JP2002086407A - 木材の人工乾燥方法および木材乾燥装置 - Google Patents

木材の人工乾燥方法および木材乾燥装置

Info

Publication number
JP2002086407A
JP2002086407A JP2000274443A JP2000274443A JP2002086407A JP 2002086407 A JP2002086407 A JP 2002086407A JP 2000274443 A JP2000274443 A JP 2000274443A JP 2000274443 A JP2000274443 A JP 2000274443A JP 2002086407 A JP2002086407 A JP 2002086407A
Authority
JP
Japan
Prior art keywords
wood
drying
temperature
moisture content
lumber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000274443A
Other languages
English (en)
Inventor
Yutaka Shiba
豊 柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINSHIBA SETSUBI KK
Original Assignee
SHINSHIBA SETSUBI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINSHIBA SETSUBI KK filed Critical SHINSHIBA SETSUBI KK
Priority to JP2000274443A priority Critical patent/JP2002086407A/ja
Publication of JP2002086407A publication Critical patent/JP2002086407A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Chemical And Physical Treatments For Wood And The Like (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

(57)【要約】 【課題】 材厚寸法の大きい木材、特に住宅用構造材に
使用されるスギ材をはじめとする針葉樹材の木材の乾燥
度の向上・乾燥時間の短縮・歩留りの向上・乾燥コスト
の削減を実現する。 【解決手段】 温度と湿度とを調節した雰囲気に曝すこ
とによって木材中の水分を除去する木材の乾燥方法にお
いて、木材の中心部および表層部の含水率と材温とをそ
れぞれのセンサーでリアルタイムで計測し、その計測結
果に基づいて木材乾燥機躯体内の雰囲気を制御し、ま
た、乾燥のための工程間の移行時期を制御する。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、木材の乾燥、特に
は国産針葉樹材の乾燥、中でも芯持ち正角材や梁桁材の
乾燥に関する。
【0002】
【従来の技術】[国内産木材の製材の現状]現在、国内
需要製材に占める国産材の割合は20%台にまで落ち込
み、特にスギは、原木生産量が山林の蓄積増加量より下
回るほどとなっており、今のままでは戦後の植林事業に
よって育成中の森林資源の整備(間伐等)が停滞してし
まい、将来期待している中大径木の品質が下がってしま
うこととなる。また、国産材の流通量が下がることによ
り原木単価が上昇するにもかかわらず、輸入材への対抗
上、製品単価は横這い若しくは逆に下がってきているの
が実状である。また、1980年代より建築方式が原木
伐採から1〜2ヶ月程度の短期間で施工するようになっ
てきている。建築材(特に構造材として使用される柱材
や桁材等)は人工乾燥しなければ、また、人工乾燥が不
十分であれば、建築後自然に乾燥し収縮することにな
り、床鳴りや壁の亀裂、材割れ等が容易に発生し、クレ
ームやトラブルを招くことになり、社会問題に発展する
場合さえある。
【0003】然しながら、高いランニングコスト(電
力、燃料)、低い歩留り(乾燥による割れ・曲がり等の
発生)、生産性の低さ(乾燥時間が非常に長い)等によ
り、ややもすると乾燥そのものに対してどうしても後ろ
向きとなり、柱材等は表面10〜20mm程度を20〜
25%、芯部は35〜50%程度の乾燥で、乾燥材とし
て市場に出荷しているのが実状である。このように、乾
燥の必要性は認めながらも、中途半端な乾燥材しか出荷
されないことが多く、かえって乾燥材に対する評価が下
がり、近年良質なる乾燥材の不足を補うために、外材
(製材および集成材)が大量に輸入され、国産材の国内
シェアをますます圧迫している。
【0004】このままではさらに輸入材が増大すること
となり、国産材シェアが現状の20%台から15%、1
0%と急速に低下してしまう可能性がある。そうなって
からでは全く手がつけられなくなることが必至である。
勿論、物によってはしっかりと長時間をかけて高品質の
乾燥材を出荷している工場もあるが、非常に稀と旨って
も過言ではない。これらの状況より、早急に国産針葉樹
材の乾燥品質(含水率、製品歩留り、ランニングコス
ト、生産性)を向上させる必要がある。その結果、国内
流通量が増え原木単価が下がり、さらに生産量流通量が
増えることとなれば、森林資源の整備も充実することが
可能となる。
【0005】[従来の木材人工乾燥技術]木材を人工乾
燥するに際して、乾燥機室内の湿度と温度との設定を主
としたタイムスケジュール方式が用いられてきた。その
概要は以下のとおりである。まず、乾燥する木材の一部
を切断し、サンプルを数板取り出し重量を計測し、電気
乾燥器等で絶乾にしたものを再度重量を計測し、絶乾重
量に対する重量減少値の割合として、その木材の含水率
を算出する。目標とする乾燥含水率を設定し、測定含水
率と過去の経験から得られたデータを基にしたタイムス
ケジュールを設定し、時間毎の乾燥機室内の温湿度目標
値を決める。乾燥機を運転しつつ、定期的にサンプルを
取り出してサンプルの重量を計測し、乾燥スケジュール
の温湿度設定をその都度判断・修正し、適切な設定に変
えながら乾燥を進行させて目標とする含水率に向け乾燥
を行い、最終的には応力の除去や含水率の平均化等の工
程を経て、乾燥仕上を行う方法が現在の主流となってい
る。
【0006】[従来の制御方法による問題点(水分の差
異による欠点の発生)]木材の水分を適切に目標含水率
まで減少させるには、材内水分の経時変化(水分の減少
変化)を計測し、乾球温度・湿球温度・風量等の乾燥条
件を随時確認し、必要があればタイムスケジュールの設
定条件を変化させて乾燥の進捗を図り、各種装置(加熱
装置・加湿装置・送風装置・換気装置)を適切に合理的
に制御する必要がある。然しながら、住宅用構造材等の
場合、その断面が大きく、乾燥の進捗につれて材の表層
部と内層部の含水率の差異(水分傾斜)が大きくなり過
ぎる傾向がある。
【0007】乾燥の過程でみると、昇温の過程では、材
温の上昇あるいは顕熱により木材中の水分の膨張が始ま
り(材内水分の移動が始まる)、表層部まで移動した水
分が排出・蒸発して乾燥が進捗する。つまり、まず表層
部の温度が高まり、次第に内層部にその温度が伝導する
過程で、表層部より水分が排出・蒸発し始める。木材の
内外の温度差が解消された段階で、雰囲気の湿度を低下
させて、表層部から水分を蒸発させる。この過程では、
表層部の水分が内層部のそれよりも少なくなり、水分の
減少により木材は収縮が始まり、表層部からの水分の蒸
発が急速であると、表層部に割れや狂い(反り・曲り・
捩れ)が発生する(表層部収縮・内層部膨張)。さらに
乾燥が進み、内層部の水分が減ると、内層部が収縮し、
樹種・材厚・乾燥スケジュールにもよるが、内層部に割
れ(内部割れ)を引き起こす場合もある(内層部収
縮)。
【0008】このように、木材の水分の変化量は材温と
密接に関連しており、割れ・狂い等の欠点発生の重大因
子になっている。ここで、乾燥の過程で生じる木材の割
れ等の欠陥について、図4を用いて説明する。図4は、
木材乾燥の過程で生じる欠陥の態様を説明する説明図で
あり、(a)は正常に乾燥され欠陥を含まない正常乾燥
材を示し、(b)は長手方向に生ずる反り・曲りを示
す。(c)は、木材の表面側に生ずる割れ欠陥で、材面
および木口に生ずる。(d)は、材の長手方向に現れる
捩れである。(e)は、材内部から生ずる内部割れで、
材面および木口に現れない場合もある。
【0009】また、材表面温度が材深層部に伝わる速度
は概ね1時間に10mmが標準であるとされている。例
えば、住宅用柱材の断面寸法が105mmの時には、あ
らかじめ乾燥機室温が設定値に到達した(材表面温度が
設定値に到達した)時点から5時間30分後に、中心部
が設定温度に到達するという前提にたち、乾燥工程に移
行するよう制御している。しかし、実際の中心部の温度
は調べられていない。このように、従来の乾燥方法は推
定による制御となり、木材のような個体差の著しい特徴
を有する材質の場合には、含水率にしても材温にして
も、実際値と差異がある可能性が高く、この差異が大き
くなると、前述のように、表層部や内層部に割れ等の欠
陥の発生の原因になる。
【0010】これを恐れるあまり、いきおい安全を見込
み過ぎて、各部位の水分や材温の差異が発生しないよう
に、各工程の運転時間を長くし、生産性を後退させ、さ
らには乾燥コストの上昇を生じさせることになりがちで
あった。また、乾燥工程中において、材内温度は、木材
の含水率が高い時には室内湿球温度に近く、乾燥が進ん
で含水率が低下すると徐々に乾球温度に近くなる。この
ように、木材の含水率と材内温度の変化は互いに密接な
関係が有り、乾燥の工程の適正化を図るためには、双方
の測定データを利用することが望まれることとなる。従
来の木材人工乾燥操業によれば、通常、600〜700
時間(25〜30日)の時間を要し、さらに、乾燥に従
事する取扱者には、頻繁なサンプルチェックと、その結
果に基づく乾燥条件の設定ならびに進行管理に経験と高
度の乾燥技術が要求される。
【0011】
【発明が解決しようとする課題】本発明は、上記の問題
点に鑑みなされたもので、材厚寸法の大きい木材、特に
住宅用構造材に使用されるスギ材をはじめとする針葉樹
材の木材の乾燥度の向上・乾燥時間の短縮・歩留りの向
上・乾燥コストの削減を実現する乾燥方法および乾燥装
置を提供することを課題とする。
【0012】
【課題を解決するための手段】本発明は、温度と湿度と
を調節した雰囲気に曝すことによって木材中の水分を除
去する木材の乾燥方法において、木材の中心部および表
層部の含水率と材温とをそれぞれのセンサーでリアルタ
イムで計測し、その計測結果に基づいて木材乾燥機躯体
内の雰囲気を制御し、また、乾燥のための工程間の移行
時期を制御することを特徴とする木材の人工乾燥方法で
ある。また、木材乾燥機が加熱装置(ヒーター)、加湿
装置(蒸煮パイプ)、送風装置(プロペラファン)、
(排気熱回収式)熱交換装置を備え、さらに木材の表層
部と中心部との材温と含水率とを計測する各センサーを
備え、前記各センサーの計測値に基づいて前記木材乾燥
機室内の雰囲気の温度と湿度と工程間移行を制御する制
御装置を備えることを特徴とする木材乾燥装置である。
【0013】
【発明の実施の形態】本発明において、乾燥する木材
(特に国産針葉樹の間伐芯持ち柱材)の材表層部および中
心部に自動温度補正装置付含水率計(独自開発)からなる
センサーおよび材温測定用温度センサーを装備し、さら
に重量センサー(ロードセル)を設けて、それらのセンサ
ーからの測定データを利用して乾燥制御を行うと同時
に、事前に設定した条件と測定データとを対比して、乾
燥のための各工程の移行を自動的に行い、割れ・狂い
(反り・曲がり)等の品傷みを僅少にしながら、然も目標
含水率まで十分に乾燥した良質の乾燥材に仕上げる方法
および制御装置を具現化する。本発明は、従来の制御方
法の発想を根本から転換し、乾燥させる木材の表層部と
中心部との材温と含水率を実際に測定し、材厚寸法の大
きい(特に住宅用構造材に使用されるスギ材をはじめと
する針葉樹)木材の乾燥度の向上・生産性の向上(乾燥
時間の短縮)・歩留りの向上・乾燥コストの削減を実現
するものである。
【0014】本発明は、気密性と断熱性が高度に担保さ
れた室内に、風の通り道を確保するように桟木によって
整然と積み上げられた木材を収容し、材内水分の変化
(含水率の減少)によって乾球温度・湿球温度・風量等
の乾燥条件を変化させてゆくことにより、木材の使用目
的に適した含水率まで減少させる。乾燥の工程は、大別
して、時間の進行に沿って、.初期昇温昇湿工程(初
期蒸煮)、.乾燥工程、.仕上工程、.養生工程
の4工程から構成される。乾燥工程は、さらに、.乾
燥工程初期と、.乾燥工程後期とに分ける場合もあ
る。そのための装置は、木材乾燥機躯体の適正な位置
に、加熱装置(ヒーター)、加湿装置(蒸煮パイプ)、
送風装置(プロペラファン)、排気熱回収式熱交換型換
気装置をそれぞれ装備されることにより基本的に構成さ
れ、さらに木材乾燥を的確に進行させるために、自動温
度補正装置付含水率センサー、材温測定用温度センサー
を材表層部および中心部に配置し、さらに重量センサー
(ロードセル)を設け、これらのセンサーからの測定デー
タに基づいて前記の各装置を統括制御させる制御装置に
より構成されている。
【0015】〔木材乾燥の制御方法〕現在までのとこ
ろ、一般に、木材の乾燥を進捗させるための指標とし
て、サンプルによる測定含水率の変化および過去の経験
から得られたデータを基にしたタイムスケジュールを採
用しており、針葉樹建築用材の乾燥のほとんどに適用さ
れている。本発明では、あらかじめ収容木材の中から複
数の試験材を選定し、それぞれの表層部および中心部に
複数の温度センサーと含水率センサーとを装着し、常時
材温と含水率とを計測可能とし、自動的に乾燥の各工程
における最適な設定制御と工程移行時期の正確性を実現
する制御装置を備えることにより、大幅に乾燥度の向上
・歩留りの向上・運転時間の短縮(生産性の向上)・ラ
ンニングコストの低減を実現するものである。
【0016】図面を用いて本発明の実施の形態を説明す
る。図1は、本件発明に用いる木材乾燥機の概要を示す
説明図であり、図2は、本発明で用いられる温度センサ
ーおよび含水率センサーの木材への装着態様を示す説明
図であり、(a)は表層部用含水率センサー、(b)は
中心部用含水率センサー、(c)は表層部用温度センサ
ー、(d)は中心部用温度センサーの装着態様をそれぞ
れ示す。木材乾燥機躯体1内に、熱を均一に伝え易くす
るため風通し用の桟木7をはさんで台車9上に整然と桟
積みした木材8を収容し、加熱装置(ヒーター)2によ
る加熱、あるいは、加湿装置(蒸煮パイプ)3からの生
蒸気の噴射によって温度と湿度とを調節された雰囲気ガ
スを、送風装置(プロペラファン)4によって木材乾燥
機躯体1内を循環させて木材に熱を伝え、所定の温度湿
度に到達させ、含水率センサーによる木材の内層部・中
心部の測定含水率に応じて加熱設定、排気(換気)設
定、加湿(蒸煮)設定、風量設定を順次変化させて、乾
燥を進める。
【0017】木材乾燥機躯体1内雰囲気の温度・湿度を
調節するのに必要な場合には、給気ファン10および排
気ファン11を用いて低温・低湿度の外気を適宜利用す
る。その際、排気熱回収式熱交換装置5が有効に熱交換
し、燃料原単位を下げるのに貢献する。図2に示すよう
に、事前に選定した複数の試験材に自動温度補正装置付
含水率センサー16、16を乾燥させる木材の表層部と
中心部に打ち込んでおく(図2(a)および
(b)))。また、同様に、乾燥させる材料の表層部と
中心部に材温測定用温度センサー17、17を挿入し
(図2(c)および(d))、シリコーンシーラントあ
るいは熱硬化性樹脂にて隙間部分を充填密封しておく。
【0018】さらに、桟積み木材と木材搬出入用の台車
9の間に重量センサー(ロードセル)18を設置してお
く。これら各センサーから連続的に自動温度補正された
含水率・材温、重量の各データを収集し、制御装置にフ
ィードバックし、各制御機器類(加熱用電磁弁あるいは
電動弁、蒸煮パイプ用電磁弁あるいは電動弁、給・排気
ファン(換気装置)、室内プロペラファンの回転数(イ
ンバーターによる風量風速制御))を適切に且つ完全自
動で制御する。これにより、従来のように乾燥機の操作
および管理に、知識や経験、習熟といった専門的な技術
をそれほど必要とすることが無くなり、誰でも容易に、
しかも乾燥度・歩留り・生産性(乾燥所要時間の短縮)
・ランニングコストの低減化等の木材乾燥に求められる
全ての項目を、高いレベルで且つ完全自動で達成するこ
とができる。
【0019】従来の乾燥方法では、乾燥制御の指針とし
て含水率の変化、あるいは経験から求められた各乾燥工
程の所要時間を採用し、順次そのサンプル測定値あるい
はそのサンプル測定値を基にした経験に基づく推測設定
値を基に、乾燥の工程(ステップ)を進めて来た。然し
ながら、前述のように著しく個体差のある木材の場合、
材料の品痛み(割れ・狂い・曲り等)を生じたり、各ス
テップともかなりの安全を見込む必要があるため、乾燥
所要時間が長くなる(生産性低下)等、大幅なロスを生
じることとなることが多い。本発明では、前述各フィー
ドバック値(木材の表層部および中心部の含水率・材
温、重量)により各工程(ステップ)を制御するのみな
らず、ステップの移行条件としてこれらのフィードバッ
ク値を採用し、自動的にステップを移行することが可能
である。
【0020】これらのフィードバック値は、工程毎に単
独あるいは組合わせてステップ移行の条件として採用す
ることにより、非常に信頼性の高いシステムを構築する
ことが可能となる。このステップ自動移行(ステップ歩
進)により、乾燥従事者の経験や知識および習熟に頼ら
ずとも、乾燥の各工程における最適な設定制御と工程移
行時期の正確性を実現し、これにより大幅に乾燥度の向
上・歩留りの向上・運転時間の短縮(生産性の向上)・
ランニングコストの低減を実現することが可能となる。
【0021】以下に、木材乾燥の各工程(ステップ)に
ついて説明する。 .初期昇温昇湿(初期蒸煮)工程における制御 木材乾燥機躯体1の室内が、あらかじめ設定された温度
・湿度に到達させるため、加熱装置(ヒーター)2・加
湿装置(蒸煮パイプ)3を用いて加熱・加湿された空気
を送風装置4で均一に対流させて、熱伝導により木材表
層部から中心部まで、材温・水分ともに差異が解消され
るまでの工程を、初期昇温昇湿工程あるいは初期蒸煮工
程という。人工乾燥操作の初期工程である初期昇温昇湿
工程は、その後の乾燥工程に移行するまでの単なる導入
部ではなく、人工乾燥操作の全体の成否に甚大な影響を
もたらすことから、特に重要な工程である。
【0022】この工程では、収容された木材の種類、履
歴および1本1本によって異なる水分を、加熱装置2と
蒸煮装置3あるいはそれぞれ単独に稼動させて水分の平
均化を図るのと同時に、材の中心部までの均一加熱を施
し、その後の乾燥工程が安定的に進捗するようにする。
本発明では、3〜6箇所の材温測定用温度センサー17
と3〜6箇所の合水率センサー16とにより、木材の表
層部と中心部との差異が解消されるまでの材温と水分
を、従来の推定法に比較してリアルタイムで正確に連続
計測することが可能であり、これにより材温が中心部ま
で設定温度に到達し、水分が一定の範囲に収斂する時期
を明確に出来るため、次工程である乾燥工程への移行時
期を正確に特定することが可能である。
【0023】具体的には、初期昇温昇湿工程では、ほぼ
湿度100%の雰囲気で加熱する。この段階では木材の
乾燥が原則的にないので、木材の中心部に向かう昇温に
よって、木材に材料の品痛み等が発生する虞は殆どな
い。したがって、初期蒸煮によって得ようとする温度に
木材乾燥機躯体の室内温度を加熱設定し、木材の中心部
の材温が設定温度±1℃程度の範囲に到達したら、直ち
に、あるいは例えば1〜12時間程度の付加加熱時間経
過後に、次工程である乾燥工程に移行するようにセッテ
ィングする。初期昇温昇湿工程では、通常、蒸煮設定温
度を45〜130℃に設定する。本発明では、前記のセ
ンサーから得られるデータによって、移行時期を選定・
設定に反映できるため、経験や予想にとらわれることな
く完全自動で次のステップである乾燥工程に移行する。
【0024】.乾燥工程 木材乾燥の主工程である乾燥工程は、定率乾燥の工程で
ある。これは、木材に含まれる自由水が一定の温湿度条
件下においてほぼ一定の割合で減少していく工程であ
る。すなわち、木材の細胞内腔に在る水分が減少してい
く時期である。この時、内層部の水分が表層部に移動す
る量よりも、材面・木口から周囲雰囲気中に蒸発してい
く水分量が多くなる傾向があり、収縮セットが発生する
ことがある。従来は、室内の湿度を高めに設定しておく
ことで、材表面からの水分の蒸発を抑制して収縮セット
の発生を防いでいた。本発明では、実際の木材の表層部
および中心部の水分を計測し、そのデータを制御装置に
フィードバックし、それらの差異を一定範囲以上に拡が
らないようにすることができる。
【0025】すなわち、木材の表層部および中心部の水
分の差異が一定条件を越えないように、各制御機器類を
制御(温度・湿度・風速等)し、乾燥機室内の湿度を、
木材の中心部の含水率に相当する湿球温度より、例え
ば、乾湿球温度差で30℃以上とならないように、自動
的に調整するように設定することができる。具体的に
は、加熱装置と加湿装置とを関連して制御させ、木材乾
燥機躯体の室内温度を一定に保ちつつ、木材乾燥機躯体
の室内の湿度センサーで確認しながら自動運転する。こ
の様にして、材表面からの水分蒸発を合理的に抑制・制
御する。乾燥工程での木材乾燥機躯体の室内温度は、一
般的に、前工程である初期昇温昇湿工程での目標到達温
度よりも高く設定する。例えば、初期昇温昇湿工程での
目標到達温度よりも0〜30℃高い温度に設定する。
【0026】この制御により、木材の乾燥に最適な条件
設定を自動的に採用するため、水分傾斜を起因とする木
材の割れ・狂い等を防ぐことができ、且つ設定含水率に
到達した際には、理想的な状態で次のステップへ自動的
に歩進させることができる。また、高温乾燥スケジュー
ル(現在針葉樹建築構造材用として主流となっている)
を採用する場合においては、乾燥初期工程はフィードバ
ック値の内、含水率をステップ歩進の条件として採用
し、所定含水率、木材の中心部の含水率が15〜25
%、に下がった時点で乾燥後期工程へ自動的にステップ
歩進させる。乾燥後期工程は、材温をステップ歩進の条
件として採用し、所定材温、例えば、到達目標温度±
0.5℃、まで上昇した時点で自動的に次工程たる仕上
げ工程へ歩進させる。
【0027】さらに、断面寸法が大きな材料(柱・梁・
桁)においては、前記ステップ歩進方法(含水率、材温
のいずれか一方を歩進条件とする)の他、含水率および
材温両方の組合わせ条件をステップ歩進の基準とし、自
動的に次の工程へ移行(歩進)させる。すなわち、含水
率が所定値以下になっても材温が一定値以上にならなけ
れば、次のステップへ進ませない、あるいは逆に、材温
が所定値になっても含水率が一定値以下に下がらなけれ
ば、次のステップに進ませない、等の複合条件歩進を採
用する。材料の用途によっては、断面寸法が小さい材に
おいても採用する場合がある。乾燥工程では、木材の種
類・使用目的等によって異なるが、一般的に、木材の平
均含水率を8〜20%となるようにする。これは、木材
の中心部の含水率で8〜20%程度、木材の表層部の含
水率で8〜18%である。
【0028】.仕上工程 木材の使用用途によっては、乾燥工程終了後に調湿処理
(イコライジング、コンディショニング)を行う必要が
ある。イコライジングは、各木材の含水率の平均化を目
的としておこなわれ、コンディショニングは、乾燥によ
り木材に発生する内部応力を除去あるいは緩和する目的
として行う。イコライジング工程では、制御の指標とし
て、木材の表層部の含水率と中心部の含水率との差に基
づいて設定する。例えば、木材乾燥機躯体の室内湿度を
木材の表層部の含水率と中心部の含水率との中間の含水
率に相当する湿度とすることができる。これにより、材
料表層部の乾燥は抑制され、中心部の乾燥はさらに進む
こととなる。また、材料個体間の含水率の差が徐々に小
さくなる。
【0029】また、コンディショニング工程では、制御
の指標として、木材の表層部と中心部との含水率の差に
基づいて設定する。つまり、イコライジング工程では、
主に材料個体間の含水率のバラツキの除去を行い、コン
ディショニングでは、木材の内部応力が緩和ないし除去
され、また、木材の表層部の含水率と中心部の含水率と
の差が減少ないし消滅する。本発明では、前述のよう
に、表層部および中心部の含水率および材温を常時モニ
ターしており、これらの各数値の差が一定範囲内になっ
た時点、例えば、この数値の差が0〜5%以内となった
時点で、自動的に仕上げ工程を終了し、次の工程に移行
させる。
【0030】.養生工程 養生工程は、仕上げ工程終了後、木材乾燥機躯体の室内
から木材を取り出すのに適した温度にまで木材乾燥機躯
体の室内で徐冷する工程である。通常、加熱・蒸煮装置
を切り、木材乾燥機躯体の室内の雰囲気を送風装置で単
に撹拌することによって、徐冷される。乾燥工程、仕上
げ工程を経た木材は、木材中の含水率が充分に低くなっ
ているので、場合によっては、養生工程を省略すること
が可能であり、あるいは、仕上げ工程で、設定温度を徐
々に低下させることによって、養生工程を兼ねさせるこ
とも可能である。
【0031】以下に、国内産針葉樹を用いた一般建築部
材の乾燥工程の例を図3を用いて説明する。図3に示す
グラフにおいて、実線は、木材乾燥機躯体の室内雰囲気
の加熱設定値を示す。破線は、加熱・加湿に用いる加湿
装置(蒸煮パイプ)を作動させるための蒸煮設定温度で
ある。2点鎖線は、木材乾燥機躯体の室内雰囲気中の水
分を外部へ排出(排湿)する排気設定である。〜、
、は、前述の乾燥の各工程の一例を示す。すなわ
ち、.初期昇温昇湿工程、.乾燥工程、.仕上げ
工程(養生工程ないし冷却工程と兼用される場合があ
る)、.乾燥初期工程、.乾燥後期工程である。
【0032】の初期昇温昇湿工程では、蒸煮パイプの
み、あるいは加熱装置(ヒーター)と併せて作動させ
て、木材の表層部および中心部まで、温湿度の条件が一
定になるまで行う。蒸煮設定温度は、通常、45〜10
0℃の一定温度に設定される。木材に含まれる水分の熱
膨張により、木材中の水分が若干排出されるが、基本的
には大きな変化はない。保持温度が100℃の場合、測
定材温の表層部・中心部を含めて全てが97〜98℃に
到達してから、4〜12時間(材質・材厚等によって設
定を変えることができる)保持した後、次の工程に移行
する。材温測定用温度センサーからのフィードバック値
と制御装置内部の遅延タイマーが利用される。
【0033】の乾燥工程工程は、図示の場合、の乾
燥初期工程との乾燥後期工程とに分かれる。の乾燥
初期工程は、木材中の測定含水率を基準として工程を制
御し、の乾燥後期工程は材温、特に木材の中心部の材
温を基準として工程を制御する。の乾燥初期工程で
は、木材乾燥機躯体の室内雰囲気の加熱設定温度は前工
程(初期昇温昇湿工程)よりも高い一定値、例えば1
00〜130℃の一定値に設定し、蒸煮設定(加湿設
定)を一定値、例えば77〜87℃の一定の湿球温度に
設定し、排気設定(給排気設定)は一定値、例えば80
〜90℃の一定の湿球温度に設定する。
【0034】前工程からの昇温期間には蒸煮パイプがO
Nとなっており、蒸煮設定値に至ってOFFとなる。木
材乾燥機躯体の室内雰囲気の温度により、木材中の水分
が蒸発・排出するために、木材乾燥機躯体の室内雰囲気
の湿度は上昇を続け、排気設定温度(湿球温度)に至っ
て、換気系がONとなり、木材乾燥機躯体の室内雰囲気
中の湿度が低下する。排気設定温度まで下がると、換気
系がOFFとなる。場合によっては、木材の中心部の温
度に配慮しながら、加熱設定温度を段階的に下げる、あ
るいは、加熱設定温度は一定のままとして排気設定温度
を段階的に上げる、等の設定も行うことができる。
【0035】この工程では、定率乾燥(恒率乾燥)で、
ほぼ一定の割合で木材中の水分が排出・蒸発し、原則的
に、繊維飽和点まで乾燥を進ませる。乾燥初期工程から
乾燥後期工程への移行は、例えば、測定含水率が木材の
中心部で20%以下、且つ中心部の材温が105〜11
0℃以上に到達した時点で行う。木材の条件によって
は、材温が一定値以上に上昇した時点を工程移行の条件
とする場合もある。また、含水率と材温の双方を組み合
わせて、両方の条件が揃った時点で移行せしめる場合、
あるいは、どちらか一方が所定値を満たした時点で移行
せしめる場合もある。
【0036】の乾燥後期工程は、木材乾燥機躯体の室
内雰囲気の実際の温度は、工程移行の過渡期を除いて、
一定値、例えば80〜110℃に保たれる。排気設定
は、乾燥前期工程のそれよりも低い一定値、例えば50
〜75℃に設定し、蒸煮設定は、乾燥前期工程のそれよ
りも低い、例えば48〜73℃に設定する。乾燥後期工
程から次の冷却工程(仕上げ工程ないし養生工程)への
移行は、木材の中心部の材温が全て一定値、例えば10
4〜105℃以上となり、且つ含水率が同じく中心部で
全て一定値、例えば18%以下になった時点で行う。
の冷却工程(仕上げ工程ないし養生工程)では、加熱お
よび排気を一切行わず、木材乾燥機躯体の室内送風ファ
ン(プロペラファン)を低速で駆動し、材温を自然冷却
する。養生工程でもある。したがって、加熱設定、蒸煮
設定は行わなず、排気設定だけ行う。木材乾燥機躯体の
室内雰囲気の実際の温度が一定値、例えば50℃以下と
なった時点で、木材乾燥機躯体の開扉が可能である旨の
サインが出される。
【0037】
【実施例】以下に、本発明の実施の1形態を実施例によ
り、説明する。国内産の製材スギ材で、135mm角、
長さ4000mmの柱材60本(平均含水率124
%)、総計3.2トンを、以下に示す条件で人工乾燥し
た。木材を桟木で通風用の隙間を確保して台車に桟積み
し、そのうち4本の木材に含水率センサーと材温測定用
温度センサーとをセットし、台車に重量センサー(ロー
ドセル)を設置して、木材乾燥機躯体の室内に搬入し
た。
【0038】先ず、木材乾燥機躯体の室内温度を98
℃、同室内湿度を100%(乾湿球温度差で0℃)、全
ての木材の深層用温度センサーが木材乾燥機躯体の室内
温度との差が1℃以下となった時点から6時間後にステ
ップ歩進するように設定し、初期昇温昇湿工程を行っ
た。昇温昇湿を開始して12時間で、次工程の乾燥工程
に移行した。乾燥工程は、乾燥工程前期と乾燥工程後期
との2段階乾燥を行った。乾燥工程前期の加熱設定は1
20℃、木材乾燥機躯体の室内雰囲気の湿度設定は、木
材の中心部の4個の含水率センサーの指示値の平均値か
ら乾湿球温度差に換算して30℃低い値、歩進開始条件
は、測定含水率が木材の表層部で全て15%以下、且つ
中心部の材温が全て108℃以上にそれぞれ設定して乾
燥操業を継続した。経過時間48時間で、次工程の乾燥
工程後期に移行した。
【0039】乾燥工程後期の設定は、木材乾燥機躯体の
室内雰囲気の温度105℃、木材乾燥機躯体の室内雰囲
気の湿度設定は、乾燥工程前期と同様、木材の中心部の
4個の含水率センサーの指示値の平均値から乾湿球温度
差に換算して30℃低い値、歩進開始条件は、中心部の
材温が全て104℃以上で、且つ中心部の含水率が全て
18%以下に設定した。経過時間24時間で、次工程の
冷却工程に移行した。冷却工程は、養生工程を兼ね、加
熱および給排気を一切行わず、送風装置(プロペラファ
ン)を低速で回転させ、木材の中心部・表層部の全ての
材温が50℃以下となるまで運転する。この条件に到達
したら、制御パネルに表示がなされ、サイン音がなるよ
うにし、自動停止するようにセットした。表示パネルに
到達したことが表示されるまでに、24時間経過した。
その後は、木材乾燥機を開扉し、空冷した。昇温・昇湿
開始から開扉までに掛かった時間は、総計で108時間
であった。木材の表層部および中心部の含水率17%
で、乾燥による割れ・狂い(反り・捩れ)の全く見られ
ない柱材を得た。
【0040】
【発明の効果】建設省が「住宅の品格確保の促進に関す
る法」(いわゆる「品確法」)を制定したことにより、
住宅用構造材の品質確保のために国産針葉樹材とくに建
築用構造材の木材乾燥が注目されることとなった。とこ
ろが従来、スギ材は言うに及ばずヒノキやカラマツ、ト
ドマツ、エゾマツの芯持ち正角材や梁桁材は、その特性
として乾燥による割れ・狂い(反り・捩れ)の発生が挙
げられてきた。この特性が、ときとして「欠点」として
喧伝されることから、国産材の需要拡大を妨げられてき
ている訳である。一方で、北米を中心に、輸入材の乾燥
処理化が急速になされている。
【0041】近年、日本国内で消費される木材需要は、
実にその約80%が輸入材であり、従って、国産材の蓄
積量は、スギ材を中心に飛躍的に拡大して来ている。こ
れは、とりもなおさず間伐作業等のコストが採算割れを
引き起こし、国内の人工植林材がいまや荒廃の危機に直
面しているのである。本発明は、こうした状況を大きく
変化せしめ、国産材の需要拡大に大きく貢献することと
なり得る。本発明による乾燥方法では、所定の乾燥度
(仕上り含水率)を得ながらも、非常に高い歩留り(最
低でも97%以上、従来は20〜50%程度)、生産性
の向上(乾燥所要時間4〜5日間、従来は8〜20日
間)を達成でき、さらに、乾燥従事者が専門の知識・経
験・習熟をそれほど必要とすることなく、乾燥機を操作
することが可能である。すなわち、本発明は、木材の乾
燥による割れや狂い(反り・捩れ)の抑制と生産性の向
上、さらにランニングコストの低減により、国産針葉樹
材(スギ・ヒノキ・カラマツ・トドマツ等)の需要拡大
に寄与するものである。
【図面の簡単な説明】
【図1】 本件発明に用いる木材乾燥機の概要を示す説
明図。
【図2】 本発明で用いられる温度センサーおよび含水
率センサーの木材への装着態様を示す説明図であり、
(a)は表層用含水率センサー、(b)は深層用含水率
センサー、(c)は表層用温度センサー、(d)は深層
用温度センサーの装着態様をそれぞれ示す。
【図3】 国内産針葉樹のを用いた一般建築部材の乾燥
工程の例を示すグラフ。
【図4】 木材乾燥の過程で生じる欠陥の態様を説明す
る説明図であり、(a)は正常に乾燥され欠陥を含まな
い正常乾燥材を示し、(b)は長手方向に生ずる反り・
曲りを示す。(c)は、木材の表面側に生ずる割れ欠陥
で、材面および木口に生ずる。(d)は、材の長手方向
に現れる捩れである。(e)は、材内部から生ずる内部
割れを示す。
【符号の説明】
1:木材乾燥機躯体 2:加熱装置(ヒーター) 3:加湿装置(蒸煮パイプ) 4:送風装置(プロペラファン) 5:排気熱回収式熱交換装置 6:制御装置本体(コントローラー) 7:桟木 8:木材 9:台車 10:給気ファン 11:排気ファン 12:排水口 13:含水率・材温表示パネル 14:制御パネル 16:(自動温度補正装置付)含水率センサー 17:材温測定用温度センサー 18:重量センサー(ロードセル)
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2B230 AA15 BA01 EA21 EB06 EB12 EC21 EC24 3L113 AA01 AB02 AC01 AC27 AC43 AC45 AC46 AC52 AC53 AC67 AC75 BA05 CA02 CA03 CA04 CA08 CB01 CB18 CB24 CB34 DA04 DA06 DA07 DA10

Claims (2)

    【特許請求の範囲】
  1. 【請求項1】 温度と湿度とを調節した雰囲気に曝すこ
    とによって木材中の水分を除去する木材の人工乾燥方法
    において、木材の中心部および表層部の含水率と材温と
    をそれぞれのセンサーでリアルタイムで計測し、その計
    測結果に基づいて木材乾燥機躯体内の雰囲気を制御し、
    また、乾燥のための工程間の移行時期を制御することを
    特徴とする木材の人工乾燥方法。
  2. 【請求項2】 木材乾燥機が加熱装置(ヒーター)、加
    湿装置(蒸煮パイプ)、送風装置(プロペラファン)、
    (排気熱回収式)熱交換装置を備え、さらに木材の表層
    部と中心部との材温と含水率とを計測する各センサーを
    備え、前記各センサーの計測値に基づいて前記木材乾燥
    機室内の雰囲気の温度と湿度と工程間移行を制御する制
    御装置を備えることを特徴とする木材乾燥装置。
JP2000274443A 2000-09-11 2000-09-11 木材の人工乾燥方法および木材乾燥装置 Pending JP2002086407A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000274443A JP2002086407A (ja) 2000-09-11 2000-09-11 木材の人工乾燥方法および木材乾燥装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000274443A JP2002086407A (ja) 2000-09-11 2000-09-11 木材の人工乾燥方法および木材乾燥装置

Publications (1)

Publication Number Publication Date
JP2002086407A true JP2002086407A (ja) 2002-03-26

Family

ID=18760202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000274443A Pending JP2002086407A (ja) 2000-09-11 2000-09-11 木材の人工乾燥方法および木材乾燥装置

Country Status (1)

Country Link
JP (1) JP2002086407A (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006028388A1 (en) * 2004-09-10 2006-03-16 Pcs Wood Technologies Limited Timber crying apparatus, method and system
JP2007212422A (ja) * 2006-02-13 2007-08-23 Espec Corp 環境試験装置
JP2008531332A (ja) * 2005-02-22 2008-08-14 ヴァルティオン テクニリネン ツッツキムスケスクス 高温での木材の処理方法
JP2010018032A (ja) * 2002-10-28 2010-01-28 Jean Laurencot 積層した木材を高温熱処理する方法
CN102172934A (zh) * 2011-01-29 2011-09-07 广东省宜华木业股份有限公司 一种木材回旋干燥方法
JP2012006307A (ja) * 2010-06-25 2012-01-12 Panasonic Electric Works Co Ltd 木材の調湿方法,単板の製造方法、及び単板
CN102514062A (zh) * 2011-12-31 2012-06-27 福建省莆田华闽实业有限公司 木材干燥工艺及其系统
KR101174335B1 (ko) * 2011-11-17 2012-08-16 주식회사 위드우드 목재 건조 및 고열처리 장치
KR101195385B1 (ko) * 2011-11-17 2012-11-01 주식회사 케이원우드 목재 건조 및 고열처리 장치
CN103302715A (zh) * 2013-06-26 2013-09-18 重庆家和琴森木业有限公司 以马尾松木材为原材料的同质炭化木的生产方法
CN104290161A (zh) * 2014-08-23 2015-01-21 苏义燕 一种红木的干燥工艺
WO2015046072A1 (ja) * 2013-09-25 2015-04-02 日本たばこ産業株式会社 炭素熱源の乾燥方法
CN104493938A (zh) * 2015-01-10 2015-04-08 陈霞 一种红木的干燥工艺
CN104552518A (zh) * 2015-01-10 2015-04-29 陈霞 一种红木的除湿工艺
CN105333695A (zh) * 2015-11-02 2016-02-17 山东省林业科学研究院 一种木材单板微波干燥方法
CN105437340A (zh) * 2014-08-23 2016-03-30 东北林业大学 一种可以实时监测木材内部各点温度的热处理设备
CN108088207A (zh) * 2018-01-10 2018-05-29 安吉鑫茂家居有限公司 一种家具生产用木材烘干装置
CN110131975A (zh) * 2019-04-22 2019-08-16 中国科学院广州能源研究所 一种可变气流场的木材全自动智能烘干室
KR102382281B1 (ko) * 2021-04-06 2022-04-01 송종혁 목재 건조 장치
WO2023023896A1 (zh) * 2021-08-23 2023-03-02 浙江世友木业有限公司 一种联合干燥方法及其干燥装置

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010018032A (ja) * 2002-10-28 2010-01-28 Jean Laurencot 積層した木材を高温熱処理する方法
WO2006028388A1 (en) * 2004-09-10 2006-03-16 Pcs Wood Technologies Limited Timber crying apparatus, method and system
JP2008531332A (ja) * 2005-02-22 2008-08-14 ヴァルティオン テクニリネン ツッツキムスケスクス 高温での木材の処理方法
JP2007212422A (ja) * 2006-02-13 2007-08-23 Espec Corp 環境試験装置
JP4587971B2 (ja) * 2006-02-13 2010-11-24 エスペック株式会社 環境試験装置
JP2012006307A (ja) * 2010-06-25 2012-01-12 Panasonic Electric Works Co Ltd 木材の調湿方法,単板の製造方法、及び単板
CN102172934A (zh) * 2011-01-29 2011-09-07 广东省宜华木业股份有限公司 一种木材回旋干燥方法
CN102172934B (zh) * 2011-01-29 2013-12-11 广东省宜华木业股份有限公司 一种木材回旋干燥方法
KR101174335B1 (ko) * 2011-11-17 2012-08-16 주식회사 위드우드 목재 건조 및 고열처리 장치
KR101195385B1 (ko) * 2011-11-17 2012-11-01 주식회사 케이원우드 목재 건조 및 고열처리 장치
CN102514062A (zh) * 2011-12-31 2012-06-27 福建省莆田华闽实业有限公司 木材干燥工艺及其系统
CN102514062B (zh) * 2011-12-31 2014-10-29 福建省华名华居家居实业有限公司 木材干燥工艺及其系统
CN103302715A (zh) * 2013-06-26 2013-09-18 重庆家和琴森木业有限公司 以马尾松木材为原材料的同质炭化木的生产方法
WO2015046072A1 (ja) * 2013-09-25 2015-04-02 日本たばこ産業株式会社 炭素熱源の乾燥方法
US10274254B2 (en) 2013-09-25 2019-04-30 Japan Tobacco Inc. Carbon heat source drying method
CN105555158A (zh) * 2013-09-25 2016-05-04 日本烟草产业株式会社 碳热源的干燥方法
EP3050445A1 (en) * 2013-09-25 2016-08-03 Japan Tobacco Inc. Carbon heat source drying method
JPWO2015046072A1 (ja) * 2013-09-25 2017-03-09 日本たばこ産業株式会社 炭素熱源の乾燥方法
EP3050445A4 (en) * 2013-09-25 2017-05-10 Japan Tobacco Inc. Carbon heat source drying method
CN105555158B (zh) * 2013-09-25 2019-12-03 日本烟草产业株式会社 碳热源的干燥方法
CN104290161A (zh) * 2014-08-23 2015-01-21 苏义燕 一种红木的干燥工艺
CN105437340A (zh) * 2014-08-23 2016-03-30 东北林业大学 一种可以实时监测木材内部各点温度的热处理设备
CN104493938A (zh) * 2015-01-10 2015-04-08 陈霞 一种红木的干燥工艺
CN104552518A (zh) * 2015-01-10 2015-04-29 陈霞 一种红木的除湿工艺
CN105333695A (zh) * 2015-11-02 2016-02-17 山东省林业科学研究院 一种木材单板微波干燥方法
CN108088207A (zh) * 2018-01-10 2018-05-29 安吉鑫茂家居有限公司 一种家具生产用木材烘干装置
CN110131975A (zh) * 2019-04-22 2019-08-16 中国科学院广州能源研究所 一种可变气流场的木材全自动智能烘干室
KR102382281B1 (ko) * 2021-04-06 2022-04-01 송종혁 목재 건조 장치
WO2023023896A1 (zh) * 2021-08-23 2023-03-02 浙江世友木业有限公司 一种联合干燥方法及其干燥装置

Similar Documents

Publication Publication Date Title
JP2002086407A (ja) 木材の人工乾燥方法および木材乾燥装置
AU730803B2 (en) Process for treating green wood and accelerating drying of green wood
CN109405441B (zh) 一种木材的干燥方法
US4182048A (en) Method of drying lumber
CN102597676B (zh) 木材的高温处理方法及在该方法中使用的窑炉
CN102229162B (zh) 一种人造板平衡调湿工艺方法
JP5102906B2 (ja) 木材乾燥方法
JP2757170B2 (ja) 木材処理方法及び装置
JP2007144866A (ja) 木材の調湿乾燥方法及びその装置
JP2007263409A (ja) 木材の熱処理乾燥方法及び装置
RU2162993C2 (ru) Способ сушки древесины
NO124560B (ja)
JP2008106959A (ja) 木材乾燥装置及び木材乾燥方法
US7537619B2 (en) Method and system for the treatment of betula wood
JP5900793B2 (ja) 木材の乾燥方法、および木材用の乾燥装置
JP4362325B2 (ja) 木材乾燥方法及び乾燥装置
EP2959247B1 (en) Method for drying hygroscopic material and apparatus for drying hygroscopic material
JP2007022077A (ja) 木材の乾燥方法
RU2080532C1 (ru) Способ сушки древесины в туннельной сушилке
JP2009085542A (ja) 木材乾燥方法
RU2277682C2 (ru) Способ сушки пиломатериала (варианты) и сушилка для его осуществления
JP4351141B2 (ja) 燻煙乾燥設備および木材の燻煙乾燥方法
JP2001260105A (ja) 木材の乾燥方法および乾燥装置
CN107553640A (zh) 一种地热地板用实木的预处理工艺
RU2259523C1 (ru) Способ сушки древесины