WO2015045945A1 - 修飾板状無機化合物、及びそれを含有する樹脂組成物 - Google Patents

修飾板状無機化合物、及びそれを含有する樹脂組成物 Download PDF

Info

Publication number
WO2015045945A1
WO2015045945A1 PCT/JP2014/074383 JP2014074383W WO2015045945A1 WO 2015045945 A1 WO2015045945 A1 WO 2015045945A1 JP 2014074383 W JP2014074383 W JP 2014074383W WO 2015045945 A1 WO2015045945 A1 WO 2015045945A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin
inorganic compound
acid
plate
Prior art date
Application number
PCT/JP2014/074383
Other languages
English (en)
French (fr)
Inventor
穣 田淵
正紀 宮本
中嶋 道也
茜 笹本
康弘 松出
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2015527709A priority Critical patent/JP6164706B2/ja
Publication of WO2015045945A1 publication Critical patent/WO2015045945A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/06Treatment with inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/008Additives improving gas barrier properties

Definitions

  • the present invention relates to a modified plate-like inorganic compound obtained by surface treatment with a phosphonic acid derivative or a phosphoric acid derivative, a resin composition containing the same, a water vapor barrier adhesive using the resin compound, and a water vapor barrier It relates to films, coating agents and laminates.
  • Food packaging materials need to protect their contents from various distribution, storage such as refrigeration, freezing, heating, heat sterilization, etc., and therefore durability such as strength, resistance to cracking, cold resistance, heat resistance, and retort resistance. Desired. In addition, transparency that allows the contents to be visually recognized and barrier properties against oxygen and water vapor for maintaining quality are required.
  • Al vapor-deposited films in which aluminum (Al) is vapor-deposited on base films such as nylon, polyethylene terephthalate (PET), polypropylene (PP), and transparent vapor-deposited films in which silica or alumina is vapor-deposited are known.
  • base films such as nylon, polyethylene terephthalate (PET), polypropylene (PP), and transparent vapor-deposited films in which silica or alumina is vapor-deposited.
  • base films such as nylon, polyethylene terephthalate (PET), polypropylene (PP), and transparent vapor-deposited films in which silica or alumina is vapor-deposited
  • the transparent vapor-deposited film has problems that the barrier property is deteriorated due to cracks or pinholes in the vapor-deposited layer.
  • clay has high hygroscopicity, it has an effect on oxygen barrier properties, but it has little effect on water vapor barrier properties.
  • Patent Document 1 there is known one in which Na between the clay layers is replaced with Li, and further heat-treated to confine Li inside the clay layer to improve water resistance (Patent Document 1).
  • the heat treatment temperature needs to be at least 150 ° C., and it is difficult to heat treat the resin used for the food packaging material at such a temperature.
  • Patent Document 2 Also known is a technique for improving barrier properties by kneading layered fillers such as mica and graphite into PP (Patent Document 2). However, this technique is characterized by high concealability and is not necessarily excellent in transparency.
  • a modified plate-like inorganic material obtained by surface treatment with a phosphonic acid derivative or a phosphoric acid derivative that has a high water vapor barrier property and adhesiveness, and is capable of providing a water vapor barrier material excellent in transparency. It is an object of the present invention to provide a compound and a resin composition containing the modified plate-like inorganic compound.
  • the present inventors have found that a modified plate-like inorganic compound surface-treated with a specific phosphonic acid derivative or phosphoric acid derivative solves the above problems, and has completed the present invention.
  • the plate-like inorganic compound is represented by the following general formula (1) or (2).
  • R 1 and R 2 may each independently have a chain alkyl group or alkenyl group having 4 to 30 carbon atoms, a hydroxyl group, an alkoxy group, or an aromatic group.
  • n is 1 or 2.
  • the present invention relates to a modified plate-like inorganic compound obtained by surface treatment with a phosphonic acid derivative or a phosphoric acid derivative, and a resin composition containing the modified plate-like inorganic compound.
  • steam barriers of this invention also has oxygen barrier property, this adhesive agent can be widely used as an object for barrier materials.
  • the present invention includes the following items. 1.
  • R 1 and R 2 may each independently have a chain alkyl group or alkenyl group having 4 to 30 carbon atoms, a hydroxyl group, an alkoxy group, or an aromatic group.
  • n is 1 or 2.
  • the plate-like inorganic compound is non-ionic between layers or non-swellable with respect to water. Modified plate-like inorganic compound according to 3.
  • the plate-like inorganic compound contains particles having an average particle size of 0.1 ⁇ m or more.
  • a resin composition comprising the modified plate-like inorganic compound according to any one of the above and a resin, 5.
  • the resin is a petroleum resin, a phenol resin, a ketone resin, or a terpene resin.
  • the resin is a resin containing a resin (A) having two or more hydroxyl groups in one molecule as a functional group and an isocyanate compound (B) having two or more isocyanate groups in one molecule as a functional group.
  • the present invention is characterized in that the resin composition contains a modified plate-like inorganic compound surface-treated with the phosphonic acid derivative or the phosphoric acid derivative represented by the general formulas (1) and (2).
  • the plate-like inorganic compound used in the present invention has an effect of increasing the water vapor barrier property of the multilayer film, but is surface-treated with the phosphonic acid derivative or the phosphoric acid derivative represented by the general formulas (1) and (2). The effect can be further enhanced by using a modified plate-like inorganic compound.
  • Examples of the plate-like inorganic compound used in the present invention include kaolinite-serpentine clay minerals (halloysite, kaolinite, enderite, dickite, nacrite, antigolite, chrysotile, etc.), pyrophyllite-talc group (pyrolite) Phyllite, talc, kerolai, etc.), magnesium hydroxide, aluminum hydroxide, barium hydroxide, iron hydroxide, zinc hydroxide, nickel hydroxide as well as layered barium sulfate, zeolite, among various metal hydroxides , Aluminum polyphosphate, boehmite, glass flake, aluminum flake, metal foil, metal flake, boron nitride, montmorillonite, vermiculite, mica-based compounds, such as muscovite, phlogopite, biotite, sericite, margarite, tetrasi Lyric mica, Teniorai Other like, it can
  • the aspect ratio should be higher than that of the water vapor barrier, preferably 10 or more, more preferably 50 or more, and most preferably 70 or more.
  • mica-based plate-like inorganic compounds are known because materials with an aspect ratio exceeding 100 are also known.
  • (Content of plate-like inorganic compound) In the present invention, petroleum resin, phenol resin, ketone resin, terpene resin, or resin (A) having two or more hydroxyl groups in one molecule as a functional group, isocyanate having two or more isocyanate groups in one molecule as a functional group
  • the content of the plate-like inorganic compound is not particularly limited as long as the water vapor barrier ability is improved. % Is preferred.
  • the content of the plate-like inorganic compound (PWC of the blend) can be determined by the following formula (a) or (a ′).
  • the phosphonic acid derivative used in the present invention has the general formula (1)
  • R 1 is a chain alkyl group having 4 to 30 carbon atoms or an alkenyl group, a hydroxyl group, an alkoxy group, a chain alkyl group having 1 to 30 carbon atoms which may have an aromatic group, or An alkenyl group, an aromatic group, a hydroxyl group, an alkoxy group, or a group selected from a cyclic alkyl group having 4 to 30 carbon atoms or an alkenyl group which may have an aromatic group, and n is 1 or 2.
  • Phosphonic acid is known to be extremely reactive with the surface of inorganic compounds.
  • a chemical bond can be formed by reacting not only with an OH group on the surface of an inorganic compound mainly composed of a metal oxide but also with an oxygen atom represented by MOM (M is a metal atom). Therefore, in addition to metal compounds, particularly metal oxides, metal hydroxides, natural minerals such as mica and clay, it is possible to organically modify the entire outer periphery of the surface of a single metal foil or the like whose surface is oxidized. In addition, these reaction rates are fast even at room temperature, and a monomolecular or bimolecular uniform organic thin film can be formed.
  • R 1 portion of the general formula (1) may have a chain alkyl group or alkenyl group having 4 to 30 carbon atoms, a hydroxyl group, an alkoxy group, or an aromatic group, and may have a chain structure having 1 to 30 carbon atoms.
  • a linear alkylphosphonic acid having 4 to 30 carbon atoms hexylphosphonic acid, octylphosphonic acid, laurylphosphonic acid, octadecylphosphonic acid, tetracosylphosphonic acid, etc.
  • hydroxyl group hydroxyethyl phosphonic acid or the like in the case of a hydroxyl group, butoxyphosphonic acid or the like in the case of an alkoxy group, and phenylphosphonic acid or naphthylphosphonic acid in the case of an aromatic group.
  • the phosphoric acid derivative used in the present invention has the general formula (2)
  • R 2 represents a chain alkyl group having 4 to 30 carbon atoms or an alkenyl group, a hydroxyl group, an alkoxy group, and a chain alkyl group having 1 to 30 carbon atoms which may have an aromatic group, or An alkenyl group, an aromatic group, a hydroxyl group, an alkoxy group, or a group selected from a cyclic alkyl group having 4 to 30 carbon atoms or an alkenyl group which may have an aromatic group, and n is 1 or 2.
  • R 2 in the general formula (2) is a chain alkyl group or alkenyl group having 4 to 30 carbon atoms, or a chain alkyl group or alkenyl group having 1 to 30 carbon atoms, a hydroxyl group, an alkoxy group, an aromatic group. May be a group, may be an aromatic group, or may be a hydroxyl group, an alkoxy group, a C1-C30 cyclic alkyl group or an alkenyl group that may have an aromatic group,
  • a modification reaction to the plate-like inorganic compound in the solvent can be easily performed, and sufficient hydrophobicity can be imparted to the plate-like inorganic compound after the surface modification.
  • a phosphate ester having a hydroxyl group, hydroxyethyl phosphate, etc. in the case of an alkoxy group, methoxybutyl phosphate, etc., in the case of a phosphate ester having an aromatic group, benzyl phosphate, phenyl phosphate Etc. can be illustrated.
  • a plate-like inorganic compound whose surface is modified with a phosphonic acid derivative or a phosphoric acid derivative is referred to as a modified plate-like inorganic compound.
  • solvent The solvent used in the present invention dissolves a phosphonic acid derivative or a phosphoric acid derivative and gives a reaction field to the plate-like inorganic compound, thereby modifying the phosphonic acid derivative or the phosphoric acid derivative to the plate-like inorganic compound. It is to make it easy.
  • a resin such as a petroleum resin, a phenol resin, a ketone resin, or a terpene resin, or a resin (A) having two or more hydroxyl groups in one molecule as a functional group and an isocyanate in one molecule as a functional group Since the step of adding the isocyanate compound (B) having two or more groups is included, it is necessary to dissolve without reacting with these.
  • ester solvents such as ethyl acetate, propyl acetate and butyl acetate; ketone solvents such as acetone, 2-butanone and cyclohexanone; aromatic hydrocarbons such as toluene and xylene; fats such as n-hexane Ethers such as group hydrocarbons, tetrahydrofuran, dimethyl ether, diethyl ether, dibutyl ether, anisole and the like can be exemplified.
  • ester solvents such as ethyl acetate, propyl acetate and butyl acetate
  • ketone solvents such as acetone, 2-butanone and cyclohexanone
  • aromatic hydrocarbons such as toluene and xylene
  • fats such as n-hexane Ethers such as group hydrocarbons, tetrahydrofuran, dimethyl ether, diethyl ether, dibutyl
  • the concentration at which the phosphonic acid derivative or the phosphoric acid derivative is dissolved is not particularly limited, but 0.001 to 0 is necessary for the rapid reaction between the phosphonic acid derivative or the phosphoric acid derivative and the plate-like inorganic compound. It is preferably between 1 mol / L, more preferably between 0.005 and 0.05 mol / L.
  • the amount ratio between the plate-like inorganic compound and the phosphonic acid derivative or phosphoric acid derivative is such that the phosphonic acid derivative or the phosphoric acid derivative can cover the entire circumference of the plate-like inorganic compound with a single-layer or multi-layer thin film. If it is. Therefore, an appropriate quantitative ratio is determined by the dispersion size of the plate-like inorganic compound in the solvent.
  • the amount ratio of the phosphonic acid derivative or the phosphoric acid derivative may be small, and generally 1% by mass or less of the plate-like inorganic compound. It becomes.
  • the plate-like inorganic compound is swellable and the inorganic compound layer is dispersed into a single layer, it may be about several mass%.
  • adding a large excess of the phosphonic acid derivative or phosphoric acid derivative in an amount larger than that necessary to modify the entire circumference of the plate-like inorganic compound in the process means that the unreacted phosphonic acid derivative or phosphorus Care must be taken because the acid derivative may easily take up water by associating with the water entering during use.
  • a silane coupling agent used as an organic modifier has a slower modification reaction than phosphonic acid or a phosphoric acid derivative, and only reacts with OH groups on the surface of an inorganic compound. Furthermore, side reactions between silane coupling agents are likely to occur, and the resulting reaction product may have an adverse effect depending on the application. In addition, a small amount of water is often required to cause the reaction, and this control also becomes a complicated factor in the process.
  • the phosphonic acid derivative or the phosphoric acid derivative used as the organic modifier in the present invention has an advantage without such problems.
  • the petroleum resin used in the present invention was polymerized without isolating diolefins and monoolefins contained in cracked oil fractions by-produced from an ethylene plant producing ethylene, propylene, etc. by steam cracking of petroleum. Things. These are broadly divided into those obtained by using C5 fraction as a raw material (aliphatic or C5 petroleum resin), those using C9 fraction (aromatic or C9 petroleum resin), and both.
  • the raw material (C5C9 copolymer petroleum resin) and the dicyclopentadiene fraction obtained by dimerizing the cyclopentadiene contained in the C5 fraction are purified and polymerized (dicyclopentadiene) Are generally classified into four types of resin).
  • fractions that can be polymerized here include, for example, 1-pentene, 2-pentene, 1-methylbutene, 2-methylbutene, isoprene, t-1,3-pentadiene, c- 1,3-pentadiene, cyclopentene, cyclopentadiene, and the like can be mentioned.
  • C9 fraction include styrene, ⁇ , ⁇ -methylstyrene, vinyltoluene, indene, methylindene, and the like. Include dicyclopentadiene, isopropenyl norbornene, dimethyldicyclopentadiene, tricyclopentadiene, and the like.
  • the petroleum resin there is no limitation on the combination of polymerization such as various fractions, and various resin systems or mixed resin systems can be used. In the polymerization of each fraction or the like, it is possible to use a polymerization catalyst such as sulfuric acid, boron fluoride complex, aluminum chloride catalyst.
  • a polymerization catalyst such as sulfuric acid, boron fluoride complex, aluminum chloride catalyst.
  • Examples of petroleum resins include Alcon P-140 and Alcon M-135 from Arakawa Chemical Industries, Ltd., Escollets 1310, Escorets 1315, Escorets 5380, Escorets ER5320, Escorets ECR227E from ExxonMobil Corporation, and Imabe P from Idemitsu Kosan Co., Ltd.
  • Petroleum resins can be either hydrogenated or non-hydrogenated. Among these, those having a dicyclopentadiene skeleton are preferable from the viewpoint of barrier properties.
  • phenol resin used in the present invention a known and commonly used phenol resin can be used.
  • the phenols for obtaining the phenol resin are not particularly limited.
  • phenol or alkylphenols such as cresol, xylenol, ethylphenol, butylphenol, nonylphenol, octylphenol, bisphenol A, bisphenol F, bisphenol S, resorcinol.
  • polyphenols such as catechol, halogenated phenols, phenylphenols, aminophenols and the like.
  • these phenols are not limited to one type, and two or more types can be used in combination.
  • Phenol resins include DIC Corporation's PHENOLITE TD-2131, PHENOLITE TD-2106, PHENOLITE TD-2093, PHENOLITE TD-2091, PHENOLITE TD-2090, PHENOLITE VH-4150, PHENOLITE KH-4170, PHENOLITE HH-4150 Examples include PHENOLITE KA-1160, PHENOLITE KA-1163, and PHENOLITE KA-1165.
  • ketone resin As the ketone resin used in the present invention, known and commonly used ketone resins can be used. Examples of the ketone resin include Evonik's VariPlus AP, VariPlus SK, VariPlus 1201, VariPlus CA, and the like.
  • terpene resin As the terpene resin used in the present invention, known and commonly used terpene resins can be used. Examples of the terpene resin include YS Resin PX, Clearon P, Clearon M, Clearon K, YS Resin TO, Polystar U, Polystar T, Polystar S, Polystar G, Polyster N, Polystar K, YS Resin SX, etc. of Yashara Chemical Co., Ltd. It can be illustrated. In addition, known and commonly used urethane resins and polyester resins can also be used in the present invention.
  • a resin (A) having two or more hydroxyl groups in one molecule as a functional group and a resin containing an isocyanate compound (B) having two or more isocyanate groups in one molecule as a functional group are also used. it can.
  • the resin (A) used in the present invention is a resin having a hydroxyl group in one molecule as a functional group, and the main skeleton contains polyester, polyester polyurethane, polyether, or polyether polyurethane. There is no particular limitation as long as it has the adhesive strength or water vapor barrier property of the present invention.
  • the polyester used in the present invention a known technique can be used.
  • the polyester can be obtained by a reaction between a polyhydric alcohol and a polycarboxylic acid.
  • Polyester polyurethane can be obtained by a known technique, for example, by reaction of polyester polyol and diisocyanate.
  • the polyether known techniques can be used.
  • an oxirane compound such as ethylene oxide, propylene oxide, butylene oxide, and tetrahydrofuran
  • a low molecular weight polyol such as water, ethylene glycol, propylene glycol, trimethylolpropane, and glycerin as an initiator. Obtained by polymerization.
  • the polyether polyurethane can be obtained by a known technique, for example, by reaction of polyether with diisocyanate.
  • the resin (A) used in the present invention is a polyvalent carboxylic acid component, specifically, an aliphatic polyvalent carboxylic acid such as succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, etc.
  • Examples of the cyclic polyvalent carboxylic acid include 1,3-cyclopentanedicarboxylic acid and 1,4-cyclohexanedicarboxylic acid, and examples of the aromatic polyvalent carboxylic acid include orthophthalic acid, terephthalic acid, isophthalic acid, pyromellitic acid, trimethyl Merit acid, 1,4-naphthalenedicarboxylic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, naphthalic acid, biphenyldicarboxylic acid, 1,2-bis (phenoxy) ethane-p, p'-dicarboxylic acid Acids and anhydrides or ester-forming derivatives of these dicarboxylic acids; p-hydroxybenzoic acid, p- (2-hydroxyl Cyethoxy) benzoic acid and polybasic acids such as ester-forming derivatives of these dihydroxycarboxylic acids can be used alone or in a mixture of two or more
  • succinic acid, 1,3-cyclopentanedicarboxylic acid, orthophthalic acid, acid anhydride of orthophthalic acid, and isophthalic acid are preferable, and orthophthalic acid and its acid anhydride are more preferable.
  • the polyhydric alcohol used in the present invention includes, as the aliphatic diol, ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, cyclohexanedimethanol, 1,5-pentanediol, 3-methyl-1 , 5-pentanediol, 1,6-hexanediol, methylpentanediol, dimethylbutanediol, butylethylpropanediol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, aromatic polyphenol , Hydroquinone, resorcinol, catechol, naphthalene diol, biphenol, bisphenol A, hisphenol F, tetramethylbiphenol, ethylene oxide De extension product, there can be mentioned hydrogenated alicyclic.
  • ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, and cyclohexane Methanol is preferred, and ethylene glycol is more preferred.
  • the polycondensation reaction between the polyvalent carboxylic acid and the polyhydric alcohol can be performed by a known and commonly used method.
  • a polyester polyol (A1) obtained by reacting a carboxylic acid anhydride or a polycarboxylic acid with a polyester polyol having three or more hydroxyl groups
  • a polyester polyol (A2) having a polymerizable carbon-carbon double bond
  • a polyester polyol (A3) having a glycerol skeleton
  • a polyester polyol (A4) obtained by polycondensation of an ortho-oriented polyvalent carboxylic acid component and a polyhydric alcohol component
  • -Polyester polyol (A5) having an isocyanuric ring, Etc.
  • each component will be described.
  • polyester polyol (A1) obtained by reacting carboxylic acid anhydride or polycarboxylic acid with polyester polyol having 3 or more hydroxyl groups The polyester polyol (A1) used in the present invention has at least one carboxy group and two obtained by reacting a polyester polyol (I) having three or more hydroxyl groups with a carboxylic acid anhydride or a polyvalent carboxylic acid. It has the above hydroxyl groups.
  • the polyester polyol (I) having three or more hydroxyl groups can be obtained by making a part of the polyvalent carboxylic acid or polyhydric alcohol trivalent or higher.
  • polyhydric alcohol component and polyhydric alcohol component of the polyester polyol (A1) preferably a polycarboxylic acid component containing at least one or more of orthophthalic acid and its anhydride, ethylene glycol, propylene glycol, butylene glycol, neopentyl Reacting a carboxylic acid anhydride or a polyvalent carboxylic acid with a polyester polyol (I) having three or more hydroxyl groups composed of a polyhydric alcohol component containing at least one selected from the group consisting of glycol and cyclohexanedimethanol And having at least one carboxy group and two or more hydroxyl groups.
  • a polycarboxylic acid component containing at least one or more of orthophthalic acid and its anhydride ethylene glycol, propylene glycol, butylene glycol, neopentyl Reacting a carboxylic acid anhydride or a polyvalent carboxylic acid with a polyester polyol (I) having three or more hydroxyl groups
  • Orthophthalic acid and its anhydride have an asymmetric structure in the skeleton. Therefore, it is presumed that the rotation of the molecular chain of the resulting polyester is suppressed, and thus it is presumed that the water vapor barrier property is excellent. Further, it is presumed that due to this asymmetric structure, it exhibits non-crystallinity, imparts sufficient substrate adhesion, and is excellent in adhesion and water vapor barrier properties. Furthermore, when used as a dry laminate adhesive, the solvent solubility, which is essential, is also high, so that it has excellent handling characteristics.
  • polyvalent carboxylic acid and other components When synthesizing a polyester polyol (I) having three or more hydroxyl groups, when a branched structure is introduced by a polyvalent carboxylic acid component, it is necessary to have at least a part of a trivalent or higher carboxylic acid. Examples of these compounds include trimellitic acid and its acid anhydride, pyromellitic acid and its acid anhydride, etc. In order to prevent gelation during synthesis, trivalent or higher polyvalent carboxylic acids include three. Divalent carboxylic acids are preferred.
  • the polyester polyol (I) of the present invention contains the above-mentioned various aliphatic polyvalent carboxylic acids, cyclic polyvalent carboxylic acids, aromatic polyvalent carboxylic acids and the like as long as the effects of the present invention are not impaired. Can be used. Of these, succinic acid, 1,3-cyclopentanedicarboxylic acid, orthophthalic acid, an acid anhydride of orthophthalic acid, and isophthalic acid are preferable, and orthophthalic acid and its acid anhydride are more preferable for imparting a barrier function.
  • the polyhydric alcohol used in the present invention preferably contains at least one selected from the group consisting of ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, and cyclohexanedimethanol.
  • ethylene glycol is most preferably used because it is presumed that the smaller the number of carbon atoms between oxygen atoms, the less the molecular chain becomes excessively flexible and the less oxygen permeates.
  • polyhydric alcohol and other ingredients When synthesizing a polyester polyol (I) having three or more hydroxyl groups, when a branched structure is introduced by a polyhydric alcohol component, it is necessary to have at least part of a trihydric or higher polyhydric alcohol.
  • these compounds include glycerin, trimethylolpropane, trimethylolethane, tris (2-hydroxyethyl) isocyanurate, 1,2,4-butanetriol, pentaerythritol, and dipentaerythritol.
  • trihydric alcohol is preferable as the trihydric or higher polyhydric alcohol.
  • polyvalent carboxylic acid components described above may be copolymerized as polyhydric alcohol components as long as the effects of the present invention are not impaired.
  • the polyester polyol (I) can be obtained by reacting the polyester polyol (I) with a polyvalent carboxylic acid or an acid anhydride thereof with a hydroxyl group of the polyester polyol (I).
  • the ratio between the polyester polyol (I) and the polyvalent carboxylic acid is that at least two hydroxyl groups of the resin (A) after the reaction are required, so the polyvalent carboxylic acid is 1/3 or less of the hydroxyl groups of the polyester polyol (I). It is preferable to make it react with.
  • carboxylic acid anhydride or polyhydric carboxylic acid used here when gelatinization at the time of reaction with polyhydric carboxylic acid and polyester polyol (I) is considered, it is a bivalent or trivalent carboxylic acid anhydride. Is preferably used.
  • Divalent carboxylic acid anhydrides include succinic anhydride, maleic anhydride, 1,2-cyclohexanedicarboxylic anhydride, 4-cyclohexene-1,2-dicarboxylic anhydride, 5-norbornene-2,3-dicarboxylic acid Anhydride, phthalic anhydride, 2,3-naphthalenedicarboxylic acid anhydride, and the like can be used, and trimellitic acid anhydride can be used as the trivalent carboxylic acid anhydride.
  • the polyester polyol (A1) has a hydroxyl value of 20 to 250 and an acid value of 20 to 200.
  • the hydroxyl value can be measured by the hydroxyl value measuring method described in JIS-K0070, and the acid value can be measured by the acid value measuring method described in JIS-K0070.
  • the hydroxyl value is smaller than 20 mgKOH / g, the molecular weight is too large, the viscosity becomes high, and good coating suitability cannot be obtained.
  • the hydroxyl value exceeds 250 mgKOH / g, the molecular weight becomes too small, so that the crosslinking density of the cured coating film becomes too high, and good adhesive strength cannot be obtained.
  • polyester polyol having polymerizable carbon-carbon double bond (A2) examples include those having a polymerizable carbon-carbon double bond in the molecule.
  • the polyester polyol (A2) used in the present invention is obtained by reacting a polyvalent carboxylic acid and a polyhydric alcohol, and has a polymerizable carbon-carbon double bond as a component of the polyvalent carboxylic acid and polyhydric alcohol. Can be used to introduce a polysynthetic carbon-carbon double bond into the molecule of the polyester polyol (A2).
  • the polyester polyol (A2) of the present invention is a polyvalent carboxylic acid component other than the polyvalent carboxylic acid having a polymerizable carbon-carbon double bond.
  • An aromatic polycarboxylic acid or the like can be used.
  • succinic acid, 1,3-cyclopentanedicarboxylic acid, orthophthalic acid, an acid anhydride of orthophthalic acid, and isophthalic acid are preferable, and orthophthalic acid and its acid anhydride are more preferable for imparting a barrier function.
  • polyhydric alcohol with polymerizable carbon-carbon double bond examples include 2-butene-1,4-diol.
  • the polyhydric alcohol used in the present invention may use a polyhydric alcohol component other than the polyhydric alcohol having a polymerizable carbon-carbon double bond.
  • a polyhydric alcohol component other than the polyhydric alcohol having a polymerizable carbon-carbon double bond Specifically, the above-mentioned aliphatic polyhydric alcohols, aromatic polyhydric phenols, and the like can be used.
  • the smaller the number of carbon atoms between oxygen atoms the less likely the molecular chain to become excessively flexible and less oxygen permeation. Therefore, ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, and cyclohexane Methanol is preferable, and ethylene glucol is more preferable.
  • a polymerizable double bond is introduced into the polyester polyol (A2) by using a polyvalent carboxylic acid having a polymerizable carbon-carbon double bond and a polyhydric alcohol. It may be a reaction between a polyester polyol having a carboxylic acid having a polymerizable double bond, or a carboxylic acid anhydride.
  • a carboxylic acid having a polymerizable double bond such as maleic acid, maleic anhydride or fumaric acid, an unsaturated fatty acid such as oleic acid or sorbic acid, or the like can be used.
  • the polyester polyol in this case is preferably a polyester polyol having two or more hydroxyl groups, but it is more preferable to have three or more hydroxyl groups in consideration of molecular elongation by crosslinking with an isocyanate compound.
  • the polyester polyol has 1 or 2 hydroxyl groups
  • the polyester polyol (A2) obtained by reacting with a carboxylic acid having a polysynthetic double bond has 0 or 1 hydroxyl group and reacts with the isocyanate compound (B). It becomes difficult to cause molecular elongation due to, and it becomes difficult to obtain properties such as laminate strength, seal strength, and heat resistance as an adhesive.
  • the polyester polyol (A2) has a hydroxyl value of 20 to 250 mgKOH / g and an acid value of 0 to 100 mgKOH / g.
  • the hydroxyl value can be measured by the hydroxyl value measuring method described in JIS-K0070, and the acid value can be measured by the acid value measuring method described in JIS-K0070.
  • the hydroxyl value is smaller than 20 mgKOH / g, the molecular weight is too large, the viscosity becomes high, and good coating suitability cannot be obtained.
  • the hydroxyl value exceeds 250 mgKOH / g the molecular weight becomes too small, so that the crosslinking density of the cured coating film becomes too high, and good adhesive strength cannot be obtained.
  • the monomer component having a polymerizable carbon-carbon double bond is 5 to 60 parts by mass with respect to 100 parts by mass of all monomer components constituting the polyester polyol (A2).
  • the amount of monomer components having a polymerizable carbon-carbon double bond (double bond component ratio) in the polyester polyol (A2) is calculated using the formula (b).
  • the monomer refers to the polyvalent carboxylic acid and polyhydric alcohol.
  • polyester polyol (A2) of the present invention examples include a drying oil or a semi-drying oil.
  • the drying oil or semi-drying oil include known and commonly used drying oils having a carbon-carbon double bond, and semi-drying oils.
  • polyester polyol having glycerol skeleton (A3) examples of the polyester polyol (A3) of the present invention further include a polyester polyol having a glycerol skeleton represented by the general formula (3).
  • R 1 to R 3 are each independently a hydrogen atom or the general formula (4)
  • n represents an integer of 1 to 5
  • X represents an optionally substituted 1,2-phenylene group, 1,2-naphthylene group, 2,3-naphthylene group
  • 2 represents an arylene group selected from the group consisting of 1,3-anthraquinonediyl group and 2,3-anthracenediyl group
  • Y represents an alkylene group having 2 to 6 carbon atoms.
  • R 1 to R 3 represents a group represented by the general formula (2).
  • R 1 , R 2 and R 3 needs to be a group represented by the general formula (4).
  • R 1 , R 2 and R 3 it is preferable that all of R 1 , R 2 and R 3 are groups represented by the general formula (4).
  • R 1, R 2, and the compound any one of R 3 is a group represented by the general formula (4), R 1, R 2 and any two of the general formula R 3 (4) Any two or more compounds of the compound represented by the formula and the compound in which all of R 1 , R 2 and R 3 are groups represented by the general formula (4) are mixed. Also good.
  • X is selected from the group consisting of 1,2-phenylene group, 1,2-naphthylene group, 2,3-naphthylene group, 2,3-anthraquinonediyl group, and 2,3-anthracenediyl group,
  • the arylene group which may have is represented.
  • X When X is substituted with a substituent, it may be substituted with one or more substituents, which are attached to any carbon atom on X that is different from the free radical.
  • substituents examples include chloro group, bromo group, methyl group, ethyl group, i-propyl group, hydroxyl group, methoxy group, ethoxy group, phenoxy group, methylthio group, phenylthio group, cyano group, nitro group, amino group, Examples thereof include a phthalimide group, a carboxyl group, a carbamoyl group, an N-ethylcarbamoyl group, a phenyl group, and a naphthyl group.
  • Y represents an ethylene group, a propylene group, a butylene group, a neopentylene group, a 1,5-pentylene group, a 3-methyl-1,5-pentylene group, a 1,6-hexylene group, a methylpentyl group.
  • Y is preferably a propylene group or an ethylene group, and most preferably an ethylene group.
  • the polyester resin compound having a glycerol skeleton represented by the general formula (3) is essential for glycerol, an aromatic polyvalent carboxylic acid in which the carboxylic acid is substituted in the ortho position, or an anhydride thereof, and a polyhydric alcohol component. Obtained by reacting as a component.
  • the aromatic polyvalent carboxylic acid in which the carboxylic acid is substituted in the ortho position or its anhydride includes orthophthalic acid or its anhydride, naphthalene 2,3-dicarboxylic acid or its anhydride, naphthalene 1,2-dicarboxylic acid or its An anhydride, anthraquinone 2,3-dicarboxylic acid or its anhydride, 2,3-anthracene carboxylic acid or its anhydride, etc. are mentioned. These compounds may have a substituent on any carbon atom of the aromatic ring.
  • substituents examples include chloro group, bromo group, methyl group, ethyl group, i-propyl group, hydroxyl group, methoxy group, ethoxy group, phenoxy group, methylthio group, phenylthio group, cyano group, nitro group, amino group, Examples thereof include a phthalimide group, a carboxyl group, a carbamoyl group, an N-ethylcarbamoyl group, a phenyl group, and a naphthyl group.
  • examples of the polyhydric alcohol component include alkylene diols having 2 to 6 carbon atoms.
  • diols such as ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, methylpentanediol, dimethylbutanediol, etc. Can be illustrated.
  • P represents a polyester polyol (A3) having a glycerol skeleton.
  • the present invention is characterized by having a glycerol residue of 5% by mass or more in the organic resin composition for water vapor barrier adhesive in order to exhibit high barrier properties.
  • the mass excluding the mass of the diluent solvent, the mass of the volatile component contained in the curing agent, and the inorganic component from the mass part of the resin composition for the water vapor barrier adhesive is the mass of the total solid content of the organic resin for the water vapor barrier adhesive.
  • the aromatic polyvalent carboxylic acid in which the acyl group, which is a raw material of the polyester component, is substituted in the ortho position, or its anhydride has an asymmetric structure. Therefore, it is presumed that the rotation of the molecular chain of the resulting polyester is suppressed, and thus it is presumed that the water vapor barrier property is excellent. In addition, it is presumed that due to this asymmetric structure, the crystallinity that inhibits the adhesion to the base material is low, so that it exhibits high solubility in solvents such as ethyl acetate and methyl ethyl ketone and is excellent in water vapor barrier properties.
  • polyhydric alcohol In the polyester polyol (A3) used in the present invention, a polyhydric alcohol component other than the alkylene diol having 2 to 6 carbon atoms may be copolymerized as a polyhydric alcohol as long as the effects of the present invention are not impaired. Examples thereof include various aliphatic polyhydric alcohols, alicyclic polyhydric alcohols, aromatic polyhydric phenols, and the like.
  • the polyester polyol (A3) of the present invention essentially comprises an aromatic polyvalent carboxylic acid in which the carboxylic acid is substituted in the ortho position or an anhydride thereof as the polyvalent carboxylic acid component, but in a range not impairing the effects of the present invention.
  • Other polyvalent carboxylic acid components may be copolymerized.
  • the above-mentioned aliphatic polyvalent carboxylic acid, unsaturated bond-containing polyvalent carboxylic acid, aromatic polyvalent carboxylic acid and the like can be used alone or in a mixture of two or more.
  • polyester polyol (A4) obtained by polycondensation of ortho-oriented polyvalent carboxylic acid component and polyhydric alcohol component comprises a polyvalent carboxylic acid component containing at least one orthophthalic acid and its anhydride, ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, and cyclohexanedimethanol. It consists of a polyhydric alcohol component containing at least one selected from the group.
  • a polyester polyol in which the usage rate of the orthophthalic acid and its anhydride with respect to all the components of the polyvalent carboxylic acid is 70 to 100% by mass is preferable.
  • the polyester polyol (A4) of the present invention essentially comprises the above-mentioned orthophthalic acid and its anhydride as a polyvalent carboxylic acid component.
  • other polyvalent carboxylic acid components may be copolymerized within a range that does not impair the effects of the present invention. May be.
  • the above-mentioned aliphatic polyvalent carboxylic acid and alicyclic polyvalent carboxylic acid can be used alone or in a mixture of two or more. Of these, succinic acid, 1,3-cyclopentanedicarboxylic acid, and isophthalic acid are preferable.
  • polyhydric alcohol and other ingredients As the polyhydric alcohol component and other components, those other than the ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, and cyclohexanedimethanol can be added within a range that does not interfere with the effects of the invention. Examples thereof include various aliphatic polyhydric alcohols, alicyclic polyhydric alcohols, aromatic polyhydric phenols, and the like.
  • the resin (A) used in the present invention more preferably includes a polyester polyol (A5) having an isocyanuric ring represented by the following general formula (5).
  • R 1 to R 3 are each independently — (CH 2 ) n1-OH (where n1 represents an integer of 2 to 4), or General Formula (6)
  • n2 represents an integer of 2 to 4
  • n3 represents an integer of 1 to 5
  • X represents a 1,2-phenylene group, a 1,2-naphthylene group, or a 2,3-naphthylene group.
  • 2,3-anthraquinonediyl group, and 2,3-anthracenediyl group an arylene group which may have a substituent
  • Y represents an alkylene group having 2 to 6 carbon atoms To express.
  • the alkylene group represented by — (CH 2 ) n1- may be linear or branched.
  • n1 is preferably 2 or 3, and most preferably 2.
  • n2 represents an integer of 2 to 4
  • n3 represents an integer of 1 to 5.
  • X is selected from the group consisting of 1,2-phenylene group, 1,2-naphthylene group, 2,3-naphthylene group, 2,3-anthraquinonediyl group, and 2,3-anthracenediyl group, and has a substituent. Represents an arylene group which may be substituted.
  • X When X is substituted with a substituent, it may be substituted with one or more substituents, and the substituents are bonded to any carbon atom on X different from the free radical.
  • substituents include chloro group, bromo group, methyl group, ethyl group, i-propyl group, hydroxyl group, methoxy group, ethoxy group, phenoxy group, methylthio group, phenylthio group, cyano group, nitro group, amino group, Examples thereof include a phthalimide group, a carboxyl group, a carbamoyl group, an N-ethylcarbamoyl group, a phenyl group, and a naphthyl group.
  • the substituent of X is preferably a hydroxyl group, a cyano group, a nitro group, an amino group, a phthalimide group, a carbamoyl group, an N-ethylcarbamoyl group, or a phenyl group, preferably a hydroxyl group, a phenoxy group, a cyano group, a nitro group, or a phthalimide group.
  • a phenyl group is most preferred.
  • Y represents an ethylene group, propylene group, butylene group, neopentylene group, 1,5-pentylene group, 3-methyl-1,5-pentylene group, 1,6-hexylene group, methylpentylene.
  • Y is preferably a propylene group or an ethylene group, and most preferably an ethylene group.
  • R 1 , R 2 and R 3 are a group represented by the general formula (6). Among them, it is preferable that all of R 1 , R 2 and R 3 are groups represented by the general formula (6).
  • R 1, any one of R 2 and R 3 is a group represented by the general formula (6) compound, R 1, R 2, and any two of the general formula R 3 (6) Any two or more compounds of the compound represented by the general formula (6) and the compound in which all of R 1 , R 2 and R 3 are groups represented by the general formula (6) are mixed. Also good.
  • the polyester polyol (A5) having an isocyanuric ring represented by the general formula (5) includes a triol having an isocyanuric ring, an aromatic polyvalent carboxylic acid in which the carboxylic acid is substituted in the ortho position, or an anhydride thereof, It is obtained by reacting a monohydric alcohol component as an essential component.
  • triol having an isocyanuric ring examples include alkylene oxide adducts of isocyanuric acid such as 1,3,5-tris (2-hydroxyethyl) isocyanuric acid and 1,3,5-tris (2-hydroxypropyl) isocyanuric acid. Etc.
  • aromatic polyvalent carboxylic acids in which the carboxylic acid is substituted in the ortho position or anhydrides thereof include orthophthalic acid or its anhydride, naphthalene 2,3-dicarboxylic acid or its anhydride, naphthalene 1,2-dicarboxylic acid Alternatively, an anhydride thereof, anthraquinone 2,3-dicarboxylic acid or an anhydride thereof, and 2,3-anthracene carboxylic acid or an anhydride thereof may be used. These compounds may have a substituent on any carbon atom of the aromatic ring.
  • substituents examples include chloro group, bromo group, methyl group, ethyl group, i-propyl group, hydroxyl group, methoxy group, ethoxy group, phenoxy group, methylthio group, phenylthio group, cyano group, nitro group, amino group, Examples thereof include a phthalimide group, a carboxyl group, a carbamoyl group, an N-ethylcarbamoyl group, a phenyl group, and a naphthyl group.
  • examples of the polyhydric alcohol component include alkylene diols having 2 to 6 carbon atoms.
  • diols such as ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, methylpentanediol, dimethylbutanediol, etc. Can be illustrated.
  • 1,3,5-tris (2-hydroxyethyl) isocyanuric acid or 1,3,5-tris (2-hydroxypropyl) isocyanuric acid is used as a triol compound having an isocyanuric ring, and the carboxylic acid is in the ortho position.
  • Polyester polyol compound having an isocyanuric ring using orthophthalic anhydride as the polyvalent aromatic polycarboxylic acid or anhydride and ethylene glycol as the polyhydric alcohol is particularly excellent in water vapor barrier properties and adhesiveness. preferable.
  • the isocyanuric ring is highly polar and trifunctional. Therefore, the entire system can be made highly polar and the crosslinking density can be increased. From such a viewpoint, it is preferable to contain 5 mass% or more of the isocyanuric ring with respect to the total solid content of the adhesive resin.
  • P represents a polyester polyol (A5) having an isocyanuric ring.
  • the mass excluding the amount of water vapor and inorganic components is the mass of the total solid content of the organic resin for water vapor barrier adhesive.
  • the resin (A) is a polyester terpolyol
  • it can be obtained by a known polyester production method. Specifically, it can be synthesized by a production method in which the reaction is carried out while removing produced water from the system at a reaction temperature of 200 to 220 ° C. in the presence of a catalyst.
  • an aromatic polycarboxylic acid in which the carboxylic acid is substituted in the ortho position, or an anhydride thereof, and a polyhydric alcohol component are collectively charged
  • the temperature is increased while stirring and mixing to cause a dehydration condensation reaction.
  • 1 mgKOH / g or less by the acid value measurement method described in JIS-K0070, and the hydroxyl value ZmgKOH / g obtained by the hydroxyl value measurement method described in JIS-K0070 is the value on the right side of the following formula (e) (mgKOH /
  • the target polyester polyol can be obtained by continuing the reaction until it falls within ⁇ 5% of g).
  • Mn represents a set number average molecular weight of a predetermined trifunctional polyester resin.
  • each raw material may be reacted in multiple stages. Moreover, you may prepare so that a hydroxyl value may enter into less than +/- 5%, adding the diol component which volatilized at reaction temperature.
  • Catalysts used in the reaction include acids such as tin-based catalysts such as monobutyltin oxide and dibutyltin oxide, titanium-based catalysts such as tetra-isopropyl-titanate and tetra-butyl-titanate, and zirconia-based catalysts such as tetra-butyl-zirconate.
  • acids such as tin-based catalysts such as monobutyltin oxide and dibutyltin oxide
  • titanium-based catalysts such as tetra-isopropyl-titanate and tetra-butyl-titanate
  • zirconia-based catalysts such as tetra-butyl-zirconate.
  • a catalyst is mentioned. It is preferable to use a combination of the titanium-based catalyst such as tetra-isopropyl-titanate or tetra-butyl-titanate, which has high activity for este
  • the amount of the catalyst is 1 to 1000 ppm, more preferably 10 to 100 ppm, based on the total mass of the reaction raw material used. If it is less than 1 ppm, it is difficult to obtain an effect as a catalyst, and if it exceeds 1000 ppm, the subsequent urethanization reaction tends to be inhibited.
  • These resins (A) having a number average molecular weight of 450 to 5,000 are particularly preferable because a crosslinking density with an excellent balance between adhesive ability and water vapor barrier ability can be obtained. More preferably, the number average molecular weight is 500 to 3,000.
  • the polyisocyanate described below is most preferable, can give an appropriate reaction time, and is particularly excellent in adhesive strength and water vapor barrier ability.
  • the molecular weight is less than 450, the cohesive force of the adhesive at the time of coating becomes too small, causing the problem that the film shifts during lamination or the bonded film rises.
  • the number average molecular weight was obtained by calculation from the obtained hydroxyl value and the number of functional groups of the designed hydroxyl group.
  • the resin (A) used in the present invention preferably has a glass transition temperature in the range of ⁇ 30 ° C. to 80 ° C. More preferably, it is 0 ° C to 60 ° C. More preferably, it is 25 ° C to 60 ° C.
  • the glass transition temperature is too higher than 80 ° C.
  • the flexibility of the polyester polyol near room temperature is lowered, and thus the adhesiveness to the substrate may be deteriorated due to poor adhesion to the substrate.
  • the temperature is lower than ⁇ 30 ° C., there is a risk that sufficient water vapor barrier properties may not be obtained due to the intense molecular motion of the polyester polyol near normal temperature.
  • a polyester polyurethane polyol or a polyether polyurethane polyol having a number average molecular weight of 1000 to 15000 by urethane extension by reaction of the resin (A) with a diisocyanate compound may be used as an adhesive. Since the polyol has a certain molecular weight component and a urethane bond above a certain level, it has excellent water vapor barrier properties, excellent initial cohesive force, and is further excellent as an adhesive used during lamination. Moreover, the terminal can be made an isocyanate group by making the ratio of the hydroxyl group and the isocyanate group in the resin (A) and the diisocyanate compound excessive in isocyanate, and this may be used as a curing agent.
  • Curing agent used in the present invention is not particularly limited as long as it is a curing agent capable of reacting with the hydroxyl group of the resin (A),
  • Known curing agents such as diisocyanate compounds, polyisocyanate compounds and epoxy compounds can be used.
  • a polyisocyanate compound from a viewpoint of adhesiveness or retort resistance.
  • Polyisocyanate compounds include aromatic and aliphatic diisocyanates and trivalent or higher polyisocyanate compounds, which may be either low molecular compounds or high molecular compounds.
  • the isocyanate compound may be a blocked isocyanate.
  • the isocyanate blocking agent for example, phenols such as phenol, thiophenol, methylthiophenol, ethylthiophenol, cresol, xylenol, resorcinol, nitrophenol, chlorophenol, acetoxime, methyl ethyl ketoxime, cyclohexanone oxime oximes, methanol, Alcohols such as ethanol, propanol and butanol; halogen-substituted alcohols such as ethylene chlorohydrin and 1,3-dichloro-2-propanol; tertiary alcohols such as t-butanol and t-pentanol; Examples include lactams such as caprolactam, ⁇ -valerolactam, ⁇ -butyrolactam, ⁇ -propylolactam, and other aromatic amines, imides, acetylacetate.
  • the blocked isocyanate can be obtained by subjecting the above isocyanate compound and the isocyanate blocking agent to an addition reaction by a known and appropriate method.
  • xylylene diisocyanate hydrogenated xylylene diisocyanate, toluene diisocyanate, and diphenylmethane diisocyanate are preferred, and metaxylylene diisocyanate and metahydrogenated xylylene diisocyanate are most preferred in order to obtain good water vapor barrier properties.
  • the glass transition temperature of the cured coating film of the resin (A) and isocyanate compound (B) used in the present invention is preferably in the range of ⁇ 30 ° C. to 80 ° C. More preferably, it is 0 ° C to 70 ° C. More preferably, it is 25 ° C to 70 ° C.
  • the glass transition temperature is higher than 80 ° C., the flexibility of the cured coating film near room temperature becomes low, and thus the adhesiveness to the substrate may be deteriorated due to poor adhesion to the substrate.
  • Examples of the polyisocyanate compound containing the meta-xylene skeleton include a trimer of xylylene diisocyanate, a burette synthesized by reaction with an amine, and an adduct obtained by reacting with an alcohol.
  • the adduct body is more preferable because the solubility of the polyisocyanate compound in the organic solvent used for the dry laminate adhesive is easily obtained as compared with the body.
  • an adduct obtained by reacting with an alcohol appropriately selected from the above low molecular active hydrogen compounds can be used. Among them, addition of ethylene oxide of trimethylolpropane, glycerol, triethanolamine, metaxylenediamine, etc. Adduct bodies with objects are particularly preferred.
  • the ratio of the resin (A) and the curing agent is such that the hydroxyl group of the resin (A) and the reaction component of the curing agent are 1 / 0.5 to 1/10 (equivalent ratio). It is preferably blended so that the ratio is 1/1 to 1/5. If the curing agent component is excessive beyond this range, the excess curing agent component may be left out and bleed out from the adhesive layer after bonding. On the other hand, if the curing agent component is insufficient, the adhesive strength is insufficient. There is a fear.
  • a known polymerization catalyst can be used as a catalyst for promoting polymerization of a polymerizable carbon-double bond.
  • the polymerization catalyst include transition metal complexes. Although a transition metal complex will not be specifically limited if it is a compound provided with the capability to oxidatively polymerize a polymerizable double bond, A various metal or its complex can be used.
  • metals such as cobalt, manganese, lead, calcium, cerium, zirconium, zinc, iron, copper, octyl acid, naphthenic acid, neodecanoic acid, stearic acid, resin acid, tall oil fatty acid, tung oil fatty acid, linseed oil fatty acid, A salt with soybean oil fatty acid or the like can be used.
  • the transition metal complex is preferably 0 to 10 parts by mass, more preferably 0 to 3 parts by mass with respect to the resin (A).
  • the above-mentioned curing agent can be used in combination with a known curing agent or accelerator selected according to the type.
  • the adhesion promoter include silane coupling agents such as hydrolyzable alkoxysilane compounds, titanate coupling agents, aluminum coupling agents, and epoxy resins. Silane coupling agents and titanate coupling agents are also preferred in terms of improving the adhesive to various film materials.
  • the polyester resin composition used in the present invention may contain various additives as long as the water vapor barrier property is not impaired.
  • additives include inorganic fillers such as silica and alumina, stabilizers (antioxidants, heat stabilizers, ultraviolet absorbers, etc.), plasticizers, antistatic agents, lubricants, antiblocking agents, colorants, plates
  • acid anhydrides such as phthalic anhydride and succinic anhydride can be exemplified.
  • a water vapor barrier effect may be promoted by adding a compound having a gas trapping function.
  • the compound having a water vapor capturing function include inorganic compounds such as silica gels, calcium silicate, zeolite, calcium carbonate, activated carbon and the like.
  • a tackifier such as a xylene resin, a terpene resin, a phenol resin, or a rosin resin may be added as necessary.
  • a tackifier such as a xylene resin, a terpene resin, a phenol resin, or a rosin resin may be added as necessary.
  • the range of 0.01 to 5 parts by mass is preferable with respect to 100 parts by mass of the total amount of the epoxy resin and the epoxy resin curing agent.
  • the modified plate-like inorganic compound of the present invention is obtained by mixing the phosphonic acid derivative represented by the general formulas (1) and (2) or the phosphoric acid derivative and the plate-like inorganic compound in a solvent. Can be obtained by performing surface modification and performing operations such as filtration, washing, and drying. In addition, as a method for easily preparing a resin composition containing the modified plate-like compound, it is possible to perform a continuous operation without isolating the modified plate-like inorganic compound. May be preferable.
  • An example of such a production process is as follows: (1) a step of dissolving a phosphonic acid derivative or a phosphoric acid derivative in a solvent; and (2) a phosphonic acid derivative or a phosphoric acid derivative obtained in (1).
  • step (1) which is a step of dissolving phosphonic acid in a solvent
  • the solvent is put in a predetermined container, and then a predetermined amount of phosphonic acid derivative or phosphoric acid derivative is added and stirred by a known and usual method.
  • Dissolve The dissolution operation may be carried out at room temperature, or if the solvent is difficult to dissolve in phosphonic acid, it may be heated depending on the thermal properties of the solvent.
  • reaction process of plate-like inorganic compound with phosphonic acid derivative or phosphoric acid derivative (2) Regarding the reaction step (2) between the plate-like inorganic compound and the phosphonic acid derivative or phosphoric acid derivative, the plate-like inorganic compound is added to and dispersed in the solution produced in (1), while the phosphonic acid derivative in the solvent is dispersed.
  • a modified plate-like inorganic compound is produced by reacting a phosphoric acid derivative with a plate-like inorganic compound. In general, the modification reaction between the phosphonic acid moiety and the plate-like inorganic compound is rapid.
  • the modification reaction is completed by dispersing the plate-like inorganic compound for a certain period of time by a known and conventional method.
  • the modification reaction often proceeds even with a contact time of about 10 minutes.
  • a resin (A) having two or more hydroxyl groups in one molecule as a functional group, and an isocyanate group in one molecule as a functional group Is a step of adding an isocyanate compound (B) having two or more.
  • the order of adding the resin (A) and the isocyanate compound (B) to the dispersion obtained in (2) may be either, but usually the resin (A) is added to the dispersion obtained in (2).
  • a dispersion in which a plate-like inorganic compound modified with a phosphonic acid derivative or a phosphoric acid derivative is dispersed in the resin resin (A) is produced. And it is preferable from a viewpoint of storage stability to add an isocyanate compound (B) as a hardening
  • Method for dispersing modified plate-like inorganic compound in step (3) As a method for dispersing the resin (A) and isocyanate compound (B) and the modified plate-like inorganic compound in the present invention, a known dispersion method can be used. Examples thereof include a dissolver, an ultrasonic homogenizer, a high-pressure homogenizer, a paint conditioner, a ball mill, a roll mill, a sand mill, a sand grinder, a dyno mill, a disperse mat, a nano mill, an SC mill, and a nanomizer.
  • a dissolver an ultrasonic homogenizer, a high-pressure homogenizer, a paint conditioner, a ball mill, a roll mill, a sand mill, a sand grinder, a dyno mill, a disperse mat, a nano mill, an SC mill, and a nanomizer.
  • examples of equipment that can generate a high shearing force include a Henschel mixer, a pressure kneader, a Banbury mixer, a planetary mixer, a two-roll, and a three-roll. One of these may be used alone, or two or more devices may be used in combination.
  • the resin composition in which the modified plate-like inorganic compound is contained in the adhesive, the step of modifying the alkyl phosphonate derivative into the plate-like inorganic compound, and the resulting modified plate-like inorganic compound into the resin The dispersion step can be performed in one pot. Thereby, the process for obtaining the modified plate-like inorganic compound obtained by modifying the plate-like inorganic compound in advance as a dry powder becomes unnecessary, and generally the filtration washing step and the drying step necessary for obtaining the modified plate-like inorganic compound are performed. Since it becomes unnecessary, it becomes possible to manufacture the resin composition in a process-saving manner.
  • the method of using the water vapor barrier resin composition produced in the present invention is generally based on coating various resin films on a substrate.
  • the film for lamination used as the substrate is not particularly limited, and a thermoplastic resin film can be appropriately selected according to a desired application.
  • a thermoplastic resin film can be appropriately selected according to a desired application.
  • PET film polystyrene film, polyamide film, polyacrylonitrile film
  • polyethylene film LLDPE: linear low density polyethylene film
  • HDPE high density polyethylene film
  • polypropylene film CPP: unstretched polypropylene film
  • Polyolefin film such as OPP (biaxially oriented polypropylene film), polyvinyl alcohol film, ethylene-vinyl alcohol copolymer film, and the like. These may be subjected to stretching treatment.
  • the stretching treatment method it is common to perform simultaneous biaxial stretching or sequential biaxial stretching after the resin is melt-extruded by extrusion film forming method or the like to form a sheet. Further, in the case of sequential biaxial stretching, it is common to first perform longitudinal stretching and then perform lateral stretching. Specifically, a method of combining longitudinal stretching using a speed difference between rolls and transverse stretching using a tenter is often used. In addition to these resin films, a sheet-like material such as paper or cloth may be used as the substrate.
  • the surface of the film may be subjected to various surface treatments such as flame treatment and corona discharge treatment as necessary so that an adhesive layer free from defects such as film breakage and repellency is formed.
  • the resin composition produced in the present invention is a film in which a metal oxide such as aluminum or a metal oxide deposition layer such as silica or alumina is laminated, aluminum foil, etc.
  • the metal foil may be used in combination.
  • the resin composition for water vapor barrier adhesives produced according to the present invention can be used as an adhesive for laminating used for bonding two films and sheets. Since the resin composition produced in the present invention is produced in a form containing a solvent, it is suitable to be used as an adhesive used in the dry lamination method. Specifically, in the dry lamination method, the resin composition is applied to one of the substrate films by the gravure roll method, and then the other substrate film is stacked and bonded by dry lamination (dry lamination method).
  • the temperature of the laminate roll is preferably about room temperature to 60 ° C.
  • An aging treatment is preferably performed after the lamination treatment, and the treatment conditions are room temperature to 80 ° C.
  • the resin composition for water vapor barrier adhesive produced according to the present invention can be used as a water vapor barrier adhesive as described above, it can be used as a laminate for water vapor barrier.
  • a stretched film such as a PET film, an OPP film, etc. as an outermost layer, and an unstretched film such as LLDPE, CPP, etc. as an innermost layer, an adhesive that bonds the films, What is necessary is just to use the resin composition manufactured by this invention.
  • the film used for the laminate is not limited to two layers, and the resin composition of the present invention is used for adhesive application of at least any two layers in a laminate of three layers in which another film is contained as an intermediate layer.
  • water vapor such as vapor deposition film, transparent vapor deposition film, PVDC coating layer, polyvinyl alcohol (PVA) coating layer, ethylene-vinyl alcohol copolymer (EVOH) film layer, metaxylylene adipamide film layer on part of the film It is good also as a laminated body which further improved the barrier function using the barrier film.
  • Method of using resin composition for water vapor barrier adhesive (coating agent for water vapor barrier)) Use as a solvent-based coating material by properly selecting the resin structure, molecular weight, and type of curing agent in the resin composition obtained in the present invention so that it does not have adhesiveness after coating and drying. You can also.
  • a resin having a high molecular weight and a high glass transition point as compared with the resin used for the adhesive may be used, and a plate-like inorganic compound as an antiblocking agent may be added as an additive.
  • water vapor barrier adhesive resin composition water vapor barrier film
  • the resin composition produced according to the present invention When the resin composition produced according to the present invention is applied to various films as a water vapor barrier coating agent as described above, it can be used as a film for a water vapor barrier adhesive.
  • the film used as the substrate to be coated may be a stretched film or an unstretched film, but it is preferable to use a stretched film from the viewpoint of ease of coating operation.
  • various barrier films may be used in combination as in the case of the water vapor barrier laminate.
  • fragrance components composed of low molecular compounds such as soy sauce, sauce, miso, menthol, methyl salicylate, coffee, cocoa shampoo, rinse, and the like can be exemplified.
  • Example 1 A solution of 1.18 parts by mass of octadecylphosphonic acid (referred to as ODPA manufactured by Tokyo Chemical Industry Co., Ltd.) and 622 parts by mass of tetrahydrofuran was prepared, and muscovite (Y1800, manufactured by Yamaguchi Mica Co., Ltd .: average major axis: 10 ⁇ m) was added to the solution. Was added at 100 parts by mass and stirred at room temperature for 5 hours. Thereafter, the suspension was filtered, washed and dried to obtain ODPA-Y1800.
  • ODPA octadecylphosphonic acid
  • muscovite Y1800, manufactured by Yamaguchi Mica Co., Ltd .: average major axis: 10 ⁇ m
  • Example 2 ODPA-SJ005 was obtained in the same manner as in Production Example 1 except that the muscovite was changed to SJ005 (manufactured by Yamaguchi Mica Co., Ltd .: average major axis: 5 ⁇ m) and the charge was changed to 10 parts by mass.
  • Example 3 ODPA-SJ005 was obtained in the same manner as in Production Example 1 except that the muscovite was changed to SYA21RS (manufactured by Yamaguchi Mica Co., Ltd .: average major axis: 27 ⁇ m) and the charge was changed to 10 parts by mass.
  • SYA21RS manufactured by Yamaguchi Mica Co., Ltd .: average major axis: 27 ⁇ m
  • Example 4 ODPA-HM6025 was obtained in the same manner as in Production Example 1 except that the muscovite was changed to HM6025 (manufactured by Heng Hao: average major axis: 10 ⁇ m) and the charge was changed to 10 parts by mass.
  • Example 5 A solution of 0.70 parts by mass of octylphosphonic acid (referred to as OPA manufactured by Aldrich) and 622 parts by mass of tetrahydrofuran was prepared, and 10 parts by mass of muscovite (Y1800 manufactured by Yamaguchi Mica Co., Ltd .: average major axis: 10 ⁇ m) was added to the solution. In addition, the mixture was stirred at room temperature for 5 hours. Thereafter, the suspension was filtered, washed and dried to obtain OPA-Y1800.
  • OPA octylphosphonic acid
  • 622 parts by mass of tetrahydrofuran a solution of 0.70 parts by mass of octylphosphonic acid (referred to as OPA manufactured by Aldrich) and 622 parts by mass of tetrahydrofuran was prepared, and 10 parts by mass of muscovite (Y1800 manufactured by Yamaguchi Mica Co., Ltd .: average major axis: 10 ⁇ m) was added
  • Example 6 A solution of 0.88 parts by mass of dodecylphosphonic acid (referred to as DDPA manufactured by Wako Pure Chemical Industries, Ltd.) and 622 parts by mass of tetrahydrofuran was prepared, and muscovite (Y1800, manufactured by Yamaguchi Mica Co., Ltd.) was used. ) was added and stirred at room temperature for 5 hours. Thereafter, the suspension was filtered, washed and dried to obtain DDPA-Y1800.
  • DDPA dodecylphosphonic acid
  • Example 7 to (Example 15) were carried out in the same manner as in Example 1, except that the phosphonic acid derivative or phosphoric acid derivative and the plate-like inorganic substance were used in the ratios shown in Table 1.
  • Comparative Example 1 Y1800 that was not subjected to any treatment was designated as Comparative Example 1.
  • Comparative Example 2 Comparative Example 2 was prepared in the same manner as in the Example using HM6025 as the plate-like inorganic compound and AP-1 as the phosphonic acid or phosphoric acid derivative.
  • Example 1 (octadecylphosphonic acid modified product), Example 5 (octylphosphonic acid modified product), Example 6 (dodecylphosphonic acid modified product), and comparison using an automatic surface tension meter (K-12 manufactured by KRUSS)
  • K-12 manufactured by KRUSS
  • the contact angle and surface free energy of Example 1 (unmodified product) were measured.
  • the raw material plate-like inorganic substance to be measured was Y1800. The results are shown in Table 2.
  • AP-10 Isodecyl acid phosphate (Daihachi Chemical Industry Co., Ltd.) MP-10: Isodecyl acid phosphate (Daihachi Chemical Industry Co., Ltd.) Phoslex A-18: Stearyl Acid Phosphate (SC Organic Chemistry Co., Ltd.) JP-518-O: Oleyl acid phosphate (Johoku Chemical Industry Co., Ltd.) AP-4: Butyl acid phosphate (Daihachi Chemical Industry Co., Ltd.) JP-506-H: Butoxyethyl acid phosphate (Johoku Chemical Industry Co., Ltd.) EGAP: Ethylene glycol acid phosphate (Johoku Chemical Industry Co., Ltd.) AP-1: Methyl acid phosphate (Daihachi Chemical Industry Co., Ltd.)
  • Example 16 A coating solution was prepared by mixing 8.5 parts by mass of a petroleum resin (Escoretz ER5320 manufactured by ExxonMobil Corporation), 3.6 parts by mass of a plate-like inorganic compound prepared in Example 1, and 7.5 parts by mass of heptane. This was applied to a PET film having a thickness of 12 ⁇ m with a bar coater # 4 and dried at 80 ° C. for 30 seconds to produce a film of about 2 ⁇ m on PET, which was used as a moisture permeability measurement sample.
  • a petroleum resin Escoretz ER5320 manufactured by ExxonMobil Corporation
  • Example 17 Example 17 to (Example 33) Examples 17 to 33 were carried out in the same manner as in Example 16 except that the modified plate-like inorganic compound, resin, solvent phosphonic acid derivative, or phosphoric acid derivative prepared in the above Example was used in the ratio shown in Table 3. It was.
  • a coating solution was prepared by mixing 8.5 parts by mass of petroleum resin (Escolez ER5320 manufactured by ExxonMobil Co., Ltd.) and 7.5 parts by mass of heptane. This was applied to a PET film having a thickness of 12 ⁇ m with a bar coater # 4 and dried at 80 ° C. for 30 seconds to produce a film of about 2 ⁇ m on PET, which was used as a moisture permeability measurement sample.
  • Comparative Example 4 A coating solution was prepared by adding 3.6 parts by mass of Y1800 that was not subjected to surface modification as a plate-like inorganic compound, and a moisture permeability measurement sample was prepared in the same manner as in Comparative Example 3.
  • Resin a Escorez ER5320 (petroleum resin, manufactured by ExxonMobil)
  • Resin b PHENOLITE KA-1165 (phenol resin, manufactured by DIC Corporation)
  • Resin c CLEARON P115 (hydrogenated terpene resin, manufactured by Yasuhara Chemical Co., Ltd.)
  • Resin d VariPlus CA (ketone resin, manufactured by Eponic)
  • Resin e Urethane resin by the following adjustment method
  • MEK was added to obtain a MEK solution containing 50% by mass of resin e.
  • GPC polystyrene equivalent molecular weight
  • the resin composition containing the modified plate-like inorganic compound of the present invention has a water vapor barrier property, it can be used as a water vapor barrier adhesive, a water vapor barrier film, a water vapor barrier coating agent, and the like.

Abstract

 高い水蒸気バリア性及び接着性を有すると共に、透明性に優れた水蒸気バリア用材料の提供を可能とするホスホン酸誘導体、又はリン酸誘導体で表面処理することにより得られる修飾板状無機化合物、並びに該修飾板状無機化合物を含有する樹脂組成物を提供することを課題とする。 板状無機化合物を、炭素数4~30の鎖状アルキル基若しくはアルケニル基、水酸基、アルコキシ基、芳香族基を有しても良い炭素数1~30の鎖状アルキル基若しくはアルケニル基、芳香族基、及び水酸基、アルコキシ基、芳香族基を有しても良い炭素数4~30の環状アルキル基若しくはアルケニル基から選ばれる基で置換されたホスホン酸誘導体、又はリン酸誘導体で表面処理することにより、上記課題を解決する。

Description

修飾板状無機化合物、及びそれを含有する樹脂組成物
 本発明は、ホスホン酸誘導体、又はリン酸誘導体で表面処理することにより得られる修飾板状無機化合物、それを含有する樹脂組成物、該樹脂化合物を用いた水蒸気バリア性接着剤、及び水蒸気バリア用フィルム・コーティング剤・積層体に関する。
 食品包装材料は様々な流通や冷蔵、冷凍などの保存、加熱、加熱殺菌といった処理から内容物を保護する必要があり、このため強度、割れにくさ、耐冷、耐熱、耐レトルト性といった耐久性が求められる。そればかりでなく内容物が視認できるような透明性、品質保持のための酸素や水蒸気に対するバリア性が求められる。
 バリア性を有する材料として、ナイロン、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)などの基材フィルムにアルミニウム(Al)を蒸着したAl蒸着フィルム、シリカやアルミナを蒸着した透明蒸着フィルムが知られている。しかしながらAl蒸着フィルムは不透明であるために内容物を視認できないことや電子レンジ加熱ができないこと、透明蒸着フィルムは蒸着層の割れやピンホールによってバリア性が低下するといった問題がある。
 一方、樹脂に粘土などの無機フィラーを添加して複合材料とし、フィラーの有するバリア性を樹脂に付与することによってバリア性を向上させる試みも行われている。しかしながら粘土は吸湿性が高いために酸素バリア性には効果があるが、水蒸気バリア性については効果が小さい。これを改善したものとして粘土層間のNaをLiに置換し、更に熱処理することによってLiを粘土の層内部に閉じ込めることで耐水性を向上させたものが知られている(特許文献1)。
 しかしながら熱処理温度は最低でも150℃必要であり、食品包材に用いられる樹脂をこのような温度で熱処理するのは困難である。
 また、マイカや黒鉛などの層状フィラーをPPに混練しバリア性を向上させる技術も知られている(特許文献2)。しかしながらこの技術は隠蔽性が高いことが特長であって、透明性については必ずしも優れるものではない。
特開2008-247719号公報 特開2006-52292号公報
 本発明では、高い水蒸気バリア性及び接着性を有すると共に、透明性に優れた水蒸気バリア用材料の提供を可能とするホスホン酸誘導体、又はリン酸誘導体で表面処理することにより得られる修飾板状無機化合物、並びに該修飾板状無機化合物を含有する樹脂組成物を提供することを課題とする。
 本発明者らは、特定のホスホン酸誘導体、又はリン酸誘導体で表面処理された修飾板状無機化合物が、上記課題を解決することを見出し、本発明を完成させるに至った。
 即ち、本発明は、板状無機化合物を、下記一般式(1)、又は(2)
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
(式(1)、(2)中、R及びRは、各々独立して、炭素数4~30の鎖状アルキル基若しくはアルケニル基、水酸基、アルコキシ基、芳香族基を有しても良い炭素数1~30の鎖状アルキル基若しくはアルケニル基、芳香族基、及び水酸基、アルコキシ基、芳香族基を有しても良い炭素数4~30の環状アルキル基若しくはアルケニル基から選ばれる基を表し、nは1又は2である。)
で表されるホスホン酸誘導体、又はリン酸誘導体で表面処理することにより得られる修飾板状無機化合物、該修飾板状無機化合物を含有する樹脂組成物に関するものである。
 高い水蒸気バリア性及び接着性を有すると共に、透明性に優れた水蒸気バリア用材料の提供を可能とするホスホン酸誘導体、又はリン酸誘導体で表面処理することにより得られる修飾板状無機化合物、並びに該修飾板状無機化合物を含有する樹脂組成物の提供が可能となり、上記課題を解決する水蒸気バリア用接着剤、水蒸気バリア用フィルム、水蒸気バリア用コーティング剤の提供が可能となる。
 なお、本発明の水蒸気バリア用接着剤は酸素バリア性も有することから、本接着剤は、広くバリア材用として使用することができる。
板状無機化合物表面へのホスホン酸の結合を確認する図面である。(a)はオクタデシルホスホン酸、(b)は、実施例1で得られた修飾板状無機化合物の結果を示す。 リンの存在箇所を特定するため、エネルギー分散型X線分光法にて元素分析を行った図面である。 修飾前後における板状無機化合物表面の相違を走査型電子顕微鏡で確認を行った図面である。(a)は未修飾、(b)は実施例1で得られた修飾板状無機化合物の結果を示す。
 即ち、本発明は、以下の各項目から構成される。
1.板状無機化合物を、下記一般式(1)、又は(2)で表されるホスホン酸誘導体、又はリン酸誘導体で表面処理することにより得られる修飾板状無機化合物、
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
(式(1)、(2)中、R及びRは、各々独立して、炭素数4~30の鎖状アルキル基若しくはアルケニル基、水酸基、アルコキシ基、芳香族基を有しても良い炭素数1~30の鎖状アルキル基若しくはアルケニル基、芳香族基、及び水酸基、アルコキシ基、芳香族基を有しても良い炭素数4~30の環状アルキル基若しくはアルケニル基から選ばれる基を表し、nは1又は2である。)
2.板状無機化合物が、層間が非イオン性であるか、或いは水に対して非膨潤性である1.に記載の修飾板状無機化合物、
3.板状無機化合物が、平均粒径0.1μm以上の粒子を含有するものである1.又は2.に記載の修飾板状無機化合物、
4.1.~3.の何れかに記載の修飾板状無機化合物と樹脂を含有する樹脂組成物、
5.樹脂が、石油樹脂、フェノール樹脂、ケトン樹脂、又はテルペン樹脂である4.に記載の樹脂組成物、
6.樹脂が、官能基として1分子中に水酸基を2個以上有する樹脂(A)、官能基として1分子中にイソシアネート基を2個以上有するイソシアネート化合物(B)を含有する樹脂である4.に記載の樹脂組成物、
7.4.~6.の何れかに記載の樹脂組成物を用いた水蒸気バリア用接着剤、
8.4.~6.の何れかに記載の樹脂組成物を用いた水蒸気バリア用フィルム、
9.4.~6.の何れかに記載の樹脂組成物を用いた水蒸気バリア用コーティング剤、
10.7.に記載の接着剤を用いて得られる水蒸気バリア用積層体。
(板状無機化合物)
 本発明では、前記一般式(1)、(2)で表されるホスホン酸誘導体、又はリン酸誘導体で表面処理された修飾板状無機化合物を樹脂組成物中に含有することが特徴である。本発明に用いられる板状無機化合物は、多層フィルムの水蒸気バリア性を高める効果を有するが、前記一般式(1)、(2)で表されるホスホン酸誘導体、又はリン酸誘導体で表面処理された修飾板状無機化合物とすることにより更にその効果を高めることができる。
 本発明に用いられる板状無機化合物の例として、カオリナイト-蛇紋族粘土鉱物(ハロイサイト、カオリナイト、エンデライト、ディッカイト、ナクライト等、アンチゴライト、クリソタイル等)、パイロフィライト-タルク族(パイロフィライト、タルク、ケロライ等)、各種金属水酸化物のうち層状構造を持つ水酸化マグネシウム、水酸化アルミニウム、水酸化バリウム、水酸化鉄、水酸化亜鉛、水酸化ニッケルのほか層状硫酸バリウム、ゼオライト、ポリリン酸アルミニウム、ベーマイト、ガラスフレーク、アルミニウムフレーク、金属箔、金属フレーク、窒化ホウ素、モンモリロナイト、バーミキュライト、雲母系化合物類、例示すると白雲母、金雲母、黒雲母、セリサイト、マーガライト、テトラシリリックマイカ、テニオライト等の他、ハイドロタルサイト類を例示することができる。板状無機化合物が層間にイオンを持つ粘土鉱物やハイドロタルサイトの場合では、層間イオンを有機化して溶媒分散性や膨潤性を付与した材料を用いてもよい。
(板状無機化合物の平均粒径、アスペクト比)
 板状無機化合物の平均粒径については特に制限はないが、粒径が小さすぎると板状無機化合物による迷路効果が発現にくくなるため、好ましくは0.1μm以上、更に好ましくは1μm以上である。大粒径側はあまりに大きすぎると塗工面が荒れるなどの塗工適性に問題が出る場合があるため、好ましくは30μm以下、更に好ましくは20μm以下である。また、アスペクト比は水蒸気バリアに対して高いほうが良く、好ましくは10以上であり、更に好ましくは50以上、最も好ましくは70以上である。中でも雲母系の板状無機化合物では、アスペクト比が100を超える材料も知られており特に好ましく用いられる。
(板状無機化合物の含有率)
 本発明では、石油樹脂、フェノール樹脂、ケトン樹脂、テルペン樹脂、又は官能基として1分子中に水酸基を2個以上有する樹脂(A)、官能基として1分子中にイソシアネート基を2個以上有するイソシアネート化合物を硬化した樹脂組成物、及び板状無機化合物の総質量を100質量%とした場合、板状無機化合物の含有率は水蒸気バリア能が向上するならば特に限定はないが、5~50質量%であることが好ましい。5質量%以下の場合はバリア能が向上しにくく、50質量%以上では塗工表面の粘着性が低下することによりラミネート操作がしにくくなったり、ラミネート強度が不十分になったりする可能性があるためである。板状無機化合物の含有率(配合物のPWC)は下記式(a)、又は(a’)により求めることができる。
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
 (板状無機化合物を導入することによるその他の効果)
 本発明では、板状無機化合物を接着層に導入することにより水蒸気バリア性の向上のみならず接着強度も高めることができる。
(ホスホン酸誘導体)
本発明で用いるホスホン酸誘導体は、一般式(1)
Figure JPOXMLDOC01-appb-C000009
(式(1)中、Rは、炭素数4~30の鎖状アルキル基若しくはアルケニル基、水酸基、アルコキシ基、芳香族基を有しても良い炭素数1~30の鎖状アルキル基若しくはアルケニル基、芳香族基、及び水酸基、アルコキシ基、芳香族基を有しても良い炭素数4~30の環状アルキル基若しくはアルケニル基から選ばれる基を表し、nは1又は2である。)
で表されるホスホン酸誘導体である。
 ホスホン酸は、無機化合物表面と極めて反応性が高いことが知られている。特に、金属酸化物を主体とする無機化合物表面のOH基のみならず、M-O-M(Mは金属原子)で表される酸素原子とも反応して化学結合を形成できる特徴がある。従って、金属化合物特に、金属酸化物や金属水酸化物や、雲母、粘土等の天然鉱物に加え、表面が酸化されている単体金属箔等の表面の外周全体に有機修飾することができる。加えて、これらの反応速度は常温下でも速いことに加えて、単分子、もしくは2分子の均一な有機薄膜が形成できる。
また、一般式(1)のRの部分が、炭素数4~30の鎖状アルキル基若しくはアルケニル基、水酸基、アルコキシ基、芳香族基を有しても良い炭素数1~30の鎖状アルキル基若しくはアルケニル基、芳香族基、及び水酸基、アルコキシ基、芳香族基を有しても良い炭素数4~30の環状アルキル基若しくはアルケニル基から選ばれる基であることにより、汎用の溶媒に溶解しやすいことで、溶媒中での板状無機化合物への修飾反応を容易に行うことができ、かつ、表面修飾後に板状無機化合物に十分な疎水性を付与することできる。この時、炭素数が4より小さい場合には、板状無機化合物に対して十分な疎水性を付与することができず、Rの炭素数が30より大きい場合は汎用溶媒に溶解させることが困難になる。この時、具体的には、炭素数4~30の直鎖アルキルホスホン酸の場合は、ヘキシルホスホン酸、オクチルホスホン酸、ラウリルホスホン酸、オクタデシルホスホン酸、テトラコシルホスホン酸等を、アルケニルホスホン酸の場合はオレイルホスホン酸等を、水酸基の場合はヒドロキシエチルホスホン酸等を、アルコキシ基の場合はブトキシホスホン酸等を、芳香族の場合はフェニルホスホン酸、ナフチルホスホン酸等を例示することができる。
(リン酸誘導体)
本発明で用いるリン酸誘導体は、一般式(2)
Figure JPOXMLDOC01-appb-I000010
(式(2)中、Rは、炭素数4~30の鎖状アルキル基若しくはアルケニル基、水酸基、アルコキシ基、芳香族基を有しても良い炭素数1~30の鎖状アルキル基若しくはアルケニル基、芳香族基、及び水酸基、アルコキシ基、芳香族基を有しても良い炭素数4~30の環状アルキル基若しくはアルケニル基から選ばれる基を表し、nは1又は2である。)
 リン酸もホスホン酸同様、無機化合物表面と極めて反応性が高いことが知られている。特に、金属酸化物を主体とする無機化合物表面のOH基のみならず、M-O-M(Mは金属原子)で表される酸素原子とも反応して化学結合を形成できる特徴がある。従って、金属化合物、特に、金属酸化物や金属水酸化物や、雲母、粘土等の天然鉱物に加え、表面が酸化されている単体金属箔等の表面の外周全体に有機修飾することができる。加えて、これらの反応速度は常温下でも速いことに加えて、単分子、もしくは2分子の均一な有機薄膜が形成できる。
また、一般式(2)のRの部分が、炭素数4~30の鎖状アルキル基若しくはアルケニル基、又は炭素数1~30の鎖状アルキル基若しくはアルケニル基に水酸基、アルコキシ基、芳香族基を有しても良く、又は芳香族基であっても良く、又は水酸基、アルコキシ基、芳香族基を有しても良い炭素数1~30の環状アルキル基若しくはアルケニル基であることにより、汎用の溶媒に溶解しやすいことで、溶媒中での板状無機化合物への修飾反応を容易に行うことができ、かつ、表面修飾後に板状無機化合物に十分な疎水性を付与することできる。この時、炭素数が4より小さい場合には、板状無機化合物に対して十分な疎水性を付与することができず、Rの炭素数が30より大きい場合は汎用溶媒に溶解させることが困難になる。この時、具体的には、炭素数4~30の鎖状アルキルリン酸エステルの場合は部リン酸ブチル、リン酸イソデシル、リン酸オクタデシル等を、鎖状アルケニルリン酸エステルの場合はリン酸オレイル等を、水酸基を有するリン酸エステルの場合はリン酸ヒドロキシエチル等を、アルコキシ基を有する場合はリン酸メトキシブチル等を、芳香族基を有するリン酸エステルの場合はリン酸ベンジル、リン酸フェニル等を例示することができる。
尚、本発明においては、ホスホン酸誘導体、又はリン酸誘導体により表面が修飾された板状無機化合物を修飾板状無機化合物と称する。
(溶剤)
本発明で用いる溶剤は、ホスホン酸誘導体、又はリン酸誘導体を溶解させ、板状無機化合物に対して反応場を与えることで、板状無機化合物へのホスホン酸誘導体、又はリン酸誘導体の修飾を容易に行わせることにある。また、その後の工程で、石油樹脂、フェノール樹脂、ケトン樹脂、テルペン樹脂等の樹脂、又は官能基として1分子中に水酸基を2個以上有する樹脂(A)、及び官能基として1分子中にイソシアネート基を2個以上有するイソシアネート化合物(B)を添加する工程が含まれるため、これらと反応せずに溶解させる必要がある。従って、ホスホン酸誘導体、又はリン酸誘導体を溶解させ、板状無機化合物を分散させることができ、且つ前記樹脂等と反応せずに溶解させることができる溶媒であれば特に制限はない。具体的には酢酸エチル、酢酸プロピル、酢酸ブチル等のエステル系溶媒、アセトン、2-ブタノン、シクロヘキサノン等のケトン系溶媒の他、トルエン、キシレン等の芳香族炭化水素類、n-ヘキサン等の脂肪族炭化水素類、テトラヒドロフラン、ジメチルエ-テル、ジエチルエ-テル、ジブチルエ-テル、アニソ-ル等のエ-テル類を例示することができる。中でも、酢酸エチル、2-ブタノンは現行のドライラミネート用接着剤にも多用されているため特に好ましく用いられる。
(ホスホン酸誘導体、又はリン酸誘導体の濃度)
ホスホン酸誘導体、又はリン酸誘導体を溶解させる際の濃度は特に制限がないが、ホスホン酸誘導体、又はリン酸誘導体と板状無機化合物との反応が迅速に行うためには、0.001~0.1モル/Lの間が好ましく、さらに好ましくは0.005~0.05モル/Lの間である。
(板状無機化合物と、ホスホン酸誘導体、又はリン酸誘導体の量比)
板状無機化合物と、ホスホン酸誘導体、又はリン酸誘導体の量比は板状無機化合物のほぼ全周をホスホン酸誘導体、又はリン酸誘導体が単層または複層の薄膜で覆うことができる量比であればよい。そのため、適切な量比は板状無機化合物の溶剤中での分散サイズにより決定される。板状無機化合物が前記溶剤に非膨潤であり無機化合物層が複数積層している場合にはホスホン酸誘導体、又はリン酸誘導体量比は少なくても良く、一般に板状無機化合物の1質量%以下となる。
一方、板状無機化合物が膨潤性であり無機化合物層が単層にまで分散している場合は数質量%程度になる場合もある。製造工程において、板状無機化合物の全周が修飾されるのに必要な量よりも大過剰のホスホン酸誘導体、又はリン酸誘導体を工程中で加えることは、未反応のホスホン酸誘導体、又はリン酸誘導体が、使用中に進入してくる水と会合することで水を取り込みやすくなる場合があるので注意を要する。
(シランカップリング剤との相違点)
一般に有機修飾剤として用いられるシランカップリング剤では修飾反応がホスホン酸、又はリン酸誘導体に比べて遅い上、無機化合物表面のOH基のみとの反応となる。更にシランカップリング剤同士の副反応が起こりやすく、その結果生じた反応物が用途によっては悪影響を及ぼす場合がある。また、反応を起すために少量の水の添加が必要な場合も多くこの制御も工程上煩雑な要因となる。一方、本発明で有機修飾剤として用いるホスホン酸誘導体、又はリン酸誘導体にはこうした問題点がない利点がある。
(樹脂成分)
[石油樹脂]
 本発明で使用する石油樹脂としては、石油類のスチームクラッキングによりエチレン、プロピレンなどを製造するエチレンプラントから副生する分解油留分に含まれるジオレフィン類やモノオレフィン類を単離せずに重合したものが挙げられる。これらは大別して、分解留分のうちC5留分を原料としたもの(脂肪族系またはC5系石油樹脂)、C9留分を原料にしたもの(芳香族系またはC9系石油樹脂)、両者を原料にしたもの(C5C9共重合系石油樹脂)、及び、C5留分中に含まれるシクロペンタジエンを熱二量化して得られるジシクロペンタジエン系留分を精製して重合されたもの(ジシクロペンタジエン系樹脂)の4種に一般的に分類されている。
 ここで重合可能な各留分の具体例としては、C5留分としては、例えば、1-ペンテン、2-ペンテン、1-メチルブテン、2-メチルブテン、イソプレン、t-1,3-ペンタジエン、c-1,3-ペンタジエン、シクロペンテン、シクロペンタジエンなどが挙げられ、C9留分としては、スチレン、α,β-メチルスチレン、ビニルトルエン、インデン、メチルインデンなどが挙げられ、さらにジシクロペンタジエン系留分としては、ジシクロペンタジエン、イソプロペニルノルボルネン、ジメチルジシクロペンタジエン、トリシクロペンタジエンなどが挙げられる。
 前記石油樹脂としては、こうした各種留分等の重合の組み合わせについては、限定はなく、各種樹脂系あるいは混合樹脂系を使用することが可能である。また、各留分等の重合においては、硫酸、フッ化ホウ素錯体、塩化アルミニュウム系触媒等の重合触媒を使用することが可能である。
 石油樹脂としては、例えば荒川化学工業(株)のアルコンP-140、アルコンM-135、エクソンモービル社のエスコレッツ1310、エスコレッツ1315、エスコレッツ5380、エスコレッツER5320、エスコレッツECR227E、出光興産(株)のアイマーブP-100、アイマーブP-125、アイマーブP―140、アイマーブS-100、アイマーブS-110などが例示できる。石油樹脂は水添タイプ、未水添タイプいずれも使用可能である。これらのうち、ジシクロペンタジエン骨格を有するものがバリア性の観点から好ましい。
[フェノール樹脂]
 本発明で用いられるフェノール樹脂は公知慣用のフェノール樹脂を用いることができる。
フェノール樹脂を得るためのフェノール類としては、特に限定されるものではなく、たとえばフェノール、あるいはクレゾール、キシレノール、エチルフェノール、ブチルフェノール、ノニルフェノール、オクチルフェノールなどのアルキルフェノール類、ビスフェノールA、ビスフェノールF、ビスフェノールS、レゾルシン、カテコールなどの多価フェノール類、ハロゲン化フェノール、フェニルフェノール、アミノフェノールなどが挙げられる。またこれらのフェノール類は、その使用にあたって1種類のみに限定されるものではなく、2種以上の併用も可能である。
 フェノール樹脂としては、DIC(株)のPHENOLITE TD-2131、PHENOLITE TD-2106、PHENOLITE TD-2093、PHENOLITE TD-2091、PHENOLITE TD-2090、PHENOLITE VH-4150、PHENOLITE VH-4170、PHENOLITE KH-6021、PHENOLITE KA-1160、PHENOLITE KA-1163、PHENOLITE KA-1165などが例示できる。
[ケトン樹脂]
 本発明で用いられるケトン樹脂は公知慣用のケトン樹脂を用いることができる。
 ケトン樹脂としては例えばエボニック社のVariPlus AP、VariPlus SK、VariPlus 1201、VariPlus CAなどが例示できる。
[テルペン樹脂]
 本発明で用いられるテルペン樹脂は公知慣用のテルペン樹脂を用いることができる。
 テルペン樹脂としては例えばヤスハラケミカル(株)のYSレジンPX、クリアロンP、クリアロンM、クリアロンK、YSレジンTO、ポリスターU、ポリスターT,ポリスターS、ポリスターG、ポリスターN、ポリスターK、YSレジンSXなどが例示できる。
 その他、本発明では公知慣用のウレタン樹脂、ポリエステル樹脂も用いることができる。
 本発明では、官能基として1分子中に水酸基を2個以上有する樹脂(A)、及び官能基として1分子中にイソシアネート基を2個以上有するイソシアネート化合物(B)を含有する樹脂も用いることができる。
[官能基として1分子中に水酸基を2個以上有する樹脂(A)]
 本発明で使用する樹脂(A)は、官能基として1分子中に水酸基を有する樹脂であって、主骨格が、ポリエステル、ポリエステルポリウレタン、ポリエーテル、又はポリエーテルポリウレタンを含有してなることに特徴を有し、本発明の目的とする接着力、又は水蒸気バリア性を発現させうるものであれば特に限定はない。
本発明で用いられるポリエステルは、公知の技術が使用でき、例えば多価アルコールと多価カルボン酸との反応により得ることが出来る。ポリエステルポリウレタンは、公知の技術が使用でき、例えばポリエステルポリオールとジイソシアネートとの反応により得ることが出来る。ポリエーテルは、公知の技術が使用でき、例えばエチレンオキシド、プロピレンオキシド、ブチレンオキシド、テトラヒドロフランなどのオキシラン化合物を、例えば水、エチレングリコール、プロピレングリコール、トリメチロールプロパン、グリセリンなどの低分子量ポリオールを開始剤として重合して得られる。ポリエーテルポリウレタンは、公知の技術が使用でき、例えばポリエーテルとジイソシアネートとの反応により得ることが出来る。
(多価カルボン酸)
 本発明で使用する樹脂(A)は、多価カルボン酸成分として具体的には、脂肪族多価カルボン酸としては、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸等を、脂環族多価カルボン酸としては1,3-シクロペンタンジカルボン酸、1,4-シクロヘキサンジカルボン酸等を、芳香族多価カルボン酸としては、オルトフタル酸、テレフタル酸、イソフタル酸、ピロメリット酸、トリメリット酸、1,4-ナフタレンジカルボン酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、ナフタル酸、ビフェニルジカルボン酸、1,2-ビス(フェノキシ)エタン-p,p’-ジカルボン酸及びこれらジカルボン酸の無水物或いはエステル形成性誘導体;p-ヒドロキシ安息香酸、p-(2-ヒドロキシエトキシ)安息香酸及びこれらのジヒドロキシカルボン酸のエステル形成性誘導体等の多塩基酸を単独で或いは二種以上の混合物で使用することができる。また、これらの酸無水物も使用することができる。中でも、バリア性を得る為にはコハク酸、1,3-シクロペンタンジカルボン酸、オルトフタル酸、オルトフタル酸の酸無水物、イソフタル酸が好ましく、更にはオルトフタル酸及びその酸無水物がより好ましい。
(多価アルコール成分)
 本発明で使用する多価アルコールは、具体的には、脂肪族ジオールとしては、エチレングリコール、プロピレングリコール、ブチレングリコール、ネオペンチルグリコール、シクロヘキサンジメタノール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、メチルペンタンジオール、ジメチルブタンジオール、ブチルエチルプロパンジオール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、芳香族多価フェノールとして、ヒドロキノン、レゾルシノール、カテコール、ナフタレンジオール、ビフェノール、ビスフェノールA、ヒスフェノールF、テトラメチルビフェノールや、これらの、エチレンオキサイド伸長物、水添化脂環族を例示することができる。中でも酸素原子間の炭素原子数が少ないほど、分子鎖が過剰に柔軟にならずに、酸素透過しにくいと推定されることから、エチレングリコール、プロピレングリコール、ブチレングリコール、ネオペンチルグリコール、及びシクロヘキサンジメタノールが好ましく、更にはエチレングリコールがより好ましい。多価カルボン酸と多価アルコールとの重縮合反応は、公知慣用の方法で行うことができる。 
 [官能基として1分子中に水酸基を2個以上有する樹脂(A)として好ましい成分]
 本発明で使用する2個以上の水酸基を有する樹脂(A)として、より具体的には、
・3個以上の水酸基を有するポリエステルポリオールにカルボン酸無水物又はポリカルボン酸を反応させることにより得られるポリエステルポリオール(A1)、
・重合性炭素-炭素二重結合を有するポリエステルポリオール(A2)、
・グリセロール骨格を有するポリエステルポリオール(A3)、
・オルト配向多価カルボン酸成分と、多価アルコール成分を重縮合して得られるポリエステルポリオール(A4)、
・イソシアヌル環を有するポリエステルポリオール(A5)、
等を挙げることができる。
以下、各成分について説明する。
[3個以上の水酸基を有するポリエステルポリオールにカルボン酸無水物又はポリカルボン酸を反応させることにより得られるポリエステルポリオール(A1)]
 本発明で使用するポリエステルポリオール(A1)は、3個以上の水酸基を有するポリエステルポリオール(I)にカルボン酸無水物又は多価カルボン酸を反応させることにより得られる少なくとも1個のカルボキシ基と2個以上の水酸基を有するものである。3個以上の水酸基を有するポリエステルポリオール(I)は多価カルボン酸または多価アルコールの一部を三価以上とすることで得られる。
 ポリエステルポリオール(A1)の多価アルコール成分及び多価アルコール成分として、好ましくは、オルトフタル酸及びその無水物を少なくとも1種以上含む多価カルボン酸成分と、エチレングリコール、プロピレングリコール、ブチレングリコール、ネオペンチルグリコール、及びシクロヘキサンジメタノールからなる群から選ばれる少なくとも1種を含む多価アルコール成分からなる3個以上の水酸基を有するポリエステルポリオール(I)に、カルボン酸無水物又は多価カルボン酸を反応させることにより得られ、少なくとも1個のカルボキシ基と2個以上の水酸基を有するものである。
(オルトフタル酸及びその無水物)
 オルトフタル酸及びその無水物は、骨格が非対称構造である。従って、得られるポリエステルの分子鎖の回転抑制が生じると推定され、これにより水蒸気バリア性に優れると推定している。また、この非対称構造に起因して非結晶性を示し、十分な基材密着性が付与され、接着力と水蒸気バリア性に優れると推定される。さらにドライラミネート接着剤として用いる場合には必須である溶媒溶解性も高いことで取扱い性にも優れる特徴を持つ。
(多価カルボン酸 その他の成分)
 3個以上の水酸基を有するポリエステルポリオール(I)を合成する際に、多価カルボン酸成分により分岐構造を導入する場合には、三価以上のカルボン酸を少なくとも一部に有する必要がある。これらの化合物としては、トリメリット酸及びその酸無水物、ピロメリット酸及びその酸無水物等があげられるが、合成時のゲル化を防ぐ為には三価以上の多価カルボン酸としては三価カルボン酸が好ましい。
 これ以外の成分として本発明のポリエステルポリオール(I)は、本発明の効果を損なわない範囲において、前述の各種脂肪族多価カルボン酸、環族多価カルボン酸、香族多価カルボン酸等を用いることができる。中でもバリア機能を付与する為にはコハク酸、1,3-シクロペンタンジカルボン酸、オルトフタル酸、オルトフタル酸の酸無水物、イソフタル酸が好ましく、更にはオルトフタル酸及びその酸無水物がより好ましい。
(多価アルコール成分)
 本発明で使用する多価アルコールは、エチレングリコール、プロピレングリコール、ブチレングリコール、ネオペンチルグリコール、及びシクロヘキサンジメタノールからなる群から選ばれる少なくとも1種を含むことが好ましい。中でも、酸素原子間の炭素原子数が少ないほど、分子鎖が過剰に柔軟にならずに、酸素透過しにくいと推定されることから、エチレングリコールを使用することが最も好ましい。
(多価アルコール その他の成分)
 3個以上の水酸基を有するポリエステルポリオール(I)を合成する際に、多価アルコール成分により分岐構造を導入する場合には、三価以上の多価アルコールを少なくとも一部に有する必要がある。これらの化合物としてはグリセリン、トリメチロールプロパン、トリメチロールエタン、トリス(2-ヒドロキシエチル)イソシアヌレート、1,2,4-ブタントリオール、ペンタエリスリトール、ジペンタエリスルトール等があげられるが、合成時のゲル化を防ぐ為には三価以上の多価アルコールとしては三価アルコールが好ましい。
 これ以外の成分として本発明では多価アルコール成分として、本発明の効果を損なわない範囲において、前述した他の多価カルボン酸成分を共重合させてもよい。
 次に、本発明のポリエステルポリオール(I)とカルボン酸無水物又は多価カルボン酸との反応は、以下の様にして行う。
 即ち、前記ポリエステルポリオール(I)に、多価カルボン酸又はその酸無水物をポリエステルポリオール(I)の水酸基と反応させることにより得ることができる。ポリエステルポリオール(I)と多価カルボン酸との比率は反応後の樹脂(A)の水酸基が2個以上必要であることより、多価カルボン酸はポリエステルポリオール(I)の水酸基の1/3以下と反応させることが好ましい。ここで用いられるカルボン酸無水物又は多価カルボン酸に制限はないが、多価カルボン酸とポリエステルポリオール(I)との反応時のゲル化を考慮すると、二価或いは三価のカルボン酸無水物を使用することが好ましい。二価のカルボン酸無水物としては無水コハク酸、無水マレイン酸、1,2-シクロヘキサンジカルボン酸無水物、4-シクロヘキセン-1,2-ジカルボン酸無水物、5-ノルボルネン-2,3-ジカルボン酸無水物、無水フタル酸、2,3-ナフタレンジカルボン酸無水物等が使用でき、三価のカルボン酸無水物としてはトリメリット酸無水物等が使用できる。
 前記ポリエステルポリオール(A1)の水酸基価が20~250であり、酸価が20~200であることが好ましい。水酸基価はJIS-K0070に記載の水酸基価測定方法にて、酸価はJIS-K0070に記載の酸価測定法にて、測定することができる。水酸基価が20mgKOH/gより小さい場合、分子量が大きすぎる為に粘度が高くなり、良好な塗工適性が得られない。逆に水酸基価が250mgKOH/gを超える場合、分子量が小さくなりすぎる為、硬化塗膜の架橋密度が高くなりすぎ、良好な接着強度が得られない。酸価が20mgKOH/gより小さい場合、分子間の相互作用が小さくなり、良好な水蒸気バリア性、良好な初期凝集力が得られない。逆に酸価が200mgKOH/gを超える場合、樹脂(A)とイソシアネート化合物(B)との反応が早くなり過ぎ、良好な塗工適性が得られない。
[重合性炭素-炭素二重結合を有するポリエステルポリオール(A2)]
また、本発明のポリエステルポリオール(A2)として、更に、分子内に重合性炭素-炭素二重結合を有するものを挙げることができる。
 本発明で使用するポリエステルポリオール(A2)は、多価カルボン酸と多価アルコールを反応することにより得られ、多価カルボン酸、多価アルコールの成分として重合性炭素-炭素二重結合をもつ成分を使用することにより、ポリエステルポリオール(A2)の分子内に重合成炭素-炭素二重結合を導入することができる。
(重合性炭素-炭素二重結合をもつ多価カルボン酸)
 多価カルボン酸において重合性炭素-炭素二重結合をもつ多価カルボン酸として無水マレイン酸、マレイン酸、フマル酸、4-シクロヘキセン-1,2-ジカルボン酸及びその酸無水物、3-メチル-4-シクロヘキセン-1,2-ジカルボン酸及びその無水物等があげられる。中でも、炭素原子数が少ないほど、分子鎖が過剰に柔軟にならずに、酸素透過しにくいと推定されることから、無水マレイン酸、マレイン酸、フマル酸が好ましい。
(その他の多価カルボン酸)
 本発明のポリエステルポリオール(A2)は、重合性炭素-炭素二重結合をもつ多価カルボン酸以外の多価カルボン酸成分として前述の各種脂肪族多価カルボン酸、環族多価カルボン酸、香族多価カルボン酸等を用いることができる。中でもバリア機能を付与する為にはコハク酸、1,3-シクロペンタンジカルボン酸、オルトフタル酸、オルトフタル酸の酸無水物、イソフタル酸が好ましく、更にはオルトフタル酸及びその酸無水物がより好ましい。
(重合性炭素-炭素二重結合をもつ多価アルコール)
 多価アルコールにおいて重合性炭素-炭素二重結合をもつ多価アルコールとして2-ブテン-1,4-ジオール等があげられる。
(多価アルコール成分)
 本発明で使用する多価アルコールは、重合性炭素-炭素二重結合をもつ多価アルコール以外の多価アルコール成分を用いても差し支えない。具体的には、前述の脂肪族多価アルコール、芳香族多価フェノール類等を使用することができる。中でも酸素原子間の炭素原子数が少ないほど、分子鎖が過剰に柔軟にならずに、酸素透過しにくいと推定されることから、エチレングリコール、プロピレングリコール、ブチレングリコール、ネオペンチルグリコール、及びシクロヘキサンジメタノールが好ましく、更にはエチレングクリコールがより好ましい。
 また、上記ポリエステルポリオール(A2)では、重合性炭素-炭素二重結合をもつ多価カルボン酸、多価アルコールを使用することによりポリエステルポリオール(A2)に重合性二重結合を導入したが、水酸基を有するポリエステルポリオールと重合性二重結合を有するカルボン酸、又はカルボン酸無水物との反応であってもよい。この場合のカルボン酸としてはマレイン酸、無水マレイン酸、又はフマル酸等の重合性二重結合を有するカルボン酸、オレイン酸、ソルビン酸等の不飽和脂肪酸等を用いることができる。この場合のポリエステルポリオールとしては2個以上の水酸基を有するポリエステルポリオールで好ましいが、イソシアネート化合物との架橋により分子伸長を考慮すると、水酸基は3個以上有することがより好ましい。ポリエステルポリオールの水酸基が1又は2個の場合、重合成二重結合を有するカルボン酸を反応することにより得たポリエステルポリオール(A2)の水酸基が0又は1個となり、イソシアネート化合物(B)との反応による分子伸長が起こり難くなり、接着剤としてのラミネート強度やシール強度、耐熱性等の特性が得られ難くなる。
 前記ポリエステルポリオール(A2)の水酸基価が20~250mgKOH/g、酸価が0~100mgKOH/gであることが好ましい。水酸基価はJIS-K0070に記載の水酸基価測定方法にて、酸価はJIS-K0070に記載の酸価測定法にて、測定することができる。水酸基価が20mgKOH/gより小さい場合、分子量が大きすぎる為に粘度が高くなり、良好な塗工適性が得られない。逆に水酸基価が250mgKOH/gを超える場合、分子量が小さくなりすぎる為、硬化塗膜の架橋密度が高くなりすぎ、良好な接着強度が得られない。
 また、ポリエステルポリオール(A2)を構成する全モノマー成分100質量部に対して、重合性炭素-炭素二重結合を有するモノマー成分が、5~60質量部であることに特徴を有する。
 この範囲より低いと重合性二重結合間の架橋点が少なくなり、バリア性が得られ難くなり、高いと架橋点が多くなることにより硬化塗膜の柔軟性が著しく低下してラミネート強度が得られ難くなり好ましくない。
 なお本願においてポリエステルポリオール(A2)中の重合性炭素-炭素二重結合を有するモノマー成分量(二重結合成分比率)は、式(b)を用いて計算する。
Figure JPOXMLDOC01-appb-M000011
 ここでモノマーとは前記の多価カルボン酸、多価アルコールを指す。
 また、本発明のポリエステルポリオール(A2)として、乾性油、又は半乾性油を挙げることができる。乾性油、又は半乾性油としては、炭素-炭素二重結合を有する公知慣用の乾性油、半乾性油等を挙げることができる。
 [グリセロール骨格を有するポリエステルポリオール(A3)]
 本発明のポリエステルポリオール(A3)として、更に、一般式(3)で表されるグリセロール骨格を有するポリエステルポリオールを挙げることができる。
Figure JPOXMLDOC01-appb-C000012
(式(3)中、R~Rは、各々独立に、水素原子、又は一般式(4)
Figure JPOXMLDOC01-appb-C000013
(式(4)中、nは1~5の整数を表し、Xは、置換基を有してもよい1,2-フェニレン基、1,2-ナフチレン基、2,3-ナフチレン基、2,3-アントラキノンジイル基、及び2,3-アントラセンジイル基から成る群から選ばれるアリーレン基を表し、Yは炭素原子数2~6のアルキレン基を表す)で表される基を表す。但し、R~Rのうち少なくとも一つは、一般式(2)で表される基を表す。)
 前記一般式(3)において、R、R及びRの少なくとも1つは前記一般式(4)で表される基である必要がある。中でも、R、R及びR全てが前記一般式(4)で表される基であることが好ましい。
 また、R、R及びRのいずれか1つが前記一般式(4)で表される基である化合物と、R、R及びRのいずれか2つが前記一般式(4)で表される基である化合物と、R、R及びRの全てが前記一般式(4)で表される基である化合物の、いずれか2つ以上の化合物が混合物となっていてもよい。
 Xは、1,2-フェニレン基、1,2-ナフチレン基、2,3-ナフチレン基、2,3-アントラキノンジイル基、及び2,3-アントラセンジイル基から成る群から選ばれ、置換基を有していてもよいアリーレン基を表す。Xが置換基によって置換されている場合、1又は複数の置換基で置換されていてもよく、該置換基は、X上の、遊離基とは異なる任意の炭素原子に結合している。該置換基としては、クロロ基、ブロモ基、メチル基、エチル基、i-プロピル基、ヒドロキシル基、メトキシ基、エトキシ基、フェノキシ基、メチルチオ基、フェニルチオ基、シアノ基、ニトロ基、アミノ基、フタルイミド基、カルボキシル基、カルバモイル基、N-エチルカルバモイル基、フェニル基又はナフチル基等が挙げられる。
 前記一般式(4)において、Yは、エチレン基、プロピレン基、ブチレン基、ネオペンチレン基、1,5-ペンチレン基、3-メチル-1,5-ペンチレン基、1,6-ヘキシレン基、メチルペンチレン基、ジメチルブチレン基等の、炭素原子数2~6のアルキレン基を表す。Yは、中でも、プロピレン基、エチレン基が好ましくエチレン基が最も好ましい。
 前記一般式(3)で表されるグリセロール骨格を有するポリエステル樹脂化合物は、グリセロールと、カルボン酸がオルト位に置換された芳香族多価カルボン酸又はその無水物と、多価アルコール成分とを必須成分として反応させて得る。
 カルボン酸がオルト位に置換された芳香族多価カルボン酸又はその無水物としては、オルトフタル酸又はその無水物、ナフタレン2,3-ジカルボン酸又はその無水物、ナフタレン1,2-ジカルボン酸又はその無水物、アントラキノン2,3-ジカルボン酸又はその無水物、及び2,3-アントラセンカルボン酸又はその無水物等が挙げられる。これらの化合物は、芳香環の任意の炭素原子に置換基を有していても良い。該置換基としては、クロロ基、ブロモ基、メチル基、エチル基、i-プロピル基、ヒドロキシル基、メトキシ基、エトキシ基、フェノキシ基、メチルチオ基、フェニルチオ基、シアノ基、ニトロ基、アミノ基、フタルイミド基、カルボキシル基、カルバモイル基、N-エチルカルバモイル基、フェニル基又はナフチル基等が挙げられる。
 また、多価アルコール成分としては炭素原子数2~6のアルキレンジオールが挙げられる。例えば、エチレングリコール、プロピレングリコール、ブチレングリコール、ネオペンチルグリコール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、メチルペンタンジオール、ジメチルブタンジオール等のジオールを例示することができる。
 なお、本願においてグリセロール骨格の含有量は、本願の水蒸気バリア性接着剤用有機樹脂組成物全固形分の質量に対して、前記一般式(3)におけるR~Rを除いた残基(C=89.07)がどのくらい含まれるかを、式(c)を用いて計算する。
Figure JPOXMLDOC01-appb-M000014
P:グリセロール骨格を有するポリエステルポリオール(A3)を表す。
 本発明では、高いバリア性を発現するため、水蒸気バリア性接着剤用有機樹脂組成物中に5質量%以上のグリセロール残基を有することに特徴がある。
(水蒸気バリア性接着剤用有機樹脂組成物固形分の質量算出方法)
 水蒸気バリア性接着剤用樹脂組成物の質量部から希釈溶剤質量、硬化剤に含まれる揮発成分質量、無機成分を除く質量を水蒸気バリア性接着剤用有機樹脂全固形分の質量とする。
 一方、ポリエステル成分の原料であるアシル基がオルト位に置換された芳香族多価カルボン酸又はその無水物は、骨格が非対称構造である。従って、得られるポリエステルの分子鎖の回転抑制が生じると推定され、これにより水蒸気バリア性に優れると推定している。また、この非対称構造に起因して基材密着性を阻害する結晶性が低いために酢酸エチルやメチルエチルケトン等の溶剤にも高い溶解性を示し且つ水蒸気バリア性に優れると推定される。
(多価アルコール)
 本発明で使用するポリエステルポリオール(A3)は、多価アルコールとして、炭素原子数2~6のアルキレンジオール以外の多価アルコール成分を、本発明の効果を損なわない範囲において共重合させてもよい。これには各種脂肪族多価アルコール、脂環族多価アルコール、芳香族多価フェノール等を例示することができる。
(多価カルボン酸)
 本発明のポリエステルポリオール(A3)は、多価カルボン酸成分としてカルボン酸がオルト位に置換された芳香族多価カルボン酸又はその無水物を必須とするが、本発明の効果を損なわない範囲において、他の多価カルボン酸成分を共重合させてもよい。具体的には、前述の脂肪族多価カルボン酸、不飽和結合含有多価カルボン酸、芳香族多価カルボン酸等を単独で或いは二種以上の混合物で使用することができる。
 [オルト配向多価カルボン酸成分と、多価アルコール成分を重縮合して得られるポリエステルポリオール(A4)]
 本発明で使用するポリエステルポリオール(A4)は、オルトフタル酸及びその無水物を少なくとも1種以上含む多価カルボン酸成分と、エチレングリコール、プロピレングリコール、ブチレングリコール、ネオペンチルグリコール、及びシクロヘキサンジメタノールからなる群から選ばれる少なくとも1種を含む多価アルコール成分からなる。特に、前記オルトフタル酸及びその無水物の、多価カルボン酸全成分に対する使用率が70~100質量%であるポリエステルポリオールが好ましい。
(多価カルボン酸 その他の成分)
 本発明のポリエステルポリオール(A4)は、多価カルボン酸成分として前記オルトフタル酸及びその無水物を必須とするが、本発明の効果を損なわない範囲において、他の多価カルボン酸成分を共重合させてもよい。具体的には、前述の脂肪族多価カルボン酸、脂環族多価カルボン酸を単独で或いは二種以上の混合物で使用することができる。中でも、コハク酸、1,3-シクロペンタンジカルボン酸、イソフタル酸が好ましい。
(多価アルコール その他の成分)
 多価アルコール成分及びその他の成分としては、前記エチレングリコール、プロピレングリコール、ブチレングリコール、ネオペンチルグリコール、及びシクロヘキサンジメタノール以外のものを発明の効果を妨げない範囲で添加することができる。これには各種脂肪族多価アルコール、脂環族多価アルコール、芳香族多価フェノール等を例示することができる。
 [イソシアヌル環を有するポリエステルポリオール(A5)]
 本発明で使用する樹脂(A)は、下記一般式(5)で表されるイソシアヌル環を有するポリエステルポリオール(A5)を含むと更に好ましい。
Figure JPOXMLDOC01-appb-C000015
(一般式(5)中、R~Rは各々独立して、-(CH)n1-OH(但しn1は2~4の整数を表す)、又は一般式(6)
Figure JPOXMLDOC01-appb-C000016
(一般式(6)中、n2は2~4の整数を表し、n3は1~5の整数を表し、Xは1,2-フェニレン基、1,2-ナフチレン基、2,3-ナフチレン基、2,3-アントラキノンジイル基、及び2,3-アントラセンジイル基から成る群から選ばれ、置換基を有していてもよいアリーレン基を表し、Yは炭素原子数2~6のアルキレン基を表す。)
で表される基を表す。但しR、R及びRの少なくとも1つは前記一般式(6)で表される基である)
 前記一般式(5)において、-(CH)n1-で表されるアルキレン基は、直鎖状であっても分岐状でもよい。n1は、中でも2又は3が好ましく、2が最も好ましい。
 前記一般式(6)において、n2は2~4の整数を表し、n3は1~5の整数を表す。
 Xは1,2-フェニレン基、1,2-ナフチレン基、2,3-ナフチレン基、2,3-アントラキノンジイル基、及び2,3-アントラセンジイル基から成る群から選ばれ、置換基を有していてもよいアリーレン基を表す。
 Xが置換基によって置換されている場合、1または複数の置換基で置換されていてもよく、該置換基は、X上の、遊離基とは異なる任意の炭素原子に結合している。該置換基としては、クロロ基、ブロモ基、メチル基、エチル基、i-プロピル基、ヒドロキシル基、メトキシ基、エトキシ基、フェノキシ基、メチルチオ基、フェニルチオ基、シアノ基、ニトロ基、アミノ基、フタルイミド基、カルボキシル基、カルバモイル基、N-エチルカルバモイル基、フェニル基またはナフチル基等が挙げられる。
 Xの置換基は、中でもヒドロキシル基、シアノ基、ニトロ基、アミノ基、フタルイミド基、カルバモイル基、N-エチルカルバモイル基、フェニル基、が好ましくヒドロキシル基、フェノキシ基、シアノ基、ニトロ基、フタルイミド基、フェニル基が最も好ましい。
 前記一般式(6)において、Yは、エチレン基、プロピレン基、ブチレン基、ネオペンチレン基、1,5-ペンチレン基、3-メチル-1,5-ペンチレン基、1,6-ヘキシレン基、メチルペンチレン基、ジメチルブチレン基等の、炭素原子数2~6のアルキレン基を表す。Yは、中でも、プロピレン基、エチレン基が好ましくエチレン基が最も好ましい。
 前記一般式(5)において、R、R及びRの少なくとも1つは前記一般式(6)で表される基である。中でも、R、R及びR全てが前記一般式(6)で表される基であることが好ましい。
 また、R、R及びRのいずれか1つが前記一般式(6)で表される基である化合物と、R、R及びRのいずれか2つが前記一般式(6)で表される基である化合物と、R、R及びRの全てが前記一般式(6)で表される基である化合物の、いずれか2つ以上の化合物が混合物となっていてもよい。
 前記一般式(5)で表されるイソシアヌル環を有するポリエステルポリオール(A5)は、イソシアヌル環を有するトリオールと、カルボン酸がオルト位に置換された芳香族多価カルボン酸またはその無水物と、多価アルコール成分とを必須成分として反応させて得る。
 イソシアヌル環を有するトリオールとしては、例えば、1,3,5-トリス(2-ヒドロキシエチル)イソシアヌル酸、1,3,5-トリス(2-ヒドロキシプロピル)イソシアヌル酸等のイソシアヌル酸のアルキレンオキサイド付加物等が挙げられる。
 また、カルボン酸がオルト位に置換された芳香族多価カルボン酸またはその無水物としては、オルトフタル酸またはその無水物、ナフタレン2,3-ジカルボン酸またはその無水物、ナフタレン1,2-ジカルボン酸またはその無水物、アントラキノン2,3-ジカルボン酸またはその無水物、及び2,3-アントラセンカルボン酸またはその無水物等が挙げられる。これらの化合物は、芳香環の任意の炭素原子に置換基を有していても良い。
 該置換基としては、クロロ基、ブロモ基、メチル基、エチル基、i-プロピル基、ヒドロキシル基、メトキシ基、エトキシ基、フェノキシ基、メチルチオ基、フェニルチオ基、シアノ基、ニトロ基、アミノ基、フタルイミド基、カルボキシル基、カルバモイル基、N-エチルカルバモイル基、フェニル基またはナフチル基等が挙げられる。
 また、多価アルコール成分としては炭素原子数2~6のアルキレンジオールが挙げられる。例えば、エチレングリコール、プロピレングリコール、ブチレングリコール、ネオペンチルグリコール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、メチルペンタンジオール、ジメチルブタンジオール等のジオールを例示することができる。
 中でも、イソシアヌル環を有するトリオール化合物として1,3,5-トリス(2-ヒドロキシエチル)イソシアヌル酸、または1,3,5-トリス(2-ヒドロキシプロピル)イソシアヌル酸を使用し、カルボン酸がオルト位に置換された芳香族多価カルボン酸またはその無水物としてオルトフタル酸無水物を使用し、多価アルコールとしてエチレングリコールを使用したイソシアヌル環を有するポリエステルポリオール化合物が、水蒸気バリア性や接着性に特に優れ好ましい。
 イソシアヌル環は高極性であり且つ3官能である。従って系全体を高極性化させることができ、且つ、架橋密度を高めることが可能である。このような観点からイソシアヌル環を接着剤樹脂全固形分に対し5質量%以上含有することが好ましい。
 なお本願においてイソシアヌル環の含有量は、本願の接着剤樹脂全固形分の質量に対して、前記一般式(5)におけるR~Rを除いた残基(C=126.05)がどのくらい含まれるかを、式(d)を用いて計算する。
Figure JPOXMLDOC01-appb-M000017
P:イソシアヌル環を有するポリエステルポリオール(A5)を表す。
(水蒸気バリア性接着剤用樹脂組成物有機全固形分の質量算出方法)
 水蒸気量、無機成分を除く質量を水蒸気バリア性接着剤用有機樹脂全固形分の質量とする。
(樹脂(A)の合成方法の例)
 樹脂(A)がポリエステルテルポリオールは、公知のポリエステルの製造方法により得ることができる。具体的には、触媒共存下、反応温度200~220℃で、生成する水を系外へ取り除きながら反応させる製造方法にて合成できる。
 具体的な一例を示すと、原材料として用いるイソシアヌル環を有するトリオールと、カルボン酸がオルト位に置換された芳香族多価カルボン酸またはその無水物と、多価アルコール成分を一括して仕込んだ後、攪拌混合しながら昇温し、脱水縮合反応させる。JIS-K0070に記載の酸価測定法にて1mgKOH/g以下、同じくJIS-K0070に記載の水酸基価測定方法にて得られる水酸基価ZmgKOH/gが下記式(e)の右辺の数値(mgKOH/g)の±5%以内に入るまで反応を継続することで目的とするポリエステルポリオールを得ることができる。
Figure JPOXMLDOC01-appb-M000018
(式(e)中、Mnは所定の3官能ポリエステル樹脂の設定数平均分子量を表す。)
 或いは、各々の原料を多段階に分けて反応させてもよい。また、反応温度にて揮発してしまったジオール成分を追加しながら、水酸基価を±5%以内に入るように調製してもよい。
 反応に用いられる触媒としては、モノブチル酸化錫、ジブチル酸化錫等錫系触媒、テトラ-イソプロピル-チタネート、テトラ-ブチル-チタネート等のチタン系触媒、テトラ-ブチル-ジルコネート等のジルコニア系触媒等の酸触媒が挙げられる。エステル反応に対する活性が高い、テトラ-イソプロピル-チタネート、テトラ-ブチル-チタネート等の上記チタン系触媒と上記ジルコニア触媒を組み合わせて用いることが好ましい。前記触媒量は、使用する反応原料全質量に対して1~1000ppm用いられ、より好ましくは10~100ppmである。1ppmを下回ると触媒としての効果が得られにくく、1000ppmを上回ると後のウレタン化の反応を阻害する傾向がある。
 これらの樹脂(A)の数平均分子量は450~5000であると接着能と水蒸気バリア能とのバランスに優れる程度の架橋密度が得られるため特に好ましい。より好ましくは数平均分子量が500~3000である。また硬化剤としては、後述のポリイソシアネートが最も好ましく、適度な反応時間を付与でき、接着強度と水蒸気バリア能に特に優れる。分子量が450より小さい場合、塗工時の接着剤の凝集力が小さくなりすぎ、ラミネート時にフィルムがズレたり、貼り合せたフィルムが浮き上がるといった不具合が起こり、逆に分子量が5000よりも高い場合、塗工時の粘度が高くなり過ぎて塗工が出来ないことや、粘着性が低い事よりラミネートができないといった不具合が発生する。また、数平均分子量は得られた水酸基価と設計上の水酸基の官能基数から計算により求めた。
 本発明で使用する樹脂(A)は、ガラス転移温度が-30℃~80℃の範囲が好ましい。より好ましくは0℃~60℃である。更に好ましくは25℃~60℃である。ガラス転移温度が80℃よりも高すぎる場合、室温付近でのポリエステルポリオールの柔軟性が低くなることにより、基材への密着性が劣ることで接着力が低下するおそれがある。
 一方、-30℃より低すぎる場合、常温付近でのポリエステルポリオールの分子運動が激しいことにより十分な水蒸気バリア性が出ないおそれがある。
 更に樹脂(A)をジイソシアネート化合物との反応によるウレタン伸長により数平均分子量1000~15000としたポリエステルポリウレタンポリオール、ポリエーテルポリウレタンポリオールを接着剤として用いても良い。該ポリオールには一定以上の分子量成分とウレタン結合とが存在するために、優れた水蒸気バリア性を持つ上、初期凝集力に優れ、ラミネート時に使用する接着剤としてさらに優れる。また、樹脂(A)とジイソシアネート化合物における水酸基とイソシアネート基の比率をイソシアネート過剰とすることで、末端をイソシアネート基とすることが出来、これを硬化剤として使用してもよい。
(接着剤 硬化剤;官能基として1分子中にイソシアネート基を2個以上有するイソシアネート化合物(B))
 本発明で使用する硬化剤;官能基として1分子中にイソシアネート基を2個以上有するイソシアネート化合物(B)は、前記樹脂(A)の水酸基と反応しうる硬化剤であれば特に限定はなく、ジイソシアネート化合物、ポリイソシアネート化合物やエポキシ化合物等の公知の硬化剤を使用できる。中でも、接着性や耐レトルト性の観点から、ポリイソシアネート化合物を使用することが好ましい。
 ポリイソシアネート化合物としては芳香族、脂肪族のジイソシアネート、3価以上のポリイソシアネート化合物があり、低分子化合物、高分子化合物のいずれでもよい。たとえば、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、トルエンジイソシアネート、ジフェニルメタンジイソシアネート、水素化ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、水素化キシリレンジイソシアネート、イソホロンジイソシアネート或いはこれらのイソシアネート化合物の3量体、及びこれらのイソシアネート化合物の過剰量と、たとえばエチレングリコール、プロピレングリコール、メタキシリレンアルコール、1,3-ビスヒドロキシエチルベンゼン、1,4-ビスヒドロキシエチルベンゼン、トリメチロールプロパン、グリセロール、ペンタエリスリトール、エリスリトール、ソルビトール、エチレンジアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、メタキシリレンジアミンなどの低分子活性水素化合物及びそのアルキレンオキシド付加物、各種ポリエステル樹脂類、ポリエーテルポリオール類、ポリアミド類の高分子活性水素化合物などと反応させて得られるアダクト体が挙げられる。
 イソシアネート化合物としてはブロック化イソシアネートであってもよい。イソシアネートブロック化剤としては、例えばフェノール、チオフェノール、メチルチオフェノール、エチルチオフェノール、クレゾール、キシレノール、レゾルシノール、ニトロフェノール、クロロフェノールなどのフェノール類、アセトキシム、メチルエチルケトオキシム、シクロヘキサノンオキシムなそのオキシム類、メタノール、エタノール、プロパノール、ブタノールなどのアルコール類、エチレンクロルヒドリン、1,3-ジクロロ-2-プロパノールなどのハロゲン置換アルコール類、t-ブタノール、t-ペンタノール、などの第3級アルコール類、ε-カプロラクタム、δ-バレロラクタム、γ-ブチロラクタム、β-プロピロラクタムなどのラクタム類が挙げられ、その他にも芳香族アミン類、イミド類、アセチルアセトン、アセト酢酸エステル、マロン酸エチルエステルなどの活性メチレン化合物、メルカプタン類、イミン類、尿素類、ジアリール化合物類重亜硫酸ソーダなども挙げられる。ブロック化イソシアネートは上記イソシアネート化合物とイソシアネートブロック化剤とを公知慣用の適宜の方法より付加反応させて得られる。
 中でも、良好な水蒸気バリア性を得る為にはキシリレンジイソシアネート、水素化キシリレンジイソシアネート、トルエンジイソシアネート、ジフェニルメタンジイソシアネートが好ましく、メタキシリレンジイソシアネート、メタ水素化キシリレンジイソシアネートが最も好ましい。
 本発明で使用する樹脂(A)とイソシアネート化合物(B)との硬化塗膜のガラス転移温度は-30℃~80℃の範囲が好ましい。より好ましくは0℃~70℃である。更に好ましくは25℃~70℃である。ガラス転移温度が80℃よりも高い場合、室温付近での硬化塗膜の柔軟性が低くなることにより、基材への密着性が劣ることで接着力が低下するおそれがある。一方-30℃よりも低い場合、常温付近での硬化塗膜の分子運動が激しいことにより十分な水蒸気バリア性が出ないおそれや、凝集力不足による接着力低下のおそれがある。
 前記メタキシレン骨格を含むポリイソシアネート化合物としては、キシリレンジイソシアネートの3量体、アミンとの反応により合成されるビューレット体、アルコールと反応してなるアダクト体があるが、3量体、ビューレット体と比べ、ポリイソシアネート化合物のドライラミネート接着剤に用いられる有機溶剤への溶解性が得られやすいという理由からアダクト体がより好ましい。アダクト体としては、上記の低分子活性水素化合物の中から適宜選択されるアルコールと反応してなるアダクト体が使用できるが、中でも、トリメチロールプロパン、グリセロール、トリエタノールアミン、メタキシレンジアミンのエチレンオキシド付加物とのアダクト体が特に好ましい。
 前記樹脂(A)と前記硬化剤とは、樹脂(A)と硬化剤との割合が樹脂(A)の水酸基と硬化剤の反応成分とが1/0.5~1/10(当量比)となるように配合することが好ましく、より好ましくは1/1~1/5である。該範囲を超えて硬化剤成分が過剰な場合、余剰な硬化剤成分が残留することで接着後に接着層からブリードアウトするおそれがあり、一方、硬化剤成分が不足の場合には接着強度不足のおそれがある。
 重合性炭素-二重結合の重合を促進する為の触媒として公知の重合触媒を使用することができる。重合触媒としては遷移金属錯体があげられる。遷移金属錯体は、重合性二重結合を酸化重合させる能力を備える化合物であれば特に限定しないが、種々の金属或いはその錯体を用いることができる。例えば、コバルト、マンガン、鉛、カルシウム、セリウム、ジルコニウム、亜鉛、鉄、銅等の金属と、オクチル酸、ナフテン酸、ネオデカン酸、ステアリン酸、樹脂酸、トール油脂肪酸、桐油脂肪酸、アマニ油脂肪酸、大豆油脂肪酸等との塩を用いることができる。遷移金属錯体は樹脂(A)に対して0~10質量部が好ましく、より好ましくは0~3質量部である。
 前記硬化剤は、その種類に応じて選択された公知の硬化剤或いは促進剤を併用することもできる。例えば接着促進剤としては、加水分解性アルコキシシラン化合物等のシランカップリング剤、チタネート系カップリング剤、アルミニウム系等のカップリング剤、エポキシ樹脂等が挙げられる。シランカップリング剤やチタネート系カップリング剤は、各種フィルム材料に対する接着剤を向上させる意味でも好ましい。
(その他の成分)
 本発明で使用するポリエステル樹脂組成物は、水蒸気バリア性を損なわない範囲で、各種の添加剤を配合してもよい。添加剤としては、例えば、シリカ、アルミナなどの無機充填剤、安定剤(酸化防止剤、熱安定剤、紫外線吸収剤等)、可塑剤、帯電防止剤、滑剤、ブロッキング防止剤、着色剤、板状無機化合物、結晶核剤や、硬化塗膜の耐酸性を向上させるために、フタル酸無水物、コハク酸無水物等の酸無水物等が例示できる。
 また、必要に応じて、更にガスの捕捉機能を有する化合物を添加して水蒸気バリア効果を促進してもよい。水蒸気捕捉機能を有する化合物としては、例えば、シリカゲル類、珪酸カルシウム、ゼオライト、炭酸カルシウム、活性炭等の無機化合物が例示される。 
 また、塗布直後の各種フィルム材料に対する粘着性を向上させるために、必要に応じてキシレン樹脂、テルペン樹脂、フェノール樹脂、ロジン樹脂などの粘着付与剤を添加しても良い。これらを添加する場合には、エポキシ樹脂とエポキシ樹脂硬化剤の総量100質量部に対して0.01~5質量部の範囲が好ましい。
(修飾板状無機化合物の製造方法)
本発明の修飾板状無機化合物は、溶剤中で、前記一般式(1)、(2)で表されるホスホン酸誘導体、又はリン酸誘導体と板状無機化合物を混合することによって該板状化合物の表面修飾を行い、ろ過、洗浄、乾燥等の操作を行って得ることができる。
また、該修飾板状化合物を含有する樹脂組成物を簡便に作製する方法として、修飾板状無機化合物の単離を行わずに、連続的な操作によってもよく、工程上簡便なので、当該連続的な操作の方が好ましい場合がある。
 このような製造工程の一例を示すと、(1)ホスホン酸誘導体、又はリン酸誘導体を溶剤に溶解させる工程と、(2)(1)で得られた、ホスホン酸誘導体、又はリン酸誘導体の溶液に板状無機化合物を添加し反応させて修飾板状無機化合物とする工程と、(3)前記(2)で得られる修飾板状無機化合物の分散液に、官能基として1分子中に水酸基を2個以上有する樹脂(A)、及び官能基として1分子中にイソシアネート基を2個以上有するイソシアネート化合物(B)を添加する工程とから構成される。
(ホスホン酸の溶剤への溶解工程、工程(1))
 ホスホン酸を溶剤に溶解させる工程である工程(1)については、一般に溶剤を所定の容器に入れ、その後所定量のホスホン酸誘導体、又はリン酸誘導体をいれ、公知慣用の方法で攪拌することで溶解させる。溶解操作は常温で実施してもよいし、ホスホン酸に溶剤が溶解しにくい場合には溶剤の熱的性質によっては加温しても差し支えない。
(板状無機化合物とホスホン酸誘導体、又はリン酸誘導体との反応工程(2))
 板状無機化合物とホスホン酸誘導体、又はリン酸誘導体との反応工程(2)については、(1)で製造した溶液に対して、板状無機化合物をいれ分散させつつ、溶剤中のホスホン酸誘導体、又はリン酸誘導体を板状無機化合物と反応させ、修飾板状無機化合物を製造するものである。一般にホスホン酸部位と板状無機化合物との修飾反応は迅速である。従って、具体的には(1)で製造の溶液に対して板状無機化合物を導入した後、公知慣用の方法で板状無機化合物を一定時間分散させることで修飾反応は終了する。反応時間は一般に10分程度の接触時間でも修飾反応が進行する場合が多い。
(工程(1)と工程(2)との順序)
反応させる板状無機化合物の溶剤に対する量が少ない場合は工程(1)と工程(2)とを逆の順に行っても良い。しかし、ホスホン酸誘導体、又はリン酸誘導体は板状無機化合物の分散剤としての機能も有するため、ホスホン酸誘導体、又はリン酸誘導体を予め溶剤に溶解させた後に板状無機化合物を添加する方が、板状無機化合物の分散体が低粘度化し、工程(2)の反応工程が容易になる場合が多い
(樹脂成分の添加工程(3))
樹脂成分の添加工程(3)は、前記(2)で得られた分散液に、官能基として1分子中に水酸基を2個以上有する樹脂(A)、及び官能基として1分子中にイソシアネート基を2個以上有するイソシアネート化合物(B)を添加する工程である。
(2)で得られた分散液に対し樹脂(A)、イソシアネート化合物(B)を添加する順序はどちらからでもかまわないが、通常は(2)で得られた分散液に、樹脂(A)を添加後攪拌し、まずはホスホン酸誘導体、又はリン酸誘導体で修飾した板状無機化合物が樹脂樹脂(A)に分散した分散体を製造する。そして、ラミネート直前に硬化剤としてイソシアネート化合物(B)を添加し、ラミネート工程に供することが、保存安定性の観点から好ましい。
 (工程(3)での修飾板状無機化合物の分散方法)
 本発明での樹脂(A)及びイソシアネート化合物(B)と修飾板状無機化合物の分散方法としては公知の分散方法が利用できる。例えば、ディゾルバー、超音波ホモジナイザー、高圧ホモジナイザー、ペイントコンディショナー、ボールミル、ロールミル、サンドミル、サンドグラインダー、ダイノーミル、ディスパーマット、ナノミル、SCミル、ナノマイザー等を挙げることができる。更により好ましくは、高い剪断力を発生させることのできる機器として、ヘンシェルミキサー、加圧ニーダー、バンバリーミキサー、プラネタリーミキサー、二本ロール、三本ロール等が上げられる。これらのうちの1つを単独で用いてもよく、2種類以上装置を組み合わせて用いてもよい。この時は前術の通りまずは樹脂(A)に対して修飾板状無機化合物を分散させた後、硬化剤としてのイソシアネート化合物(B)を添加することが好ましい。
以上の工程により、接着剤中に修飾板状無機化合物がふくまれた樹脂組成物を、板状無機化合物へのホスホン酸アルキル誘導体の修飾工程と、得られた修飾板状無機化合物の樹脂への分散工程とをワンポットで行うことができる。これにより、予め板状無機化合物を修飾した修飾板状無機化合物を乾燥粉末として得るための工程が不要となり、一般的に修飾板状無機化合物を得るために必要な、濾過洗浄工程、乾燥工程が必要となくなるため、省プロセスで樹脂組成物を製造することが可能となる。
(本発明で製造した水蒸気バリア用樹脂組成物の使用法)
 本発明で製造した水蒸気バリア用樹脂組成物の使用法は一般的に各種の樹脂フィルムを基材に塗工することによる。
(使用するフィルム、シート)
 基材として使用する積層用のフィルムは、特に限定はなく、所望の用途に応じた熱可塑性樹脂フィルムを適宜選択することができる。例えば食品包装用としては、PETフィルム、ポリスチレンフィルム、ポリアミドフィルム、ポリアクリロニトリルフィルム、ポリエチレンフィルム(LLDPE:直鎖低密度ポリエチレンフィルム、HDPE:高密度ポリエチレンフィルム)やポリプロピレンフィルム(CPP:無延伸ポリプロピレンフィルム、OPP:二軸延伸ポリプロピレンフィルム)等のポリオレフィンフィルム、ポリビニルアルコールフィルム、エチレン-ビニルアルコール共重合体フィルム等が挙げられる。これらは延伸処理を施してあってもよい。延伸処理方法としては、押出成膜法等で樹脂を溶融押出してシート状にした後、同時二軸延伸或いは逐次二軸延伸を行うことが一般的である。また逐次二軸延伸の場合は、はじめに縦延伸処理を行い、次に横延伸を行うことが一般的である。具体的にはロール間の速度差を利用した縦延伸とテンターを用いた横延伸を組み合わせる方法が多く用いられる。更にこれら樹脂フィルム以外にも紙、布等のシート状物を基材として用いても差し支えない。
 また、フィルム表面には、膜切れやはじきなどの欠陥のない接着層が形成されるように必要に応じて火炎処理やコロナ放電処理などの各種表面処理を施してもよい。
 本発明で製造の樹脂組成物は、さらに高いバリア機能を付与するために、必要に応じてアルミニウム等の金属、或いはシリカやアルミナ等の金属酸化物の蒸着層を積層したフィルムや、アルミ箔等の金属箔と併用しても良い。
(水蒸気バリア用樹脂組成物の使用方法(水蒸気バリア用接着剤))
 本発明により製造される水蒸気バリア接着剤用樹脂組成物は前記のフィルム、シートを2枚貼り合せるのに用いるラミネート用接着剤として使用することができる。本発明で製造される樹脂組成物は溶剤を含んだ形で製造されるため、ドライラミネーション方式に使用する接着剤として用いるのが適している。ドライラミネーション方式は、具体的には、基材フィルムの一方に樹脂組成物をグラビアロール方式で塗工後、もう一方の基材フィルムを重ねてドライラミネーション(乾式積層法)により貼り合わせる。ラミネートロールの温度は室温~60℃程度が好ましい。ラミネート処理後はエージング処理を行うことが好ましく、その処理条件は室温~80℃で、12~240時間の間であり、この間に樹脂(A)とイソシアネート化合物(B)とが架橋反応することで接着強度が生じる。但し、溶媒を除去する工程を加えることで、無溶剤型接着剤用の水蒸気バリア接着剤用樹脂組成物とすることも可能である。
(水蒸気バリア接着剤用樹脂組成物の使用方法(水蒸気バリア用積層体))
 本発明により製造される水蒸気バリア接着剤用樹脂組成物は前記のように水蒸気バリア接着剤として使用された場合には、水蒸気バリア用積層体として用いることができる。この時の積層体の構成としては最外層にPETフィルム、OPPフィルム等の延伸フィルムを、最内層にLLDPE、CPP等の未延伸フィルムを持つ構成にして、そのフィルム間を接着する接着剤として、本発明により製造される樹脂組成物を用いればよい。
 また、積層体に用いるフィルムは2層には限らず、中間層としてもう一層フィルムが入る3層のフィルムの積層体で少なくとも何れか2層の接着用途に本発明での樹脂組成物を用いる場合や、フィルムの一部に蒸着フィルム、透明蒸着フィルム、PVDCコート層やポリビニルアルコール(PVA)コート層、エチレン‐ビニルアルコール共重合体(EVOH)フィルム層、メタキシリレンアジパミドフィルム層等の水蒸気バリアフィルムを用いてバリア機能を更に高めた積層体としても良い。
(水蒸気バリア接着剤用樹脂組成物の使用方法(水蒸気バリア用コーティング剤))
 本発明で得られた樹脂組成物での樹脂構造や分子量や硬化剤の種類を適切に選定することで塗工、乾燥後に粘着性を持たないようにすることで、溶剤系コーティング材料として用いることもできる。この場合は接着剤で用いる樹脂と比べて高分子量で且つ高ガラス転移点の樹脂を用い、さらに添加剤としてブロッキング防止剤として板状無機化合物類を添加すると好適に用いることができる。
(水蒸気バリア接着剤用樹脂組成物の使用方法(水蒸気バリア用フィルム))
本発明により製造された樹脂組成物は前記のように水蒸気バリアコーティング剤として各種フィルムに塗布した場合には、水蒸気バリア接着剤用フィルムとして使用することができる。コーティングする基材として用いるフィルムとしては延伸フィルムでも未延伸フィルムでも良いが、コーティング操作の容易さからは延伸フィルムを用いることが好ましい。この場合もまた前記の水蒸気バリア用積層体と同様に各種のバリアフィルムを併用しても良い。
(透過を遮断できるガス成分種類)
 本発明で得た樹脂組成物層を持つ積層体やフィルムが遮断できるガスとしては水蒸気の他、ガス分子が極性構造を持つメタノール、エタノール、プロパノール等のアルコール成分、フェノール、クレゾール等のフェノール類の他、低分子化合物からなる香気成分類、例えば、醤油、ソース、味噌、メントール、サリチル酸メチル、コーヒー、ココアシャンプー、リンス、等の香り成分を例示することができる。
 次に、本発明を、実施例及び比較例により具体的に説明する。特に断りのない限り、「部」「%」は質量基準である。
(実施例1)
 オクタデシルホスホン酸(東京化成工業(株)製 ODPAと記す)を1.18質量部とテトラヒドロフラン622質量部の溶液を調製し、その溶液に白雲母((株)ヤマグチマイカ製 Y1800:平均長径 10μm)を100質量部加えて室温で5時間撹拌した。その後、懸濁液をろ過、洗浄、乾燥してODPA-Y1800を得た。
(実施例2)
 白雲母をSJ005((株)ヤマグチマイカ製:平均長径 5μm)に変更し、仕込み量を10質量部とした以外は製造例1と同様にしてODPA-SJ005を得た。
(実施例3)
 白雲母をSYA21RS((株)ヤマグチマイカ製:平均長径 27μm)に変更し、仕込み量を10質量部とした以外は製造例1と同様にしてODPA-SJ005を得た。
(実施例4)
 白雲母をHM6025(Heng Hao社製:平均長径 10μm)に変更し、仕込み量を10質量部とした以外は製造例1と同様にしてODPA-HM6025を得た。
(実施例5)
 オクチルホスホン酸(Aldrich社製 OPAと記す)を0.70質量部とテトラヒドロフラン622質量部の溶液を調製し、その溶液に白雲母((株)ヤマグチマイカ製 Y1800:平均長径 10μm)を10質量部加えて室温で5時間撹拌した。その後懸濁液をろ過、洗浄、乾燥してOPA-Y1800を得た。
(実施例6)
 ドデシルホスホン酸(和光純薬工業(株)製 DDPAと記す)を0.88質量部とテトラヒドロフラン622質量部の溶液を調製し、その溶液に白雲母((株)ヤマグチマイカ製 Y1800:平均長径 10μm)を10質量部加えて室温で5時間撹拌した。その後懸濁液をろ過、洗浄、乾燥してDDPA-Y1800を得た。
 (実施例7)~(実施例15)
 ホスホン酸誘導体又はリン酸誘導体、及び板状無機物を表1に記載の比率で用いる他は実施例1と同様にして、実施例7~15を行った。
(比較例1)
 何も処理を加えていないY1800を比較例1とした。
(比較例2)
 板状無機化合物にHM6025、ホスホン酸又はリン酸誘導体としてAP-1を用いて、実施例と同様にして比較例2とした。
(表面修飾率の測定)
 TG/DTA(セイコーインスツル(株)製 TGDTA6200)にて表面修飾率を測定した。室温から800℃まで10℃/minで昇温し、
TG-TG = 表面修飾率(wt%)
として算出した。
TG:修飾板状無機物の200-400℃までの重量減少率(wt%)
TG:未修飾板状無機物の200-400℃までの重量減少率(wt%)
(接触角及び表面自由エネルギーの測定)
 自動表面張力計(KRUSS社製 K-12)にて、実施例1(オクタデシルホスホン酸修飾品)、実施例5(オクチルホスホン酸修飾品)、実施例6(ドデシルホスホン酸修飾品)、及び比較例1(未修飾品)の接触角と表面自由エネルギーの測定を行った。測定対象の原料板状無機物はY1800とした。
 結果を表2に示す。
Figure JPOXMLDOC01-appb-T000019
注)AP-10:イソデシルアシッドホスフェート(大八化学工業(株))
MP-10:イソデシルアシッドホスフェート(大八化学工業(株))
PhoslexA-18:ステアリルアシッドホスフェート(SC有機化学(株))
JP-518-O:オレイルアシッドホスフェート(城北化学工業(株))
AP-4:ブチルアシッドホスフェート(大八化学工業(株))
JP-506-H:ブトキシエチルアシッドホスフェート(城北化学工業(株))
EGAP:エチレングリコールアシッドホスフェート(城北化学工業(株))
AP-1:メチルアシッドホスフェート(大八化学工業(株))
Figure JPOXMLDOC01-appb-T000020
(実施例16)
 石油樹脂(エクソンモービル社製 エスコレッツER5320)8.5質量部、実施例1で作製した板状無機化合物3.6質量部、ヘプタン7.5質量部を混合して塗布液を調製した。これを12μm厚のPETフィルムにバーコータ#4で塗布し、80℃で30秒乾燥して約2μmの膜をPET上に作製し、透湿度測定試料とした。
(実施例17)~(実施例33)
 前記実施例で作製した修飾板状無機化合物、樹脂、溶媒ホスホン酸誘導体、又はリン酸誘導体を表3に記載の比率で用いる他は、実施例16と同様にして、実施例17~33を行った。
(比較例3)
石油樹脂(エクソンモービル社製 エスコレッツER5320)8.5質量部、ヘプタン7.5質量部を混合して塗布液を調製した。これを12μm厚のPETフィルムにバーコータ#4で塗布し、80℃で30秒乾燥して約2μmの膜をPET上に作製し、透湿度測定試料とした。
(比較例4)
板状無機化合物として表面修飾を行っていないY1800を3.6質量部加えて塗布液を調製し、比較例3と同様にして透湿度測定試料を作製した。
(比較例5)~(比較例12)
 板状無機化合物、樹脂、溶媒ホスホン酸誘導体、又はリン酸誘導体を表3に記載の比率で用いる他は、比較例3と同様にして、比較例5~12を行った。
(透湿度の評価)
 12μmのPETフィルム、またはPA6(ナイロン6)フィルムにバーコータで各塗布液を塗布し、80℃で30秒乾燥して透湿度測定試料とした。JISZ0208防湿包装材料の透湿度試験方法(カップ法)に準拠して行った。得られた結果は塗膜単体、膜厚2μm換算で算出した。
 前記の実施例16~33、及び比較例3~12の結果を表3に示す。
Figure JPOXMLDOC01-appb-T000021
注)
樹脂a:エスコレッツER5320(石油樹脂、エクソンモービル製)
樹脂b:PHENOLITE KA-1165(フェノール樹脂、DIC(株)製)
樹脂c:CLEARON P115(水添テルペン樹脂、ヤスハラケミカル(株)製)
樹脂d:VariPlus CA(ケトン樹脂、エポニック社製)
樹脂e:下記調整法によるウレタン樹脂
<樹脂eの調製法>
 撹拌装置、温度計、冷却管、滴下装置を備えたガラスフラスコに、トリシクロデカンジメタノール70質量部、溶媒としてメチルエチルケトン(以下、MEK)70質量部を仕込み、窒素気流下にて攪拌しながら60℃に昇温した。次いで、フラスコ内を60℃に保ちながらキシリレンジイソシアネート33.6質量部を1時間かけて滴下した。滴下終了後、60℃で5時間攪拌することで、IRスペクトル測定でイソシアネート基の消失を確認された。次いで、MEKを加え、樹脂eを50質量%含有するMEK溶液を得た。得られた樹脂eの分子量をGPC(ポリスチレン換算分子量)で測定した結果、数平均分子量1,050、重量平均分子量1,350であり、水酸基価は206であった。
(板状無機化合物表面へのホスホン酸の結合確認)
 ホスホン酸が板状無機化合物表面に付着しているだけなのか結合しているのかの確認を31P-NMR(シングルパルスデカップリングマジックアングルスピニング核磁気共鳴分光分析)(日本電子(株)製 JNM-ECA600)にて行った。結果を図1に示す。ホスホン酸単体と修飾板状無機物ではPの異なるケミカルシフトが見られ、付着ではなく結合していることを確認した。
(表面修飾箇所の特定)
・Pの存在箇所の分析
 Pが板状無機物表面のどこから検出されるかで修飾箇所の特定を行った。分析は表面観察と同じ装置を用いてエネルギー分散型X線分光法にて元素分析を行った。結果を図2に示す。未修飾板状無機物からはPが検出されなかったが、実施例1の板状無機物は表面全体にPが存在分布していたことから、表面全体に修飾されていることを確認した。
・板状無機化合物の表面観察
 修飾前後で板状無機物表面に違いが見られるかを走査型電子顕微鏡(日本電子(株)製 JSM-7800F)にて観察した。結果を図3に示す。修飾前は板状無機物表面に凹凸がなかったのに対し、修飾後は表面に凹凸が形成されており、板状無機物表面全体に修飾されていることを確認した。
 本発明の修飾板状無機化合物を含有する樹脂組成物は、水蒸気バリア性を有するので、水蒸気バリア用接着剤、水蒸気バリア用フィルム、水蒸気バリア用コーティング剤等としての利用が可能である。

Claims (10)

  1. 板状無機化合物を、下記一般式(1)、又は(2)で表されるホスホン酸誘導体、又はリン酸誘導体で表面処理することにより得られる修飾板状無機化合物。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    (式(1)、(2)中、R及びRは、各々独立して、炭素数4~30の鎖状アルキル基若しくはアルケニル基、水酸基、アルコキシ基、芳香族基を有しても良い炭素数1~30の鎖状アルキル基若しくはアルケニル基、芳香族基、及び水酸基、アルコキシ基、芳香族基を有しても良い炭素数4~30の環状アルキル基若しくはアルケニル基から選ばれる基を表し、nは1又は2である。)
  2. 板状無機化合物が、層間が非イオン性であるか、或いは水に対して非膨潤性である請求項1に記載の修飾板状無機化合物。
  3. 板状無機化合物が、平均粒径0.1μm以上の粒子を含有するものである請求項1又は2に記載の修飾板状無機化合物。
  4. 請求項1~3の何れかに記載の修飾板状無機化合物と樹脂を含有する樹脂組成物。
  5. 樹脂が、石油樹脂、フェノール樹脂、ケトン樹脂、ウレタン樹脂、ポリエステル樹脂、又はテルペン樹脂である請求項4に記載の樹脂組成物。
  6. 樹脂が、官能基として1分子中に水酸基を2個以上有する樹脂(A)、官能基として1分子中にイソシアネート基を2個以上有するイソシアネート化合物(B)を含有する樹脂である請求項4に記載の樹脂組成物。
  7. 請求項4~6の何れかに記載の樹脂組成物を用いた水蒸気バリア用接着剤。
  8. 請求項4~6の何れかに記載の樹脂組成物を用いた水蒸気バリア用フィルム。
  9. 請求項4~6の何れかに記載の樹脂組成物を用いた水蒸気バリア用コーティング剤。
  10. 請求項7に記載の接着剤を用いて得られる水蒸気バリア用積層体。
PCT/JP2014/074383 2013-09-27 2014-09-16 修飾板状無機化合物、及びそれを含有する樹脂組成物 WO2015045945A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015527709A JP6164706B2 (ja) 2013-09-27 2014-09-16 修飾板状無機化合物、及びそれを含有する樹脂組成物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013201489 2013-09-27
JP2013-201489 2013-09-27
JP2014110150 2014-05-28
JP2014-110150 2014-05-28

Publications (1)

Publication Number Publication Date
WO2015045945A1 true WO2015045945A1 (ja) 2015-04-02

Family

ID=52743086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074383 WO2015045945A1 (ja) 2013-09-27 2014-09-16 修飾板状無機化合物、及びそれを含有する樹脂組成物

Country Status (2)

Country Link
JP (1) JP6164706B2 (ja)
WO (1) WO2015045945A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015063580A (ja) * 2013-09-24 2015-04-09 Dic株式会社 水蒸気バリア接着剤用樹脂組成物の製造方法、および水蒸気バリア用接着剤、水蒸気バリア用フィルム、水蒸気バリア用コーティング剤、水蒸気バリア用積層体
JP2015081302A (ja) * 2013-10-23 2015-04-27 Dic株式会社 水蒸気バリア接着剤用樹脂組成物の製造方法、および水蒸気バリア用接着剤、水蒸気バリア用フィルム、水蒸気バリア用コーティング剤、水蒸気バリア用積層体
JP5799952B2 (ja) * 2010-05-20 2015-10-28 日立化成株式会社 感光性樹脂組成物、感光性フィルム、リブパターンの形成方法、中空構造とその形成方法及び電子部品
WO2019163976A1 (ja) * 2018-02-26 2019-08-29 丸善石油化学株式会社 表面修飾粒子およびその製造方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551821A (en) * 1978-06-19 1980-01-09 Nippon Chem Ind Co Ltd:The Fine grain bulk density regulating agent
JPS57168954A (en) * 1981-04-11 1982-10-18 Okayamaken Inorganic powder modified with organic phosphate compound
JPS61111369A (ja) * 1984-11-06 1986-05-29 Kao Corp 表面改質された無機粉体
JPS6250365A (ja) * 1985-08-23 1987-03-05 イ−シ−シ− インタ−ナシヨナル リミテツド 無機顔料混合物の水性懸濁液
JPH0693133A (ja) * 1992-07-29 1994-04-05 Sumitomo Chem Co Ltd ガスバリア性樹脂組成物およびフィルム
JPH10306236A (ja) * 1997-03-05 1998-11-17 Kansai Paint Co Ltd 水性塗料組成物及びこれを用いた塗装方法
JP2001011391A (ja) * 1999-04-28 2001-01-16 Tokuyama Corp ガスバリア性コーティング組成物及びその用途
JP2002180009A (ja) * 2000-12-18 2002-06-26 Nippon Paint Co Ltd 中塗り塗料組成物およびそれを用いた塗膜形成方法
JP2003041150A (ja) * 2001-08-02 2003-02-13 Merck Ltd 高耐腐食性薄片状金属顔料、その製造方法、およびそれをベースとする金属光沢干渉発色顔料
JP2008001774A (ja) * 2006-06-21 2008-01-10 Kaisui Kagaku Kenkyusho:Kk 紫外線吸収剤およびその使用
JP2010511757A (ja) * 2006-12-05 2010-04-15 チバ ホールディング インコーポレーテッド 表面を改質された(エフェクト)顔料
JP2013253133A (ja) * 2012-06-05 2013-12-19 Dic Corp リン酸変性化合物含有接着剤用樹脂組成物、及び接着剤

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551821A (en) * 1978-06-19 1980-01-09 Nippon Chem Ind Co Ltd:The Fine grain bulk density regulating agent
JPS57168954A (en) * 1981-04-11 1982-10-18 Okayamaken Inorganic powder modified with organic phosphate compound
JPS61111369A (ja) * 1984-11-06 1986-05-29 Kao Corp 表面改質された無機粉体
JPS6250365A (ja) * 1985-08-23 1987-03-05 イ−シ−シ− インタ−ナシヨナル リミテツド 無機顔料混合物の水性懸濁液
JPH0693133A (ja) * 1992-07-29 1994-04-05 Sumitomo Chem Co Ltd ガスバリア性樹脂組成物およびフィルム
JPH10306236A (ja) * 1997-03-05 1998-11-17 Kansai Paint Co Ltd 水性塗料組成物及びこれを用いた塗装方法
JP2001011391A (ja) * 1999-04-28 2001-01-16 Tokuyama Corp ガスバリア性コーティング組成物及びその用途
JP2002180009A (ja) * 2000-12-18 2002-06-26 Nippon Paint Co Ltd 中塗り塗料組成物およびそれを用いた塗膜形成方法
JP2003041150A (ja) * 2001-08-02 2003-02-13 Merck Ltd 高耐腐食性薄片状金属顔料、その製造方法、およびそれをベースとする金属光沢干渉発色顔料
JP2008001774A (ja) * 2006-06-21 2008-01-10 Kaisui Kagaku Kenkyusho:Kk 紫外線吸収剤およびその使用
JP2010511757A (ja) * 2006-12-05 2010-04-15 チバ ホールディング インコーポレーテッド 表面を改質された(エフェクト)顔料
JP2013253133A (ja) * 2012-06-05 2013-12-19 Dic Corp リン酸変性化合物含有接着剤用樹脂組成物、及び接着剤

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5799952B2 (ja) * 2010-05-20 2015-10-28 日立化成株式会社 感光性樹脂組成物、感光性フィルム、リブパターンの形成方法、中空構造とその形成方法及び電子部品
JP2015063580A (ja) * 2013-09-24 2015-04-09 Dic株式会社 水蒸気バリア接着剤用樹脂組成物の製造方法、および水蒸気バリア用接着剤、水蒸気バリア用フィルム、水蒸気バリア用コーティング剤、水蒸気バリア用積層体
JP2015081302A (ja) * 2013-10-23 2015-04-27 Dic株式会社 水蒸気バリア接着剤用樹脂組成物の製造方法、および水蒸気バリア用接着剤、水蒸気バリア用フィルム、水蒸気バリア用コーティング剤、水蒸気バリア用積層体
WO2019163976A1 (ja) * 2018-02-26 2019-08-29 丸善石油化学株式会社 表面修飾粒子およびその製造方法

Also Published As

Publication number Publication date
JPWO2015045945A1 (ja) 2017-03-09
JP6164706B2 (ja) 2017-07-19

Similar Documents

Publication Publication Date Title
JP5440892B2 (ja) 板状無機化合物を含有する接着剤用樹脂組成物、および接着剤
JP5765510B1 (ja) ガスバリア性接着剤用樹脂組成物、及び接着剤
TWI507434B (zh) 聚酯樹脂組成物、接著劑、及薄膜
JP6002966B2 (ja) リン酸変性化合物含有接着剤用樹脂組成物、及び接着剤
JP6217967B2 (ja) ガスバリア多層フィルム
JP5875023B2 (ja) 保香用多層フィルム
JP6164706B2 (ja) 修飾板状無機化合物、及びそれを含有する樹脂組成物
JP5821826B2 (ja) 接着剤
JP5861923B2 (ja) ガスバリア性多層フィルム
JP2013103434A (ja) 不活性ガスバリア用多層フィルム
WO2013005767A1 (ja) ガスバリア性多層フィルム、接着剤、及びコーティング材
WO2015046359A1 (ja) 水蒸気バリア用樹脂組成物、接着剤、及びコーティング剤
JP5605667B1 (ja) 雲母を含有する接着剤用樹脂組成物、及び接着剤
TWI606926B (zh) 具有密封劑薄膜之積層體
JP5648855B2 (ja) 水蒸気バリア性を有する接着剤用樹脂組成物、及び接着剤
JP2013129779A (ja) ハイソリッド型接着剤用樹脂組成物、及び接着剤
JP6155595B2 (ja) ドライラミネート用接着剤組成物
JP2013107925A (ja) アルコールバリア用多層フィルム
JP2013234220A (ja) 樹脂分散体の製造方法、接着剤、及びコーティング剤
JP2015100961A (ja) 建材用積層体
JP6225601B2 (ja) 水蒸気バリア接着剤用樹脂組成物の製造方法、および水蒸気バリア用接着剤、水蒸気バリア用フィルム、水蒸気バリア用コーティング剤、水蒸気バリア用積層体
JP6197575B2 (ja) 水蒸気バリア接着剤用樹脂組成物の製造方法、および水蒸気バリア用接着剤、水蒸気バリア用フィルム、水蒸気バリア用コーティング剤、水蒸気バリア用積層体
JP5790981B1 (ja) シーラントフィルムを有する積層体
JP2015100960A (ja) 医療包装材用積層体
WO2018105440A1 (ja) ガスバリア性接着剤用樹脂組成物、接着剤、及び積層体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14849906

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015527709

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14849906

Country of ref document: EP

Kind code of ref document: A1