WO2015033880A1 - Composition de résine, procédé de production d'un film durci, film durci, dispositif d'affichage à cristaux liquides et dispositif d'affichage el organique - Google Patents

Composition de résine, procédé de production d'un film durci, film durci, dispositif d'affichage à cristaux liquides et dispositif d'affichage el organique Download PDF

Info

Publication number
WO2015033880A1
WO2015033880A1 PCT/JP2014/072872 JP2014072872W WO2015033880A1 WO 2015033880 A1 WO2015033880 A1 WO 2015033880A1 JP 2014072872 W JP2014072872 W JP 2014072872W WO 2015033880 A1 WO2015033880 A1 WO 2015033880A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
structural unit
resin composition
polymer
acid
Prior art date
Application number
PCT/JP2014/072872
Other languages
English (en)
Japanese (ja)
Inventor
山田 悟
真崎 慶央
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2015033880A1 publication Critical patent/WO2015033880A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders
    • G03F7/0233Macromolecular quinonediazides; Macromolecular additives, e.g. binders characterised by the polymeric binders or the macromolecular additives other than the macromolecular quinonediazides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0397Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having an alicyclic moiety in a side chain
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking

Definitions

  • the present invention relates to a resin composition (hereinafter sometimes simply referred to as “the composition of the present invention”), a method for producing a cured film, a cured film, a liquid crystal display device, and an organic EL display device. More specifically, a resin composition suitable for forming a flattening film, a protective film or an interlayer insulating film of an electronic component such as a liquid crystal display device, an organic EL (organic electroluminescence) display device, an integrated circuit element, or a solid-state imaging element, and The present invention relates to a method for producing a cured film using the composition.
  • the composition of the present invention a resin composition suitable for forming a flattening film, a protective film or an interlayer insulating film of an electronic component such as a liquid crystal display device, an organic EL (organic electroluminescence) display device, an integrated circuit element, or a solid-state imaging element.
  • an interlayer insulation is generally used to insulate between wirings arranged in layers.
  • a membrane is provided.
  • a photosensitive resin composition is widely used because a material having a small number of steps for obtaining a required pattern shape and sufficient flatness is preferable.
  • An example of such a photosensitive resin composition is Patent Document 1.
  • the present invention has been made to solve such problems, and an object of the present invention is to provide a resin composition having good solvent resistance and high voltage holding ratio while maintaining high sensitivity.
  • the cause of lowering the voltage holding ratio and solvent resistance is that epichlorohydrin that is included as an impurity when producing a photosensitive resin composition I understood. That is, the inventors have found that the voltage holding ratio and solvent resistance can be improved by reducing the content of epichlorohydrin in the resin composition, and the present invention has been completed.
  • ⁇ 1> a polymer component containing a polymer that satisfies at least one of the following (1) and (2): (1) (a1-1) a structural unit having a group in which an acid group is protected with an acid-decomposable group, and (a1-2) a polymer having a structural unit having an epoxy group, or (2) a structural unit (a1 -1) and a polymer having the structural unit (a1-2), (B-1) A resin composition containing a photoacid generator and (C-1) a solvent and having an epichlorohydrin content of 10 ppm or less.
  • A-2) a polymer component containing a polymer that satisfies at least one of the following (1) and (2): (1) (a2-1) a structural unit having an acid group and (a2-2) a polymer having a structural unit having an epoxy group, or (2) a polymer and a structural unit having a structural unit (a2-1) A polymer having (a2-2), (B-2) A resin composition comprising a quinonediazide compound and (C-2) a solvent, wherein the content of epichlorohydrin is 10 ppm or less.
  • A-3) polymerizable monomer (A-4) a polymer component containing a polymer that satisfies at least one of the following (1) and (2): (1) a polymer having (a4-1) a structural unit having an acid group and (a4-2) a structural unit having an epoxy group, (2) a polymer having the structural unit (a4-1) and a polymer having the structural unit (a4-2), (B-3) A resin composition containing a photopolymerization initiator and (C-3) a solvent and having an epichlorohydrin content of 10 ppm or less.
  • the resin composition according to any one of ⁇ 1> to ⁇ 3>, wherein the resin composition is photosensitive.
  • the resin composition according to ⁇ 1> or ⁇ 4> which is a chemically amplified positive photosensitive resin composition.
  • the structural unit (a1-1), the structural unit (a2-1), and the structural unit (a4-1) include structural units derived from (meth) acrylic acid and / or an ester thereof.
  • each of R 1 and R 2 represents a hydrogen atom, an alkyl group or an aryl group, at least one of R 1 and R 2 is an alkyl group or an aryl group, and R 3 is an alkyl group or an aryl group R 1 or R 2 and R 3 may be linked to form a cyclic ether, R 4 represents a hydrogen atom or a methyl group, and X represents a single bond or an arylene group.
  • ⁇ 11> A cured film obtained by curing the resin composition according to any one of ⁇ 1> to ⁇ 9>.
  • the cured film according to ⁇ 11> which is an interlayer insulating film.
  • ⁇ 13> A liquid crystal display device or an organic EL display device having the cured film according to ⁇ 11> or ⁇ 12>.
  • FIG. 1 is a conceptual diagram of a configuration of an example of a liquid crystal display device.
  • the schematic sectional drawing of the active matrix substrate in a liquid crystal display device is shown, and it has the cured film 17 which is an interlayer insulation film.
  • 1 shows a conceptual diagram of a configuration of an example of an organic EL display device.
  • a schematic cross-sectional view of a substrate in a bottom emission type organic EL display device is shown, and a planarizing film 4 is provided.
  • the notation which does not describe substitution and non-substitution includes those having no substituent and those having a substituent.
  • the “alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • the composition of the present invention includes a structural unit having an acid group, a polymer component including a structural unit having an epoxy group, and a solvent.
  • a resin composition is applied onto a substrate, and the solvent is removed.
  • a cured film can be obtained by exposure with actinic rays, development with an aqueous developer (preferably an alkali developer), and thermal curing.
  • an aqueous developer preferably an alkali developer
  • thermal curing preferably an alkali developer
  • the structural unit having a crosslinkable group is composed of a monomer having an epoxy group (hereinafter also referred to as an epoxy monomer). Except for special ones, epichlorohydrin is included.
  • the resin composition has a highly polar compound such as epichlorohydrin
  • the epichlorohydrin in the resin composition layer penetrates into the liquid crystal layer, adversely affects the movement of liquid crystal molecules, and the voltage holding ratio is low. It is considered to be.
  • epichlorohydrin By reducing the content of epichlorohydrin, it is considered that epichlorohydrin in the resin composition layer does not penetrate into the liquid crystal layer, and the voltage holding ratio is improved.
  • the first to third aspects of the composition of the present invention are preferably used as a photosensitive resin composition.
  • the first aspect of the composition of the present invention is preferably used as a chemically amplified positive photosensitive resin composition.
  • the second aspect of the composition of the present invention is preferably used as a positive photosensitive resin composition.
  • the third aspect of the composition of the present invention is preferably used as a negative photosensitive resin composition.
  • the composition of the present invention comprises (A-1) a polymer component containing a polymer that satisfies at least one of the following (1) and (2): (1) (a1-1) a structural unit having a group in which an acid group is protected by an acid-decomposable group, and (a1-2) a polymer having a structural unit having an epoxy group, or (2) the above structural unit ( a polymer having a1-1) and a polymer having the structural unit (a1-2), It contains (B-1) a photoacid generator and (C-1) a solvent, and the content of epichlorohydrin is 10 ppm or less.
  • A-1) a polymer component containing a polymer that satisfies at least one of the following (1) and (2): (1) (a1-1) a structural unit having a group in which an acid group is protected by an acid-decomposable group, and (a1-2) a polymer having a structural unit having an epoxy group, or (2) the above structural unit ( a polymer having a1
  • the composition of the present invention comprises a polymer having (a1-1) a structural unit having a group in which an acid group is protected by an acid-decomposable group and (a1-2) a structural unit having an epoxy group as a polymer component ( 1), and (a1-1) a polymer having a structural unit having a group in which an acid group is protected with an acid-decomposable group, and (a1-2) a polymer (2) having a structural unit having an epoxy group. Including at least one. Furthermore, polymers other than these may be included.
  • the polymer component (A-1) in the present invention includes, in addition to the polymer (1) and / or the polymer (2), other polymers added as necessary, unless otherwise specified. Means things.
  • the (A-1) polymer component is preferably an addition polymerization type resin, and more preferably a polymer containing a structural unit derived from (meth) acrylic acid and / or its ester.
  • a polymer containing a structural unit derived from (meth) acrylic acid and / or its ester you may have structural units other than the structural unit derived from (meth) acrylic acid and / or its ester, for example, the structural unit derived from styrene, the structural unit derived from a vinyl compound, etc.
  • the “structural unit derived from (meth) acrylic acid and / or its ester” is also referred to as “acrylic structural unit”.
  • the polymer component has at least a structural unit (a1-1) having a group in which an acid group is protected with an acid-decomposable group.
  • the “group in which the acid group is protected with an acid-decomposable group” in the present invention those known as an acid group and an acid-decomposable group can be used and are not particularly limited.
  • Specific examples of the acid group preferably include a carboxyl group and a phenolic hydroxyl group.
  • Specific acid-decomposable groups include groups that are relatively easily decomposed by an acid (for example, an acetal functional group such as an ester structure, a tetrahydropyranyl ester group, or a tetrahydrofuranyl ester group, which will be described later), or an acid.
  • a group that is relatively difficult to decompose for example, a tertiary alkyl group such as a tert-butyl ester group or a tertiary alkyl carbonate group such as a tert-butyl carbonate group
  • a tertiary alkyl group such as a tert-butyl ester group
  • a tertiary alkyl carbonate group such as a tert-butyl carbonate group
  • the structural unit (a1-1) is preferably a structural unit having a protected carboxyl group protected with an acid-decomposable group or a structural unit having a protected phenolic hydroxyl group protected with an acid-decomposable group.
  • the structural unit (a1-1-1) having a protected carboxyl group protected with an acid-decomposable group and the structural unit (a1-1-2) having a protected phenolic hydroxyl group protected with an acid-decomposable group Each will be described in turn.
  • the structural unit (a1-1-1) is a structural unit having a protected carboxyl group in which the carboxyl group of the structural unit having a carboxyl group is protected by an acid-decomposable group described in detail below.
  • the structural unit having a carboxyl group that can be used for the structural unit (a1-1-1) is not particularly limited, and a known structural unit can be used.
  • a structural unit derived from an unsaturated carboxylic acid having at least one carboxyl group in the molecule such as an unsaturated monocarboxylic acid, unsaturated dicarboxylic acid, or unsaturated tricarboxylic acid (a1-1-1-1) Is mentioned.
  • an unsaturated monocarboxylic acid, unsaturated dicarboxylic acid, or unsaturated tricarboxylic acid (a1-1-1-1) Is mentioned.
  • the structural unit (a1-1-1-1) used as the structural unit having a carboxyl group will be described.
  • ⁇ (a1-1-1-1) a structural unit derived from an unsaturated carboxylic acid having at least one carboxyl group in the molecule
  • examples of the unsaturated carboxylic acid used in the present invention include those listed below. That is, examples of the unsaturated monocarboxylic acid include acrylic acid, methacrylic acid, crotonic acid, ⁇ -chloroacrylic acid, cinnamic acid, 2- (meth) acryloyloxyethyl-succinic acid, 2- (meth) acrylic acid. And leuoxyethyl hexahydrophthalic acid, 2- (meth) acryloyloxyethyl-phthalic acid, and the like.
  • the unsaturated dicarboxylic acid examples include maleic acid, fumaric acid, itaconic acid, citraconic acid, and mesaconic acid.
  • the acid anhydride may be sufficient as unsaturated polyhydric carboxylic acid used in order to obtain the structural unit which has a carboxyl group. Specific examples include maleic anhydride, itaconic anhydride, citraconic anhydride, and the like.
  • the unsaturated polyvalent carboxylic acid may be a mono (2-methacryloyloxyalkyl) ester of a polyvalent carboxylic acid, such as succinic acid mono (2-acryloyloxyethyl), succinic acid mono (2 -Methacryloyloxyethyl), mono (2-acryloyloxyethyl) phthalate, mono (2-methacryloyloxyethyl) phthalate and the like.
  • the unsaturated polyvalent carboxylic acid may be a mono (meth) acrylate of a dicarboxy polymer at both terminals, and examples thereof include ⁇ -carboxypolycaprolactone monoacrylate and ⁇ -carboxypolycaprolactone monomethacrylate.
  • unsaturated carboxylic acid acrylic acid-2-carboxyethyl ester, methacrylic acid-2-carboxyethyl ester, maleic acid monoalkyl ester, fumaric acid monoalkyl ester, 4-carboxystyrene and the like can also be used.
  • the structural unit (a1-1-1-1) acrylic acid, methacrylic acid, 2- (meth) acryloyloxyethyl-succinic acid, 2- (meta It is preferable to use acryloyloxyethyl hexahydrophthalic acid, 2- (meth) acryloyloxyethyl-phthalic acid, or an anhydride of an unsaturated polyvalent carboxylic acid, such as acrylic acid, methacrylic acid, 2- (meta It is more preferred to use acryloyloxyethyl hexahydrophthalic acid.
  • the structural unit (a1-1-1-1) may be composed of one type alone, or may be composed of two or more types.
  • acid-decomposable group that can be used for the structural unit (a1-1-1) >>>>>
  • the acid-decomposable group that can be used for the structural unit (a1-1-1) the acid-decomposable groups described above can be used.
  • the acid-decomposable group is preferably a group having a structure protected in the form of an acetal.
  • the carboxyl group is a protected carboxyl group in which the carboxyl group is protected in the form of an acetal, the basic physical properties of the photosensitive resin composition, particularly the sensitivity and pattern shape, the formation of contact holes, the storage stability of the photosensitive resin composition
  • the carboxyl group is a protected carboxyl group protected in the form of an acetal represented by the following general formula (a1-10).
  • the carboxyl group is a protected carboxyl group protected in the form of an acetal represented by the following general formula (a1-10)
  • the entire protected carboxyl group is — (C ⁇ O) —O—CR 101
  • the structure is R 102 (OR 103 ).
  • R 101 and R 102 each independently represents a hydrogen atom or an alkyl group, except that R 101 and R 102 are both hydrogen atoms, and R 103 represents an alkyl group.
  • R 101 or R 102 and R 103 may be linked to form a cyclic ether.
  • R 101 to R 103 each independently represents a hydrogen atom or an alkyl group, and the alkyl group may be linear, branched or cyclic.
  • both R 101 and R 102 do not represent a hydrogen atom, and at least one of R 101 and R 102 represents an alkyl group.
  • the linear or branched alkyl group preferably has 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, and still more preferably 1 to 4 carbon atoms.
  • methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, neopentyl group, n examples include -hexyl group, texyl group (2,3-dimethyl-2-butyl group), n-heptyl group, n-octyl group, 2-ethylhexyl group, n-nonyl group, n-decyl group and the like.
  • R 101 to R 103 each independently represents a hydrogen atom or an alkyl group.
  • the alkyl group may be linear, branched or cyclic.
  • both R 101 and R 102 do not represent a hydrogen atom, and at least one of R 101 and R 102 represents an alkyl group.
  • the linear or branched alkyl group preferably has 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, and still more preferably 1 to 4 carbon atoms.
  • methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, neopentyl group, n examples include -hexyl group, texyl group (2,3-dimethyl-2-butyl group), n-heptyl group, n-octyl group, 2-ethylhexyl group, n-nonyl group, n-decyl group and the like.
  • the cyclic alkyl group preferably has 3 to 12 carbon atoms, more preferably 4 to 8 carbon atoms, and still more preferably 4 to 6 carbon atoms.
  • Examples of the cyclic alkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a norbornyl group, and an isobornyl group.
  • the alkyl group may have a substituent, and examples of the substituent include a halogen atom, an aryl group, and an alkoxy group.
  • R 101 , R 102 and R 103 When it has a halogen atom as a substituent, R 101 , R 102 and R 103 become a haloalkyl group, and when it has an aryl group as a substituent, R 101 , R 102 and R 103 become an aralkyl group.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and among these, a fluorine atom or a chlorine atom is preferable.
  • the aryl group is preferably an aryl group having 6 to 20 carbon atoms, more preferably 6 to 12 carbon atoms, and specific examples thereof include a phenyl group, an ⁇ -methylphenyl group, and a naphthyl group.
  • the alkoxy group is preferably an alkoxy group having 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms, and more preferably a methoxy group or an ethoxy group.
  • the cycloalkyl group may have a linear or branched alkyl group having 1 to 10 carbon atoms as a substituent, and the alkyl group is straight.
  • the alkyl group is a chain or branched chain, it may have a cycloalkyl group having 3 to 12 carbon atoms as a substituent. These substituents may be further substituted with the above substituents.
  • R 101 , R 102 and R 103 represent an aryl group
  • the aryl group preferably has 6 to 12 carbon atoms, and preferably 6 to 10 carbon atoms. More preferred.
  • the aryl group may have a substituent, and preferred examples of the substituent include an alkyl group having 1 to 6 carbon atoms. Examples of the aryl group include a phenyl group, a tolyl group, a xylyl group, a cumenyl group, and a 1-naphthyl group.
  • R 101 , R 102 and R 103 can be bonded to each other to form a ring together with the carbon atom to which they are bonded.
  • Examples of the ring structure when R 101 and R 102 , R 101 and R 103, or R 102 and R 103 are bonded include a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a tetrahydrofuranyl group, an adamantyl group, and a tetrahydropyrani group. And the like. Note that in the general formula (a1-10), it is preferable that any one of R 101 and R 102 be a hydrogen atom or a methyl group.
  • radical polymerizable monomer used for forming the structural unit having a protected carboxyl group represented by the general formula (a1-10) a commercially available one may be used, or it may be synthesized by a known method. Things can also be used. For example, it can be synthesized by the synthesis method described in paragraph Nos. 0037 to 0040 of JP2011-212494A, the contents of which are incorporated herein.
  • a first preferred embodiment of the structural unit (a1-1-1) is a structural unit represented by the following general formula (A2 ′).
  • R 1 and R 2 each represent a hydrogen atom, an alkyl group or an aryl group, at least one of R 1 and R 2 represents an alkyl group or an aryl group, and R 3 represents Represents an alkyl group or an aryl group, and R 1 or R 2 and R 3 may be linked to form a cyclic ether, R 4 represents a hydrogen atom or a methyl group, and X represents a single bond or arylene. Represents a group.
  • R 1 and R 2 are alkyl groups, alkyl groups having 1 to 10 carbon atoms are preferred.
  • R 1 and R 2 are aryl groups, a phenyl group is preferred.
  • R 1 and R 2 are each preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • R 3 represents an alkyl group or an aryl group, preferably an alkyl group having 1 to 10 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms.
  • X represents a single bond or an arylene group, and a single bond is preferred.
  • a second preferred embodiment of the structural unit (a1-1-1) is a structural unit represented by the following general formula (1-12).
  • Formula (1-12) (In the formula (1-12), R 121 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, L 1 represents a carbonyl group or a phenylene group, and R 122 to R 128 each independently represents a hydrogen atom or Represents an alkyl group having 1 to 4 carbon atoms.) R 121 is preferably a hydrogen atom or a methyl group. L 1 is preferably a carbonyl group. R 122 to R 128 are preferably hydrogen atoms.
  • R represents a hydrogen atom or a methyl group.
  • the structural unit (a1-1-2) includes a structural unit (a1-1-2-1) having a protected phenolic hydroxyl group in which the structural unit having a phenolic hydroxyl group is protected by an acid-decomposable group described in detail below. ).
  • Structural unit having phenolic hydroxyl group examples include a hydroxystyrene structural unit and a structural unit in a novolac resin.
  • a structural unit derived from hydroxystyrene or ⁇ -methylhydroxystyrene includes: It is preferable from the viewpoint of sensitivity.
  • a structural unit represented by the following general formula (a1-20) is also preferable from the viewpoint of sensitivity.
  • R 220 represents a hydrogen atom or a methyl group
  • R 221 represents a single bond or a divalent linking group
  • R 222 represents a halogen atom or a straight chain of 1 to 5 carbon atoms or Represents a branched alkyl group
  • a represents an integer of 1 to 5
  • b represents an integer of 0 to 4
  • a + b is 5 or less
  • R 222 is 2 or more, these R 222 may be different from each other or the same.
  • R 220 represents a hydrogen atom or a methyl group, and is preferably a methyl group.
  • R 221 represents a single bond or a divalent linking group. A single bond is preferable because the sensitivity can be improved and the transparency of the cured film can be further improved.
  • the divalent linking group of R 221 may be exemplified alkylene groups, specific examples R 221 is an alkylene group, a methylene group, an ethylene group, a propylene group, isopropylene group, n- butylene group, isobutylene group, tert -Butylene group, pentylene group, isopentylene group, neopentylene group, hexylene group and the like. Among these, it is preferable that R 221 is a single bond, a methylene group, or an ethylene group.
  • the divalent linking group may have a substituent, and examples of the substituent include a halogen atom, a hydroxyl group, and an alkoxy group.
  • A represents an integer of 1 to 5, but a is preferably 1 or 2 and more preferably 1 from the viewpoint of the effects of the present invention and the ease of production.
  • the bonding position of the hydroxyl group in the benzene ring is preferably bonded to the 4-position when the carbon atom bonded to R 221 is defined as the reference (first position).
  • R 222 is a halogen atom or a linear or branched alkyl group having 1 to 5 carbon atoms.
  • a chlorine atom, a bromine atom, a methyl group, or an ethyl group is preferable from the viewpoint of easy production.
  • B represents 0 or an integer of 1 to 4;
  • the acid-decomposable group that can be used for the structural unit (a1-1-2) is the same as the acid-decomposable group that can be used for the structural unit (a1-1-1). It can be used and is not particularly limited.
  • a structural unit having a protected phenolic hydroxyl group protected with acetal is a basic physical property of the photosensitive resin composition, particularly sensitivity and pattern shape, storage stability of the photosensitive resin composition, contact This is preferable from the viewpoint of hole formability.
  • the phenolic hydroxyl group is a protected phenolic hydroxyl group protected in the form of an acetal represented by the above general formula (a1-10).
  • the protected phenolic hydroxyl group as a whole is —Ar—O—CR 101 R
  • the structure is 102 (OR 103 ).
  • Ar represents an arylene group.
  • Examples of the radical polymerizable monomer used for forming a structural unit having a protected phenolic hydroxyl group in which the phenolic hydroxyl group is protected in the form of an acetal include paragraph number 0042 of JP2011-215590A. And the like.
  • a 1-alkoxyalkyl protector of 4-hydroxyphenyl methacrylate and a tetrahydropyranyl protector of 4-hydroxyphenyl methacrylate are preferable from the viewpoint of transparency.
  • acetal protecting group for the phenolic hydroxyl group examples include a 1-alkoxyalkyl group, such as a 1-ethoxyethyl group, a 1-methoxyethyl group, a 1-n-butoxyethyl group, and a 1-isobutoxyethyl group.
  • 1- (2-chloroethoxy) ethyl group, 1- (2-ethylhexyloxy) ethyl group, 1-n-propoxyethyl group, 1-cyclohexyloxyethyl group, 1- (2-cyclohexylethoxy) ethyl group, 1 -A benzyloxyethyl group etc. can be mentioned, These can be used individually or in combination of 2 or more types.
  • the radical polymerizable monomer used for forming the structural unit (a1-1-2) a commercially available monomer may be used, or one synthesized by a known method may be used. For example, it can be synthesized by reacting a compound having a phenolic hydroxyl group with vinyl ether in the presence of an acid catalyst. In the above synthesis, a monomer having a phenolic hydroxyl group may be previously copolymerized with another monomer, and then reacted with vinyl ether in the presence of an acid catalyst.
  • structural unit (a1-1-2) examples include the following structural units, but the present invention is not limited thereto.
  • ⁇ Preferred Aspect of Structural Unit (a1-1) >>>
  • the content of the structural unit (a1-1) is 20 to 100 in the polymer.
  • the mol% is preferable, and 30 to 90 mol% is more preferable.
  • the content of the structural unit (a1-1) is 3 to 70 from the viewpoint of sensitivity in the polymer.
  • the mol% is preferable, and 10 to 60 mol% is more preferable.
  • the acid-decomposable group that can be used in the structural unit (a1) is a structural unit having a protected carboxyl group in which the carboxyl group is protected in the form of an acetal
  • the content is preferably 20 to 50 mol%.
  • the structural unit (a1-1-1) is characterized by faster development than the structural unit (a1-1-2). Therefore, when it is desired to develop quickly, the structural unit (a1-1-1) is preferable. Conversely, when it is desired to slow development, it is preferable to use the structural unit (a1-1-2).
  • the polymer component has a structural unit (a1-2) having an epoxy group.
  • the structural unit (a1-2) is contained, the chemical resistance is excellent.
  • the structural unit (a1-2) is not particularly limited as long as it has at least one epoxy group in one structural unit, but preferably has 1 to 3 epoxy groups in total. It is more preferable to have one or two in total, and it is even more preferable to have one epoxy group.
  • radical polymerizable monomer used for forming the structural unit having an epoxy group include, for example, glycidyl acrylate, glycidyl methacrylate, glycidyl ⁇ -ethyl acrylate, and glycidyl ⁇ -n-propyl acrylate.
  • glycidyl methacrylate, 3,4-epoxycyclohexylmethyl acrylate, 3,4-epoxycyclohexylmethyl methacrylate, o-vinylbenzyl glycidyl ether, m-vinylbenzyl glycidyl ether, p-vinylbenzyl glycidyl are preferred.
  • Ether, acrylic acid (3-ethyloxetane-3-yl) methyl, and methacrylic acid (3-ethyloxetane-3-yl) methyl are preferred from the viewpoints of copolymerization reactivity and improved properties of the cured film.
  • These structural units can be used individually by 1 type or in combination of 2 or more types.
  • R represents a hydrogen atom or a methyl group.
  • the content of the structural unit (a1-2) is preferably 3 to 70 mol% in all the structural units of the polymer component (A-1), regardless of any embodiment. More preferably, it is ⁇ 60 mol%. By setting it within the above numerical range, a cured film having excellent characteristics can be formed.
  • the polymer component (A-1) is a structural unit other than these (a1-3), It is preferable to have a structural unit having at least an acid group.
  • the structural unit (a1-3) may be contained in the polymer (1) and / or (2).
  • the acid group in the present invention means a proton dissociable group having a pKa of less than 7.
  • the acid group is usually incorporated into the polymer as a structural unit containing an acid group using a monomer capable of forming an acid group.
  • Acid groups used in the present invention include those derived from carboxylic acid groups, those derived from sulfonamide groups, those derived from phosphonic acid groups, those derived from sulfonic acid groups, those derived from phenolic hydroxyl groups, sulfones Amide groups, sulfonylimide groups and the like are exemplified, and those derived from carboxylic acid groups and / or those derived from phenolic hydroxyl groups are preferred.
  • the structural unit containing an acid group used in the present invention is more preferably a structural unit derived from styrene, a structural unit derived from a vinyl compound, a structural unit derived from (meth) acrylic acid and / or an ester thereof. .
  • the structural unit having an acid group As a method for introducing the structural unit having an acid group, it can be introduced into the same polymer as the structural unit (a1-1) and / or (a1-2), or (a1-1) the structural unit and ( a1-2) It may be introduced as a structural unit of a polymer different from the structural unit.
  • a resin having a carboxyl group in the side chain is preferable.
  • methacrylic acid copolymer acrylic acid copolymer, itaconic acid copolymer, crotonic acid copolymer, maleic acid copolymer, partially esterified maleic acid copolymer, etc.
  • side chain examples thereof include acidic cellulose derivatives having a carboxyl group, those obtained by adding an acid anhydride to a polymer having a hydroxyl group, and high molecular polymers having a (meth) acryloyl group in the side chain.
  • benzyl (meth) acrylate / (meth) acrylic acid copolymer 2-hydroxyethyl (meth) acrylate / benzyl (meth) acrylate / (meth) acrylic acid copolymer, described in JP-A-7-140654 2-hydroxypropyl (meth) acrylate / polystyrene macromonomer / benzyl methacrylate / methacrylic acid copolymer, 2-hydroxy-3-phenoxypropyl acrylate / polymethyl methacrylate macromonomer / benzyl methacrylate / methacrylic acid copolymer, 2 -Hydroxyethyl methacrylate / polystyrene macromonomer / methyl methacrylate / methacrylic acid copolymer, 2-hydroxyethyl methacrylate / polystyrene macromonomer / benzyl methacrylate / methacrylic acid
  • Known polymer compounds described in JP-A-2003-233179, JP-A-2009-52020, and the like can be used, and the contents thereof are incorporated herein. These polymers may contain only 1 type and may contain 2 or more types.
  • SMA 1000P As these polymers, commercially available SMA 1000P, SMA 2000P, SMA 3000P, SMA 1440F, SMA 17352P, SMA 2625P, SMA 3840F (above, manufactured by Sartomer), ARUFON UC-3000, ARUFON UC-3510, ARUFON UC-3900, ARUFON UC-3910, ARUFON UC-3920, ARUFON UC-3080 (above, manufactured by Toagosei Co., Ltd.), Joncryl 690, Joncryl 678, Joncryl 67, Joncryl 586 (above, manufactured by BASF, etc.) You can also.
  • a structural unit having a carboxyl group from the viewpoint of reducing the relative dielectric constant of the cured film.
  • a structural unit having a carboxyl group from the viewpoint of reducing the relative dielectric constant of the cured film.
  • compounds described in JP 2012-88459 A, paragraph numbers 0021 to 0023 and paragraph numbers 0029 to 0044 can be used, the contents of which are incorporated herein.
  • the structural unit containing an acid group is preferably 1 to 80% by mole, more preferably 1 to 50% by mole, still more preferably 5 to 40% by mole, and particularly preferably 5 to 30% by mole of the structural unit of all polymer components. 5 to 25 mol% is particularly preferred.
  • the monomer that becomes the structural unit (a1-3) other than the structural unit containing an acid group is not particularly limited, and examples thereof include styrenes, (meth) acrylic acid alkyl esters, (meth) acrylic acid cyclic alkyl esters, (Meth) acrylic acid aryl ester, unsaturated dicarboxylic acid diester, bicyclounsaturated compound, maleimide compound, unsaturated aromatic compound, conjugated diene compound, unsaturated monocarboxylic acid, unsaturated dicarboxylic acid, unsaturated dicarboxylic acid There may be mentioned anhydrides and other unsaturated compounds.
  • the other structural unit (a1-3) monomers can be used alone or in combination of two or more.
  • styrene methylstyrene, hydroxystyrene, ⁇ -methylstyrene, acetoxystyrene, methoxystyrene, ethoxystyrene, chlorostyrene, methyl vinylbenzoate, ethyl vinylbenzoate, 4-hydroxybenzoic acid (3-methacryloyloxy) Propyl) ester, (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, benzyl (meth) acrylate, isobornyl (meth) acrylate, (meth) acryloylmorpholine, N-cyclohexylmaleimide, acrylonitrile, ethylene glycol
  • styrenes and groups having an aliphatic cyclic skeleton are preferable from the viewpoint of electrical characteristics.
  • Specific examples include styrene, methylstyrene, hydroxystyrene, ⁇ -methylstyrene, dicyclopentanyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, and benzyl (meth) acrylate.
  • an alkyl (meth) acrylate is preferable from the viewpoint of adhesion.
  • Specific examples include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, and n-butyl (meth) acrylate, and methyl (meth) acrylate is more preferred.
  • the polymer component may further have a structural unit having an oxazoline group as the other structural unit (a1-3).
  • the polymer in addition to the polymer (1) or (2), the polymer further includes the structural unit (a1-1) and the structural unit (a1-2) and the other structural unit (a1-3).
  • Embodiment with coalescence Embodiment with coalescence.
  • the weight ratio of the total amount of the polymer having the above and the total amount of the polymer having the other structural unit (a1-3) substantially free of (a1-1) and (a1-2) is 99%. : 1 to 5:95 is preferable, 97: 3 to 30:70 is more preferable, and 95: 5 to 50:50 is more preferable.
  • the composition of the first aspect of the present invention preferably contains (A-1) the polymer component in a proportion of 70% by mass or more of the solid content of the composition.
  • the molecular weight of the polymer (A-1) is a polystyrene-reduced weight average molecular weight, preferably in the range of 1,000 to 200,000, more preferably 2,000 to 50,000. Various characteristics are favorable in the range of said numerical value.
  • the ratio (dispersity) between the number average molecular weight and the weight average molecular weight is preferably 1.0 to 5.0, more preferably 1.5 to 3.5.
  • (A-1) Polymer Production Method Various methods for synthesizing the polymer component (A-1) are also known. For example, at least the structures represented by the above (a1-1) and (a1-3) are exemplified. It can be synthesized by polymerizing a radical polymerizable monomer mixture containing a radical polymerizable monomer used to form units in an organic solvent using a radical polymerization initiator. It can also be synthesized by a so-called polymer reaction. (A-1) The polymer preferably contains 50 mol% or more, and 80 mol% or more of the structural unit derived from (meth) acrylic acid and / or its ester with respect to all the structural units. More preferred.
  • the resin composition of the present invention contains (B-1) a photoacid generator.
  • the photoacid generator used in the present invention is preferably a compound that reacts with actinic rays having a wavelength of 300 nm or more, preferably 300 to 450 nm, and generates an acid, but is not limited to its chemical structure.
  • a photoacid generator that is not directly sensitive to an actinic ray having a wavelength of 300 nm or more can also be used as a sensitizer if it is a compound that reacts with an actinic ray having a wavelength of 300 nm or more and generates an acid when used in combination with a sensitizer. It can be preferably used in combination.
  • the photoacid generator used in the present invention is preferably a photoacid generator that generates an acid having a pKa of 4 or less, more preferably a photoacid generator that generates an acid having a pKa of 3 or less, and an acid of 2 or less. Most preferred are photoacid generators that generate.
  • photoacid generator examples include trichloromethyl-s-triazines, sulfonium salts and iodonium salts, quaternary ammonium salts, diazomethane compounds, imide sulfonate compounds, and oxime sulfonate compounds. Among these, it is preferable to use an oxime sulfonate compound from the viewpoint of insulation.
  • photoacid generators can be used singly or in combination of two or more.
  • trichloromethyl-s-triazines diaryliodonium salts, triarylsulfonium salts, quaternary ammonium salts, and diazomethane derivatives include the compounds described in paragraph numbers 0083 to 0088 of JP2011-212494A. These can be illustrated and their contents are incorporated herein.
  • Preferred examples of the oxime sulfonate compound that is, a compound having an oxime sulfonate structure include compounds having an oxime sulfonate structure represented by the following general formula (B1-1).
  • General formula (B1-1) (In the general formula (B1-1), R 21 represents an alkyl group or an aryl group. The wavy line represents a bond with another group.)
  • any group may be substituted, and the alkyl group in R 21 may be linear, branched or cyclic. Acceptable substituents are described below.
  • the alkyl group for R 21 is preferably a linear or branched alkyl group having 1 to 10 carbon atoms.
  • the alkyl group represented by R 21 has a halogen atom, an aryl group having 6 to 11 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, or a cycloalkyl group (7,7-dimethyl-2-oxonorbornyl group). It may be substituted with a bridged alicyclic group, preferably a bicycloalkyl group or the like.
  • aryl group for R 21 an aryl group having 6 to 11 carbon atoms is preferable, and a phenyl group or a naphthyl group is more preferable.
  • the aryl group of R 21 may be substituted with a lower alkyl group, an alkoxy group, or a halogen atom.
  • the compound containing the oxime sulfonate structure represented by the general formula (B1-1) is preferably an oxime sulfonate compound represented by the following general formula (B1-2).
  • General formula (B1-2) (In the formula (B1-2), R 42 represents an optionally substituted alkyl group or aryl group, X represents an alkyl group, an alkoxy group, or a halogen atom, and m4 represents 0-3. Represents an integer, and when m4 is 2 or 3, a plurality of Xs may be the same or different.
  • the alkyl group as X is preferably a linear or branched alkyl group having 1 to 4 carbon atoms.
  • the alkoxy group as X is preferably a linear or branched alkoxy group having 1 to 4 carbon atoms.
  • the halogen atom as X is preferably a chlorine atom or a fluorine atom.
  • m4 is preferably 0 or 1.
  • m4 is 1
  • X is a methyl group
  • substitution position of X is the ortho position
  • R 42 is a linear alkyl group having 1 to 10 carbon atoms
  • 7,7- A compound that is a dimethyl-2-oxonorbornylmethyl group or a p-toluyl group is particularly preferred.
  • the compound containing an oxime sulfonate structure represented by the general formula (B1-1) is also preferably an oxime sulfonate compound represented by the following general formula (B1-3).
  • General formula (B1-3) (In the formula (B1-3), R 43 has the same meaning as R 42 in the formula (B1-2), and X 1 is a halogen atom, a hydroxyl group, an alkyl group having 1 to 4 carbon atoms, or an alkyl group having 1 to 4 carbon atoms. Represents an alkoxy group, a cyano group or a nitro group, and n4 represents an integer of 0 to 5.)
  • R 43 in the above general formula (B1-3) is methyl group, ethyl group, n-propyl group, n-butyl group, n-octyl group, trifluoromethyl group, pentafluoroethyl group, perfluoro-n—.
  • a propyl group, a perfluoro-n-butyl group, a p-tolyl group, a 4-chlorophenyl group or a pentafluorophenyl group is preferable, and an n-octyl group is particularly preferable.
  • X 1 is preferably an alkoxy group having 1 to 5 carbon atoms, and more preferably a methoxy group.
  • n4 is preferably from 0 to 2, particularly preferably from 0 to 1.
  • the description in paragraphs 0080 to 0082 of JP2012-163937A can be referred to, and the contents thereof are described in this application. Incorporated in the description.
  • the compound containing an oxime sulfonate structure represented by the general formula (B1-1) is also preferably a compound represented by the following general formula (OS-1).
  • R 101 represents a hydrogen atom, an alkyl group, an alkenyl group, an alkoxy group, an alkoxycarbonyl group, an acyl group, a carbamoyl group, a sulfamoyl group, a sulfo group, a cyano group, an aryl group, or Represents a heteroaryl group.
  • R102 represents an alkyl group or an aryl group.
  • X 101 represents —O—, —S—, —NH—, —NR 105 —, —CH 2 —, —CR 106 H—, or —CR 105 R 107 —, wherein R 105 to R 107 are alkyl groups.
  • R 121 to R 124 each independently represents a hydrogen atom, a halogen atom, an alkyl group, an alkenyl group, an alkoxy group, an amino group, an alkoxycarbonyl group, an alkylcarbonyl group, an arylcarbonyl group, an amide group, a sulfo group, a cyano group, Or an aryl group is represented. Two of R 121 to R 124 may be bonded to each other to form a ring.
  • R 121 to R 124 are preferably a hydrogen atom, a halogen atom and an alkyl group, and an embodiment in which at least two of R 121 to R 124 are bonded to each other to form an aryl group is also preferred. Among these, an embodiment in which R 121 to R 124 are all hydrogen atoms is preferable from the viewpoint of sensitivity. Any of the aforementioned functional groups may further have a substituent.
  • the compound represented by the general formula (OS-1) is, for example, a compound represented by the general formula (OS-2) described in paragraph numbers 0087 to 0089 of JP2012-163937A Which is incorporated herein by reference.
  • the compound represented by the general formula (OS-1) that can be suitably used in the present invention include compounds described in paragraph numbers 0128 to 0132 of JP2011-221494A (exemplified compounds b-1 to b-34), but the present invention is not limited thereto.
  • the compound containing the oxime sulfonate structure represented by the general formula (B1-1) is represented by the following general formula (OS-3), the following general formula (OS-4), or the following general formula (OS- The oxime sulfonate compound represented by 5) is preferred.
  • R 22 , R 25 and R 28 each independently represents an alkyl group, an aryl group or a heteroaryl group
  • R 23 , R 26 and R 29 Each independently represents a hydrogen atom, an alkyl group, an aryl group or a halogen atom
  • R 24 , R 27 and R 30 each independently represent a halogen atom, an alkyl group, an alkyloxy group, a sulfonic acid group, an aminosulfonyl group or an alkoxysulfonyl group.
  • X 1 to X 3 each independently represents an oxygen atom or a sulfur atom
  • n 1 to n 3 each independently represents 1 or 2
  • m 1 to m 3 each independently represents an integer of 0 to 6 Represents.
  • the compound containing an oxime sulfonate structure represented by the above general formula (B1-1) is, for example, a compound represented by the general formula (OS-6) described in paragraph 0117 of JP2012-163937A. Particularly preferred is a compound represented by any of (OS-11), the contents of which are incorporated herein. Preferred ranges in the above general formulas (OS-6) to (OS-11) are preferred ranges of (OS-6) to (OS-11) described in paragraph numbers 0110 to 0112 of JP2011-221494A. The contents of which are incorporated herein by reference.
  • oxime sulfonate compound represented by the general formula (OS-3) to the general formula (OS-5) include compounds described in paragraph numbers 0114 to 0120 of JP2011-221494A. The contents of which are incorporated herein by reference. The present invention is not limited to these.
  • the compound containing an oxime sulfonate structure represented by the general formula (B1-1) is also preferably an oxime sulfonate compound represented by the following general formula (B1-4).
  • General formula (B1-4) (In the general formula (B1-4), R 1 represents an alkyl group or an aryl group, R 2 represents an alkyl group, an aryl group, or a heteroaryl group. R 3 to R 6 each represents a hydrogen atom. Represents an alkyl group, an aryl group, or a halogen atom, provided that R 3 and R 4 , R 4 and R 5 , or R 5 and R 6 may combine to form an alicyclic ring or aromatic ring. , -O- or S-.
  • R 1 represents an alkyl group or an aryl group.
  • the alkyl group is preferably a branched alkyl group or a cyclic alkyl group.
  • the alkyl group preferably has 3 to 10 carbon atoms. In particular, when the alkyl group has a branched structure, an alkyl group having 3 to 6 carbon atoms is preferable. When the alkyl group has a cyclic structure, an alkyl group having 5 to 7 carbon atoms is preferable.
  • alkyl group examples include propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, 1,1-dimethylpropyl group, hexyl group. 2-ethylhexyl group, cyclohexyl group, octyl group and the like, preferably isopropyl group, tert-butyl group, neopentyl group, and cyclohexyl group.
  • the aryl group preferably has 6 to 12 carbon atoms, more preferably 6 to 8 carbon atoms, and still more preferably 6 to 7 carbon atoms.
  • Examples of the aryl group include a phenyl group and a naphthyl group, and a phenyl group is preferable.
  • the alkyl group and aryl group represented by R 1 may have a substituent.
  • substituents examples include a halogen atom (a fluorine atom, a chloro atom, a bromine atom, an iodine atom), a linear, branched or cyclic alkyl group (for example, a methyl group, an ethyl group, a propyl group, etc.), an alkenyl group, an alkynyl group, Aryl group, acyl group, alkoxycarbonyl group, aryloxycarbonyl group, carbamoyl group, cyano group, carboxyl group, hydroxyl group, alkoxy group, aryloxy group, alkylthio group, arylthio group, heterocyclic oxy group, acyloxy group, amino group, A nitro group, a hydrazino group, a heterocyclic group, etc. are mentioned. Further, these groups may be further substituted. Preferably, they are a halogen atom and a methyl group.
  • R 1 is preferably an alkyl group from the viewpoint of transparency, and R 1 is an alkyl group having a branched structure having 3 to 6 carbon atoms from the viewpoint of achieving both storage stability and sensitivity.
  • An alkyl group having a cyclic structure having 5 to 7 carbon atoms or a phenyl group is preferable, and an alkyl group having a branched structure having 3 to 6 carbon atoms or an alkyl group having a cyclic structure having 5 to 7 carbon atoms is more preferable.
  • an isopropyl group, a tert-butyl group, a neopentyl group, and a cyclohexyl group are preferable, and a tert-butyl group and a cyclohexyl group are more preferable.
  • R 2 represents an alkyl group, an aryl group, or a heteroaryl group.
  • the alkyl group represented by R 2 is preferably a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms.
  • Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a tert-butyl group, a pentyl group, a neopentyl group, a hexyl group, and a cyclohexyl group. It is a group.
  • As the aryl group an aryl group having 6 to 10 carbon atoms is preferable.
  • Examples of the aryl group include a phenyl group, a naphthyl group, a p-toluyl group (p-methylphenyl group), and a phenyl group and a p-toluyl group are preferable.
  • Examples of the heteroaryl group include a pyrrole group, an indole group, a carbazole group, a furan group, and a thiophene group.
  • the alkyl group, aryl group, and heteroaryl group represented by R 2 may have a substituent. As a substituent, it is synonymous with the substituent which the alkyl group and aryl group which R ⁇ 1 > may have.
  • R 2 is preferably an alkyl group or an aryl group, more preferably an aryl group, and more preferably a phenyl group.
  • As the substituent for the phenyl group a methyl group is preferred.
  • R 3 to R 6 each represent a hydrogen atom, an alkyl group, an aryl group, or a halogen atom (a fluorine atom, a chloro atom, a bromine atom, or an iodine atom).
  • the alkyl group represented by R 3 to R 6 has the same meaning as the alkyl group represented by R 2 , and the preferred range is also the same.
  • the aryl group represented by R 3 to R 6 has the same meaning as the aryl group represented by R 1 , and the preferred range is also the same.
  • R 3 to R 6 may combine to form a ring, and the ring may form an alicyclic ring or an aromatic ring. It is preferable that a benzene ring is more preferable.
  • R 3 to R 6 are each a hydrogen atom, an alkyl group, a halogen atom (fluorine atom, chlorine atom, bromine atom), or R 3 and R 4 , R 4 and R 5 , or R 5 and R 6.
  • a benzene ring is preferably formed, and a hydrogen atom, a methyl group, a fluorine atom, a chloro atom, a bromine atom, or R 3 and R 4 , R 4 and R 5 , or R 5 and R 6 are combined to form a benzene ring Is more preferable.
  • Preferred embodiments of R 3 to R 6 are as follows.
  • At least two are hydrogen atoms.
  • the number of alkyl groups, aryl groups, or halogen atoms is one or less.
  • Aspect 3) R 3 and R 4 , R 4 and R 5 , or R 5 and R 6 are combined to form a benzene ring.
  • X represents —O— or S—.
  • Ts represents a tosyl group (p-toluenesulfonyl group)
  • Me represents a methyl group
  • Bu represents an n-butyl group
  • Ph represents a phenyl group.
  • the content of the (B-1) photoacid generator is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the total solid components in the resin composition, Is more preferably from 10 to 10 parts by mass, even more preferably from 0.5 to 5 parts by mass. Only 1 type may be used for a photo-acid generator, and it can also use 2 or more types together.
  • the composition of the present invention contains (C-1) a solvent.
  • the resin composition of the present invention is preferably prepared as a solution obtained by dissolving the essential components of the present invention and the optional components described later in a solvent.
  • a solvent used for the preparation of the composition of the present invention a solvent that uniformly dissolves essential components and optional components and does not react with each component is used.
  • solvents can be used, such as ethylene glycol monoalkyl ethers, ethylene glycol dialkyl ethers, ethylene glycol monoalkyl ether acetates, propylene glycol monoalkyl ethers, Propylene glycol dialkyl ethers, propylene glycol monoalkyl ether acetates, diethylene glycol dialkyl ethers, diethylene glycol monoalkyl ether acetates, dipropylene glycol monoalkyl ethers, dipropylene glycol dialkyl ethers, dipropylene glycol monoalkyl ether acetates, Examples thereof include esters, ketones, amides, and lactones.
  • solvent used in the resin composition of the present invention include the solvents described in paragraphs 0174 to 0178 of JP2011-221494A, and paragraphs of 0167 to 0168 in JP2012-194290A. And the contents of which are incorporated herein.
  • the solvent that can be used in the present invention is a single type or a combination of two types, more preferably a combination of two types, propylene glycol monoalkyl ether acetates or dialkyl ethers, diacetates. And diethylene glycol dialkyl ethers or esters and butylene glycol alkyl ether acetates are more preferably used in combination.
  • the solvent is preferably a solvent having a boiling point of 130 ° C. or higher and lower than 160 ° C., a solvent having a boiling point of 160 ° C. or higher, or a mixture thereof.
  • Solvents having a boiling point of 130 ° C. or higher and lower than 160 ° C. include propylene glycol monomethyl ether acetate (boiling point 146 ° C.), propylene glycol monoethyl ether acetate (boiling point 158 ° C.), propylene glycol methyl-n-butyl ether (boiling point 155 ° C.), propylene glycol An example is methyl-n-propyl ether (boiling point 131 ° C.).
  • Solvents having a boiling point of 160 ° C or higher include diethylene glycol ethyl methyl ether (boiling point 176 ° C), ethyl 3-ethoxypropionate (boiling point 170 ° C), diethylene glycol methyl ethyl ether (boiling point 176 ° C), propylene glycol monomethyl ether propionate (boiling point).
  • dipropylene glycol methyl ether acetate (boiling point 213 ° C), 3-methoxybutyl ether acetate (boiling point 171 ° C), diethylene glycol diethyl ether (boiling point 189 ° C), diethylene glycol dimethyl ether (boiling point 162 ° C), propylene glycol diacetate ( 190 ° C boiling point), diethylene glycol monoethyl ether acetate (bp 220 ° C), dipropylene glycol dimethyl ether (bp 175 ° C), , 3-butylene glycol diacetate (boiling point 232 ° C.) can be exemplified.
  • the content of the solvent in the composition of the present invention is preferably 50 to 95 parts by mass, more preferably 60 to 90 parts by mass, per 100 parts by mass of all components in the resin composition. Only one type of solvent may be used, or two or more types may be used. When using 2 or more types, it is preferable that the total amount becomes the said range.
  • the composition of the present invention has an epichlorohydrin content of 10 ppm or less.
  • the content of epichlorohydrin is 10 ppm or less in the resin composition, preferably 8 ppm or less, more preferably 6 ppm or less, further preferably 3 ppm or less, and preferably 1 ppm or less. More preferably, it is particularly preferable not to contain substantially.
  • substantially not contained means that it is below the detection limit by the method described in the Examples of the present application described later.
  • it can be achieved by purifying the raw material monomer of the polymer component and using it, or by reprecipitation of the polymer component.
  • impurities such as metals in the composition of the present invention may lead to deterioration of the storage stability of the composition and device contamination
  • the content is preferably small.
  • impurities include sodium, potassium, magnesium, calcium, iron, manganese, copper, aluminum, titanium, chromium, cobalt, nickel, zinc, tin, or ions thereof.
  • the content of these impurities is preferably 1000 ppb or less, more preferably 500 ppb or less, and still more preferably 100 ppb or less in the composition of the present invention. Particularly for metal impurities, 20 ppb or less is particularly preferable.
  • impurities As a method for reducing impurities in this way, use materials that do not contain these impurities in the raw materials of resins and additives, prevent contamination of these impurities when preparing the composition, and wash them when they are mixed. As a result, the amount of impurities can be within the above range. These impurities can be quantified by a known method such as ICP emission spectroscopy or atomic absorption spectroscopy.
  • composition of the present invention includes benzene, formaldehyde, trichloroethylene, 1,3-butadiene, carbon tetrachloride, chloroform, N, N-dimethylformamide, N, N-dimethylacetamide, hexane, ethylene oxide, 2-methoxyethanol, 2-methoxymethanol, 2-methoxyethyl acetate, 2-ethoxyethyl acetate, toluene, o-xylene, m-xylene, p-xylene, propylene glycol-2-monomethyl ether-1-acetate, propylene glycol-1-monomethyl ether It is preferable that compounds such as -1-acetate, propylene glycol-3-monomethyl ether-1-acetate, propylene glycol-2-monomethyl ether-2-acetate are not included.
  • the content of these compounds is preferably 500 ppm or less, more preferably 10 ppm or less, and still more preferably 1 ppm or less in the composition of the present invention.
  • the content of these impurities can be suppressed by the same method as that for metal impurities, and can be quantified by a known low method.
  • a sensitizer, a crosslinking agent, an alkoxysilane compound, a basic compound, a surfactant, and an antioxidant can be preferably added to the composition of the present invention as necessary.
  • the composition of the present invention includes known acid proliferating agents, development accelerators, plasticizers, thermal radical generators, thermal acid generators, ultraviolet absorbers, thickeners, and organic or inorganic precipitation inhibitors. Additives can be added. Further, as these compounds, for example, compounds described in paragraph numbers 0201 to 0224 of JP2012-8859A can be used, and the contents thereof are incorporated in the present specification. Each of these components may be used alone or in combination of two or more.
  • the composition of the present invention preferably contains a sensitizer in order to accelerate its decomposition in combination with a photoacid generator.
  • the sensitizer absorbs actinic rays and enters an electronically excited state.
  • the sensitizer in an electronically excited state comes into contact with the photoacid generator, and effects such as electron transfer, energy transfer, and heat generation occur.
  • a photo-acid generator raise
  • Examples of preferred sensitizers include compounds belonging to the following compounds and having an absorption wavelength in any of the wavelength ranges from 350 nm to 450 nm.
  • Polynuclear aromatics eg, pyrene, perylene, triphenylene, anthracene, 9,10-dibutoxyanthracene, 9,10-diethoxyanthracene, 3,7-dimethoxyanthracene, 9,10-dipropyloxyanthracene
  • xanthenes Eg, fluorescein, eosin, erythrosine, rhodamine B, rose bengal
  • xanthones eg, xanthone, thioxanthone, dimethylthioxanthone, diethylthioxanthone
  • cyanines eg, thiacarbocyanine, oxacarbocyanine
  • merocyanines For example, merocyanine, carbomerocyanine), rhodocyanines, oxonols, thiazines (eg, thionine, methylene blue, to
  • polynuclear aromatics polynuclear aromatics, acridones, styryls, base styryls, and coumarins are preferable, and polynuclear aromatics are more preferable.
  • polynuclear aromatics anthracene derivatives are most preferred.
  • the addition amount of the sensitizer is preferably 0 to 100 parts by mass with respect to 100 parts by mass in total of the polymer component (A-1).
  • the amount is more preferably 1 to 50 parts by mass, and further preferably 0.5 to 20 parts by mass.
  • Two or more sensitizers can be used in combination.
  • the composition of this invention may contain a crosslinking agent as needed. By adding a crosslinking agent, the cured film obtained by the composition of the present invention can be made a stronger film.
  • the crosslinking agent is not limited as long as a crosslinking reaction is caused by heat. For example, a compound having two or more epoxy groups or oxetanyl groups in the molecule described below, an alkoxymethyl group-containing crosslinking agent, a compound having at least one ethylenically unsaturated double bond, a blocked isocyanate compound, etc. Can be added.
  • the content of the crosslinking agent is preferably 0.01 to 50 parts by mass with respect to 100 parts by mass of the total solid content in the composition, preferably 0.1 to 30 parts.
  • the amount is more preferably part by mass, and further preferably 0.5 to 20 parts by mass.
  • a plurality of crosslinking agents may be used in combination. In that case, the content is calculated by adding all the crosslinking agents.
  • JER152, JER157S70, JER157S65, JER806, JER828, JER1007 are commercially available products described in paragraph No. 0189 of JP2011-221494, etc.
  • bisphenol A type epoxy resin bisphenol F type epoxy resin, phenol novolac type epoxy resin and aliphatic epoxy resin are more preferable, and bisphenol A type epoxy resin is particularly preferable.
  • the compound having two or more oxetanyl groups in the molecule Aron oxetane OXT-121, OXT-221, OX-SQ, and PNOX (manufactured by Toagosei Co., Ltd.) can be used.
  • alkoxymethyl group-containing crosslinking agents described in paragraph numbers 0107 to 0108 of JP2012-8223A, and compounds having at least one ethylenically unsaturated double bond are also preferable. These contents can be used and are incorporated herein.
  • alkoxymethyl group-containing crosslinking agent alkoxymethylated glycoluril is preferable.
  • a blocked isocyanate compound can also be preferably employed as a crosslinking agent.
  • a block isocyanate compound It is preferable that it is a compound which has a 2 or more block isocyanate group in 1 molecule from a sclerosing
  • the blocked isocyanate group in this invention is a group which can produce
  • the group which reacted the blocking agent and the isocyanate group and protected the isocyanate group can illustrate preferably.
  • the blocked isocyanate group is preferably a group capable of generating an isocyanate group by heat at 90 ° C. to 250 ° C.
  • the skeleton of the blocked isocyanate compound is not particularly limited and may be any as long as it has two isocyanate groups in one molecule, and is aliphatic, alicyclic or aromatic.
  • Polyisocyanates may be used, for example, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, isophorone diisocyanate, 1,6-hexamethylene diisocyanate, 1,3-trimethylene diisocyanate, 1,4-tetramethylene Diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, 1,9-nonamethylene diisocyanate, 1,10-decamethylene diisocyanate, 1,4-cyclohexane diisocyanate, 2 2'-diethyl ether diisocyanate, diphenylmethane-4,4'-diisocyanate, o-xylene diisocyanate, m-xylene diisocyanate, p-xylene diisocyanate, methylene bis (cyclohexyl isocyanate), cyclohexane-1,3
  • a compound and a prepolymer type skeleton compound derived from these compounds can be preferably used.
  • tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), hexamethylene diisocyanate (HDI), and isophorone diisocyanate (IPDI) are particularly preferable.
  • Examples of the matrix structure of the blocked isocyanate compound in the composition of the present invention include biuret type, isocyanurate type, adduct type, and bifunctional prepolymer type.
  • Examples of the blocking agent that forms the block structure of the blocked isocyanate compound include oxime compounds, lactam compounds, phenol compounds, alcohol compounds, amine compounds, active methylene compounds, pyrazole compounds, mercaptan compounds, imidazole compounds, and imide compounds. be able to.
  • a blocking agent selected from oxime compounds, lactam compounds, phenol compounds, alcohol compounds, amine compounds, active methylene compounds, and pyrazole compounds is particularly preferable.
  • Examples of the oxime compound include oxime and ketoxime, and specific examples include acetoxime, formaldoxime, cyclohexane oxime, methyl ethyl ketone oxime, cyclohexanone oxime, benzophenone oxime, and acetoxime.
  • Examples of the lactam compound include ⁇ -caprolactam and ⁇ -butyrolactam.
  • Examples of the phenol compound include phenol, naphthol, cresol, xylenol, and halogen-substituted phenol.
  • Examples of the alcohol compound include methanol, ethanol, propanol, butanol, cyclohexanol, ethylene glycol monoalkyl ether, propylene glycol monoalkyl ether, and alkyl lactate.
  • Examples of the amine compound include primary amines and secondary amines, which may be aromatic amines, aliphatic amines, alicyclic amines, and examples thereof include aniline, diphenylamine, ethyleneimine, and polyethyleneimine.
  • Examples of the active methylene compound include diethyl malonate, dimethyl malonate, ethyl acetoacetate, methyl acetoacetate and the like.
  • Examples of the pyrazole compound include pyrazole, methylpyrazole, dimethylpyrazole and the like.
  • Examples of the mercaptan compound include alkyl mercaptans and aryl mercaptans.
  • the blocked isocyanate compound that can be used in the composition of the present invention is commercially available.
  • Coronate AP Stable M Coronate 2503, 2515, 2507, 2513, 2555, Millionate MS-50 (above, Nippon Polyurethane Industry) Takenate B-830, B-815N, B-820NSU, B-842N, B-84N, B-870N, B-874N, B-882N (above, manufactured by Mitsui Chemicals), Duranate 17B-60PX, 17B-60P, TPA-B80X, TPA-B80E, MF-B60X, MF-B60B, MF-K60X, MF-K60B, E402-B80B, SBN-70D, SBB-70P, K6000 (above, Asahi Kasei Chemicals) Manufactured by Co., Ltd.), Death Module BL1100 Preferably, BL1265 MPA / X, BL3575 / 1,
  • the composition of the present invention may contain an alkoxysilane compound as an adhesion improver.
  • an alkoxysilane compound as an adhesion improver.
  • the alkoxysilane compound that can be used in the composition of the present invention includes an inorganic material as a base material, for example, a silicon compound such as silicon, silicon oxide, or silicon nitride, a metal such as gold, copper, molybdenum, titanium, or aluminum, and an insulating film. It is preferable that it is a compound which improves adhesiveness.
  • silane coupling agent examples include ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriacoxysilane, and ⁇ -glycid.
  • Xylpropyl dialkoxysilane ⁇ -methacryloxypropyltrialkoxysilane, ⁇ -methacryloxypropyl dialkoxysilane, ⁇ -chloropropyltrialkoxysilane, ⁇ -mercaptopropyltrialkoxysilane, ⁇ - (3,4-epoxycyclohexyl) Examples include ethyltrialkoxysilane and vinyltrialkoxysilane.
  • ⁇ -glycidoxypropyltrialkoxysilane and ⁇ -methacryloxypropyltrialkoxysilane are more preferable, ⁇ -glycidoxypropyltrialkoxysilane is more preferable, and 3-glycidoxypropyltrimethoxysilane is more preferable. Further preferred. These can be used alone or in combination of two or more.
  • the alkoxysilane compound in the composition of the present invention is not particularly limited, and known compounds can be used.
  • the content of the alkoxysilane compound is preferably 0.1 to 30 parts by mass, preferably 0.5 to 20 parts per 100 parts by mass of the total solid content in the composition. Part by mass is more preferable.
  • the composition of the present invention may contain a basic compound.
  • the basic compound can be arbitrarily selected from those used in chemically amplified resists. Examples include aliphatic amines, aromatic amines, heterocyclic amines, quaternary ammonium hydroxides, quaternary ammonium salts of carboxylic acids, and the like. Specific examples thereof include the compounds described in JP-A 2011-212494, paragraphs 0204 to 0207, the contents of which are incorporated herein.
  • aliphatic amine examples include trimethylamine, diethylamine, triethylamine, di-n-propylamine, tri-n-propylamine, di-n-pentylamine, tri-n-pentylamine, diethanolamine, triethanolamine, and the like.
  • examples include ethanolamine, dicyclohexylamine, and dicyclohexylmethylamine.
  • aromatic amine examples include aniline, benzylamine, N, N-dimethylaniline, diphenylamine and the like.
  • heterocyclic amine examples include pyridine, 2-methylpyridine, 4-methylpyridine, 2-ethylpyridine, 4-ethylpyridine, 2-phenylpyridine, 4-phenylpyridine, N-methyl-4-phenylpyridine, 4-dimethylaminopyridine, imidazole, benzimidazole, 4-methylimidazole, 2-phenylbenzimidazole, 2,4,5-triphenylimidazole, nicotine, nicotinic acid, nicotinamide, quinoline, 8-oxyquinoline, pyrazine, Pyrazole, pyridazine, purine, pyrrolidine, piperidine, piperazine, morpholine, 4-methylmorpholine, N-cyclohexyl-N ′-[2- (4-morpholinyl) ethyl] thiourea, 1,5-diazabicyclo [4.3.0 ] -5-Nonene, 1,8-di And azabicyclo
  • Examples of the quaternary ammonium hydroxide include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, benzyltrimethylammonium hydroxide, tetra-n-butylammonium hydroxide, and tetra-n-hexylammonium hydroxide. And so on.
  • Examples of the quaternary ammonium salt of carboxylic acid include tetramethylammonium acetate, tetramethylammonium benzoate, tetra-n-butylammonium acetate, tetra-n-butylammonium benzoate and the like.
  • the basic compounds that can be used in the present invention may be used singly or in combination of two or more.
  • the content of the basic compound is preferably 0.001 to 3 parts by mass with respect to 100 parts by mass of the total solid components in the resin composition. More preferred is 005 to 1 part by mass.
  • the composition of the present invention may contain a surfactant.
  • a surfactant any of anionic, cationic, nonionic, or amphoteric can be used, but a preferred surfactant is a nonionic surfactant.
  • the surfactant used in the composition of the present invention include those described in paragraph Nos. 0201 to 0205 in JP2012-88459A, and paragraphs 0185 to 0188 in JP2011-215580A. Can be used and these descriptions are incorporated herein.
  • nonionic surfactants include polyoxyethylene higher alkyl ethers, polyoxyethylene higher alkyl phenyl ethers, higher fatty acid diesters of polyoxyethylene glycol, silicone-based and fluorine-based surfactants.
  • KP-341, X-22-822 manufactured by Shin-Etsu Chemical Co., Ltd.
  • Polyflow No. 99C manufactured by Kyoeisha Chemical Co., Ltd.
  • F Top manufactured by Mitsubishi Materials Kasei Co., Ltd.
  • MegaFac manufactured by DIC Corporation
  • Florard Novec FC-4430 manufactured by Sumitomo 3M Co., Ltd.
  • Surflon S-242 Manufactured by AGC Seimi Chemical Co., Ltd.
  • PolyFox PF-6320 manufactured by OMNOVA
  • SH 8400 FLUID, SH-8400 Toray Dow Corning Silicone
  • Aftergent FTX-218, Aftergent FTX-218G manufactured by Neos
  • the surfactant is measured by gel permeation chromatography using the structural unit A and the structural unit B represented by the following general formula (I-1-1) and using tetrahydrofuran (THF) as a solvent.
  • a preferred example is a copolymer having a polystyrene-reduced weight average molecular weight (Mw) of 1,000 or more and 10,000 or less.
  • R 401 and R 403 each independently represent a hydrogen atom or a methyl group
  • R 402 represents a linear alkylene group having 1 to 4 carbon atoms
  • R 404 represents hydrogen.
  • L represents an alkylene group having 3 to 6 carbon atoms
  • p and q are mass percentages representing a polymerization ratio
  • p is 10 mass% to 80 mass%.
  • the following numerical values are represented, q represents a numerical value of 20% to 90% by mass, r represents an integer of 1 to 18, and s represents an integer of 1 to 10.
  • L is preferably a branched alkylene group represented by the following general formula (I-1-2).
  • R 405 in formula (I-1-2) represents an alkyl group having 1 to 4 carbon atoms, and preferably an alkyl group having 1 to 3 carbon atoms in terms of compatibility and wettability with respect to the coated surface. And an alkyl group having 2 or 3 carbon atoms is more preferred.
  • the weight average molecular weight (Mw) of the copolymer is more preferably from 1,500 to 5,000.
  • These surfactants can be used individually by 1 type or in mixture of 2 or more types.
  • the addition amount of the surfactant is preferably 10 parts by mass or less with respect to 100 parts by mass of the total solid component in the resin composition, and 0.001 to 10 The amount is more preferably part by mass, and further preferably 0.01 to 3 parts by mass.
  • the composition of the present invention may contain an antioxidant. As an antioxidant, a well-known antioxidant can be contained.
  • antioxidants include phosphorus antioxidants, amides, hydrazides, hindered amine antioxidants, sulfur antioxidants, phenol antioxidants, ascorbic acids, zinc sulfate, sugars, Examples thereof include nitrates, sulfites, thiosulfates, and hydroxylamine derivatives.
  • phenolic antioxidants, hindered amine antioxidants, phosphorus antioxidants, amide antioxidants, hydrazide antioxidants, sulfur oxidations are particularly preferred from the viewpoint of coloring of the cured film and reduction of the film thickness.
  • Inhibitors are preferred, and phenolic antioxidants are most preferred. These may be used individually by 1 type and may mix 2 or more types. Specific examples include the compounds described in paragraph numbers 0026 to 0031 of JP-A-2005-29515, and the compounds described in paragraph numbers 0106 to 0116 of JP-A-2011-227106. It is incorporated herein. Preferred commercial products include ADK STAB AO-60, ADK STAB AO-20, ADK STAB AO-80, ADK STAB LA-52, ADK STAB LA-81, ADK STAB AO-412S, ADK STAB PEP-36, IRGANOX 1035, IRGANOX 1098, and Tinuvin 144. Can be mentioned.
  • the content of the antioxidant is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the total solid components in the resin composition.
  • the amount is more preferably 2 to 5 parts by mass, and particularly preferably 0.5 to 4 parts by mass.
  • the composition of the present invention can use an acid proliferating agent for the purpose of improving sensitivity.
  • the acid proliferating agent that can be used in the present invention is a compound that can further generate an acid by an acid-catalyzed reaction to increase the acid concentration in the reaction system, and is a compound that exists stably in the absence of an acid. is there.
  • Specific examples of such an acid proliferating agent include acid proliferating agents described in paragraph numbers 0226 to 0228 of JP2011-221494A, the contents of which are incorporated herein.
  • the composition of the present invention can contain a development accelerator.
  • a development accelerator those described in paragraphs 0171 to 0172 of JP2012-042837A can be referred to, and the contents thereof are incorporated in the present specification.
  • a development accelerator may be used individually by 1 type, and can also use 2 or more types together.
  • the addition amount of the development accelerator is preferably 0 to 30 parts by mass with respect to 100 parts by mass of the total solid content of the composition from the viewpoint of sensitivity and residual film ratio. The amount is more preferably 0.1 to 20 parts by mass, and most preferably 0.5 to 10 parts by mass.
  • thermal radical generators described in paragraphs 0120 to 0121 of JP2012-8223A, nitrogen-containing compounds and thermal acid generators described in WO2011-133604A1 can be used. Is incorporated herein by reference.
  • the composition of the present invention comprises: (A-2) a polymer component containing a polymer satisfying at least one of the following (1) and (2): (1) (a2-1) a structural unit having an acid group and (a2-2) a polymer having a structural unit having an epoxy group, or (2) a polymer having the structural unit (a2-1) and the above A polymer having the structural unit (a2-2), It contains (B-2) a quinonediazide compound and (C-2) a solvent, and the content of epichlorohydrin is 10 ppm or less.
  • the polymer component (A-2) used in the present invention comprises (a2-1) a structural unit having an acid group and (a2-2) a polymer containing a structural unit having an epoxy group, and (a2-1) an acid.
  • the (A-2) polymer component may contain a polymer other than these.
  • (a2-1) Structural Unit Having Acid Group By including the structural unit (a2-1) having an acid group in the polymer component (A-2), the polymer component is easily soluble in an alkaline developer, and the effects of the present invention are more effectively exhibited.
  • the acid group is usually incorporated into the polymer as a structural unit having an acid group using a monomer capable of forming an acid group. By including such a structural unit having an acid group in the polymer, the polymer tends to be easily dissolved in an alkaline developer.
  • the acid group used in the present invention is the same as the structural unit containing an acid group in (a1-3) other structural units described in (A-1) Polymer component of the first aspect described above. The preferred range is the same except for the blending amount.
  • the structural unit (a2-2) having an epoxy group has the same meaning as the structural unit (a1-2) having an epoxy group in the polymer (A-1), and the preferred range is the same except for the blending amount. It is.
  • the polymer component (A-2) includes the structural unit (a2-1) and the structural unit (a2-2), as well as the structural unit (a2-1) and the structural unit (a2-2).
  • the structural unit (a2-3) may be included.
  • the monomer to be the structural unit (a2-3) is not particularly limited as long as it is an unsaturated compound other than the structural units (a2-1) and (a2-2).
  • styrenes for example, styrenes, (meth) acrylic acid alkyl esters, (meth) acrylic acid cyclic alkyl esters, (meth) acrylic acid aryl esters, unsaturated dicarboxylic acid diesters, bicyclounsaturated compounds, maleimide compounds, unsaturated aromatics Examples thereof include compounds, conjugated diene compounds, and other unsaturated compounds.
  • the monomers to be the structural unit (a2-3) can be used alone or in combination of two or more.
  • the structural unit (a2-1) is preferably contained in an amount of 3 to 70 mol%, more preferably 10 to 60 mol%. More preferably, it is contained in an amount of ⁇ 50 mol%.
  • the structural unit (a2-2) is preferably contained in an amount of 3 to 70 mol%, more preferably 10 to 60 mol%. More preferably, it is contained in an amount of ⁇ 40 mol%.
  • the structural unit (a2-3) is preferably contained in an amount of 1 to 80 mol%, more preferably 5 to 50 mol%, more preferably 8 More preferably, it is contained in an amount of ⁇ 30 mol%.
  • the composition of the second aspect of the present invention preferably contains (A-2) the polymer component in a proportion of 70% by mass or more of the solid content of the composition.
  • quinonediazide compound used in the composition of the present invention a 1,2-quinonediazide compound that generates a carboxylic acid upon irradiation with radiation can be used.
  • a condensate of a phenolic compound or an alcoholic compound (hereinafter referred to as “mother nucleus”) and 1,2-naphthoquinonediazidesulfonic acid halide can be used.
  • description of paragraphs 0075 to 0078 of JP2012-088459A can be referred to, and the contents thereof are incorporated in the present specification.
  • condensation reaction In the condensation reaction of a phenolic compound or an alcoholic compound (mother nucleus) and 1,2-naphthoquinonediazidesulfonic acid halide, preferably 30 to 85 moles relative to the number of OH groups in the phenolic compound or alcoholic compound. %, More preferably 1,2-naphthoquinonediazide sulfonic acid halide corresponding to 50 to 70 mol% can be used.
  • the condensation reaction can be carried out by a known method.
  • 1,2-quinonediazide compound examples include 1,2-naphthoquinonediazidesulfonic acid amides in which the ester bond of the mother nucleus exemplified above is changed to an amide bond, such as 2,3,4-triaminobenzophenone-1,2 -Naphthoquinonediazide-4-sulfonic acid amide is also preferably used.
  • the compounding amount of the quinonediazide compound in the resin composition of the present invention is preferably 1 to 50 parts by mass, more preferably 2 to 40 parts by mass with respect to 100 parts by mass of the total solid content in the resin composition. Part is more preferred.
  • B-2 By setting the blending amount of the quinonediazide compound within the above range, the difference in solubility between the irradiated portion of the actinic ray and the unirradiated portion with respect to the alkaline aqueous solution serving as the developer is large, and the patterning performance is improved. The solvent resistance of the cured film is improved.
  • the composition of the present invention contains a solvent.
  • the solvent used in the composition of the present invention the solvent (C-1) of the first aspect described above can be used, and the preferred range is also the same.
  • the content of the solvent in the composition of the present invention is preferably 50 to 95 parts by mass, more preferably 60 to 90 parts by mass, per 100 parts by mass of all components in the resin composition.
  • composition of the present invention in addition to the above components, a crosslinking agent, alkoxysilane compound, basic compound, surfactant, and antioxidant can be preferably added as necessary as long as the effects of the present invention are not impaired.
  • the composition of the present invention contains known additives such as development accelerators, plasticizers, thermal radical generators, thermal acid generators, ultraviolet absorbers, thickeners, and organic or inorganic precipitation inhibitors. Can be added. These components are the same as those in the first embodiment described above, and the preferred ranges are also the same. Each of these components may be used alone or in combination of two or more.
  • the composition of the present invention comprises: (A-3) a polymerizable monomer, (A-4) a polymer component containing a polymer that satisfies at least one of the following (1) and (2): (1) a polymer having (a4-1) a structural unit having an acid group and (a4-2) a structural unit having an epoxy group, (2) a polymer having the structural unit (a4-1) and a polymer having the structural unit (a4-2), It contains (B-3) a photopolymerization initiator and (C-3) a solvent, and the content of epichlorohydrin is 10 ppm or less.
  • A-3) Polymerizable monomer The polymerizable monomer used in the present invention can be appropriately selected from those applicable to this type of composition, and among them, an ethylenically unsaturated compound can be used. Is preferably used.
  • An ethylenically unsaturated compound is a polymerizable compound having at least one ethylenically unsaturated double bond.
  • ethylenically unsaturated compounds include unsaturated carboxylic acids (eg, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid, etc.), esters and amides thereof, preferably An ester of an unsaturated carboxylic acid and an aliphatic polyhydric alcohol compound and an amide of an unsaturated carboxylic acid and an aliphatic polyvalent amine compound are used.
  • unsaturated carboxylic acids eg, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid, etc.
  • esters and amides thereof preferably An ester of an unsaturated carboxylic acid and an aliphatic polyhydric alcohol compound and an amide of an unsaturated carboxylic acid and an aliphatic polyvalent amine compound are used.
  • urethane addition polymerizable compounds produced by the addition reaction of isocyanate and hydroxyl group, as described in JP-A-51-37193, JP-B-2-32293, and JP-B-2-16765.
  • Urethane acrylates such as those described above, and urethanes having an ethylene oxide skeleton described in JP-B-58-49860, JP-B-56-17654, JP-B-62-39417, and JP-B-62-39418 Compounds are also suitable and their description is incorporated herein.
  • Other examples include polyester acrylates, epoxy resins and (meth) described in JP-A-48-64183, JP-B-49-43191 and JP-B-52-30490.
  • Polyfunctional acrylates and methacrylates such as epoxy acrylates obtained by reacting with acrylic acid can be mentioned, and these descriptions are incorporated in the present specification. Furthermore, Journal of Japan Adhesion Association vol. 20, no. 7, pages 300 to 308 (1984), which are introduced as photocurable monomers and oligomers, can also be used. About these ethylenically unsaturated compounds, the details of usage, such as the structure, single use or combination, addition amount, etc. can be arbitrarily set according to the performance design of the final photosensitive material. For example, it is selected from the following viewpoints.
  • the polymerizable monomer is preferably polyfunctional, more preferably trifunctional or more, and even more preferably tetrafunctional or more. There is no particular upper limit, but 10 or less is practical. Furthermore, it is also effective to adjust the mechanical properties by using together compounds having different functional numbers and / or different polymerizable groups (for example, acrylic acid ester, methacrylic acid ester, styrene compound, vinyl ether compound). Moreover, the polymeric compound containing a carboxy group is also preferable from a viewpoint of adjustment of developability. In this case, the mechanical properties can be improved by crosslinking with the component (C-3) of the resin, which is preferable. Furthermore, it is also preferable to contain an ethylene oxide (EO) modified body and a urethane bond from the viewpoints of adhesion to a substrate, compatibility with a radical polymerization initiator, and the like.
  • EO ethylene oxide
  • the polymerizable monomer applied to the present invention is preferably a compound represented by the following formula (A-3-1).
  • Formula (A-3-1) is preferably a compound represented by the following formula (A-3-1).
  • L represents a divalent or higher linking group.
  • the linking group is not particularly limited, and examples thereof include an alkylene group, a carbonyl group, an imino group, an ether group (—O—), a thioether group (—S—), or a combination thereof.
  • the number of carbon atoms of the linking group is not particularly limited, but is preferably 2 to 24, and more preferably 2 to 12. Among these, a branched alkylene group having the above carbon number is preferable.
  • A represents a polymerizable functional group.
  • the polymerizable functional group is preferably a vinyl group or a vinyl group-containing group.
  • the vinyl group-containing group include an acryloyl group, a methacryloyl group, an acryloyloxy group, a methacryloyloxy group, and a vinylphenyl group.
  • Ra represents a substituent.
  • the substituent is not particularly limited, and examples thereof include an alkyl group (preferably having 1 to 21 carbon atoms), an alkenyl group (preferably having 2 to 12 carbon atoms), an aryl group (preferably having 6 to 24 carbon atoms), and the like. These substituents may further have a substituent, and examples of the substituent that may be included include a hydroxy group, an alkoxy group (preferably having 1 to 6 carbon atoms), a carboxyl group, and an acyl group (preferably Examples thereof include carbon numbers 1 to 6).
  • na represents an integer of 1 to 10, preferably 3 to 8.
  • nb represents an integer of 0 to 9, preferably 2 to 7.
  • na + nb is 10 or less, preferably 2 to 8.
  • the plurality of structural sites defined therein may be different from each other.
  • the content of the polymerizable monomer is preferably 5 to 60 parts by mass, more preferably 10 to 50 parts by mass with respect to 100 parts by mass in total of the above (A-3) polymer component. More preferably, it is 15 to 45 parts by mass.
  • the composition of the present invention preferably contains the polymerizable monomer in a proportion of 5 to 60% by mass, more preferably 10 to 50% by mass, and more preferably 15 to 45% by mass with respect to the total solid content. More preferably, it is contained at a rate of%. Only one type of polymerizable monomer may be used, or two or more types may be used. When using 2 or more types, it is preferable that the total amount becomes the said range.
  • the photopolymerization initiator that can be used in the present invention is a compound that is sensitized by exposure light and initiates and accelerates the polymerization of the polymerizable monomer.
  • the photopolymerization initiator that can be used in the present invention is preferably a compound that is sensitized by exposure light and starts and accelerates the polymerization of the ethylenically unsaturated compound.
  • the “radiation” as used in the present invention is not particularly limited as long as it is an active energy ray that can impart energy capable of generating an initial species from the component (B-3) by the irradiation, and is broadly ⁇ -ray.
  • the photopolymerization initiator is preferably a compound that initiates and accelerates the polymerization of the polymerizable monomer (A-3) in response to an actinic ray having a wavelength of 300 nm or more, more preferably from 300 to 450 nm.
  • a photopolymerization initiator that is not directly sensitive to an actinic ray having a wavelength of 300 nm or more is preferably used in combination with a sensitizer as long as it is a compound that is sensitive to an actinic ray having a wavelength of 300 nm or more when used in combination with a sensitizer. Can do.
  • Examples of the photopolymerization initiator include oxime ester compounds, organic halogenated compounds, oxydiazole compounds, carbonyl compounds, ketal compounds, benzoin compounds, acridine compounds, organic peroxide compounds, azo compounds, coumarin compounds, azide compounds, metallocenes.
  • Examples include compounds, hexaarylbiimidazole compounds, organic boric acid compounds, disulfonic acid compounds, ⁇ -amino ketone compounds, onium salt compounds, and acylphosphine (oxide) compounds.
  • an oxime ester compound, an ⁇ -aminoketone compound, and a hexaarylbiimidazole compound are preferable, and an oxime ester compound or an ⁇ -aminoketone compound is more preferable.
  • these compounds for example, the description of paragraph numbers 0061 to 0073 in JP2011-186398A can be referred to, and the contents thereof are incorporated in the present specification.
  • a commercial item may be used for a photoinitiator, for example, IRGACURE OXE 01, IRGACURE OXE 02 (made by BASF) etc. can be used.
  • a photoinitiator can be used 1 type or in combination of 2 or more types. Further, when using an initiator that does not absorb at the exposure wavelength, it is necessary to use a sensitizer.
  • the content of the photopolymerization initiator in the composition of the present invention is preferably 0.5 to 30 parts by weight with respect to 100 parts by weight of the total amount of the polymer component (A-3), and 2 to 20 parts by weight. It is more preferable that The composition of the present invention preferably contains the photopolymerization initiator in a proportion of 0.5 to 30% by mass, more preferably 2 to 20% by mass, based on the total solid content.
  • the polymer component used in the present invention comprises (a4-1) a structural unit having an acid group and (a4-2) a polymer containing a repeating unit having an epoxy group, And (a4-1) a polymer having a structural unit having an acid group and (a4-2) a polymer having a structural unit having an epoxy group. Further, the polymer component (A-4) includes the structural unit (a4-1) and the structural unit (a4-2), as well as the structural unit (a4-1) and the structural unit (a4-2). The structural unit (a4-3) may be included.
  • the structural unit having an acid group (a4-1) contained in the polymer As the structural unit having an acid group (a4-1) contained in the polymer, the (a2-1) acid group described in the above-mentioned (A-2) polymer component of the second embodiment is used. The same structural unit as that possessed can be adopted, and the preferred range is also the same.
  • the structural unit (a4-2) having an epoxy group contained in the polymer (A-4) includes the (a2-2) epoxy group described in (A-2) Polymer component of the second aspect described above. The same structural unit as that possessed can be adopted, and the preferred range is also the same.
  • the composition of the present invention preferably contains (A-4) the polymer component in a proportion of 30% by mass or more of the solid content of the composition.
  • the composition of the present invention contains a solvent. It is preferable that the composition of this invention is prepared as a solution which melt
  • a known solvent such as the (C-1) solvent of the first aspect described above can be used.
  • the content of the solvent in the composition of the present invention is preferably 50 to 95 parts by mass, more preferably 60 to 90 parts by mass, per 100 parts by mass of all components in the resin composition.
  • an alkoxysilane compound, a surfactant, a polymerization inhibitor, and the like can be preferably added to the composition of the present invention as necessary.
  • the alkoxysilane compound and the surfactant the same compounds as the alkoxysilane compound and the surfactant of the first aspect described above can be used, and the preferred range is also the same.
  • the polymerization inhibitor for example, thermal polymerization inhibitors described in paragraph numbers 0101 to 0102 of JP-A-2008-250074 can be used, the contents of which are incorporated herein.
  • a resin composition can be prepared by preparing a solution in which components are dissolved in a solvent in advance and then mixing them in a predetermined ratio.
  • the composition solution prepared as described above can be used after being filtered using, for example, a filter having a pore diameter of 0.2 ⁇ m.
  • the method for producing a cured film according to the first aspect of the present invention preferably includes the following steps (1-1) to (5-1).
  • (1-1) A step of applying the resin composition of the first aspect of the present invention on a substrate; (2-1) removing the solvent from the applied resin composition; (3-1) A step of exposing the resin composition from which the solvent has been removed with actinic rays; (4-1) a step of developing the exposed resin composition with an aqueous developer; (5-1) A post-baking step of thermosetting the developed resin composition.
  • the coating step (1-1) it is preferable to apply the composition of the present invention on a substrate to form a wet film containing a solvent.
  • substrate cleaning such as alkali cleaning or plasma cleaning
  • the method for treating the substrate surface with hexamethyldisilazane is not particularly limited, and examples thereof include a method in which the substrate is exposed to hexamethyldisilazane vapor.
  • the substrate include inorganic substrates, resins, and resin composite materials.
  • the inorganic substrate examples include glass, quartz, silicone, silicon nitride, and a composite substrate in which molybdenum, titanium, aluminum, copper, or the like is vapor-deposited on such a substrate.
  • the resins include polybutylene terephthalate, polyethylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polystyrene, polycarbonate, polysulfone, polyethersulfone, polyarylate, allyl diglycol carbonate, polyamide, polyimide, polyamideimide, polyetherimide, poly Fluorine resins such as benzazole, polyphenylene sulfide, polycycloolefin, norbornene resin, polychlorotrifluoroethylene, liquid crystal polymer, acrylic resin, epoxy resin, silicone resin, ionomer resin, cyanate resin, crosslinked fumaric acid diester, cyclic polyolefin, aromatic Made of synthetic resin such as aromatic ether, maleimide
  • the coating method on the substrate is not particularly limited, and for example, a slit coating method, a spray method, a roll coating method, a spin coating method, a casting coating method, a slit and spin method, or the like can be used.
  • the wet film thickness when applied is not particularly limited, and can be applied with a film thickness according to the application, but it is usually used in the range of 0.5 to 10 ⁇ m.
  • the solvent is removed from the applied film by vacuum (vacuum) and / or heating to form a dry coating film on the substrate.
  • the heating conditions for the solvent removal step are preferably 70 to 130 ° C. and about 30 to 300 seconds. When the temperature and time are in the above ranges, the pattern adhesiveness is better and the residue tends to be further reduced.
  • the substrate provided with the coating film is irradiated with an actinic ray having a predetermined pattern.
  • the photoacid generator is decomposed to generate an acid. Due to the catalytic action of the generated acid, the acid-decomposable group contained in the coating film component is hydrolyzed to generate a carboxyl group or a phenolic hydroxyl group.
  • a low-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a chemical lamp, an LED light source, an excimer laser generator, and the like can be used, and i-line (365 nm), h-line (405 nm), Actinic rays having a wavelength of 300 nm to 450 nm, such as 436 nm), can be preferably used.
  • irradiation light can also be adjusted through spectral filters, such as a long wavelength cut filter, a short wavelength cut filter, and a band pass filter, as needed.
  • the exposure amount is preferably 1 to 500 mj / cm 2 .
  • PEB Post Exposure Bake
  • the temperature for performing PEB is preferably 30 ° C. or higher and 130 ° C. or lower, more preferably 40 ° C. or higher and 110 ° C. or lower, and particularly preferably 50 ° C.
  • the acid-decomposable group in the present invention has low activation energy for acid decomposition and is easily decomposed by an acid derived from an acid generator by exposure to generate a carboxyl group or a phenolic hydroxyl group, PEB is not necessarily performed.
  • a positive image can also be formed by development.
  • a copolymer having a liberated carboxyl group or phenolic hydroxyl group is developed using an alkaline developer.
  • a positive image is formed by removing an exposed area containing a resin composition having a carboxyl group or a phenolic hydroxyl group that is easily dissolved in an alkaline developer.
  • the developer used in the development step preferably contains a basic compound.
  • Examples of the basic compound include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide; alkali metal carbonates such as sodium carbonate and potassium carbonate; alkalis such as sodium bicarbonate and potassium bicarbonate Metal bicarbonates; ammonium hydroxides such as tetramethylammonium hydroxide, tetraethylammonium hydroxide and choline hydroxide; aqueous solutions such as sodium silicate and sodium metasilicate can be used.
  • An aqueous solution obtained by adding an appropriate amount of a water-soluble organic solvent such as methanol or ethanol or a surfactant to the alkaline aqueous solution can also be used as a developer.
  • a 0.4 to 2.5% aqueous solution of tetramethylammonium hydroxide can be mentioned.
  • the pH of the developer is preferably 10.0 to 14.0.
  • the development time is preferably 30 to 500 seconds, and the development method may be any of a liquid piling method (paddle method), a shower method, a dipping method, and the like.
  • a rinsing step can also be performed after development. In the rinsing step, the developed substrate and the development residue are removed by washing the developed substrate with pure water or the like.
  • a known method can be used as the rinsing method. For example, shower rinse and dip rinse can be mentioned.
  • the obtained positive image is heated to thermally decompose the acid-decomposable group to generate a carboxyl group or a phenolic hydroxyl group, and to crosslink with a crosslinkable group, a crosslinking agent, or the like.
  • a cured film can be formed.
  • This heating is performed using a heating device such as a hot plate or an oven at a predetermined temperature, for example, 180 to 250 ° C. for a predetermined time, for example, 5 to 90 minutes on the hot plate, 30 to 120 minutes for the oven. It is preferable to By proceeding the crosslinking reaction in this way, a protective film and an interlayer insulating film that are superior in heat resistance, hardness, and the like can be formed.
  • post-baking can be performed after baking at a relatively low temperature (addition of a middle baking process).
  • middle baking it is preferable to post-bake at a high temperature of 200 ° C. or higher after heating at 90 to 150 ° C. for 1 to 60 minutes.
  • middle baking and post-baking can be heated in three or more stages. The taper angle of the pattern can be adjusted by devising such middle baking and post baking.
  • These heating methods can use well-known heating methods, such as a hotplate, oven, and an infrared heater.
  • the entire surface of the patterned substrate was re-exposed with actinic rays (post-exposure), and then post-baked to generate an acid from the photoacid generator present in the unexposed portion, thereby performing a crosslinking step. It can function as a catalyst to promote, and can accelerate the curing reaction of the film.
  • the preferred exposure amount in the case of including a post-exposure step preferably 100 ⁇ 3,000mJ / cm 2, particularly preferably 100 ⁇ 500mJ / cm 2.
  • the cured film obtained from the composition of the present invention can also be used as a dry etching resist.
  • dry etching processes such as ashing, plasma etching, and ozone etching can be performed as the etching process.
  • the method for producing a cured film according to the second aspect of the present invention preferably includes the following steps (1-2) to (5-2).
  • Steps (1-2) to (5-2) of the method for producing a cured film of the present invention are respectively (1-1) to (5-1) of the method for producing a cured film of the first aspect described above. It can carry out similarly to the process of this, and preferable conditions are also the same.
  • the cured film obtained from the composition of the present invention can also be used as an etching resist.
  • the method for producing a cured film according to the third aspect of the present invention preferably includes the following steps (1-3) to (5-3).
  • steps (1-3) A step of applying the resin composition of the third aspect of the present invention onto a substrate; (2-3) removing the solvent from the applied resin composition; (3-3) A step of exposing the resin composition from which the solvent has been removed with actinic rays; (4-3) A step of developing the exposed resin composition with an aqueous developer or the like; (5-3) A post-bake process for thermosetting the developed resin composition.
  • the resin composition is coated on the substrate.
  • the resin composition can be prepared, for example, by preparing a solution in which each of the above-described components is previously dissolved in a solvent, and then mixing them at a predetermined ratio.
  • the composition solution prepared as described above can be used after being filtered using, for example, a filter having a pore size of 0.2 ⁇ m.
  • the substrate described in the step (1-1) described above can be used, and the coating method described in the step (1-1) described above can be used. .
  • the solvent removal step (2-3) it is preferable to form a dry coating film on the substrate by removing the solvent from the applied resin composition by reducing pressure and / or heating.
  • the heating conditions in the solvent removal step vary depending on the types and blending ratios of the respective components, but are preferably at 80 to 130 ° C. for about 30 to 120 seconds.
  • the exposure step (3-3) it is preferable to irradiate the obtained coating film with actinic rays having a wavelength of 300 nm to 450 nm in a predetermined pattern.
  • the polymerizable monomer polymerizable compound
  • the actinic rays mentioned in the description of the exposure step in the method for producing the cured film of the first aspect described above can be used.
  • irradiation light can also be adjusted through spectral filters, such as a long wavelength cut filter, a short wavelength cut filter, and a band pass filter, as needed.
  • development is preferably performed using an alkaline developer.
  • the developer used in the development step preferably contains a basic compound.
  • a basic compound the basic compound quoted by description of the image development process in the manufacturing method of the cured film of the 1st aspect mentioned above can be used, for example.
  • the pH of the developer is preferably 10.0 to 14.0.
  • the development time is preferably 30 to 180 seconds, and the development method may be either a liquid piling method or a dipping method. After development, washing with running water can be performed for 30 to 90 seconds to form a desired pattern.
  • a rinsing step can be performed in the same manner as in the method for producing a cured film of the first aspect described above.
  • the obtained negative image is heated to remove the remaining solvent component and, if necessary, to promote crosslinking of the resin, a cured film can be formed.
  • This heating is preferably performed at a high temperature of 150 ° C. or more, more preferably 180 to 250 ° C., and particularly preferably 200 to 240 ° C.
  • the heating time can be appropriately set depending on the heating temperature or the like, but is preferably in the range of 10 to 120 minutes.
  • Middle baking can also be performed similarly to the manufacturing method of the cured film of the 1st aspect mentioned above.
  • the crosslinking reaction can be promoted by actinic ray irradiation.
  • the cured film obtained from the resin composition of the present invention can also be used as a dry etching resist.
  • dry etching processing such as ashing, plasma etching, ozone etching, etc. can be performed as the etching processing.
  • the cured film of the present invention is a cured film obtained by curing the above-described resin composition of the first to third aspects of the present invention.
  • the cured film of the present invention can be suitably used as an interlayer insulating film.
  • the cured film of the present invention is preferably a cured film obtained by the above-described cured film forming method of the first to third aspects of the present invention.
  • the resin composition of the present invention an interlayer insulating film having excellent transparency and high transparency even when baked at a high temperature can be obtained. Since the interlayer insulating film using the resin composition of the present invention has high transparency and excellent cured film properties, it is useful for liquid crystal display devices and organic EL display devices.
  • the liquid crystal display device of the present invention comprises the cured film of the present invention.
  • the liquid crystal display device of the present invention is not particularly limited except that it has a flattening film and an interlayer insulating film formed using the resin composition of the present invention, and known liquid crystal display devices having various structures are used. Can be mentioned.
  • specific examples of TFT (Thin-Film Transistor) included in the liquid crystal display device of the present invention include amorphous silicon-TFT, low-temperature polysilicon-TFT, oxide semiconductor TFT, and the like. Since the cured film of the present invention is excellent in electrical characteristics, it can be preferably used in combination with these TFTs.
  • the liquid crystal driving method that can be adopted by the liquid crystal display device of the present invention, a TN (Twisted Nematic) method, a VA (Virtual Alignment) method, an IPS (In-Place-Switching) method, an FFS (Frings Field Switching) method, an OCB (Optical) method. Compensated Bend) method and the like.
  • the cured film of the present invention can also be used in a COA (Color Filter on Array) type liquid crystal display device.
  • the organic insulating film (115) of JP-A-2005-284291 It can be used as an organic insulating film (212).
  • the alignment method of the liquid crystal alignment film that the liquid crystal display device of the present invention can take include a rubbing alignment method and a photo alignment method.
  • the polymer orientation may be supported by a PSA (Polymer Sustained Alignment) technique described in JP-A Nos. 2003-149647 and 2011-257734.
  • the resin composition of this invention and the cured film of this invention are not limited to the said use, It can be used for various uses.
  • a protective film for the color filter, a spacer for keeping the thickness of the liquid crystal layer in the liquid crystal display device constant, a micro lens provided on the color filter in the solid-state image sensor Can be suitably used.
  • the color liquid crystal display device 10 is a liquid crystal panel having a backlight unit 12 on the back surface, and the liquid crystal panel includes all pixels disposed between two glass substrates 14 and 15 having a polarizing film attached thereto.
  • the elements of the TFT 16 corresponding to are arranged.
  • Each element formed on the glass substrate is wired with an ITO transparent electrode 19 that forms a pixel electrode through a contact hole 18 formed in the cured film 17.
  • an RGB color filter 22 in which a liquid crystal 20 layer and a black matrix are arranged is provided.
  • the light source of the backlight is not particularly limited, and a known light source can be used.
  • the liquid crystal display device can be a 3D (stereoscopic) type or a touch panel type. Further, it can be made flexible, and used as the second interlayer insulating film (48) described in Japanese Patent Application Laid-Open No. 2011-145686 and the interlayer insulating film (520) described in Japanese Patent Application Laid-Open No. 2009-258758. Can do.
  • the organic EL display device of the present invention comprises the cured film of the present invention.
  • the organic EL display device of the present invention is not particularly limited except that it has a planarizing film or an interlayer insulating film formed using the resin composition of the present invention, and various known organic EL devices having various structures.
  • a display device and a liquid crystal display device can be given.
  • specific examples of TFT (Thin-Film Transistor) included in the organic EL display device of the present invention include amorphous silicon-TFT, low-temperature polysilicon-TFT, oxide semiconductor TFT, and the like. Since the cured film of the present invention is excellent in electrical characteristics, it can be preferably used in combination with these TFTs.
  • FIG. 2 is a conceptual diagram of an example of an organic EL display device.
  • a schematic cross-sectional view of a substrate in a bottom emission type organic EL display device is shown, and a planarizing film 4 is provided.
  • a bottom gate type TFT 1 is formed on a glass substrate 6, and an insulating film 3 made of Si 3 N 4 is formed so as to cover the TFT 1.
  • a contact hole (not shown) is formed in the insulating film 3, and then a wiring 2 (height: 1.0 ⁇ m) connected to the TFT 1 through the contact hole is formed on the insulating film 3.
  • the wiring 2 is for connecting the TFT 1 with an organic EL element formed between the TFTs 1 or in a later process.
  • the flattening film 4 is formed on the insulating film 3 with the unevenness due to the wiring 2 being embedded.
  • a bottom emission type organic EL element is formed on the planarizing film 4. That is, the first electrode 5 made of ITO is formed on the planarizing film 4 so as to be connected to the wiring 2 through the contact hole 7.
  • the first electrode 5 corresponds to the anode of the organic EL element.
  • An insulating film 8 having a shape covering the periphery of the first electrode 5 is formed. By providing the insulating film 8, a short circuit between the first electrode 5 and the second electrode formed in the subsequent process is prevented. can do. Further, although not shown in FIG.
  • a hole transport layer, an organic light emitting layer, and an electron transport layer are sequentially deposited through a desired pattern mask, and then a second layer made of Al is formed on the entire surface above the substrate.
  • An active matrix organic material in which two electrodes are formed and sealed by bonding using a sealing glass plate and an ultraviolet curable epoxy resin, and each organic EL element is connected to a TFT 1 for driving it.
  • An EL display device is obtained.
  • a resist pattern formed using the resin composition of the present invention is used as a partition as a structural member of a MEMS device, or a part of a mechanical drive component. Used as embedded.
  • MEMS devices include parts such as SAW filters, BAW filters, gyro sensors, display micro shutters, image sensors, electronic paper, inkjet heads, biochips, sealants, and the like. More specific examples are exemplified in JP-T-2007-522531, JP-A-2008-250200, JP-A-2009-263544, and the like.
  • the resin composition of the present invention is excellent in flatness and transparency, for example, the bank layer (16) and the flattening film (57) described in FIG. 2 of JP2011-107476A, JP2010-9793A. 4 (a) of the publication, the partition wall (12) and the planarization film (102), the bank layer (221) and the third interlayer insulating film (216b) described in FIG. 10 of JP 2010-27591A, The second interlayer insulating film (125) and the third interlayer insulating film (126) described in FIG. 4A of JP 2009-128577 A, and the planarizing film described in FIG. 3 of JP 2010-182638 A (12) and the pixel isolation insulating film (14) can also be formed.
  • imaging optical systems for on-chip color filters such as facsimiles, electronic copying machines, solid-state image sensors, and micro lenses for optical fiber connectors are also used. It can be used suitably.
  • MATHF 2-tetrahydrofuranyl methacrylate (synthetic product)
  • MAEVE 1-ethoxyethyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.)
  • OXE-30 3-ethyl-3-oxetanylmethyl methacrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd.)
  • NBMA n-butoxymethylacrylamide (manufactured by Tokyo Chemical Industry)
  • HEMA Hydroxyethyl methacrylate (Wako Pure Chemical Industries, Ltd.)
  • MAA Methacrylic acid (manufactured by Wako Pure Chemical Industries)
  • MMA Methyl methacrylate (Wako Pure Chemical Industries, Ltd.)
  • St Styrene (Wako Pure Chemical Industries, Ltd.)
  • t-BuMA t-Butyl methacrylate (Mitsubishi Rayon Co., Ltd.)
  • GMA tetrahydrofur
  • PGMEA propylene glycol monomethyl ether acetate
  • MAA amount to be 10 mol% in all monomer components
  • MATHF amount to be 40 mol% in all monomer components
  • Blemmer GS amount to 40 mol% in all monomer components
  • MMA amount to be 10 mol% in all monomer components
  • V-65 corresponding to 4 mol% with respect to 100 mol% in total of all monomer components
  • the numerical values not indicated in the table are in mol%.
  • the numerical value of a polymerization initiator and an additive is mol% when a monomer component is 100 mol%.
  • the solid content concentration is shown as monomer mass / (monomer mass + solvent mass) ⁇ 100 (unit mass%).
  • the reaction temperature was 70 ° C.
  • KBM-403 ⁇ -glycidoxypropyltrimethoxysilane (KBM-403: manufactured by Shin-Etsu Chemical Co., Ltd.)
  • W-1 Silicone-based surfactant (“SH 8400 FLUID” manufactured by Toray Dow Corning Co., Ltd.)
  • W-2 Fluorosurfactant (Neos, Aftergent FTX-218)
  • W-3 a surfactant represented by the following structural formula
  • ADK STAB AO-60 manufactured by ADEKA Corporation
  • E E / (E + I + A) ⁇ Y / (Y + B) +106
  • Is (ppm) I / (E + I + A) ⁇ Y / (Y + B) +106
  • E is the weight (g) of epichlorohydrin
  • I is the weight (g) of isobutyl methacrylate
  • A is the weight of the original acetone solution (g)
  • Y is the weight of the original solution collected (g)
  • B is the weight of the standard solution acetone.
  • ECH (ppm) Ea ′ ⁇ AMT ⁇ Y 1 ⁇ F / Ia ′ / Z ⁇ 106
  • Ea ′ is the peak area of epichlorohydrin in the sample solution
  • Ia ′ is the peak area of isobutyl methacrylate in the sample solution
  • Y 1 is the weight of the additive solution (g)
  • Z is the resist collection weight (g )
  • the results are shown in the table below. A smaller value is preferable, and C or higher is a level that causes no problem in practical use. A: Less than 1% B: 1% or more and less than 2% C: 2% or more and less than 4% D: 4% or more and less than 10% E: 10% or more or dissolution
  • each example and comparative example was slit on a soda glass substrate on which a SiO 2 film for preventing elution of sodium ions was formed on the surface, and an ITO (indium-tin oxide alloy) electrode was deposited in a predetermined shape. After coating (spin coating only in Example 50), the solvent was evaporated by pre-baking on a hot plate at 90 ° C./120 seconds to form a photosensitive resin composition layer having a thickness of 3.0 ⁇ m.
  • this substrate and a substrate obtained by simply depositing an ITO electrode in a predetermined shape are bonded to each other with a sealing agent mixed with 0.8 mm silica beads, and then a liquid crystal MLC6608 (trade name) manufactured by Merck is injected. A cell was produced.
  • the liquid crystal cell was placed in a constant temperature layer at 65 ° C., and the voltage holding ratio of the liquid crystal cell was measured by a liquid crystal voltage holding ratio measuring system (“VHR-1A type” manufactured by Toyo Technica).
  • the applied voltage at this time is a square wave of 5.0 V, and the measurement frequency is 120 Hz.
  • the voltage holding ratio is a value of (liquid crystal cell potential difference after 8.3 milliseconds / voltage applied at 0 milliseconds). A larger value is more preferable, and C or higher is a level that causes no problem in practical use.
  • E Less than 90%
  • Example 3 using a polymer having a structural unit having an epoxy group and Comparative Example 3 using a polymer having a structural unit having an oxetanyl group, a polymer having a structural unit having an epoxy group is used. It was found that chemical resistance and voltage holding ratio were improved. Further, as in Comparative Examples 3, 6, 9, 12 to 13, even when the content of epichlorohydrin is 10 ppm or less, chemical resistance is required unless a polymer having a structural unit having an epoxy group is used. Was found to be inferior. From the said table
  • Example 101 An organic EL display device using a thin film transistor (TFT) was produced by the following method (see FIG. 2).
  • a bottom gate type TFT 1 was formed on a glass substrate 6, and an insulating film 3 made of Si 3 N 4 was formed so as to cover the TFT 1.
  • a contact hole (not shown) is formed in the insulating film 3, and then a wiring 2 (height 1.0 ⁇ m) connected to the TFT 1 through the contact hole is formed on the insulating film 3. .
  • the wiring 2 is used to connect the TFT 1 to the organic EL element formed between the TFTs 1 or in a later process.
  • the flattening film 4 was formed on the insulating film 3 in a state where the unevenness due to the wiring 2 was embedded.
  • the planarization film 4 is formed on the insulating film 3 by slit coating the photosensitive resin composition of Example 3 on the substrate, pre-baking (90 ° C. ⁇ 2 minutes) on a hot plate, and then applying high pressure from above the mask. After irradiating 45 mJ / cm 2 (illuminance 20 mW / cm 2 ) with i-line (365 nm) using a mercury lamp, a pattern was formed by developing with an alkaline aqueous solution, and heat treatment was performed at 230 ° C. for 60 minutes.
  • the applicability when applying the photosensitive resin composition was good, and no wrinkles or cracks were observed in the cured film obtained after exposure, development and baking. Furthermore, the average step of the wiring 2 was 500 nm, and the thickness of the prepared planarizing film 4 was 2,000 nm.
  • a bottom emission type organic EL element was formed on the obtained planarization film 4.
  • a first electrode 5 made of ITO was formed on the planarizing film 4 so as to be connected to the wiring 2 through the contact hole 7.
  • a commercially available resist was applied, prebaked, exposed through a mask having a desired pattern, and developed. Using this resist pattern as a mask, pattern processing was performed by wet etching using an ITO etchant. Thereafter, the resist pattern was stripped at 50 ° C. using a resist stripper (remover 100, manufactured by AZ Electronic Materials).
  • the first electrode 5 thus obtained corresponds to the anode of the organic EL element.
  • an insulating film 8 having a shape covering the periphery of the first electrode 5 was formed.
  • the photosensitive resin composition of Example 3 was used, and the insulating film 8 was formed by the same method as described above. By providing this insulating film 8, it is possible to prevent a short circuit between the first electrode 5 and the second electrode formed in the subsequent process.
  • a hole transport layer, an organic light emitting layer, and an electron transport layer were sequentially deposited through a desired pattern mask in a vacuum deposition apparatus.
  • a second electrode made of Al was formed on the entire surface above the substrate. The obtained board
  • substrate was taken out from the vapor deposition machine, and it sealed by bonding together using the glass plate for sealing, and an ultraviolet curable epoxy resin.
  • Example 102 In Example 101, an organic EL display device was produced in the same manner as in Example 101 except that the photosensitive resin composition of Example 3 was replaced with the photosensitive resin composition of Example 14. When a drive voltage was applied to the obtained organic EL display device, it was found that the organic EL display device showed good display characteristics and had high reliability.
  • Example 103 an organic EL display device was produced in the same manner as in Example 101 except that the photosensitive resin composition of Example 3 was replaced with the photosensitive resin composition of Example 20. When a drive voltage was applied to the obtained organic EL display device, it was found that the organic EL display device showed good display characteristics and had high reliability.
  • Example 104 An organic EL display device was produced in the same manner as in Example 101 except that the photosensitive resin composition of Example 3 was replaced with the photosensitive resin composition of Example 21 in Example 101. When a drive voltage was applied to the obtained organic EL display device, it was found that the organic EL display device showed good display characteristics and had high reliability.
  • Example 105 an organic EL display device was produced in the same manner as in Example 101 except that the photosensitive resin composition of Example 3 was replaced with the photosensitive resin composition of Example 25. When a drive voltage was applied to the obtained organic EL display device, it was found that the organic EL display device showed good display characteristics and had high reliability.
  • Example 106 In the active matrix liquid crystal display device described in FIG. 1 of Japanese Patent No. 3321003, a cured film 17 was formed as an interlayer insulating film as follows, and a liquid crystal display device of Example 106 was obtained. That is, using the photosensitive resin composition of Example 3, the cured film 17 was formed as an interlayer insulating film by the same method as the method for forming the planarizing film 4 of the organic EL display device in Example 101. When a driving voltage was applied to the obtained liquid crystal display device, it was found that the liquid crystal display device showed good display characteristics and high reliability.
  • Example 107 a liquid crystal display device was produced in the same manner as Example 106 except that the photosensitive resin composition of Example 3 was replaced with the photosensitive resin composition of Example 14. When a driving voltage was applied to the obtained liquid crystal display device, it was found that the liquid crystal display device showed good display characteristics and high reliability.
  • Example 108 In Example 106, a liquid crystal display device was produced in the same manner as Example 106 except that the photosensitive resin composition of Example 3 was replaced with the photosensitive resin composition of Example 20. When a driving voltage was applied to the obtained liquid crystal display device, it was found that the liquid crystal display device showed good display characteristics and high reliability.
  • Example 109 a liquid crystal display device was produced in the same manner as in Example 106, except that the photosensitive resin composition of Example 3 was replaced with the photosensitive resin composition of Example 21. When a driving voltage was applied to the obtained liquid crystal display device, it was found that the liquid crystal display device showed good display characteristics and high reliability.
  • Example 110 In Example 106, a liquid crystal display device was produced in the same manner as in Example 106, except that the photosensitive resin composition of Example 3 was replaced with the photosensitive resin composition of Example 25. When a drive voltage was applied to the obtained liquid crystal display device, it was found that the liquid crystal display device showed good display characteristics and was highly reliable.
  • TFT Thin Film Transistor
  • Wiring 3 Insulating film 4: Flattened film 5: First electrode 6: Glass substrate 7: Contact hole 8: Insulating film 10: Liquid crystal display device 12: Backlight unit 14, 15: Glass substrate 16: TFT 17: Cured film 18: Contact hole 19: ITO transparent electrode 20: Liquid crystal 22: Color filter

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials For Photolithography (AREA)

Abstract

L'invention concerne: une composition de résine qui présente une bonne résistance aux solvants et un taux élevé de maintien de tension, tout en conservant une sensibilité élevée; un procédé de production d'un film durci utilisant cette composition de résine; un film durci; un dispositif d'affichage à cristaux liquides et un dispositif d'affichage EL organique. Une composition de résine qui contient (A-1) un composant polymère contenant un polymère appartenant à la catégorie de (1) et/ou (2) décrits ci-dessous, (B-1) un générateur de photo-acide et (C-1) un solvant. Cette composition de résine est caractérisée par une teneur en épichlorohydrine inférieure ou égale à 10 ppm. (1) un polymère comprenant (a1-1) une unité constitutive possédant un groupe où un groupe acide est protégé par un groupe décomposable par les acides et (a1-2) une unité constitutive possédant un groupe époxy (2) un polymère comprenant l'unité constitutive (a1-1) et un polymère comprenant l'unité constitutive (a1-2)
PCT/JP2014/072872 2013-09-04 2014-09-01 Composition de résine, procédé de production d'un film durci, film durci, dispositif d'affichage à cristaux liquides et dispositif d'affichage el organique WO2015033880A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-183067 2013-09-04
JP2013183067 2013-09-04

Publications (1)

Publication Number Publication Date
WO2015033880A1 true WO2015033880A1 (fr) 2015-03-12

Family

ID=52628354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072872 WO2015033880A1 (fr) 2013-09-04 2014-09-01 Composition de résine, procédé de production d'un film durci, film durci, dispositif d'affichage à cristaux liquides et dispositif d'affichage el organique

Country Status (1)

Country Link
WO (1) WO2015033880A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110462515A (zh) * 2017-03-30 2019-11-15 富士胶片株式会社 感光性转印材料以及电路布线的制造方法
TWI695224B (zh) * 2015-08-31 2020-06-01 日商富士軟片股份有限公司 感光性組成物、硬化膜的製造方法、液晶顯示裝置的製造方法、有機電激發光顯示裝置的製造方法以及觸控面板的製造方法
CN113166327A (zh) * 2018-11-22 2021-07-23 富士胶片株式会社 感光化射线性或感放射线性树脂组合物、抗蚀剂膜、图案形成方法及电子器件的制造方法

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04225355A (ja) * 1990-12-27 1992-08-14 Hitachi Chem Co Ltd 感光性樹脂組成物及びこれを用いた感光性エレメント
JPH06348017A (ja) * 1993-06-08 1994-12-22 Japan Synthetic Rubber Co Ltd 感放射線性樹脂組成物
JPH07181687A (ja) * 1993-01-14 1995-07-21 Toshiba Corp パターン形成方法
JPH07199467A (ja) * 1993-12-28 1995-08-04 Nec Corp 感光性樹脂組成物およびパターン形成方法
JP2001187780A (ja) * 1999-12-28 2001-07-10 Nec Corp オキソアルキル基を有するスルホニウム塩化合物、レジスト組成物、およびそれを用いたパターン形成方法
WO2001067178A1 (fr) * 2000-03-06 2001-09-13 Goo Chemical Co., Ltd. Encre epargne pour soudures
JP2003076012A (ja) * 2001-09-07 2003-03-14 Tokyo Ohka Kogyo Co Ltd 感光性樹脂組成物及びそれを用いたパターンの形成方法
JP2003222999A (ja) * 2002-01-31 2003-08-08 Sumitomo Chem Co Ltd レジスト組成物
JP2004307627A (ja) * 2003-04-07 2004-11-04 Hitachi Chem Co Ltd アクリル樹脂、これを用いた難燃性接着剤及び接着フィルム
JP2005506579A (ja) * 2001-10-24 2005-03-03 ドウジン セミケム カンパニー リミテッド キノンジアジド硫酸エステル化合物を含む感光性樹脂組成物
WO2005082956A1 (fr) * 2004-02-26 2005-09-09 Nec Corporation Dérivé du styrène, polymère du styrène, composition de résine photosensible et procédé servant à former un motif
JP2008266414A (ja) * 2007-04-18 2008-11-06 Fujifilm Corp 樹脂組成物、感光性転写材料、離画壁及びその形成方法、カラーフィルタ及びその製造方法、並びに表示装置
JP2009020520A (ja) * 2007-07-16 2009-01-29 Korea Electrotechnology Research Inst 有無機ハイブリッド感光性樹脂組成物およびその硬化体を用いた液晶表示素子
JP2009098673A (ja) * 2007-09-28 2009-05-07 Fujifilm Corp ポジ型感光性樹脂組成物及びそれを用いた硬化膜形成方法
WO2010007993A1 (fr) * 2008-07-15 2010-01-21 Jsr株式会社 Composition sensible au rayonnement de type positif, et procédé de formation de motif de réserve
JP2011074125A (ja) * 2009-09-29 2011-04-14 Fujifilm Corp 光硬化性樹脂組成物並びにビニル基含有樹脂及びビニル基含有樹脂の製造方法
JP2011215580A (ja) * 2009-10-16 2011-10-27 Fujifilm Corp 感光性樹脂組成物、硬化膜の形成方法、硬化膜、有機el表示装置、及び、液晶表示装置
JP2011248331A (ja) * 2010-04-28 2011-12-08 Jsr Corp 吐出ノズル式塗布法用ポジ型感放射線性組成物、表示素子用層間絶縁膜及びその形成方法
WO2012125009A2 (fr) * 2011-03-17 2012-09-20 Lee Yun Hyeong Composition photosensible positive chimiquement amplifiée pour film isolant organique et procédé l'utilisant pour former un film isolant organique
US20130012618A1 (en) * 2011-07-05 2013-01-10 Jsr Corporation Resin composition, polymer, cured film and electronic part
JP2013231163A (ja) * 2012-04-04 2013-11-14 Sumitomo Chemical Co Ltd 化合物、樹脂、レジスト組成物及びレジストパターンの製造方法

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04225355A (ja) * 1990-12-27 1992-08-14 Hitachi Chem Co Ltd 感光性樹脂組成物及びこれを用いた感光性エレメント
JPH07181687A (ja) * 1993-01-14 1995-07-21 Toshiba Corp パターン形成方法
JPH06348017A (ja) * 1993-06-08 1994-12-22 Japan Synthetic Rubber Co Ltd 感放射線性樹脂組成物
JPH07199467A (ja) * 1993-12-28 1995-08-04 Nec Corp 感光性樹脂組成物およびパターン形成方法
JP2001187780A (ja) * 1999-12-28 2001-07-10 Nec Corp オキソアルキル基を有するスルホニウム塩化合物、レジスト組成物、およびそれを用いたパターン形成方法
WO2001067178A1 (fr) * 2000-03-06 2001-09-13 Goo Chemical Co., Ltd. Encre epargne pour soudures
JP2003076012A (ja) * 2001-09-07 2003-03-14 Tokyo Ohka Kogyo Co Ltd 感光性樹脂組成物及びそれを用いたパターンの形成方法
JP2005506579A (ja) * 2001-10-24 2005-03-03 ドウジン セミケム カンパニー リミテッド キノンジアジド硫酸エステル化合物を含む感光性樹脂組成物
JP2003222999A (ja) * 2002-01-31 2003-08-08 Sumitomo Chem Co Ltd レジスト組成物
JP2004307627A (ja) * 2003-04-07 2004-11-04 Hitachi Chem Co Ltd アクリル樹脂、これを用いた難燃性接着剤及び接着フィルム
WO2005082956A1 (fr) * 2004-02-26 2005-09-09 Nec Corporation Dérivé du styrène, polymère du styrène, composition de résine photosensible et procédé servant à former un motif
JP2008266414A (ja) * 2007-04-18 2008-11-06 Fujifilm Corp 樹脂組成物、感光性転写材料、離画壁及びその形成方法、カラーフィルタ及びその製造方法、並びに表示装置
JP2009020520A (ja) * 2007-07-16 2009-01-29 Korea Electrotechnology Research Inst 有無機ハイブリッド感光性樹脂組成物およびその硬化体を用いた液晶表示素子
JP2009098673A (ja) * 2007-09-28 2009-05-07 Fujifilm Corp ポジ型感光性樹脂組成物及びそれを用いた硬化膜形成方法
WO2010007993A1 (fr) * 2008-07-15 2010-01-21 Jsr株式会社 Composition sensible au rayonnement de type positif, et procédé de formation de motif de réserve
JP2011074125A (ja) * 2009-09-29 2011-04-14 Fujifilm Corp 光硬化性樹脂組成物並びにビニル基含有樹脂及びビニル基含有樹脂の製造方法
JP2011215580A (ja) * 2009-10-16 2011-10-27 Fujifilm Corp 感光性樹脂組成物、硬化膜の形成方法、硬化膜、有機el表示装置、及び、液晶表示装置
JP2011248331A (ja) * 2010-04-28 2011-12-08 Jsr Corp 吐出ノズル式塗布法用ポジ型感放射線性組成物、表示素子用層間絶縁膜及びその形成方法
WO2012125009A2 (fr) * 2011-03-17 2012-09-20 Lee Yun Hyeong Composition photosensible positive chimiquement amplifiée pour film isolant organique et procédé l'utilisant pour former un film isolant organique
US20130012618A1 (en) * 2011-07-05 2013-01-10 Jsr Corporation Resin composition, polymer, cured film and electronic part
JP2013231163A (ja) * 2012-04-04 2013-11-14 Sumitomo Chemical Co Ltd 化合物、樹脂、レジスト組成物及びレジストパターンの製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI695224B (zh) * 2015-08-31 2020-06-01 日商富士軟片股份有限公司 感光性組成物、硬化膜的製造方法、液晶顯示裝置的製造方法、有機電激發光顯示裝置的製造方法以及觸控面板的製造方法
CN110462515A (zh) * 2017-03-30 2019-11-15 富士胶片株式会社 感光性转印材料以及电路布线的制造方法
CN113166327A (zh) * 2018-11-22 2021-07-23 富士胶片株式会社 感光化射线性或感放射线性树脂组合物、抗蚀剂膜、图案形成方法及电子器件的制造方法
EP3885378A4 (fr) * 2018-11-22 2022-01-19 FUJIFILM Corporation Composition de résine sensible aux rayons actiniques ou à un rayonnement, film de réserve, procédé de formation de motif et procédé de production pour dispositif électronique

Similar Documents

Publication Publication Date Title
JP6182612B2 (ja) 感光性樹脂組成物、硬化膜の製造方法、硬化膜、液晶表示装置および有機el表示装置
JP5849152B2 (ja) 化学増幅型ポジ型感光性樹脂組成物、硬化膜の製造方法、硬化膜、有機el表示装置および液晶表示装置
JP6182613B2 (ja) 感光性樹脂組成物、硬化膜の製造方法、硬化膜、液晶表示装置および有機el表示装置
JP6279571B2 (ja) 感光性樹脂組成物、硬化膜の製造方法、硬化膜、液晶表示装置および有機el表示装置
WO2015064601A1 (fr) Composition de résine photosensible, procédé de production de film polymérisé, film polymérisé, dispositif d'affichage à cristaux liquides et dispositif d'affichage électroluminescent organique
JP6038951B2 (ja) 感光性樹脂組成物、硬化膜の製造方法、硬化膜、有機el表示装置および液晶表示装置
JP2013210607A (ja) 感光性樹脂組成物、硬化膜の製造方法、硬化膜、有機el表示装置および液晶表示装置
JP5941543B2 (ja) 感光性樹脂組成物、硬化膜の製造方法、硬化膜、有機el表示装置および液晶表示装置
JP2014197155A (ja) 感光性樹脂組成物、硬化膜の製造方法、硬化膜、液晶表示装置及び有機el表示装置
JP6159408B2 (ja) 感光性樹脂組成物、硬化膜の製造方法、硬化膜、液晶表示装置および有機el表示装置
JP6272338B2 (ja) 感光性樹脂組成物、硬化膜の製造方法、硬化膜、液晶表示装置及び有機el表示装置
JP2015099320A (ja) 感光性樹脂組成物、硬化膜の製造方法、硬化膜、有機el表示装置および液晶表示装置
JP5933735B2 (ja) 感光性樹脂組成物、硬化膜の製造方法、硬化膜、有機el表示装置および液晶表示装置
WO2014157171A1 (fr) Composition de résine photosensible, procédé de production de film polymérisé, film polymérisé, dispositif d'affichage à cristaux liquides et dispositif d'affichage électroluminescent organique
WO2015033880A1 (fr) Composition de résine, procédé de production d'un film durci, film durci, dispositif d'affichage à cristaux liquides et dispositif d'affichage el organique
JP6250830B2 (ja) Tft基板の製造方法、有機el表示装置及びその製造方法、並びに、液晶表示装置、及びその製造方法
JP2014010200A (ja) 感光性樹脂組成物、硬化膜の製造方法、硬化膜、有機el表示装置および液晶表示装置
WO2013191155A1 (fr) Composition de résine photosensible, procédé de fabrication de film durci, film durci, dispositif d'affichage el organique et dispositif d'affichage à cristaux liquides
JP2015094898A (ja) 感光性樹脂組成物、硬化膜の製造方法、硬化膜、液晶表示装置および有機el表示装置
JP2014071308A (ja) 感光性樹脂組成物、これを用いた硬化膜の製造方法、硬化膜、液晶表示装置および有機el表示装置
WO2014175316A1 (fr) Composition de résine photosensible, produit durci et procédé permettant de produire ce dernier, procédé permettant de produire un motif de résine, film durci, dispositif d'affichage à cristaux liquides et dispositif d'affichage électroluminescent (el) organique
JP6219949B2 (ja) 感光性樹脂組成物、硬化膜の製造方法、硬化膜、液晶表示装置および有機el表示装置
JP6194357B2 (ja) 感光性樹脂組成物、硬化膜の製造方法、硬化膜、液晶表示装置および有機el表示装置
JP2014235216A (ja) 感光性樹脂組成物、硬化膜の製造方法、硬化膜、液晶表示装置及び有機el表示装置
JP2014071300A (ja) 感光性樹脂組成物、これを用いた硬化膜の製造方法、硬化膜、液晶表示装置および有機el表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14842922

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14842922

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP