WO2015040815A1 - 物体検知装置及び物体検知システム - Google Patents

物体検知装置及び物体検知システム Download PDF

Info

Publication number
WO2015040815A1
WO2015040815A1 PCT/JP2014/004533 JP2014004533W WO2015040815A1 WO 2015040815 A1 WO2015040815 A1 WO 2015040815A1 JP 2014004533 W JP2014004533 W JP 2014004533W WO 2015040815 A1 WO2015040815 A1 WO 2015040815A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
object detection
output
determination
detection device
Prior art date
Application number
PCT/JP2014/004533
Other languages
English (en)
French (fr)
Inventor
充保 松浦
啓子 秋山
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to US15/022,166 priority Critical patent/US9880273B2/en
Priority to DE112014004258.7T priority patent/DE112014004258B4/de
Priority to CN201480050821.4A priority patent/CN105705963B/zh
Publication of WO2015040815A1 publication Critical patent/WO2015040815A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/523Details of pulse systems
    • G01S7/526Receivers
    • G01S7/527Extracting wanted echo signals
    • G01S7/5276Extracting wanted echo signals using analogue techniques
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/04Systems determining presence of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52004Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/87Combinations of sonar systems
    • G01S15/876Combination of several spaced transmitters or receivers of known location for determining the position of a transponder or a reflector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52004Means for monitoring or calibrating
    • G01S2007/52012Means for monitoring or calibrating involving a reference ground return
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/932Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles using own vehicle data, e.g. ground speed, steering wheel direction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52001Auxiliary means for detecting or identifying sonar signals or the like, e.g. sonar jamming signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/539Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/001Acoustic presence detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/12Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with electromagnetic waves

Definitions

  • the present disclosure relates to an object detection device and an object detection system that detect an object.
  • an object detection device for a vehicle that transmits and receives pulsed exploration waves such as ultrasonic waves and electromagnetic waves and detects an object existing in the irradiation range of the exploration waves is known.
  • pulsed exploration waves such as ultrasonic waves and electromagnetic waves and detects an object existing in the irradiation range of the exploration waves.
  • the received reflected wave includes noise due to road surface reflection.
  • Patent Document 1 further includes an in-vehicle camera that images a road surface, and determines a threshold value for removing noise according to the road surface state determined from the captured image.
  • a technique for removing noise is disclosed.
  • Patent Document 1 requires an in-vehicle camera for imaging the road surface, which is expensive.
  • the present disclosure has been made in view of the above points, and an object thereof is to detect an object while suppressing an influence of noise due to road surface reflection while suppressing an increase in cost and a decrease in detection performance.
  • An object detection apparatus and an object detection system are provided.
  • An object detection device is an object detection device that is mounted on a vehicle and includes a transmission unit that transmits a pulsed exploration wave and a reception unit that receives a reflected wave of the exploration wave, Based on the output of the filter unit that passes only the frequency lower than the pulse frequency of the exploration wave among the reflected waves received by the receiving unit, and calculates the object determination threshold for determining the presence or absence of the object And an object determination unit that determines the presence / absence of an object using the object determination threshold calculated by the threshold calculation unit.
  • the object determination threshold is calculated based on the output of the filter unit that allows only frequencies below a predetermined value to pass, it is possible to calculate the object determination threshold adapted to the road surface condition.
  • the object detection device of the present disclosure it is possible to determine the presence / absence of an object using the object determination threshold adapted to the road surface state, so that it is possible to reduce noise caused by the road surface while suppressing a decrease in detection performance. It is possible to detect an object while suppressing the influence.
  • an object determination threshold for determining the presence or absence of an object is calculated based on the output obtained by passing the reflected wave received by the receiving unit through the filter unit without separately requiring an in-vehicle camera that images the road surface.
  • the cost for calculating the determination threshold can be reduced. As a result, it is possible to detect an object while suppressing the influence of noise due to road surface reflection while suppressing an increase in cost and a decrease in detection performance.
  • the object detection system of the present disclosure includes the object detection device described above, it is possible to detect an object while suppressing an increase in cost and a decrease in detection performance while suppressing an influence of noise caused by a road surface. Become.
  • FIG. 1 is a block diagram illustrating an example of a schematic configuration of an object detection device 1 according to the first embodiment.
  • FIG. 2 is a diagram illustrating an example for explaining the object determination threshold.
  • FIG. 3 is a diagram illustrating another example for explaining the object determination threshold.
  • FIG. 4 is a flowchart illustrating an example of the flow of object detection related processing in the object detection device.
  • FIG. 5 is a block diagram illustrating an example of a schematic configuration of the object detection device according to the second embodiment.
  • FIG. 6 is a block diagram illustrating an example of a schematic configuration of the object detection device according to the third embodiment.
  • FIG. 7 is a block diagram illustrating an example of a schematic configuration of an object detection system according to the fourth embodiment.
  • FIG. 1 is a block diagram illustrating a schematic configuration of an object detection device 1 according to the first embodiment.
  • An object detection apparatus 1 shown in FIG. 1 is mounted on a vehicle and detects an object that can be an obstacle of the vehicle.
  • the object detection apparatus 1 includes a transmission / reception unit 10, a transmission circuit unit 11, a reception circuit unit 12, a low-pass filter (LPF) unit 13, a reference value setting unit 14, a threshold value calculation unit 15, and a threshold value determination unit. 16, an object determination unit 17, a memory 18, and a control unit 19.
  • LPF low-pass filter
  • the transmission circuit unit 11 transmits a pulsed exploration wave via the transmission / reception unit 10 in accordance with an instruction from the control unit 19. For example, one pulse is formed by vibrating the transmission / reception unit 10 16 times at 40 kHz. Therefore, the transmission circuit unit 11 corresponds to an example of a transmission unit.
  • the reception circuit unit 12 receives the reflected wave of the exploration wave transmitted from the transmission / reception unit 10 via the transmission / reception unit 10 and outputs it to the LPF unit 13 and the threshold determination unit 16. Therefore, the receiving circuit unit 12 corresponds to an example of a receiving unit.
  • the pulsed exploration wave may be a radio wave or an ultrasonic wave, but in the present embodiment, the following description will be given by taking the case of an ultrasonic wave as an example.
  • the transmission / reception unit 10 may be provided in any of the front part and the rear part of the vehicle. However, in the present embodiment, the case where the transmission / reception part 10 is provided in the rear part of the vehicle and used to detect an object in the rear part of the vehicle is taken as an example. The following explanation will be given.
  • the LPF unit 13 is a low-pass filter, and passes only a frequency equal to or lower than a predetermined value out of the output from the receiving circuit unit 12 and outputs it to the threshold value calculation unit 15. Therefore, the LPF unit 13 corresponds to an example of a filter unit.
  • the frequency below the predetermined value here is a frequency that is at most lower than the pulse frequency of the transmitted exploration wave and is, for example, 1/3 or less of the pulse frequency of the transmitted exploration wave. Good.
  • the output passing through the LPF unit 13 is gentle compared to the case of the reflected wave from the object to be detected. And the apparent frequency is lowered. Therefore, the waveform of the reflected wave by the road surface reflection (hereinafter, road surface waveform) can be traced by the LPF unit 13.
  • road surface waveform the waveform of the reflected wave by the road surface reflection
  • the reference value setting unit 14 sets a reference value used in the threshold calculation unit 15 and the threshold determination unit 16. As the reference value, the output of the LPF unit 13 before transmitting the exploration wave from the transmitting / receiving unit 10, that is, the dark noise level is used. The output of the LPF unit 13 before transmitting the exploration wave from the transmission / reception unit 10 may be obtained without transmitting the exploration wave from the transmission / reception unit 10.
  • the reference value may be recorded in advance when the object detection device 1 is manufactured, or may be obtained by the object detection device 1 after the object detection device 1 is mounted on the vehicle.
  • the control unit 19 does not transmit the exploration wave, and the output of the LPF unit 13 while the exploration wave is not transmitted is obtained as the reference value. And it is sufficient.
  • the threshold value calculation unit 15 calculates an object determination threshold value for determining the presence or absence of an object to be detected.
  • the reference value set by the reference value setting unit 14 see the solid line C in the figure
  • the LPF unit 13 see the solid line A in the figure
  • the object determination threshold value is calculated. 2 and 3
  • the vertical axis represents amplitude
  • the horizontal axis represents time.
  • the threshold calculation unit 15 outputs the calculated object determination threshold to the object determination unit 17.
  • the threshold value calculation unit 15 adds the reference value to the reference value by referring to, for example, a map or a table indicating the correspondence between the output of the LPF unit 13 and the value to be added to the reference value based on the output of the LPF unit 13. It is good also as a structure (henceforth the modification 1) which calculates the value to do and calculates an object determination threshold value by adding to a reference value.
  • the threshold calculation unit 15 is configured to calculate the object determination threshold based on the output of the LPF unit 13 with reference to, for example, a map or a table indicating a correspondence relationship between the output of the LPF unit 13 and the object determination threshold. (Hereinafter, Modification 2) may be adopted.
  • the maps and tables in the first and second modifications may be configured to read and use those stored in advance in a memory (not shown).
  • a plurality of values are preliminarily set for each output of the LPF unit 13 such as a larger value as the output of the LPF unit 13 increases and a smaller value as the output of the LPF unit 13 decreases. Are associated with each other.
  • the threshold determination unit 16 temporarily determines the presence or absence of an object to be detected using the reference value set by the reference value setting unit 14 without using the above-described object determination threshold.
  • the output from the receiving circuit unit 12 is larger than the reference value, it is temporarily determined that there is an object.
  • the output from the receiving circuit unit 12 is less than the reference value, there is no object.
  • the time when provisional detection hereinafter referred to as temporary detection time
  • the time when provisional detection is performed may be a time, or may be a time counted by a timer circuit or the like with a certain time as a reference.
  • the object determination unit 17 associates the temporary detection time and the peak value sent from the threshold determination unit 16 and stores them in the memory 18. Also, the object determination unit 17 detects the detection target from the object determination threshold output from the threshold calculation unit 15 and the peak value when provisionally detected by the output of the LPF unit 13 used to calculate the object determination threshold. The presence or absence of an object is determined. For example, the object determination unit 17 compares the object determination threshold value with the peak value, and determines that there is an object when the peak value is greater than the object determination threshold value, while the peak value is equal to or less than the object determination threshold value. It is determined that there is no object.
  • the association between the object determination threshold used for determining the presence or absence of an object and the peak value may be configured as follows. It is assumed that the delay time due to the processing in the LPF unit 13 and the threshold value calculation unit 15 is obtained in advance and stored in the memory 18. First, a provisional detection time corresponding to a time point that is backed by the delay time from the time when the object determination threshold is output from the threshold calculation unit 15 to the object determination unit 17 is obtained. And the peak value linked
  • the provisional detection time and the peak value are not stored in the memory 18, so that the output of the LPF unit 13 is uniformly stored in the memory 18 for a fixed time without performing provisional determination. Compared with, waste can be eliminated.
  • the threshold determination unit 16 may be configured not to perform provisional determination of the presence or absence of an object.
  • the output of the LPF unit 13 is uniformly stored in the memory 18 for a certain period of time, and the output of the LPF unit 13 that is traced back by the delay time described above is read and used to determine the presence or absence of an object. Good.
  • the flow in FIG. 4 may be configured to start when the object detection device 1 detects that the vehicle has started to move backward, for example. What is necessary is just to set it as the structure detected based on the signal of the shift position sensor which shows that the shift position turned into the reverse position that the vehicle started reverse.
  • the configuration shown in FIG. 4 may be started when the power of the object detection device 1 is turned on.
  • step S ⁇ b> 1 according to an instruction from the control unit 19, the transmission circuit unit 11 transmits a pulsed exploration wave through the transmission / reception unit 10, and the reception circuit unit 12 transmits the exploration wave through the transmission / reception unit 10. Receive the reflected wave. Then, the process proceeds to step S2 and step S3. Steps S2 and S3 are performed in parallel.
  • step S2 the threshold determination unit 16 temporarily determines the presence or absence of an object to be detected using the reference value, and temporarily detects the object. Then, the object determination unit 17 stores the temporary detection time and the peak value sent from the threshold determination unit 16 when the object is temporarily detected in the memory 18, and the process proceeds to step S5.
  • step S3 performed in parallel with step S2, the LPF unit 13 traces the road surface waveform by passing only the frequency equal to or lower than the predetermined value among the outputs from the receiving circuit unit 12, and the process proceeds to step S4.
  • the threshold calculation unit 15 calculates the object determination threshold by adding the reference value to the output of the LPF unit 13, and proceeds to step S5.
  • step S ⁇ b> 5 the object determination unit 17 compares the object determination threshold output from the threshold calculation unit 15 with the peak value when provisionally detected by the output of the LPF unit 13 used to calculate the object determination threshold. To do. If the peak value is larger than the object determination threshold value (YES in step S5), the process proceeds to step S6. On the other hand, if the peak value is less than or equal to the object determination threshold value (NO in step S5), it is determined that there is no object and the process proceeds to step S7.
  • step S6 the object determination unit 17 determines that there is an object, and proceeds to step S7.
  • the determination result may be sent to a driving support ECU that performs driving support and used for driving support in the driving support ECU.
  • driving assistance it may be notified by voice or display that an obstacle exists around the vehicle.
  • step S7 if it is the end timing of the object detection related process (YES in step S7), the flow is ended. On the other hand, if it is not the end timing of the object detection related process (NO in step S7), the process returns to step S1 and the flow is repeated.
  • the end timing of the object detection related process there is a time when the shift position is other than the reverse position, or when the power of the object detection device 1 is turned off.
  • step S the description has been made on the assumption that an object is temporarily detected. However, if the object is not temporarily detected, it may be determined that there is no object in step S ⁇ b> 6. In addition, the control unit 19 may move to step S7 without operating the LPF unit, and may not perform steps S3 to S6.
  • the control unit 19 performs various controls such as causing the transmission circuit unit 11 to perform transmission. For example, when the control unit 19 causes the transmission circuit unit 11 to transmit the search wave from the transmission / reception unit 10, the control unit 19 operates the LPF unit 13 until the delay time of the sneak signal of the search wave transmission has elapsed. Instead, the LPF unit 13 is controlled to operate the LPF unit 13 after the delay time has elapsed. In the case of ultrasonic waves, the LPF unit 13 is not operated until the reverberation time of the transmitting / receiving unit 10 elapses, and the LPF unit 13 is controlled to operate the LPF unit 13 after the reverberation time elapses. Therefore, the control unit 19 corresponds to an example of an operation control unit.
  • the reverberation time when the exploration wave is transmitted from the transmission / reception unit 10 is obtained in advance and stored in the memory 18 or the like, and after the exploration wave is transmitted, the LPF unit 13 corresponding to the stored reverberation time. It is sufficient to adopt a configuration in which the above operation is not performed. According to the above configuration, it is possible to determine the presence or absence of an object without being affected by noise due to the reverberation of the exploration wave.
  • the value obtained by adding the output of the LPF unit 13 obtained by more accurately tracing the road surface waveform to the dark noise level is used as the object determination threshold. Therefore, the object determination threshold adapted to the road surface state is used.
  • the object determination unit 17 can more accurately determine the presence or absence of an object. Therefore, it is possible to detect an object while suppressing the influence of noise caused by the road surface while suppressing a decrease in detection performance.
  • the object determination threshold is calculated based on the output obtained by passing the reflected wave received by the receiving circuit unit 12 through the wave transmitting / receiving unit 10 through the LPF unit 13, The cost for calculating the object determination threshold can be reduced. As a result, it is possible to detect an object while suppressing the influence of noise due to road surface reflection while suppressing an increase in cost and a decrease in detection performance.
  • control unit 19 may have a configuration in which the LPF unit 13 is not operated when the vehicle speed of the vehicle is equal to or higher than a predetermined speed (hereinafter, modified example 3).
  • the vehicle speed may be determined by acquiring a signal from a vehicle speed sensor via an in-vehicle network, ECU, or the like and specifying the control unit 19.
  • the predetermined speed mentioned here is a vehicle speed in a high speed range where noise due to road surface reflection is reduced by the influence of the Doppler shift, and may be set to 60 km / h, for example.
  • the threshold value calculation unit 15 is configured to calculate the reference value as the object determination threshold value without adding the output of the LPF unit 13 to the reference value.
  • the object detection device 1a according to the second embodiment is the same as the object detection device 1 according to the first embodiment except that the noise superimposition determination unit 20 is provided and a part of the processing in the object determination unit 17 is different.
  • the object detection device 1a includes a transmission / reception unit 10, a transmission circuit unit 11, a reception circuit unit 12, an LPF unit 13, a reference value setting unit 14, a threshold value calculation unit 15, a threshold value determination unit 16, and an object determination.
  • Unit 17, memory 18, control unit 19, and noise superimposition determination unit 20 includes a transmission / reception unit 10, a transmission circuit unit 11, a reception circuit unit 12, an LPF unit 13, a reference value setting unit 14, a threshold value calculation unit 15, a threshold value determination unit 16, and an object determination.
  • Unit 17, memory 18, control unit 19, and noise superimposition determination unit 20 are examples of the object detection device 1a.
  • the noise superimposition determination unit 20 calculates the difference between the output of the LPF unit 13 and the reference value set by the reference value setting unit 14. For example, the difference is calculated by subtracting the reference value from the output of the LPF unit 13. If the calculated difference is greater than the specified value, it is determined that noise greater than the specified value is superimposed. On the other hand, if the calculated difference is less than the specified value, noise greater than the specified value is superimposed. Judge that it is not. The noise superimposition determination unit 20 sends the determination result to the object determination unit 17 and the notification unit 2.
  • the specified value here is set in advance and can be set arbitrarily.
  • a configuration may be used in which a noise value is set to such an extent that an object determination threshold that is difficult to accurately determine whether or not an object is present in the object determination unit 17 is calculated.
  • the object determination unit 17 receives a determination result from the noise superimposition determination unit 20 that noise exceeding a specified value is superimposed. For example, the determination of the presence / absence of an object is temporarily stopped. In addition, the object determination unit 17 suspends the determination of the presence / absence of an object, and then receives the determination result from the noise superimposition determination unit 20 that noise exceeding the specified value is not superimposed, What is necessary is just to set it as the structure which restarts determination.
  • the object determination unit 17 when there is noise to the extent that an object determination threshold that is difficult to accurately determine the presence / absence of an object is present, the object determination unit 17 temporarily stops determining the presence / absence of an object. Therefore, erroneous determination can be suppressed.
  • the notification unit 2 is a display device, an audio output device, or the like, and performs a warning or the like when receiving a determination result from the noise superimposition determination unit 20 that noise exceeding a specified value is superimposed.
  • a warning indicating that there is a lot of noise
  • a warning indicating that it is not possible to determine the presence or absence of an object, and the like. Note that only one of the suspension of determination by the object determination unit 17 and the warning by the notification unit 2 may be performed.
  • the second embodiment has the same configuration as that of the first embodiment, the same effect as that of the first embodiment can be obtained. Moreover, it is good also as a structure which combined Embodiment 2 and the modification 1, the modification 2, and the modification 3.
  • FIG. 1 is a structure which combined Embodiment 2 and the modification 1, the modification 2, and the modification 3.
  • the object detection device 1b according to the third embodiment is the same as the object detection device 1 according to the first embodiment except that the LPF unit 13 includes a downsampling unit 22 and a moving average unit 23.
  • the configuration that uses the output of the LPF unit 13 in the object detection device 1 of the first embodiment may be replaced with a configuration that uses the output that has passed through the downsampling unit 22 and the moving average unit 23.
  • the object detection apparatus 1b includes a transmission / reception unit 10, a transmission circuit unit 11, a reception circuit unit 12, a reference value setting unit 14, a threshold value calculation unit 15, a threshold value determination unit 16, an object determination unit 17, and a memory. 18, a control unit 19, a downsampling unit 22, and a moving average unit 23.
  • the downsampling unit 22 and the moving average unit 23 correspond to an example of a filter unit.
  • the downsampling unit 22 performs downsampling to lower the frequency of the reflected wave signal received by the receiving unit of the reflected wave output from the receiving circuit unit 12 to a predetermined value or less.
  • the frequency below the predetermined value here is a frequency that is at most lower than the pulse frequency of the transmitted exploration wave and is, for example, 1/3 or less of the pulse frequency of the transmitted exploration wave. Good.
  • the moving average unit 23 takes a moving average for the outputs sequentially performed from the downsampling unit 22.
  • a simple moving average may be used.
  • the downsampling unit 22 and the moving average unit 23 are the same as the LPF unit 13 of the first embodiment in that only frequencies below a predetermined value are passed. Therefore, the third embodiment also has the same effect as the first embodiment. Play.
  • a configuration in which the third embodiment is combined with the first modification, the second modification, the third modification, or the second embodiment may be employed.
  • the output of the LPF unit 13 may be replaced with the output of the moving average unit 23.
  • the object detection system 100 of Embodiment 4 is mounted on a vehicle, and includes two object detection devices 1, a driving support ECU 3, and a notification unit 2, as shown in FIG.
  • the two object detection devices 1 are mounted on one vehicle and are provided, for example, to detect objects in different directions.
  • the configuration using the object detection device 1 will be described as an example. However, the configuration is not limited to this, and the configuration using the object detection device 1a or the object detection device 1b may be used.
  • the object detection device 1 may be configured to send the maximum output from the LPF unit 13 and the determination result in the object determination unit 17 to the driving support ECU 3, for example.
  • the driving support ECU 3 is configured as a normal computer, and has a known CPU, a memory such as a ROM, a RAM, and an EEPROM, an I / O, and a bus line (not shown) for connecting these configurations. Etc. are provided.
  • the driving assistance ECU 3 executes various processes by the CPU executing programs stored in advance in the ROM based on various information input from the object detection device 1. Further, as shown in FIG. 7, the driving support ECU 3 includes a comparison unit 31 and a determination unit 32 as functional blocks.
  • the comparison unit 31 compares the outputs of the LPF units 13 in the two object detection devices 1 and calculates an output difference. When the output difference calculated by the comparison unit 31 is within the predetermined range, the determination unit 32 determines that the noise is due to road surface reflection. When the output difference calculated by the comparison unit 31 is outside the predetermined range, the determination unit 32 determines that the output difference is due to road surface reflection. Distinguish from external noise other than noise.
  • External noise here refers to noise other than road surface reflections, such as exploration waves from similar systems of vehicles other than the own vehicle, and ultrasonic waves generated by the air brake of the truck.
  • the predetermined range mentioned here is a range that can be said to be substantially the same as the error level, for example. This is because the road surface reflection noise is the same in any object detection device 1, while the external noise is not the same.
  • the determination unit 32 determines that the noise is caused by road surface reflection
  • the determination unit 32 sends the determination result of the object detection device 1 to the notification unit 2.
  • the notification unit 2 that has received the determination result of the object detection device 1 performs, for example, a notification indicating that an object exists in the detection range of the object detection device 1 that has determined that there is an object (that is, has detected an object). And it is sufficient.
  • the discrimination unit 32 discriminates from the external noise for a predetermined number of times in succession, the discrimination unit 32 causes the notification unit 2 to issue a warning.
  • a configuration may be adopted in which notification that the object detection device 1 cannot be used due to external noise is made.
  • the predetermined plural times referred to here is the number of times that can be arbitrarily set, for example, two times.
  • the determination unit 32 may temporarily stop the determination of the presence / absence of an object in the object detection device 1 when the determination unit 32 continuously determines a predetermined number of times as external noise. In addition, the determination unit 32 determines the presence / absence of an object in the object detection device 1 when the determination of the presence / absence of the object in the object detection device 1 is temporarily stopped and then the determination from the external noise is not performed. The configuration may be resumed.
  • the above-described notification by the notification unit 2 and the temporary stop of the determination by the object detection device 1 may be performed for all the object detection devices 1 included in the object detection system 100, or for some object detection devices 1. It is good also as a structure to perform. When it is performed for some of the object detection devices 1, for example, the configuration may be such that only the larger output of the LPF unit 13 is performed.
  • the object detection system 100 may include three or more object detection devices 1.
  • the comparison unit 31 calculates the output difference of each LPF unit 13 in each of the three or more object detection devices 1 for each combination, and the determination unit 32 determines the output difference of each combination. do it. And what is necessary is just to set it as the structure which performs the above-mentioned alerting
  • the temporary stop of the notification in the notification unit 2 and the determination in the object detection device 1 is the LPF among the object detection devices 1 corresponding to the combination that is determined by the determination unit 32 continuously from the external noise for a predetermined number of times. It is good also as a structure performed only about the larger output of the part 13.
  • the fourth embodiment includes the configuration of the first embodiment, the same effects as those of the first embodiment can be obtained. Moreover, it is good also as a structure which combined Embodiment 4, Modification 1, Modification 2, Modification 3, Embodiment 2, and Embodiment 3.
  • FIG. 4 is good also as a structure which combined Embodiment 4, Modification 1, Modification 2, Modification 3, Embodiment 2, and Embodiment 3.

Abstract

 コストの増加及び検知性能の低下を抑えながらも、路面反射によるノイズの影響を抑えて物体を検知することを可能にする物体検知装置を提供する。 一実施形態の物体検知装置は、受信回路部12で受信した反射波のうち、高くとも探査波のパルス周波数よりも低い周波数のみを通過させるLPF部13と、LPF部13の出力に基づいて、物体の有無を判定するための物体判定閾値を算出する閾値算出部15と、閾値算出部15で算出した物体判定閾値を用いて物体の有無を判定する物体判定部17とを備える。

Description

物体検知装置及び物体検知システム 関連出願の相互参照
 本出願は、2013年9月17日に出願された日本国特許出願2013-192176号に基づくものであり、これをここに参照により援用する。
 本開示は、物体の検知を行う物体検知装置及び物体検知システムに関するものである。
 従来、超音波や電磁波といったパルス状の探査波を送受信し、探査波の照射範囲に存在する物体を検知する車両用の物体検知装置が知られている。しかしながら、探査波の指向特性により、水平方向に探査波を送信したとしても、受信される反射波には路面反射によるノイズを含むことになる。
 そこで、この問題を解決するために、例えば、特許文献1には、路面を撮像する車載カメラをさらに備え、撮像画像から判断した路面状態に応じて、ノイズを除くための閾値を決定することにより、ノイズを取り除く技術が開示されている。
特開2011-112416号公報
 しかしながら、特許文献1に開示の技術では、路面を撮像する車載カメラが別途必要となってしまうため、高コストとなってしまう。
 また、最悪の条件を想定して、ノイズを除くための閾値を設定することも考えられるが、これによれば、妥当な閾値に対して大きなマージンをとることが必要となり、物体の検知性能が低下してしまう。
 本開示は、上記の点に鑑みなされたものであって、その目的は、コストの増加及び検知性能の低下を抑えながらも、路面反射によるノイズの影響を抑えて物体を検知することを可能にする物体検知装置及び物体検知システムを提供することにある。
 本開示の一例に係る物体検知装置は、車両に搭載されて、パルス状の探査波を送信する送信部と、当該探査波の反射波を受信する受信部とを備える物体検知装置であって、受信部で受信した反射波のうち、高くとも探査波のパルス周波数よりも低い周波数のみを通過させるフィルタ部と、フィルタ部の出力に基づいて、物体の有無を判定するための物体判定閾値を算出する閾値算出部と、閾値算出部で算出した物体判定閾値を用いて物体の有無を判定する物体判定部とを備える。
 同一の探査波に対する路面反射による反射波は、路面の凹凸によって生じる反射の時間差によって複数となるため、フィルタ部から出力される波形が、検知対象とする物体からの反射波の場合に比べてなだらかになり、見た目の周波数が低くなる。よって、所定値以下の周波数のみを通過させるフィルタ部の出力に基づいて物体判定閾値を算出すれば、路面状態に適応した物体判定閾値を算出することが可能になる。そして、本開示の物体検知装置では、路面状態に適応した物体判定閾値を用いて物体判定部で物体の有無を判定することが可能になるので、検知性能の低下を抑えながら、路面によるノイズの影響を抑えて物体を検知することが可能になる。
 また、路面を撮像する車載カメラを別途必要とせず、受信部で受信した反射波をフィルタ部で通過させた出力に基づいて、物体の有無を判定するための物体判定閾値を算出するので、物体判定閾値を算出するためのコストを抑えることができる。その結果、コストの増加及び検知性能の低下を抑えながらも、路面反射によるノイズの影響を抑えて物体を検知することが可能になる。
 本開示の物体検知システムは、先に述べた物体検知装置を含んでいるので、コストの増加及び検知性能の低下を抑えながらも、路面によるノイズの影響を抑えて物体を検知することが可能になる。
図1は、実施形態1に係る物体検知装置1の概略的な構成の一例を示すブロック図である。 図2は、物体判定閾値を説明するための一例を示す図である。 図3は、物体判定閾値を説明するための他の例を示す図である。 図4は、物体検知装置での物体検知関連処理の流れの一例を示すフローチャートである。 図5は、実施形態2に係る物体検知装置の概略的な構成の一例を示すブロック図である。 図6は、実施形態3に係る物体検知装置概略的な構成の一例を示すブロック図である。 図7は、実施形態4に係る物体検知システムの概略的な構成の一例を示すブロック図である。
 以下、本開示の実施形態について図面を用いて説明する。
 (実施形態1)
 図1は、実施形態1に係る物体検知装置1の概略的な構成を示すブロック図である。図1に示す物体検知装置1は、車両に搭載されて、車両の障害物となり得る物体を検知する。物体検知装置1は、図1に示すように、送受波部10、送信回路部11、受信回路部12、ローパスフィルタ(LPF)部13、基準値設定部14、閾値算出部15、閾値判定部16、物体判定部17、メモリ18、及び制御部19を備えている。
 送信回路部11は、制御部19の指示に従って、送受波部10を介してパルス状の探査波を送信する。例えば、送受波部10を40kHzで16回振動させることにより1パルスを形成する。よって、送信回路部11が送信部の一例に相当する。受信回路部12は、送受波部10を介して、送受波部10から送信した探査波の反射波を受信し、LPF部13と閾値判定部16に出力する。よって、受信回路部12が受信部の一例に相当する。パルス状の探査波は、電波であっても、超音波であってもよいが、本実施形態では超音波である場合を例に挙げて以降の説明を行う。
 送受波部10は、車両の前部や後部など、いずれに設ける構成としてもよいが、本実施形態では、車両の後部に設けて車両の後部の物体を検知するのに用いる場合を例に挙げて以降の説明を行う。
 LPF部13は、ローパスフィルタであって、受信回路部12からの出力のうち、所定値以下の周波数のみを通過させ、閾値算出部15に出力する。よって、LPF部13がフィルタ部の一例に相当する。ここで言うところの所定値以下の周波数とは、高くとも、送信した探査波のパルス周波数よりも低い周波数であって、例えば、送信した探査波のパルス周波数の1/3以下の周波数とすればよい。
 同一の探査波に対する路面反射による反射波は、路面の凹凸によって生じる反射の時間差によって複数となるため、LPF部13を通過した出力は、検知対象とする物体からの反射波の場合に比べてなだらかになり、見た目の周波数が低くなる。よって、LPF部13で路面反射による反射波の波形(以下、路面波形)をトレースできる。特に、LPF部13で探査波のパルス周波数の1/3以下の周波数のみを通過させる場合に、LPF部13で路面波形をより正確にトレースできる。
 基準値設定部14は、閾値算出部15や閾値判定部16で用いる基準値を設定する。基準値としては、送受波部10から探査波を送信する前のLPF部13の出力、即ち、暗ノイズレベルを用いる。送受波部10から探査波を送信する前のLPF部13の出力は、送受波部10から探査波を送信しないようにして求めればよい。
 なお、基準値は、物体検知装置1の製造時などに予め記録させる構成としてもよいし、車両への物体検知装置1の搭載後に、物体検知装置1が求める構成としてもよい。物体検知装置1が基準値を求める場合には、例えば、制御部19で探査波を送信させないようにした上で、探査波を送信していない間のLPF部13の出力を基準値として求める構成とすればよい。
 閾値算出部15は、検知対象となる物体の有無を判定するための物体判定閾値を算出する。一例としては、図2及び図3に示すように、LPF部13の出力(図中のAの実線参照)に、基準値設定部14で設定した基準値(図中のCの実線参照)を加算することで、物体判定閾値(図中のBの破線参照)を算出する。図2及び図3の縦軸は振幅を表しており、横軸は時間を表している。閾値算出部15は、算出した物体判定閾値を物体判定部17に出力する。
 なお、閾値算出部15は、LPF部13の出力をもとに、LPF部13の出力と基準値に加算する値との対応関係を示す例えばマップやテーブルなどを参照して、基準値に加算する値を算出し、基準値に加算することで物体判定閾値を算出する構成(以下、変形例1)としてもよい。
 また、閾値算出部15は、LPF部13の出力をもとに、LPF部13の出力と物体判定閾値との対応関係を示す例えばマップやテーブルなどを参照して、物体判定閾値を算出する構成(以下、変形例2)としてもよい。
 変形例1や変形例2におけるマップやテーブルなどは、図示しないメモリに予め格納されたものを読み出して用いる構成とすればよい。また、変形例1や変形例2におけるマップやテーブルなどでは、LPF部13の出力が大きくなるほど大きな値、LPF部13の出力が小さくなるほど小さな値といったように、LPF部13の出力ごとに予め複数の値が対応付けられている。
 閾値判定部16は、前述の物体判定閾値を用いず、基準値設定部14で設定した基準値を用いて、検知対象となる物体の有無を仮判定する。一例としては、受信回路部12からの出力が基準値よりも大きかった場合に、物体ありと仮判定する一方、受信回路部12からの出力が基準値以下であった場合には、物体なしと仮判定する。そして、物体ありと仮判定した場合には、物体を仮検知したものとして、仮検知したときの時間(以下、仮検知時間)及び受信回路部12からの出力のピーク値を物体判定部17に送る。仮検知したときの時間は、時刻であってもよいし、ある時点を基準としてタイマ回路等でカウントした時間であってもよい。
 物体判定部17は、閾値判定部16から送られてきた仮検知時間及びピーク値を紐付けして、メモリ18に記憶する。また、物体判定部17は、閾値算出部15から出力された物体判定閾値と、この物体判定閾値を算出するのに用いたLPF部13の出力で仮検知したときのピーク値とから、検知対象となる物体の有無を判定する。例えば、物体判定部17は、物体判定閾値とピーク値とを比較し、ピーク値が物体判定閾値よりも大きかった場合に、物体ありと判定する一方、ピーク値が物体判定閾値以下であった場合には、物体なしと判定する。
 一例としては、物体の有無の判定に用いる物体判定閾値とピーク値との対応付けは、以下のようにして行う構成とすればよい。LPF部13及び閾値算出部15での処理による遅れ時間を予め求めてメモリ18に記憶しておくものとする。まず、閾値算出部15から物体判定閾値が物体判定部17に出力されてきた時間から、上記遅れ時間だけ遡った時点に対応する仮検知時間を求める。そして、求めた仮検知時間に紐付けられたピーク値をメモリ18から読み出し、物体の有無の判定に用いる。
 以上の構成によれば、LPF部13及び閾値算出部15での処理による遅れ時間分を調整した上で、物体判定閾値を用いて物体の有無の判定を行うことができる。また、仮検知されていない場合には、仮検知時間及びピーク値をメモリ18に記憶しないので、仮判定を行わずにLPF部13の出力を一律に一定時間だけメモリ18に記憶しておく構成に比べ、無駄を省くことができる。
 なお、本実施形態では、閾値判定部16で物体の有無の仮判定を行う構成を示したが、必ずしもこれに限らない。例えば、閾値判定部16で物体の有無の仮判定を行わない構成としてもよい。この場合には、LPF部13の出力を一律に一定時間だけメモリ18に記憶しておき、前述の遅れ時間だけ遡ったLPF部13の出力を読み出し、物体の有無の判定に用いる構成とすればよい。
 ここで、図4のフローチャートを用いて、物体検知装置1での物体の検知に関連する処理(以下、物体検知関連処理)の流れの一例についての説明を行う。なお、図4のフローは、例えば車両が後退を開始したことを物体検知装置1が検出した場合に開始する構成とすればよい。車両が後退を開始したことは、シフト位置が後退位置となったことを示すシフトポジションセンサの信号をもとに検出する構成とすればよい。他にも、物体検知装置1の電源がオンになった場合に図4のフローを開始するなどの構成としてもよい。
 まず、ステップS1では、制御部19の指示に従って、送信回路部11が送受波部10を介してパルス状の探査波を送信し、受信回路部12が送受波部10を介して、その探査波の反射波を受信する。そして、ステップS2及びステップS3の処理に移る。ステップS2及びステップS3の処理は、並行して行われる。
 ステップS2では、閾値判定部16が、基準値を用いて、検知対象となる物体の有無を仮判定し、物体を仮検知する。そして、閾値判定部16から送られてくる、物体を仮検知したときの仮検知時間及びピーク値を、物体判定部17がメモリ18に記憶し、ステップS5に移る。
 ステップS2と並行して行われるステップS3では、LPF部13が、受信回路部12からの出力のうち、所定値以下の周波数のみを通過させることで、路面波形をトレースし、ステップS4に移る。ステップS4では、閾値算出部15が、LPF部13の出力に基準値を加算することで、物体判定閾値を算出し、ステップS5に移る。
 ステップS5では、物体判定部17が、閾値算出部15から出力された物体判定閾値と、この物体判定閾値を算出するのに用いたLPF部13の出力で仮検知したときのピーク値とを比較する。そして、ピーク値が物体判定閾値よりも大きかった場合(ステップS5でYES)には、ステップS6に移る。一方、ピーク値が物体判定閾値以下であった場合(ステップS5でNO)には、物体なしと判定してステップS7に移る。
 ステップS6では、物体判定部17が、物体ありと判定し、ステップS7に移る。例えば、物体判定部17が物体ありと判定した場合は、その判定結果を、運転支援を行う運転支援ECUに送り、運転支援ECUでの運転支援に利用する構成とすればよい。運転支援の一例としては、車両周辺に障害物が存在することを音声や表示で報知したりすることが挙げられる。
 ステップS7では、物体検知関連処理の終了タイミングであった場合(ステップS7でYES)には、フローを終了する。一方、物体検知関連処理の終了タイミングでなかった場合(ステップS7でNO)には、ステップS1に戻ってフローを繰り返す。物体検知関連処理の終了タイミングの一例としては、シフト位置が後退位置以外となったときや物体検知装置1の電源がオフになったときなどがある。
 なお、図4のフローでは、物体を仮検知する場合を前提として説明を行ったが、物体を仮検知しなかった場合には、ステップS6で物体なしと判定する構成とすればよい。他にも、制御部19がLPF部を動作させずにステップS7に移り、ステップS3~S6を行わない構成としてもよい。
 制御部19は、送信回路部11に送信を行わせるなど、各種の制御を行う。例えば、制御部19は、送信回路部11に送受波部10からの探査波の送信を行わせた場合、その探査波の送信の回り込み信号の遅延時間が経過するまではLPF部13を動作させず、遅延時間が経過した後にLPF部13を動作させるようLPF部13を制御する。また、超音波の場合には送受波部10の残響時間が経過するまではLPF部13を動作させず、残響時間が経過した後にLPF部13を動作させるようLPF部13を制御する。よって、制御部19が動作制御部の一例に相当する。
 一例としては、送受波部10から探査波を送信した場合の残響時間を予め求めてメモリ18等に記憶しておき、探査波の送信後、この記憶しておいた残響時間分だけLPF部13の動作を行わないようにする構成とすればよい。以上の構成によれば、探査波の残響によるノイズの影響を受けずに物体の有無の判定を行うことが可能になる。
 実施形態1の構成によれば、暗ノイズレベルに、路面波形をより正確にトレースしたLPF部13の出力を加算した値を物体判定閾値とするので、路面状態に適応した物体判定閾値を用いて物体判定部17で物体の有無をより正確に判定することが可能になる。よって、検知性能の低下を抑えながら、路面によるノイズの影響を抑えて物体を検知することが可能になる。
 また、路面を撮像する車載カメラを別途必要とせず、受信回路部12で送受波部10を介して受信した反射波をLPF部13で通過させた出力に基づいて物体判定閾値を算出するので、物体判定閾値を算出するためのコストを抑えることができる。その結果、コストの増加及び検知性能の低下を抑えながらも、路面反射によるノイズの影響を抑えて物体を検知することが可能になる。
 また、制御部19は、車両の車速が所定速度以上の場合にはLPF部13を動作させない構成(以下、変形例3)としてもよい。車速については、車載ネットワークやECU等を介して車速センサの信号を取得し、制御部19が特定する構成とすればよい。ここで言うところの所定速度は、ドップラーシフトの影響により路面反射によるノイズが小さくなる程度の高速域の車速であって、例えば60km/h等とすればよい。さらに、変形例3の場合には、閾値算出部15は、基準値にLPF部13の出力を加算せずに、この基準値を物体判定閾値として算出する構成とする。
 路面反射によるノイズが小さくなる条件下では、LPF部13で通過させた出力に基づいて物体判定閾値を厳密に算出する必要性が低いと考えられる。よって、変形例3の構成によれば、路面反射によるノイズが小さくなる条件下において必要性の低い処理を省くことができるという利点がある。
 (実施形態2)
 以上、実施形態1を説明したが、本開示の実施形態は上述の実施形態1に限定されるものではなく、次の実施形態2も本開示の実施形態に含まれる。以下では、この次の実施形態2について図面を用いて説明を行う。なお、説明の便宜上、前述の実施形態1の説明に用いた図に示した部材と同一の機能を有する部材については、同一の符号を付し、その説明を省略する。
 実施形態2の物体検知装置1aは、ノイズ重畳判定部20を備える点と、物体判定部17での処理の一部が異なる点を除けば、実施形態1の物体検知装置1と同様である。
 図5に示すように、物体検知装置1aは、送受波部10、送信回路部11、受信回路部12、LPF部13、基準値設定部14、閾値算出部15、閾値判定部16、物体判定部17、メモリ18、制御部19、及びノイズ重畳判定部20を備えている。
 ノイズ重畳判定部20は、LPF部13の出力と基準値設定部14で設定した基準値との差分を算出する。例えば、LPF部13の出力から基準値を差し引いて差分を算出する。そして、算出した差分が規定値よりも大きい場合には、規定値以上のノイズが重畳していると判定する一方、算出した差分が規定値以下の場合には、規定値以上のノイズは重畳していないと判定する。ノイズ重畳判定部20は、判定結果を物体判定部17や報知部2へ送る。
 ここで言うところの規定値は、予め設定されるものであって、任意に設定可能なものである。例えば規定値としては、物体判定部17での物体の有無の判定を正確に行うことが困難な物体判定閾値が算出されてしまう程度のノイズの値を設定する構成とすればよい。
 物体判定部17は、実施形態1で説明したのと同様の処理を行う他に、ノイズ重畳判定部20から、規定値以上のノイズが重畳しているとの判定結果を受けた場合には、例えば、物体の有無の判定を一時中止する。また、物体判定部17は、物体の有無の判定を一時中止した後、ノイズ重畳判定部20から、規定値以上のノイズは重畳していないとの判定結果を受けた場合に、物体の有無の判定を再開する構成とすればよい。
 これによれば、物体の有無の判定を正確に行うことが困難な物体判定閾値が算出されてしまう程度のノイズが存在する場合には、物体判定部17での物体の有無の判定を一時中止するので、誤判定を抑えることができる。
 報知部2は、表示装置や音声出力装置等であって、ノイズ重畳判定部20から、規定値以上のノイズが重畳しているとの判定結果を受けた場合に、例えば警告等を行う。一例としては、ノイズが多いことを示す警告や物体の有無の判定を行うことができないことを示す警告などがある。なお、物体判定部17での判定の一時中止と、報知部2での警告とは、いずれか一方のみを行う構成としてもよい。
 実施形態2は、実施形態1と同様の構成を備えているので、実施形態1と同様の効果も奏する。また、実施形態2と変形例1や変形例2や変形例3とを組み合わせた構成としてもよい。
 (実施形態3)
 以上、実施形態1、2を説明したが、本開示の実施形態は上述の実施形態1、2に限定されるものではなく、次の実施形態3も本開示の実施形態に含まれる。以下では、この次の実施形態3について図面を用いて説明を行う。なお、説明の便宜上、前述の実施形態1、2の説明に用いた図に示した部材と同一の機能を有する部材については、同一の符号を付し、その説明を省略する。
 実施形態3の物体検知装置1bは、LPF部13の代わりに、ダウンサンプリング部22及び移動平均部23を備える点を除けば、実施形態1の物体検知装置1と同様である。実施形態3では、実施形態1の物体検知装置1においてLPF部13の出力を用いていた構成を、ダウンサンプリング部22と移動平均部23とを経た出力を用いる構成に置き換えればよい。
 図6に示すように、物体検知装置1bは、送受波部10、送信回路部11、受信回路部12、基準値設定部14、閾値算出部15、閾値判定部16、物体判定部17、メモリ18、制御部19、ダウンサンプリング部22、及び移動平均部23を備えている。ダウンサンプリング部22と移動平均部23とが、フィルタ部の一例に相当する。
 ダウンサンプリング部22は、受信回路部12から出力されてくる反射波の受信部で受信した反射波の信号の周波数を所定値以下に下げるダウンサンプリングを行う。ここで言うところの所定値以下の周波数とは、高くとも、送信した探査波のパルス周波数よりも低い周波数であって、例えば、送信した探査波のパルス周波数の1/3以下の周波数とすればよい。
 移動平均部23は、ダウンサンプリング部22から逐次行われる出力に対して移動平均をとる。一例としては、単純移動平均をとる構成とすればよい。
 これによれば、ダウンサンプリングと移動平均とによって、処理を行うデータ量を抑えることができるので、物体検知装置1bでの処理速度の向上及び処理負荷の低減が可能になる。
 ダウンサンプリング部22及び移動平均部23は、所定値以下の周波数のみを通過させという点では、実施形態1のLPF部13と同様であるので、実施形態3は、実施形態1と同様の効果も奏する。なお、実施形態3と変形例1や変形例2や変形例3や実施形態2とを組み合わせた構成としてもよい。実施形態3と変形例1や変形例2とを組み合わせた構成とする場合には、LPF部13の出力を、移動平均部23の出力に置き換えればよい。
 (実施形態4)
 以上、実施形態1~3を説明したが、本開示の実施形態は上述の実施形態1~3に限定されるものではなく、次の実施形態4も本開示の実施形態に含まれる。以下では、この次の実施形態4について図面を用いて説明を行う。なお、説明の便宜上、前述の実施形態~3の説明に用いた図に示した部材と同一の機能を有する部材については、同一の符号を付し、その説明を省略する。
 実施形態4の物体検知システム100は、車両に搭載されるものであって、図7に示すように、2つの物体検知装置1と、運転支援ECU3と、報知部2とを含む。2つの物体検知装置1は、1台の車両に搭載され、例えばそれぞれ異なる方向の物体を検知するために設けられる。なお、本実施形態では、物体検知装置1を用いる構成を例に挙げて以降の説明を行うが、必ずしもこれに限らず、物体検知装置1aや物体検知装置1bを用いる構成としてもよい。
 物体検知装置1は、例えば、LPF部13からの最大出力と、物体判定部17での判定結果とを運転支援ECU3に送る構成とすればよい。
 運転支援ECU3は、通常のコンピュータとして構成されており、内部には周知のCPU、ROMやRAMやEEPROMなどのメモリ、I/O、及びこれらの構成を接続するバスライン(いずれも図示せず)などが備えられている。運転支援ECU3は、物体検知装置1から入力された各種情報に基づき、ROMに予め記憶されているプログラムをCPUが実行することによって各種の処理を実行する。また、運転支援ECU3は、図7に示すように、機能ブロックとして、比較部31及び判別部32を備えている。
 比較部31は、2つの物体検知装置1における各LPF部13の出力を比較し、出力差を算出する。判別部32は、比較部31で算出した出力差が所定範囲内の場合には、路面反射によるノイズと判別し、比較部31で算出した出力差が所定範囲外の場合には、路面反射によるノイズ以外の外来ノイズと判別する。
 ここで言うところの外来ノイズとは、自車以外の車両の同様のシステムからの探査波や、トラックのエアブレーキによって発生する超音波といった、路面反射以外のノイズを指している。また、ここで言うところの所定範囲とは、例えば誤差程度の実質的に同程度と言える範囲である。これは、路面反射のノイズはいずれの物体検知装置1でも同程度である一方、外来ノイズは同程度とはならない点を考慮したものである。
 判別部32で路面反射によるノイズと判別した場合には、判別部32は、物体検知装置1の判定結果を報知部2に送る。物体検知装置1の判定結果を受けた報知部2は、例えば物体ありと判定した(つまり、物体を検知した)物体検知装置1の検知範囲に物体が存在することを示す報知を行うなどする構成とすればよい。
 一方、判別部32で外来ノイズと所定の複数回連続して判別した場合には、判別部32は、報知部2で警告を行わせる。一例としては、外来ノイズによって物体検知装置1が使用できない状態である旨の報知を行わせる構成とすればよい。ここで言うところの所定の複数回とは、任意に設定可能な回数であって、例えば2回とすればよい。
 他にも、判別部32で外来ノイズと所定の複数回連続して判別した場合に、判別部32が、物体検知装置1での物体の有無の判定を一時中止させる構成としてもよい。また、判別部32は、物体検知装置1での物体の有無の判定を一時中止させた後、外来ノイズとの判別が行われなくなった場合に、物体検知装置1での物体の有無の判定を再開する構成とすればよい。
 これによれば、外来ノイズの影響によって、物体の有無の判定を正確に行うことが困難な場合に、このことをユーザに知らせたり、判定を一時中止して誤判定を防いだりすることが可能になる。
 前述した報知部2での報知や物体検知装置1での判定の一時中止は、物体検知システム100に含まれる全ての物体検知装置1について行う構成としてもよいし、一部の物体検知装置1について行う構成としてもよい。一部の物体検知装置1について行う場合には、例えば、LPF部13の出力のより大きい方のみについて行う構成とすればよい。
 なお、本実施形態では、物体検知システム100に物体検知装置1を2つ含む場合を例に挙げて説明を行ったが、必ずしもこれに限らない。例えば、物体検知システム100に物体検知装置1を3つ以上含む構成としてもよい。
 この場合には、比較部31では、3つ以上の物体検知装置1における各LPF部13の出力差を各組み合わせについて算出し、各組み合わせの出力差について、判別部32での判別を行う構成とすればよい。そして、判別部32で外来ノイズと所定の複数回連続して判別される組み合わせに該当する物体検知装置1について、前述の報知や判定の一時中止を行う構成とすればよい。なお、報知部2での報知や物体検知装置1での判定の一時中止は、判別部32で外来ノイズと所定の複数回連続して判別される組み合わせに該当する物体検知装置1のうち、LPF部13の出力のより大きい方のみについて行う構成としてもよい。
 実施形態4は、実施形態1の構成を含んでいるので、実施形態1と同様の効果も奏する。また、実施形態4と変形例1や変形例2や変形例3や実施形態2や実施形態3とを組み合わせた構成としてもよい。
 なお、本開示に係る実施形態は、上述した各実施形態に限定されるものではなく、種々の変更が可能である。例えば、異なる実施形態にそれぞれ開示された技術的部位を適宜組み合わせて得られる実施形態についても本開示の実施形態の範囲に含まれる。

Claims (11)

  1.  車両に搭載されて、パルス状の探査波を送信する送信部(11)と、当該探査波の反射波を受信する受信部(12)とを備える物体検知装置(1、1a、1b)であって、
     前記受信部で受信した反射波のうち、高くとも前記探査波のパルス周波数よりも低い周波数のみを通過させるフィルタ部(13、22、23)と、
     前記フィルタ部の出力に基づいて、物体の有無を判定するための物体判定閾値を算出する閾値算出部(15)と、
     前記閾値算出部で算出した前記物体判定閾値を用いて物体の有無を判定する物体判定部(17)とを備える物体検知装置。
  2.  請求項1において、
     前記フィルタ部は、前記探査波のパルス周波数の1/3以下の周波数のみを通過させる物体検知装置。
  3.  請求項1又は2において、
     前記フィルタ部は、
     前記受信部で受信した反射波の周波数を、高くとも前記探査波のパルス周波数よりも低い周波数以下に下げるダウンサンプリングを行うダウンサンプリング部(22)と、
     前記ダウンサンプリング部から逐次行われる出力に対して移動平均をとる移動平均部(23)とを有する物体検知装置。
  4.  請求項1~3のいずれか1項において、
     前記閾値算出部は、前記フィルタ部の出力に所定の基準値を加算することで前記物体判定閾値を算出する物体検知装置。
  5.  請求項4において、
     前記基準値は、前記送信部で前記探査波を送信せずに求めた前記フィルタ部の出力としての暗ノイズレベルである物体検知装置。
  6.  請求項4又は5において、
     前記フィルタ部の動作を制御する動作制御部(19)を備え、
     前記動作制御部は、前記車両の車速が所定速度以上の場合には前記フィルタ部を動作させず、
     前記閾値算出部は、前記フィルタ部の出力を加算しない前記基準値を前記物体判定閾値として算出する物体検知装置。
  7.  請求項4~6のいずれか1項において、
     前記フィルタ部の出力と前記基準値との差分が予め定められた値より大きい場合に、規定値以上のノイズが重畳していると判定するノイズ重畳判定部(20)を備える物体検知装置。
  8.  請求項1~7のいずれか1項において、
     前記探査波は超音波であり、
     前記フィルタ部の動作を制御する動作制御部(19)を備えるものであって、
     前記動作制御部は、前記送信部で前記探査波を送信した場合、その探査波の送信の残響時間が経過した後に前記フィルタ部を動作させる物体検知装置。
  9.  1台の車両に、請求項1~8のいずれか1項に記載の物体検知装置(1、1a、1b)を複数搭載している物体検知システム。
  10.  請求項9において、
     複数の前記物体検知装置の各々の前記フィルタ部の出力を比較する比較部(31)と、
     前記比較部で比較した出力差が所定範囲内の場合には、路面反射によるノイズと判別し、前記比較部で比較した出力差が所定範囲外の場合には、路面反射によるノイズ以外の外来ノイズと判別する判別部(32)とを備える物体検知システム。
  11.  請求項10において、
     複数の所定回数連続で前記判別部が前記外来ノイズと判別した場合に、外来ノイズによって前記物体検知装置が使用できない状態である旨の報知を行う報知部(2)を備える物体検知システム。
PCT/JP2014/004533 2013-09-17 2014-09-03 物体検知装置及び物体検知システム WO2015040815A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/022,166 US9880273B2 (en) 2013-09-17 2014-09-03 Object detection apparatus and object detection system
DE112014004258.7T DE112014004258B4 (de) 2013-09-17 2014-09-03 Objekterfassungsvorrichtung und Objekterfassungssystem
CN201480050821.4A CN105705963B (zh) 2013-09-17 2014-09-03 物体检测装置及物体检测系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013192176A JP6146228B2 (ja) 2013-09-17 2013-09-17 物体検知装置及び物体検知システム
JP2013-192176 2013-09-17

Publications (1)

Publication Number Publication Date
WO2015040815A1 true WO2015040815A1 (ja) 2015-03-26

Family

ID=52688485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004533 WO2015040815A1 (ja) 2013-09-17 2014-09-03 物体検知装置及び物体検知システム

Country Status (5)

Country Link
US (1) US9880273B2 (ja)
JP (1) JP6146228B2 (ja)
CN (1) CN105705963B (ja)
DE (1) DE112014004258B4 (ja)
WO (1) WO2015040815A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9880273B2 (en) 2013-09-17 2018-01-30 Denso Corporation Object detection apparatus and object detection system

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6666023B2 (ja) * 2015-07-02 2020-03-13 東京瓦斯株式会社 感震センサ及び地震判定方法
JP6609229B2 (ja) * 2016-09-02 2019-11-20 株式会社デンソー 物体検知装置
KR101887901B1 (ko) * 2016-09-08 2018-08-13 현대오트론 주식회사 초음파 센서 구동 장치 및 초음파 센서 구동 방법
JP6649865B2 (ja) * 2016-10-27 2020-02-19 株式会社Soken 物体検知装置
JP6814053B2 (ja) * 2017-01-19 2021-01-13 株式会社日立エルジーデータストレージ 物体位置検出装置
DE102017103275A1 (de) * 2017-02-17 2018-08-23 Valeo Schalter Und Sensoren Gmbh Verfahren zum Erfassen eines Objekts in einem Umgebungsbereich eines Kraftfahrzeugs mithilfe eines Ultraschallsensors mit verbesserter Filterung von Bodenreflexionen, Steuergerät, Ultraschallsensorvorrichtung sowie Kraftfahrzeug
JP6870444B2 (ja) * 2017-04-10 2021-05-12 株式会社Soken 物体検知装置
JP6784236B2 (ja) * 2017-07-10 2020-11-11 株式会社Soken 超音波式の物体検出装置
JP6874647B2 (ja) * 2017-11-07 2021-05-19 株式会社デンソー 送受信制御装置
DE102018203924A1 (de) * 2018-03-15 2019-09-19 Robert Bosch Gmbh Verfahren und Vorrichtung zur Erkennung einer Fahrbahnoberflächenbeschaffenheit
US10311704B1 (en) 2018-03-29 2019-06-04 Futurewei Technologies, Inc. Passenger-related item loss mitigation
CN108548586B (zh) * 2018-05-09 2020-05-12 武汉海盛智创科技有限公司 基于超声波混响检测的外贴式液位报警系统及方法
JP7276744B2 (ja) * 2019-02-26 2023-05-18 国立大学法人豊橋技術科学大学 超音波検査装置及び超音波検査方法
DE102019203419A1 (de) 2019-03-13 2020-09-17 Robert Bosch Gmbh Verfahren zum Ermitteln eines nässebedingten Unfallrisikos für ein Fortbewegungsmittel
JP7150165B2 (ja) * 2019-05-31 2022-10-07 三菱電機株式会社 物体検知システムおよび物体検知方法
US11308733B2 (en) * 2019-08-05 2022-04-19 Bose Corporation Gesture detection using ultrasonic clicks
CN113267768A (zh) * 2020-02-17 2021-08-17 华为技术有限公司 一种探测方法和装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0915332A (ja) * 1995-06-30 1997-01-17 Toyota Motor Corp 対地車速検出装置
JPH1145396A (ja) * 1997-07-25 1999-02-16 Honda Motor Co Ltd 対照物認識機能付き車両および路面判断方法
JP2001021646A (ja) * 1999-07-02 2001-01-26 Fujitsu Ten Ltd 車載レーダ装置
JP2003057345A (ja) * 2001-08-17 2003-02-26 Nissan Motor Co Ltd 車両用測距装置
JP2010139330A (ja) * 2008-12-10 2010-06-24 Clarion Co Ltd 車間距離検出装置および車速制御システム
JP2011112416A (ja) * 2009-11-25 2011-06-09 Clarion Co Ltd 車両周辺監視装置
JP2013160634A (ja) * 2012-02-06 2013-08-19 Denso Corp 超音波センサ

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5642160A (en) * 1979-09-13 1981-04-20 Nissan Motor Co Ltd Detecting device for obstacle
JPS6098375A (ja) * 1983-11-02 1985-06-01 Nec Corp 多重反響信号除去装置
SE522879C2 (sv) * 1998-08-07 2004-03-16 Fogim Hb Anordning för ett elstängsel
JP3269527B2 (ja) * 1999-03-01 2002-03-25 日本電気株式会社 埋没物体探知ソーナーシステムおよびその探知方法
JP2002122658A (ja) * 2000-10-12 2002-04-26 Oki Electric Ind Co Ltd パルス音探知方法
DE10116411A1 (de) * 2001-04-02 2002-10-17 Abb Research Ltd Näherungssensor und Verfahren zu seinem Betrieb
US6536326B2 (en) * 2001-06-15 2003-03-25 Sunpower, Inc. Control system and method for preventing destructive collisions in free piston machines
DE10226260A1 (de) * 2002-06-13 2003-12-24 Bosch Gmbh Robert Verfahren und Vorrichtung zur Aufprallerkennung
DE102004006015A1 (de) 2004-02-06 2005-08-25 Robert Bosch Gmbh Verfahren und Vorrichtung zur Anpassung eines Schwellwertes einer Detektionseinrichtung
US8164354B2 (en) * 2006-11-28 2012-04-24 Process Equipment Co. Of Tipp City Proximity detection system
DE102008054533B8 (de) * 2007-12-26 2013-02-14 Denso Corporation Ultraschallsensor
JP5348911B2 (ja) * 2008-03-04 2013-11-20 富士重工業株式会社 等価時間サンプリングパルスレーダ
DE102008044088A1 (de) 2008-11-26 2010-05-27 Robert Bosch Gmbh Verfahren zur dynamischen Ermittlung des Rauschlevels
DE102009027842A1 (de) * 2009-07-20 2011-01-27 Robert Bosch Gmbh Ultraschall-Messvorrichtung und Verfahren zum Auswerten eines Ultraschallsignals
US8675060B2 (en) * 2009-08-28 2014-03-18 Indian Institute Of Science Machine vision based obstacle avoidance system
US8258777B2 (en) * 2009-09-04 2012-09-04 Weihua Chen Inductive proximity sensor
JP5815918B2 (ja) * 2009-10-06 2015-11-17 セイコーエプソン株式会社 周波数測定方法、周波数測定装置及び周波数測定装置を備えた装置
CN101764554A (zh) * 2010-02-05 2010-06-30 无锡协昌科技有限公司 一种电动车用直流无刷电机正弦波控制系统
US9810784B2 (en) 2010-11-16 2017-11-07 Qualcomm Incorporated System and method for object position estimation based on ultrasonic reflected signals
DE102011102574B4 (de) 2011-05-26 2017-05-11 Valeo Schalter Und Sensoren Gmbh Verfahren zur Erzeugung einer Schwellwertkurve, Verfahren zur Entfernungsbestimmung und Vorrichtung zur Umfelderfassung in einem Fahrzeug
US9944237B2 (en) * 2012-04-11 2018-04-17 Ford Global Technologies, Llc Proximity switch assembly with signal drift rejection and method
US9287864B2 (en) * 2012-04-11 2016-03-15 Ford Global Technologies, Llc Proximity switch assembly and calibration method therefor
US9219472B2 (en) * 2012-04-11 2015-12-22 Ford Global Technologies, Llc Proximity switch assembly and activation method using rate monitoring
JP6146228B2 (ja) 2013-09-17 2017-06-14 株式会社Soken 物体検知装置及び物体検知システム
US9875661B2 (en) * 2014-05-10 2018-01-23 Aurora Flight Sciences Corporation Dynamic collision-avoidance system and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0915332A (ja) * 1995-06-30 1997-01-17 Toyota Motor Corp 対地車速検出装置
JPH1145396A (ja) * 1997-07-25 1999-02-16 Honda Motor Co Ltd 対照物認識機能付き車両および路面判断方法
JP2001021646A (ja) * 1999-07-02 2001-01-26 Fujitsu Ten Ltd 車載レーダ装置
JP2003057345A (ja) * 2001-08-17 2003-02-26 Nissan Motor Co Ltd 車両用測距装置
JP2010139330A (ja) * 2008-12-10 2010-06-24 Clarion Co Ltd 車間距離検出装置および車速制御システム
JP2011112416A (ja) * 2009-11-25 2011-06-09 Clarion Co Ltd 車両周辺監視装置
JP2013160634A (ja) * 2012-02-06 2013-08-19 Denso Corp 超音波センサ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9880273B2 (en) 2013-09-17 2018-01-30 Denso Corporation Object detection apparatus and object detection system

Also Published As

Publication number Publication date
CN105705963A (zh) 2016-06-22
JP6146228B2 (ja) 2017-06-14
DE112014004258T5 (de) 2016-06-09
US9880273B2 (en) 2018-01-30
US20160238700A1 (en) 2016-08-18
DE112014004258B4 (de) 2022-01-27
JP2015059764A (ja) 2015-03-30
CN105705963B (zh) 2017-09-12

Similar Documents

Publication Publication Date Title
WO2015040815A1 (ja) 物体検知装置及び物体検知システム
JP5798150B2 (ja) 物体検出装置
JP6293901B2 (ja) 自動車の超音波センサの受信信号における標的エコーを検知する方法、超音波センサ装置および自動車
KR101716590B1 (ko) 초음파 센서의 개선된 작동 방법, 운전자 지원 장치 및 자동차
JP6089585B2 (ja) 障害物検知装置
JP5641271B1 (ja) 車両の運転支援装置及び車載コンピュータ
JP2017015493A (ja) 運転支援装置及び運転支援方法
CN113406651B (zh) 检测系统
JP5338829B2 (ja) 運転支援装置
JP5736399B2 (ja) 車両接近報知装置
CN110678775B (zh) 物体检测装置、物体检测方法以及计算机能读取的存储介质
KR102228393B1 (ko) 후면 충돌 경보 제어 방법 및 장치
JP2013061690A (ja) 車両用障害物検出システム
JP2014232067A (ja) 物体検出装置
JP5443930B2 (ja) 車両の走行安全装置
WO2014061192A1 (ja) 距離検出装置、距離検出方法、およびそのための持続的有形コンピュータ読み取り媒体
JP6690401B2 (ja) 物体検知装置
JP5784789B1 (ja) 車両用障害物検出装置
JP4911051B2 (ja) 車両用周辺監視装置
CN114167428A (zh) 物体检测装置
TWI520861B (zh) Forward vehicle motion detection system and method thereof
JPH0321875B2 (ja)
KR20130046136A (ko) 적외선 심도 센서 및 레이더를 이용한 차량 충돌 방지 시스템 및 그 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14846388

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15022166

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120140042587

Country of ref document: DE

Ref document number: 112014004258

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14846388

Country of ref document: EP

Kind code of ref document: A1