ガラス組成を分析する際、カチオン成分の価数まで分析しなくてもよい。また、アニオン成分の価数(例えばO2-の価数がー2)も慣習により定まった値であり、上記のように酸化物基準におけるガラス成分を、例えばP25、SiO2、La23と表記するのと同様である。したがって、ガラス組成を分析する際、アニオン成分の価数まで分析しなくてもよい。
 後述するように、Sb23、SnO2、CeO2は、清澄剤としてガラスに少量添加されることがある。しかし、本明細書において、全てのガラス成分の合計含有量にはSb23、SnO2およびCeO2の含有量を含めない。すなわち、ガラス成分中のSb23、SnO2、CeO2の各含有量は、Sb23、SnO2およびCeO2以外の全てのガラス成分の合計含有量におけるSb23、SnO2、CeO2の各含有量として表示される。本明細書において、このような表記を外割りという。
 以下、本発明の第1実施形態および第2実施形態について説明する。なお、第1実施形態は第1発明の実施形態であり、第2実施形態は第2発明の実施形態である。
第1実施形態
 第1-1実施形態および第1-2実施形態(以下、「第1実施形態」と総称することがある。)について詳述する。
 第1実施形態に係る光学ガラスのガラス組成は、ICP-AES(Inductively Coupled Plasma - Atomic Emission Spectrometry)、あるいは、ICP-MS(Inductively Coupled Plasma - Mass Spectrometry)により定量することができる。ICP-AESにより求められる分析値は、例えば、分析値の±5%程度の測定誤差を含んでいることがある。また、本明細書および本発明において、ガラスの構成成分の含有量が0%または含まないとは、この構成成分を実質的に含まないことを意味し、この構成成分の含有量が不純物レベル程度以下であることを指す。
第1-1実施形態
 本発明の第1-1実施形態の光学ガラスは、
 アッベ数νdが16.70以下であり、
 屈折率ndが2.1000以下であって、
 P25、TiO2およびNb25を含み、
 TiO2の含有量とNb25の含有量との質量比[TiO2/Nb25]が0.15以上であるリン酸塩光学ガラスである。
 以下、第1-1実施形態に係る光学ガラスについて詳しく説明する。
 第1-1実施形態に係る光学ガラスにおいて、アッベ数νdは16.70以下である。アッベ数νdの上限は、好ましくは16.68であり、さらには、16.66、16.64、16.62、16.60、16.58、16.56、16.54の順により好ましい。また、アッベ数の下限は、好ましくは15.50であり、さらには、15.55、15.60、15.65、15.70の順に大きい値ほどより好ましい。
 アッベ数νdを16.70以下とすることにより、低分散ガラス製レンズと組み合わせてペアレンズとしたときに、アッベ数の差が大きくなって、色収差の補正において高い効果を奏する。
 第1-1実施形態に係る光学ガラスにおいて、屈折率ndは2.1000以下である。屈折率の上限は、好ましくは2.0950であり、さらには、2.0900、2.0850、2.0800、2.0750、2.0500、2.0300、2.0100、2.0000の順により好ましい。また、屈折率の下限は、好ましくは1.8800であり、さらには、1.9000、1.9200、1.9400、1.9600の順に大きい値ほどより好ましい。
 屈折率ndを2.1000以下とすることにより、屈折率の低い低分散ガラス製レンズと組み合わせてペアレンズとした場合でも、屈折率の差が小さいために、像面湾曲が抑制される。
 第1-1実施形態に係る光学ガラスは、P25、TiO2およびNb25を含む。P25、TiO2およびNb25を含むことにより、高分散で屈折率ndの上昇を抑えた光学ガラスを得ることができる。
 第1-1実施形態に係る光学ガラスにおいて、TiO2の含有量とNb25の含有量との質量比[TiO2/Nb25]は0.15以上である。上述のとおり、第1-1実施形態に係る光学ガラスはP25およびTiO2を含むが、P25およびTiO2を増加させる
ことによってガラスの熔解性が低下し、液相温度が上昇するという問題が生じる。そこで、高分散化に寄与するNb25を、TiO2に対して特定の割合で含有させることにより、液相温度の上昇を防ぎ、この問題を解消した。
 第1-1実施形態に係る光学ガラスにおいて、TiO2の含有量とNb25の含有量との質量比[TiO2/Nb25]の下限は、好ましくは0.16であり、さらには、0.17、0.18、0.19、0.20、0.23の順により好ましい。また質量比[TiO2/Nb25]の上限は、好ましくは4.50であり、さらには、4.40、4.30、4.20、4.10、4.00、3.80、3.60の順により好ましい。
 また、第1-1実施形態に係る光学ガラスにおいて、ガラス成分の含有量をカチオン%で表示すると、Ti4+の含有量とNb5+の含有量とのカチオン比[Ti4+/Nb5+]の上限は、好ましくは6.00であり、さらには5.90、5.80、5.70、5.65、5.60の順により好ましい。カチオン比[Ti4+/Nb5+]の下限は、好ましくは0.40であり、さらには0.41、0.42の順により好ましい。
 Ti4+はガラスの熔解性を低下させ、液相温度を上昇させやすい。一方、Nb5+は液相温度の低下および屈折率の上昇を抑え、高分散化に寄与する。そのため、Nb5+をTi4+に対して一定の割合で含有させることにより、ガラスの熔解性の低下および液相温度の上昇を抑制できる。したがって、本実施形態に係る光学ガラスにおいて、カチオン比[Ti4+/Nb5+]は上記範囲とすることが好ましい。
 第1-1実施形態に係る光学ガラスは、リン酸塩光学ガラスである。リン酸塩光学ガラスとは、ガラスのネットワーク形成成分として主にリン酸塩を含む光学ガラスをいう。したがって、第1-1実施形態に係る光学ガラスは、ネットワーク形成成分としてリン酸塩を含み、その含有量はP25の含有量として表される。ガラスのネットワーク形成成分として、P25、Al23、B23、SiO2等が知られている。ここで、ガラスのネットワーク形成成分として主にリン酸塩を含むとは、質量%表示におけるP25の含有量が、Al23、B23、SiO2のいずれの含有量よりも多いガラスを意味する。
 第1-1実施形態に係る光学ガラスにおいて、P25の含有量の下限は、好ましくは7.0%であり、さらには、8.0%、9.0%、10.0%、11.0%、12.0%、12.5%、13.0%の順により好ましい。また、P25の含有量の上限は、好ましくは35.0%であり、さらには、34.5%、34.0%、33.5%、33.0%の順により好ましい。
 P25は、屈折率ndの上昇を抑制し、ガラス中に高分散成分を多く含有するために必須の成分である。一方、P25を過剰に含むと熔解性が悪化する。したがって、本実施形態に係る光学ガラスにおいて、P25の含有量は上記範囲とすることが好ましい。
 また、第1-1実施形態に係る光学ガラスにおいて、ガラス成分の含有量をカチオン%で表示すると、P5+の含有量の上限は、好ましくは45.00カチオン%であり、さらには44.50カチオン%、44.00カチオン%、43.50カチオン%、43.00カチオン%、42.50カチオン%、42.00カチオン%、41.50カチオン%、41.00カチオン%、40.50カチオン%、40.00カチオン%、39.50カチオン%、39.00カチオン%、38.50カチオン%の順により好ましい。P5+の含有量の下限は、好ましくは20.00カチオン%であり、さらには20.50カチオン%、21.00カチオン%、21.50カチオン%、22.00カチオン%、22.50カチオン%、23.00カチオン%、23.50カチオン%、24.00カチオン%、24.50カチオン%、25.00カチオン%、25.50カチオン%の順により好ましい。
 P5+は、屈折率ndの上昇を抑制し、ガラス中に高分散成分を多く含有するために必須の成分である。一方、P5+を過剰に含むと熔解性が悪化する。したがって、本実施形態に係る光学ガラスにおいて、P5+の含有量は上記範囲とすることが好ましい。
 第1-1実施形態に係る光学ガラスにおいて、Bi23の含有量の上限は、好ましくは29.0%であり、さらには、28.5%、28.0%、27.5%、27.0%、25.0%、20.0%、15.0%、10.0%、6.0%、5.0%の順により好ましい。また、Bi23の含有量の下限は、好ましくは0%である。Bi23の含有量は0%であってもよい。
 Bi23は、適量を含有させることによりガラスの熱的安定性を改善する働きを有する。一方、Bi23の含有量を高めると、屈折率が上昇し、ガラスの着色が増大する。したがって、Bi23の含有量を上記範囲とすることが好ましい。
 また、第1-1実施形態に係る光学ガラスにおいて、ガラス成分の含有量をカチオン%で表示すると、Bi3+の含有量の上限は、好ましくは20.00カチオン%であり、さらには19.50カチオン%、19.00カチオン%、18.50カチオン%、18.00カチオン%、17.50カチオン%、17.00カチオン%、16.50カチオン%の順により好ましい。Bi3+の含有量の下限は、好ましくは3.00カチオン%であり、さらには1.50カチオン%、1.00カチオン%、0.40カチオン%の順により好ましい。Bi3+の含有量は0カチオン%であってもよい。
 Bi3+は、適量を含有させることによりガラスの熱的安定性を改善する働きを有する。一方、Bi3+の含有量を高めると、屈折率が上昇し、ガラスの着色が増大する。したがって、Bi3+の含有量を上記範囲とすることが好ましい。
 第1-1実施形態に係る光学ガラスにおいて、TiO2およびWO3の合計含有量と、Nb25含有量との質量比[(TiO2+WO3)/Nb25]の下限は、好ましくは0.15であり、さらには、0.17、0.19、0.20、0.21、0.23、0.25、0.26、0.28、0.30、0.35、0.40、0.45、0.50、0.55、0.56、0.57、0.58、0.59、0.60、0.61、0.62、0.63、0.64、0.65の順により好ましい。また、質量比[(TiO2+WO3)/Nb25]の上限は、好ましくは8.00であり、さらには、7.90、7.80、7.70、7.60、7.40、7.20、7.00の順により好ましい。
 質量比[(TiO2+WO3)/Nb25]の値を上記範囲とすることで、屈折率の上昇を抑えつつ、色収差補正に好適な高分散性を有するガラスを得ることができる。
 また、第1-1実施形態に係る光学ガラスにおいて、ガラス成分の含有量をカチオン%で表示すると、Ti4+およびW6+の合計含有量とNb5+の含有量とのカチオン比[(Ti4++W6+)/Nb5+]の上限は、好ましくは7.70であり、さらには7.60、7.50、7.40、7.35、7.30、7.28、7.26の順により好ましい。カチオン比[(Ti4++W6+)/Nb5+]の下限は、好ましくは0.40であり、さらには0.41、0.42の順により好ましい。
 カチオン比[(Ti4++W6+)/Nb5+]の値を上記範囲とすることで、屈折率の上昇を抑制しつつ、色収差補正に好適な高分散性を有するガラスを得ることができる。
 第1-1実施形態に係る光学ガラスにおいて、TiO2、Nb25およびWO3の合計含有量と、TiO2、Nb25、WO3およびBi23の合計含有量との質量比[(TiO2+Nb25+WO3)/(TiO2+Nb25+WO3+Bi23)]の下限は、好ましくは0.45であり、さらには、0.50、0.55、0.60、0.65、0.70、0.75、0.80、0.85の順により好ましい。また、質量比[(TiO2+Nb25+WO3)/(TiO2+Nb25+WO3+Bi23)]の上限は、好ましくは1.00である。Bi23の含有量は0%であってもよい。
 質量比[(TiO2+Nb25+WO3)/(TiO2+Nb25+WO3+Bi23)]
の値を上記範囲とすることで、透過率の悪化を抑制し、また、屈折率の上昇、比重の増大を抑えることができる。
 第1-1実施形態に係る光学ガラスにおいて、TiO2、Nb25およびWO3の合計含有量[TiO2+Nb25+WO3]の下限は、好ましくは43.0%であり、さらには、45.0%、46.0%、47.0%、48.0%、49.0%、50.0%、52.0%の順により好ましい。また、合計含有量[TiO2+Nb25+WO3]の上限は、好ましくは85.0%であり、さらには、84.0%、83.0%、82.0%、81.0%、79.0%、77.0%の順により好ましい。
 TiO2、Nb25およびWO3は、いずれも高分散化に寄与するガラス成分であるが、着色増大の原因ともなる。したがって、合計含有量[TiO2+Nb25+WO3]は上記範囲とすることが好ましい。
 第1-1実施形態に係る光学ガラスにおいて、ガラス成分の含有量をカチオン%で表示した場合に、W6+の含有量が0カチオン%を超える場合には、Ba2+の含有量とW6+の含有量とのカチオン比[Ba2+/W6+]の上限は、好ましくは0.14であり、さらには0.13、0.12、0.11、0.10の順により好ましい。
 Ba2+は、低分散化に寄与する成分である。したがって、第1-1実施形態に係る光学ガラスでは、Ba2+の含有量に対して、高分散成分であるW6+を上記カチオン比となるように含有させることで、所望の高分散性を維持することができる。
 また、第1-1実施形態に係る光学ガラスにおいて、ガラス成分の含有量をカチオン%で表示した場合に、W6+の含有量が0カチオン%であって、Ba2+の含有量が0カチオン%を超える場合には、Ti4+およびBi3+の合計含有量[Ti4++Bi3+]の上限は、好ましくは35.00カチオン%であり、さらには34.00カチオン%、33.00カチオン%、32.50カチオン%、32.30カチオン%、32.00カチオン%、31.80カチオン%、31.60カチオン%、31.40カチオン%、31.20カチオン%、31.00カチオン%、30.80カチオン%、30.60カチオン%、30.40カチオン%、30.20カチオン%、30.10カチオン%、30.00カチオン%の順により好ましい。合計含有量[Ti4++Bi3+]の下限は、好ましくは21.00カチオン%であり、さらには21.20カチオン%、21.40カチオン%、21.60カチオン%、21.80カチオン%、22.00カチオン%、22.20カチオン%、22.40カチオン%、22.60カチオン%、22.80カチオン%、23.00カチオン%、23.10カチオン%、23.20カチオン%、23.30カチオン%、23.40カチオン%、23.50カチオン%の順により好ましい。
 W6+の含有量が0カチオン%であって、Ba2+の含有量が0カチオン%を超える場合には、高分散成分の中でW6+に次いで高分散化への寄与が大きいTi4+、および熱的安定性を改善する働きを有するBi3+の合計含有量を上記範囲とすることで、Ba2+による低分散化を抑制できる。
(ガラス成分)
 上記第1-1実施形態に係る光学ガラスにおいては、以下のガラス成分を含むことができる。
 第1-1実施形態に係る光学ガラスは、P25以外のガラスのネットワーク形成成分として、B23、SiO2、Al23を含むことができる。
 第1-1実施形態に係る光学ガラスにおいて、B23の含有量の上限は、好ましくは4.0%であり、さらには、3.0%、2.0%、1.0%の順により好ましい。B23の含有量は0%であってもよい。
 B23は、ガラスのネットワーク形成成分であり、ガラスの熔融性を改善するとともに、屈折率の上昇を抑制する働きを有する。一方、B23の含有量が多いと、アッベ数の減少を抑制して高分散化を妨げ、また、化学的耐久性が低下する傾向がある。そのため、屈折率の上昇を抑制しつつ、ガラスの熱的安定性、熔融性および成形性等を改善する観点から、B23の含有量の上限は上記範囲であることが好ましい。一方、所望のアッベ数を得つつ、化学的耐久性を良好に維持する観点から、B23の含有量の下限は上記範囲であることが好ましい。
 第1-1実施形態に係る光学ガラスにおいて、SiO2の含有量の上限は、好ましくは8.0%であり、さらには、7.0%、6.0%、5.5%、5.0%、4.5%、4.0%、3.5%、3.0%の順により好ましい。SiO2の含有量は0%であってもよい。
 SiO2は、ガラスのネットワーク形成成分であり、ガラスの熱的安定性、化学的耐久性、耐候性を改善し、熔融ガラスの粘性を高め、熔融ガラスを成形しやすくする働きを有する。一方、SiO2の含有量が多いと、ガラスの熔融性、低温軟化性が低下し、ガラス原料が熔け残る傾向がある。そのため、ガラスの熔融性、低温軟化性等を改善する観点から、SiO2の含有量の上限は上記範囲であることが好ましい。
 第1-1実施形態に係る光学ガラスにおいて、Al23の含有量の上限は、好ましくは5.0%であり、さらには、4.0%、3.5%、2.5%、2.0%、1.5%、1.0%、0.5%の順により好ましい。Al23の含有量は0%であってもよい。
 Al23は、屈折率の上昇を抑制し、ガラスの化学的耐久性、耐候性を改善する働きを有するガラス成分であり、ネットワーク形成成分として考えることができる。一方、Al23の含有量が多くなると、ガラスの熱的安定性が低下し、ガラス転移温度Tgが上昇する、熔融性が低下する等の問題が生じやすい。このような問題を回避する観点から、Al23の含有量の上限は上記範囲であることが好ましい。
 第1-1実施形態に係る光学ガラスにおいて、ガラスのネットワーク形成成分であるP25、B23、SiO2およびAl23の合計含有量[P25+B23+SiO2+Al23]の上限は、好ましくは45.0%であり、さらには、43.0%、41.0%、39.0%、37.0%、35.0%、33.0%の順により好ましい。また、合計含有量[P25+B23+SiO2+Al23]の下限は、好ましくは10.0%であり、さらには、11.0%、12.0%、12.5%、13.0%、14.0%、15.0%の順により好ましい。
 合計含有量[P25+B23+SiO2+Al23]の上限を上記範囲とすることで、屈折率を所望の範囲に維持しやすくなる。また、合計含有量[P25+B23+SiO2+Al23]の下限を上記範囲とすることで、ガラスの熱的安定性を改善し、ガラスの失透をより一層抑制しやすくなる。
 また、第1-1実施形態に係る光学ガラスにおいて、P25、B23、SiO2およびAl23の合計含有量に対するP25の含有量の質量比[P25/(P25+B23+SiO2+Al23)]の下限は、好ましくは0.70であり、さらには、0.75、0.80、0.85、0.90の順により好ましい。質量比[P25/(P25+B23+SiO2+Al23)]を1.00とすることもできる。
 質量比[P25/(P25+B23+SiO2+Al23)]が小さいと、ガラスの熱的安定性が低下し、また、熔融性も低下する。そのため、ガラスの高分散化、良好な熔融性を維持する観点から、質量比[P25/(P25+B23+SiO2+Al23)]の下限は、上記範囲であることが好ましい。
 第1-1実施形態に係る光学ガラスにおいて、TiO2の含有量の下限は、好ましくは1.0%であり、さらには、3.0%、5.0%、6.0%、7.0%、8.0%、9.0%、10.0%の順により好ましい。また、TiO2の含有量の上限は、好ましくは45.0%であり、さらには、44.0%、43.0%、42.0%、41.0%、40.0%、39.0%の順により好ましい。
 TiO2は、Nb25およびBi23と比較して屈折率の上昇を抑制し、高分散化に大きく寄与する。一方、TiO2は、比較的ガラスの着色を増大させやすい。また、TiO2は、熔融ガラスを成形、徐冷して光学ガラスを得る過程で、ガラス内における結晶生成を促進させ、ガラスの透明性を低下(白濁)させる。したがって、本実施形態に係る光学ガラスにおいて、TiO2の含有量は上記範囲とすることが好ましい。
 また、第1-1実施形態に係る光学ガラスにおいて、ガラス成分の含有量をカチオン%で表示すると、Ti4+の含有量の上限は、好ましくは48.00カチオン%であり、さらには47.00カチオン%、46.00カチオン%、45.50カチオン%、45.00カチオン%、44.50カチオン%、44.00カチオン%、43.50カチオン%、43.00カチオン%、42.50カチオン%、42.00カチオン%の順により好ましい。Ti4+の含有量の下限は、好ましくは10.00カチオン%であり、さらには11.00カチオン%、11.50カチオン%、12.00カチオン%、12.50カチオン%、13.00カチオン%、13.50カチオン%、14.00カチオン%、14.50カチオン%、15.00カチオン%、15.50カチオン%の順により好ましい。
 Ti4+はNb5+およびBi3+と比較して屈折率の上昇を抑制し、高分散化に大きく寄与する。一方、Ti4+は、比較的ガラスの着色を増大させやすい。また、Ti4+は、熔融ガラスを成形、徐冷して光学ガラスを得る過程で、ガラス内における結晶生成を促進させ、ガラスの透明性を低下(白濁)させる。したがって、本実施形態に係る光学ガラスにおいて、Ti4+の含有量は上記範囲とすることが好ましい。
 第1-1実施形態に係る光学ガラスにおいて、TiO2の含有量とP25の含有量との質量比[TiO2/P25]の上限は、好ましくは4.50であり、さらには、4.00、3.50、3.00、2.50、2.00、1.50の順により好ましい。また、質量比[TiO2/P25]の下限は、好ましくは0.04であり、さらには、0.08、0.12、0.16、0.20、0.24、0.28、0.32、0.36、0.40、0.44、0.48、0.52の順により好ましい。
 第1-1実施形態に係る光学ガラスでは、TiO2を含むことにより、ガラス内における結晶生成が促進されて、ガラスの透明性が低下(白濁)するという問題が生じる。ネットワーク形成成分であるP25をTiO2に対して上記範囲の割合で含有させることによりこの問題を解消することができる。
 また、第1-1実施形態に係る光学ガラスにおいて、ガラス成分の含有量をカチオン%で表示すると、Ti4+の含有量とP5+の含有量とのカチオン比[Ti4+/P5+]の上限は、好ましくは1.50であり、さらには1.40、1.30、1.29、1.28、1.27、1.26、1.25、1.24、1.23、1.22の順により好ましい。カチオン比[Ti4+/P5+]の下限は、好ましくは0.50であり、さらには0.51、0.52、0.53の順により好ましい。
 第1-1実施形態に係る光学ガラスでは、Ti4+を含むことにより、ガラス内における結晶生成が促進されて、ガラスの透明性が低下(白濁)するという問題が生じる。ネットワーク形成成分であるP5+をTi4+に対して上記範囲の割合で含有させることによりこの問題を解消することができる。
 第1-1実施形態に係る光学ガラスにおいて、Nb25の含有量の下限は、好ましくは5.5%であり、さらには、6.0%、6.5%、7.0%、7.5%、8.0%、8.5%の順により好ましい。また、Nb25の含有量の上限は、好ましくは55.0%であり、さらには、54.0%、53.0%、52.0%、51.0%、50.0%、49.0%、48.0%の順により好ましい。
 Nb25は、高分散化に寄与する成分である。また、ガラスの熱的安定性および化学的耐久性を改善するガラス成分でもある。一方、Nb25の含有量が多くなりすぎると、ガラスの熱的安定性が低下し、また、ガラスの着色が強まる傾向がある。したがって、本実施形態に係る光学ガラスにおいて、Nb25の含有量は上記範囲とすることが好ましい。
 また、第1-1実施形態に係る光学ガラスにおいて、ガラス成分の含有量をカチオン%で表示すると、Nb5+の含有量の上限は、好ましくは45.00カチオン%であり、さらには44.00カチオン%、43.50カチオン%、43.00カチオン%、42.50カチオン%、42.00カチオン%、41.50カチオン%、41.00カチオン%、40.50カチオン%、40.00カチオン%、39.50カチオン%、39.00カチオン%、38.50カチオン%の順により好ましい。Nb5+の含有量の下限は、好ましくは1.00カチオン%であり、さらには2.00カチオン%、2.50カチオン%、3.00カチオン%、3.50カチオン%、4.00カチオン%、4.50カチオン%、5.00カチオン%、5.50カチオン%、6.00カチオン%、6.50カチオン%の順により好ましい。
 Nb5+は、高分散化に寄与する成分である。また、ガラスの熱的安定性および化学的耐久性を改善するガラス成分でもある。一方、Nb5+の含有量が多くなりすぎると、ガラスの熱的安定性が低下し、また、ガラスの着色が強まる傾向がある。したがって、本実施形態に係る光学ガラスにおいて、Nb5+の含有量は上記範囲とすることが好ましい。
 第1-1実施形態に係る光学ガラスにおいて、WO3の含有量の上限は、好ましくは45.0%であり、さらには、44.5%、44.0%、43.5%、43.0%、42.0%、41.0%、40.0%の順により好ましい。また、WO3の含有量の下限は、好ましくは9.0%であり、さらには、7.0%、5.0%、3.0%、1.0%、0.5%、0.3%、0.1%の順により好ましい。WO3の含有量は0%であってもよい。
 WO3は、屈折率の上昇を抑え、高分散化に大きく寄与するが、TiO2、Nb25およびBi23と比較してガラスの着色の原因となりやすく、透過率を悪化させる。したがって、WO3の含有量は上記範囲とすることが好ましい。
 また、第1-1実施形態に係る光学ガラスにおいて、ガラス成分の含有量をカチオン%で表示すると、W6+の含有量の上限は、好ましくは30.00カチオン%であり、さらには29.00カチオン%、28.50カチオン%、28.00カチオン%、27.50カチオン%、27.00カチオン%、26.50カチオン%、26.00カチオン%、25.50カチオン%、25.00カチオン%、24.50カチオン%の順により好ましい。W6+の含有量の下限は、好ましくは0.40カチオン%であり、さらには0.20カチオン%、0.10カチオン%の順により好ましい。W6+の含有量は0カチオン%であってもよい。
 W6+は、屈折率の上昇を抑え、高分散化に大きく寄与するが、Ti4+、Nb5+およびBi3+と比較してガラスの着色の原因となりやすく、透過率を悪化させる。したがってW6+の含有量は上記範囲とすることが好ましい。
 第1-1実施形態に係る光学ガラスにおいて、TiO2、Nb25、WO3およびBi23の合計含有量[TiO2+Nb25+WO3+Bi23]の上限は、好ましくは86.0%であり、さらには、85.5%、85.0%、84.5%、84.0%、83.5%、83.0%の順により好ましい。また、合計含有量[TiO2+Nb25+WO3+Bi23]の下限は、好ましくは55.0%であり、さらには、55.5%、56.0%、56.5%、57.0%、57.5%、58.0%、58.5%、59.0%、59.5%、60.0%、60.5%、61.0%、61.5%、62.0%、62.5%、63.0%、63.5%、64.0%の順により好ましい。
 TiO2、Nb25、WO3およびBi23は、ガラスの高分散化に寄与する。また、適量を含有させることにより、ガラスの熱的安定性を改善する働きも有する。しかし、Bi23は、TiO2、Nb25およびWO3と比べて屈折率を上昇させる働きが強い。よって、屈折率の上昇およびガラスの着色増大を抑制する観点から、合計含有量[TiO2+Nb25+WO3+Bi23]の上限は上記範囲であることが好ましい。また、ガラスを高分散化し、またガラスの熱的安定性を改善する観点から、合計含有量[TiO2+Nb25+WO3+Bi23]の下限は上記範囲であることが好ましい。
 また、第1-1実施形態に係る光学ガラスにおいて、ガラス成分の含有量をカチオン%で表示すると、Ti4+、Nb5+、W6+およびBi3+の合計含有量[Ti4++Nb5++W6++Bi3+]の上限は、好ましくは75.00カチオン%であり、さらには74.50カチオン%、74.00カチオン%、73.50カチオン%、73.00カチオン%、72.50カチオン%、72.00カチオン%、71.50カチオン%、71.00カチオン%、70.50カチオン%の順により好ましい。合計含有量[Ti4++Nb5++W6++Bi3+]の下限は、好ましくは52.00カチオン%であり、さらには52.10カチオン%、52.15カチオン%、52.20カチオン%、52.25カチオン%、52.30カチオン%の順により好ましい。
 第1-1実施形態に係る光学ガラスにおいて、Ti4+、Nb5+、W6+およびBi3+はガラスの高分散化に寄与する。また、適量を含有させることにより、ガラスの熱的安定性を改善する働きも有する。したがって、合計含有量[Ti4++Nb5++W6++Bi3+]の下限は上記範囲であることが好ましい。一方で、Ti4+、Nb5+、W6+およびBi3+はガラスの着色を増大させる。したがって合計含有量[Ti4++Nb5++W6++Bi3+]の上限は上記範囲であることが好ましい。
 第1-1実施形態に係る光学ガラスにおいて、Li2Oの含有量の上限は、好ましくは1.2%であり、さらには、1.1%、1.0%、0.8%、0.6%、0.4%の順により好ましい。Li2Oの含有量は0%であってもよい。
 Li2Oは、屈折率の上昇を抑制し、ガラスの熔融性を改善する働きをする。そのため、所要の光学特性を維持しつつ、熔融性を確保する観点から、Li2Oの含有量は上記範囲であることが好ましい。
 第1-1実施形態に係る光学ガラスにおいて、Na2Oの含有量の上限は、好ましくは6.0%であり、さらには、5.0%、4.5%、4.0%、3.5%、3.0%の順により好ましい。また、Na2Oの含有量の下限は、好ましくは0%である。Na2Oの含有量は0%であってもよい。
 第1-1実施形態に係る光学ガラスにおいて、K2Oの含有量の上限は、好ましくは12.0%であり、さらには、11.0%、10.0%、9.0%、8.5%、8.0%の順により好ましい。また、K2Oの含有量の下限は、ガラスの熱的安定性を良好に維持し、液相温度の上昇を抑えるために、好ましくは0.1%であり、さらには、0.3%、0.5%、1.0%、1.5%、2.0%、2.5%の順により好ましい。K2Oの含有量は0%であってもよい。
 Na2OおよびK2Oは、いずれも、屈折率の上昇を抑制し、ガラスの熔融性を改善する働きを有するが、これらの含有量が多くなると、ガラスの熱的安定性、化学的耐久性、耐候性が低下する。そのため、Na2OおよびK2Oの各含有量は、それぞれ上記範囲とすることが好ましい。
 第1-1実施形態に係る光学ガラスにおいて、Li2O、Na2OおよびK2Oの合計含有量[Li2O+Na2O+K2O]の上限は、好ましくは15.0%であり、さらには、14.0%、13.0%、12.0%、11.0%、10.0%、9.0%の順により好ましい。また、合計含有量[Li2O+Na2O+K2O]の下限は、ガラスの熱的安定性を良好に維持し、液相温度の上昇を抑えるために、好ましくは0.1%であり、さらには、0.3%、0.5%、1.0%、1.5%、2.0%、2.5%の順により好ましい。合計含有量[Li2O+Na2O+K2O]は0%であってもよい。
 Li2O、Na2OおよびK2Oは、いずれも、屈折率の上昇を抑制し、ガラスの熔融性を改善する働きを有する。しかし、これらの含有量が多くなると、ガラスの熱的安定性、化学的耐久性、耐候性が低下する。そのため、Li2O、Na2OおよびK2Oの合計含有量[Li2O+Na2O+K2O]は上記範囲であることが好ましい。
 第1-1実施形態に係る光学ガラスにおいて、Rb2Oの含有量の上限は、好ましくは2.0%であり、さらには、1.0%、0.5%、0.1%の順により好ましい。また、Rb2Oの含有量の下限は、好ましくは0%である。Rb2Oの含有量は0%であってもよい。
 第1-1実施形態に係る光学ガラスにおいて、Cs2Oの含有量の上限は、好ましくは6.0%であり、さらには、5.0%、4.5%、4.0%、3.5%の順により好ましい。また、Cs2Oの含有量の下限は、好ましくは0%である。Cs2Oの含有量は0%であってもよい。
 Rb2OおよびCs2Oは、いずれも、屈折率の上昇を抑制し、ガラスの熔融性を改善する働きを有するが、これらの含有量が多くなると、ガラスの熱的安定性、化学的耐久性、耐候性が低下する。そのため、Rb2OおよびCs2Oの各含有量は、それぞれ上記範囲とすることが好ましい。
 第1-1実施形態に係る光学ガラスにおいて、MgOの含有量の上限は、好ましくは5.0%であり、さらには、4.0%、3.0%、2.0%、1.0%の順により好ましい。また、MgOの含有量の下限は、好ましくは0%である。MgOの含有量は0%であってもよい。
 第1-1実施形態に係る光学ガラスにおいて、CaOの含有量の上限は、好ましくは5.0%であり、さらには、4.0%、3.0%、2.0%、1.0%の順により好ましい。また、CaOの含有量の下限は、好ましくは0%である。CaOの含有量は0%であってもよい。
 第1-1実施形態に係る光学ガラスにおいて、SrOの含有量の上限は、好ましくは6.0%であり、さらには、5.8%、5.7%、5.6%、5.5%、5.0%、4.5%、4.0%、3.5%、3.0%、2.5%の順により好ましい。また、SrOの含有量の下限は、好ましくは0%である。SrOの含有量は0%であってもよい。
 第1-1実施形態に係る光学ガラスにおいて、BaOの含有量の上限は、好ましくは6.0%であり、さらには、5.8%、5.7%、5.6%、5.5%、5.0%、4.5%、4.0%の順により好ましい。また、BaOの含有量の下限は、好ましくは0%である。BaOの含有量は0%であってもよい。
 MgO、CaO、SrO、BaOは、いずれもガラスの熱的安定性、熔融性を改善させる働きを有するガラス成分である。しかし、これらガラス成分の含有量が多くなると、高分散性が損なわれ、また、ガラスの熱的安定性が低下し、ガラスが失透しやすくなる。そのため、これらガラス成分の各含有量は、それぞれ上記範囲であることが好ましい。
 また、第1-1実施形態に係る光学ガラスにおいて、ガラス成分の含有量をカチオン%で表示すると、Ba2+の含有量の上限は、好ましくは13.00カチオン%であり、さらには12.00カチオン%、11.00カチオン%、10.00カチオン%、9.00カチオン%、8.00カチオン%、7.50カチオン%、7.00カチオン%、6.50カチオン%、6.00カチオン%、5.50カチオン%、5.00カチオン%、4.50カチオン%、4.00カチオン%、3.50カチオン%の順により好ましい。また、Ba2+の含有量の下限は、好ましくは0カチオン%である。Ba2+の含有量は0カチオン%であってもよい。
 Mg2+、Ca2+、Sr2+、Ba2+は、いずれもガラスの熱的安定性、熔融性を改善させる働きを有するガラス成分である。しかし、これらガラス成分の含有量が多くなると、高分散性が損なわれ、また、ガラスの熱的安定性が低下し、ガラスが失透しやすくなる。そのため、これらガラス成分の各含有量は、それぞれ上記範囲であることが好ましい。
 第1-1実施形態に係る光学ガラスにおいて、高分散化を妨げることなく熱的安定性を維持する観点から、MgO、CaO、SrOおよびBaOの合計含有量[MgO+CaO+SrO+BaO]の上限は、好ましくは10.0%であり、さらには、9.0%、8.0%、7.0%、6.0%、5.5%、5.0%の順により好ましい。また、合計含有量[MgO+CaO+SrO+BaO]の下限は、好ましくは0%である。合計含有量[MgO+CaO+SrO+BaO]は0%であってもよい。
 第1-1実施形態に係る光学ガラスにおいて、ZnOの含有量の上限は、好ましくは5.0%であり、さらには、4.0%、3.0%、2.0%、1.0%の順により好ましい。また、ZnOの含有量の下限は、好ましくは0%である。ZnOの含有量は0%であってもよい。
 ZnOは、ガラスを熔融するときに、ガラスの原料の熔けを促進する働き(すなわち、熔融性を改善する働き)を有するガラス成分である。また、ZnOは、アルカリ土類金属などの他の二価金属成分と比べて、ガラスの熱的安定性を改善し、液相温度を低下させる働きが強い。そのため、ガラスの熔融性、熱的安定性を改善する観点から、ZnOの含有量の下限は上記範囲であることが好ましい。また、ガラスの低分散化を抑制する観点から、ZnOの含有量の上限は上記範囲であることが好ましい。
 第1-1実施形態に係る光学ガラスにおいて、ZrO2の含有量の上限は、好ましくは6.0%であり、さらには、5.0%、4.5%、4.0%、3.0%、2.0%の順により好ましい。また、ZrO2の含有量の下限は、好ましくは0%である。ZrO2の含有量は0%であってもよい。
 ZrO2は、ガラスの熱的安定性を改善する働きを有するガラス成分である。しかし、ZrO2の含有量が多すぎると、屈折率が上昇し、ガラスの熱的安定性が低下する傾向を示す。また、ガラス原料が熔け残りやすくなる。そのため、ガラスの熔融性、熱的安定性を良好に維持し、所要の光学特性を実現する観点から、ZrO2の含有量の上限は上記範囲であることが好ましい。一方、所要の光学特性を実現しつつ、ガラスの熱的安定性を改善する観点から、ZrO2の含有量の下限は上記範囲であることが好ましい。
 第1-1実施形態に係る光学ガラスにおいて、Ta25の含有量の上限は、好ましくは9.0%であり、さらには、8.0%、7.0%、6.0%、5.0%、4.0%、3.0%の順により好ましい。また、Ta25の含有量の下限は、好ましくは0%である。Ta25の含有量は0%であってもよい。
 Ta25は、ガラスの熱的安定性を改善する働きを有するガラス成分である。一方、Ta25は、屈折率を上昇させ、ガラスを低分散化させる。また、Ta25は、他のガラス成分と比較し、極めて高価な成分であり、Ta25の含有量が多くなるとガラスの生産コストが増大する。さらに、Ta25は他のガラス成分と比べて分子量が大きいため、ガラスの比重を増大させ、結果的にガラス製光学素子の重量を増大させる。また、Ta25の含有量が多くなると、ガラスの熔融性が低下し、ガラスを熔融するときに、ガラス原料の熔け残りが生じやすくなる。そのため、Ta25の含有量は上記範囲であることが好ましい。
 第1-1実施形態に係る光学ガラスにおいて、Ga23の含有量の上限は、好ましくは4.0%であり、さらには、3.5%、3.0%、2.5%、2.0%、1.5%、1.0%、0.5%、0.1%の順により好ましい。また、Ga23の含有量の下限は、好ましくは0%である。Ga23の含有量は0%であってもよい。
 第1-1実施形態に係る光学ガラスにおいて、In23の含有量の上限は、好ましくは5.0%であり、さらには、4.5%、4.0%、3.5%、3.0%の順により好ましい。また、In23の含有量の下限は、好ましくは0%である。In23の含有量は0%であってもよい。
 第1-1実施形態に係る光学ガラスにおいて、Sc23の含有量の上限は、好ましくは5.0%であり、さらには、4.0%、3.0%、2.0%、1.0%の順により好ましい。また、Sc23の含有量の下限は、好ましくは0%である。Sc23の含有量は0%であってもよい。
 第1-1実施形態に係る光学ガラスにおいて、HfO2の含有量の上限は、好ましくは8.0%であり、さらには、7.0%、6.5%、6.0%、5.5%、5.0%、4.5%、4.0%、3.5%、3.0%、2.5%、2.0%、1.5%、1.0%、0.5%、0.1%の順により好ましい。また、HfO2の含有量の下限は、好ましくは0%である。HfO2の含有量は0%であってもよい。
 Ga23、In23、Sc23、HfO2は、いずれも屈折率ndを高める働きを有し、また高価な成分である。そのため、Ga23、In23、Sc23、HfO2の各含有量は上記範囲であることが好ましい。
 第1-1実施形態に係る光学ガラスにおいて、Lu23の含有量の上限は、好ましくは5.0%であり、さらには、4.5%、4.0%、3.5%、3.0%の順により好ましい。また、Lu23の含有量の下限は、好ましくは0%である。Lu23の含有量は0%であってもよい。
 Lu23は、屈折率ndを高める働きを有する。また、分子量が大きいことから、ガラスの比重を増加させるガラス成分でもある。そのため、Lu23の含有量を低減させることが好ましく、Lu23の含有量は上記範囲であることが好ましい。
 第1-1実施形態に係る光学ガラスにおいて、GeO2の含有量の上限は、好ましくは6.0%であり、さらには、5.0%、4.0%、3.0%、2.0%、1.5%、1.0%、0.5%、0.1%の順により好ましい。また、GeO2の含有量の下限は、好ましくは0%である。GeO2の含有量は0%であってもよい。
 GeO2は、屈折率ndを高める働きを有し、また、一般的に使用されるガラス成分の中で、突出して高価な成分である。したがって、ガラスの製造コストを低減する観点から、GeO2の含有量は上記範囲であることが好ましい。
 第1-1実施形態に係る光学ガラスにおいて、La23の含有量の上限は、好ましくは5.0%であり、さらには、4.5%、4.0%、3.5%、3.0%、2.5%、2.0%、1.5%、1.0%、0.5%の順により好ましい。また、La23の含有量の下限は、好ましくは0%である。La23の含有量は0%であってもよい。
 La23の含有量が多くなるとガラスの熱的安定性が低下し、製造中にガラスが失透しやすくなる。したがって、ガラスの熱的安定性の低下を抑制する観点から、La23の含有量は上記範囲であることが好ましい。
 第1-1実施形態に係る光学ガラスにおいて、Gd23の含有量の上限は、好ましくは8.0%であり、さらには、7.0%、6.0%、5.0%、4.0%、3.0%、2.0%、1.5%、1.0%の順により好ましい。また、Gd23の含有量の下限は、好ましくは0%である。Gd23の含有量は0%であってもよい。
 Gd23の含有量が多くなり過ぎるとガラスの熱的安定性が低下し、製造中にガラスが失透しやすくなる。また、Gd23の含有量が多くなり過ぎるとガラスの比重が増大し、好ましくない。したがって、ガラスの熱的安定性を良好に維持しつつ、比重の増大を抑制する観点から、Gd23の含有量は上記範囲であることが好ましい。
 第1-1実施形態に係る光学ガラスにおいて、Y23の含有量の上限は、好ましくは5.0%であり、さらには、4.5%、4.0%、3.5%、3.0%、2.5%、2.0%の順により好ましい。また、Y23の含有量の下限は、好ましくは0%である。Y23の含有量は0%であってもよい。
 Y23の含有量が多くなり過ぎるとガラスの熱的安定性が低下し、製造中にガラスが失透しやすくなる。したがって、ガラスの熱的安定性の低下を抑制する観点から、Y23の含有量は上記範囲であることが好ましい。
 第1-1実施形態に係る光学ガラスにおいて、Yb23の含有量の上限は、好ましくは5.0%であり、さらには、4.5%、4.0%、3.5%、3.0%、2.0%、1.0%、0.5%、0.1%の順により好ましい。また、Yb23の含有量の下限は、好ましくは0%である。Yb23の含有量は0%であってもよい。
 Yb23は、La23、Gd23、Y23と比べて分子量が大きいため、ガラスの比重を増大させる。ガラスの比重が増大すると、光学素子の質量が増大する。例えば、質量の大きいレンズをオートフォーカス式の撮像レンズに組み込むと、オートフォーカス時にレンズの駆動に要する電力が増大し、電池の消耗が激しくなる。したがって、Yb23の含有量を低減させて、ガラスの比重の増大を抑えることが望ましい。
 また、Yb23の含有量が多すぎるとガラスの熱的安定性が低下し、製造中にガラスが失透しやすくなる。ガラスの熱的安定性の低下を防ぎ、比重の増大を抑制する観点から、Yb23の含有量は上記範囲であることが好ましい。
 第1-1実施形態に係る光学ガラスは、主として上述のガラス成分、すなわちP25、B23、SiO2、Al23、TiO2、Nb25、WO3、Bi23、Li2O、Na2O、K2O、Rb2O、Cs2O、MgO、CaO、SrO、BaO、ZnO、ZrO2、Ta25、Ga23、In23、Sc23、HfO2、Lu23、GeO2、La23、Gd23、Y23、およびYb23で構成されていることが好ましく、上述のガラス成分の合計含有量は、95%よりも多くすることが好ましく、98%よりも多くすることがより好ましく、99%よりも多くすることがさらに好ましく、99.5%よりも多くすることが一層好ましい。
 第1-1実施形態に係る光学ガラスにおいて、TeO2の含有量の上限は、好ましくは5.0%であり、さらには、4.5%、4.0%、3.5%、3.0%、2.5%、2.0%、1.5%、1.0%、0.5%、0.1%の順により好ましい。また、TeO2の含有量の下限は、好ましくは0%である。TeO2の含有量は0%であってもよい。
 TeO2は、屈折率ndを高める成分であり、また毒性を有することから、TeO2の含有量を低減させることが好ましい。そのため、TeO2の含有量は上記範囲であることが好ましい。
 第1-1実施形態に係る光学ガラスにおいて、陰イオン成分、すなわちアニオン成分は主として酸素イオンであるが、その他の陰イオンとしてハロゲンイオン、例えば、塩素イオン、ヨウ素イオン、臭素イオン等を少量含有することができる。
 ガラス成分としてハロゲン化物を含有する場合であっても、全ガラス成分における酸化物の割合(質量比)が95質量%以下にならないよう、ハロゲン化物の含有量を少量に留めることが好ましい。
 すなわち、第1-1実施形態に係る光学ガラスにおいて、全ガラス成分における酸化物の含有量は95質量%よりも多くすることが好ましい。さらには、全ガラス成分における酸化物の含有量の下限は97質量%、99質量%、99.5質量%、99.9質量%、99.95質量%、99.99質量%の順により好ましく、全ガラス成分における酸化物の含有量は100質量%であってもよい。全ガラス成分における酸化物の含有量が100質量%であるガラスは、実質的にハロゲン化物を含まない。
 また、第1-1実施形態に係る光学ガラスにおいて、ハロゲンイオンの含有量の上限は、好ましくは4アニオン%であり、さらには、3アニオン%、2アニオン%、1アニオン%、0.5アニオン%の順により好ましい。ハロゲンイオンの含有量は0アニオン%であっても良い。アニオン%とは、ガラスに含まれる全てのアニオン成分の含有量の合計を100%としたときのモル百分率である。
 なお、第1-1実施形態に係る光学ガラスは、基本的に上記ガラス成分により構成されることが好ましいが、本発明の作用効果を妨げない範囲において、その他の成分を含有することも可能である。また、本発明において、不可避的不純物の含有を排除するものではない。
<その他の成分組成>
 Pb、As、Cd、Tl、Be、Seは、いずれも毒性を有する。そのため、第1-1実施形態に係る光学ガラスがこれら元素をガラス成分として含有しないことが好ましい。
 U、Th、Raはいずれも放射性元素である。そのため、第1-1実施形態に係る光学ガラスがこれら元素をガラス成分として含有しないことが好ましい。
 V、Cr、Mn、Fe、Co、Ni、Cu、Pr,Nd、Pm、Sm、Eu、Tb、Dy、Ho、Er、Tmは、ガラスの着色を増大させ、蛍光の発生源となり得る。そのため、第1-1実施形態に係る光学ガラスがこれら元素をガラス成分として含有しないことが好ましい。
 Sb(Sb23)、Sn(SnO2)、Ce(CeO2)は清澄剤として機能する任意に添加可能な元素である。このうち、Sb(Sb23)は、清澄効果の大きな清澄剤である。しかし、Sb(Sb23)は酸化性が強く、Sb(Sb23)の添加量を多くしていくと、Sbイオンによる光吸収により、ガラスの着色が増大し、好ましくない。また、ガラスを熔融するときに、熔融物中にSbがあると、ガラス熔融坩堝を構成する白金の熔融物への溶出が促進され、ガラス中の白金濃度が高くなる。ガラス中において、白金がイオンとして存在すると、光の吸収によりガラスの着色が増大する。また、ガラス中に白金が固形物として存在すると光の散乱源となり、ガラスの品質を低下させる。Sn(SnO2)、Ce(CeO2)は、Sb(Sb23)と比較し、清澄効果が小さい。Sn(SnO2)、Ce(CeO2)は、多量に添加するとガラスの着色が強まる。したがって、清澄剤を添加する場合は、添加量に注意しつつ、Sb(Sb23)を添加することが好ましい。
 Sb23の含有量は、外割り表示とする。すなわち、Sb23、SnO2およびCeO2以外の全ガラス成分の合計含有量を100質量%としたときのSb23の含有量は、好ましくは1質量%未満、より好ましくは0.5質量%未満、さらに好ましくは0.1質量%未満の範囲である。Sb23の含有量は0質量%であってもよい。
 SnO2の含有量も、外割り表示とする。すなわち、SnO2、Sb23およびCeO2以外の全ガラス成分の合計含有量を100質量%としたときのSnO2の含有量は、好ましくは2質量%未満、より好ましくは1質量%未満、さらに好ましくは0.5質量%未満、一層好ましくは0.1質量%未満の範囲である。SnO2の含有量は0質量%であってもよい。SnO2の含有量を上記範囲とすることによりガラスの清澄性を改善できる。
 CeO2の含有量も、外割り表示とする。すなわち、CeO2、Sb23、SnO2以外の全ガラス成分の合計含有量を100質量%としたときのCeO2の含有量は、好ましくは2質量%未満、より好ましくは1質量%未満、さらに好ましくは0.5質量%未満、一層好ましくは0.1質量%未満の範囲である。CeO2の含有量は0質量%であってもよい。CeO2の含有量を上記範囲とすることによりガラスの清澄性を改善できる。
(ガラス特性)
<ガラス転移温度Tg>
 第1-1実施形態に係る光学ガラスのガラス転移温度Tgの上限は、好ましくは750℃であり、さらには、740℃、730℃、720℃、710℃、700℃の順により好ましい。また、ガラス転移温度Tgの下限は、好ましくは520℃であり、さらには、540℃、560℃、580℃、600℃の順により好ましい。
 ガラス転移温度Tgの上限が上記範囲を満たすことにより、ガラスのアニール温度の上昇を抑制することができ、アニール設備、例えば、レア―と呼ばれる連続式アニールやバッチ式アニール炉の熱的ダメージを軽減することができる。
 ガラス転移温度Tgの下限が上記範囲を満たすことにより、所望のアッベ数、屈折率を維持しつつ、ガラスの熱的安定性を良好に維持しやすくなる。
<ガラスの光線透過性>
 第1-1実施形態において、光線透過性は、着色度λ5により評価できる。
 互いに平行であり、光学研磨されている2つの平面を有するガラス(厚さ10.0mm±0.1mm)を用い、上記2つの平面のうち、一方の平面より、この平面に垂直に光線を入射させる。そして、他方の平面から出射した透過光の強度Ioutと入射光の強度Iinの比(Iout/Iin)、すなわち、外部透過率を算出する。分光光度計を用いて、入射光の波長を例えば280~700nmの範囲でスキャンしながら、外部透過率を測定することにより、分光透過率曲線を得る。
 外部透過率は、入射光の波長がガラスの短波長側の吸収端から長波長側にいくにつれて増加し、高い値を示す。
 λ5は、外部透過率が5%となる波長である。280~700nmの波長域において、λ5よりも長波長側におけるガラスの外部透過率は5%より大きい値を示す。
 λ5が短波長化された光学ガラスを用いることで、好適な色再現を可能とする光学素子を提供できる。
 このような理由より、λ5の範囲は440nm以下が好ましく、さらに、435nm以下、430nm以下、425nm以下、420nm以下、415nm以下、410nm以下の順により好ましい。λ5の下限の目安は、380nmである。
<ガラスの比重>
 第1-1実施形態に係る光学ガラスは、屈折率の上昇を抑えた高分散ガラスでありながら、比重が大きくない。通常、ガラスの比重を低減することができれば、レンズの重量を減少できる。その結果、レンズを搭載するカメラレンズのオートフォーカス駆動の消費電力を低減できる。一方、比重を減少させすぎると、熱的安定性の低下を招く。そのため、比重dの上限は、好ましくは5.80であり、さらには、5.60、5.30、5.00、4.80、4.60、4.40、4.20、4.00、3.80、3.70の順により好ましい。また、熱的安定性を改善する観点から、比重dの下限は、好ましくは2.80であり、さらには、2.90、3.00、3.10、3.20の順により好ましい。
<液相温度>
 第1-1実施形態に係る光学ガラスの液相温度の上限は、好ましくは1350℃であり、さらには、1340℃、1330℃、1320℃、1310℃、1300℃の順により好ましい。また、液相温度の下限は、好ましくは1000℃であり、さらには、1020℃、1040℃、1060℃、1080℃、1100℃、1130℃、1150℃の順により好ましい。本実施形態に係る光学ガラスによれば、ガラスの熱的安定性が改善された、屈折率の上昇を抑えた高分散ガラスが得られる。
 なお、液相温度は次のように決定する。10cc(10ml)のガラスを白金坩堝中に投入し1250℃~1350℃で20~30分熔融した後にガラス転移温度Tg以下まで冷却し、ガラスを白金坩堝ごと所定温度の熔解炉に入れ2時間保持する。保持温度は1000℃以上で5℃あるいは10℃刻みとし、2時間保持後、冷却し、100倍の光学顕微鏡でガラス内部の結晶の有無を観察する。結晶の析出しなかった最低温度を液相温度とする。
(光学ガラスの製造)
 本発明の実施形態に係る光学ガラスは、上記所定の組成となるようにガラス原料を調合し、調合したガラス原料により公知のガラス製造方法に従って作製すればよい。例えば、複数種の化合物を調合し、十分混合してバッチ原料とし、バッチ原料を石英坩堝や白金坩堝中に入れて粗熔解(ラフメルト)する。粗熔解によって得られた熔融物を急冷、粉砕してカレットを作製する。さらにカレットを白金坩堝中に入れて加熱、再熔融(リメルト)して熔融ガラスとし、さらに清澄、均質化した後に熔融ガラスを成形し、徐冷して光学ガラスを得る。熔融ガラスの成形、徐冷には、公知の方法を適用すればよい。
 なお、ガラス中に所望のガラス成分を所望の含有量となるように導入することができれば、バッチ原料を調合するときに使用する化合物は特に限定されないが、このような化合物として、酸化物、正リン酸、メタリン酸塩、五酸化二燐、炭酸塩、硝酸塩、水酸化物、フッ化物等が挙げられる。
(光学素子等の製造)
 第1-1発明の実施形態に係る光学ガラスを使用して光学素子を作製するには、公知の方法を適用すればよい。例えば、ガラス原料を熔融して熔融ガラスとし、この熔融ガラスを鋳型に流し込んで板状に成形し、本発明に係る光学ガラスからなるガラス素材を作製する。得られたガラス素材を適宜、切断、研削、研磨し、プレス成形に適した大きさ、形状のプレス成形用ガラス素材を作製する。プレス成形用ガラス素材を加熱、軟化して、公知の方法でプレス成形し、光学素子の形状に近似する光学素子ブランクを作製する。光学素子ブランクをアニールし、公知の方法で研削、研磨して光学素子を作製する。
 作製した光学素子の光学機能面には使用目的に応じて、反射防止膜、全反射膜などをコーティングしてもよい。
 光学素子としては、球面レンズなどの各種レンズ、プリズム、回折格子などが例示できる。
第1-2実施形態
 本発明の第1-2実施形態の光学ガラスは、
 アッベ数νdが16.70以下であり、
 Bi23の含有量が29.0質量%以下であって、
 TiO2、Nb25およびWO3の合計含有量が45.0質量%以上であるリン酸塩光学ガラスである。
 以下、第1-2実施形態に係る光学ガラスについて詳しく説明する。
 第1-2実施形態に係る光学ガラスにおいて、アッベ数νdは16.70以下である。アッベ数νdの上限は、好ましくは16.68であり、さらには、16.66、16.64、16.62、16.60、16.58、16.56、16.54の順により好ましい。また、アッベ数の下限は、好ましくは15.50であり、さらには、15.55、15.60、15.65、15.70の順に大きい値ほどより好ましい。
 アッベ数νdを16.70以下とすることにより、低分散ガラス製レンズと組み合わせてペアレンズとしたときに、アッベ数の差が大きくなって、色収差の補正において高い効果を奏する。
 第1-2実施形態に係る光学ガラスにおいて、Bi23の含有量は29.0%以下である。
 第1-2実施形態に係る光学ガラスにおいて、Bi23の含有量の上限は、好ましくは28.5%であり、さらには、28.0%、27.5%、27.0%、25.0%、20.0%、15.0%、10.0%、6.0%、5.0%の順により好ましい。また、Bi23の含有量の下限は、好ましくは0%である。Bi23の含有量は0%であってもよい。
 Bi23は、適量を含有させることによりガラスの熱的安定性を改善する働きを有する。一方、Bi23の含有量を高めると、屈折率が上昇し、ガラスの着色が増大する。したがって、Bi23の含有量は上記範囲とする。
 また、第1-2実施形態に係る光学ガラスにおいて、ガラス成分の含有量をカチオン%で表示すると、Bi3+の含有量の上限は、好ましくは20.00カチオン%であり、さらには19.50カチオン%、19.00カチオン%、18.50カチオン%、18.00カチオン%、17.50カチオン%、17.00カチオン%、16.50カチオン%の順により好ましい。Bi3+の含有量の下限は、好ましくは3.00カチオン%であり、さらには1.50カチオン%、1.00カチオン%、0.40カチオン%の順により好ましい。Bi3+の含有量は0カチオン%であってもよい。
 Bi3+は、適量を含有させることによりガラスの熱的安定性を改善する働きを有する。一方、Bi3+の含有量を高めると、屈折率が上昇し、ガラスの着色が増大する。したがって、Bi3+の含有量を上記範囲とすることが好ましい。
 第1-2実施形態に係る光学ガラスにおいて、TiO2、Nb25およびWO3の合計含有量[TiO2+Nb25+WO3]は45.0%以上である。
 第1-2実施形態に係る光学ガラスにおいて、TiO2、Nb25およびWO3の合計含有量[TiO2+Nb25+WO3]の下限は、好ましくは46.0%であり、さらには、47.0%、48.0%、49.0%、50.0%の順により好ましい。また、合計含有量[TiO2+Nb25+WO3]の上限は、好ましくは85.0%であり、さらには、84.0%、83.0%、82.0%、81.0%、79.0%、77.0%の順により好ましい。
 TiO2、Nb25およびWO3は、屈折率ndの上昇を抑制し、ガラスの高分散化に寄与する。また、適量を含有させることにより、ガラスの熱的安定性を改善する働きも有する。ガラスを高分散化し、またガラスの熱的安定性を改善する観点から、合計含有量[TiO2+Nb25+WO3]の下限は上記範囲とする。また、屈折率の上昇およびガラスの着色増大を抑制する観点から、合計含有量[TiO2+Nb25+WO3]の上限は上記範囲であることが好ましい。
 第1-2実施形態に係る光学ガラスは、リン酸塩光学ガラスである。リン酸塩光学ガラスとは、ガラスのネットワーク形成成分として主にリン酸塩を含む光学ガラスをいう。したがって、第1-2実施形態に係る光学ガラスは、ネットワーク形成成分としてリン酸塩を含み、その含有量はP25の含有量として表される。ガラスのネットワーク形成成分として、P25、Al23、B23、SiO2等が知られている。ここで、ガラスのネットワーク形成成分として主にリン酸塩を含むとは、質量%表示におけるP25の含有量が、Al23、B23、SiO2のいずれの含有量よりも多いガラスを意味する。
 第1-2実施形態に係る光学ガラスにおいて、P25の含有量の下限は、好ましくは7.0%であり、さらには、8.0%、9.0%、10.0%、10.5%、11.0%の順により好ましい。また、P25の含有量の上限は、好ましくは35.0%であり、さらには、34.5%、34.0%、33.5%、33.0%の順により好ましい。
 P25は、ガラスが高分散成分を多く含有するために必要な成分である。一方、P25を過剰に含むと熔融性が悪化する。したがって、本実施形態に係るガラスにおいて、P25の含有量は上記範囲とすることが好ましい。
 また、第1-2実施形態に係る光学ガラスにおいて、ガラス成分の含有量をカチオン%で表示すると、P5+の含有量の上限は、好ましくは45.00カチオン%であり、さらには44.50カチオン%、44.00カチオン%、43.50カチオン%、43.00カチオン%、42.50カチオン%、42.00カチオン%、41.50カチオン%、41.00カチオン%、40.50カチオン%、40.00カチオン%、39.50カチオン%、39.00カチオン%、38.50カチオン%の順により好ましい。P5+の含有量の下限は、好ましくは20.00カチオン%であり、さらには20.50カチオン%、21.00カチオン%、21.50カチオン%、22.00カチオン%、22.50カチオン%、23.00カチオン%、23.50カチオン%、24.00カチオン%、24.50カチオン%、25.00カチオン%、25.50カチオン%の順により好ましい。
 P5+は、屈折率ndの上昇を抑制し、ガラス中に高分散成分を多く含有するために必須の成分である。一方、P5+を過剰に含むと熔解性が悪化する。したがって、本実施形態に係る光学ガラスにおいて、P5+の含有量は上記範囲とすることが好ましい。
 第1-2実施形態に係る光学ガラスにおいて、TiO2、Nb25およびWO3の合計含有量と、TiO2、Nb25、WO3およびBi23の合計含有量との質量比[(TiO2+Nb25+WO3)/(TiO2+Nb25+WO3+Bi23)]の下限は、好ましくは0.45であり、さらには、0.50、0.55、0.60、0.65、0.70、0.75、0.80、0.85の順により好ましい。また、質量比[(TiO2+Nb25+WO3)/(TiO2+Nb25+WO3+Bi23)]の上限は、好ましくは1.00である。Bi23の含有量は0%であってもよい。
 質量比[(TiO2+Nb25+WO3)/(TiO2+Nb25+WO3+Bi23)]の値を上記範囲とすることで、透過率の悪化を抑制し、また、屈折率の上昇を抑えることができる。
 第1-2実施形態に係る光学ガラスにおいて、TiO2の含有量とNb25の含有量との質量比[TiO2/Nb25]の下限は、好ましくは0.15であり、さらには、0.16、0.17、0.18、0.19、0.20、0.23の順により好ましい。また質量比[TiO2/Nb25]の上限は、好ましくは4.50であり、さらには、4.40、4.30、4.20、4.10、4.00、3.80、3.60の順により好ましい。
 TiO2は、ガラスの熔解性を低下させ、液相温度を上昇させやすい。一方、Nb25は液相温度の低下および屈折率の上昇を抑え、高分散化に寄与する。そのため、Nb25をTiO2に対して一定の割合で含有させることにより、ガラスの熔解性の低下および液相温度の上昇を抑制できる。したがって、本実施形態に係る光学ガラスにおいて、質量比[TiO2/Nb25]は上記範囲とすることが好ましい。
 また、第1-2実施形態に係る光学ガラスにおいて、ガラス成分の含有量をカチオン%で表示すると、Ti4+の含有量とNb5+の含有量とのカチオン比[Ti4+/Nb5+]の上限は、好ましくは6.00であり、さらには5.90、5.80、5.70、5.65、5.60の順により好ましい。カチオン比[Ti4+/Nb5+]の下限は、好ましくは0.40であり、さらには0.41、0.42の順により好ましい。
 Ti4+はガラスの熔解性を低下させ、液相温度を上昇させやすい。一方、Nb5+は液相温度の低下および屈折率の上昇を抑え、高分散化に寄与する。そのため、Nb5+をTi4+に対して一定の割合で含有させることにより、ガラスの熔解性の低下および液相温度の上昇を抑制できる。したがって、本実施形態に係る光学ガラスにおいて、カチオン比[Ti4+/Nb5+]は上記範囲とすることが好ましい。
 第1-2実施形態に係る光学ガラスにおいて、TiO2およびWO3の合計含有量と、Nb25含有量との質量比[(TiO2+WO3)/Nb25]の下限は、好ましくは0.15であり、さらには、0.17、0.19、0.20、0.21、0.23、0.25、0.26、0.28、0.30、0.35、0.40、0.45、0.50、0.55、0.56、0.57、0.58、0.59、0.60、0.61、0.62、0.63、0.64、0.65の順により好ましい。また、質量比[(TiO2+WO3)/Nb25]の上限は、好ましくは8.00であり、さらには、7.90、7.80、7.70、7.60、7.40、7.20、7.00の順により好ましい。
 質量比[(TiO2+WO3)/Nb25]の値を上記範囲とすることで、屈折率の上昇を抑制しつつ、色収差補正に好適な高分散性を有するガラスを得ることができる。
 また、第1-2実施形態に係る光学ガラスにおいて、ガラス成分の含有量をカチオン%で表示すると、Ti4+およびW6+の合計含有量とNb5+の含有量とのカチオン比[(Ti4++W6+)/Nb5+]の上限は、好ましくは7.70であり、さらには7.60、7.50、7.40、7.35、7.30、7.28、7.26の順により好ましい。カチオン比[(Ti4++W6+)/Nb5+]の下限は、好ましくは0.40であり、さらには0.41、0.42の順により好ましい。
 カチオン比[(Ti4++W6+)/Nb5+]の値を上記範囲とすることで、屈折率の上昇を抑制しつつ、色収差補正に好適な高分散性を有するガラスを得ることができる。
 第1-2実施形態に係る光学ガラスにおいて、ガラス成分の含有量をカチオン%で表示した場合に、W6+の含有量が0カチオン%を超える場合には、Ba2+の含有量とW6+の含有量とのカチオン比[Ba2+/W6+]の上限は、好ましくは0.14であり、さらには0.13、0.12、0.11、0.10の順により好ましい。
 Ba2+は、低分散化に寄与する成分である。したがって、第1-2実施形態に係る光学ガラスでは、Ba2+の含有量に対して、高分散成分であるW6+を上記カチオン比となるように含有させることで、所望の高分散性を維持することができる。
 第1-2実施形態に係る光学ガラスにおいて、ガラス成分の含有量をカチオン%で表示した場合に、W6+の含有量が0カチオン%であって、Ba2+の含有量が0カチオン%を超える場合には、Ti4+およびBi3+の合計含有量[Ti4++Bi3+]の上限は、好ましくは35.00カチオン%であり、さらには34.00カチオン%、33.00カチオン%、32.50カチオン%、32.30カチオン%、32.00カチオン%、31.80カチオン%、31.60カチオン%、31.40カチオン%、31.20カチオン%、31.00カチオン%、30.80カチオン%、30.60カチオン%、30.40カチオン%、30.20カチオン%、30.10カチオン%、30.00カチオン%の順により好ましい。合計含有量[Ti4++Bi3+]の下限は、好ましくは21.00カチオン%であり、さらには21.20カチオン%、21.40カチオン%、21.60カチオン%、21.80カチオン%、22.00カチオン%、22.20カチオン%、22.40カチオン%、22.60カチオン%、22.80カチオン%、23.00カチオン%、23.10カチオン%、23.20カチオン%、23.30カチオン%、23.40カチオン%、23.50カチオン%の順により好ましい。
 W6+の含有量が0カチオン%であって、Ba2+の含有量が0カチオン%を超える場合には、高分散成分の中でW6+に次いで高分散化への寄与が大きいTi4+、および熱的安定性を改善する働きを有するBi3+の合計含有量を上記範囲とすることで、Ba2+による低分散化を抑制できる。
 第1-2実施形態に係る光学ガラスにおいて、屈折率ndの上限は、好ましくは2.1500であり、さらには、2.1300、2.1100、2.1000、2.0900、2.0700、2.0500、2.0300、2.0140、2.0000の順により好ましい。また、屈折率ndの下限は、好ましくは1.8800であり、さらには、1.9000、1.9200、1.9400、1.9600の順に小さい値ほどより好ましい。
 屈折率ndを上記範囲とすることにより、屈折率の低い低分散ガラス製レンズと組み合わせてペアレンズとした場合でも、屈折率の差が小さいために、像面湾曲を抑制することができる。
 第1-2実施形態における上記以外のガラス成分組成は、第1-1実施形態と同様とすることができる。また、第1-2実施形態におけるガラス特性、光学ガラスの製造および光学素子等の製造についても、第1-1実施形態と同様とすることができる。
第2実施形態
 以下の第2-1実施形態および第2-2実施形態(以下、「第2実施形態」と総称することがある。)は、還元色を容易に低減できるガラス、光学ガラス、研磨用ガラス素材、プレス成形用ガラス素材、および光学素子に関する。
 本発明の第2実施形態では、熱処理により還元色を低減する際に、その熱処理時間を短縮できるガラスを提供することを目的とする。
 ガラス成分としてLi2Oを含むと、アッベ数νdが上昇し、またガラスの熱的安定性が低下する。そのため、高分散ガラスには、通常、Li2Oを含有させない。
 本発明の第2実施形態の高分散ガラスでは、アッベ数νdを低くして高分散性を維持しながら、ガラス成分としてLi2Oを含有させることで、TiO2、Nb25、WO3およびBi23等の高分散成分に起因する還元色を低減するのに要する熱処理時間を短縮できる。
 ガラス成分としてLi2O等のアルカリ金属酸化物を含有すると、熔融温度が低下し、それに従ってガラス転移温度Tgも低下する。従来の精密プレス用ガラスの中には、ガラス転移温度Tgを下げて加工しやすくするためにLi2Oを含有するものがある。ここで、ガラス転移温度Tgを低下させるためにLi2Oを含有するガラスでは、熔融温度が低いために熔融過程で高分散成分の還元反応はあまり進まないため、ガラスの着色の程度は軽く、長時間の熱処理を要しない。したがって、従来のガラスように、熔融温度を低下させるためにLi2Oを含有させた場合には、生産工程に影響を与えるほど長時間の熱処理を要しないため、還元色を低減させるのに要する熱処理時間を短縮するという課題は認識されていなかった。
 本発明の第2実施形態は、TiO2、Nb25、WO3およびBi23等の高分散成分に起因する還元色が問題となる高分散ガラスにおいて、高分散ガラスのガラス成分として通常含有させることのないLi2Oを含有させることによって、還元色を低減するのに要する熱処理時間を短縮できることを見出したことに基づくものであり、ガラス成分としてLi2Oを含有させることにより得られる効果として、極めて斬新な効果を利用したものである。
 本発明の第2実施形態によれば、高分散ガラスにおいて熱処理により還元色を低減する際に、その熱処理時間を短縮できる。
 なお、本発明の第2実施形態に係るガラスにおいて、Li2Oの含有量はICP-MS(Inductively Coupled Plasma - Mass Spectrometry)により定量し、Li2O以外のガラス成分の含有量はICP-AES(Inductively Coupled Plasma - Atomic Emission Spectrometry)により定量する。ICP-AESにより求められる分析値は、例えば、分析値の±5%程度の測定誤差を含んでいることがある。また、本明細書および本発明において、ガラスの構成成分の含有量が0%または含まないとは、この構成成分を実質的に含まないことを意味し、この構成成分の含有量が不純物レベル程度以下であることを指す。
第2-1実施形態
 本発明の第2-1実施形態のガラスは、
 アッベ数νdが18.10以下であり、
 TiO2、Nb25、WO3およびBi23の合計含有量[TiO2+Nb25+WO3+Bi23]が30質量%以上、かつ
 Bi23の含有量が38質量%以下のリン酸塩ガラスであって、
 Li2Oの含有量とTiO2、Nb25、WO3およびBi23の合計含有量との質量比[Li2O/(TiO2+Nb25+WO3+Bi23)]に100を掛けた値が0.015~0.770である。
 以下、第2-1実施形態に係るガラスについて詳しく説明する。
 第2-1実施形態に係るガラスにおいて、アッベ数νdは18.10以下である。アッベ数νdの上限は、好ましくは18.05であり、さらには、18.00、17.90、17.80、17.70、17.60、17.50、17.40、17.30、17.20、17.10、17.00、16.90、16.80、16.78の順により好ましい。また、アッベ数の下限は、好ましくは15.00であり、さらには、15.10、15.20、15.25、15.30、15.35、15.40、15.45、15.50、15.52、15.54、15.56、15.58、15.60の順により好ましい。
 アッベ数νdを18.10以下とすることにより、低分散ガラス製レンズと組み合わせてペアレンズとしたときに、アッベ数の差が大きくなって、色収差の補正において高い効果を奏する。
 第2-1実施形態に係るガラスにおいて、TiO2、Nb25、WO3およびBi23の合計含有量[TiO2+Nb25+WO3+Bi23]は30%以上である。合計含有量[TiO2+Nb25+WO3+Bi23]の下限は、好ましくは35%であり、さらには、36%、38%、40%、42%、44%、46%、48%、50%、52%、54%、56%、58%、60%、62%、64%の順により好ましい。また、合計含有量[TiO2+Nb25+WO3+Bi23]の上限は、好ましくは90%であり、さらには、88%、86%、85%、84%、83%、82%、81%、80%、79%、78%、77%の順により好ましい。
 TiO2、Nb25、WO3およびBi23は、ガラスの高分散化に寄与する。また、適量を含有させることにより、ガラスの熱的安定性を改善する働きも有する。したがって、合計含有量[TiO2+Nb25+WO3+Bi23]の下限は上記範囲であることが好ましい。一方で、TiO2、Nb25、WO3およびBi23はガラスの着色を増大させる。したがって、合計含有量[TiO2+Nb25+WO3+Bi23]の上限は上記範囲であることが好ましい。
 また、第2-1実施形態に係るガラスにおいて、ガラス成分の含有量をカチオン%で表示すると、Ti4+、Nb5+、W6+およびBi3+の合計含有量[Ti4++Nb5++W6++Bi3+]の上限は、好ましくは75.00カチオン%であり、さらには74.50カチオン%、74.00カチオン%、73.50カチオン%、73.00カチオン%、72.50カチオン%、72.00カチオン%、71.50カチオン%、71.00カチオン%、70.50カチオン%の順により好ましい。合計含有量[Ti4++Nb5++W6++Bi3+]の下限は、好ましくは52.00カチオン%であり、さらには52.10カチオン%、52.15カチオン%、52.20カチオン%、52.25カチオン%、52.30カチオン%の順により好ましい。
 Ti4+、Nb5+、W6+およびBi3+は、ガラスの高分散化に寄与する。また、適量を含有させることにより、ガラスの熱的安定性を改善する働きも有する。したがって、合計含有量[Ti4++Nb5++W6++Bi3+]の下限は上記範囲であることが好ましい。一方で、Ti4+、Nb5+、W6+およびBi3+はガラスの着色を増大させる。したがって、合計含有量[Ti4++Nb5++W6++Bi3+]の上限は上記範囲であることが好ましい。
 第2-1実施形態に係るガラスにおいて、Bi23の含有量は38%以下である。Bi23の含有量の上限は、好ましくは35%であり、さらには、33%、30%、28%、25%、23%、20%の順により好ましい。また、Bi23の含有量の下限は、好ましくは0%である。Bi23の含有量は0%であってもよい。
 Bi23は、高分散化に寄与する成分である。また、Bi23の含有量を上記範囲とすることで、比重の増大およびガラス転移温度Tgの低下を抑制できる。ガラスの比重が増大すると、光学素子の質量が増大する。例えば、質量の大きいレンズをオートフォーカス式の撮像レンズに組み込むと、オートフォーカス時にレンズの駆動に要する電力が増大し、電池の消耗が著しくなる。したがって、Bi23の含有量を上記範囲とすることが好ましい。
 また、Bi23は、他の高分散成分TiO2、Nb25、WO3に比べて、屈折率を大幅に上昇させる働きを有する。屈折率が大幅に上昇すると、屈折率の低い低分散ガラス製レンズと組み合わせて色収差の補正に用いた場合、屈折率差が大きいために像面湾曲が強く表れやすい。したがって、Bi23の含有量を上記範囲とすることが好ましい。
 また、第2-1実施形態に係るガラスにおいて、ガラス成分の含有量をカチオン%で表示すると、Bi3+の含有量の上限は、好ましくは10.00カチオン%であり、さらには9.00カチオン%、8.00カチオン%、7.00カチオン%、6.00カチオン%、5.00カチオン%、4.50カチオン%、4.00カチオン%、3.50カチオン%、3.00カチオン%、2.50カチオン%、2.00カチオン%、1.50カチオン%、1.00カチオン%の順により好ましい。Bi3+の含有量は0カチオン%であってもよい。
 Bi3+は、高分散化に寄与する成分である。また、Bi3+の含有量を上記範囲とすることで、比重の増大およびガラス転移温度Tgの低下を抑制できる。ガラスの比重が増大すると、光学素子の質量が増大する。例えば、質量の大きいレンズをオートフォーカス式の撮像レンズに組み込むと、オートフォーカス時にレンズの駆動に要する電力が増大し、電池の消耗が著しくなる。したがって、Bi3+の含有量を上記範囲とすることが好ましい。
 また、Bi3+は、他の高分散成分Ti4+、Nb5+、W6+に比べて、屈折率を大幅に上昇させる働きを有する。屈折率が大幅に上昇すると、屈折率の低い低分散ガラス製レンズと組み合わせて色収差の補正に用いた場合、屈折率差が大きいために像面湾曲が強く表れやすい。したがって、Bi3+の含有量を上記範囲とすることが好ましい。
 第2-1実施形態に係るガラスは、リン酸塩ガラスである。リン酸塩ガラスとは、ガラスのネットワーク形成成分として主にリン酸塩を含むガラスをいう。したがって、第2-1実施形態に係るガラスは、ネットワーク形成成分として主にリン酸塩を含み、その含有量はP25の含有量として表される。ガラスのネットワーク形成成分として、P25、Al23、B23、SiO2等が知られている。ここで、ガラスのネットワーク形成成分として主にリン酸塩を含むとは、質量%表示におけるP25の含有量が、Al23、B23、SiO2のいずれの含有量よりも多いガラスを意味する。
 第2-1実施形態に係るガラスにおいて、P25の含有量の下限は、好ましくは7.0%であり、さらには、8.0%、9.0%、10.0%、11.0%、12.0%、13.0%、14.0%、15.0%、16.0%、17.0%、18.0%、19.0%、20.0%の順により好ましい。また、P25の含有量の上限は、好ましくは37.0%であり、さらには、36.0%、35.0%、34.5%、34.0%、33.5%、33.0%、32.5%、32.0%、31.5%、31.0%、30.5%、30.0%の順により好ましい。
 P25は、ガラスが高分散成分を多く含有するために必要な成分である。一方、P25を過剰に含むと熔融性が悪化する。したがって、本実施形態に係るガラスにおいて、P25の含有量は上記範囲とすることが好ましい。
 また、第2-1実施形態に係るガラスにおいて、ガラス成分の含有量をカチオン%で表示すると、P5+の含有量の上限は、好ましくは42.00カチオン%であり、さらには41.50カチオン%、41.00カチオン%、40.50カチオン%、40.00カチオン%、39.50カチオン%、39.00カチオン%、38.50カチオン%、38.00カチオン%、37.50カチオン%、37.00カチオン%、36.50カチオン%、36.00カチオン%の順により好ましい。P5+の含有量の下限は、好ましくは25.00カチオン%であり、さらには25.50カチオン%、26.00カチオン%、26.50カチオン%、27.00カチオン%、27.50カチオン%、28.00カチオン%、28.50カチオン%、29.00カチオン%、29.30カチオン%の順により好ましい。
 P5+は、屈折率ndの上昇を抑制し、ガラス中に高分散成分を多く含有するために必須の成分である。一方、P5+を過剰に含むと熔解性が悪化する。したがって、本実施形態に係る光学ガラスにおいて、P5+の含有量は上記範囲とすることが好ましい。
 第2-1実施形態に係るガラスにおいて、Li2Oの含有量とTiO2、Nb25、WO3およびBi23の合計含有量との質量比[Li2O/(TiO2+Nb25+WO3+Bi23)]に100を掛けた値は0.015~0.770である。質量比[Li2O/(TiO2+Nb25+WO3+Bi23)]に100を掛けた値の下限は、好ましくは0.017であり、さらには、0.019、0.021、0.023、0.025、0.027、0.030の順により好ましい。また、質量比[Li2O/(TiO2+Nb25+WO3+Bi23)]に100を掛けた値の上限は、好ましくは0.750であり、さらには、0.730、0.710、0.700、0.680、0.650、0.600、0.550の順により好ましい。
 質量比[Li2O/(TiO2+Nb25+WO3+Bi23)]に100を掛けた値を上記範囲とすることで、熱処理による着色の低減が充分に促進される。質量比[Li2O/(TiO2+Nb25+WO3+Bi23)]に100を掛けた値が0.750を超えると、所望の高分散特性が得られず、また、ガラスの安定性が損なわれる。
 第2-1実施形態に係るガラスにおいて、ガラス成分の含有量をカチオン%で表示した場合に、W6+の含有量が0カチオン%を超える場合には、Ba2+の含有量とW6+の含有量とのカチオン比[Ba2+/W6+]の上限は、好ましくは0.14であり、さらには0.13、0.12、0.11、0.10の順により好ましい。
 Ba2+は、低分散化に寄与する成分である。したがって、第2-1実施形態に係るガラスでは、Ba2+の含有量に対して、高分散成分であるW6+を上記カチオン比となるように含有させることで、所望の高分散性を維持することができる。
 また、第2-1実施形態に係るガラスにおいて、ガラス成分の含有量をカチオン%で表示した場合に、W6+の含有量が0カチオン%であって、Ba2+の含有量が0カチオン%を超える場合には、Ti4+およびBi3+の合計含有量[Ti4++Bi3+]の上限は、好ましくは35.00カチオン%であり、さらには34.00カチオン%、33.00カチオン%、32.50カチオン%、32.30カチオン%、32.00カチオン%、31.80カチオン%、31.60カチオン%、31.40カチオン%、31.20カチオン%、31.00カチオン%、30.80カチオン%、30.60カチオン%、30.40カチオン%、30.20カチオン%、30.10カチオン%、30.00カチオン%の順により好ましい。合計含有量[Ti4++Bi3+]の下限は、好ましくは21.00カチオン%であり、さらには21.20カチオン%、21.40カチオン%、21.60カチオン%、21.80カチオン%、22.00カチオン%、22.20カチオン%、22.40カチオン%、22.60カチオン%、22.80カチオン%、23.00カチオン%、23.10カチオン%、23.20カチオン%、23.30カチオン%、23.40カチオン%、23.50カチオン%の順により好ましい。
 W6+の含有量が0カチオン%であって、Ba2+の含有量が0カチオン%を超える場合には、高分散成分の中でW6+に次いで高分散化への寄与が大きいTi4+、および熱的安定性を改善する働きを有するBi3+の合計含有量を上記範囲とすることで、Ba2+による低分散化を抑制できる。
(ガラス成分)
 上記第2-1実施形態に係るガラスの好ましい態様を、以下に詳述する。
 第2-1実施形態に係るガラスにおいて、Li2Oの含有量の下限は、好ましくは0.010%であり、さらには、0.012%、0.014%、0.016%、0.018%、0.020%の順により好ましい。Li2Oの含有量の上限は、好ましくは0.640%であり、さらには、0.630%、0.620%、0.610%、0.600%、0.580%、0.560%、0.540%、0.520%、0.500%、0.490%、0.480%、0.470%、0.460%、0.450%、0.440%、0.430%、0.420%、0.410%、0.400%、0.390%、0.380%、0.370%、0.360%、0.350%、0.340%の順により好ましい。
 Li2Oの含有量を上記範囲とすることにより、TiO2、Nb25、WO3およびBi23等の高分散成分に起因する還元色を低減するのに要する熱処理時間を短縮できる。また、ガラス転移温度Tgの低下を抑制できる。一方で、Li2Oを含有量が多すぎると、アッベ数νdが上昇し、ガラスの熱的安定性が低下するおそれがある。
 第2-1実施形態に係るガラスにおいて、下記式(1)で表されるβOHの値の下限は、好ましくは0.05mm-1であり、さらには、0.10mm-1、0.15mm-1、0.20mm-1、0.25mm-1、0.30mm-1、0.35mm-1の順により好ましい。また、βOHの値の上限は、好ましくは4.00mm-1であり、さらには、3.90mm-1、3.80mm-1、3.70mm-1、3.60mm-1、3.50mm-1、3.40mm-1、3.30mm-1、3.20mm-1、3.10mm-1、3.00mm-1、2.90mm-1、2.80mm-1、2.70.mm-1、2.60mm-1、2.50mm-1、2.40mm-1、2.30mm-1、2.25mm-1、2.20mm-1、2.10mm-1、2.00mm-1の順により好ましい。
 βOH=-[ln(D/C)]/t ・・・(1)
 ここで、上記式(1)中、tは外部透過率の測定に用いる上記ガラスの厚み(mm)を表し、Cは上記ガラスに対してその厚み方向と平行に光を入射した際の波長2500nmにおける外部透過率(%)を表し、Dは上記ガラスに対してその厚み方向と平行に光を入射した際の波長2900nmにおける外部透過率(%)を表す。また、lnは自然対数である。βOHの単位はmm-1である。
 なお、「外部透過率」とは、ガラスに入射する入射光の強度Iinに対するガラスを透過した透過光の強度Ioutの比(Iout/Iin)、すなわち、ガラスの表面における表面反射も考慮した透過率である。透過率は、分光光度計を用いて、透過スペクトルを測定することにより得られる。分光装置としては、「UV-3100(島津)」を用いることができる。
 上記式(1)で表されるβOHは、水酸基に起因する光の吸収により透過率が変化することに基づいて規定されている。そのため、βOHを評価することにより、ガラス中に含まれる水(および/または水酸化物イオン)の濃度を評価できる。すなわち、βOHが高いガラスは、ガラス中に含まれる水(および/または水酸化物イオン)の濃度が高いことを意味している。
 βOHの値を上記範囲とすることで、ガラスの熔融容器等に由来する白金等の貴金属がガラス中に溶け込む量を低減でき、また、還元色を低減した後、すなわち熱処理後の透過率を改善できる。さらに、還元色を低減するのに要する熱処理時間をより短縮できる。一方、βOHの値が大きすぎると、ガラスの耐失透性が低下するおそれがあり、また、熔融ガラスからの揮発物量が増加するおそれがある。
 ガラスのβOHの値を高める方法は、特に限定されるものではないが、好ましくは熔融工程において、熔融ガラス中の水分量を高める方法が挙げられる。熔融ガラス中の水分量を高める方法としては、例えば、熔融雰囲気に水蒸気を付加する処理や、熔融ガラス内に水蒸気を含むガスをバブリングする処理等を行うことが挙げられる。
 第2-1実施形態に係るガラスは、好ましくはNb25を含有する。本実施形態に係るガラスにおいて、Nb25の含有量の下限は、好ましくは5.0%であり、さらには、5.5%、6.0%、6.5%、7.0%、7.5%、8.0%、8.5%、9.0%、9.5%、10.0%、10.5%、11.0%、11.5%、12.0%、12.5%、13.0%、13.5%、14.0%、14.5%、15.5%、16.0%、16.5%、17.0%、17.5%、18.0%、18.5%、19.0%、19.5%、20.0%、20.5%、21.0%、21.5%、22.0%、22.5%、23.0%の順により好ましい。また、Nb25の含有量の上限は、好ましくは60.0%であり、さらには、59.0%、58.0%、57.0%、56.0%、55.0%、54.0%、53.0%、52.0%、51.0%、50.0%、49.0%、48.0%、47.0%、46.0%、45.0%、44.0%、43.0%、42.0%、41.0%、40.0%、39.0%、38.0%、37.0%の順により好ましい。
 Nb25は、高分散化に寄与する成分である。また、ガラスの熱的安定性および化学的耐久性を改善するガラス成分でもある。一方、Nb25の含有量が多すぎると、ガラスの熱的安定性が低下し、また、ガラスの着色が強まる傾向がある。したがって、本実施形態に係るガラスにおいて、Nb25の含有量は上記範囲とすることが好ましい。
 また、第2-1実施形態に係るガラスにおいて、ガラス成分の含有量をカチオン%で表示すると、Nb5+の含有量の上限は、好ましくは30.00カチオン%であり、さらには29.00カチオン%、28.50カチオン%、28.00カチオン%、27.50カチオン%、27.00カチオン%、26.50カチオン%、26.00カチオン%、25.50カチオン%、25.00カチオン%、24.50カチオン%の順により好ましい。Nb5+の含有量の下限は、好ましくは10.00カチオン%であり、さらには11.00カチオン%、12.00カチオン%、12.50カチオン%、13.00カチオン%、13.50カチオン%、14.00カチオン%、14.50カチオン%、15.00カチオン%、15.50カチオン%、16.00カチオン%、16.50カチオン%、17.00カチオン%、17.50カチオン%の順により好ましい。
 Nb5+は、高分散化に寄与する成分である。また、ガラスの熱的安定性および化学的耐久性を改善するガラス成分でもある。一方、Nb5+の含有量が多すぎると、ガラスの熱的安定性が低下し、また、ガラスの着色が強まる傾向がある。したがって、本実施形態に係るガラスにおいて、Nb5+の含有量は上記範囲とすることが好ましい。
 第2-1実施形態に係るガラスは、好ましくはTiO2を含有する。本実施形態に係るガラスにおいて、TiO2の含有量の下限は、好ましくは5.0%であり、さらには、6.0%、7.0%、8.0%、9.0%、10.0%、11.0%、12.0%、13.0%、14.0%、15.0%、16.0%、17.0%、18.0%、19.0%の順により好ましい。また、TiO2の含有量の上限は、好ましくは50.0%であり、さらには、49.0%、48.0%、47.0%、46.0%、45.0%、44.0%、43.0%、42.0%、41.0%、40.0%、39.0%、38.0%、37.0%、36.0%、35.0%、34.0%、33.0%、32.0%、31.0%の順により好ましい。
 TiO2は、Nb25、WO3およびBi23と同様に、高分散化に大きく寄与する。一方、TiO2は、比較的ガラスの着色を増大しやすい。したがって、本実施形態に係るガラスにおいて、TiO2の含有量は上記範囲とすることが好ましい。
 また、第2-1実施形態に係るガラスにおいて、ガラス成分の含有量をカチオン%で表示すると、Ti4+の含有量の上限は、好ましくは40.00カチオン%であり、さらには39.00カチオン%、38.00カチオン%、37.50カチオン%、37.00カチオン%、36.50カチオン%、36.00カチオン%、35.50カチオン%、35.00カチオン%、34.50カチオン%の順により好ましい。Ti4+の含有量の下限は、好ましくは20.00カチオン%であり、さらには21.00カチオン%、21.50カチオン%、22.00カチオン%、22.50カチオン%、23.00カチオン%、23.50カチオン%、24.00カチオン%、24.50カチオン%、25.00カチオン%の順により好ましい。
 Ti4+は、Nb5+、W6+およびBi3+と同様に、高分散化に大きく寄与する。一方、TiO2は、比較的ガラスの着色を増大しやすい。したがって、本実施形態に係るガラスにおいて、Ti4+の含有量は上記範囲とすることが好ましい。
 第2-1実施形態に係るガラスにおいて、TiO2の含有量とNb25の含有量との質量比[TiO2/Nb25]の下限は、好ましくは0.16であり、さらには、0.17、0.18、0.19、0.20、0.23の順により好ましい。また質量比[TiO2/Nb25]の上限は、好ましくは4.50であり、さらには、4.40、4.30、4.20、4.10、4.00、3.80、3.60の順により好ましい。
 TiO2はガラスの熔解性を低下させ、液相温度を上昇させやすい。一方、Nb25は液相温度の低下および屈折率の上昇を抑え、高分散化に寄与する。そのため、NNb25をTiO2に対して一定の割合で含有させることにより、ガラスの熔解性の低下および液相温度の上昇を抑制できる。したがって、本実施形態に係るガラスにおいて、カチオン比[TiO2/Nb25]は上記範囲とすることが好ましい。
 また、第2-1実施形態に係るガラスにおいて、ガラス成分の含有量をカチオン%で表示すると、Ti4+の含有量とNb5+の含有量とのカチオン比[Ti4+/Nb5+]の上限は、好ましくは6.00であり、さらには5.90、5.80、5.70、5.65、5.60の順により好ましい。カチオン比[Ti4+/Nb5+]の下限は、好ましくは0.40であり、さらには0.41、0.42の順により好ましい。
 Ti4+はガラスの熔解性を低下させ、液相温度を上昇させやすい。一方、Nb5+は液相温度の低下および屈折率の上昇を抑え、高分散化に寄与する。そのため、Nb5+をTi4+に対して一定の割合で含有させることにより、ガラスの熔解性の低下および液相温度の上昇を抑制できる。したがって、本実施形態に係るガラスにおいて、カチオン比[Ti4+/Nb5+]は上記範囲とすることが好ましい。
 第2-1実施形態に係るガラスは、P25以外のガラスのネットワーク形成成分として、B23、SiO2、Al23を含むことができる。
 第2-1実施形態に係るガラスにおいて、B23の含有量の上限は、好ましくは8.0%であり、さらには、7.0%、6.0%、5.0%、4.0%、3.0%、2.0%、1.0%の順により好ましい。B23の含有量は0%であってもよい。
 B23は、ガラスのネットワーク形成成分であり、ガラスの熔融性を改善する働きを有する。一方、B23の含有量が多いと、アッベ数の減少が抑制されて高分散化が妨げられ、また、化学的耐久性が低下する傾向がある。そのため、ガラスの熱的安定性、熔融性および成形性等を改善する観点から、B23の含有量の上限は上記範囲であることが好ましい。
 第2-1実施形態に係るガラスにおいて、SiO2の含有量の上限は、好ましくは8.0%であり、さらには、7.0%、6.0%、5.0%、4.0%、3.5%、3.0%、2.5%、2.0%、1.5%、1.0%の順により好ましい。SiO2の含有量は0%であってもよい。
 SiO2は、ガラスのネットワーク形成成分であり、ガラスの熱的安定性、化学的耐久性、耐候性を改善し、熔融ガラスの粘性を高め、熔融ガラスを成形しやすくする働きを有する。一方、SiO2の含有量が多いと、ガラスの熔融性が低下し、ガラス原料が熔け残る傾向がある。そのため、ガラスの熔融性を改善する観点から、SiO2の含有量の上限は上記範囲であることが好ましい。
 第2-1実施形態に係るガラスにおいて、Al23の含有量の上限は、好ましくは5.0%であり、さらには、4.0%、3.5%、3.0%、2.5%、2.0%、1.5%、1.0%、0.5%の順により好ましい。Al23の含有量は0%であってもよい。
 Al23は、ガラスの化学的耐久性、耐候性を改善する働きを有するガラス成分であり、ネットワーク形成成分として考えることができる。一方、Al23の含有量が多くなると、ガラスの熱的安定性が低下し、ガラス転移温度Tgが上昇して、熔融性が低下しやすい。したがって、Al23の含有量の上限は上記範囲であることが好ましい。
 第2-1実施形態に係るガラスにおいて、ガラスのネットワーク形成成分であるP25、B23、SiO2およびAl23の合計含有量[P25+B23+SiO2+Al23]の上限は、好ましくは45.0%であり、さらには、44.0%、43.0%、42.0%、41.0%、40.0%、39.0%、38.0%、37.0%、36.0%、35.0%、34.0%、33.0%、32.0%、31.0%、30.0%の順により好ましい。また、合計含有量[P25+B23+SiO2+Al23]の下限は、好ましくは10.0%であり、さらには、11.0%、12.0%、13.0%、14.0%、15.0%、16.0%、17.0%、18.0%、19.0%、20.0%の順により好ましい。
 合計含有量[P25+B23+SiO2+Al23]を上記範囲とすることで、ガラスの熱的安定性を改善し、ガラスの失透を抑制できる。
 また、第2-1実施形態に係るガラスにおいて、P25、B23、SiO2およびAl23の合計含有量に対するP25の含有量の質量比[P25/(P25+B23+SiO2+Al23)]の下限は、好ましくは0.55であり、さらには、0.60、0.65、0.70、0.75、0.80、0.85、0.90、0.95の順により好ましい。質量比[P25/(P25+B23+SiO2+Al23)]を1.00とすることもできる。
 質量比[P25/(P25+B23+SiO2+Al23)]が小さいと、ガラスの熱的安定性が低下し、また、熔融性も低下する。そのため、ガラスの高分散化、良好な熔融性を維持する観点から、質量比[P25/(P25+B23+SiO2+Al23)]の下限は、上記範囲であることが好ましい。
 第2-1実施形態に係るガラスにおいて、TiO2の含有量とP25の含有量との質量比[TiO2/P25]の上限は、好ましくは4.50であり、さらには、4.00、3.50、3.00、2.50、2.00、1.50の順により好ましい。また、質量比[TiO2/P25]の下限は、好ましくは0.04であり、さらには、0.08、0.12、0.16、0.20、0.24、0.28、0.32、0.36、0.40、0.44、0.48、0.52の順により好ましい。
 第2-1実施形態に係るガラスでは、TiO2を含むことにより、ガラス内における結晶生成が促進されて、ガラスの透明性が低下(白濁)するという問題が生じる。ネットワーク形成成分であるP25をTiO2に対して上記範囲の割合で含有させることによりこの問題を解消することができる。
 また、第2-1実施形態に係るガラスにおいて、ガラス成分の含有量をカチオン%で表示すると、Ti4+の含有量とP5+の含有量とのカチオン比[Ti4+/P5+]の上限は、好ましくは1.50であり、さらには1.40、1.30、1.29、1.28、1.27、1.26、1.25、1.24、1.23、1.22の順により好ましい。カチオン比[Ti4+/P5+]の下限は、好ましくは0.50であり、さらには0.51、0.52、0.53の順により好ましい。
 第2-1実施形態に係るガラスでは、Ti4+を含むことにより、ガラス内における結晶生成が促進されて、ガラスの透明性が低下(白濁)するという問題が生じる。ネットワーク形成成分であるP5+をTi4+に対して上記範囲の割合で含有させることによりこの問題を解消することができる。
 第2-1実施形態に係るガラスにおいて、WO3の含有量の上限は、好ましくは50.0%であり、さらには、49.0%、48.0%、47.0%、46.0%、45.0%、44.0%、43.0%、42.0%、41.0%、40.0%、39.0%、38.0%、37.0%、36.0%、35.0%、34.0%、33.0%、32.0%、31.0%、30.0%の順により好ましい。また、WO3の含有量の下限は、好ましくは0.01%であり、さらには、0.1%、0.3%、0.5%、0.7%、1.0%の順により好ましい。WO3の含有量は0%であってもよい。
 WO3は、高分散化に大きく寄与するが、TiO2、Nb25およびBi23と比較してガラスの着色の原因となりやすく、透過率を悪化させる。したがって、WO3の含有量は上記範囲とすることが好ましい。
 また、第2-1実施形態に係るガラスにおいて、ガラス成分の含有量をカチオン%で表示すると、W6+の含有量の上限は、好ましくは20.00カチオン%であり、さらには19.00カチオン%、18.50カチオン%、18.00カチオン%、17.50カチオン%、17.00カチオン%、16.50カチオン%、16.00カチオン%、15.50カチオン%、15.00カチオン%、14.50カチオン%、14.00カチオン%、13.50カチオン%の順により好ましい。W6+の含有量の下限は、好ましくは0.40カチオン%であり、さらには0.20カチオン%、0.10カチオン%の順により好ましい。W6+の含有量は0カチオン%であってもよい。
 W6+は、高分散化に大きく寄与するが、Ti4+、Nb5+およびBi3+と比較してガラスの着色の原因となりやすく、透過率を悪化させる。したがって、W6+の含有量は上記範囲とすることが好ましい。
 第2-1実施形態に係るガラスにおいて、TiO2およびWO3の合計含有量と、Nb25含有量との質量比[(TiO2+WO3)/Nb25]の下限は、好ましくは0.15であり、さらには、0.17、0.19、0.20、0.21、0.23、0.25、0.26、0.28、0.30、0.35、0.40、0.45、0.50、0.55、0.56、0.57、0.58、0.59、0.60、0.61、0.62、0.63、0.64、0.65の順により好ましい。また、質量比[(TiO2+WO3)/Nb25]の上限は、好ましくは8.00であり、さらには、7.90、7.80、7.70、7.60、7.40、7.20、7.00の順により好ましい。
 質量比[(TiO2+WO3)/Nb25]の値を上記範囲とすることで、屈折率の上昇を抑えつつ、色収差補正に好適な高分散性を有するガラスを得ることができる。
 また、第2-1実施形態に係るガラスにおいて、ガラス成分の含有量をカチオン%で表示すると、Ti4+およびW6+の合計含有量とNb5+の含有量とのカチオン比[(Ti4++W6+)/Nb5+]の上限は、好ましくは7.70であり、さらには7.60、7.50、7.40、7.35、7.30、7.28、7.26の順により好ましい。カチオン比[(Ti4++W6+)/Nb5+]の下限は、好ましくは0.40であり、さらには0.41、0.42の順により好ましい。
 カチオン比[(Ti4++W6+)/Nb5+]の値を上記範囲とすることで、屈折率の上昇を抑制しつつ、色収差補正に好適な高分散性を有するガラスを得ることができる。
 第2-1実施形態に係るガラスにおいて、Na2Oの含有量の上限は、好ましくは10.0%であり、さらには、9.0%、8.0%、7.0%、6.0%、5.0%、4.0%、3.0%の順により好ましい。Na2Oの含有量は0%であってもよい。
 また、第2-1実施形態に係る光学ガラスにおいて、ガラス成分の含有量をカチオン%で表示すると、Na+の含有量の上限は、好ましくは13.00カチオン%であり、さらには12.00カチオン%、11.50カチオン%、11.00カチオン%、10.50カチオン%、10.00カチオン%、9.50カチオン%、9.00カチオン%、8.50カチオン%、8.00カチオン%の順により好ましい。Na+の含有量の下限は、好ましくは1.50カチオン%であり、さらには1.30カチオン%、1.00カチオン%、0.70カチオン%、0.50カチオン%、0.30カチオン%の順により好ましい。Na+の含有量は0カチオン%であってもよい。
 第2-1実施形態に係るガラスにおいて、K2Oの含有量の上限は、好ましくは15.0%であり、さらには、14.0%、13.0%、12.0%、11.0%、10.0%、9.0%、8.0%、7.0%、6.0%、5.0%の順により好ましい。また、K2Oの含有量の下限は、好ましくは0.01%であり、さらには、0.1%、0.3%、0.4%の順により好ましい。K2Oの含有量は0%であってもよい。
 また、第2-1実施形態に係る光学ガラスにおいて、ガラス成分の含有量をカチオン%で表示すると、K+の含有量の上限は、好ましくは15.00カチオン%であり、さらには14.50カチオン%、14.00カチオン%、13.50カチオン%、13.00カチオン%、12.50カチオン%、12.00カチオン%、11.50カチオン%、11.00カチオン%の順により好ましい。K+の含有量の下限は、好ましくは1.00カチオン%であり、さらには0.70カチオン%、0.50カチオン%、0.30カチオン%の順により好ましい。K+の含有量は0カチオン%であってもよい。
 Na2OおよびK2Oは、あるいはNa+およびK+は、高分散成分に起因する還元色を低減するのに要する熱処理時間を短縮するのを助ける効果を有する。Na2OとK2Oとでは、Na2Oの方がその効果が高く、Na+とK+とでは、Na+の方がその効果が高い。また、これらの含有量が多いほど、その効果が大きくなるが、含有量が多すぎると、ガラスの熱的安定性、化学的耐久性、耐候性が低下する。そのため、Na2OおよびK2O、Na+およびK+の各含有量は、それぞれ上記範囲とすることが好ましい。
 第2-1実施形態に係るガラスにおいて、Li2O、Na2OおよびK2Oの合計含有量[Li2O+Na2O+K2O]の上限は、好ましくは20.0%であり、さらには、19.0%、18.0%、17.0%、16.0%、15.0%、14.0%、13.0%、12.0%、11.0%、10.0%、9.0%、8.0%、7.0%、6.0%の順により好ましい。また、合計含有量[Li2O+Na2O+K2O]の下限は、好ましくは0.01%であり、さらには、0.02%、0.03%、0.04%、0.05%、0.06%、0.07%、0.08%、0.09%、0.10%、0.20%、0.30%、0.40%、0.50%の順により好ましい。
 Li2O、Na2OおよびK2Oは、高分散成分に起因する還元色を低減するのに要する熱処理時間を短縮させ、またガラスの熔融性を改善する働きを有する。しかし、これらの含有量が多くなると、ガラスの熱的安定性、化学的耐久性、耐候性が低下する。そのため、Li2O、Na2OおよびK2Oの合計含有量[Li2O+Na2O+K2O]は上記範囲であることが好ましい。
 また、第2-1実施形態に係る光学ガラスにおいて、ガラス成分の含有量をカチオン%で表示すると、Li+、Na+およびK+の合計含有量[Li++Na++K+]の上限は、好ましくは22.00カチオン%であり、さらには21.00カチオン%、20.00カチオン%、19.00カチオン%、18.00カチオン%、17.00カチオン%、16.50カチオン%、16.00カチオン%、15.50カチオン%、15.00カチオン%、14.50カチオン%、14.00カチオン%、13.50カチオン%、13.00カチオン%、12.50カチオン%12.00カチオン%、11.50カチオン%の順により好ましい。合計含有量[Li++Na++K+]の下限は、好ましくは1.00カチオン%であり、さらには0.70カチオン%、0.50カチオン%、0.30カチオン%の順により好ましい。合計含有量[Li++Na++K+]は0カチオン%であってもよい。
 Li+、Na+およびK+は、高分散成分に起因する還元色を低減するのに要する熱処理時間を短縮させ、またガラスの熔融性を改善する働きを有する。しかし、これらの含有量が多くなると、ガラスの熱的安定性、化学的耐久性、耐候性が低下する。そのため、Li+、Na+およびK+の合計含有量[Li++Na++K+]は上記範囲であることが好ましい。
 第2-1実施形態に係るガラスにおいて、Li2Oの含有量とLi2O、Na2OおよびK2Oの合計含有量との質量比[Li2O/(Li2O+Na2O+K2O)]の下限は、好ましくは0.0012であり、さらには、0.0013、0.0014、0.0015、0.0016、0.0017、0.0018、0.0019、0.0020、0.0021、0.0022、0.0023、0.0024、0.0025、0.0026、0.0027、0.0028、0.0029、0.0030、0.0032、0.0035、0.0037、0.0040の順により好ましい。質量比[Li2O/(Li2O+Na2O+K2O)]の上限は、好ましくは1.00であり、さらには、0.80、0.60、0.50、0.40、0.30、0.20、0.18、0.16の順により好ましい。
 第2-1実施形態に係るガラスにおいて、Rb2Oの含有量の上限は、好ましくは5.0%であり、さらには、4.0%、3.0%、2.0%、1.0%、0.7%、0.5%、0.3%、0.1%の順により好ましい。また、Rb2Oの含有量の下限は、好ましくは0%である。Rb2Oの含有量は0%であってもよい。
 第2-1実施形態に係るガラスにおいて、Cs2Oの含有量の上限は、好ましくは10.0%であり、さらには、9.0%、8.0%、7.0%、6.0%、5.0%、4.5%、4.0%、3.5%、3.0%の順により好ましい。また、Cs2Oの含有量の下限は、好ましくは0%である。Cs2Oの含有量は0%であってもよい。
 Rb2OおよびCs2Oは、Na2OおよびK2Oと同様に、高分散成分に起因する還元色を低減するのに要する熱処理時間を短縮するのを助ける効果を有するが、その効果はNa2OおよびK2Oよりも小さい。また、これらの含有量が多くなると、ガラスの熱的安定性、化学的耐久性、耐候性が低下する。そのため、Rb2OおよびCs2Oの各含有量は、それぞれ上記範囲とすることが好ましい。
 第2-1実施形態に係るガラスにおいて、MgOの含有量の上限は、好ましくは5.0%であり、さらには、4.0%、3.0%、2.0%、1.0%の順により好ましい。また、MgOの含有量の下限は、好ましくは0%である。MgOの含有量は0%であってもよい。
 第2-1実施形態に係るガラスにおいて、CaOの含有量の上限は、好ましくは6.0%であり、さらには、5.0%、4.0%、3.0%、2.0%、1.0%の順により好ましい。また、CaOの含有量の下限は、好ましくは0%である。CaOの含有量は0%であってもよい。
 第2-1実施形態に係るガラスにおいて、SrOの含有量の上限は、好ましくは7.0%であり、さらには、6.0%、5.0%、4.0%、3.0%、2.0%、1.0%の順により好ましい。また、SrOの含有量の下限は、好ましくは0%である。SrOの含有量は0%であってもよい。
 第2-1実施形態に係るガラスにおいて、BaOの含有量の上限は、好ましくは10.0%であり、さらには、9.0%、8.0%、7.0%、6.0%、5.0%、4.0%、3.0%、2.0%、1.0%の順により好ましい。また、BaOの含有量の下限は、好ましくは0%である。BaOの含有量は0%であってもよい。
 MgO、CaO、SrO、BaOは、いずれもガラスの熱的安定性、熔融性を改善させる働きを有するガラス成分である。しかし、これらガラス成分の含有量が多くなると、高分散性が損なわれ、また、ガラスの熱的安定性が低下し、ガラスが失透しやすくなる。そのため、これらガラス成分の各含有量は、それぞれ上記範囲であることが好ましい。
 また、第2-1実施形態に係るガラスにおいて、ガラス成分の含有量をカチオン%で表示すると、Ba2+の含有量の上限は、好ましくは10.00カチオン%であり、さらには9.00カチオン%、8.00カチオン%、7.00カチオン%、6.00カチオン%、5.00カチオン%、4.50カチオン%、4.00カチオン%、3.50カチオン%、3.00カチオン%、2.50カチオン%、2.00カチオン%、1.50カチオン%、1.00カチオン%、0.70カチオン%の順により好ましい。また、Ba2+の含有量の下限は、好ましくは0カチオン%である。Ba2+の含有量は0カチオン%であってもよい。
 Ba2+は、ガラスの熱的安定性、熔融性を改善させる働きを有するガラス成分である。しかし、これらガラス成分の含有量が多くなると、高分散性が損なわれ、また、ガラスの熱的安定性が低下し、ガラスが失透しやすくなる。そのため、これらガラス成分の各含有量は、それぞれ上記範囲であることが好ましい。
 第2-1実施形態に係るガラスにおいて、高分散化を妨げることなく熱的安定性を維持する観点から、MgO、CaO、SrOおよびBaOの合計含有量[MgO+CaO+SrO+BaO]の上限は、好ましくは17.0%であり、さらには、16.0%、15.0%、14.0%、13.0%、12.0%、11.0%、10.0%、9.0%、8.0%、7.0%、6.0%、5.0%、4.0%、3.0%、2.0%、1.0%の順により好ましい。また、合計含有量[MgO+CaO+SrO+BaO]の下限は、好ましくは0%である。合計含有量[MgO+CaO+SrO+BaO]は0%であってもよい。
 第2-1実施形態における、ZnO、ZrO2、Ta25、Ga23、In23、Sc23、HfO2、Lu23、GeO2、La23、Gd23、Y23およびYb23の含有量は、第1-1実施形態と同様とすることができる。
 第2-1実施形態に係るガラスは、主として上述のガラス成分、すなわちP25、B23、SiO2、Al23、TiO2、Nb25、WO3、Bi23、Li2O、Na2O、K2O、Rb2O、Cs2O、MgO、CaO、SrO、BaO、ZnO、ZrO2、Ta25、Ga23、In23、Sc23、HfO2、Lu23、GeO2、La23、Gd23、Y23、およびYb23から選ばれる成分で構成されていることが好ましく、上述のガラス成分の合計含有量は、好ましくは95%超であり、より好ましくは98%超であり、さらに好ましくは99%超であり、一層好ましくは99.5%超である。
 第2-1実施形態におけるその他のガラス成分組成は、第1-1実施形態と同様とすることができる。
(ガラス特性)
<ガラス転移温度Tg>
 第2-1実施形態に係るガラスのガラス転移温度Tgの上限は、好ましくは750℃であり、さらには、740℃、730℃、720℃、710℃、700℃の順により好ましい。また、ガラス転移温度Tgの下限は、好ましくは500℃であり、さらには、510℃、520℃、530℃、540℃、550℃、560℃、570℃、580℃、590℃、600℃、610℃、620℃、630℃の順により好ましい。
 ガラス転移温度Tgの上限が上記範囲を満たすことにより、ガラスの熱処理温度の上昇を抑制でき、アニール設備、例えば、レア―と呼ばれる連続式アニール炉やバッチ式アニール炉の熱的ダメージを軽減できる。また炉の消費電力を抑えることもできる。
 ガラス転移温度Tgの下限が上記範囲を満たすことにより、所望のアッベ数を維持しつつ、ガラスの熱的安定性を良好に維持しやすくなる。
<屈折率nd
 第2-1実施形態に係るガラスにおいて、波長587.56nmにおける屈折率ndの上限は、好ましくは2.1500であり、さらには、2.1400、2.1300、2.1200、2.1100、2.1000、2.0900、2.0800、2.0700、2.0600、2.0500、2.0400の順により好ましい。またndの下限は好ましくは1.8800であり、さらには、1.8900、1.9000、1.9100、1.9200、1.9300、1.9350、1.9400、1.9450、1.9500、1.9600、1.9700の順に大きい値ほどより好ましい。
<屈折率nC
 第2-1実施形態に係るガラスにおいて、波長656.27nmにおける屈折率nCの上限は、好ましくは2.1350であり、さらには、2.1250、2.1150、2.1050、2.0950、2.0850、2.0750、2.0650、2.0550、2.0450、2.0350、2.0250、2.0150の順により好ましい。また、屈折率の下限は、好ましくは1.8650であり、さらには、1.8750、1.8850、1.8950、1.9050、1.9150、1.9200、1.9250、1.9350、1.9400、1.9450、1.9550の順に大きい値ほどより好ましい。
<ガラスの光線透過性>
 第2-1実施形態において、光線透過性は、第1-1実施形態と同様に、着色度λ5により評価できる。
 第2-1実施形態において、λ5の上限は、好ましくは460nmであり、さらには、455nm、450nm、445nm、440nm、435nm、430nm、425nm、420nmの順により好ましい。λ5の下限の目安は、360nmである。
<ガラスの比重>
 第2-1実施形態に係るガラスは、高分散ガラスでありながら、比重が大きくない。通常、ガラスの比重を低減できれば、レンズの重量を減少できる。その結果、レンズを搭載するカメラレンズのオートフォーカス駆動の消費電力を低減できる。一方、比重を減少させすぎると、熱的安定性の低下を招く。そのため、比重dの上限は、好ましくは5.60であり、さらには、5.50、5.40、5.30、5.20、5.10、5.00、4.90、4.80、4.70、4.60、4.50、4.40、4.30、4.20、4.10、4.00、3.90、3.80、3.70の順により好ましい。また、熱的安定性を改善する観点から、比重dの下限は、好ましくは2.80であり、さらには、2.90、3.00、3.10、3.20の順により好ましい。
<液相温度>
 第2-1実施形態に係るガラスの液相温度の上限は、好ましくは1400℃であり、さらには、1390℃、1380℃、1370℃、1360℃、1350℃、1340℃、1330℃、1320℃、1310℃、1300℃の順により好ましい。また、液相温度の下限は、好ましくは1000℃であり、さらには、1010℃、1020℃、1030℃、1040℃、1050℃、1060℃、1070℃、1080℃、1090℃、1100℃、1110℃、1120℃、1130℃、1140℃、1150℃、1160℃、1170℃、1180℃の順により好ましい。本実施形態に係るガラスによれば、ガラスの熱的安定性が改善された高分散ガラスが得られる。
 なお、液相温度は次のように決定する。10cc(10ml)のガラスを白金坩堝中に投入し1250℃~1350℃で20~30分熔融した後にガラス転移温度Tg以下まで冷却し、ガラスを白金坩堝ごと所定温度の熔解炉に入れ2時間保持する。保持温度は1000℃以上で5℃あるいは10℃刻みとし、2時間保持後、冷却し、100倍の光学顕微鏡でガラス内部の結晶の有無を観察する。結晶の析出しなかった最低温度を液相温度とする。
(ガラスの製造)
 本発明の第2-1実施形態に係るガラスは、上記所定の組成となるようにガラス原料を調合し、調合したガラス原料を用いて公知のガラス製造方法に従って作製すればよい。例えば、複数種の化合物を調合し、十分混合してバッチ原料とし、バッチ原料を熔融容器中に入れて熔融、清澄、均質化した後に熔融ガラスを成形し、徐冷してガラスを得る。あるいは、バッチ原料を熔融容器中に入れて粗熔解(ラフメルト)する。粗熔解によって得られた熔融物を急冷、粉砕してカレットを作製する。さらにカレットを熔融容器中に入れて加熱、再熔融(リメルト)して熔融ガラスとし、さらに清澄、均質化した後に熔融ガラスを成形し、徐冷してガラスを得ることもできる。熔融ガラスの成形、徐冷には、公知の方法を適用すればよい。
 第2-1実施形態に係るガラスの製造において、バッチ原料を粗熔解(ラフメルト)して、カレットを作製する場合の、粗熔解時の熔融温度の下限は好ましくは1000℃であり、さらには、1050℃、1100℃、1150℃、1200℃、1250、1300℃の順により好ましい。また、熔融温度の上限は、好ましくは1500℃であり、さらには、1450℃、1400℃、1350℃の順により好ましい。
 上記カレットを熔融、清澄、成形して第2-1実施形態に係るガラスを製造する場合の、カレットの熔融温度の下限は、好ましくは1000℃であり、さらには、1050℃、1100℃、1150℃、1200℃、1250、1300℃の順により好ましい。また、熔融温度の上限は、好ましくは1500℃であり、さらには、1450℃、1400℃、1350℃の順により好ましい。
 カレットを経ずに、バッチ原料を熔融、清澄、成形して第2-1実施形態に係るガラスを製造する場合の、バッチ原料の熔融温度の下限は、好ましくは1000℃であり、さらには、1050℃、1100℃、1150℃、1200℃、1250、1300℃の順により好ましい。また、熔融温度の上限は、好ましくは1500℃であり、さらには、1450℃、1400℃、1350℃の順により好ましい。
 第2-1実施形態に係るガラスの製造において、熔融ガラスを清澄するときの清澄温度の下限は、好ましくは1000℃であり、さらには、1050℃、1100℃、1150℃、1200℃、1250℃、1300℃の順に好ましい。また、清澄温度の上限は、好ましくは1500℃であり、さらには、1450℃、1400℃、1350℃の順に好ましい。
 第2-1実施形態に係るガラスの製造において、熔融ガラスを成形型に流し出すときの流出温度の下限は、好ましくは1000℃であり、さらには、1050℃、1100℃、1150℃、1200℃、1250℃、1300℃の順に好ましい。また、流出温度の上限は、好ましくは1500℃であり、さらには、1450℃、1400℃、1350℃の順に好ましい。
 なお、ガラス中に所望のガラス成分を所望の含有量となるように導入できれば、バッチ原料を調合するときに使用する化合物は特に限定されない。このような化合物として、酸化物、正リン酸、メタリン酸塩、五酸化二燐、炭酸塩、硝酸塩、水酸化物、フッ化物等が挙げられる。
(光学ガラスの製造)
 本発明の第2-1実施形態に係る光学ガラスとして、本発明の第2-1実施形態に係るガラスをそのまま用いることができる。
 本発明の第2-1実施形態に係るガラスが還元色を呈している場合には、本実施形態に係るガラスを熱処理して還元色を低減させて、光学ガラスとすることができる。熱処理の方法としては、公知の方法を用いることができる。例えば、ガラスを、ガラス転移温度Tgよりも5~20℃低い温度に加熱し、着色が十分に低減するまで保持する方法が挙げられる。なお、熱処理後は、徐冷処理をすることでガラスの歪みを取り除くことができる。徐冷の方法としては、公知の方法を用いることができる。例えば、上記熱処理における加熱温度より100~150℃低い温度まで徐々に降温する方法が挙げられる。
(研磨用ガラス素材およびプレス成形用ガラス素材の製造)
 本発明の第2-1実施形態に係る研磨用ガラス素材およびプレス成形用ガラス素材は、第2-1実施形態に係るガラスおよび光学ガラスのいずれからも製造することができる。
 研磨用ガラス素材は、ガラスまたは光学ガラスを細分化してカットピースを作製し、必要に応じ各カットピースを粗研磨加工(バレル研磨)して重量を均等化するとともに表面に離型剤を付着し易くして、再加熱し、軟化したガラスを所望の形状にプレス成形して製造できる。または、ガラスまたは光学ガラスの製造工程において、所定重量の熔融ガラスを成形型上に分離して直接にプレス成形して製造してもよい。
 プレス成形用ガラス素材は、ガラスまたは光学ガラスを所定体積に細分化して、表面を研削および研磨して製造できる。または、ガラスまたは光学ガラスの製造工程において、熔融ガラスを滴下し、その熔融ガラス滴を成形して製造してもよい。
 研磨用ガラス素材およびプレス成形用ガラス素材の製造において、還元色を低減させるための熱処理をしてもよい。熱処理の方法は、上記光学ガラスの製造における熱処理の方法と同様である。熱処理は、成形後、または研削および研磨の前後いずれでも行うことができる。
(光学素子等の製造)
 本発明の第2-1実施形態に係る光学素子は、上記本発明の第2-1実施形態に係るガラス、光学ガラス、研磨用ガラス素材およびプレス成形用ガラス素材のいずれからも製造できる。
 本発明の第2-1実施形態に係る光学素子は、ガラスまたは光学ガラスを所定体積に細分化して、表面を研削および研磨して製造できる。また、ガラスまたは光学ガラスを細分化してカットピースを作製し、必要に応じ各カットピースを粗研磨加工(バレル研磨)して重量を均等化するとともに表面に離型剤を付着し易くして、再加熱し、軟化したガラスを所望の光学素子の形状に近似した形状にプレス成形し、最後に研削・研磨して製造することもできる。または、ガラスまたは光学ガラスの製造工程において、所定重量の熔融ガラスを成形型上に分離して直接にプレス成形し、最後に研削および研磨して製造してもよい。
 本発明の第2-1実施形態に係る光学素子は、上記研磨用ガラス素材を研削および研磨して製造できる。また、本発明の第2-1実施形態に係る光学素子は、上記プレス成形用ガラス素材を精密プレスすることにより製造できる。上記プレス成形用ガラス素材を加熱後に精密プレスして製造してもよい。
 本発明の第2-1実施形態に係る光学素子の製造において、還元色を低減させるための熱処理をしてもよい。熱処理の方法は、上記光学ガラスの製造における熱処理の方法と同様である。熱処理は、プレス成形後または精密プレス後に行うことができ、また、研削および研磨の前後いずれでも行うことができる。
 また、本発明の第2-1実施形態に係る光学素子の製造では、必要に応じて芯取り加工を行ってもよい。
 作製した光学素子の光学機能面には使用目的に応じて、反射防止膜、全反射膜などをコーティングできる。
 光学素子としては、非球面レンズ、マイクロレンズ、レンズアレイなどの各種レンズ、回折格子などが例示できる。
第2-2実施形態
 本発明の第2-2実施形態のガラスは、
 アッベ数νdが18.10以下であり、
 TiO2、Nb25、WO3およびBi23から選択される少なくとも1種の酸化物を含むリン酸塩ガラスであって、
 大気雰囲気下で、液相温度LTより110~120℃高い温度で90分間リメルトして成形し、
 大気雰囲気下で、ガラス転移温度Tgより0~20℃低い保持温度で15分間保ち、降温速度30℃/hで上記保持温度より120℃低い温度まで徐冷して得られるガラスを縦17mm、横13mm、厚み10mmに加工したものにおいて、
 上面視で、縦方向の端から0~5mmの距離であり、かつ横方向の端から0~5mmの距離の範囲にある部分をガラス端部とし、
 上面視で、縦方向の端から6~11mmの距離であり、かつ横方向の端から4~9mmの距離の範囲にある部分をガラス中心部とした場合に、
 厚み方向と平行に光を入射した際の、波長656nmにおける上記ガラス端部の外部透過率TAおよび上記ガラス中心部の外部透過率TBが下記式(2)で計算される値T1以上、かつ、
 上記ガラス端部の外部透過率TAと上記ガラス中心部の外部透過率TBとの差(TA-TB)が5%以下となるまで、
 大気雰囲気下で、昇温速度100℃/hで加熱してガラス転移温度Tgより5~15℃低い熱処理温度で保持する熱処理、および降温速度30℃/hで上記熱処理温度より120℃低い温度まで徐冷する徐冷処理を、1回または複数回繰り返すときの、
 上記熱処理における上記熱処理温度での保持時間の合計が、48時間以内であるガラス。
 T1=0.83×{1-[(nC-1)/(nC+1)]2]2×98 ・・・(2)
(式(2)中、nCは上記ガラス端部の外部透過率TAと上記ガラス中心部の外部透過率TBとの差(TA-TB)が5%以下になるまで上記熱処理および徐冷処理を行った場合の、波長656.27nmにおける屈折率である。)
 以下、第2-2実施形態に係るガラスについて詳しく説明する。
 第2-2実施形態に係るガラスにおいて、アッベ数νdは18.10以下である。アッベ数νdの上限は、好ましくは18.05であり、さらには、18.00、17.90、17.80、17.70、17.60、17.50、17.40、17.30、17.20、17.10、17.00、16.90、16.80、16.78、16.76、16.74、16.72、16.70、16.68、16.66、16.64、16.62、16.60、16.58、16.56、16.54、16.52、16.50の順により好ましい。また、アッベ数の下限は、好ましくは15.00であり、さらには、15.10、15.20、15.25、15.30、15.35、15.40、15.45、15.50、15.52、15.54、15.56、15.58、15.60の順により好ましい。
 第2-2実施形態に係るガラスは、TiO2、Nb25、WO3およびBi23から選択される少なくとも1種の酸化物を含む。
 第2-2実施形態に係るガラスは、リン酸塩ガラスである。したがって、第2-2実施形態に係るガラスは、ネットワーク形成成分として主にリン酸塩を含み、その含有量はP25の含有量として表される。
 第2-2実施形態に係るガラスにおいて、P25の含有量の下限は、好ましくは7.0%であり、さらには、8.0%、9.0%、10.0%、11.0%、12.0%、13.0%、14.0%、15.0%、16.0%、17.0%、18.0%、19.0%、20.0%の順により好ましい。また、P25の含有量の上限は、好ましくは37.0%であり、さらには、36.0%、35.0%、34.5%、34.0%、33.5%、33.0%、32.5%、32.0%、31.5%、31.0%、30.5%、30.0%の順により好ましい。
 P25は、ガラスが高分散成分を多く含有するために必要な成分である。一方、P25を過剰に含むと熔融性が悪化する。したがって、本実施形態に係るガラスにおいて、P25の含有量は上記範囲とすることが好ましい。
 また、第2-2実施形態に係るガラスにおいて、ガラス成分の含有量をカチオン%で表示すると、P5+の含有量の上限は、好ましくは42.00カチオン%であり、さらには41.50カチオン%、41.00カチオン%、40.50カチオン%、40.00カチオン%、39.50カチオン%、39.00カチオン%、38.50カチオン%、38.00カチオン%、37.50カチオン%、37.00カチオン%、36.50カチオン%、36.00カチオン%の順により好ましい。P5+の含有量の下限は、好ましくは25.00カチオン%であり、さらには25.50カチオン%、26.00カチオン%、26.50カチオン%、27.00カチオン%、27.50カチオン%、28.00カチオン%、28.50カチオン%、29.00カチオン%、29.30カチオン%の順により好ましい。
 P5+は、屈折率ndの上昇を抑制し、ガラス中に高分散成分を多く含有するために必須の成分である。一方、P5+を過剰に含むと熔解性が悪化する。したがって、本実施形態に係る光学ガラスにおいて、P5+の含有量は上記範囲とすることが好ましい。
 第2-2実施形態に係るガラスは、TiO2、Nb25、WO3およびBi23等の高分散成分に起因する還元色を比較的に均一に低減でき、また還元色を低減するのに要する熱処理時間を短縮できるガラスである。具体的には、所定の操作でガラスを熱処理した場合の、熱処理温度での保持時間(以下、「退色時間」と記載することがある。)が48時間以内で還元色を問題のないレベルまで低減できるガラスである。以下に詳述する。
 還元色を低減するための熱処理において、ガラスの透過率が所定範囲となるまでの退色時間は、ガラスの着色状態やガラスの大きさによって異なる。
 したがって、第2-2実施形態では、本実施形態に係るガラスを一定条件で還元して着色し、所定の大きさに加工した還元ガラスサンプルを用いて退色時間を評価する。測定に用いる還元ガラスサンプルは、本実施形態に係るガラスを、大気雰囲気下で、液相温度LTより110~120℃高い温度で90分間リメルトして成形し、同じく大気雰囲気下で、ガラス転移温度Tgより0~20℃低い保持温度で15分間保ち、降温速度30℃/hで上記保持温度より120℃低い温度まで徐冷して得られるガラスを、縦17mm、横13mm、厚み10mmに加工して得る。
 大気雰囲気下で、ガラスを液相温度LTよりも110~120℃高い温度でリメルトするには、ガラスを白金坩堝中に入れて加熱、再熔融(リメルト)して熔融ガラスとすればよい。このとき、高分散成分に起因する着色が生じる。
 上記熔融ガラスを、鋳型に流し込んで板状に成形する。これを、大気雰囲気下で、ガラス転移温度Tgより0~20℃低い保持温度で15分間保ち、降温速度30℃/hで上記保持温度より120℃低い温度まで徐冷して、ガラスの歪みを取り除く。
 歪みを取り除いたガラスを細分化し、研磨して、縦17mm、横13mm、厚み10mmの大きさに加工する。この時、上面および下面(縦17mm、横13mmの面)を光学研磨して還元ガラスサンプルを得る。
 このようにして得られた還元ガラスサンプルについて、以下の条件で熱処理および徐冷処理を行い、退色時間を評価する。
 すなわち、大気雰囲気下で、昇温速度100℃/hで加熱してガラス転移温度Tgより5~15℃低い熱処理温度で保持する熱処理、および降温速度30℃/hで上記熱処理温度より120℃低い温度まで徐冷する徐冷処理を行う。上記熱処理により、高分散成分に起因する着色が低減する。
 上記熱処理および徐冷処理は、還元ガラスサンプルが、実用状問題のないレベルに退色するまで行う。すなわち、処理後のサンプルの厚み方向と平行に光を入射した際の、波長656nmにおけるガラス端部の外部透過率TAおよびガラス中心部の外部透過率TBが下記式(2)で算出される値T1以上、かつ、ガラス端部の外部透過率TAとガラス中心部の外部透過率TBとの差(TA-TB)が5%以下となるまで行う。
 T1=0.83×{1-{(nC-1)/(nC+1)}22×98 ・・・(2)
 なお、上記式(2)中のnCは、ガラス端部の外部透過率TAとガラス中心部の外部透過率TBとの差(TA-TB)が5%以下になるまで熱処理および徐冷処理した場合の、波長656.27nmにおける屈折率である。屈折率nCは、日本光学硝子工業会規格(JOGIS 01-2003)に基づき測定する。
 上記熱処理および徐冷処理は、1回であってもよく、また、複数回行ってもよい。上記熱処理および徐冷処理を複数回行う場合の退色時間は、各回で異なっていてもよい。
 第2-2実施形態に係るガラスにおいて、上記熱処理における退色時間の合計は48時間以内であり、好ましくは46時間以内、さらには、44時間以内、42時間以内、40時間以内、38時間以内、36時間以内、34時間以内、32時間以内、30時間以内、29時間以内、28時間以内、27時間以内、26時間以内、25時間以内、24時間以内の順により好ましい。
 退色時間の合計とは、上記熱処理および徐冷処理を1回行った場合には、その1回における退色時間であり、上記熱処理および徐冷処理を複数回行った場合には、各回における退色時間の合計である。例えば、1回目の退色時間を12時間とし、2回目の退色時間を6時間とした場合には、退色時間の合計は18時間である。
 なお、上記熱処理では、ガラス転移温度Tgの異なる複数のガラスを一度に熱処理することを考慮し、熱処理温度をガラス転移温度Tgより5~15℃低い温度としている。したがって、本実施形態に係るガラスでは、上記のようにして得られた還元ガラスサンプルを、ガラス転移温度Tgより5~15℃低い熱処理温度で熱処理すれば、退色時間が48時間以内で十分に還元色を低減でき、すなわち、少なくともガラス転移温度Tgより15℃低い熱処理温度で熱処理すれば、退色時間が48時間以内で十分に還元色を低減できる。
 ここで、ガラス端部とは、上面視で、縦方向の端から0~5mmの距離であり、かつ横方向の端から0~5mmの距離の範囲にある部分であり、ガラス中心部とは、上面視で、縦方向の端から6~11mmの距離であり、かつ横方向の端から4~9mmの距離の範囲にある部分である。
 熱処理および徐冷処理は、厚み方向と平行に光を入射した際の、波長656nmにおけるガラス端部の外部透過率TAおよびガラス中心部の外部透過率TBが、上記式(2)で算出される値T1以上となるまで行う。波長656nmにおけるガラス端部の外部透過率TAおよびガラス中心部の外部透過率TBは、好ましくは下記式(3)で算出される値T2以上であり、より好ましくは下記式(4)で算出される値T3以上、さらに好ましくは下記式(5)で算出される値T4以上の順により好ましい。
 T2=0.84×{1-[(nC-1)/(nC+1)]2]2×98 ・・・(3)
 T3=0.85×{1-[(nC-1)/(nC+1)]2]2×98 ・・・(4)
 T4=0.86×{1-[(nC-1)/(nC+1)]2]2×98 ・・・(5)
 また、ガラス端部の外部透過率TAとガラス中心部の外部透過率TBとの差(TA-TB)が5%以下となるとは、ガラス全体の還元色がほぼ均一に低減していることを意味する。
 熱処理において、ガラスの還元色の低減はガラスの表面から中心部へと進行する。したがって、熱処理の途中では、ガラス端部と比べてガラス中心部は濃く着色している。ガラス中心部の還元色が、ガラス端部と同程度に低減しているとき、すなわち、還元色が均一に低減したとき、ガラス端部の外部透過率TAとガラス中心部の外部透過率TBとの差(TA-TB)は5%以下となる。
 第2-2実施形態に係るガラスにおいて、熱処理および徐冷処理は、ガラス端部の外部透過率TAとガラス中心部の外部透過率TBとの差(TA-TB)が5%以下となるまで、好ましくは4%以下、より好ましくは3%以下、さらに好ましくは2%以下、一層好ましくは1%以下、より一層好ましくは0.5%以下となるまで行う。
 すなわち、第2-2実施形態に係るガラスにおいて、熱処理および徐冷処理は、波長656nmにおけるガラス端部の外部透過率TAおよびガラス中心部の外部透過率TBが上記式(2)で算出される値T1以上であり、差(TA-TB)が5%以下となるまで行う。好ましくは、熱処理および徐冷処理は、外部透過率TAおよび外部透過率TBが上記式(2)で算出される値T1以上であり、差(TA-TB)が4%以下となるまで、さらには、3%以下、2%以下、1%以下、0.5%以下となるまで行う。差(TA-TB)は小さいほどより好ましい。
 また、好ましくは、第2-2実施形態に係るガラスにおいて、熱処理および徐冷処理は、波長656nmにおけるガラス端部の外部透過率TAおよびガラス中心部の外部透過率TBが上記式(3)で算出される値T2以上であり、差(TA-TB)が5%以下となるまで行う。より好ましくは、熱処理および徐冷処理は、外部透過率TAおよび外部透過率TBが上記式(3)で算出される値T2以上であり、差(TA-TB)が4%以下となるまで、さらには、3%以下、2%以下、1%以下、0.5%以下となるまで行う。差(TA-TB)は小さいほどより好ましい。
 好ましくは、第2-2実施形態に係るガラスにおいて、熱処理および徐冷処理は、波長656nmにおけるガラス端部の外部透過率TAおよびガラス中心部の外部透過率TBが上記式(4)で算出される値T3以上であり、差(TA-TB)が5%以下となるまで行う。より好ましくは、熱処理および徐冷処理は、外部透過率TAおよび外部透過率TBが上記式(4)で算出される値T3以上であり、差(TA-TB)が4%以下となるまで、さらには、3%以下、2%以下、1%以下、0.5%以下となるまで行う。差(TA-TB)は小さいほどより好ましい。
 好ましくは、第2-2実施形態に係るガラスにおいて、熱処理および徐冷処理は、波長656nmにおけるガラス端部の外部透過率TAおよびガラス中心部の外部透過率TBが上記式(5)で算出される値T4以上であり、差(TA-TB)が5%以下となるまで行う。より好ましくは、熱処理および徐冷処理は、外部透過率TAおよび外部透過率TBが上記式(5)で算出される値T4以上であり、差(TA-TB)が4%以下となるまで、さらには、3%以下、2%以下、1%以下、0.5%以下となるまで行う。差(TA-TB)は小さいほどより好ましい。
 第2-2実施形態に係るガラスにおいて、退色時間は短いほど好ましい。したがって、最も好ましい態様では、熱処理および徐冷処理において、退色時間が24時間以内で、波長656nmにおけるガラス端部の外部透過率TAおよびガラス中心部の外部透過率TBが上記式(5)で算出される値T4以上となり、差(TA-TB)が0.5%以下となる。
 外部透過率は、日本光学硝子工業会規格(JOGIS 02-2003)に基づき測定する。外部透過率の測定では、入射光は上面(縦17mm、横13mmの面)に垂直に照射する。また、入射光は上記ガラス端部およびガラス中心部の領域、すなわち5mm×5mmの範囲に収まるように照射する。
 第2-2実施形態に係るガラスにおいて、TiO2、Nb25、WO3およびBi23の合計含有量[TiO2+Nb25+WO3+Bi23]の下限は、好ましくは35%であり、さらには、36%、38%、40%、42%、44%、46%、48%、50%、52%、54%、56%、58%、60%、62%、64%の順により好ましい。また、合計含有量[TiO2+Nb25+WO3+Bi23]の上限は、好ましくは90%であり、さらには、88%、86%、85%、84%、83%、82%、81%、80%、79%、78%、77%の順により好ましい。
 TiO2、Nb25、WO3およびBi23は、ガラスの高分散化に寄与する。また、適量を含有させることにより、ガラスの熱的安定性を改善する働きも有する。したがって、合計含有量[TiO2+Nb25+WO3+Bi23]の下限は上記範囲であることが好ましい。一方で、TiO2、Nb25、WO3およびBi23はガラスの着色を増大させる。したがって、合計含有量[TiO2+Nb25+WO3+Bi23]の上限は上記範囲であることが好ましい。
 また、第2-2実施形態に係るガラスにおいて、ガラス成分の含有量をカチオン%で表示すると、Ti4+、Nb5+、W6+およびBi3+の合計含有量[Ti4++Nb5++W6++Bi3+]の下限は、好ましくは52.00カチオン%であり、さらには52.10カチオン%、52.15カチオン%、52.20カチオン%、52.25カチオン%、52.30カチオン%の順により好ましい。合計含有量[Ti4++Nb5++W6++Bi3+]の上限は、好ましくは75.00カチオン%であり、さらには74.50カチオン%、74.00カチオン%、73.50カチオン%、73.00カチオン%、72.50カチオン%、72.00カチオン%、71.50カチオン%、71.00カチオン%、70.50カチオン%の順により好ましい。
 Ti4+、Nb5+、W6+およびBi3+は、ガラスの高分散化に寄与する。また、適量を含有させることにより、ガラスの熱的安定性を改善する働きも有する。したがって、合計含有量[Ti4++Nb5++W6++Bi3+]の下限は上記範囲であることが好ましい。一方で、Ti4+、Nb5+、W6+およびBi3+はガラスの着色を増大させる。したがって、合計含有量[Ti4++Nb5++W6++Bi3+]の上限は上記範囲であることが好ましい。
 第2-2実施形態に係るガラスにおいて、Bi23の含有量の上限は、好ましくは38%であり、さらには、35%、33%、30%、28%、25%、23%、20%の順により好ましい。また、Bi23の含有量の下限は、好ましくは0%である。Bi23の含有量は0%であってもよい。
 Bi23は、高分散化に寄与する成分である。また、Bi23の含有量を上記範囲とすることで、比重の増大およびガラス転移温度Tgの低下を抑制できる。ガラスの比重が増大すると、光学素子の質量が増大する。例えば、質量の大きいレンズをオートフォーカス式の撮像レンズに組み込むと、オートフォーカス時にレンズの駆動に要する電力が増大し、電池の消耗が著しくなる。したがって、Bi23の含有量を上記範囲とすることが好ましい。
 また、第2-2実施形態に係るガラスにおいて、ガラス成分の含有量をカチオン%で表示すると、Bi3+の含有量の上限は、好ましくは10.00カチオン%であり、さらには9.00カチオン%、8.00カチオン%、7.00カチオン%、6.00カチオン%、5.00カチオン%、4.50カチオン%、4.00カチオン%、3.50カチオン%、3.00カチオン%、2.50カチオン%、2.00カチオン%、1.50カチオン%、1.00カチオン%の順により好ましい。Bi3+の含有量は0カチオン%であってもよい。
 Bi3+は、高分散化に寄与する成分である。また、Bi3+の含有量を上記範囲とすることで、比重の増大およびガラス転移温度Tgの低下を抑制できる。ガラスの比重が増大すると、光学素子の質量が増大する。例えば、質量の大きいレンズをオートフォーカス式の撮像レンズに組み込むと、オートフォーカス時にレンズの駆動に要する電力が増大し、電池の消耗が著しくなる。したがって、Bi3+の含有量を上記範囲とすることが好ましい。
 第2-2実施形態に係るガラスにおいて、Li2Oの含有量とTiO2、Nb25、WO3およびBi23の合計含有量との質量比[Li2O/(TiO2+Nb25+WO3+Bi23)]に100を掛けた値の下限は、好ましくは0.017であり、さらには、0.019、0.021、0.023、0.025、0.027、0.030の順により好ましい。また、質量比[Li2O/(TiO2+Nb25+WO3+Bi23)]に100を掛けた値の上限は、好ましくは0.750であり、さらには、0.730、0.710、0.700、0.680、0.650、0.600、0.550の順により好ましい。
 第2-2実施形態に係るガラスにおいて、ガラス成分の含有量をカチオン%で表示した場合に、W6+の含有量が0カチオン%を超える場合には、Ba2+の含有量とW6+の含有量とのカチオン比[Ba2+/W6+]の上限は、好ましくは0.14であり、さらには0.13、0.12、0.11、0.10の順により好ましい。
 Ba2+は、低分散化に寄与する成分である。したがって、第2-2実施形態に係るガラスでは、Ba2+の含有量に対して、高分散成分であるW6+を上記カチオン比となるように含有させることで、所望の高分散性を維持することができる。
 また、第2-2実施形態に係るガラスにおいて、ガラス成分の含有量をカチオン%で表示した場合に、W6+の含有量が0カチオン%であって、Ba2+の含有量が0カチオン%を超える場合には、Ti4+およびBi3+の合計含有量[Ti4++Bi3+]の上限は、好ましくは35.00カチオン%であり、さらには34.00カチオン%、33.00カチオン%、32.50カチオン%、32.30カチオン%、32.00カチオン%、31.80カチオン%、31.60カチオン%、31.40カチオン%、31.20カチオン%、31.00カチオン%、30.80カチオン%、30.60カチオン%、30.40カチオン%、30.20カチオン%、30.10カチオン%、30.00カチオン%の順により好ましい。合計含有量[Ti4++Bi3+]の下限は、好ましくは21.00カチオン%であり、さらには21.20カチオン%、21.40カチオン%、21.60カチオン%、21.80カチオン%、22.00カチオン%、22.20カチオン%、22.40カチオン%、22.60カチオン%、22.80カチオン%、23.00カチオン%、23.10カチオン%、23.20カチオン%、23.30カチオン%、23.40カチオン%、23.50カチオン%の順により好ましい。
 W6+の含有量が0カチオン%であって、Ba2+の含有量が0カチオン%を超える場合には、高分散成分の中でW6+に次いで高分散化への寄与が大きいTi4+、および熱的安定性を改善する働きを有するBi3+の合計含有量を上記範囲とすることで、Ba2+による低分散化を抑制できる。
 第2-2実施形態におけるその他のガラス成分は、第2-1実施形態と同様とすることができる。また、第2-2実施形態におけるガラス特性、ガラス、光学ガラス、研磨用ガラス素材、プレス成形用ガラス素材および光学素子等の製造についても、第2-1実施形態と同様とすることができる。
 以下に本発明を実施例により説明するが、本発明は以下の実施例のみに限定されるものでは無い。
 実施例1-1~1-3は、上記第1実施形態に対応する実施例である。また、実施例2-1~2-4は、上記第2実施形態に対応する実施例である。
(実施例1-1)
 表1-1-1、表1-1-4および表1-1-5と表1-2-1、表1-2-3および表1-2-4とに示すNo.1~129の組成を有するガラスとなるように各成分に対応する化合物原料、すなわち、リン酸塩、炭酸塩、酸化物等の原料を秤量し、十分混合して調合原料とした。
 ここで、表1-1-1、表1-1-4および表1-1-5は質量%表示にて、表1-2-1、表1-2-3および表1-2-4はカチオン%表示にて、No.1~129のガラス組成を表示している。すなわち、表1-1-1、表1-1-4および表1-1-5と表1-2-1、表1-2-3および表1-2-4とで、ガラス組成の表示方法は異なるが、同じNo.の光学ガラスは同じ組成を有する。したがって、表1-1-1、表1-1-4、表1-1-5と表1-2-1、表1-2-3および表1-2-4とは、実質的に同じ光学ガラスを示している。
 なお、表1-2-1、表1-2-3および表1-2-4では、アニオン成分の全量をO2-とした場合のカチオン%表示にてガラス組成を表示している。すなわち、表1-2-1、表1-2-3および表1-2-4において、いずれもO2-の含有量は100アニオン%である。
 また、表1-1-2、表1-1-3および表1-1-6~1-1-9に記載されているガラス成分の合計含有量や、ガラス成分の含有量同士の比率は、表1-1-1、表1-1-4および表1-1-5に記載されている各ガラス成分の含有量をもとに算出した値である。同様に、表1-2-2、表1-2-5および表1-2-6に記載されているガラス成分の合計含有量や、ガラス成分の含有量同士の比率は、表1-2-1、表1-2-3および表1-2-4に記載されている各ガラス成分の含有量をもとに算出した値である。
 上記調合原料を白金製坩堝に投入し、1200℃~1350℃に加熱し、熔融、攪拌、清澄後、坩堝から熔融ガラスを鋳型に鋳込んでガラスブロックに成形した。
 得られた各ガラスブロックを観察したところ、ガラス中に結晶や原料の熔け残りなどの異物は認められず、均質性の高い、高品質の光学ガラスを得ることができた。なお、光学ガラスNo.1~6、12~129は、第1-1実施形態の実施例であり、光学ガラスNo.1~129は、第1-2実施形態の実施例である。
 得られた光学ガラスNo.1~129の屈折率nd、アッベ数νd、ガラス転移温度、比重、λ5、液相温度を表1-3、表1-4-1および表1-4-2に示す。屈折率nd、アッベ数νd、ガラス転移温度、比重、λ5、液相温度は、以下のようにして測定した。なお、表1-3中の空欄は未測定であることを示す。
(1)屈折率ndおよびアッベ数νd
 日本光学硝子工業会規格JOGIS-01に基づいて測定した。測定結果を表1-3、表1-4-1および表1-4-2に示す。
(2)ガラス転移温度Tg
 ガラス転移温度は示差走査型熱量計DSC8270を用いて固体状態のガラスを昇温したときの吸熱カーブから測定した。この測定を用いたTgは日本光学硝子工業会規格JOGIS-08に基づいて測定したTgと対応関係を示す。測定結果を表1-3、表1-4-1および表1-4-2に示す。
(3)λ5
 λ5は次のようにして測定した。厚さ10mmの互いに平行かつ光学研磨された平面を有するガラス試料を用い、波長280nmから700nmまでの波長域における分光透過率を測定した。分光透過率は、光学研磨された一方の平面に垂直に強度Aの光線を入射し、他方の平面から出射する光線の強度Bを測定し、B/Aによって算出した。したがって、分光透過率には試料表面における光線の反射損失も含まれる。分光透過率が5%になる波長がλ5である。測定結果を表1-3、表1-4-1および表1-4-2に示す。
(4)比重
 日本光学硝子工業会規格JOGIS-05に基づいて測定した。測定結果を表1-3、表1-4-1および表1-4-2に示す。
(5)液相温度LT
 ガラス試料を所定温度に加熱された炉内に入れて2時間保持し、冷却後、ガラス内部を100倍の光学顕微鏡で観察し、結晶の有無から液相温度を決定した。測定結果を表1-3、表1-4-1および表1-4-2に示す。
(実施例1-2)
 実施例1-1と同様にして光学ガラスNo.1~129が得られるようにガラス原料を加熱、溶融、清澄、均質化し、得られた溶融ガラスを鋳型に流し込んで急冷し、ガラスブロックに成形した。次にガラスブロックをアニールした後、切断、研削してプレス成形用ガラス素材を作製した。
(実施例1-3)
 実施例1-2において作製した各種光学ガラスからなるプレス成形用ガラス素材を加熱、軟化し、プレス成形型を用いて公知の方法によりプレス成形し、レンズブランク、プリズムブランクなどの光学素子ブランクを作製した。
 光学素子ブランクを精密アニールし、所要の屈折率になるよう屈折率を精密に調整した後、公知の研削、研磨法により凹レンズ、凸レンズおよびプリズムを作製した。
 得られたレンズと、アッベ数νdが大きい低分散ガラス製レンズとを組合せたところ、良好に色収差を補正でき、像面湾曲を低減できた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
 以下の実施例2-1、2-2は第2-1実施形態に対応する実施例であり、実施例2-3、2-4は第2-2実施形態に対応する実施例である。
 ここで、実施例2-1において、表2-1Aは質量%表示にて、表2-1Bはカチオン%表示にて、ガラスサンプルA~Dのガラス組成を表示している。すなわち、表2-1Aと表2-1Bとで、ガラス組成の表示方法は異なるが、同じ番号のガラスは同じ組成を有する。したがって、表2-1Aおよび表2-1Bは、実質的に同じガラスを示している。
 同様に、実施例2-2において、表2-3A-1~2-3A-8は質量%表示にて、表2-3B-1~2-3B-8はカチオン%表示にて、ガラスサンプル1~109のガラス組成を表示している。すなわち、表2-3A-1~2-3A-8と表2-3B-1~2-3B-8とで、ガラス組成の表示方法は異なるが、同じ番号のガラスは同じ組成を有する。したがって、表2-3A-1~2-3A-8および表2-3B-1~2-3B-8は、実質的に同じガラスを示している。
 なお、表2-1Bおよび表2-3B-1~2-3B-8では、アニオン成分の全量をO2-とした場合のカチオン%表示にてガラス組成を表示している。すなわち、表2-1Bおよび表2-3B-1~2-3B-8において、いずれもO2-の含有量は100アニオン%である。
(実施例2-1)
[ガラスサンプルの作製]
 得られるガラスの組成が、表2-1Aおよび表2-1Bに示す各組成となるように原材料を秤量、調合して、得られた調合原料(バッチ原料)を白金坩堝に投入し、1300~1350℃で90分間、大気雰囲気下で加熱して熔融し、攪拌により均質化、清澄して熔融ガラスを得た。熔融ガラスを成形型に鋳込んで成形し、徐冷して、縦17mm、横12mm、厚み10mmに研削・研磨してガラスサンプルを得た。このとき、上面および下面(縦17mm、横12mmの面)を光学研磨した。
 得られたガラスサンプルは、還元色を呈していた。
[ガラスサンプルの評価]
 得られたガラスサンプルについて、以下に示す方法にて、ガラス組成の確認、屈折率(ndおよびnC)、アッベ数(νd)、ガラス転移温度(Tg)、液相温度(LT)、βOHの値を測定し、還元色を十分に低減するのに要する熱処理温度での保持時間および熱処理後の透過率を測定した。
[1]ガラス組成の確認
 上記のようにして得られたガラスサンプルを適量採取し、これを酸およびアルカリ処理し、Li2Oの含有量はICP-MSにより測定し、Li2O以外のガラス成分の含有量はICP-AESにより測定して、表2-1Aおよび表2-1Bに示す各酸化物組成と一致していることを確認した。
[2]屈折率(ndおよびnC)、アッベ数(νd
 ガラスサンプルを、大気雰囲気下で、ガラス転移温度Tg近傍で48時間保持した後、降温速度30℃/時間で徐冷し、その後放冷して着色を低減させた。得られた試料を加工してプリズムを作製し、日本光学硝子工業会規格の屈折率測定法に基づいて屈折率nd、nF、nCを測定した。また、屈折率nd、nF、nCの各測定値を用いて、アッベ数νdを算出した。結果を表2-1Aに示す。
[3]ガラス転移温度(Tg)
 株式会社リガク製の熱機械分析装置を用いて、昇温速度を10℃/分にして測定した。結果を表2-1Aに示す。
[4]液相温度
 10cc(10ml)のガラスサンプルを白金坩堝中に投入し1250℃~1350℃で20~30分間熔融した後にガラス転移温度Tg以下まで冷却し、ガラスを白金坩堝ごと所定温度の熔解炉に入れ2時間保持した。保持温度は1000℃以上で10℃刻みとし、2時間保持後に結晶の析出しなかった最低温度を液相温度とした。結果を表2-1Aに示す。
[5]βOH
 ガラスサンプルを、両面が互いに平行かつ平坦に光学研磨された厚さ1mmの板状に加工した。光学研磨面に対して垂直方向に光を入射して、波長2500nmにおける外部透過率Cおよび波長2900nmにおける外部透過率Dを、分光光度計(UV-3100、島津製)を用いて測定し、下記式(1)により、βOHを算出した。
 βOH=-[ln(D/C)]/t ・・・(1)
 上記式(1)中、lnは自然対数であり、厚さtは上記2つの平面の間隔に相当する。結果を表2-1Aに示す。
[6]熱処理温度での保持時間
 還元色を呈している上記ガラスサンプルを熱処理した。すなわち、大気雰囲気下で、昇温速度100℃/時間で加熱して、ガラス転移温度Tgより5~15℃低い熱処理温度で所定時間熱処理し、降温速度30℃/時間で上記熱処理温度より120℃低い温度まで徐冷した。ガラスサンプルの還元色が十分に低減するまで、熱処理および徐冷を繰り返した。還元色が低減して色味が均一になったときを還元色が十分に低減したと評価した。還元色が十分に低減するのに要した熱処理温度での保持時間の合計を表2-2に示す。
[7]熱処理後の透過率
 熱処理により還元色が低減して色味が均一になったガラスサンプルの外部透過率を測定した。光学研磨した面に対して垂直方向に光を入射して、波長656nmにおける外部透過率を、分光光度計(UV-3150、島津製)を用いて測定した。結果を表2-2に示す。
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
(実施例2-2)
[ガラスサンプルの作製]
 得られるガラスの組成が、表3に示す各組成となるようにし、熔融雰囲気に水蒸気を付加して熔融ガラスを得た以外は、実施例2-1と同様にしてガラスサンプルを作製した。
 得られたガラスサンプルは、還元色を呈していた。
[ガラスサンプルの評価]
 得られたガラスサンプルについて、実施例2-1と同様方法にて、ガラス組成の確認、屈折率(ndおよびnC)、アッベ数(νd)、ガラス転移温度(Tg)、液相温度(LT)、βOHの値を測定し、還元色を十分に低減するのに要する熱処理温度での保持時間および熱処理後の透過率を測定した。結果を表2-3Aおよび2-3B、2-4に示す。
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000045
(実施例2-3)
[還元ガラスサンプルの作製]
 実施例2-1で得られたガラスサンプル(サンプルA~D)を、1300℃で90分間、大気雰囲気下で加熱してリメルトし、攪拌により均質化、清澄して熔融ガラスを得た。熔融ガラスを成形型に鋳込んで成形し、大気雰囲気下で、サンプルごとにガラス転移温度Tgより0~20℃低い保持温度で15分間保ち、降温速度30℃/hで上記保持温度より120℃低い温度まで徐冷して、縦17mm、横12mm、厚み10mmに研削・研磨して還元ガラスサンプルを得た。このとき、上面および下面(縦17mm、横12mmの面)を光学研磨した。
 得られた還元ガラスサンプルは還元色を呈していた。
[還元ガラスサンプルの評価]
 得られた還元ガラスサンプルについて、大気雰囲気下で、昇温速度100℃/時間で加熱して、ガラス転移温度Tgより5~15℃低い熱処理温度で所定時間熱処理し、降温速度30℃/時間で上記熱処理温度より120℃低い温度まで徐冷処理した。ガラス端部の外部透過率TAとガラス中心部の外部透過率TBとの差(TA-TB)が5%以下となるまで、熱処理および徐冷処理を繰り返した。外部透過率TAおよびTBは、光学研磨した面に対して垂直方向に光を入射して、波長656nmにおける外部透過率を、分光光度計(UV-3150、島津製)を用いて測定した。
 ガラス端部の外部透過率TAとガラス中心部の外部透過率TBとの差(TA-TB)が5%以下となるまでに要した熱処理温度での保持時間の合計および外部透過率TAおよびTBを表2-5に示す。
Figure JPOXMLDOC01-appb-T000046
(実施例2-4)
[還元ガラスサンプルの作製]
 実施例2-2で得られたガラスサンプル(サンプルNo.1~20、22~32、42、44~52、54、57~80、88~95)を実施例2-3と同様の方法でリメルトし、還元ガラスサンプルを得た。
 得られた還元ガラスサンプルは還元色を呈していた。
[還元ガラスサンプルの評価]
 得られた還元ガラスサンプルについて、実施例2-3と同様方法にて、ガラス端部の外部透過率TAとガラス中心部の外部透過率TBとの差(TA-TB)が5%以下となるまでに要した熱処理温度での保持時間の合計および外部透過率TAおよびTBを測定した。結果を表2-6に示す。
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000052

Claims (22)

  1.  アッベ数νdが16.70以下であり、
     屈折率ndが2.1000以下であって、
     P25、TiO2およびNb25を含み、
     TiO2の含有量とNb25の含有量との質量比[TiO2/Nb25]が0.15以上であるリン酸塩光学ガラス。
  2.  Bi23の含有量が29.0質量%以下である請求項1に記載のリン酸塩光学ガラス。
  3.  アッベ数νdが16.70以下であり、
     Bi23の含有量が29.0質量%以下であって、
     TiO2、Nb25およびWO3の合計含有量が45.0質量%以上であるリン酸塩光学ガラス。
  4.  TiO2およびWO3の合計含有量と、Nb25の含有量との質量比[(TiO2+WO3)/Nb25]が0.15以上である請求項1~3のいずれかに記載のリン酸塩光学ガラス。
  5.  請求項1~4のいずれかに記載のリン酸塩光学ガラスからなるプレス成形用ガラス素材。
  6.  請求項1~4のいずれかに記載のリン酸塩光学ガラスからなる光学素子。
  7.  アッベ数νdが18.10以下であり、
     TiO2、Nb25、WO3およびBi23の合計含有量[TiO2+Nb25+WO3+Bi23]が30質量%以上、かつ
     Bi23の含有量が38質量%以下のリン酸塩ガラスであって、
     Li2Oの含有量とTiO2、Nb25、WO3およびBi23の合計含有量との質量比[Li2O/(TiO2+Nb25+WO3+Bi23)]に100を掛けた値が0.015~0.770である、ガラス。
  8.  アッベ数νdが18.10以下であり、
     TiO2、Nb25、WO3およびBi23から選択される少なくとも1種の酸化物を含むリン酸塩ガラスであって、
     大気雰囲気下で、液相温度LTより110~120℃高い温度で90分間リメルトして成形し、
     大気雰囲気下で、ガラス転移温度Tgより0~20℃低い保持温度で15分間保ち、降温速度30℃/hで前記保持温度より120℃低い温度まで徐冷して得られるガラスを、縦17mm、横13mm、厚み10mmに加工したものにおいて、
     上面視で、縦方向の端から0~5mmの距離であり、かつ横方向の端から0~5mmの距離の範囲にある部分をガラス端部とし、
     上面視で、縦方向の端から6~11mmの距離であり、かつ横方向の端から4~9mmの距離の範囲にある部分をガラス中心部とした場合に、
     厚み方向と平行に光を入射した際の、波長656nmにおける前記ガラス端部の外部透過率TAおよび前記ガラス中心部の外部透過率TBが下記式(2)で計算される値T1以上、かつ、
     前記ガラス端部の外部透過率TAと前記ガラス中心部の外部透過率TBとの差(TA-TB)が5%以下となるまで、
     大気雰囲気下で、昇温速度100℃/hで加熱してガラス転移温度Tgより5~15℃低い熱処理温度で保持する熱処理、および降温速度30℃/hで前記熱処理温度より120℃低い温度まで徐冷する徐冷処理を、1回または複数回繰り返すときの、
     前記熱処理における前記熱処理温度での保持時間の合計が、48時間以内であるガラス。
     T1=0.83×[1-[(nC-1)/(nC+1)]2]2×98 ・・・(2)
    〔式(2)中、nCは前記ガラス端部の外部透過率TAと前記ガラス中心部の外部透過率TBとの差(TA-TB)が5%以下になるまで前記熱処理および徐冷処理を行った場合の、波長656.27nmにおける屈折率である。〕
  9.  Li2Oの含有量が0.010質量%以上である、請求項7または8に記載のガラス。
  10.  Li2Oの含有量が0.640質量%以下である、請求項7~9のいずれかに記載のガラス。
  11.  下記式(1)に示すβOHの値が0.05mm-1以上である、請求項7~10のいずれかに記載のガラス。
     βOH=-[ln(D/C)]/t ・・・(1)
    〔式(1)中、tは外部透過率の測定に用いる前記ガラスの厚み(mm)を表し、Cは前記ガラスに対してその厚み方向と平行に光を入射した際の波長2500nmにおける外部透過率(%)を表し、Dは前記ガラスに対してその厚み方向と平行に光を入射した際の波長2900nmにおける外部透過率(%)を表す。〕
  12.  ガラス成分としてNb25を含む、請求項7~11のいずれかに記載のガラス。
  13.  ガラス成分としてTiO2を含む、請求項7~12のいずれかに記載のガラス。
  14.  請求項7~13のいずれかに記載のガラスからなる光学ガラス。
  15.  請求項7~13のいずれかに記載のガラスからなる研磨用ガラス素材。
  16.  請求項7~13のいずれかに記載のガラスからなるプレス成形用ガラス素材。
  17.  請求項14に記載の光学ガラスからなる研磨用ガラス素材。
  18.  請求項14に記載の光学ガラスからなるプレス成形用ガラス素材。
  19.  請求項7~13のいずれかに記載のガラスからなる光学素子。
  20.  請求項14に記載の光学ガラスからなる光学素子。
  21.  請求項15または17に記載の研磨用ガラス素材からなる光学素子。
  22.  請求項16または18に記載のプレス成形用ガラス素材からなる光学素子。
PCT/JP2016/070156 2015-07-07 2016-07-07 ガラス、光学ガラス、リン酸塩光学ガラス、研磨用ガラス素材、プレス成形用ガラス素材および光学素子 WO2017006998A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680032788.1A CN107614449B (zh) 2015-07-07 2016-07-07 玻璃、光学玻璃、磷酸盐光学玻璃、抛光用玻璃材料、压制成型用玻璃材料及光学元件
CN202010752612.1A CN111892297B (zh) 2015-07-07 2016-07-07 磷酸盐光学玻璃、压制成型用玻璃材料及光学元件
JP2017527497A JP6639053B2 (ja) 2015-07-07 2016-07-07 ガラス、光学ガラス、リン酸塩光学ガラス、研磨用ガラス素材、プレス成形用ガラス素材および光学素子

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015136228 2015-07-07
JP2015-136228 2015-07-07
JP2016-037551 2016-02-29
JP2016037551 2016-02-29

Publications (1)

Publication Number Publication Date
WO2017006998A1 true WO2017006998A1 (ja) 2017-01-12

Family

ID=57685125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070156 WO2017006998A1 (ja) 2015-07-07 2016-07-07 ガラス、光学ガラス、リン酸塩光学ガラス、研磨用ガラス素材、プレス成形用ガラス素材および光学素子

Country Status (3)

Country Link
JP (4) JP6639053B2 (ja)
CN (2) CN107614449B (ja)
WO (1) WO2017006998A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020188868A1 (ja) * 2019-03-18 2020-09-24 光ガラス株式会社 光学ガラス、光学素子、光学系、交換レンズ及び光学装置
JP2021031354A (ja) * 2019-08-28 2021-03-01 Hoya株式会社 発光ガラス
WO2021199554A1 (ja) * 2020-03-31 2021-10-07 Hoya株式会社 光学ガラス、光学素子ブランク、および光学素子
EP3573934B1 (en) 2017-01-25 2021-11-03 Corning Incorporated High refractive index titanium-niobium phosphate glass

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020230649A1 (ja) * 2019-05-10 2020-11-19
CN114728837A (zh) * 2019-11-14 2022-07-08 日本电气硝子株式会社 玻璃物品
WO2022159280A1 (en) 2021-01-22 2022-07-28 Corning Incorporated Phosphate glasses with high refractive index and low density
CN116802162A (zh) 2021-01-22 2023-09-22 康宁股份有限公司 具有高折射率和色散减小的磷酸盐玻璃
EP4281421A1 (en) 2021-01-22 2023-11-29 Corning Incorporated Calcium-containing high-index phosphate glasses
CN113666636B (zh) * 2021-09-14 2022-12-13 成都光明光电股份有限公司 光学玻璃、玻璃预制件、光学元件和光学仪器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010083701A (ja) * 2008-09-30 2010-04-15 Hoya Corp 光学ガラス、プレス成形用ガラス素材および光学素子
JP2010260744A (ja) * 2009-04-30 2010-11-18 Ohara Inc 光学ガラス、光学素子及び精密プレス成形用プリフォーム
WO2012043815A1 (ja) * 2010-09-30 2012-04-05 Hoya株式会社 光学ガラス、プレス成形用ガラス素材および光学素子
WO2012115038A1 (ja) * 2011-02-23 2012-08-30 Hoya株式会社 光学ガラス、プレス成形用ガラス素材および光学素子
JP2013119517A (ja) * 2011-12-08 2013-06-17 Cdgm Glass Co Ltd リン酸塩光学ガラス
JP2013227197A (ja) * 2012-03-30 2013-11-07 Ohara Inc 光学ガラス、レンズプリフォーム及び光学素子
WO2015046428A1 (ja) * 2013-09-30 2015-04-02 Hoya株式会社 光学ガラスおよびその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2747964B2 (ja) * 1993-06-07 1998-05-06 株式会社オハラ 光学ガラスの製造方法
JP4810901B2 (ja) * 2005-07-11 2011-11-09 コニカミノルタオプト株式会社 光学ガラス及び光学素子
CN106277761B (zh) * 2007-03-06 2019-09-03 Hoya株式会社 光学玻璃、模压成形用预成形件、光学元件以及它们的制造方法
JP2009173520A (ja) * 2007-10-30 2009-08-06 Nippon Electric Glass Co Ltd モールドプレス成形用光学ガラス
CN101817638B (zh) * 2009-02-27 2014-07-02 株式会社小原 光学玻璃及光学元件
JP2011057509A (ja) * 2009-09-10 2011-03-24 Asahi Glass Co Ltd 光学ガラス
CN101941797B (zh) * 2010-09-21 2012-04-25 成都光明光电股份有限公司 光学玻璃及光学元件
JP2012091983A (ja) * 2010-10-28 2012-05-17 Ohara Inc 光学ガラス及び光学素子
CN103723914A (zh) * 2012-10-10 2014-04-16 株式会社小原 光学玻璃、光学元件及玻璃成型体的制造方法
CN107721160A (zh) * 2013-04-05 2018-02-23 株式会社小原 光学玻璃、预成型材料及光学元件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010083701A (ja) * 2008-09-30 2010-04-15 Hoya Corp 光学ガラス、プレス成形用ガラス素材および光学素子
JP2010260744A (ja) * 2009-04-30 2010-11-18 Ohara Inc 光学ガラス、光学素子及び精密プレス成形用プリフォーム
WO2012043815A1 (ja) * 2010-09-30 2012-04-05 Hoya株式会社 光学ガラス、プレス成形用ガラス素材および光学素子
WO2012115038A1 (ja) * 2011-02-23 2012-08-30 Hoya株式会社 光学ガラス、プレス成形用ガラス素材および光学素子
JP2013119517A (ja) * 2011-12-08 2013-06-17 Cdgm Glass Co Ltd リン酸塩光学ガラス
JP2013227197A (ja) * 2012-03-30 2013-11-07 Ohara Inc 光学ガラス、レンズプリフォーム及び光学素子
WO2015046428A1 (ja) * 2013-09-30 2015-04-02 Hoya株式会社 光学ガラスおよびその製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3573934B1 (en) 2017-01-25 2021-11-03 Corning Incorporated High refractive index titanium-niobium phosphate glass
WO2020188868A1 (ja) * 2019-03-18 2020-09-24 光ガラス株式会社 光学ガラス、光学素子、光学系、交換レンズ及び光学装置
JP2021031354A (ja) * 2019-08-28 2021-03-01 Hoya株式会社 発光ガラス
JP7218258B2 (ja) 2019-08-28 2023-02-06 Hoya株式会社 発光ガラス
WO2021199554A1 (ja) * 2020-03-31 2021-10-07 Hoya株式会社 光学ガラス、光学素子ブランク、および光学素子

Also Published As

Publication number Publication date
JPWO2017006998A1 (ja) 2018-06-28
CN107614449A (zh) 2018-01-19
JP2023139100A (ja) 2023-10-03
CN111892297A (zh) 2020-11-06
JP2022028819A (ja) 2022-02-16
JP6980737B2 (ja) 2021-12-15
CN111892297B (zh) 2022-11-01
JP2020019710A (ja) 2020-02-06
JP6639053B2 (ja) 2020-02-05
CN107614449B (zh) 2020-08-21

Similar Documents

Publication Publication Date Title
JP6980737B2 (ja) ガラス、光学ガラス、リン酸塩光学ガラス、研磨用ガラス素材、プレス成形用ガラス素材および光学素子
TWI691470B (zh) 光學玻璃及光學元件
WO2018043475A1 (ja) ガラス、プレス成形用ガラス素材、光学素子ブランクおよび光学素子
JP7003198B2 (ja) ガラス、プレス成形用ガラス素材、光学素子ブランク、および光学素子
JP2019019050A (ja) 光学ガラスおよび光学素子
TWI771744B (zh) 光學玻璃及光學元件
TWI735451B (zh) 玻璃、光學玻璃、抛光用玻璃材料、壓製成型用玻璃材料及光學元件
JP6812147B2 (ja) 光学ガラス、光学素子ブランク、および光学素子
JP7401236B2 (ja) 光学ガラスおよび光学素子
JP2024019356A (ja) 光学ガラスおよび光学素子
JP7194551B2 (ja) 光学ガラス、プレス成形用ガラス素材、光学素子ブランクおよび光学素子
JP6812148B2 (ja) 光学ガラス、光学素子ブランク、および光学素子
JP6961547B2 (ja) 光学ガラスおよび光学素子
JP7194861B2 (ja) 光学ガラス、プレス成形用ガラス素材、光学素子ブランクおよび光学素子
JP7234454B2 (ja) 光学ガラス、プレス成形用ガラス素材、光学素子ブランクおよび光学素子
TWI707834B (zh) 磷酸鹽光學玻璃、壓製成型用玻璃材料及光學元件
JP7213736B2 (ja) 光学ガラスおよび光学素子
TWI781231B (zh) 光學玻璃及光學元件
JP2022021586A (ja) 光学ガラスおよび光学素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16821466

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017527497

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16821466

Country of ref document: EP

Kind code of ref document: A1