WO2015037097A1 - 積層型ヘッダー、熱交換器、及び、ヒートポンプ装置 - Google Patents

積層型ヘッダー、熱交換器、及び、ヒートポンプ装置 Download PDF

Info

Publication number
WO2015037097A1
WO2015037097A1 PCT/JP2013/074639 JP2013074639W WO2015037097A1 WO 2015037097 A1 WO2015037097 A1 WO 2015037097A1 JP 2013074639 W JP2013074639 W JP 2013074639W WO 2015037097 A1 WO2015037097 A1 WO 2015037097A1
Authority
WO
WIPO (PCT)
Prior art keywords
flat tube
space
header
bare
tube
Prior art date
Application number
PCT/JP2013/074639
Other languages
English (en)
French (fr)
Inventor
拓未 西山
岡崎 多佳志
石橋 晃
真哉 東井上
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2013/074639 priority Critical patent/WO2015037097A1/ja
Priority to JP2015536609A priority patent/JP6116696B2/ja
Priority to EP14844568.7A priority patent/EP3054258B1/en
Priority to PCT/JP2014/073998 priority patent/WO2015037641A1/ja
Publication of WO2015037097A1 publication Critical patent/WO2015037097A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • F28F9/0221Header boxes or end plates formed by stacked elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/04Arrangements for sealing elements into header boxes or end plates
    • F28F9/16Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling
    • F28F9/18Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by welding
    • F28F9/182Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by welding the heat-exchange conduits having ends with a particular shape, e.g. deformed; the heat-exchange conduits or end plates having supplementary joining means, e.g. abutments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0061Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for phase-change applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/04Fastening; Joining by brazing

Definitions

  • the present invention relates to a laminated header, a heat exchanger, and a heat pump device.
  • a laminated header including a header tank in which a tank part made of a bare material and a plate part made of a clad material are laminated is known (for example, see Patent Document 2).
  • a pair of width direction narrows from the contact boundary surface between the tank portion 25 made of the bare material and the plate portion 27 made of the clad material toward the distal end portion of the flat tube (tube 2).
  • An inclined portion is formed in the tank portion 25, and the end portion of the flat tube is positioned by abutting the end portion of the flat tube against the inclined portion.
  • Japanese Patent Application Laid-Open No. 2008-249241 pages 5 to 8, FIGS. 2 to 7) Japanese Patent Laid-Open No. 2006-17442 (5th and 6th pages, FIG. 2)
  • the present invention has been made against the background of the above problems, and in a laminated header having laminated heat medium flow paths, a plate and a flat tube are joined by forming a fillet at a desired joint location.
  • An object of the present invention is to provide a laminated header that improves strength.
  • an object of this invention is to obtain the heat exchanger provided with such a laminated header.
  • an object of this invention is to obtain the heat pump apparatus provided with such a heat exchanger.
  • the laminated header according to the present invention includes a clad material provided on a side where a brazing material is applied and a flat tube is inserted, an opening laminated on the clad material and into which the flat tube is inserted, and inserted. And a bare member having a stopper against which the tip of the flat tube abuts, the flat tube being inserted into the opening of the bare material, and the tip of the flat tube abutting against the stopper In the state, a space is formed between the flat tube, the clad material, and the bare material, and the space is formed in the vicinity of a contact boundary surface between the flat tube and the clad material.
  • the space formed between the flat tube, the bare material, and the cladding material is at least a first space formed in the vicinity of the contact boundary surface between the flat tube and the cladding material, Narrower than the first space, formed in the vicinity of the contact boundary surface between the bare material and the clad material, and at least narrower than the first space, formed in the vicinity of the contact boundary surface between the bare material and the flat tube. Since the space is larger from the contact boundary surface between the bare material and the clad material toward the flat tube, a fillet is formed at the target joint, and the flat tube and the clad are formed. The bonding strength between the material and the bare material can be improved.
  • FIG. 1 shows the structure of the heat exchanger to which the laminated header which concerns on Embodiment 1 of this invention is applied. It is a partial exploded perspective view which shows roughly the state which decomposed
  • FIG. 7 is a schematic configuration diagram before and after insertion of a flat tube into a stacked header in the AA cross section of FIG. 6. It is the schematic which shows an example of the joining method of the conventional laminated header and a flat tube. It is the schematic which shows an example of the joining method of the laminated header and flat tube which concern on Embodiment 1 of this invention.
  • the multilayer header according to the embodiment of the present invention is applied to a heat exchanger into which a refrigerant flows
  • the multilayer header according to the embodiment of the present invention is The present invention may be applied to other devices into which other fluid flows.
  • the configuration, operation, and the like described below are merely examples, and are not limited to such configuration, operation, and the like.
  • symbol is attached
  • symbol is abbreviate
  • the illustration of the fine structure is simplified or omitted as appropriate.
  • overlapping or similar descriptions are appropriately simplified or omitted.
  • FIG. 1 is a diagram illustrating a configuration of a heat exchanger 1 to which the laminated header 10 is applied.
  • coolant is shown with the black arrow.
  • the heat exchanger 1 includes a laminated header 10, a header 3, a plurality of flat tubes 20, and a plurality of fins 5.
  • the header 3 may be a laminated header similar to the laminated header 10 or may be a different type of header.
  • a heat medium flow path 10a is formed in the laminated header 10.
  • a refrigerant pipe (not shown) is connected to the inflow side of the heat medium passage 10a.
  • a plurality of flat tubes 20 are connected to the outflow side of the heat medium flow path 10a.
  • a merge channel 3 a is formed inside the header 3.
  • a plurality of flat tubes 20 are connected to the inflow side of the merging channel 3a.
  • a refrigerant pipe (not shown) is connected to the outflow side of the merging channel 3a.
  • the flat tube 20 is a flat tube in which a plurality of flow paths are formed.
  • the flat tube 20 is made of aluminum, for example.
  • a plurality of fins 5 are joined to the flat tube 20.
  • the fin 5 is made of, for example, aluminum.
  • the flat tube 20 and the fins 5 may be joined by brazing.
  • FIG. 1 although the case where the number of the flat tubes 20 is eight is shown, it is not limited to such a case.
  • the refrigerant flowing through the refrigerant pipe flows into the laminated header 10, is distributed by the heat medium flow path 10 a, and flows out to the plurality of flat tubes 20.
  • the refrigerant exchanges heat with, for example, air supplied by a fan in the plurality of flat tubes 20.
  • the refrigerant flowing through the plurality of flat tubes 20 flows into the merge flow path 3a of the header 3, merges, and flows out into the refrigerant pipe.
  • coolant can also flow backward.
  • FIG. 2 is a partially exploded perspective view schematically showing a state in which the laminated header 10 is disassembled.
  • FIG. 3 is a schematic cross-sectional view schematically showing a cross-sectional configuration of the flat tube 20 joined to the laminated header 10.
  • the multilayer header 10 includes a clad material 11 and a bare material 12.
  • the bare member 12 is provided with an opening 12A into which the flat tube 20 is inserted, and a stopper 12B with which the tip 20A of the flat tube 20 abuts, and the flat member inserted into the opening 12A of the bare member 12.
  • the distal end portion 20A of the tube 20 is configured to abut against the stopper 12B. Further, at least one clad material 11 is provided, and is provided on the side of the bare material 12 where the flat tube 20 is inserted.
  • the distal end portion 20A of the flat tube 20 means an end portion of the flat tube 20 on the bare material 12 side, and includes the distal end and a peripheral outer peripheral surface of the distal end.
  • the laminated header 10 in which one clad material 11 and one bare material 12 are laminated is shown as an example, but the present invention is not limited to this.
  • a plurality of bare materials and clad materials provided with only openings are laminated, and the bare material 12 shown in FIG. You may make it perform.
  • the bare material 12 is made of, for example, aluminum.
  • the brazing material is not applied to the bare material 12.
  • the opening 12 ⁇ / b> A is a through hole that penetrates the front and back surfaces of the bare material 12.
  • the opening 12A functions as a part of the heat medium flow path 10a.
  • the clad material 11 is made of aluminum, for example, and is thinner than the bare material 12.
  • a brazing material is applied to at least the front and back surfaces of the clad material 11.
  • An opening 11 ⁇ / b> A is formed in the clad material 11.
  • the opening 11 ⁇ / b> A is a through hole that penetrates the front and back surfaces of the clad material 11.
  • a refrigerant pipe (not shown) is connected to the bare material 12.
  • a base or the like may be provided on the surface of the bare material 12 on the refrigerant inflow side, and a refrigerant pipe may be connected via the base or the like.
  • the inner peripheral surface of the opening 12A of the bare material 12 may be a refrigerant.
  • the shape is fitted to the outer peripheral surface of the pipe, and the refrigerant pipe may be directly connected to the opening 12A without using a base or the like.
  • the flat tube 20 has a tube height 21 (hereinafter referred to as H21), a tube width 22 (hereinafter referred to as L22), a tube thickness 23 (hereinafter referred to as t23), And at least one partition 20B is provided in the pipe and has a multi-hole structure.
  • FIG. 4 is a schematic diagram for explaining the relationship between the flat tube 20 and the bare member 12 of the laminated header 10.
  • FIG. 5 is a schematic configuration diagram schematically showing a connection state of the flat tube 20, the clad material 11, and the bare material 12 of the laminated header 10. The stacked header 10 will be described in more detail based on FIGS. FIG. 5 shows two configuration examples of the space 30.
  • the bare member 12 is provided with an opening 12A and a stopper 12B into which the flat tube 20 is inserted.
  • the opening 12A is formed such that the hole height on the side where the flat tube 20 is inserted is a hole height 24 (hereinafter referred to as H24), and the hole width is 25 (hereinafter referred to as L25).
  • the opening 12A has a hole height 26 (hereinafter referred to as H26) on the stopper side opposite to the side where the flat tube 20 is inserted, and a hole width 27 (hereinafter referred to as L27). It is formed as).
  • FIG. 5A The shape of the space 30 may be a chamfered shape in which a wall surface as shown in FIG. 5A is configured as a plane, and the wall surface as shown in FIG. 5B is curved (toward the central axis of the opening 12A).
  • a rounded shape configured as a convex curved surface) may be used.
  • a stopper 12B in which the bare material 12 is projected toward the central axis of the opening 12A is formed on the periphery of the opening 12A on the stopper side.
  • a space 30 is formed inside the bare material 12 between the flat tube 20, the clad material 11, and the bare material 12. This space 30 communicates with the opening 12A (the side where the flat tube 20 is inserted and the stopper side which is the opposite side of the side where the flat tube 20 is inserted).
  • the space 30 includes a first space 30a, a second space 30b, and a third space 30c.
  • the first space 30a is formed near the contact boundary surface between the flat tube 20 and the clad material 11, and functions as a buffer space.
  • the second space 30b is formed near the contact boundary surface between the bare material 12 and the clad material 11 and at least narrower than the first space 30a. Further, the second space 30 b is formed so as to become larger from the contact boundary surface between the bare material 12 and the clad material 11 toward the flat tube 20.
  • the third space 30c is formed in the vicinity of the contact boundary surface between the bare material 12 and the flat tube 20 at least narrower than the first space 30a. Further, the third space 30 c is formed so as to increase as it approaches the bare material 12 from the contact boundary surface between the bare material 12 and the flat tube 20.
  • the lengths of the boundary surfaces of the first space 30a, the second space 30b, and the third space 30c may be arbitrarily changed depending on the type and material of the brazing material.
  • FIG. 6 is a partially exploded enlarged perspective view schematically showing the exploded state of the laminated header 10 in an enlarged manner.
  • 7 is a schematic configuration diagram before and after insertion of the flat tube 20 into the laminated header 10 in the AA cross section of FIG. Based on FIG.6 and FIG.7, the insertion to the laminated header 10 of the flat tube 20 is demonstrated. 7A shows a state before the flat tube 20 is inserted into the laminated header 10, and FIG. 7B shows a state after the flat tube 20 is inserted into the laminated header 10. .
  • the flat tube 20 When the flat tube 20 is joined to the laminated header 10, the flat tube 20 is inserted into the opening 11 ⁇ / b> A of the cladding material 11 and the opening 12 ⁇ / b> A of the bare material 12, and the tip of the flat tube 20 is stopped by the stopper 12 ⁇ / b> B of the bare material 12. The position of the part 20A is defined.
  • a space 30 is formed by the flat tube 20, the clad material 11, and the bare material 12. Then, the flat tube 20 is brazed to the laminated header 10.
  • the brazing material applied to the clad material 11 flows into the narrower second space 30b and the third space 30c by capillary action, and forms fillets 31 in the entire circumferential direction of the space 30.
  • the fillet 31 is also formed in the vicinity of the contact boundary surface between the flat tube 20 in the first space 30 a and the clad material 11 by the inflow of the brazing material.
  • the wall surface hole size of the opening 12A of the bare member 12 on the stopper side that defines the insertion position of the flat tube 20 is H21 ⁇ H26 ⁇ (H21-2 ⁇ t23) and L22 ⁇ L27 ⁇ (L22-2 ⁇ t23). It is set to satisfy the relationship. Therefore, the distal end portion 20 ⁇ / b> A of the flat tube 20 does not protrude from the wall surface of the bare material 12.
  • the wall surface hole size of the opening 12A of the bare member 12 on the side where the flat tube 20 is inserted is set so as to satisfy the relationship of H21 ⁇ H24 and L22 ⁇ L25. Therefore, the opening 12A of the bare member 12 can be formed to be rounded or chamfered from the insertion side to the stopper side (see FIGS. 5A and 5B). That is, the shape of the inner wall surface of the bare member 12 by the opening 12A can be formed to be a rounded shape or a chamfered shape from the insertion side to the stopper side.
  • the thickness of the portion where the capillary phenomenon occurs (the interval between the respective members) is made thin (short), and the distance between the portions where the capillary phenomenon occurs is reduced. It becomes possible to lengthen. That is, in the second space 30b and the third space 30c, the capillary phenomenon is easily generated by adjusting the interval and distance between the members constituting the respective spaces.
  • the space 30 has a structure that increases from the third space 30c toward the first space 30a, so that the fillet 31 can be easily provided at the intended joint location.
  • FIG. 8 is a schematic view showing an example of a method for joining the conventional laminated header 49 and the flat tube 40.
  • FIG. 8 shows an example in which the spatial cross-sectional area of the opening formed from the contact boundary surface between the clad material 41 and the bare material 42 toward the tip of the flat tube 40 does not become small.
  • FIG. 8 also shows the behavior of the brazing material 45.
  • the gravity direction is indicated by a solid arrow.
  • a target joint where a fillet is to be formed is indicated by a broken-line circle.
  • the flat tube 40 is inserted into the opening 41A of the clad material 41 and the opening 42A of the bare material 42.
  • the flat tube 40, the clad material 41, and the bare material 42 are heated (FIG. 8A).
  • the temperature of the brazing material 45 applied to the clad material 41 becomes higher than the melting point, the brazing material 45 melts, and the brazing material 45 flows into the space 46 (FIG. 8B).
  • the brazing material 45 tends to flow into the lower portion of the space 46 due to the influence of gravity, and a large amount of brazing material 45 is accommodated in the lower portion of the flat tube 40 before the fillet is formed on the upper portion of the flat tube 40 (FIG. 8 (c). )).
  • a large amount of brazing material 45 is accommodated only in the space 46 below the flat tube 40, and a large amount of brazing material 45 is not accommodated in the space 46 above the flat tube 40 (FIG. 8). (D)).
  • an appropriate amount of brazing material 45 cannot be guided to all of the target joints where the fillet is to be formed.
  • FIG. 9 is a schematic view showing an example of a method for joining the laminated header 10 and the flat tube 20.
  • FIG. 9 shows the behavior of the brazing material.
  • the gravity direction is indicated by a solid arrow.
  • a target joint where a fillet is to be formed is indicated by a broken-line circle.
  • the flat tube 20 is inserted into the opening 11A of the clad material 11 and the opening 12A of the bare material 12. Then, in this state, the flat tube 20, the clad material 11, and the bare material 12 are heated (FIG. 9A). By doing so, the temperature of the brazing material 15 applied to the clad material 11 becomes higher than the melting point, the brazing material 15 melts, and the brazing material 15 flows into the space 30.
  • fluid may be supplied from the inside of the flat tube 20 toward the tip portion 20 ⁇ / b> A of the flat tube 20.
  • the temperature of the fluid is preferably higher than the melting point of the brazing material 15, and in such a case, hindering the melting of the brazing material 15 is suppressed.
  • the fluid may be air, and in such a case, general-purpose equipment can be used to simplify the process.
  • the melted brazing material 15 gathers at the contact boundary surface between the clad material 11 and the bare material 12 in the second space 30b due to the influence of the capillary phenomenon (FIG. 9B).
  • the brazing material 15 gathers inside the space 30 along the wall surface of the space 30.
  • the brazing material 15 that has flowed into the third space 30c along the wall surface in the space 30 is brought into contact with the contact surface between the bare material 12 and the flat tube 20 in the third space 30c by the capillary phenomenon as in the second space 30b. Collect (Fig. 9 (c)).
  • the brazing material 15 When the brazing material 15 further flows after forming the fillet 31 at the target joint location, the brazing material 15 flows into the first space 30a and gathers near the contact boundary surface between the cladding material 11 and the flat tube 20, Inflow of the brazing material 15 from the distal end portion 20A of the flat tube 20 is prevented (FIG. 9D).
  • the laminated header 10 has a heat medium flow path 10a for allowing a heat medium to flow by laminating a plurality of clad materials 11 and bare materials 12. Therefore, the heat medium flowing into the laminated header 10 is distributed to the plurality of heat medium flow paths 10 a by the action of the laminated header 10, and flows into or out of each part of the flat tube 20.
  • a space 30 formed by the flat tube 20, the clad material 11, and the bare material 12 increases from the contact boundary surface between the clad material 11 and the bare material 12 toward the flat tube 20. It has a structure. By doing so, the laminated header 10 can preferentially flow the brazing material 15 into the target joint location. Then, the fillet 31 can be easily formed at the target joint location by preferentially flowing the brazing material 15 into the target joint location.
  • the joining strength can be improved with respect to the amount of brazing material 15 used in the same amount as compared with the conventional one. Furthermore, since the brazing material 15 is preferentially flown into the target joining portion and the fillet 31 is formed, the amount of the brazing material 15 used can be reduced.
  • the hole size on the stopper side of the bare material 12 is H21 ⁇ H26 ⁇ (H21-2 ⁇ t23) and L22 ⁇ L27 ⁇ (L22-2 ⁇ t23), the hole size on the insertion side is H21 ⁇ H24, and
  • the fillet 31 can be formed at the target joint location in the entire circumferential direction of the flat tube 20. And the joint strength can be improved by forming the fillet 31 in the whole circumferential direction of the flat tube 20.
  • the hole size on the stopper side of the bare material 12 satisfies the relationship of H21 ⁇ H26 ⁇ (H21-2 ⁇ t23) and L22 ⁇ L27 ⁇ (L22-2 ⁇ t23), and the tip 20A of the flat tube 20
  • the stopper 12B of the bare material 12 into surface contact, not only the inflow prevention of the brazing material 15 but also the resistance when the heat medium flows in and out can be reduced.
  • the position of the distal end portion 20A of the flat tube 20 can be easily defined.
  • the heat exchanger 1 By defining the insertion position of the flat tube 20 with the stopper 12B, the heat exchanger 1 can be manufactured without making the insertion allowance unnecessarily long, and in the same size heat exchanger, the ratio of the heat exchange part is increased. Can do. In addition, by making the insertion allowance longer than necessary, the size of the heat exchanger can be reduced when obtaining an equivalent heat exchange capability.
  • the effect of the capillary phenomenon is increased. Can be increased. Therefore, the area
  • FIG. FIG. 10 is a schematic configuration diagram schematically showing a connection state of the flat tube 20, the clad material 11, and the bare material 12 of the laminated header 10 ⁇ / b> A according to Embodiment 2 of the present invention.
  • the laminated header 10A will be described with reference to FIG. FIG. 10 shows two configuration examples of the space 30.
  • the difference from the first embodiment will be mainly described, and the same or similar parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted or simplified as appropriate.
  • the basic structure of the laminated header 10A is the same as that of the laminated header 10 according to the first embodiment, but the shape, that is, the space from the insertion side of the opening 12A of the bare material 12 into which the flat tube 20 is inserted to the stopper.
  • the configuration of 30 is different from that of the first embodiment in that it has a step shape.
  • the opening 12A is formed such that L25> L22> L27, H24> H21> H26, and the diameter is reduced from the insertion side toward the stopper side.
  • the insertion position of the flat tube 20 is prescribed
  • FIG. 10 the shape of the space 30 is such that the first space 30a and the second space 30b can ensure a certain volume.
  • a step shape is preferable.
  • the first space 30a and the second space 30b are secured, and the wall surface of the space 30 that connects the first space 30a and the second space 30b is formed in a planar shape. You may make it a shape.
  • the wall surface of the space 30 that connects the first space 30a and the second space 30b may not be completely flat, and a curved surface may be included in part.
  • the wall surface of the space 30 that connects the first space 30a and the second space 30b may be curved.
  • the effect of the stacked header 10A will be described.
  • the laminated header 10A has the same effects as the laminated header 10 according to Embodiment 1, and also has the following effects.
  • the laminated header 10A is manufactured relatively easily compared to chamfering or curved surface shape processing by making the shape from the opening of the opening 12A of the bare member 12 into which the flat tube 20 is inserted to the stopper into a step shape. be able to.
  • the laminated header 10A can easily form the thickness and length of the first space 30a and the second space 30b arbitrarily. Therefore, according to the laminated header 10A, the manufacturing cost can be reduced because the manufacturing can be facilitated. In addition, the laminated header 10A can be more uniformly manufactured at the time of manufacturing by making it easy to arbitrarily form the thickness and length of the first space 30a and the second space 30b. Therefore, according to the laminated header 10 ⁇ / b> A, the reliability can be improved at the time of commercialization by enabling the production uniformly.
  • the laminated header 10A can make the mold easy even in the manufacture of the mold by cutting, casting or the like by making the shape of the space 30 a simple step shape. Therefore, according to the stacked header 10A, the manufacturing cost can be reduced by facilitating the production.
  • FIG. 11 is a schematic circuit diagram showing a schematic configuration of the heat pump device 51 according to Embodiment 3 of the present invention.
  • the heat pump device 51 will be described based on FIG.
  • the heat pump device 51 is mounted with a heat exchanger to which the stacked header according to the first or second embodiment is applied, and is used as, for example, a refrigerator, a freezer, a vending machine, an air conditioner, a refrigeration device, a water heater, or the like. Is.
  • the case where the laminated header 10 according to the first embodiment is used will be described as a representative.
  • the heat pump device 51 is an air conditioner configured to be switched between a cooling operation and a heating operation.
  • cooling operation is shown by the solid line arrow
  • coolant at the time of heating operation is shown by the dotted line arrow.
  • the heat pump device 51 includes a compressor 52, a four-way valve 53, a heat source side heat exchanger 54, a throttle device 55, a load side heat exchanger 56, a heat source side fan 57, a load A side fan 58 and a control device 59.
  • the compressor 52, the four-way valve 53, the heat source side heat exchanger 54, the expansion device 55, and the load side heat exchanger 56 are connected by refrigerant piping to form a refrigerant circulation circuit.
  • a compressor 52, a four-way valve 53, a throttle device 55, a heat source side fan 57, a load side fan 58, various sensors, and the like are connected to the control device 59.
  • the heat source side heat exchanger 54 acts as a condenser during the cooling operation, and acts as an evaporator during the heating operation.
  • the load side heat exchanger 56 acts as an evaporator during the cooling operation, and acts as a condenser during the heating operation.
  • the flow of the refrigerant during the cooling operation will be described.
  • the high-pressure and high-temperature gas refrigerant discharged from the compressor 52 flows into the heat source side heat exchanger 54 via the four-way valve 53 and condenses by heat exchange with the outside air supplied by the heat source side fan 57. It becomes a high-pressure liquid refrigerant and flows out of the heat source side heat exchanger 54.
  • the high-pressure liquid refrigerant flowing out of the heat source side heat exchanger 54 flows into the expansion device 55 and becomes a low-pressure gas-liquid two-phase refrigerant.
  • the low-pressure gas-liquid two-phase refrigerant flowing out of the expansion device 55 flows into the load-side heat exchanger 56 and evaporates by heat exchange with the indoor air supplied by the load-side fan 58, thereby causing a low-pressure gas state. And flows out of the load-side heat exchanger 56.
  • the low-pressure gaseous refrigerant flowing out from the load-side heat exchanger 56 is sucked into the compressor 52 through the four-way valve 53.
  • the flow of the refrigerant during the heating operation will be described.
  • the high-pressure and high-temperature gas refrigerant discharged from the compressor 52 flows into the load-side heat exchanger 56 through the four-way valve 53 and condenses by heat exchange with the indoor air supplied by the load-side fan 58. And becomes a high-pressure liquid refrigerant and flows out of the load-side heat exchanger 56.
  • the high-pressure liquid refrigerant flowing out of the load-side heat exchanger 56 flows into the expansion device 55 and becomes a low-pressure gas-liquid two-phase refrigerant.
  • the low-pressure gas-liquid two-phase refrigerant that flows out of the expansion device 55 flows into the heat source side heat exchanger 54 and evaporates by heat exchange with the outside air supplied by the heat source side fan 57, so that the low-pressure gas state It becomes a refrigerant and flows out of the heat source side heat exchanger 54.
  • the low-pressure gaseous refrigerant flowing out from the heat source side heat exchanger 54 is sucked into the compressor 52 through the four-way valve 53.
  • the heat exchanger 1 in which the laminated header 10 according to the first embodiment is applied to at least one of the heat source side heat exchanger 54 and the load side heat exchanger 56 is used.
  • the heat exchanger 1 is connected so that the refrigerant flows in from the stacked header 10 and the refrigerant flows out of the header 3 when the heat exchanger 1 acts as an evaporator. That is, when the heat exchanger 1 acts as an evaporator, a gas-liquid two-phase refrigerant flows from the refrigerant pipe to the laminated header 10, and a gas refrigerant flows from the flat tube 20 to the header 3.
  • the heat exchanger 1 acts as a condenser a gaseous refrigerant flows into the header 3 from the refrigerant pipe, and a liquid refrigerant flows into the laminated header 10 from the flat tube 20.
  • the laminated header 10 distributes the refrigerant by a plurality of branch channels, even if a gas-liquid two-phase refrigerant flows, the flow rate and dryness of the refrigerant flowing into each of the plurality of flat tubes 20 are made uniform. Is possible. That is, the laminated header 10 is suitable for the heat pump device 51.
  • the bare material 12 is thicker than the clad material 11, and the flat tube 20 is joined in a state where the distal end portion 20 a is positioned by the stopper 12 ⁇ / b> B. Therefore, the molten brazing material does not flow into the flat tube 20, thereby preventing an increase in refrigerant pressure loss.
  • the heat exchanger 1 in the laminated header 10, by defining the insertion position of the flat tube 20 by the stopper 12B, the heat exchanger 1 can be manufactured without making the insertion allowance unnecessarily long. In the heat exchanger of the same size, The ratio of the heat exchange part can be increased. In addition, by making the insertion allowance longer than necessary, the size of the heat exchanger can be reduced when obtaining an equivalent heat exchange capability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

 積層型ヘッダー10は、扁平管20がベア材12の開口部12Aに挿入され、扁平管20の先端部20Aがストッパー12Bに当接された状態において、扁平管20と、クラッド材11と、ベア材12と、の間には空間30が形成され、空間30は、扁平管20とクラッド材11との接触境界面近傍に形成される第1空間30aと、少なくとも第1空間30aよりも狭く、ベア材12とクラッド材11との接触境界面近傍に形成される第2空間30bと、少なくとも第1空間30aよりも狭く、ベア材11と扁平管20との接触境界面近傍に形成される第3空間30cと、で構成されている。

Description

積層型ヘッダー、熱交換器、及び、ヒートポンプ装置
 本発明は、積層型ヘッダーと、熱交換器と、ヒートポンプ装置と、に関するものである。
 従来、ベア材となるプレートとクラッド材となるプレートとを互いに積層してロウ付けしたヘッダタンクを備えた積層形ヘッダーが知られている(例えば、特許文献1参照)。特許文献1に記載の積層形ヘッダーでは、ヘッダタンク(ヘッダタンク2)内のベア材(中間プレート14)に設けられた連通穴(連通穴31)の側面から穴の内方に突出させた突起(位置決め部32)を備え、突起によってベア材とクラッド材(内側プレート13)の接触境界面から扁平管(熱交換管8)の先端に向かって連通穴の空間断面積を小さくすることで、扁平管の端部の位置決めと、管内部へのロウ材の流入を防止するようにしている。
 また、ベア材からなるタンク部とクラッド材からなるプレート部とを積層したヘッダタンクを備えた積層形ヘッダーが知られている(例えば、特許文献2参照)。特許文献2に記載の積層形ヘッダーでは、ベア材からなるタンク部25とクラッド材からなるプレート部27との接触境界面から扁平管(チューブ2)の先端部に向かって幅方向が狭まる一対の傾斜部(チューブ位置決め部29)をタンク部25に形成し、この傾斜部に扁平管の端部を突き当てることで扁平管の端部の位置決めをするようにしている。
特開2008-249241号公報(第5~8頁、図2~図7) 特開2006-17442号公報(第5、6頁、図2)
 特許文献1に記載されているような積層型ヘッダーでは、ベア材とクラッド材との接触境界面から扁平管に向かって連通穴の空間断面積を小さくなるよう形成するため、溶けたロウ材が扁平管の下部に流れ、扁平管の上部にフィレットを形成し難いという問題点があった。
 特許文献2に記載されているような積層型ヘッダーでは、ベア材とクラッド材との接触境界面から扁平管の端部に向かって幅方向のみを先細りとする形状を採用しているため、扁平管の周方向全体にフィレットを形成できず、接合強度が低くなってしまうという問題点があった。加えて、ロウ材の収納量が少ないという問題点も生じる。
 また、特許文献2に記載されているような積層型ヘッダーでは、扁平管の端部と傾斜部とが点接触するため、扁平管とタンク部との接触境界面にフィレットを形成できないという問題点もあった。
 本発明は、以上のような課題を背景としてなされたもので、積層された熱媒体流路を持つ積層型ヘッダーにおいて、目的の接合箇所にフィレットを形成することによって、プレートと扁平管との接合強度を向上させる積層型ヘッダーを提供することを目的としている。
 また、本発明は、そのような積層型ヘッダーを備えた熱交換器を得ることを目的とする。
 また、本発明は、そのような熱交換器を備えたヒートポンプ装置を得ることを目的とする。
 本発明に係る積層型ヘッダーは、ロウ材が塗布され、扁平管が挿入される側に設けられるクラッド材と、前記クラッド材に積層され、前記扁平管が挿入される開口部、及び、挿入された前記扁平管の先端部が当接するストッパーを有するベア材と、を備え、前記扁平管が前記ベア材の前記開口部に挿入され、前記扁平管の前記先端部が前記ストッパーに当接された状態において、前記扁平管と、前記クラッド材と、前記ベア材と、の間には空間が形成され、前記空間は、前記扁平管と前記クラッド材との接触境界面近傍に形成される第1空間と、前記第1空間よりも狭く、前記ベア材と前記クラッド材との接触境界面近傍に形成される第2空間と、前記第1空間よりも狭く、前記ベア材と前記扁平管との接触境界面近傍に形成される第3空間と、で構成されているものである。
 本発明に係る積層型ヘッダーは、扁平管と、ベア材と、クラッド材との間に形成される空間が、扁平管とクラッド材との接触境界面近傍に形成される第1空間と、少なくとも第1空間よりも狭く、ベア材とクラッド材との接触境界面近傍に形成される第2空間と、少なくとも第1空間よりも狭く、ベア材と扁平管との接触境界面近傍に形成される第3空間と、で構成されているので、ベア材とクラッド材との接触境界面から扁平管に向かって空間が大きくなる構造にでき、目的の接合箇所にフィレットを形成し、扁平管とクラッド材及びベア材との接合強度を向上できる。
本発明の実施の形態1に係る積層型ヘッダーが適用される熱交換器の構成を示す図である。 本発明の実施の形態1に係る積層型ヘッダーを分解した状態を概略的に示す部分分解斜視図である。 本発明の実施の形態1に係る積層型ヘッダーに接合される扁平管の断面構成を概略的に示す概略断面図である。 本発明の実施の形態1に係る積層型ヘッダーの扁平管及びベア材の関係を説明するための概略図である。 本発明の実施の形態1に係る積層型ヘッダーの扁平管と、クラッド材と、ベア材と、の接続状態を概略的に拡大して示す概略構成図である。 本発明の実施の形態1に係る積層型ヘッダーを分解した状態を概略的に拡大して示す部分分解拡大斜視図である。 図6のA-A断面における扁平管の積層型ヘッダーへの挿入前後の概略構成図である。 従来の積層型ヘッダーと扁平管との接合方法の一例を示す概略図である。 本発明の実施の形態1に係る積層型ヘッダーと扁平管との接合方法の一例を示す概略図である。 本発明の実施の形態2に係る積層型ヘッダーの扁平管と、クラッド材と、ベア材と、の接続状態を概略的に拡大して示す概略構成図である。 本発明の実施の形態3に係るヒートポンプ装置の概略構成を示す概略回路図である。
 以下、本発明の実施の形態を図面に基づいて説明する。
 なお、以下では、本発明の実施の形態に係る積層型ヘッダーが、冷媒が流入する熱交換器に適用される場合を説明しているが、本発明の実施の形態に係る積層型ヘッダーが、他の流体が流入する他の機器に適用されてもよい。また、以下で説明する構成、動作等は、一例にすぎず、そのような構成、動作等に限定されない。また、各図において、同一又は類似するものには、同一の符号を付すか、又は、符号を付すことを省略している。また、細かい構造については、適宜図示を簡略化又は省略している。また、重複又は類似する説明については、適宜簡略化又は省略している。
実施の形態1.
 まず、本発明の実施の形態1に係る積層型ヘッダー10が適用される熱交換器1について説明する。
<熱交換器1の構成>
 以下に、熱交換器1の構成について説明する。
 図1は、積層型ヘッダー10が適用される熱交換器1の構成を示す図である。なお、図1では、冷媒の流れ方向を墨付き矢印で示している。
 図1に示されるように、熱交換器1は、積層型ヘッダー10と、ヘッダー3と、複数の扁平管20と、複数のフィン5と、を有する。なお、ヘッダー3は、積層型ヘッダー10と同様の積層型ヘッダーであってもよく、また、異なるタイプのヘッダーであってもよい。
 積層型ヘッダー10の内部には、熱媒体流路10aが形成される。熱媒体流路10aの流入側には、図示省略の冷媒配管が接続される。熱媒体流路10aの流出側には複数の扁平管20が接続される。ヘッダー3の内部には、合流流路3aが形成される。合流流路3aの流入側には、複数の扁平管20が接続される。合流流路3aの流出側には図示省略の冷媒配管が接続される。
 扁平管20は、内部に複数の流路が形成された扁平管である。扁平管20は、例えば、アルミニウム製である。扁平管20には、複数のフィン5が接合される。フィン5は、例えば、アルミニウム製である。扁平管20とフィン5との接合は、ロウ付け接合であるとよい。なお、図1では、扁平管20が8本である場合を示しているが、そのような場合に限定されない。
<熱交換器1における冷媒の流れ>
 以下に、熱交換器1における冷媒の流れについて説明する。
 冷媒配管を流れる冷媒は、積層型ヘッダー10に流入して熱媒体流路10aで分配され、複数の扁平管20に流出する。冷媒は、複数の扁平管20において、例えば、ファンによって供給される空気等と熱交換する。複数の扁平管20を流れる冷媒は、ヘッダー3の合流流路3aに流入して合流し、冷媒配管に流出する。なお、冷媒は、逆流することもできる。
<積層型ヘッダー10の構成>
 次に、積層型ヘッダー10の構成について説明する。
 図2は、積層型ヘッダー10を分解した状態を概略的に示す部分分解斜視図である。図3は、積層型ヘッダー10に接合される扁平管20の断面構成を概略的に示す概略断面図である。
 図2に示すように、積層型ヘッダー10は、クラッド材11と、ベア材12と、を備えている。後述するが、ベア材12には、扁平管20が挿入される開口部12A、及び扁平管20の先端部20Aが当接するストッパー12Bが設けられ、ベア材12の開口部12Aに挿入された扁平管20の先端部20Aがストッパー12Bに突き当たる構造になっている。また、クラッド材11は、少なくとも一枚設けられ、ベア材12の扁平管20が挿入される側に設けられている。扁平管20の先端部20Aとは、扁平管20のベア材12側の端部を意味し、先端及び先端の周囲外周面を含む。
 なお、図2では、1枚のクラッド材11と、1枚のベア材12と、を積層した積層型ヘッダー10を例に図示しているが、これに限定するものではない。例えば、図2に図示した積層型ヘッダー10の構造以外に、開口部のみを設けたベア材とクラッド材とを複数枚積層し、任意の位置に図2に示すベア材12を設け、位置決めを行なうようにしてもよい。
 ベア材12は、例えば、アルミニウム製である。ベア材12には、ロウ材が塗布されない。開口部12Aは、ベア材12の表裏面を貫通する貫通穴である。ベア材12とクラッド材11とが積層されると、開口部12Aは、熱媒体流路10aの一部として機能する。
 クラッド材11は、例えば、アルミニウム製であり、ベア材12と比較して薄い。クラッド材11の少なくとも表裏面には、ロウ材が塗布される。クラッド材11には、開口部11Aが形成される。開口部11Aは、クラッド材11の表裏面を貫通する貫通穴である。ベア材12とクラッド材11とが積層されると、開口部11Aは、熱媒体流路10aの一部として機能する。
 ベア材12には、図示省略の冷媒配管が接続される。例えば、ベア材12の冷媒の流入側の面に口金等が設けられ、その口金等を介して冷媒配管が接続されてもよく、また、ベア材12の開口部12Aの内周面が、冷媒配管の外周面と嵌合する形状であり、口金等を用いずに、開口部12Aに冷媒配管が直接接続されてもよい。
 図3に示すように、扁平管20は、管高さ21(以下、H21と称する)と、管幅22(以下、L22と称する)と、管肉厚23(以下、t23と称する)と、を備え、管内に少なくとも1枚以上の仕切り20Bが設けられ、多穴構造を有している。
 図4は、積層型ヘッダー10の扁平管20及びベア材12の関係を説明するための概略図である。図5は、積層型ヘッダー10の扁平管20と、クラッド材11と、ベア材12と、の接続状態を概略的に拡大して示す概略構成図である。図4及び図5に基づいて、積層型ヘッダー10について更に詳細に説明する。なお、図5には、空間30の2つの構成例を示している。
 図4及び図5に示すように、ベア材12には、扁平管20が挿入される開口部12A及びストッパー12Bが設けられている。
 開口部12Aは、扁平管20が挿入される側の穴高さが穴高さ24(以下、H24と称する)、穴幅が穴幅25(以下、L25と称する)として形成されている。
 また、開口部12Aは、扁平管20が挿入される側の反対側であるストッパー側の穴高さが穴高さ26(以下、H26と称する)、穴幅が穴幅27(以下、L27と称する)として形成されている。
 つまり、開口部12Aは、L25>L22>L27、H24>H21>H26として、挿入される側からストッパー側に向かうにつれて縮径して形成されている。そして、ベア材12の中で扁平管20の差込み位置を規定するようにしている。なお、空間30の形状は、図5(a)に示すような壁面を平面に構成した面取り形状でもよく、図5(b)に示すような壁面を曲面(開口部12Aの中心軸に向かって凸となるような曲面)に構成した丸みつき形状でもよい。
 また、開口部12Aのストッパー側の周縁には、開口部12Aの中心軸に向かってベア材12を突出させたストッパー12Bを形成している。ストッパー12Bを形成することによって、図5(a)、(b)に示すように、扁平管20の先端部20Aがベア材12の内部に面接触し、扁平管20の位置が規定されることになる。
 扁平管20が積層型ヘッダー10に接合されると、扁平管20と、クラッド材11と、ベア材12との間に空間30がベア材12の内部に形成される。この空間30は、開口部12A(扁平管20が挿入される側、及び、扁平管20が挿入される側の反対側であるストッパー側)と連通している。空間30は、第1空間30a、第2空間30b、及び、第3空間30cで構成されている。
 第1空間30aは、扁平管20とクラッド材11との接触境界面近傍に形成され、バッファ空間として機能する。
 第2空間30bは、ベア材12とクラッド材11との接触境界面近傍に、少なくとも第1空間30aよりも狭く形成される。また、第2空間30bは、ベア材12とクラッド材11との接触境界面から扁平管20に近づくにつれて大きくなるよう形成される。
 第3空間30cは、ベア材12と扁平管20との接触境界面近傍に、少なくとも第1空間30aよりも狭く形成される。また、第3空間30cは、ベア材12と扁平管20との接触境界面からベア材12に近づくにつれて大きくなるよう形成されている。
 なお、第1空間30a、第2空間30b、および、第3空間30cの境界面の長さは、ロウ材の種類、材料により任意に変更してもよい。
 図6は、積層型ヘッダー10を分解した状態を概略的に拡大して示す部分分解拡大斜視図である。図7は、図6のA-A断面における扁平管20の積層型ヘッダー10への挿入前後の概略構成図である。図6及び図7に基づいて、扁平管20の積層型ヘッダー10への挿入について説明する。なお、図7では、(a)が扁平管20の積層型ヘッダー10への挿入前の状態を、(b)が扁平管20の積層型ヘッダー10への挿入後の状態を、それぞれ示している。
 扁平管20を積層型ヘッダー10に接合する際、扁平管20を、クラッド材11の開口部11A、ベア材12の開口部12Aに挿入し、ベア材12のストッパー12Bにて扁平管20の先端部20Aの位置を規定する。扁平管20が挿入されると、扁平管20、クラッド材11、及び、ベア材12によって、空間30が形成される。それから、扁平管20が積層型ヘッダー10にロウ付けされる。
 ロウ付け時、クラッド材11に塗布されているロウ材は、毛細管現象により、より狭い第2空間30bおよび第3空間30cに流入し、空間30の周方向全体にフィレット31を形成する。なお、図に記載していないが、第1空間30a内の扁平管20と、クラッド材11の接触境界面近傍にもロウ材の流入によりフィレット31を形成する。
 扁平管20の差込み位置を規定させるストッパー側のベア材12の開口部12Aの壁面穴サイズは、H21≧H26≧(H21-2×t23)、かつ、L22≧L27≧(L22-2×t23)の関係を満たすように設定されている。そのため、扁平管20の先端部20Aがベア材12の壁面から突き出さないようになっている。
 また、扁平管20が挿入される側のベア材12の開口部12Aの壁面穴サイズは、H21≦H24、かつ、L22≦L25の関係を満たすように設定されている。そのため、ベア材12の開口部12Aを、挿入される側からストッパー側にかけて、丸み付きまたは面取りされるように形成することができる(図5(a)、(b)参照)。つまり、開口部12Aによるベア材12の内部壁面の形状を、挿入される側からストッパー側にかけて、丸み付き形状、または、面取り形状となるように形成できる。
 こうすることで、第2空間30b、第3空間30cにおいて、毛細管現象が発生する部分の厚さ(それぞれの部材間の間隔)を薄く(短く)、かつ、毛細管現象が発生する部分の距離を長くすることが可能になる。つまり、第2空間30b及び第3空間30cでは、それぞれの空間を構成している各部材の間隔、距離を調整することで、毛細管現象を発生しやすくしている。
 したがって、空間30を、第3空間30cから第1空間30aに向かって大きくなる構造とすることになり、目的の接合箇所にフィレット31を設けやすい形状になる。
<積層型ヘッダー10と扁平管20との接合の方法>
 ここで、積層型ヘッダー10と扁平管20との接合方法の一例について、ロウ材の挙動とともに説明する。まず、従来の積層型ヘッダーと扁平管と接合方法の一例について説明する。
 図8は、従来の積層型ヘッダー49と扁平管40との接合方法の一例を示す概略図である。図8では、クラッド材41とベア材42の接触境界面から扁平管40の先端に向かって形成されている開口部の空間断面積が小さくならないものを例に示している。また、図8には、ロウ材45の挙動を併せて示している。なお、図8では、重力方向を実線矢印で示している。また、図8(a)には、フィレットを形成したい目的の接合箇所を破線の円で示している。
 扁平管40を、クラッド材41の開口部41A、ベア材42の開口部42Aに挿入する。そして、この状態で、扁平管40、クラッド材41、及び、ベア材42を加熱する(図8(a))。こうすることで、クラッド材41に塗布してあるロウ材45の温度が融点以上となって、ロウ材45が溶け出し、空間46内にロウ材45が流入する(図8(b))。
 ロウ材45は重力の影響により空間46の下部に流入しやすく、扁平管40の上部にフィレットを形成する前に、扁平管40の下部に多量のロウ材45が収容される(図8(c))。その結果、扁平管40の下部の空間46にのみ多量のロウ材45が収容されることになり、扁平管40の上部の空間46には多量のロウ材45が収容されないことになる(図8(d))。つまり、フィレットを形成したい目的の接合箇所の全部に適量のロウ材45を導くことができない。
 扁平管40、クラッド材41、及び、ベア材42の加熱が終了して、ロウ材45が冷却されると、扁平管40、クラッド材41、及び、ベア材42が接合される。ただし、積層型ヘッダー49では、フィレットを形成したい目的の接合箇所の全部に適量のロウ材45が行き渡っておらず、扁平管40、クラッド材41、及び、ベア材42の接合強度が低い。
 次に、積層型ヘッダー10と扁平管20との接合方法一例について説明する。
 図9は、積層型ヘッダー10と扁平管20との接合方法の一例を示す概略図である。図9では、上述したように、クラッド材11とベア材12の接触境界面から扁平管40の先端に向かって形成されている開口部12Aの空間断面積が小さくなるものを例に示している。また、図9には、ロウ材の挙動を併せて示している。なお、図9では、重力方向を実線矢印で示している。また、図9(a)には、フィレットを形成したい目的の接合箇所を破線の円で示している。
 扁平管20を、クラッド材11の開口部11A、ベア材12の開口部12Aに挿入する。そして、この状態で、扁平管20、クラッド材11、及び、ベア材12を加熱する(図9(a))。こうすることで、クラッド材11に塗布してあるロウ材15の温度が融点以上となって、ロウ材15が溶け出し、空間30内にロウ材15が流入する。
 扁平管20、クラッド材11、及び、ベア材12の加熱の際に、扁平管20の内側から扁平管20の先端部20Aに向かって流体が供給されるとよい。流体の温度が、ロウ材15の融点と比較して高いとよく、そのような場合には、ロウ材15の溶融を妨げることが抑制される。また、流体は、空気であるとよく、そのような場合には、汎用の設備機器を流用して工程を簡略化することが可能となる。
 溶け出したロウ材15は、毛細管現象の影響により、第2空間30bのクラッド材11とベア材12との接触境界面に集まる(図9(b))。
 ロウ材15の流入量が増え、毛細管現象の影響よりも重力の影響が大きくなると、空間30の壁面に沿ってロウ材15が空間30の内部に集まってくる。空間30内の壁面に沿って第3空間30cに流入したロウ材15は、第2空間30bと同様に毛細管現象により、第3空間30c内のベア材12と扁平管20との接触境界面に集まる(図9(c))。
 目的の接合箇所にフィレット31を形成した後、さらにロウ材15が流入した場合、ロウ材15は、第1空間30aに流入し、クラッド材11と扁平管20との接触境界面近傍に集まり、扁平管20の先端部20Aからのロウ材15の流入を防止する(図9(d))。
<積層型ヘッダー10における冷媒の流れ>
 次に、積層型ヘッダー10の動作について、一実施例に基づき説明する。
 積層型ヘッダー10は、クラッド材11と、ベア材12と、を複数積層することで熱媒体を流入させるための熱媒体流路10aを有している。そのため、積層型ヘッダー10に流入した熱媒体は、積層型ヘッダー10の作用により、複数の熱媒体流路10aに分配され、扁平管20の各部へ流入あるいは流出する。
<積層型ヘッダー10の効果>
 積層型ヘッダー10の効果について説明する。
 積層型ヘッダー10は、扁平管20と、クラッド材11と、ベア材12と、で形成される空間30が、クラッド材11とベア材12との接触境界面から扁平管20に向かって大きくなる構造としている。こうすることによって、積層型ヘッダー10は、目的の接合箇所にロウ材15を優先的に流入させることができる。そして、目的の接合箇所にロウ材15を優先的に流入させることで、目的の接合箇所に容易にフィレット31を形成させることができる。
 また、目的の接合箇所に優先的にロウ材15を流入させることで、従来のものと比べ、同量のロウ材15の使用量に対して、接合強度を向上させることができる。さらに、目的の接合箇所に優先的にロウ材15を流入し、フィレット31を形成するため、ロウ材15の使用量を減らすことができる。
 ベア材12のストッパー側の穴サイズをH21≧H26≧(H21-2×t23)、かつ、L22≧L27≧(L22-2×t23)、挿入される側の穴サイズをH21≦H24、かつ、L22≦L25の関係を満たすように設定することで、扁平管20の周方向全体の目的の接合箇所にフィレット31を形成することができる。そして、扁平管20の周方向全体にフィレット31を形成することで接合強度を向上させることができる。
 扁平管20の先端部20Aとベア材12のストッパー12Bとを面接触させることで、ロウ材15が扁平管20の内部に流入することを防止することができる。
 また、ベア材12のストッパー側の穴サイズをH21≧H26≧(H21-2×t23)、かつ、L22≧L27≧(L22-2×t23)の関係を満たし、扁平管20の先端部20Aとベア材12のストッパー12Bとを面接触させることで、ロウ材15の流入防止だけでなく、熱媒体の流入出時の抵抗を低減することもできる。さらに、扁平管20の先端部20Aの位置を容易に規定することができる。
 ストッパー12Bによって扁平管20の差込み位置を規定することで、差込み代を必要以上に長くすることなく、熱交換器1を製造でき、同サイズの熱交換器において、熱交換部の比率を上げることができる。加えて、差込み代を必要以上に長くすることなくすることで、同等の熱交換能力を得る際に熱交換器のサイズを小さくすることができる。
 クラッド材11とベア材12接触境界面近傍の第1空間30a、扁平管20とベア材12との接触境界面近傍の第2空間30bの厚さを薄くかつ長くすることで、毛細管現象の影響を大きくすることができる。そのため、第1空間30a、第2空間30b内のフィレット31が形成される領域を大きくすることができる。そして、第1空間30a、第2空間30b内のフィレット31が形成される領域を大きくすることで、各接触境界面の接合強度を向上させることができる。
実施の形態2.
 図10は、本発明の実施の形態2に係る積層型ヘッダー10Aの扁平管20と、クラッド材11と、ベア材12と、の接続状態を概略的に拡大して示す概略構成図である。図10に基づいて、積層型ヘッダー10Aについて説明する。なお、図10には、空間30の2つの構成例を示している。実施の形態2では実施の形態1との相違点を中心に説明し、実施の形態1と重複又は類似する部分には、同一符号を付して説明を省略又は適宜簡略化している。
 積層型ヘッダー10Aの基本的構成は実施の形態1に係る積層型ヘッダー10と同じであるが、扁平管20を挿入するベア材12の開口部12Aの挿入される側からストッパーにかけての形状つまり空間30の構成が段形状である点で実施の形態1と異なっている。
 実施の形態1で説明したように、開口部12Aは、L25>L22>L27、H24>H21>H26として、挿入される側からストッパー側に向かうにつれて縮径して形成されている。そして、ベア材12の中で扁平管20の差込み位置を規定するようにしている。空間30の形状は、図10に示すように、第1空間30a、第2空間30bが一定の容積を確保できるような形状になっている。
 例えば、図10(a)に示すように、第1空間30a及び第2空間30bを確保した上で、第1空間30aと第2空間30bとを繋ぐ空間30の壁面を階段状に構成した複数段形状にするとよい。
 また、図10(b)に示すように、第1空間30a及び第2空間30bを確保した上で、第1空間30aと第2空間30bとを繋ぐ空間30の壁面を平面状に構成した段形状にしてもよい。ただし、第1空間30aと第2空間30bとを繋ぐ空間30の壁面が完全に平面となっていなくてもよく、一部に曲面が含まれていてもよい。また、第1空間30aと第2空間30bとを繋ぐ空間30の壁面を曲面状にしてもよい。
<積層型ヘッダー10Aの効果>
 積層型ヘッダー10Aの効果について説明する。積層型ヘッダー10Aは、実施の形態1に係る積層型ヘッダー10と同様の効果を奏するとともに、以下のような効果を奏する。
 積層型ヘッダー10Aは、扁平管20が挿入されるベア材12の開口部12Aの開口部からストッパーにかけての形状を段形状とすることで、面取りや曲面形状加工と比べ、比較的容易に製造することができる。
 また、積層型ヘッダー10Aは、第1空間30a及び第2空間30bの厚みや長さを任意に形成しやすくすることができる。そのため、積層型ヘッダー10Aによれば、製造を容易にできることで、製造コストを低減することができる。また、積層型ヘッダー10Aは、第1空間30a及び第2空間30bの厚みや長さを任意に形成しやすくすることで、製造の際により均質に製造することができる。そのため、積層型ヘッダー10Aによれば、均質に製造可能にすることで、製品化の際に信頼性を向上させることができる。
 さらに、積層型ヘッダー10Aは、空間30の形状を段形状の簡素な形状とすることで、切削や鋳造等による型での製造においても、型の製作を容易にすることができる。そのため、積層型ヘッダー10Aによれば、製作を容易にすることで製造コストを低減することができる。
実施の形態3.
 図11は、本発明の実施の形態3に係るヒートポンプ装置51の概略構成を示す概略回路図である。図11に基づいて、ヒートポンプ装置51について説明する。このヒートポンプ装置51は、実施の形態1又は2に係る積層型ヘッダーが適用された熱交換器が搭載され、たとえば冷蔵庫や冷凍庫、自動販売機、空気調和装置、冷凍装置、給湯器等として利用されるものである。なお、実施の形態3では、実施の形態1に係る積層型ヘッダー10を用いた場合を代表として説明するものとする。
<熱交換器の使用態様>
 なお、以下では、ヒートポンプ装置51が、冷房運転と暖房運転とが切り替えられるように構成された空気調和装置である場合を説明する。また、図11では、冷房運転時の冷媒の流れ方向が実線の矢印で示され、暖房運転時の冷媒の流れ方向が点線の矢印で示される。
 図11に示されるように、ヒートポンプ装置51は、圧縮機52と、四方弁53と、熱源側熱交換器54と、絞り装置55と、負荷側熱交換器56と、熱源側ファン57、負荷側ファン58、制御装置59と、を有する。圧縮機52と四方弁53と熱源側熱交換器54と絞り装置55と負荷側熱交換器56とが冷媒配管で接続されて、冷媒循環回路が形成される。
 制御装置59には、例えば、圧縮機52、四方弁53、絞り装置55、熱源側ファン57、負荷側ファン58、各種センサ等が接続される。制御装置59によって、四方弁53の流路が切り替えられることで、冷房運転と暖房運転とが切り替えられる。熱源側熱交換器54は、冷房運転時に凝縮器として作用し、暖房運転時に蒸発器として作用する。負荷側熱交換器56は、冷房運転時に蒸発器として作用し、暖房運転時に凝縮器として作用する。
 冷房運転時の冷媒の流れについて説明する。
 圧縮機52から吐出される高圧高温のガス状態の冷媒は、四方弁53を介して熱源側熱交換器54に流入し、熱源側ファン57によって供給される外気との熱交換によって凝縮することで高圧の液状態の冷媒となり、熱源側熱交換器54から流出する。熱源側熱交換器54から流出した高圧の液状態の冷媒は、絞り装置55に流入し、低圧の気液二相状態の冷媒となる。絞り装置55から流出する低圧の気液二相状態の冷媒は、負荷側熱交換器56に流入し、負荷側ファン58によって供給される室内空気との熱交換によって蒸発することで低圧のガス状態の冷媒となり、負荷側熱交換器56から流出する。負荷側熱交換器56から流出する低圧のガス状態の冷媒は、四方弁53を介して圧縮機52に吸入される。
 暖房運転時の冷媒の流れについて説明する。
 圧縮機52から吐出される高圧高温のガス状態の冷媒は、四方弁53を介して負荷側熱交換器56に流入し、負荷側ファン58によって供給される室内空気との熱交換によって凝縮することで高圧の液状態の冷媒となり、負荷側熱交換器56から流出する。負荷側熱交換器56から流出した高圧の液状態の冷媒は、絞り装置55に流入し、低圧の気液二相状態の冷媒となる。絞り装置55から流出する低圧の気液二相状態の冷媒は、熱源側熱交換器54に流入し、熱源側ファン57によって供給される外気との熱交換によって蒸発することで低圧のガス状態の冷媒となり、熱源側熱交換器54から流出する。熱源側熱交換器54から流出する低圧のガス状態の冷媒は、四方弁53を介して圧縮機52に吸入される。
 熱源側熱交換器54及び負荷側熱交換器56の少なくともいずれか一方に、実施の形態1に係る積層型ヘッダー10が適用された熱交換器1が用いられる。熱交換器1は、熱交換器1が蒸発器として作用する際に、積層型ヘッダー10から冷媒が流入し、ヘッダー3から冷媒が流出するように接続される。つまり、熱交換器1が蒸発器として作用する際は、冷媒配管から積層型ヘッダー10に気液二相状態の冷媒が流入し、扁平管20からヘッダー3にガス状態の冷媒が流入する。また、熱交換器1が凝縮器として作用する際は、冷媒配管からヘッダー3にガス状態の冷媒が流入し、扁平管20から積層型ヘッダー10に液状態の冷媒が流入する。
 積層型ヘッダー10は、複数の分岐流路によって冷媒を分配するため、気液二相状態の冷媒が流入したとしても、複数の扁平管20のそれぞれに流入する冷媒の流量及び乾き度を均一にすることが可能である。つまり、積層型ヘッダー10は、ヒートポンプ装置51に好適である。
<熱交換器1の作用>
 積層型ヘッダー10では、ベア材12が、クラッド材11と比較して厚く、扁平管20は、先端部20aがストッパー12Bにより位置決めされた状態で接合される。そのため、溶融したロウ材が、扁平管20内に流入することがなく、これによって冷媒の圧力損失が増大することがない。
 また、積層型ヘッダー10では、ストッパー12Bによって扁平管20の差込み位置を規定することで、差込み代を必要以上に長くすることなく、熱交換器1を製造でき、同サイズの熱交換器において、熱交換部の比率を上げることができる。加えて、差込み代を必要以上に長くすることなくすることで、同等の熱交換能力を得る際に熱交換器のサイズを小さくすることができる。
 以上、実施の形態1~実施の形態3について説明したが、本発明は各実施の形態の説明に限定されない。例えば、各実施の形態の全部又は一部、各変形例等を組み合わせることも可能である。
 1 熱交換器、3 ヘッダー、3a 合流流路、5 フィン、10 積層型ヘッダー、10A 積層型ヘッダー、10a 熱媒体流路、11 クラッド材、11A 開口部、12 ベア材、12A 開口部、12B ストッパー、15 ロウ材、20 扁平管、20A 先端部、20B 仕切り、20a 先端部、21 管高さ、22 管幅、23 管肉厚、24 穴高さ、25 穴幅、26 穴高さ、27 穴幅、30 空間、30a 第1空間、30b 第2空間、30c 第3空間、31 フィレット、40 扁平管、41 クラッド材、41A 開口部、42 ベア材、42A 開口部、45 ロウ材、46 空間、49 積層型ヘッダー、51 ヒートポンプ装置、52 圧縮機、53 四方弁、54 熱源側熱交換器、55 絞り装置、56 負荷側熱交換器、57 熱源側ファン、58 負荷側ファン、59 制御装置。

Claims (9)

  1.  ロウ材が塗布され、扁平管が挿入される側に設けられるクラッド材と、
     前記クラッド材に積層され、前記扁平管が挿入される開口部、及び、挿入された前記扁平管の先端部が当接するストッパーを有するベア材と、を備え、
     前記扁平管が前記ベア材の前記開口部に挿入され、前記扁平管の前記先端部が前記ストッパーに当接された状態において、前記扁平管と、前記クラッド材と、前記ベア材と、の間には空間が形成され、
     前記空間は、
     前記扁平管と前記クラッド材との接触境界面近傍に形成される第1空間と、
     前記第1空間よりも狭く、前記ベア材と前記クラッド材との接触境界面近傍に形成される第2空間と、
     前記第1空間よりも狭く、前記ベア材と前記扁平管との接触境界面近傍に形成される第3空間と、で構成されている
     ことを特徴とする積層型ヘッダー。
  2.  前記第2空間は、
     前記ベア材と前記クラッド材との接触境界面から前記扁平管に近づくにつれて大きくなるよう形成されている
     ことを特徴とする請求項1に記載の積層型ヘッダー。
  3.  前記第3空間は、
     前記ベア材と前記扁平管との接触境界面から前記ベア材に近づくにつれて大きくなるよう形成されている
     ことを特徴とする請求項1又は2に記載の積層型ヘッダー。
  4.  前記開口部は前記ベア材の表裏面を貫通するように形成されており、
     前記開口部の前記ストッパー側の穴サイズは、
     前記扁平管の管高さ≧前記開口部の前記ストッパー側の穴高さ≧(前記扁平管の管高さ-2×前記扁平管の管肉厚)、
     かつ、
     前記扁平管の管幅≧前記開口部の前記ストッパー側の穴幅≧(前記扁平管の管幅-2×前記扁平管の管肉厚)、の関係を満たすように設定されている
     ことを特徴とする請求項1~3のいずれか一項に記載の積層型ヘッダー。
  5.  前記扁平管が挿入される側の穴サイズは、
     前記扁平管の管高さ≦前記開口部の前記扁平管が挿入される側の穴高さ、
     かつ、
     前記扁平管の管幅≦前記開口部の前記扁平管が挿入される側の穴幅、の関係を満たすように設定されている
     ことを特徴とする請求項4に記載の積層型ヘッダー。
  6.  前記第2空間及び前記第3空間では、
     それぞれの空間を形成する部材間の間隔及び距離を調整することによって、毛細管現象を発生しやすくしている
     ことを特徴とする請求項1~5のいずれか一項に記載の積層型ヘッダー。
  7.  前記開口部による前記ベア材の内部壁面を、挿入される側からストッパー側にかけて、丸み付き形状、面取り形状、又は、段形状になるように形成している
     ことを特徴とする請求項6に記載の積層型ヘッダー。
  8.  請求項1~7のいずれか一項に記載の積層型ヘッダーと、
     前記扁平管と、を備えた
     ことを特徴とする熱交換器。
  9.  請求項8に記載の熱交換器を備えた
     ことを特徴とするヒートポンプ装置。
PCT/JP2013/074639 2013-09-12 2013-09-12 積層型ヘッダー、熱交換器、及び、ヒートポンプ装置 WO2015037097A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2013/074639 WO2015037097A1 (ja) 2013-09-12 2013-09-12 積層型ヘッダー、熱交換器、及び、ヒートポンプ装置
JP2015536609A JP6116696B2 (ja) 2013-09-12 2014-09-10 積層型ヘッダー、熱交換器、及び、ヒートポンプ装置
EP14844568.7A EP3054258B1 (en) 2013-09-12 2014-09-10 Heat exchanger and heat pump device
PCT/JP2014/073998 WO2015037641A1 (ja) 2013-09-12 2014-09-10 積層型ヘッダー、熱交換器、及び、ヒートポンプ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/074639 WO2015037097A1 (ja) 2013-09-12 2013-09-12 積層型ヘッダー、熱交換器、及び、ヒートポンプ装置

Publications (1)

Publication Number Publication Date
WO2015037097A1 true WO2015037097A1 (ja) 2015-03-19

Family

ID=52665239

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2013/074639 WO2015037097A1 (ja) 2013-09-12 2013-09-12 積層型ヘッダー、熱交換器、及び、ヒートポンプ装置
PCT/JP2014/073998 WO2015037641A1 (ja) 2013-09-12 2014-09-10 積層型ヘッダー、熱交換器、及び、ヒートポンプ装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073998 WO2015037641A1 (ja) 2013-09-12 2014-09-10 積層型ヘッダー、熱交換器、及び、ヒートポンプ装置

Country Status (3)

Country Link
EP (1) EP3054258B1 (ja)
JP (1) JP6116696B2 (ja)
WO (2) WO2015037097A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10859327B2 (en) 2015-09-22 2020-12-08 Denso Corporation Heat exchanger and manufacturing method for the same
US11543186B2 (en) 2018-09-28 2023-01-03 Daikin Industries, Ltd. Heat exchanger

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021025156A1 (ja) * 2019-08-07 2021-02-11 ダイキン工業株式会社 熱交換器およびヒートポンプ装置
JP7330294B2 (ja) * 2019-12-16 2023-08-21 三菱電機株式会社 熱交換器、熱交換器ユニット、及び冷凍サイクル装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005188787A (ja) * 2003-12-24 2005-07-14 Calsonic Kansei Corp 熱交換器のヘッダタンク
JP2007010296A (ja) * 2005-07-04 2007-01-18 Calsonic Kansei Corp 熱交換器
JP2007298197A (ja) * 2006-04-28 2007-11-15 Showa Denko Kk 熱交換器
JP2008249241A (ja) * 2007-03-30 2008-10-16 Showa Denko Kk 熱交換器
WO2012018125A1 (ja) * 2010-08-05 2012-02-09 株式会社Cku 熱交換器における伝熱管の溶着方法、および、熱交換器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1154577A (en) * 1979-05-01 1983-10-04 Ralph G. Nanos Method for reinforcing heat exchanger tube to header joints
US4272006A (en) * 1980-02-01 1981-06-09 Modine Manufacturing Company Method of soldering tube to plate
JPS56128990U (ja) * 1980-02-27 1981-09-30
JPH0331068U (ja) * 1989-08-02 1991-03-26
JP4430482B2 (ja) 2004-06-04 2010-03-10 カルソニックカンセイ株式会社 熱交換器
JP2008025927A (ja) * 2006-07-21 2008-02-07 Valeo Thermal Systems Japan Corp 熱交換器の製造方法及び熱交換器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005188787A (ja) * 2003-12-24 2005-07-14 Calsonic Kansei Corp 熱交換器のヘッダタンク
JP2007010296A (ja) * 2005-07-04 2007-01-18 Calsonic Kansei Corp 熱交換器
JP2007298197A (ja) * 2006-04-28 2007-11-15 Showa Denko Kk 熱交換器
JP2008249241A (ja) * 2007-03-30 2008-10-16 Showa Denko Kk 熱交換器
WO2012018125A1 (ja) * 2010-08-05 2012-02-09 株式会社Cku 熱交換器における伝熱管の溶着方法、および、熱交換器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10859327B2 (en) 2015-09-22 2020-12-08 Denso Corporation Heat exchanger and manufacturing method for the same
DE112016004273B4 (de) 2015-09-22 2023-12-28 Denso Corporation Wärmetauscher
US11543186B2 (en) 2018-09-28 2023-01-03 Daikin Industries, Ltd. Heat exchanger

Also Published As

Publication number Publication date
JP6116696B2 (ja) 2017-04-19
EP3054258B1 (en) 2020-02-26
EP3054258A1 (en) 2016-08-10
WO2015037641A1 (ja) 2015-03-19
JPWO2015037641A1 (ja) 2017-03-02
EP3054258A4 (en) 2017-07-19

Similar Documents

Publication Publication Date Title
WO2015004719A1 (ja) 積層型ヘッダー、熱交換器、空気調和装置、及び、積層型ヘッダーの板状体と管とを接合する方法
US20150033789A1 (en) Heat exchanger and air conditioner provided with heat exchanger
JP6005266B2 (ja) 積層型ヘッダー、熱交換器、及び、空気調和装置
WO2014184916A1 (ja) 積層型ヘッダー、熱交換器、及び、空気調和装置
JP6388716B2 (ja) 積層型ヘッダ、熱交換器、及び、空気調和装置
EP3064880B1 (en) Laminated header, heat exchanger, and air-conditioning apparatus
JP6116696B2 (ja) 積層型ヘッダー、熱交換器、及び、ヒートポンプ装置
JPWO2018116413A1 (ja) 分配器、熱交換器、及び、冷凍サイクル装置
JP6080982B2 (ja) 積層型ヘッダー、熱交換器、及び、空気調和装置
WO2020203589A1 (ja) 熱交換器、熱交換器の製造方法及びヘッダアッセンブリの製造方法
JP6223603B2 (ja) 熱交換器および空気調和装置
JP2016176686A (ja) タンク、および熱交換器
JP5063765B2 (ja) 熱交換器、熱交換器の製造方法、冷蔵庫、および空気調和機
JP2018151040A (ja) 管継手、熱交換器及び熱交換器の製造方法
WO2019193757A1 (ja) 熱交換器およびそれを備えた冷凍サイクル装置
KR20140042093A (ko) 열교환기
JP6207724B2 (ja) ヘッダ分配器、熱交換器、空気調和装置、及び、ヘッダ分配器の製造方法
JP7038892B2 (ja) 積層型ヘッダ、熱交換器、及び熱交換器の製造方法
JP7485993B1 (ja) 熱交換器
WO2021070312A1 (ja) 熱交換器、熱交換器ユニット、冷凍サイクル装置、及び熱交換部材の製造方法
JP2022044417A (ja) 積層型ヘッダ、熱交換器、及び冷凍装置
JP2022044306A (ja) 積層型ヘッダ、熱交換器、及び冷凍装置
JP2017106661A (ja) 熱交換器
WO2020144809A1 (ja) 熱交換器、及び冷凍サイクル装置
JP2019190787A (ja) 熱交換器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13893675

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13893675

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP