WO2015046072A1 - 炭素熱源の乾燥方法 - Google Patents

炭素熱源の乾燥方法 Download PDF

Info

Publication number
WO2015046072A1
WO2015046072A1 PCT/JP2014/074895 JP2014074895W WO2015046072A1 WO 2015046072 A1 WO2015046072 A1 WO 2015046072A1 JP 2014074895 W JP2014074895 W JP 2014074895W WO 2015046072 A1 WO2015046072 A1 WO 2015046072A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat source
drying
carbon heat
carbon
dry
Prior art date
Application number
PCT/JP2014/074895
Other languages
English (en)
French (fr)
Inventor
佐々木 宏
小林 正明
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to EP14848435.5A priority Critical patent/EP3050445A4/en
Priority to CN201480051962.8A priority patent/CN105555158B/zh
Priority to JP2015539169A priority patent/JP6374873B2/ja
Publication of WO2015046072A1 publication Critical patent/WO2015046072A1/ja
Priority to US15/047,074 priority patent/US10274254B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/06Controlling, e.g. regulating, parameters of gas supply
    • F26B21/10Temperature; Pressure
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/10Chemical features of tobacco products or tobacco substitutes
    • A24B15/16Chemical features of tobacco products or tobacco substitutes of tobacco substitutes
    • A24B15/165Chemical features of tobacco products or tobacco substitutes of tobacco substitutes comprising as heat source a carbon fuel or an oxidized or thermally degraded carbonaceous fuel, e.g. carbohydrates, cellulosic material
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24CMACHINES FOR MAKING CIGARS OR CIGARETTES
    • A24C5/00Making cigarettes; Making tipping materials for, or attaching filters or mouthpieces to, cigars or cigarettes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/06Controlling, e.g. regulating, parameters of gas supply
    • F26B21/08Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B25/00Details of general application not covered by group F26B21/00 or F26B23/00
    • F26B25/22Controlling the drying process in dependence on liquid content of solid materials or objects
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D1/00Cigars; Cigarettes
    • A24D1/22Cigarettes with integrated combustible heat sources, e.g. with carbonaceous heat sources

Definitions

  • the present invention relates to a method for drying a carbon heat source used as a heat source for, for example, a smoking article.
  • This type of carbon heat source is manufactured by the following procedure. First, carbon powder, a combustion modifier and a binder (water) are kneaded to produce a kneaded product, and this kneaded product is continuously formed into a cylindrical carbon heat source rod by extrusion molding (see paragraph 0003 of Patent Document 1). ). At this time, in order to sufficiently secure the moldability of the carbon heat source rod, that is, the fluidity of the kneaded material, the carbon heat source rod immediately after molding contains 20 wt% or more of moisture.
  • the carbon heat source rod is dried with hot air (see paragraphs 0019 to 0020 of FIG. 1 in Patent Document 1), and the dried carbon heat source rod is cut into a carbon heat source having a predetermined length.
  • the final target moisture content of the carbon heat source is 10 wt% or less. With such a moisture content, the ignitability of the carbon heat source is sufficiently secured.
  • a far-infrared heater can also be used for drying the carbon heat source rod (see Patent Document 2).
  • the higher the temperature of the hot air the shorter the time required for drying the carbon heat source rod, but in this case, the outer surface of the carbon heat source rod dries faster than the inside. To do. For this reason, since the outer surface of the carbon heat source rod exposed to the hot air is first dried and begins to shrink, the carbon heat source cannot be uniformly dried, and the roundness of the carbon heat source rod, that is, the carbon heat source is not maintained. In addition, non-uniform drying promotes the generation of cracks in the carbon heat source, remarkably deteriorates the appearance quality of the carbon heat source, and decreases the yield.
  • the present invention is made based on the above-mentioned circumstances, and the object is to provide a carbon heat source drying method capable of shortening the time required for drying without deteriorating the appearance quality of the carbon heat source after drying. It is to provide.
  • the above-described object is achieved by the carbon heat source drying method according to the present invention.
  • the drying method of the present invention forms a kneaded material obtained by kneading carbon powder with an additive containing a binder and water into a rod-shaped carbon heat source. Then, in manufacturing a finished product with the carbon heat source dried, the weight of the water evaporating from the outer surface of the carbon heat source is approximated with the rate of moisture moving from the center to the outer surface in the carbon heat source, A dry atmosphere that gradually decreases the absolute humidity is generated, and the carbon heat source is dried in the dry atmosphere.
  • the drying method described above even if the absolute humidity of the dry atmosphere is reduced stepwise, the evaporation rate of moisture evaporating from the outer surface of the carbon heat source and the moving rate of moisture in the carbon heat source are approximated. Therefore, the drying of the carbon heat source proceeds uniformly and rapidly as seen across the entire cross section of the carbon heat source. Therefore, the carbon heat source contracts uniformly across the entire cross-section, and the cross-sectional shape does not collapse. As a result, the carbon heat source is dried toward the target moisture content while maintaining the appearance quality.
  • the method for drying a carbon heat source of the present invention enables the carbon heat source to be dried in a short time while maintaining the appearance quality of the carbon heat source by suppressing the collapse of the cross-sectional shape of the carbon heat source after drying. .
  • the carbon heat source HS has a cylindrical shape and is used as a heat source for the non-combustion smoking article described above.
  • the carbon heat source HS of FIG. 1 has a circular center bore B in the center, and the center bore B extends through the carbon heat source HS.
  • an extruder is used for the production of the carbon heat source HS, and this extruder first kneads carbon powder, an additive containing a binder, and water into a kneaded product, and the kneaded product is formed into a cylindrical shape by extrusion molding. Continuously molded into a carbon heat source rod. The formed carbon heat source rod is cut into a carbon heat source HS having a predetermined length outside the extruder, and thereafter, the carbon heat source HS is subjected to a drying process to be a finished product.
  • the carbon heat source HS may be manufactured by injection molding or punching.
  • the drying of the carbon heat source HS is performed in a dry atmosphere, and this drying atmosphere provides the following drying profile to the carbon heat source HS throughout the drying period of the carbon heat source HS. Drying profile
  • the evaporation rate of moisture from the outer surface of the carbon heat source HS is expressed as Vo.
  • the moving speed of moisture toward the outer surface of the carbon heat source HS in the carbon heat source HS is represented by Vs.
  • the evaporation rate Vo is obtained based on the following function Fo using the dry bulb temperature T of the dry atmosphere and the relative humidity RH of the dry atmosphere as parameters.
  • Vo Fo (T, RH)
  • the moisture moving speed Vs in the carbon heat source HS is a parameter of the moisture difference ⁇ of the moisture amount between the outer surface and the inner surface of the carbon heat source HS, the composition C of the carbon heat source HS, and the product temperature To of the carbon heat source HS. It is calculated based on the following function Fi. Further, the moving speed Vs increases as the product temperature To increases.
  • Vs Fi ( ⁇ , C, To)
  • the moisture difference ⁇ is obtained from the following equation when the moisture content on the inner surface side of the carbon heat source HS is represented by ⁇ i and the moisture content on the outer surface side of the carbon heat source HS is represented by ⁇ o.
  • ⁇ i- ⁇ o
  • the dry bulb temperature T of the dry atmosphere is set so that the dry atmosphere has an absolute weight humidity of 40% or more of the water content of the carbon heat source HS.
  • the moisture content of the carbon heat source HS is relatively large.
  • the dry bulb temperature T is set to be relatively high.
  • the dry bulb temperature T is lowered stepwise to a target temperature at the completion of drying of the carbon heat source HS, for example, room temperature (20 ° C.).
  • a target temperature at the completion of drying of the carbon heat source HS for example, room temperature (20 ° C.).
  • the target temperature of the carbon heat source HS at the completion of drying is sufficiently higher than the room temperature, a further cooling period of the carbon heat source HS is required after the completion of drying. If rapid cooling is performed during such a cooling period, moisture suddenly jumps from the surface of the carbon heat source HS, and the balance between the evaporation speed Vo and the movement speed Vs is lost. There is a possibility of generating a desired crack.
  • the drying profile described above during the drying process of the carbon heat source HS, the water evaporation rate Vo and the transfer rate Vs are approximated. Therefore, the drying of the carbon heat source HS is uniform across the entire cross section of the carbon heat source HS. It progresses and the carbon heat source HS does not shrink unevenly. Therefore, the roundness of the carbon heat source HS, that is, the shape retention of the carbon heat source HS is ensured, and the carbon heat source HS does not crack as described above. As a result, the appearance quality of the carbon heat source HS can be maintained regardless of the above-described drying process.
  • the uniform drying process of the carbon heat source HS allows the moisture content of the carbon heat source HS to reach the target moisture amount earlier than the low-temperature drying described above, contributing to shortening the drying time. Compared to the above, it has excellent appearance quality and enables the production of carbon heat source HS.
  • three kinds of carbon heat source HS A belonging to Example 1, HS B, and HS C, 1 kind of carbon heat source HS D belonging to the second embodiment is respectively extruded.
  • Carbon heat source HS A, HS B, as HS C is shown in Figure 2
  • the carbon heat source HS D has a honeycomb structure.
  • the carbon heat source HS A, HS B, HS C , HS D has an outer diameter of about 6 - 8 mm, also, carbon heat source HS A, HS B, the inner diameter of the HS C 1 to It is about 3 mm.
  • the composition of the carbon heat sources HS A , HS B and HS C before drying is shown in Table 1 below.
  • the carbon heat sources HS A , HS B , and HS C of the first example are made of a mixture of activated carbon, additive, and water activated as carbon powder, and the additive includes calcium carbonate, Binder and refined salt are included.
  • Calcium carbonate acts as a combustion preparation agent, and as the binder, one or more kinds selected from sodium carboxymethylcellulose, ammonium alginate, pectin, and carrageenan are used.
  • the carbon heat source HS D of the second embodiment as in the case of the first embodiment, a mixture of activated charcoal, additives and water.
  • the additive herein contains calcium carbonate, binder and glycerin, and one or more kinds selected from carboxymethyl cellulose, ammonium alginate, pectin and carrageenan are used as the binder.
  • Drying profile carbon heat source HS A As apparent from Table 3 contains dry stage of the multiple stages. Dry-bulb temperature T and relative humidity RH of the drying atmosphere in the drying stage, the carbon heat source HS A when these dry-bulb temperature T and weight absolute humidity AH obtained by the relative humidity RH has moved to its corresponding drying stages It is set to be 40% or more of the water content. Therefore, when viewed between adjacent drying stage, since progresses dry carbon heat source HS A in front of the drying stage, the subsequent drying stage weight absolute humidity AH dry atmosphere is reduced stepwise. Table 3 shows up to six drying stages.
  • the first moisture content of the drying stage 1 in carbon heat source HS A is greater (see Table 1), it sets a weight absolute humidity AH such that more than 40% of the water content with the carbon heat source HS A.
  • dry-bulb temperature T of the drying atmosphere is set higher relatively, thereby, it is possible to effectively evaporate the water from the carbon heat source HS A.
  • the dry bulb temperature T in the drying stage 1 is set to be equal to or higher than the dry bulb temperature in the subsequent drying stage.
  • As the progresses apparent dry bulb temperature T is also drying stage as from Table 3, since it is reduced in stages to about room temperature to complete the drying of the carbon heat source HS A, carbon heat source HS A Rapid cooling is not required. Such quenching is likely to generate cracks on the outer surface of the carbon heat source HS A, that quenching treatment is not necessary, nor the appearance quality of the carbon heat source HS A is degraded by cracks.
  • the absolute weight humidity AH can be read from, for example, a wet air diagram or a conversion table using the dry bulb temperature T and the relative humidity RH as parameters.
  • Table 4 below shows the conditions of constant temperature drying 1.
  • Water content W A humid dry carbon heat source HS A As is apparent from Figure 4, it reaches the early target moisture content (less 10 wt%) as compared to the water content W 1 of constant temperature drying carbon heat source HS A To do. Therefore, high humidity drying by the drying profile of Table 3 is compared with the constant temperature drying 1, it is possible to significantly reduce the time required for drying of the carbon heat source HS A.
  • the outer diameter of the carbon heat source HS A in each measurement sample was measured respectively at points P1 ⁇ P5 shown in FIG. It should be noted that these measurement points P1 ⁇ P5 are spaced from each other along the circumferential direction of the carbon heat source HS A.
  • MAX, MIN, Av, and ⁇ are the maximum value, minimum value, average, and standard deviation of the maximum outer diameter Dmax in all measurement samples. Each is shown.
  • MAX, MIN, Av, and ⁇ are the minimum in all the measurement samples for the column for 2-point average and the column for 5-point average.
  • the maximum value, minimum value, average, and standard deviation of the outer diameter Dmin, 2-point average, and 5-point average are shown.
  • the two-point average means an average value between the maximum value and the minimum value of the outer diameters obtained by measuring at measurement points P1 to P5 for each measurement sample. The average indicates an average value of outer diameters at all measurement points P1 to P.
  • the carbon heat source HS A is a constant temperature drying also provides 50 present, was similarly measured outer diameter of the carbon heat source HS A.
  • Table 6 below shows the measurement results and the evaluation obtained from the measurement results in the same form as Table 5.
  • the carbon heat source HS C was humid dried under a dry atmosphere according drying profile of Table 8 below.
  • the drying profiles of the carbon heat sources HS B and HS C also include a plurality of drying stages. Dry-bulb temperature T and relative humidity RH of the drying atmosphere in the drying stage, the carbon heat source HS A when these dry-bulb temperature T and weight absolute humidity AH obtained by the relative humidity RH has moved to its corresponding drying stages It is set to be 40% or more of the water content. Moreover, the absolute weight humidity AH is decreased stepwise between adjacent drying stages.
  • the drying profiles in Tables 7 and 8 are basically the same as the drying profiles in Table 3, but differ from the drying profiles in Table 3 in that the drying time of each drying stage is the same.
  • FIG. 5 shows the change in the moisture content W B of the carbon heat source HS B when the carbon heat source HS B is dried with high humidity, together with the change in the moisture content W 2 of the carbon heat source HS B that has been subjected to constant drying.
  • FIG. 6 shows the change in moisture content W C of the carbon heat source HS C when carbon heat source HS C is humid drying, with changes in moisture content W 3 of constant temperature drying carbon heat source HS C.
  • the carbon heat source HS B, a constant temperature drying of HS C was carried out at constant temperature drying the same under the conditions described above for the carbon heat source HS A.
  • the moisture contents W B and W C of the carbon heat sources HS B and HS C that have been humid-dried are the moisture contents W 2 and W of the carbon heat sources HS B and HS C that have been dried at a constant temperature.
  • the target moisture content (10 wt% or less) is reached early.
  • the moisture amount W B (or H C ) of the carbon heat source HS B (or HS C ) when the weight absolute humidity AH of the drying atmosphere at each drying stage is transferred to the drying stage is 40% or more of W C ).
  • drying profile carbon heat source HS D dry-bulb temperature T of the drying atmosphere in the drying stage 1 is lower than that of in the above drying profile.
  • weight absolute humidity AH of dry atmosphere at each drying stage is preferably and 40% near the 40% or more. 7 when the carbon heat source HS D is humid dried according to the drying profile of Table 9 shows the change in moisture content W D carbon heat source HS D. Further, in FIG. 7, under conditions of constant temperature drying 2,3 are shown also to a change in the water content W 4, W 5 carbon heat source HS D when the carbon heat source HS D was dried .
  • Table 11 below shows the conditions of constant temperature drying 3.
  • the dry bulb temperature T in the drying atmosphere is lower than the constant temperature drying 1 described above, and unlike the constant temperature drying 1, the relative humidity in the drying atmosphere in order to keep the absolute weight humidity AH constant. RH is maintained.
  • the moisture content W D of the carbon heat source HS D that has been dried at high humidity is compared with the moisture content W 4 , W 5 of the carbon heat source HS D that has been dried under the conditions of constant temperature drying 2 and 3.
  • the target moisture content (10 wt% or less) is reached early, and high-humidity drying contributes to shortening the drying time.
  • carbon heat source HS D which is humid drying it was confirmed that superior to a constant temperature drying carbon heat source HS D.
  • composition and the cross-sectional shape other than the carbon particles of the carbon heat source HS are not limited to those illustrated in the tables and drawings, and can be changed according to the use form. Is

Abstract

 炭素粉末にバインダを含む添加剤及び水を加えて混練した混練物をロッド形状の炭素熱源(HS)に成形し、この後、炭素熱源(HS)を乾燥した完成品を製造するにあたり、本発明の乾燥方法は、炭素熱源(HS)の外面から蒸発する水分の蒸発速度(Vo)と炭素熱源(HS)内での外面に向かう水分の移動速度(Vs)とを近似させつつ、重量絶対湿度(AH)を段階的に低下させる乾燥雰囲気を生成し、乾燥雰囲気中にて炭素熱源(HS)を乾燥させる。

Description

炭素熱源の乾燥方法
 本発明は、例えば喫煙物品のための熱源に使用される炭素熱源の乾燥方法に関する。
 この種の炭素熱源は以下の手順にて製造される。
 先ず、炭素粉末、燃焼調整剤及びバインダ(水)を混練して混練物を生成し、この混練物を押出成形により円筒形状の炭素熱源ロッドに連続的に成形する(特許文献1の段落0003参照)。このとき、炭素熱源ロッドの成形性、即ち、混練物の流動性を十分に確保するため、成形直後の炭素熱源ロッドは20wt%以上の水分を含んでいる。
 この後、炭素熱源ロッドの搬送過程にて、炭素熱源ロッドを熱風乾燥し(特許文献1の段落0019~0020、図1参照)、乾燥済みの炭素熱源ロッドを所定長さの炭素熱源に切断する。なお、最終的な炭素熱源の目標水分量は10wt%以下であり、このような水分量であれば、炭素熱源の着火性が十分に担保される。
 一方、特許文献1に記載された熱風乾燥の他に、炭素熱源ロッドの乾燥には遠赤外線ヒータを使用することもできる(特許文献2参照)。
国際公開第WO 2005/046364パンフレット 国際公開第WO 2009/131009パンフレット
 特許文献1での熱風乾燥方法によれば、熱風の温度が高ければ高い程、炭素熱源ロッドの乾燥に要する時間の短縮を図れるものの、この場合、炭素熱源ロッドの外面は内部に比べて速く乾燥する。このため、熱風に晒される炭素熱源ロッドの外面が先ず乾燥されて収縮し始めることから、炭素熱源の均一な乾燥が不能となり、炭素熱源ロッド、即ち、炭素熱源の真円性が維持されない。また、不均一な乾燥は炭素熱源にクラックの発生を促し、炭素熱源の外観品質を著しく悪化させ、その歩留まりの低下を招く。
 逆に、熱風の温度を低くすれば、上述の外観品質の悪化を低減できるものの、この場合には、炭素熱源の乾燥に多大な時間を要し、炭素熱源の生産性を悪化させる。
 一方、特許文献2での遠赤外線による乾燥方法でも、熱風乾燥に比べて炭素熱源の加熱温度を細かく制御し易いとはいえ、上述した不具合を解消し得るものではない。
 本発明は上述の事情に基づいてなされもので、その目的とするところは、乾燥後の炭素熱源の外観品質を悪化させることなく、乾燥に要する時間を短縮させることができる炭素熱源の乾燥方法を提供することにある。
 上述の目的は、本発明に係る炭素熱源の乾燥方法によって達成され、本発明の乾燥方法は、炭素粉末にバインダを含む添加剤及び水を加えて混練した混練物をロッド形状の炭素熱源に成形し、この後、炭素熱源を乾燥した完成品を製造するにあたり、炭素熱源の外面から蒸発する水分の蒸発速度と炭素熱源内での中央から外面に向かう水分の移動速度とを近似させつつ、重量絶対湿度を段階的に低下させる乾燥雰囲気を生成し、該乾燥雰囲気中にて炭素熱源を乾燥させる。
 上述の乾燥方法によれば、乾燥雰囲気の重量絶対湿度が段階的に低下されても、炭素熱源の外面から蒸発する水分の蒸発速度と炭素熱源内での水分の移動速度とが近似されることから、炭素熱源の乾燥は炭素熱源の横断面全域でみて一様且つ速やかに進行する。それ故、炭素熱源は横断面全域でみて均一に収縮し、横断面形状に崩れが引き起こされることはない。この結果、炭素熱源は外観品質を維持しながら目標水分量に向けて乾燥される。
 本発明の炭素熱源の乾燥方法は、乾燥後における炭素熱源の横断面形状の崩れが抑えられることで、炭素熱源の外観品質の維持しつつ、短時間での炭素熱源の乾燥処理を可能にする。
本発明に係る乾燥方法の概略を説明するための図である。 パイプ形状の炭素熱源の端面を示した図である。 ハニカム構造の炭素熱源の端面を示した図である。 炭素熱源HSAの乾燥処理中、乾燥時間と炭素熱源HSAの水分量との関係を示したグラフである。 炭素熱源HSBの乾燥処理中、乾燥時間と炭素熱源HSBの水分量との関係を示したグラフである。 炭素熱源HSCの乾燥処理中、乾燥時間と炭素熱源HSCの水分量との関係を示したグラフである。 炭素熱源HSDの乾燥処理中、乾燥時間と炭素熱源HSDの水分量との関係を示したグラフである。
 図1を参照すれば、炭素熱源HSの一実施形態が示され、この炭素熱源HSは円筒形状をなし、前述した非燃焼型喫煙物品の熱源に使用される。図1の炭素熱源HSは中央に円形のセンタボアBを有し、このセンタボアBは炭素熱源HSを貫通して延びている。
 炭素熱源HSの製造には例えば押出成形機が使用され、この押出成形機は先ず、炭素粉末、バインダを含む添加剤及び水を混練して混練物とし、この混練物を押出成形により円筒形状の炭素熱源ロッドに連続的に成形する。成形された炭素熱源ロッドは押出成形機外にて所定長さの炭素熱源HSに切断され、この後、炭素熱源HSは乾燥処理を受けて完成品となる。なお、炭素熱源HSは射出成形や打ち抜き等によって製造されてもよい。
 炭素熱源HSの乾燥は乾燥雰囲気中にて実施され、この乾燥雰囲気は炭素熱源HSの乾燥期間の全域に亘り、炭素熱源HSに以下の乾燥プロファイルを提供する。
           乾燥プロファイル
 炭素熱源HSの外面からの水分の蒸発速度をVoで表す。一方、炭素熱源HS内にて炭素熱源HSの外面に向かう水分の移動速度をVsで表す。このとき、下式の関係が満たされるならば、炭素熱源HSの乾燥は炭素熱源HSの横断面全域にて均一に進行するものと想定される。
 Vo≒Vs  ……  (1)
 ここで、蒸発速度Voは、乾燥雰囲気の乾球温度T及び乾燥雰囲気の相対湿度RHをパラメータとした以下の関数Foに基づいて求められる。
 Vo=Fo(T,RH)
 一方、炭素熱源HS内での水分の移動速度Vsは、炭素熱源HSにおける外面と内面との間での水分量の水分差Δα、炭素熱源HSの組成C及び炭素熱源HSの品温Toをパラメータとした以下の関数Fiに基づいて求められる。また、移動速度Vsは品温Toの上昇とともに増加する。
 Vs=Fi(Δα,C, To)
 なお、水分差Δαは、炭素熱源HSにおける内面側の水分量がαi、炭素熱源HSにおける外面側の水分量がαoで表されるとき、次式から求められる。
 Δα=αi-αo
 上記(1)式の関係を満たすため、乾燥雰囲気の乾球温度Tは、乾燥雰囲気が炭素熱源HSの水分量の40%以上の絶対重量湿度を有するべく設定される。ここで、乾燥プロファイルの初期段階では、炭素熱源HSの水分量は比較的多いので、この場合、乾球温度Tは比較的高く設定される。
 この後、乾球温度Tは、炭素熱源HSの乾燥完了時の目標温度、例えば室温(20℃)まで段階的に低下される。この点、乾燥完了時での炭素熱源HSの目標温度が室温よりも十分に高ければ、乾燥完了後、炭素熱源HSの更なる冷却期間が必要となる。このような冷却期間中に急激な冷却が行われてしまうと、炭素熱源HSの表面から水分が急に飛び、蒸発速度Voと移動速度Vsとの均衡が崩れてしまうため、炭素熱源HSに不所望なクラックを発生させる虞がある。
 上述の乾燥プロファイルによれば、炭素熱源HSの乾燥処理中、水分の蒸発速度Voと移動速度Vsとが近似することから、炭素熱源HSの乾燥は炭素熱源HSの横断面全域でみて一様に進行し、炭素熱源HSが不均一に収縮することはない。それ故、炭素熱源HSの真円性、即ち、炭素熱源HSの保形性が担保されるとともに、前述したように炭素熱源HSにクラックが発生することもない。この結果、炭素熱源HSの外観品質は上述の乾燥処理に拘わらず、維持可能となる。
 また、炭素熱源HSの一様な乾燥の進行は、前述した低温乾燥に比べて炭素熱源HSの水分量を目標水分量に早期に到達させ、乾燥時間の短縮にも貢献し、一方、高温乾燥に比べて外観品質に優れたれ炭素熱源HSの製造を可能にする。
 上述した乾燥プロファイルの働きを検証するため、実施例1に属する3種の炭素熱源HSA,HS,HSと、実施例2に属する1種の炭素熱源HSがそれぞれ押出成形された。炭素熱源HSA,HS,HSは図2に示されているように、図1の炭素熱源HSと同様なパイプ形状を有し、これに対し、炭素熱源HSはハニカム構造を有する。
 なお、本実施形態の場合、炭素熱源HSA,HS,HS,HSは6~8mm程度の外径を有し、また、炭素熱源HSA,HS,HSの内径は1~3mm程度である。
 炭素熱源HSA,HS,HSの乾燥前の組成は以下の表1に示されている。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、第1実施例の炭素熱源HSA,HS,HSは、炭素粉末として賦活処理された活性炭、添加剤及び水の混合物からなり、添加剤には炭酸カルシウム、バインダ及び精製塩が含まれている。炭酸カルシウムは燃焼調製剤として働き、バインダとしてはカルボキシメチルセルロースナトリウム、アルギン酸アンモニウム、ペクチン、カラギーナンの中から1種類以上が選択して用いられる。
 一方、炭素熱源HSの乾燥前の組成は以下の表2に示されている。
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、第2実施例の炭素熱源HSDは第1実施例の場合と同様に、活性炭、添加物及び水の混合物である。しかし、ここでの添加物には炭酸カルシウム、バインダ及びグリセリンが含まれ、バインダとしてはカルボキシルメチルセルロース、アルギン酸アンモニウム、ペクチン、カラギーナンの中から1種以上が選択されて用いられる。
          炭素熱源HSAの乾燥処理
 炭素熱源HSAは、以下の表3の乾燥プロファイルに従う乾燥雰囲気の下で多湿乾燥された。

Figure JPOXMLDOC01-appb-T000003
 表3から明らかなように炭素熱源HSAの乾燥プロファイルは複数段の乾燥ステージを含む。各乾燥ステージでの乾燥雰囲気の乾球温度T及び相対湿度RHは、これら乾球温度T及び相対湿度RHによって求められる重量絶対湿度AHがその対応の乾燥ステージに移行した際の炭素熱源HSAが有する水分量の40%以上となるように設定される。それ故、隣接する乾燥ステージ間でみたとき、前段の乾燥ステージにて炭素熱源HSAの乾燥が進行することから、後段の乾燥ステージでは乾燥雰囲気の重量絶対湿度AHが段階的に減少される。なお、表3には6段までの乾燥ステージが示されている。
 例えば、最初の乾燥ステージ1では炭素熱源HSAの水分量は多いので(表1参照)、重量絶対湿度AHを炭素熱源HSAが有する水分量の40%以上となるように設定する。このためには、乾燥雰囲気の乾球温度Tは比較的に高めに設定され、これにより、炭素熱源HSAから水分を効果的に蒸発させることができる。なお、乾燥ステージ1での乾球温度Tは以降の乾燥ステージでの乾球温度以上に設定される。
 また、表3から明らかなように乾球温度Tもまた乾燥ステージが進行するに連れ、室温程度まで段階的に低下されるので、炭素熱源HSAの乾燥が完了した後、炭素熱源HSAの急冷処理が不要となる。このような急冷処理は炭素熱源HSAの外表面にクラック等を発生させ易いが、急冷処理が不要となることで、炭素熱源HSAの外観品質がクラック等によって悪化することもない。
 更に、炭素熱源HSAの乾燥が進行するに連れ、水分の蒸発速度Vo及び移動速度Vsが共に低下する。しかし、表3から明らかなように後段の乾燥ステージ3~5では前段の乾燥ステージ1,2に比べて乾燥時間が長くされているので、後段の乾燥ステージ3~5でも、炭素熱源HSAの乾燥を効果的に進めることができる。
 なお、重量絶対湿度AHは、例えば湿り空気線図や、乾球温度T及び相対湿度RHをパラメータとした換算表から読み取ることができる。
 図4は、表3の乾燥プロファイルに従って炭素熱源HSAが多湿乾燥されたとき、炭素熱源HSAの水分量WAの変化を示す。また、図4には定温乾燥1の条件下にて、炭素熱源HSAが定温乾燥されたときの炭素熱源HSAの水分量Wの変化をも併せて示されている。
 以下の表4は定温乾燥1の条件を示す。
Figure JPOXMLDOC01-appb-T000004
 表4から明らかなように定温乾燥1では、乾燥雰囲気の乾球温度Tを一定温度(40℃)に設定し、乾燥雰囲気を入れ替えながら炭素熱源HSAの乾燥が実施された。
 図4から明らかなように多湿乾燥された炭素熱源HSAの水分量WAは、定温乾燥された炭素熱源HSAの水分量Wに比べて目標水分量(10wt%以下)に早期に到達する。それ故、表3の乾燥プロファイルによる多湿乾燥は定温乾燥1に比べて、炭素熱源HSAの乾燥に要する時間を大幅に短縮することができる。
 なお、表3の乾燥プロファイルと図4に示された水分量Wの変化とを対比すれば明らかなように、各乾燥ステージの乾燥雰囲気はその乾燥ステージに移行した炭素熱源HSAの水分量WAの40%以上の重量絶対湿度AHを有する。
 一方、多湿乾燥された炭素熱源HSAが50本用意され、これら炭素熱源HSAの外径が測定された。以下の表5は測定結果及びこの測定結果から得られた評価を示す。
Figure JPOXMLDOC01-appb-T000005
 表5に関して、具体的に説明すれば、各測定サンプル毎に炭素熱源HSAの外径が図2に示すP1~P5の点にてそれぞれ測定された。なお、これら測定点P1~P5は炭素熱源HSAの周方向に沿い互いに離間している。表5中、炭素熱源HSAの最大外径Dmax に係る縦列に関し、MAX,MIN、Av及びσは全測定サンプル中での最大外径Dmaxの最大値,最小値、平均、そして、標準偏差をそれぞれ示す。
 同様に、表5中の炭素熱源HSAの最小外径Dminの縦列、2点平均に係る縦列及び5点平均に係る縦列に関しても、MAX,MIN、Av及びσは全測定サンプル中での最小外径Dmin、2点平均及び5点平均の最大値、最小値、平均、そして標準偏差をそれぞれ示す。
 なお、2点平均とは、各測定サンプル毎に測定点P1~P5にて測定して得られた外径のうち、その最大値と最小値との間の平均値を示し、一方、5点平均とは全測定点P1~Pでの外径の平均値を示す。
 また、定温乾燥された炭素熱源HSAもまた50本用意され、これら炭素熱源HSAの外径も同様に測定された。以下の表6は測定結果及びこの測定結果から得られた評価を表5と同様な形態で示す。
Figure JPOXMLDOC01-appb-T000006
 表5,6の評価結果、特に最大外径Dmax,最小外径Dmimに係る標準偏差σを対比すれば明らかなように、表3の乾燥プロファイルによって多湿乾燥された炭素熱源HSAの真円性は定温乾燥された炭素熱源HSAの真円性に比べて、良好に維持されている。
 また、2点平均や5点平均に係る標準偏差σを対比しても、多湿乾燥での標準偏差σは定温乾燥での標準偏差σに比べて低く、炭素熱源HSAの横断面形状は乾燥の前後に拘わらず、相似形を維持しながら収縮していることが分かる。
           HS,HSCの乾燥処理
 炭素熱源HSは、以下の表7の乾燥プロファイルに従う乾燥雰囲気の下で多湿乾燥された。
Figure JPOXMLDOC01-appb-T000007
 一方、炭素熱源HSCは、以下の表8の乾燥プロファイルに従う乾燥雰囲気の下で多湿乾燥された。
Figure JPOXMLDOC01-appb-T000008
 表7及び表8から明らかなように、炭素熱源HSB、HSCの乾燥プロファイルもまた複数段の乾燥ステージを含む。各乾燥ステージでの乾燥雰囲気の乾球温度T及び相対湿度RHは、これら乾球温度T及び相対湿度RHによって求められる重量絶対湿度AHがその対応の乾燥ステージに移行した際の炭素熱源HSAが有する水分量の40%以上となるように設定されている。また、隣接する乾燥ステージ間では重量絶対湿度AHが段階的に減少されている。
 それ故、表7及び表8の乾燥プロファイルは表3の乾燥プロファイルと基本的に同様であるが、各乾燥ステージの乾燥時間が同一である点で、表3の乾燥プロファイルとは相違する。
 図5は、炭素熱源HSが多湿乾燥されたときの炭素熱源HSの水分量WBの変化を、定乾燥された炭素熱源HSの水分量Wの変化とともに示す。また、図6は、炭素熱源HSが多湿乾燥されたときの炭素熱源HSCの水分量WCの変化を、定温乾燥された炭素熱源HSCの水分量W3の変化とともに示す。なお、炭素熱源HS,HSCの定温乾燥は前述の炭素熱源HSAの定温乾燥と同一の条件下にて実施された。
 図5及び図6から明らかなように、多湿乾燥された炭素熱源HS,HSCの水分量WB,WCは、定温乾燥された炭素熱源HS,HSCの水分量W2,W3とそれぞれ比べて、目標水分量(10wt%以下)に早期に達することが分かる。また、多湿乾燥された炭素熱源HS,HSCの真円性もまた、定温乾燥された炭素熱源HS,HSCの真円性に比べてより維持されていることも確認された。
 なお、表7(又は表8)の乾燥プロファイルでも、各乾燥ステージでの乾燥雰囲気の重量絶対湿度AHがその乾燥ステージに移行した際の炭素熱源HSB(又はHSC)の水分量WB(又はWC)の40%以上であることは言うまでもない。
           炭素熱源HSDの乾燥処理
 炭素熱源HSDは、以下の表9の乾燥プロファイルに従う乾燥雰囲気の下で多湿乾燥された。
Figure JPOXMLDOC01-appb-T000009
 表9から明らかなように、炭素熱源HSDの乾燥プロファイルもまた複数の乾燥ステージを含む。隣接する乾燥ステージ間にて、乾燥雰囲気の重量絶対湿度AHは段階的に減少され、ここでの重量絶対湿度AHでもその乾燥ステージに移行した際の炭素熱源HSDの水分量WDの40%以上である。
 炭素熱源HSDの乾燥プロファイルの場合、乾燥ステージ1での乾燥雰囲気の乾球温度Tは、前述の乾燥プロファイルでの場合に比べて低い。これは前述の炭素熱源HSA,HSB,HSCの場合に比べて、炭素熱源HSDの初期水分量が24%と低いことによる(表1,2参照)。
 また、炭素熱源HSDの乾燥プロファイルの場合、各乾燥ステージでの乾燥雰囲気の重量絶対湿度AHは40%以上で且つ40%の近傍であるのが好ましい。
 図7は、表9の乾燥プロファイルに従って炭素熱源HSDが多湿乾燥されたとき、炭素熱源HSDの水分量WDの変化を示す。また、図7には、定温乾燥2,3の条件下にて、炭素熱源HSDが乾燥されたときの炭素熱源HSDの水分量W,Wの変化をも併せて示されている。
 以下の表10は定温乾燥2の条件を示す。

Figure JPOXMLDOC01-appb-T000010
 以下の表11は定温乾燥3の条件を示す。
Figure JPOXMLDOC01-appb-T000011
 定温乾燥2及び定温乾燥3では前述の定温乾燥1に比べて、乾燥雰囲気の乾球温度Tは低く、また、定温乾燥1とは異なり、重量絶対湿度AHを一定にすべく乾燥雰囲気の相対湿度RHが維持されている。
 図7から明らかなように、多湿乾燥された炭素熱源HSDの水分量W Dは定温乾燥2,3の条件下にて乾燥された炭素熱源HSDの水分量W,Wに比べ、目標水分量(10wt%以下)に早期に到達し、多湿乾燥は乾燥時間の短縮に寄与する。また、真円性に関しても、多湿乾燥された炭素熱源HSDは、定温乾燥された炭素熱源HSDに比べて優れていることが確認された。
 更に、多湿乾燥された炭素熱源HSDにクラックが発生することは無かったが、定温乾燥された炭素熱源HSDには何れにもクラックの発生が確認された。これは炭素熱源HSDがハニカム構造を有し、構造的に脆弱であることに起因するもの考えられる。この点、パイプ形状の炭素熱源HSA,HS,HSCは多湿乾燥及び定温乾燥の何れで乾燥されても、炭素熱源HSA,HS,HSCにクラックが発生することは無かった。
 本発明は上述の実施態様に制約されるものではなく、例えば、炭素熱源HSの炭素粒子以外の組成や横断面形状は表及び図に例示したものに限らず、その使用形態に応じて変更可能である
HS         炭素熱源
B          センタボア
T          乾球温度
RH         相対湿度
AH         重量絶対湿度
Vo         水分の蒸発速度
Vs         水分の移動速度

Claims (7)

  1.  炭素粉末にバインダを含む添加剤及び水を加えて混練した混練物をロッド形状の炭素熱源に成形し、この後、前記炭素熱源を乾燥した完成品を製造するにあたり、
     前記炭素熱源の外面から蒸発する水分の蒸発速度と前記炭素熱源内での中央から前記外面に向かう水分の移動速度とを近似させつつ、重量絶対湿度を段階的に低下させる乾燥雰囲気を生成し、
     前記乾燥雰囲気中にて前記炭素熱源を乾燥させることを特徴とする炭素熱源の乾燥方法。
  2.  前記炭素熱源の乾燥は、前記炭素熱源における乾燥の進行に従い複数の乾燥ステージに分けて実施され、
     隣接する乾燥ステージ間にて、前記乾燥雰囲気の乾球温度及び相対湿度の少なくとも一方が変化されることを特徴とする請求項1に記載の炭素熱源の乾燥方法。
  3.  前記各乾燥ステージでの前記乾燥雰囲気の乾球温度及び相対湿度は、前記炭素熱源における乾燥の進行に拘わらず、前記炭素熱源の横断面形状を維持すべくそれぞれ決定されていることを特徴とする請求項2に記載の炭素熱源の乾燥方法。
  4.  前記乾燥ステージのうちの最初の乾燥ステージでの前記乾球温度は、以降の乾燥ステージでの前記乾球温度以上に設定されていることを特徴とする請求項2に記載の炭素熱源の乾燥方法。
  5.  前記各乾燥ステージでの前記重量絶対湿度は、対応した乾燥ステージへの移行時、前記炭素熱源が有する水分量の40%以上に相当することを特徴とする請求項4に記載の炭素熱源の乾燥方法。
  6.  前記乾燥ステージのうちの最初の乾燥ステージでの前記乾球温度は、以降の乾燥ステージでの前記乾球温度以上に設定されていることを特徴とする請求項3に記載の炭素熱源の乾燥方法。
  7.  前記各乾燥ステージでの前記重量絶対湿度は、対応した乾燥ステージへの移行時、前記炭素熱源が有する水分量の40%以上に相当することを特徴とする請求項6に記載の炭素熱源の乾燥方法。
PCT/JP2014/074895 2013-09-25 2014-09-19 炭素熱源の乾燥方法 WO2015046072A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14848435.5A EP3050445A4 (en) 2013-09-25 2014-09-19 Carbon heat source drying method
CN201480051962.8A CN105555158B (zh) 2013-09-25 2014-09-19 碳热源的干燥方法
JP2015539169A JP6374873B2 (ja) 2013-09-25 2014-09-19 炭素熱源の乾燥方法
US15/047,074 US10274254B2 (en) 2013-09-25 2016-02-18 Carbon heat source drying method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013198369 2013-09-25
JP2013-198369 2013-09-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/047,074 Continuation US10274254B2 (en) 2013-09-25 2016-02-18 Carbon heat source drying method

Publications (1)

Publication Number Publication Date
WO2015046072A1 true WO2015046072A1 (ja) 2015-04-02

Family

ID=52743209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074895 WO2015046072A1 (ja) 2013-09-25 2014-09-19 炭素熱源の乾燥方法

Country Status (5)

Country Link
US (1) US10274254B2 (ja)
EP (1) EP3050445A4 (ja)
JP (1) JP6374873B2 (ja)
CN (1) CN105555158B (ja)
WO (1) WO2015046072A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021530994A (ja) * 2018-07-13 2021-11-18 アール・ジエイ・レイノルズ・タバコ・カンパニー 着脱式カートリッジ付喫煙品

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105555158B (zh) * 2013-09-25 2019-12-03 日本烟草产业株式会社 碳热源的干燥方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08332067A (ja) * 1995-01-05 1996-12-17 R J Reynolds Tobacco Co 喫煙物品用燃料部材の水分含量を調節するための方法及び装置
JP2002086407A (ja) * 2000-09-11 2002-03-26 Shinshiba Setsubi:Kk 木材の人工乾燥方法および木材乾燥装置
WO2005046364A1 (ja) 2003-11-13 2005-05-26 Japan Tobacco Inc. 炭素質熱源チップの製造装置
WO2009131009A1 (ja) 2008-04-25 2009-10-29 日本たばこ産業株式会社 非燃焼型喫煙物品成形体の乾燥方法およびその装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3571943A (en) 1969-06-23 1971-03-23 Hulbert E Sipple Wood drying and preserving process
US4109664A (en) * 1975-03-05 1978-08-29 Brown & Williamson Tobacco Corporation Smoking materials
JPS52154599A (en) * 1976-06-15 1977-12-22 Japan Tobacco Inc Method for imparting water resistance to molded smoking composition
US4793365A (en) * 1984-09-14 1988-12-27 R. J. Reynolds Tobacco Company Smoking article
JPH07109166A (ja) * 1993-10-13 1995-04-25 Honda Motor Co Ltd セラミックス成形体の乾燥方法
JP3575892B2 (ja) * 1995-10-19 2004-10-13 株式会社ユポ・コーポレーション テンターオーブンにおける雨滴排出装置
JP3361312B2 (ja) * 2000-02-04 2003-01-07 木材乾燥低コスト化技術研究組合 木材の乾燥方法
CN1380528A (zh) * 2001-04-12 2002-11-20 厦门涌泉科技发展股份有限公司 一种马尾松板方材的脱脂干燥方法
FI20041278A (fi) 2003-11-21 2005-05-22 Teknocomp Oy Menetelmä ja laittesto puun tai puutuotteiden käsittelemiseksi
FI20031696A (fi) 2003-11-21 2005-05-22 Teknocomp Oy Laitteisto puun tai puutuotteiden käsittelemiseksi
US7024796B2 (en) * 2004-07-19 2006-04-11 Earthrenew, Inc. Process and apparatus for manufacture of fertilizer products from manure and sewage
DE102005014291A1 (de) * 2005-03-24 2006-09-28 Basf Ag Verfahren zur Herstellung wasserabsorbierender Polymere
US8353298B2 (en) * 2006-07-12 2013-01-15 Philip Morris Usa Inc. Smoking article with impaction filter segment
KR101425109B1 (ko) * 2007-03-20 2014-08-01 도레이 카부시키가이샤 공기 분출 노즐 및 그것을 사용한 텐터 오븐
JP5186267B2 (ja) * 2007-04-04 2013-04-17 富士フイルム株式会社 セルロースアシレートフイルム及びその製造方法、並びに、偏光板、液晶表示板用光学補償フイルム、反射防止フイルム及び液晶表示装置
AR080556A1 (es) * 2009-10-09 2012-04-18 Philip Morris Prod Diseno de filtro para mejorar el perfil sensorial de articulos para fumar con boquilla de filtro de carbono
US8905037B2 (en) * 2009-10-15 2014-12-09 Philip Morris Inc. Enhanced subjective activated carbon cigarette
CN103112069B (zh) * 2012-03-30 2016-05-11 北京林业大学 一种提高木材透气性的处理设备和处理方法
CN105555158B (zh) * 2013-09-25 2019-12-03 日本烟草产业株式会社 碳热源的干燥方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08332067A (ja) * 1995-01-05 1996-12-17 R J Reynolds Tobacco Co 喫煙物品用燃料部材の水分含量を調節するための方法及び装置
JP2002086407A (ja) * 2000-09-11 2002-03-26 Shinshiba Setsubi:Kk 木材の人工乾燥方法および木材乾燥装置
WO2005046364A1 (ja) 2003-11-13 2005-05-26 Japan Tobacco Inc. 炭素質熱源チップの製造装置
WO2009131009A1 (ja) 2008-04-25 2009-10-29 日本たばこ産業株式会社 非燃焼型喫煙物品成形体の乾燥方法およびその装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3050445A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021530994A (ja) * 2018-07-13 2021-11-18 アール・ジエイ・レイノルズ・タバコ・カンパニー 着脱式カートリッジ付喫煙品
US11723399B2 (en) 2018-07-13 2023-08-15 R.J. Reynolds Tobacco Company Smoking article with detachable cartridge
JP7434267B2 (ja) 2018-07-13 2024-02-20 アール・ジエイ・レイノルズ・タバコ・カンパニー 着脱式カートリッジ付喫煙品

Also Published As

Publication number Publication date
CN105555158A (zh) 2016-05-04
JPWO2015046072A1 (ja) 2017-03-09
US10274254B2 (en) 2019-04-30
US20160161184A1 (en) 2016-06-09
JP6374873B2 (ja) 2018-08-15
CN105555158B (zh) 2019-12-03
EP3050445A4 (en) 2017-05-10
EP3050445A1 (en) 2016-08-03

Similar Documents

Publication Publication Date Title
JP5993364B2 (ja) 乾燥パスタの製造方法
JP6374873B2 (ja) 炭素熱源の乾燥方法
PL118832B1 (en) Method of manufacturing cigarette filters
JP2018108087A5 (ja)
ITTO20070619A1 (it) Metodo per produrre tagliolini estrusi
CA2909983A1 (en) Extruded lightweight thermal insulating cement-based materials
JP2009055896A (ja) 溝付き麺類およびその製造方法
US3404690A (en) Tobacco product and process for making same
JP2016534001A5 (ja)
JP2017192356A5 (ja)
JP2008054677A (ja) 押出麺の製造方法
JP2007111038A (ja) 膨化食品の製造方法
JP6174484B2 (ja) 押出成形麺用ダイスピース
JP2008211987A (ja) 膨化食品の製造方法
CN104558878A (zh) 应用于玩具制作的可均匀收缩的聚苯乙烯片材及制造方法
CN110833204A (zh) 一种发烟制品的制造方法及其发烟制品
RU2634930C1 (ru) Способ изготовления заполнителя для бетона
CN102578357A (zh) 一种可食用的雪糕棒的制备方法
WO2019002696A8 (en) THERMAL INSULATION BASED ON CERAMIC
JPWO2012124749A1 (ja) 乾麺の製造方法
RU2588503C2 (ru) Способ изготовления высокотемпературной теплоизоляции
JP6618342B2 (ja) 寒梅粉を用いたゼオライト捏和物およびその製造方法ならびにゼオライト捏和物を用いたゼオライト押出成形体の製造方法
US2261790A (en) Process of manufacturing rubber articles
KR100467141B1 (ko) 단면 변동율이 낮은 이쑤시개의 제조방법 및 그에 의하여제조되는 이쑤시개
RU2509068C1 (ru) Способ получения кварцевой керамики с повышенной излучательной способностью

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480051962.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14848435

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015539169

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014848435

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014848435

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE