WO2015046072A1 - 炭素熱源の乾燥方法 - Google Patents
炭素熱源の乾燥方法 Download PDFInfo
- Publication number
- WO2015046072A1 WO2015046072A1 PCT/JP2014/074895 JP2014074895W WO2015046072A1 WO 2015046072 A1 WO2015046072 A1 WO 2015046072A1 JP 2014074895 W JP2014074895 W JP 2014074895W WO 2015046072 A1 WO2015046072 A1 WO 2015046072A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat source
- drying
- carbon heat
- carbon
- dry
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F26—DRYING
- F26B—DRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
- F26B21/00—Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
- F26B21/06—Controlling, e.g. regulating, parameters of gas supply
- F26B21/10—Temperature; Pressure
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24B—MANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
- A24B15/00—Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
- A24B15/10—Chemical features of tobacco products or tobacco substitutes
- A24B15/16—Chemical features of tobacco products or tobacco substitutes of tobacco substitutes
- A24B15/165—Chemical features of tobacco products or tobacco substitutes of tobacco substitutes comprising as heat source a carbon fuel or an oxidized or thermally degraded carbonaceous fuel, e.g. carbohydrates, cellulosic material
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24C—MACHINES FOR MAKING CIGARS OR CIGARETTES
- A24C5/00—Making cigarettes; Making tipping materials for, or attaching filters or mouthpieces to, cigars or cigarettes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F26—DRYING
- F26B—DRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
- F26B21/00—Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
- F26B21/06—Controlling, e.g. regulating, parameters of gas supply
- F26B21/08—Humidity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F26—DRYING
- F26B—DRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
- F26B25/00—Details of general application not covered by group F26B21/00 or F26B23/00
- F26B25/22—Controlling the drying process in dependence on liquid content of solid materials or objects
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24D—CIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
- A24D1/00—Cigars; Cigarettes
- A24D1/22—Cigarettes with integrated combustible heat sources, e.g. with carbonaceous heat sources
Definitions
- the present invention relates to a method for drying a carbon heat source used as a heat source for, for example, a smoking article.
- This type of carbon heat source is manufactured by the following procedure. First, carbon powder, a combustion modifier and a binder (water) are kneaded to produce a kneaded product, and this kneaded product is continuously formed into a cylindrical carbon heat source rod by extrusion molding (see paragraph 0003 of Patent Document 1). ). At this time, in order to sufficiently secure the moldability of the carbon heat source rod, that is, the fluidity of the kneaded material, the carbon heat source rod immediately after molding contains 20 wt% or more of moisture.
- the carbon heat source rod is dried with hot air (see paragraphs 0019 to 0020 of FIG. 1 in Patent Document 1), and the dried carbon heat source rod is cut into a carbon heat source having a predetermined length.
- the final target moisture content of the carbon heat source is 10 wt% or less. With such a moisture content, the ignitability of the carbon heat source is sufficiently secured.
- a far-infrared heater can also be used for drying the carbon heat source rod (see Patent Document 2).
- the higher the temperature of the hot air the shorter the time required for drying the carbon heat source rod, but in this case, the outer surface of the carbon heat source rod dries faster than the inside. To do. For this reason, since the outer surface of the carbon heat source rod exposed to the hot air is first dried and begins to shrink, the carbon heat source cannot be uniformly dried, and the roundness of the carbon heat source rod, that is, the carbon heat source is not maintained. In addition, non-uniform drying promotes the generation of cracks in the carbon heat source, remarkably deteriorates the appearance quality of the carbon heat source, and decreases the yield.
- the present invention is made based on the above-mentioned circumstances, and the object is to provide a carbon heat source drying method capable of shortening the time required for drying without deteriorating the appearance quality of the carbon heat source after drying. It is to provide.
- the above-described object is achieved by the carbon heat source drying method according to the present invention.
- the drying method of the present invention forms a kneaded material obtained by kneading carbon powder with an additive containing a binder and water into a rod-shaped carbon heat source. Then, in manufacturing a finished product with the carbon heat source dried, the weight of the water evaporating from the outer surface of the carbon heat source is approximated with the rate of moisture moving from the center to the outer surface in the carbon heat source, A dry atmosphere that gradually decreases the absolute humidity is generated, and the carbon heat source is dried in the dry atmosphere.
- the drying method described above even if the absolute humidity of the dry atmosphere is reduced stepwise, the evaporation rate of moisture evaporating from the outer surface of the carbon heat source and the moving rate of moisture in the carbon heat source are approximated. Therefore, the drying of the carbon heat source proceeds uniformly and rapidly as seen across the entire cross section of the carbon heat source. Therefore, the carbon heat source contracts uniformly across the entire cross-section, and the cross-sectional shape does not collapse. As a result, the carbon heat source is dried toward the target moisture content while maintaining the appearance quality.
- the method for drying a carbon heat source of the present invention enables the carbon heat source to be dried in a short time while maintaining the appearance quality of the carbon heat source by suppressing the collapse of the cross-sectional shape of the carbon heat source after drying. .
- the carbon heat source HS has a cylindrical shape and is used as a heat source for the non-combustion smoking article described above.
- the carbon heat source HS of FIG. 1 has a circular center bore B in the center, and the center bore B extends through the carbon heat source HS.
- an extruder is used for the production of the carbon heat source HS, and this extruder first kneads carbon powder, an additive containing a binder, and water into a kneaded product, and the kneaded product is formed into a cylindrical shape by extrusion molding. Continuously molded into a carbon heat source rod. The formed carbon heat source rod is cut into a carbon heat source HS having a predetermined length outside the extruder, and thereafter, the carbon heat source HS is subjected to a drying process to be a finished product.
- the carbon heat source HS may be manufactured by injection molding or punching.
- the drying of the carbon heat source HS is performed in a dry atmosphere, and this drying atmosphere provides the following drying profile to the carbon heat source HS throughout the drying period of the carbon heat source HS. Drying profile
- the evaporation rate of moisture from the outer surface of the carbon heat source HS is expressed as Vo.
- the moving speed of moisture toward the outer surface of the carbon heat source HS in the carbon heat source HS is represented by Vs.
- the evaporation rate Vo is obtained based on the following function Fo using the dry bulb temperature T of the dry atmosphere and the relative humidity RH of the dry atmosphere as parameters.
- Vo Fo (T, RH)
- the moisture moving speed Vs in the carbon heat source HS is a parameter of the moisture difference ⁇ of the moisture amount between the outer surface and the inner surface of the carbon heat source HS, the composition C of the carbon heat source HS, and the product temperature To of the carbon heat source HS. It is calculated based on the following function Fi. Further, the moving speed Vs increases as the product temperature To increases.
- Vs Fi ( ⁇ , C, To)
- the moisture difference ⁇ is obtained from the following equation when the moisture content on the inner surface side of the carbon heat source HS is represented by ⁇ i and the moisture content on the outer surface side of the carbon heat source HS is represented by ⁇ o.
- ⁇ ⁇ i- ⁇ o
- the dry bulb temperature T of the dry atmosphere is set so that the dry atmosphere has an absolute weight humidity of 40% or more of the water content of the carbon heat source HS.
- the moisture content of the carbon heat source HS is relatively large.
- the dry bulb temperature T is set to be relatively high.
- the dry bulb temperature T is lowered stepwise to a target temperature at the completion of drying of the carbon heat source HS, for example, room temperature (20 ° C.).
- a target temperature at the completion of drying of the carbon heat source HS for example, room temperature (20 ° C.).
- the target temperature of the carbon heat source HS at the completion of drying is sufficiently higher than the room temperature, a further cooling period of the carbon heat source HS is required after the completion of drying. If rapid cooling is performed during such a cooling period, moisture suddenly jumps from the surface of the carbon heat source HS, and the balance between the evaporation speed Vo and the movement speed Vs is lost. There is a possibility of generating a desired crack.
- the drying profile described above during the drying process of the carbon heat source HS, the water evaporation rate Vo and the transfer rate Vs are approximated. Therefore, the drying of the carbon heat source HS is uniform across the entire cross section of the carbon heat source HS. It progresses and the carbon heat source HS does not shrink unevenly. Therefore, the roundness of the carbon heat source HS, that is, the shape retention of the carbon heat source HS is ensured, and the carbon heat source HS does not crack as described above. As a result, the appearance quality of the carbon heat source HS can be maintained regardless of the above-described drying process.
- the uniform drying process of the carbon heat source HS allows the moisture content of the carbon heat source HS to reach the target moisture amount earlier than the low-temperature drying described above, contributing to shortening the drying time. Compared to the above, it has excellent appearance quality and enables the production of carbon heat source HS.
- three kinds of carbon heat source HS A belonging to Example 1, HS B, and HS C, 1 kind of carbon heat source HS D belonging to the second embodiment is respectively extruded.
- Carbon heat source HS A, HS B, as HS C is shown in Figure 2
- the carbon heat source HS D has a honeycomb structure.
- the carbon heat source HS A, HS B, HS C , HS D has an outer diameter of about 6 - 8 mm, also, carbon heat source HS A, HS B, the inner diameter of the HS C 1 to It is about 3 mm.
- the composition of the carbon heat sources HS A , HS B and HS C before drying is shown in Table 1 below.
- the carbon heat sources HS A , HS B , and HS C of the first example are made of a mixture of activated carbon, additive, and water activated as carbon powder, and the additive includes calcium carbonate, Binder and refined salt are included.
- Calcium carbonate acts as a combustion preparation agent, and as the binder, one or more kinds selected from sodium carboxymethylcellulose, ammonium alginate, pectin, and carrageenan are used.
- the carbon heat source HS D of the second embodiment as in the case of the first embodiment, a mixture of activated charcoal, additives and water.
- the additive herein contains calcium carbonate, binder and glycerin, and one or more kinds selected from carboxymethyl cellulose, ammonium alginate, pectin and carrageenan are used as the binder.
- Drying profile carbon heat source HS A As apparent from Table 3 contains dry stage of the multiple stages. Dry-bulb temperature T and relative humidity RH of the drying atmosphere in the drying stage, the carbon heat source HS A when these dry-bulb temperature T and weight absolute humidity AH obtained by the relative humidity RH has moved to its corresponding drying stages It is set to be 40% or more of the water content. Therefore, when viewed between adjacent drying stage, since progresses dry carbon heat source HS A in front of the drying stage, the subsequent drying stage weight absolute humidity AH dry atmosphere is reduced stepwise. Table 3 shows up to six drying stages.
- the first moisture content of the drying stage 1 in carbon heat source HS A is greater (see Table 1), it sets a weight absolute humidity AH such that more than 40% of the water content with the carbon heat source HS A.
- dry-bulb temperature T of the drying atmosphere is set higher relatively, thereby, it is possible to effectively evaporate the water from the carbon heat source HS A.
- the dry bulb temperature T in the drying stage 1 is set to be equal to or higher than the dry bulb temperature in the subsequent drying stage.
- As the progresses apparent dry bulb temperature T is also drying stage as from Table 3, since it is reduced in stages to about room temperature to complete the drying of the carbon heat source HS A, carbon heat source HS A Rapid cooling is not required. Such quenching is likely to generate cracks on the outer surface of the carbon heat source HS A, that quenching treatment is not necessary, nor the appearance quality of the carbon heat source HS A is degraded by cracks.
- the absolute weight humidity AH can be read from, for example, a wet air diagram or a conversion table using the dry bulb temperature T and the relative humidity RH as parameters.
- Table 4 below shows the conditions of constant temperature drying 1.
- Water content W A humid dry carbon heat source HS A As is apparent from Figure 4, it reaches the early target moisture content (less 10 wt%) as compared to the water content W 1 of constant temperature drying carbon heat source HS A To do. Therefore, high humidity drying by the drying profile of Table 3 is compared with the constant temperature drying 1, it is possible to significantly reduce the time required for drying of the carbon heat source HS A.
- the outer diameter of the carbon heat source HS A in each measurement sample was measured respectively at points P1 ⁇ P5 shown in FIG. It should be noted that these measurement points P1 ⁇ P5 are spaced from each other along the circumferential direction of the carbon heat source HS A.
- MAX, MIN, Av, and ⁇ are the maximum value, minimum value, average, and standard deviation of the maximum outer diameter Dmax in all measurement samples. Each is shown.
- MAX, MIN, Av, and ⁇ are the minimum in all the measurement samples for the column for 2-point average and the column for 5-point average.
- the maximum value, minimum value, average, and standard deviation of the outer diameter Dmin, 2-point average, and 5-point average are shown.
- the two-point average means an average value between the maximum value and the minimum value of the outer diameters obtained by measuring at measurement points P1 to P5 for each measurement sample. The average indicates an average value of outer diameters at all measurement points P1 to P.
- the carbon heat source HS A is a constant temperature drying also provides 50 present, was similarly measured outer diameter of the carbon heat source HS A.
- Table 6 below shows the measurement results and the evaluation obtained from the measurement results in the same form as Table 5.
- the carbon heat source HS C was humid dried under a dry atmosphere according drying profile of Table 8 below.
- the drying profiles of the carbon heat sources HS B and HS C also include a plurality of drying stages. Dry-bulb temperature T and relative humidity RH of the drying atmosphere in the drying stage, the carbon heat source HS A when these dry-bulb temperature T and weight absolute humidity AH obtained by the relative humidity RH has moved to its corresponding drying stages It is set to be 40% or more of the water content. Moreover, the absolute weight humidity AH is decreased stepwise between adjacent drying stages.
- the drying profiles in Tables 7 and 8 are basically the same as the drying profiles in Table 3, but differ from the drying profiles in Table 3 in that the drying time of each drying stage is the same.
- FIG. 5 shows the change in the moisture content W B of the carbon heat source HS B when the carbon heat source HS B is dried with high humidity, together with the change in the moisture content W 2 of the carbon heat source HS B that has been subjected to constant drying.
- FIG. 6 shows the change in moisture content W C of the carbon heat source HS C when carbon heat source HS C is humid drying, with changes in moisture content W 3 of constant temperature drying carbon heat source HS C.
- the carbon heat source HS B, a constant temperature drying of HS C was carried out at constant temperature drying the same under the conditions described above for the carbon heat source HS A.
- the moisture contents W B and W C of the carbon heat sources HS B and HS C that have been humid-dried are the moisture contents W 2 and W of the carbon heat sources HS B and HS C that have been dried at a constant temperature.
- the target moisture content (10 wt% or less) is reached early.
- the moisture amount W B (or H C ) of the carbon heat source HS B (or HS C ) when the weight absolute humidity AH of the drying atmosphere at each drying stage is transferred to the drying stage is 40% or more of W C ).
- drying profile carbon heat source HS D dry-bulb temperature T of the drying atmosphere in the drying stage 1 is lower than that of in the above drying profile.
- weight absolute humidity AH of dry atmosphere at each drying stage is preferably and 40% near the 40% or more. 7 when the carbon heat source HS D is humid dried according to the drying profile of Table 9 shows the change in moisture content W D carbon heat source HS D. Further, in FIG. 7, under conditions of constant temperature drying 2,3 are shown also to a change in the water content W 4, W 5 carbon heat source HS D when the carbon heat source HS D was dried .
- Table 11 below shows the conditions of constant temperature drying 3.
- the dry bulb temperature T in the drying atmosphere is lower than the constant temperature drying 1 described above, and unlike the constant temperature drying 1, the relative humidity in the drying atmosphere in order to keep the absolute weight humidity AH constant. RH is maintained.
- the moisture content W D of the carbon heat source HS D that has been dried at high humidity is compared with the moisture content W 4 , W 5 of the carbon heat source HS D that has been dried under the conditions of constant temperature drying 2 and 3.
- the target moisture content (10 wt% or less) is reached early, and high-humidity drying contributes to shortening the drying time.
- carbon heat source HS D which is humid drying it was confirmed that superior to a constant temperature drying carbon heat source HS D.
- composition and the cross-sectional shape other than the carbon particles of the carbon heat source HS are not limited to those illustrated in the tables and drawings, and can be changed according to the use form. Is
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Drying Of Solid Materials (AREA)
- Manufacture Of Tobacco Products (AREA)
Abstract
Description
先ず、炭素粉末、燃焼調整剤及びバインダ(水)を混練して混練物を生成し、この混練物を押出成形により円筒形状の炭素熱源ロッドに連続的に成形する(特許文献1の段落0003参照)。このとき、炭素熱源ロッドの成形性、即ち、混練物の流動性を十分に確保するため、成形直後の炭素熱源ロッドは20wt%以上の水分を含んでいる。
一方、特許文献1に記載された熱風乾燥の他に、炭素熱源ロッドの乾燥には遠赤外線ヒータを使用することもできる(特許文献2参照)。
一方、特許文献2での遠赤外線による乾燥方法でも、熱風乾燥に比べて炭素熱源の加熱温度を細かく制御し易いとはいえ、上述した不具合を解消し得るものではない。
乾燥プロファイル
炭素熱源HSの外面からの水分の蒸発速度をVoで表す。一方、炭素熱源HS内にて炭素熱源HSの外面に向かう水分の移動速度をVsで表す。このとき、下式の関係が満たされるならば、炭素熱源HSの乾燥は炭素熱源HSの横断面全域にて均一に進行するものと想定される。
Vo≒Vs …… (1)
Vo=Fo(T,RH)
一方、炭素熱源HS内での水分の移動速度Vsは、炭素熱源HSにおける外面と内面との間での水分量の水分差Δα、炭素熱源HSの組成C及び炭素熱源HSの品温Toをパラメータとした以下の関数Fiに基づいて求められる。また、移動速度Vsは品温Toの上昇とともに増加する。
Vs=Fi(Δα,C, To)
Δα=αi-αo
上記(1)式の関係を満たすため、乾燥雰囲気の乾球温度Tは、乾燥雰囲気が炭素熱源HSの水分量の40%以上の絶対重量湿度を有するべく設定される。ここで、乾燥プロファイルの初期段階では、炭素熱源HSの水分量は比較的多いので、この場合、乾球温度Tは比較的高く設定される。
上述した乾燥プロファイルの働きを検証するため、実施例1に属する3種の炭素熱源HSA,HSB,HSCと、実施例2に属する1種の炭素熱源HSDがそれぞれ押出成形された。炭素熱源HSA,HSB,HSCは図2に示されているように、図1の炭素熱源HSと同様なパイプ形状を有し、これに対し、炭素熱源HSDはハニカム構造を有する。
炭素熱源HSA,HSB,HSCの乾燥前の組成は以下の表1に示されている。
また、表3から明らかなように乾球温度Tもまた乾燥ステージが進行するに連れ、室温程度まで段階的に低下されるので、炭素熱源HSAの乾燥が完了した後、炭素熱源HSAの急冷処理が不要となる。このような急冷処理は炭素熱源HSAの外表面にクラック等を発生させ易いが、急冷処理が不要となることで、炭素熱源HSAの外観品質がクラック等によって悪化することもない。
なお、重量絶対湿度AHは、例えば湿り空気線図や、乾球温度T及び相対湿度RHをパラメータとした換算表から読み取ることができる。
なお、2点平均とは、各測定サンプル毎に測定点P1~P5にて測定して得られた外径のうち、その最大値と最小値との間の平均値を示し、一方、5点平均とは全測定点P1~Pでの外径の平均値を示す。
また、2点平均や5点平均に係る標準偏差σを対比しても、多湿乾燥での標準偏差σは定温乾燥での標準偏差σに比べて低く、炭素熱源HSAの横断面形状は乾燥の前後に拘わらず、相似形を維持しながら収縮していることが分かる。
図5は、炭素熱源HSBが多湿乾燥されたときの炭素熱源HSBの水分量WBの変化を、定乾燥された炭素熱源HSBの水分量W2の変化とともに示す。また、図6は、炭素熱源HSCが多湿乾燥されたときの炭素熱源HSCの水分量WCの変化を、定温乾燥された炭素熱源HSCの水分量W3の変化とともに示す。なお、炭素熱源HSB,HSCの定温乾燥は前述の炭素熱源HSAの定温乾燥と同一の条件下にて実施された。
また、炭素熱源HSDの乾燥プロファイルの場合、各乾燥ステージでの乾燥雰囲気の重量絶対湿度AHは40%以上で且つ40%の近傍であるのが好ましい。
図7は、表9の乾燥プロファイルに従って炭素熱源HSDが多湿乾燥されたとき、炭素熱源HSDの水分量WDの変化を示す。また、図7には、定温乾燥2,3の条件下にて、炭素熱源HSDが乾燥されたときの炭素熱源HSDの水分量W4,W5の変化をも併せて示されている。
B センタボア
T 乾球温度
RH 相対湿度
AH 重量絶対湿度
Vo 水分の蒸発速度
Vs 水分の移動速度
Claims (7)
- 炭素粉末にバインダを含む添加剤及び水を加えて混練した混練物をロッド形状の炭素熱源に成形し、この後、前記炭素熱源を乾燥した完成品を製造するにあたり、
前記炭素熱源の外面から蒸発する水分の蒸発速度と前記炭素熱源内での中央から前記外面に向かう水分の移動速度とを近似させつつ、重量絶対湿度を段階的に低下させる乾燥雰囲気を生成し、
前記乾燥雰囲気中にて前記炭素熱源を乾燥させることを特徴とする炭素熱源の乾燥方法。 - 前記炭素熱源の乾燥は、前記炭素熱源における乾燥の進行に従い複数の乾燥ステージに分けて実施され、
隣接する乾燥ステージ間にて、前記乾燥雰囲気の乾球温度及び相対湿度の少なくとも一方が変化されることを特徴とする請求項1に記載の炭素熱源の乾燥方法。 - 前記各乾燥ステージでの前記乾燥雰囲気の乾球温度及び相対湿度は、前記炭素熱源における乾燥の進行に拘わらず、前記炭素熱源の横断面形状を維持すべくそれぞれ決定されていることを特徴とする請求項2に記載の炭素熱源の乾燥方法。
- 前記乾燥ステージのうちの最初の乾燥ステージでの前記乾球温度は、以降の乾燥ステージでの前記乾球温度以上に設定されていることを特徴とする請求項2に記載の炭素熱源の乾燥方法。
- 前記各乾燥ステージでの前記重量絶対湿度は、対応した乾燥ステージへの移行時、前記炭素熱源が有する水分量の40%以上に相当することを特徴とする請求項4に記載の炭素熱源の乾燥方法。
- 前記乾燥ステージのうちの最初の乾燥ステージでの前記乾球温度は、以降の乾燥ステージでの前記乾球温度以上に設定されていることを特徴とする請求項3に記載の炭素熱源の乾燥方法。
- 前記各乾燥ステージでの前記重量絶対湿度は、対応した乾燥ステージへの移行時、前記炭素熱源が有する水分量の40%以上に相当することを特徴とする請求項6に記載の炭素熱源の乾燥方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015539169A JP6374873B2 (ja) | 2013-09-25 | 2014-09-19 | 炭素熱源の乾燥方法 |
EP14848435.5A EP3050445A4 (en) | 2013-09-25 | 2014-09-19 | Carbon heat source drying method |
CN201480051962.8A CN105555158B (zh) | 2013-09-25 | 2014-09-19 | 碳热源的干燥方法 |
US15/047,074 US10274254B2 (en) | 2013-09-25 | 2016-02-18 | Carbon heat source drying method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-198369 | 2013-09-25 | ||
JP2013198369 | 2013-09-25 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/047,074 Continuation US10274254B2 (en) | 2013-09-25 | 2016-02-18 | Carbon heat source drying method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015046072A1 true WO2015046072A1 (ja) | 2015-04-02 |
Family
ID=52743209
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/074895 WO2015046072A1 (ja) | 2013-09-25 | 2014-09-19 | 炭素熱源の乾燥方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10274254B2 (ja) |
EP (1) | EP3050445A4 (ja) |
JP (1) | JP6374873B2 (ja) |
CN (1) | CN105555158B (ja) |
WO (1) | WO2015046072A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021530994A (ja) * | 2018-07-13 | 2021-11-18 | アール・ジエイ・レイノルズ・タバコ・カンパニー | 着脱式カートリッジ付喫煙品 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105555158B (zh) * | 2013-09-25 | 2019-12-03 | 日本烟草产业株式会社 | 碳热源的干燥方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08332067A (ja) * | 1995-01-05 | 1996-12-17 | R J Reynolds Tobacco Co | 喫煙物品用燃料部材の水分含量を調節するための方法及び装置 |
JP2002086407A (ja) * | 2000-09-11 | 2002-03-26 | Shinshiba Setsubi:Kk | 木材の人工乾燥方法および木材乾燥装置 |
WO2005046364A1 (ja) | 2003-11-13 | 2005-05-26 | Japan Tobacco Inc. | 炭素質熱源チップの製造装置 |
WO2009131009A1 (ja) | 2008-04-25 | 2009-10-29 | 日本たばこ産業株式会社 | 非燃焼型喫煙物品成形体の乾燥方法およびその装置 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3571943A (en) * | 1969-06-23 | 1971-03-23 | Hulbert E Sipple | Wood drying and preserving process |
US4109664A (en) * | 1975-03-05 | 1978-08-29 | Brown & Williamson Tobacco Corporation | Smoking materials |
JPS52154599A (en) * | 1976-06-15 | 1977-12-22 | Japan Tobacco Inc | Method for imparting water resistance to molded smoking composition |
US4793365A (en) * | 1984-09-14 | 1988-12-27 | R. J. Reynolds Tobacco Company | Smoking article |
JPH07109166A (ja) * | 1993-10-13 | 1995-04-25 | Honda Motor Co Ltd | セラミックス成形体の乾燥方法 |
JP3575892B2 (ja) * | 1995-10-19 | 2004-10-13 | 株式会社ユポ・コーポレーション | テンターオーブンにおける雨滴排出装置 |
JP3361312B2 (ja) * | 2000-02-04 | 2003-01-07 | 木材乾燥低コスト化技術研究組合 | 木材の乾燥方法 |
CN1380528A (zh) * | 2001-04-12 | 2002-11-20 | 厦门涌泉科技发展股份有限公司 | 一种马尾松板方材的脱脂干燥方法 |
FI20031696A (fi) * | 2003-11-21 | 2005-05-22 | Teknocomp Oy | Laitteisto puun tai puutuotteiden käsittelemiseksi |
FI20041278A (fi) * | 2003-11-21 | 2005-05-22 | Teknocomp Oy | Menetelmä ja laittesto puun tai puutuotteiden käsittelemiseksi |
US7024796B2 (en) * | 2004-07-19 | 2006-04-11 | Earthrenew, Inc. | Process and apparatus for manufacture of fertilizer products from manure and sewage |
DE102005014291A1 (de) * | 2005-03-24 | 2006-09-28 | Basf Ag | Verfahren zur Herstellung wasserabsorbierender Polymere |
US8353298B2 (en) * | 2006-07-12 | 2013-01-15 | Philip Morris Usa Inc. | Smoking article with impaction filter segment |
US8220180B2 (en) * | 2007-03-20 | 2012-07-17 | Toray Industries, Inc. | Air injection nozzle, and tenter oven using the nozzle |
JP5186267B2 (ja) * | 2007-04-04 | 2013-04-17 | 富士フイルム株式会社 | セルロースアシレートフイルム及びその製造方法、並びに、偏光板、液晶表示板用光学補償フイルム、反射防止フイルム及び液晶表示装置 |
AR080556A1 (es) * | 2009-10-09 | 2012-04-18 | Philip Morris Prod | Diseno de filtro para mejorar el perfil sensorial de articulos para fumar con boquilla de filtro de carbono |
US8905037B2 (en) * | 2009-10-15 | 2014-12-09 | Philip Morris Inc. | Enhanced subjective activated carbon cigarette |
CN103112069B (zh) * | 2012-03-30 | 2016-05-11 | 北京林业大学 | 一种提高木材透气性的处理设备和处理方法 |
CN105555158B (zh) * | 2013-09-25 | 2019-12-03 | 日本烟草产业株式会社 | 碳热源的干燥方法 |
-
2014
- 2014-09-19 CN CN201480051962.8A patent/CN105555158B/zh active Active
- 2014-09-19 JP JP2015539169A patent/JP6374873B2/ja active Active
- 2014-09-19 WO PCT/JP2014/074895 patent/WO2015046072A1/ja active Application Filing
- 2014-09-19 EP EP14848435.5A patent/EP3050445A4/en not_active Withdrawn
-
2016
- 2016-02-18 US US15/047,074 patent/US10274254B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08332067A (ja) * | 1995-01-05 | 1996-12-17 | R J Reynolds Tobacco Co | 喫煙物品用燃料部材の水分含量を調節するための方法及び装置 |
JP2002086407A (ja) * | 2000-09-11 | 2002-03-26 | Shinshiba Setsubi:Kk | 木材の人工乾燥方法および木材乾燥装置 |
WO2005046364A1 (ja) | 2003-11-13 | 2005-05-26 | Japan Tobacco Inc. | 炭素質熱源チップの製造装置 |
WO2009131009A1 (ja) | 2008-04-25 | 2009-10-29 | 日本たばこ産業株式会社 | 非燃焼型喫煙物品成形体の乾燥方法およびその装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3050445A4 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021530994A (ja) * | 2018-07-13 | 2021-11-18 | アール・ジエイ・レイノルズ・タバコ・カンパニー | 着脱式カートリッジ付喫煙品 |
US11723399B2 (en) | 2018-07-13 | 2023-08-15 | R.J. Reynolds Tobacco Company | Smoking article with detachable cartridge |
JP7434267B2 (ja) | 2018-07-13 | 2024-02-20 | アール・ジエイ・レイノルズ・タバコ・カンパニー | 着脱式カートリッジ付喫煙品 |
Also Published As
Publication number | Publication date |
---|---|
US10274254B2 (en) | 2019-04-30 |
JP6374873B2 (ja) | 2018-08-15 |
CN105555158A (zh) | 2016-05-04 |
EP3050445A4 (en) | 2017-05-10 |
US20160161184A1 (en) | 2016-06-09 |
EP3050445A1 (en) | 2016-08-03 |
CN105555158B (zh) | 2019-12-03 |
JPWO2015046072A1 (ja) | 2017-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5993364B2 (ja) | 乾燥パスタの製造方法 | |
JP6374873B2 (ja) | 炭素熱源の乾燥方法 | |
JP2018516075A5 (ja) | ||
MX2018002642A (es) | Metodo para producir material de tabaco homogeneizado de alta resistencia a la traccion. | |
JP2018108087A5 (ja) | ||
ITTO20070619A1 (it) | Metodo per produrre tagliolini estrusi | |
JP2009055896A (ja) | 溝付き麺類およびその製造方法 | |
JP2016534001A5 (ja) | ||
US10383356B2 (en) | Method for producing tobacco molded article | |
CN103223700B (zh) | 一种氨基模塑料颗粒的造粒工艺 | |
JP2008054677A (ja) | 押出麺の製造方法 | |
JP2007111038A (ja) | 膨化食品の製造方法 | |
JP2002253152A (ja) | 即席麺の製造方法 | |
JP6174484B2 (ja) | 押出成形麺用ダイスピース | |
CN102578357B (zh) | 一种可食用的雪糕棒的制备方法 | |
CN110833204B (zh) | 一种发烟制品的制造方法及其发烟制品 | |
CN104558878A (zh) | 应用于玩具制作的可均匀收缩的聚苯乙烯片材及制造方法 | |
RU2634930C1 (ru) | Способ изготовления заполнителя для бетона | |
WO2015098445A1 (ja) | たばこ成形体及び香味吸引具 | |
RU2588503C2 (ru) | Способ изготовления высокотемпературной теплоизоляции | |
CN105602224A (zh) | 基于聚碳酸酯的射钉弹弹夹及生产方法 | |
RU2609489C1 (ru) | Керамическая масса для производства кирпича | |
RU2509068C1 (ru) | Способ получения кварцевой керамики с повышенной излучательной способностью | |
BR102022006408A2 (pt) | Partículas sólidas solúveis contendo álcool etílico e seu uso, método de obtenção da partícula de álcool etílico sólido solúvel | |
JP2006007536A (ja) | 押出成形物の乾燥方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480051962.8 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14848435 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015539169 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2014848435 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014848435 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |