WO2015029486A1 - 高周波電力増幅器 - Google Patents

高周波電力増幅器 Download PDF

Info

Publication number
WO2015029486A1
WO2015029486A1 PCT/JP2014/060191 JP2014060191W WO2015029486A1 WO 2015029486 A1 WO2015029486 A1 WO 2015029486A1 JP 2014060191 W JP2014060191 W JP 2014060191W WO 2015029486 A1 WO2015029486 A1 WO 2015029486A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
distribution
tuning
terminal
wavelength
Prior art date
Application number
PCT/JP2014/060191
Other languages
English (en)
French (fr)
Inventor
翔平 今井
大塚 浩志
山中 宏治
宏昭 前原
元良 小柳
太田 彰
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2015534018A priority Critical patent/JP6095787B2/ja
Priority to CA2920594A priority patent/CA2920594C/en
Priority to US14/912,982 priority patent/US9602068B2/en
Publication of WO2015029486A1 publication Critical patent/WO2015029486A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/60Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators
    • H03F3/602Combinations of several amplifiers
    • H03F3/604Combinations of several amplifiers using FET's
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • H03F1/565Modifications of input or output impedances, not otherwise provided for using inductive elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/191Tuned amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/193High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only with field-effect devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/68Combinations of amplifiers, e.g. multi-channel amplifiers for stereophonics
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/255Amplifier input adaptation especially for transmission line coupling purposes, e.g. impedance adaptation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/423Amplifier output adaptation especially for transmission line coupling purposes, e.g. impedance adaptation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/543A transmission line being used as coupling element between two amplifying stages

Definitions

  • the present invention mainly relates to a high frequency power amplifier used in the VHF band, UHF band, microwave band, and millimeter wave band.
  • an input signal is divided into two, a distribution line that outputs two distribution signals, a first FET that amplifies one distribution signal output from the distribution line, and a distribution line
  • a second FET for amplifying the other distribution signal output from the first FET, a distribution signal amplified by the first FET, and a distribution signal amplified by the second FET, and combining the two distribution signals
  • a high-frequency power amplifier is disclosed that is composed of a combined line that outputs a signal.
  • a parallel circuit in which a capacitor and a resistor are connected in parallel is provided between the input terminal of the first FET and the input terminal of the second FET. Are connected between the output terminal of the first FET and the output terminal of the second FET.
  • the conventional high-frequency power amplifier is configured as described above, when the operating frequency is high, it is difficult to obtain good characteristics of the capacitor, and the balanced operation of the two FETs may not be realized. .
  • the operating frequency is low, there is a problem that it is necessary to mount a capacitor having a large capacitance. Further, since the capacitor is mounted, there is a problem that an increase in mounting cost occurs.
  • the present invention has been made to solve the above-described problems, and occurs due to the difference in characteristics between the two amplifying elements without mounting a capacitor having good characteristics or a capacitor having a large capacitance.
  • An object of the present invention is to obtain a high frequency power amplifier capable of eliminating a non-uniform voltage distribution.
  • the high frequency power amplifier distributes a signal input from an input terminal into two, outputs one distribution signal from the first distribution terminal, and outputs the other distribution signal from the second distribution terminal.
  • An amplifying element and a composite line for synthesizing the distribution signal amplified by the first amplifying element and the distribution signal amplified by the second amplifying element and outputting the combined signal of the two distribution signals to the output terminal are provided.
  • the tuning line that eliminates a large voltage distribution is connected, a capacitor with good characteristics or a capacitor with a large electrostatic capacity is not mounted, and this is caused by the difference in characteristics between the two amplifying elements. There is an effect that uniform voltage distribution can be eliminated.
  • FIG. 1 is a configuration diagram illustrating a high frequency power amplifier according to a first embodiment of the present invention. It is a schematic diagram which shows an example of the high frequency power amplifier by Embodiment 1 of this invention. It is a schematic diagram which shows the circuit pattern at the time of implement
  • FIG. 10 is a schematic diagram showing a circuit pattern when the high-frequency power amplifier of FIG. 9 is realized by a metal pattern microstrip line on a dielectric substrate. It is a block diagram which shows the high frequency power amplifier by Embodiment 4 of this invention. It is an equivalent circuit around one amplifying element in the 1 ⁇ 2 harmonic common mode.
  • FIG. 16 is a schematic diagram showing a circuit pattern when the transmission line portion of the high-frequency power amplifier of FIG. 15 is formed by a metal pattern on a dielectric substrate and the oscillation suppression resistor is realized by a thin film resistor on the dielectric substrate. It is explanatory drawing which shows the characteristic of the output electric power with respect to the manufacture error x of one amplification element, and electric power addition efficiency. It is explanatory drawing which shows the frequency characteristic of the small signal gain in Embodiment 1, 4 of this invention.
  • FIG. 1 is a block diagram showing a high-frequency power amplifier according to Embodiment 1 of the present invention.
  • an input terminal 1 is a terminal for inputting a signal to be amplified.
  • the distribution line 2 is a line having one end connected to the input terminal 1 and the other end connected to the distribution terminal 3 (first distribution terminal).
  • the distribution line 4 is a line having one end connected to the input terminal 1 and the other end connected to the distribution terminal 5 (second distribution terminal).
  • the distribution line 2 and the distribution line 4 are provided separately, but the distribution lines 2 and 4 are formed by one line, and the input terminal 1 is connected to the midpoint of the one line. It may be.
  • the amplifying element 6 is composed of, for example, an FET or the like, and receives a signal (distributed signal) output from the distribution line 2 to the distribution terminal 3, amplifies the distribution signal, and combines the amplified distribution signal with the combining terminal 7 Output to (first composite terminal).
  • the amplifying element 6 constitutes a first amplifying element.
  • the amplifying element 8 is composed of, for example, an FET or the like, and receives a signal (distributed signal) output from the distribution line 4 to the distribution terminal 5, amplifies the distribution signal, and combines the amplified distribution signal with the combining terminal 9 Output to (second composite terminal).
  • the amplifying element 8 constitutes a second amplifying element.
  • the composite line 10 is a line in which one end is connected to the composite terminal 7 and the other end is connected to the output terminal 12.
  • the composite line 11 is a line in which one end is connected to the composite terminal 9 and the other end is connected to the output terminal 12.
  • the output terminal 12 is a terminal that outputs a combined signal of the signal output from the combined line 10 and the signal output from the combined line 11.
  • the composite line 10 and the composite line 11 are provided separately, but the composite lines 10 and 11 are formed by one line, and the output terminal 12 is connected to the midpoint of the single line. It may be.
  • the tuning line 14 is connected between the synthesis terminal 7 and the synthesis terminal 9.
  • the length of the tuning line 14 is not limited to one wavelength, and n wavelengths (n is a natural number) If it is.
  • both the tuning line 13 and the tuning line 14 are mounted, but at least one of the tuning line 13 or the tuning line 14 may be mounted, and the characteristic difference between the amplifying element 6 and the amplifying element 8 is sufficient. The non-uniform voltage distribution that accompanies this can be eliminated.
  • FIG. 2 is a schematic diagram showing an example of a high-frequency power amplifier according to Embodiment 1 of the present invention.
  • the input terminal 1, the distribution lines 2 and 4, the distribution terminals 3 and 5, and the tuning line 13 are realized by a metal pattern on a dielectric substrate, and the input terminal 1, distribution lines 2 and 4, distribution A dielectric substrate 21 for a distributor on which the terminals 3 and 5 and the tuning line 13 are mounted is shown.
  • the composite terminals 7 and 9, the composite lines 10 and 11, the output terminal 12 and the tuning line 14 are realized by a metal pattern on the dielectric substrate, and the composite terminals 7 and 9, the composite lines 10 and 11, and the output terminal 12 are realized.
  • a synthesizer dielectric substrate 22 on which the tuning line 14 is mounted.
  • the divider dielectric substrate 21 and the amplifying elements 6 and 8 are connected by metal wires 23 and 24, and the amplifier elements 6 and 8 and the combiner dielectric substrate 22 are connected by metal wires 25 and 26. Yes.
  • the distribution line 2 and the distribution line 4 are formed by one line, and the input terminal 1 is connected to the midpoint of the one line.
  • the composite line 10 and the composite line 11 are formed by a single line, and the output terminal 12 is connected to an intermediate point of the single line.
  • FIG. 2 shows an example in which the tuning lines 13 and 14 are realized by a metal pattern on the dielectric substrate, but a part of the tuning lines 13 and 14 may be realized by a metal wire or the like. .
  • FIG. 3 is a schematic diagram showing a circuit pattern when the high-frequency power amplifier of FIG. 1 is realized by a metal pattern microstrip line on a dielectric substrate.
  • the distribution lines 2 and 4 and the combined lines 10 and 11 are partly arranged perpendicular to the input terminal 1 with respect to the signal traveling direction. May be.
  • a parallel circuit in which a capacitor and a resistor are connected in parallel is connected in order to realize a balanced operation of two FETs.
  • the two connection points of the parallel circuit have a spatial distance.
  • FIG. 4 is a block diagram showing amplifying elements 6 and 8 of the high frequency power amplifier according to Embodiment 1 of the present invention.
  • FIG. 4 shows an example in which four field effect transistors are synthesized by using two stages of quarter wavelength line divider / combiners.
  • the amplifying element 6 and the amplifying element 8 are not limited to the amplifying elements having the configuration shown in FIG.
  • a signal input from the input terminal 1 is divided into two by distribution lines 2 and 4, one distribution signal is output to the amplification element 6, and the other distribution signal is output to the amplification element 8.
  • the amplifying element 6 amplifies the distribution signal and outputs the amplified distribution signal to the combined line 10.
  • the amplifier 8 receives the distribution signal output from the distribution line 4
  • the amplifier 8 amplifies the distribution signal and outputs the amplified distribution signal to the combined line 11.
  • the distribution signal amplified by the amplification element 6 and the distribution signal amplified by the amplification element 8 are combined by the combined lines 10 and 11, and the combined signal is output to the output terminal 12.
  • the input / output voltage is uneven between the amplifying element 6 and the amplifying element 8, and the performance inherent to the amplifying elements 6 and 8 Can no longer demonstrate.
  • This non-uniform voltage distribution is due to a component called reverse-phase mode voltage. If the negative-phase mode voltage can be canceled, this non-uniformity is improved and the amplification elements 6 and 8 originally have. The performance can be demonstrated.
  • the high-frequency power amplifier is designed so that the whole including the distribution line and the combined line is targeted around the input terminal 1 and the output terminal 12, so that the reverse-phase mode voltage is on the center line of the entire high-frequency power amplifier.
  • a standing wave is formed with a certain branch point / composite point as a node. Nodes and antinodes appear alternately every 1/4 wavelength due to the nature of the standing wave. Therefore, the points that are 1/4 wavelength away from the branching and combining points are antinodes of the antistatic mode voltage standing wave. It becomes.
  • two points that are 1/4 wavelength away from the branch point (or the combined point) are 2 points that are a total of 1/2 wavelength apart. Therefore, there are two points that are opposite in phase to the standing wave of the anti-phase mode voltage. Therefore, the potential difference between the two points is the voltage reflecting the standing wave of the reverse phase mode voltage most.
  • a line having a length of one wavelength has a characteristic that the voltage is the same at both ends of the line.
  • the line having the length of n wavelength also has a characteristic that the voltage is the same at both ends of the line, like the line having the length of one wavelength.
  • the tuning lines 13 and 14 are constituted by a line having a length of one wavelength, the tuning line 13 is connected between the two distribution terminals 3 and 5, and the two combined terminals 7 and 9 are connected.
  • the tuning lines 13 and 14 are caused by the standing wave of the negative phase mode voltage generated between the two distribution terminals 3 and 5 and between the two combined terminals 7 and 9.
  • the reverse-phase mode voltage cannot exist.
  • the inherent performance of the amplifying elements 6 and 8 can be exhibited as a whole of the high-frequency power amplifier.
  • FIG. 5 is an explanatory diagram showing characteristics of output power and power added efficiency with respect to a manufacturing error x of one amplifying element.
  • FIG. 5A shows the fluctuation of output power with respect to the manufacturing error x
  • FIG. 5B shows the fluctuation of power added efficiency with respect to the manufacturing error x.
  • the solid line indicates the characteristic when the tuning lines 13 and 14 are present
  • the broken line indicates the characteristic when the tuning lines 13 and 14 are not present.
  • the tuning lines 13 and 14 are not present, the characteristics change sharply with respect to the manufacturing error x of one amplifying element.
  • the tuning lines 13 and 14 are present, even if there is a slight manufacturing error x, The deterioration of characteristics is small. As a result, even if the manufacturing error x of the amplifying element occurs with a certain probability distribution, the yield of the amplifying element can be increased.
  • the tuning line 13 is connected between the distribution terminal 3 and the distribution terminal 5 in the distribution lines 2 and 4, and the combination terminal 7 in the combination lines 10 and 11 is connected. Since the tuning line 14 is configured to be connected between the composite terminals 9, there is a difference in characteristics between the two amplifying elements 6 and 8 without mounting a capacitor having good characteristics or a capacitor having a large capacitance. The non-uniform voltage distribution generated can be eliminated.
  • FIG. 6 is a block diagram showing a high-frequency power amplifier according to Embodiment 2 of the present invention.
  • the tuning line 31 is connected between the distribution terminal 3 and the distribution terminal 5 and is configured by a series circuit in which a line less than 1 ⁇ 2 wavelength 32 and tuning capacitors 33 and 34 are connected in series.
  • both the tuning line 31 and the tuning line 35 are mounted. However, at least one of the tuning line 31 or the tuning line 35 may be mounted, and the characteristic difference between the amplifying element 6 and the amplifying element 8 is sufficient. The non-uniform voltage distribution that accompanies this can be eliminated.
  • the tuning line 31 in which the sub-half wavelength line 32 and the tuning capacitors 33 and 34 are connected in series, and the tuning line in which the sub-half wavelength line 36 and the tuning capacitors 37 and 38 are connected in series. 35 may be connected between the terminals.
  • the series circuit in which the sub-half wavelength line 32 (sub-half wavelength line 36) and the tuning capacitors 33 and 34 (tuning capacitors 37 and 38) are connected in series is selected so as to resonate with the fundamental wave. This is the most effective.
  • FIG. 7 is a schematic diagram showing a circuit pattern when the high-frequency power amplifier of FIG. 6 is realized by a metal pattern microstrip line on a dielectric substrate.
  • the tuning capacitors 33, 34, 37, and 38 are realized by interdigital capacitors using metal patterns.
  • metal insulator metal capacitors hereinafter referred to as “MIM capacitors” that are often used in monolithic microwave integrated circuits. Or a chip capacitor.
  • the line of less than 1 ⁇ 2 wavelength becomes a node of a voltage standing wave at the center point and can be considered as a virtual ground point.
  • the wavelength is 1 ⁇ 4 wavelength or less until the point where the capacitor is connected, so the impedance viewed from the point where the capacitor is connected becomes inductive reactance.
  • the tuning lines 31 and 35 cause series resonance. For this reason, the tuning lines 31 and 35 have the same effect as the tuning lines 13 and 14 of the one-wavelength line in the first embodiment.
  • FIG. 8 is an explanatory diagram showing characteristics of output power and power added efficiency with respect to a manufacturing error x of one amplifying element.
  • FIG. 8A shows the fluctuation of the output power with respect to the manufacturing error x
  • FIG. 8B shows the fluctuation of the power added efficiency with respect to the manufacturing error x.
  • the solid line indicates the characteristics when the tuning lines 31 and 35 are provided
  • the broken line indicates the characteristics when the tuning lines 31 and 35 are not provided.
  • the tuning lines 31 and 35 are not provided, the characteristics change sharply with respect to the manufacturing error x of one amplifying element.
  • the tuning lines 31 and 35 are provided, even if there is a slight manufacturing error x, The deterioration of characteristics is small. As a result, even if the manufacturing error x of the amplifying element occurs with a certain probability distribution, the yield of the amplifying element can be increased.
  • a tuning line 35 which is constituted by a series circuit of a length less than 1/2 wavelength line 32 and tuning capacitors 33 and 34 and which is connected between the composite terminal 7 and the composite terminal 9, it is half the fundamental wave.
  • the two The non-uniform voltage distribution generated due to the characteristic difference between the amplification elements 6 and 8 can be eliminated, and the line lengths of the tuning lines 31 and 35 can be made shorter than one wavelength.
  • the circuit area occupied by the tuning lines 31, 35 Rukoto an effect that can.
  • FIG. 9 is a block diagram showing a high-frequency power amplifier according to Embodiment 3 of the present invention.
  • the tuning line 41 is connected between the distribution terminal 3 and the distribution terminal 5 and is formed of a series circuit in which a tuning coil 42 and a tuning capacitor 43 are connected in series.
  • the tuning coil 42 and tuning capacitor 43 are most effective when selected to produce series resonance in the fundamental.
  • the tuning line 44 is connected between the composite terminal 7 and the composite terminal 9, and is composed of a series circuit in which a tuning coil 45 and a tuning capacitor 46 are connected in series.
  • the tuning coil 45 and tuning capacitor 46 are most effective when selected to produce series resonance in the fundamental.
  • both the tuning line 41 and the tuning line 44 are mounted. However, it is sufficient that at least one of the tuning line 41 or the tuning line 44 is mounted. The non-uniform voltage distribution that accompanies this can be eliminated.
  • FIG. 10 is a schematic diagram showing a circuit pattern when the high-frequency power amplifier of FIG. 9 is realized by a metal pattern microstrip line on a dielectric substrate.
  • the tuning capacitors 43 and 46 are realized by interdigital capacitors using metal patterns, but may be realized by MIM capacitors or chip capacitors often used in monolithic microwave integrated circuits.
  • the tuning coils 42 and 45 are realized by a spiral inductor and a take-out wire, but may be realized by only a wire or a chip inductor.
  • the tuning line 41 in which the tuning coil 42 and the tuning capacitor 43 are connected in series, and the tuning line 44 in which the tuning coil 45 and the tuning capacitor 46 are connected in series may be connected between the terminals.
  • the tuning coil 42 and the tuning capacitor 43 in the tuning line 41 cause series resonance
  • the tuning coil 45 and the tuning capacitor 46 in the tuning line 44 cause series resonance.
  • the tuning line 41 connected between the distribution terminal 3 and the distribution terminal 5 is constituted by a series circuit of the tuning coil 42 and the tuning capacitor 43, and the combined terminal 7 Since the tuning line 44 connected between the synthesizer 9 and the composite terminal 9 is composed of a series circuit of a tuning coil 45 and a tuning capacitor 46, the characteristic difference between the two amplifying elements 6 and 8 is the same as in the first embodiment. In addition to eliminating the uneven voltage distribution that accompanies the above, it is not necessary to connect a line length of one wavelength, so that the circuit area occupied by the tuning lines 41 and 44 is reduced as compared with the first embodiment. The effect which can be done is produced.
  • FIG. FIG. 11 is a block diagram showing a high-frequency power amplifier according to Embodiment 4 of the present invention.
  • the tuning line 51 is connected between the distribution terminal 3 and the distribution terminal 5, and the tuning line 51 is configured by connecting 1/2 wavelength lines 52 and 53 and oscillation suppression resistors 54, 55, and 56 in series. Yes.
  • the oscillation suppression resistor 54 is a resistor having a resistance value R i, 1 loaded on the tuning line 51 for the purpose of suppressing oscillation.
  • the oscillation suppression resistor 55 is a resistor having a resistance value R i, 2 loaded on the tuning line 51 for the purpose of suppressing oscillation.
  • the oscillation suppression resistor 56 is a resistor having a resistance value R i, 1 loaded on the tuning line 51 for the purpose of suppressing oscillation.
  • the tuning line 61 is connected between the composite terminal 7 and the composite terminal 9, and the tuning line 61 is configured by connecting 1/2 wavelength lines 62 and 63 and oscillation suppression resistors 64, 65 and 66 in series. Yes.
  • the oscillation suppression resistor 64 is a resistor having a resistance value Ro, 1 loaded on the tuning line 61 for the purpose of suppressing oscillation.
  • the oscillation suppression resistor 65 is a resistor having resistance value Ro, 2 loaded on the tuning line 61 for the purpose of suppressing oscillation.
  • the oscillation suppression resistor 66 is a resistor having a resistance value Ro, 1 loaded on the tuning line 61 for the purpose of suppressing oscillation.
  • the tuned lines 13 and 14 There is a possibility of causing oscillation in the low frequency region.
  • the 1/2 harmonic oscillation that may occur in the tuning lines 13 and 14 in FIG. 1 will be described.
  • the tuning lines 13 and 14 When the tuning lines 13 and 14 are excited in the common mode, they become antinodes of the voltage standing wave at the center due to symmetry, regardless of the frequency.
  • 1 ⁇ 2 harmonic wave a wave whose frequency is half of the fundamental wave
  • the quarter wavelength position is different, so the relationship between the antinode and the node is reversed to become a node.
  • the distribution terminals 3 and 5 and the combined terminals 7 and 9 become virtual ground points.
  • the electromagnetic waves are strongly reflected at the distribution terminals 3 and 5 and the combination terminals 7 and 9.
  • the reflection coefficient when the circuit side is viewed from the amplification elements 6 and 8 increases, and in the worst case, oscillation may occur.
  • the oscillation suppression resistor 55 (oscillation suppression resistor 65) is loaded between the / 2 wavelength lines 53 (between the 1/2 wavelength line 62 and the 1/2 wavelength line 63), the distribution lines 2 and 4
  • the distribution terminals 3 and 5 that are connection points of the tuning line 51 are not virtual ground points, and the composite terminals 7 and 9 that are connection points of the composite lines 10 and 11 and the tuning line 61 are virtual ground points. Don't be.
  • the distribution terminals 3 and 5 operate as if the oscillation suppression resistors 54 and 56 are connected in parallel to the main line, and the combined terminals 7 and 9 have the oscillation suppression resistors 64 and 66 with respect to the main line. Operates as if connected in parallel.
  • FIG. 12 is an equivalent circuit around one amplifying element. Electromagnetic wave half-wave common-mode, if properly choose the resistance R o, 1 of the resistance value R i, 1 and the oscillation suppression resistors 64 and 66 of the oscillation suppression resistors 54 and 56, resistors for oscillation suppression Consumed by 54, 56, 64, 66. Therefore, strong reflection does not occur at the distribution terminals 3 and 5 and the combination terminals 7 and 9, and the reflection coefficient becomes small. Therefore, the possibility of oscillation in the in-phase mode of the 1/2 harmonic is reduced.
  • the center point of the oscillation suppression resistor 55 (oscillation suppression resistor 65) is a node of the voltage standing wave. Therefore, the virtual ground point is the center of the oscillation suppression resistor 55 (oscillation suppression resistor 65).
  • the resistance value R i, 2/2 (R o, 2/2), which is half that of the oscillation suppression resistor 55 (oscillation suppression resistor 65) is set to a 1/4 wavelength line (1/2 wavelength in the fundamental wave). After the line) is connected, it can be regarded as a circuit to which the oscillation suppressing resistors 54 and 56 (oscillation suppressing resistors 64 and 66) are connected.
  • the main line operates as the resistance value R i indicated by Equation (1) below, odd, 1 / 2f0, R o, the resistance with odd, 1 / 2f0 are connected in parallel.
  • the equivalent circuit shown in FIG. 13 can be considered.
  • the electromagnetic wave in the 1/2 harmonic anti-phase mode appropriately sets the resistance values R i, 2 , Ro , 2 of the oscillation suppression resistors 55, 65 and the characteristic impedance of the 1/2 wavelength lines 52, 53, 62, 63. If you choose, It is consumed by the oscillation suppression resistors 55 and 65. Therefore, strong reflection does not occur at the distribution terminals 3 and 5 and the combination terminals 7 and 9, and the reflection coefficient becomes small. Therefore, the possibility of oscillation in the half-phase reverse phase mode is reduced.
  • the oscillation suppression resistors 54, 55, and 56 are loaded on the tuning line 51 (the tuning line 61).
  • 56 are loaded, the yield of the amplifying elements can be increased for a reason slightly different from the first embodiment.
  • the center point of the oscillation suppression resistors 55 and 65 becomes a node of the voltage standing wave due to symmetry. Therefore, the center of the oscillation suppression resistors 55 and 65 becomes a virtual ground point, and the resistance value R i, 2/2 (R o, 2/2) is half that of the oscillation suppression resistor 55 (oscillation suppression resistor 65).
  • the 1/4 wavelength line 1/2 wavelength line in the fundamental wave
  • resistors having resistance values R i, odd, f0 , R o, odd, f0 represented by the following formula (2) are connected in parallel to the distribution lines 2 and 4 and the combined lines 10 and 11.
  • FIG. 14 is an equivalent circuit around one amplifying element in the fundamental wave anti-phase mode. Since the periphery of the amplifying elements 6 and 8 can be considered by the equivalent circuit shown in FIG. 66) resistance values R i, 1 , R i, 2 (R o, 1 , R o, 2 ) are appropriately selected, oscillation suppression resistors 54, 55, 56 (oscillation suppression resistors 64, 65, 66).
  • the center point of the oscillation suppression resistor 55 (oscillation suppression resistor 65) becomes the antinode of the voltage standing wave. Therefore, no current in the common mode flows through the oscillation suppression resistor 55 (oscillation suppression resistor 65). For this reason, the terminals on the center side of the tuning lines 51 and 61 can be regarded as virtual release points.
  • the 1/2 wavelength lines 52 and 53 are connected from the virtual release point, but the 1/2 wavelength lines 52 and 53 (1/2 wavelength lines 62 and 63) are Since the relationship between the antinodes and nodes of the standing wave is inverted twice, the connection points with the oscillation suppression resistors 54 and 56 (oscillation suppression resistors 64 and 66) become antinodes. Therefore, the connection points of the half-wavelength lines 52 and 53 (half-wavelength lines 62 and 63) with the oscillation suppression resistors 54 and 56 (oscillation suppression resistors 64 and 66) can be regarded as virtual release points. .
  • FIG. 15 is an equivalent circuit around one amplifying element in the fundamental wave common-mode.
  • FIG. 16 shows a circuit pattern when the transmission line portion of the high-frequency power amplifier of FIG. 15 is formed by a metal pattern on a dielectric substrate, and the oscillation suppression resistor is realized by a thin film resistor on the dielectric substrate. It is a schematic diagram.
  • the oscillation suppression resistors 54, 55, and 56 are not limited to thin film resistors, and may be a surface mount type.
  • FIG. 17 is an explanatory diagram showing characteristics of output power and power added efficiency with respect to a manufacturing error x of one amplifying element.
  • FIG. 17A shows the fluctuation of the output power with respect to the manufacturing error x
  • FIG. 17B shows the fluctuation of the power added efficiency with respect to the manufacturing error x.
  • the solid line indicates the characteristics when the tuning lines 51 and 61 are provided
  • the broken line indicates the characteristics when the tuning lines 51 and 61 are not provided.
  • the tuning lines 51 and 61 are not provided, the characteristics change sharply with respect to the manufacturing error x of one amplifying element.
  • the tuning lines 51 and 61 are provided, even if there is a slight manufacturing error x, The deterioration of characteristics is small. As a result, even if the manufacturing error x of the amplifying element occurs with a certain probability distribution, the yield of the amplifying element can be increased.
  • FIG. 18 is an explanatory diagram showing frequency characteristics of small signal gain in the first and fourth embodiments.
  • the horizontal axis indicates the frequency normalized by the frequency of the fundamental wave as a percentage.
  • the fundamental wave standardized frequency: 100%
  • the half-wave normalized frequency: 50%
  • the gain changes abruptly and there is a point where the gain becomes abnormally high
  • the change in gain is smooth and the gain is abnormally high.
  • the oscillation suppression resistors 54, 55, and 56 are shown loaded on the tuning line 51 (tuning line 61). As shown, the oscillation suppression resistors 54 and 56 (oscillation suppression resistors 64 and 66) are not loaded, and only the oscillation suppression resistor 55 (oscillation suppression resistor 65) is used as the tuning line 51 (tuning line 61). It may be loaded. Even in this case, the possibility that the anti-phase mode of the fundamental wave oscillates can be reduced.
  • the oscillation suppression resistors 54, 55, and 56 are shown loaded on the tuning line 51 (tuning line 61). 20, the tuning capacitors 57 and 58 may be loaded on the tuning line 51, and the tuning capacitors 67 and 68 may be loaded on the tuning line 61.
  • FIG. FIG. 21 is a block diagram showing a high-frequency power amplifier according to Embodiment 5 of the present invention.
  • the tuning line 71 is connected between the distribution terminal 3 and the distribution terminal 5.
  • the tuning line 71 includes a series circuit of quarter wavelength lines 72 and 74 and a half wavelength line 73, a resistor and a capacitor for bias cutting. And a grounding circuit connected in series.
  • the oscillation suppression resistor 75 is a resistor having a resistance value R i, 1 connected for the purpose of suppressing oscillation. One end of the oscillation suppression resistor 75 is between the quarter wavelength line 72 and the half wavelength line 73. That is, it is connected to a point that is a quarter wavelength away from the center of the tuning line 71 by the fundamental wave.
  • the bias cut capacitor 76 is a capacitor connected for the purpose of cutting the bias.
  • the oscillation suppression resistor 77 is a resistor having a resistance value R i, 1 connected for the purpose of suppressing oscillation.
  • One end of the oscillation suppression resistor 77 is between the quarter wavelength line 74 and the half wavelength line 73. That is, it is connected to a point that is a quarter wavelength away from the center of the tuning line 71 by the fundamental wave.
  • the bias cutting capacitor 78 is a capacitor connected for the purpose of cutting the bias.
  • the tuning line 81 is connected between the composite terminal 7 and the composite terminal 9, and the tuning line 81 includes a series circuit of quarter wavelength lines 82 and 84 and a half wavelength line 83, a resistor and a capacitor for bias cutting. And a grounding circuit connected in series.
  • the oscillation suppression resistor 85 is a resistor having a resistance value R o, 1 connected for the purpose of suppressing oscillation, and one end of the oscillation suppression resistor 85 is between the quarter wavelength line 82 and the half wavelength line 83. That is, it is connected to a point that is 1 ⁇ 4 wavelength away from the center of the tuning line 81 with the fundamental wave.
  • the bias cut capacitor 86 is a capacitor connected for the purpose of cutting the bias.
  • the oscillation suppression resistor 87 is a resistor having a resistance value R o, 1 connected for the purpose of suppressing oscillation, and one end of the oscillation suppression resistor 87 is between the quarter wavelength line 84 and the half wavelength line 83. That is, it is connected to a point that is 1 ⁇ 4 wavelength away from the center of the tuning line 81 with the fundamental wave.
  • the bias cut capacitor 88 is a capacitor connected for the purpose of cutting the bias.
  • the basic operation of the high-frequency power amplifier according to the fifth embodiment is the same as that of the first embodiment.
  • the tuning line 71 (tuning line 81) includes oscillation suppression resistors 75 and 77 (oscillation suppression resistances). 85, 87) is loaded, the possibility of oscillation in the low frequency region can be reduced as in the fourth embodiment.
  • the amplifying elements 6 and 8 are biased from the outside of the high frequency power amplifier. Is not applied, it is not necessary to mount the bias cut capacitors 76 and 78 (bias cut capacitors 86 and 88).
  • the present invention is not limited to this, and can be applied to other combinations.
  • the configuration diagram a mode in which the tuning line is connected to the distribution line is described, but the present invention is not limited to this, and the tuning line and the distribution line are separated, and if necessary, It may be configured to be connected by a wire or a ribbon.
  • the tuning line is connected between at least one of the first and second distribution terminals in the distribution line and between the first and second combination terminals in the combination line. Therefore, it is possible to eliminate the non-uniform voltage distribution generated due to the characteristic difference between the two amplifying elements, which is suitable for use in the VHF band, UHF band, microwave band, and millimeter wave band. is there.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microwave Amplifiers (AREA)
  • Amplifiers (AREA)

Abstract

 分配線路2,4における分配端子3と分配端子の間に同調線路13を接続するとともに、合成線路10,11における合成端子7と合成端子9の間に同調線路14を接続するように構成する。これにより、2つの増幅素子6,8の特性差に伴って発生する不均一な電圧分布を解消することができる。

Description

高周波電力増幅器
 この発明は、主として、VHF帯、UHF帯、マイクロ波帯、およびミリ波帯で使用される高周波電力増幅器に関するものである。
 以下の特許文献1には、入力信号を2つに分配して、2つの分配信号を出力する分配線路と、分配線路から出力された一方の分配信号を増幅する第1のFETと、分配線路から出力された他方の分配信号を増幅する第2のFETと、第1のFETにより増幅された分配信号と第2のFETにより増幅された分配信号とを合成し、2つの分配信号の合成信号を出力する合成線路とから構成されている高周波電力増幅器が開示されている。
 この高周波電力増幅器では、2つのFETの平衡動作を実現するために、コンデンサと抵抗が並列に接続されている並列回路が、第1のFETの入力端子と第2のFETの入力端子との間と、第1のFETの出力端子と第2のFETの出力端子との間にそれぞれ接続されている。
特開平6-334054号公報(段落番号[0006]、図1)
 従来の高周波電力増幅器は以上のように構成されているので、動作周波数が高い場合、コンデンサの良好な特性を得ることが困難であり、2つのFETの平衡動作を実現することができないことがある。一方、動作周波数が低い場合、静電容量が大きなコンデンサを実装する必要がある課題があった。また、コンデンサを実装するため、実装コストの増加等も生じる課題があった。
 この発明は上記のような課題を解決するためになされたもので、良好な特性を有するコンデンサや、静電容量が大きなコンデンサを実装することなく、2つの増幅素子の特性差に伴って発生する不均一な電圧分布を解消することができる高周波電力増幅器を得ることを目的とする。
 この発明に係る高周波電力増幅器は、入力端子から入力された信号を2つに分配して、第1の分配端子から一方の分配信号を出力するとともに、第2の分配端子から他方の分配信号を出力する分配線路と、分配線路の第1の分配端子から出力された分配信号を増幅する第1の増幅素子と、分配線路の第2の分配端子から出力された分配信号を増幅する第2の増幅素子と、第1の増幅素子により増幅された分配信号と第2の増幅素子により増幅された分配信号とを合成し、2つの分配信号の合成信号を出力端子に出力する合成線路とを設け、分配線路における第1及び第2の分配端子間、第1及び第2の増幅素子により増幅された分配信号を入力する合成線路における第1及び第2の合成端子間のうち、少なくとも一方の端子間に、当該端子間に生じている不均一な電圧分布を解消する同調線路を接続するようにしたものである。
 この発明によれば、分配線路における第1及び第2の分配端子間、合成線路における第1及び第2の合成端子間のうち、少なくとも一方の端子間に、当該端子間に生じている不均一な電圧分布を解消する同調線路を接続するように構成したので、良好な特性を有するコンデンサや、静電容量が大きなコンデンサを実装することなく、2つの増幅素子の特性差に伴って発生する不均一な電圧分布を解消することができる効果がある。
この発明の実施の形態1による高周波電力増幅器を示す構成図である。 この発明の実施の形態1による高周波電力増幅器の一例を示す模式図である。 図1の高周波電力増幅器を誘電体基板上に金属パターンのマイクロストリップラインで実現した場合の回路パターンを示す模式図である。 この発明の実施の形態1による高周波電力増幅器の増幅素子6,8を示す構成図である。 1つの増幅素子の製作誤差xに対する出力電力及び電力付加効率の特性を示す説明図である。 この発明の実施の形態2による高周波電力増幅器を示す構成図である。 図6の高周波電力増幅器を誘電体基板上に金属パターンのマイクロストリップラインで実現した場合の回路パターンを示す模式図である。 1つの増幅素子の製作誤差xに対する出力電力及び電力付加効率の特性を示す説明図である。 この発明の実施の形態3による高周波電力増幅器を示す構成図である。 図9の高周波電力増幅器を誘電体基板上に金属パターンのマイクロストリップラインで実現した場合の回路パターンを示す模式図である。 この発明の実施の形態4による高周波電力増幅器を示す構成図である。 1/2倍波同相モードにおける1つの増幅素子の周辺の等価回路である。 1/2倍波逆相モードにおける1つの増幅素子の周辺の等価回路である。 基本波逆相モードにおける1つの増幅素子の周辺の等価回路である。 基本波同相モードにおける1つの増幅素子の周辺の等価回路である。 図15の高周波電力増幅器の伝送線路の部分を誘電体基板上に金属パターンによって形成し、発振抑制用抵抗を誘電体基板上の薄膜抵抗によって実現した場合の回路パターンを示す模式図である。 1つの増幅素子の製作誤差xに対する出力電力及び電力付加効率の特性を示す説明図である。 この発明の実施の形態1,4における小信号利得の周波数特性を示す説明図である。 この発明の実施の形態4による簡易型の高周波電力増幅器を示す構成図である。 この発明の実施の形態4による他の高周波電力増幅器を示す構成図である。 この発明の実施の形態5による高周波電力増幅器を示す構成図である。
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1はこの発明の実施の形態1による高周波電力増幅器を示す構成図である。
 図1において、入力端子1は増幅対象の信号を入力する端子である。
 分配線路2は一端が入力端子1と接続され、他端が分配端子3(第1の分配端子)と接続されている線路であり、分配線路2はインピーダンスがZ0iで、入力端子1から入力された信号の基本波で4分の1波長(=λ/4)の長さを有している。
 分配線路4は一端が入力端子1と接続され、他端が分配端子5(第2の分配端子)と接続されている線路であり、分配線路4はインピーダンスがZ0iで、入力端子1から入力された信号の基本波で4分の1波長(=λ/4)の長さを有している。
 なお、分配線路2と分配線路4のインピーダンスはZ0iで同一であるため、入力端子1から入力された信号は、2つに均等に分配され、一方の分配信号は分配端子3に出力され、他方の分配信号は分配端子3に出力される。
 図1の例では、分配線路2と分配線路4が別々に設けられているが、1本の線路で分配線路2,4が形成され、1本の線路の中間点に入力端子1が接続されていてもよい。
 増幅素子6は例えばFETなどから構成されており、分配線路2から分配端子3に出力された信号(分配信号)を入力し、その分配信号を増幅して、増幅後の分配信号を合成端子7(第1の合成端子)に出力する。なお、増幅素子6は第1の増幅素子を構成している。
 増幅素子8は例えばFETなどから構成されており、分配線路4から分配端子5に出力された信号(分配信号)を入力し、その分配信号を増幅して、増幅後の分配信号を合成端子9(第2の合成端子)に出力する。なお、増幅素子8は第2の増幅素子を構成している。
 合成線路10は一端が合成端子7と接続され、他端が出力端子12と接続されている線路であり、合成線路10はインピーダンスがZ0oで、入力端子1から入力された信号の基本波で4分の1波長(=λ/4)の長さを有している。
 合成線路11は一端が合成端子9と接続され、他端が出力端子12と接続されている線路であり、合成線路11はインピーダンスがZ0oで、入力端子1から入力された信号の基本波で4分の1波長(=λ/4)の長さを有している。
 出力端子12は合成線路10から出力された信号と合成線路11から出力された信号との合成信号を出力する端子である。
 図1の例では、合成線路10と合成線路11が別々に設けられているが、1本の線路で合成線路10,11が形成され、1本の線路の中間点に出力端子12が接続されていてもよい。
 同調線路13は分配端子3と分配端子5の間に接続されており、同調線路13はインピーダンスがZ0isで、入力端子1から入力された信号の基本波で1波長(=λ)の長さを有している。ここでは、同調線路13が1波長(=λ)の長さを有している例を説明するが、同調線路13の長さは1波長に限るものではなく、n波長(nは自然数)であればよい。
 同調線路14は合成端子7と合成端子9の間に接続されており、同調線路14はインピーダンスがZ0osで、入力端子1から入力された信号の基本波で1波長(=λ)の長さを有している。ここでは、同調線路14が1波長(=λ)の長さを有している例を説明するが、同調線路14の長さは1波長に限るものではなく、n波長(nは自然数)であればよい。
 図1の例では、同調線路13と同調線路14の双方を実装しているが、同調線路13又は同調線路14の少なくとも一方が実装されていればよく、増幅素子6と増幅素子8の特性差に伴って発生する不均一な電圧分布を解消することができる。
 図2はこの発明の実施の形態1による高周波電力増幅器の一例を示す模式図である。
 図2の例では、入力端子1、分配線路2,4、分配端子3,5及び同調線路13が誘電体基板上に金属パターンによって実現されており、入力端子1、分配線路2,4、分配端子3,5及び同調線路13を実装している分配器用誘電体基板21が示されている。
 また、合成端子7,9、合成線路10,11、出力端子12及び同調線路14が誘電体基板上に金属パターンによって実現されており、合成端子7,9、合成線路10,11、出力端子12及び同調線路14を実装している合成器用誘電体基板22が示されている。
 また、分配器用誘電体基板21と増幅素子6,8の間は金属ワイヤ23,24で接続され、増幅素子6,8と合成器用誘電体基板22の間は金属ワイヤ25,26で接続されている。
 図2の例では、分配線路2と分配線路4が1本の線路で形成されており、1本の線路の中間点に入力端子1が接続されている。
 また、図2の例では、合成線路10と合成線路11が1本の線路で形成されており、1本の線路の中間点に出力端子12が接続されている。
 なお、図2では、同調線路13,14が誘電体基板上に金属パターンで実現されている例を示しているが、同調線路13,14の一部が金属ワイヤ等で実現されていてもよい。
 図3は図1の高周波電力増幅器を誘電体基板上に金属パターンのマイクロストリップラインで実現した場合の回路パターンを示す模式図である。
 図3に示すように、回路規模の制約上、入力端子1に対して、分配線路2,4や合成線路10,11の一部が、信号の進行方向に対して、垂直になるように配置されることがある。
 上記の特許文献1に開示されている高周波電力増幅器では、2つのFETの平衡動作を実現するために、コンデンサと抵抗が並列に接続されている並列回路を接続するが、入力端子1に対して、分配線路2,4や合成線路10,11の一部が、信号の進行方向に対して、垂直になるように配置される場合、その並列回路の2つの接続点は、空間的な距離が大きくなるため、その並列回路を接続することが困難な場合がある。
 しかし、この実施の形態1では、1波長(=λ/4)の長さを有する同調線路13,14を接続するものであるため、2つの分配端子3,5間や、2つの合成端子7,9間が空間的に離れていても、容易に接続することができる。
 図4はこの発明の実施の形態1による高周波電力増幅器の増幅素子6,8を示す構成図である。
 図4では、1/4波長線路分配合成器を2段にして電界効果トランジスタを4合成している例を示している。
 ただし、増幅素子6や増幅素子8は、図4の構成の増幅素子に限るものではなく、基本的に増幅作用を有す回路であればよい。
 次に動作について説明する。
 入力端子1から入力された信号は、分配線路2,4によって2分配され、一方の分配信号は増幅素子6に出力され、他方の分配信号は増幅素子8に出力される。
 増幅素子6は、分配線路2から出力された分配信号を入力すると、その分配信号を増幅して、増幅後の分配信号を合成線路10に出力する。
 また、増幅素子8は、分配線路4から出力された分配信号を入力すると、その分配信号を増幅して、増幅後の分配信号を合成線路11に出力する。
 これにより、増幅素子6による増幅後の分配信号と増幅素子8による増幅後の分配信号が合成線路10,11で合成され、その合成信号が出力端子12に出力される。
 ただし、増幅素子6と増幅素子8の間に特性差がある場合、増幅素子6と増幅素子8の間で入・出力電圧に不均一が生じ、増幅素子6,8が本来有している性能を発揮することができなくなる。
 この不均一な電圧分布は、逆相モード電圧と呼ばれる成分によるものであり、逆相モード電圧を打ち消すことができれば、この不均一性を改善して、増幅素子6,8が本来有している性能を発揮することができるようになる。
 高周波電力増幅器は、分配線路や合成線路を含む全体が、入力端子1及び出力端子12を中心として対象になるように設計されているので、逆相モード電圧は、高周波電力増幅器全体の中心線上にある分岐点・合成点を節とする定在波を形成する。
 節・腹は、定在波の性質より、1/4波長離れる毎に交互に現れるので、分岐点・合成点から1/4波長離れている点は、逆相モード電圧の定在波の腹となる。
 また、2つの分配線路2,4(または、合成線路10,11)に沿って、分岐点(または合成点)から1/4波長離れた2点間は、合計1/2波長離れた2点となるため、逆相モード電圧の定在波の逆相となる2点である。したがって、この2点間の電位差が最も逆相モード電圧の定在波を反映した電圧となる。
 一方、1波長の長さを有する線路は、線路の両端で、電圧が同じになる特徴を有している。n波長の長さを有する線路についても、1波長の長さを有する線路と同様に、線路の両端で、電圧が同じになる特徴を有している。
 この実施の形態1では、1波長の長さを有する線路で同調線路13,14を構成し、2つの分配端子3,5の間に同調線路13を接続して、2つの合成端子7,9の間に同調線路14を接続すると、同調線路13,14が、2つの分配端子3,5の間や、2つの合成端子7,9の間に生じている逆相モード電圧の定在波による電位差を無くすように動作して、逆相モード電圧が存在できなくなる。
 この結果、増幅素子6と増幅素子8の間に特性差があっても、高周波電力増幅器の全体として、増幅素子6,8の固有の性能を発揮することができるようになる。
 ここで、図5は1つの増幅素子の製作誤差xに対する出力電力及び電力付加効率の特性を示す説明図である。
 特に、図5(a)は製作誤差xに対する出力電力の変動を表しており、図5(b)は製作誤差xに対する電力付加効率の変動を表している。
 図5において、実線は同調線路13,14が有る場合の特性を示し、破線は同調線路13,14が無い場合の特性を示している。
 同調線路13,14が無い場合、1つの増幅素子の製作誤差xに対して、特性が急峻に変化しているが、同調線路13,14が有る場合、多少の製作誤差xがあっても、特性の低下が小さくなっている。
 これにより、増幅素子の製作誤差xが、ある確率分布を持って発生するとしても、増幅素子の歩留まりを高めることができる。
 以上で明らかなように、この実施の形態1によれば、分配線路2,4における分配端子3と分配端子5の間に同調線路13を接続するとともに、合成線路10,11における合成端子7と合成端子9の間に同調線路14を接続するように構成したので、良好な特性を有するコンデンサや、静電容量が大きなコンデンサを実装することなく、2つの増幅素子6,8の特性差に伴って発生する不均一な電圧分布を解消することができる効果を奏する。
実施の形態2.
 図6はこの発明の実施の形態2による高周波電力増幅器を示す構成図であり、図において、図1と同一符号は同一または相当部分を示すので説明を省略する。
 同調線路31は分配端子3と分配端子5の間に接続されており、1/2波長未満線路32及び同調コンデンサ33,34が直列に接続されている直列回路で構成されている。
 1/2波長未満線路32はインピーダンスがZ0isで、線路長が入力端子1から入力された信号の基本波で2分の1波長(=λ/2)より短い長さである。
 同調線路35は合成端子7と合成端子9の間に接続されており、1/2波長未満線路36及び同調コンデンサ37,38が直列に接続されている直列回路で構成されている。
 1/2波長未満線路36はインピーダンスがZ0osで、線路長が入力端子1から入力された信号の基本波で2分の1波長(=λ/2)より短い長さである。
 図6の例では、同調線路31と同調線路35の双方を実装しているが、同調線路31又は同調線路35の少なくとも一方が実装されていればよく、増幅素子6と増幅素子8の特性差に伴って発生する不均一な電圧分布を解消することができる。
 上記実施の形態1では、基本波で1波長(=λ)の長さを有している同調線路13,14を端子間に接続しているものを示したが、同調線路13,14の代わりに、1/2波長未満線路32及び同調コンデンサ33,34が直列に接続されている同調線路31と、1/2波長未満線路36及び同調コンデンサ37,38が直列に接続されている同調線路35とを端子間に接続するようにしてもよい。
 なお、1/2波長未満線路32(1/2波長未満線路36)と同調コンデンサ33,34(同調コンデンサ37,38)を直列に接続している直列回路は、基本波で共振するように選択すると最も効果的である。
 図7は図6の高周波電力増幅器を誘電体基板上に金属パターンのマイクロストリップラインで実現した場合の回路パターンを示す模式図である。
 図7では、同調コンデンサ33,34,37,38を金属パターンによるインターディジタルキャパシタによって実現しているが、モノリシックマイクロ波集積回路でよく用いられるメタル・インシュレータ・メタルコンデンサ (以下、「MIMコンデンサ」と称する)や、チップコンデンサなどによって実現してもよい。
 次に動作について説明する。
 1/2波長未満の線路は、逆相モードを考えると、中心点で電圧定在波の節となり、仮想接地点と考えることができる。
 中心点が仮想接地点になると、コンデンサが接続される点までは1/4波長以下であるから、コンデンサが接続される点から見たインピーダンスは、誘導性のリアクタンスになる。
 この実施の形態2では、この誘導性リアクタンスと直列に、同調コンデンサ33,34,37,38の容量性リアクタンスを挿入しているので、同調線路31,35は直列共振を起こすようになる。このため、同調線路31,35は、上記実施の形態1における1波長線路の同調線路13,14と同様の作用をもたらすようになる。
 ここで、図8は1つの増幅素子の製作誤差xに対する出力電力及び電力付加効率の特性を示す説明図である。
 特に、図8(a)は製作誤差xに対する出力電力の変動を表しており、図8(b)は製作誤差xに対する電力付加効率の変動を表している。
 図8において、実線は同調線路31,35が有る場合の特性を示し、破線は同調線路31,35が無い場合の特性を示している。
 同調線路31,35が無い場合、1つの増幅素子の製作誤差xに対して、特性が急峻に変化しているが、同調線路31,35が有る場合、多少の製作誤差xがあっても、特性の低下が小さくなっている。
 これにより、増幅素子の製作誤差xが、ある確率分布を持って発生するとしても、増幅素子の歩留まりを高めることができる。
 以上で明らかなように、この実施の形態2によれば、分配端子3と分配端子5の間に接続する同調線路31として、基本波で2分の1波長(=λ/2)より短い長さの線路である1/2波長未満線路32と同調コンデンサ33,34の直列回路で構成し、合成端子7と合成端子9の間に接続する同調線路35として、基本波で2分の1波長(=λ/2)より短い長さの線路である1/2波長未満線路36と同調コンデンサ37,38の直列回路で構成しているので、上記実施の形態1と同様に、2つの増幅素子6,8の特性差に伴って発生する不均一な電圧分布を解消することができるほか、同調線路31,35の線路長を1波長より短くすることができるため、上記実施の形態1よりも、同調線路31,35が占める回路面積を削減することができる効果を奏する。
実施の形態3.
 図9はこの発明の実施の形態3による高周波電力増幅器を示す構成図であり、図において、図1と同一符号は同一または相当部分を示すので説明を省略する。
 同調線路41は分配端子3と分配端子5の間に接続されており、同調コイル42と同調コンデンサ43が直列に接続されている直列回路で構成されている。同調コイル42と同調コンデンサ43は基本波において直列共振が生じるよう選択されると最も効果的である。
 同調線路44は合成端子7と合成端子9の間に接続されており、同調コイル45と同調コンデンサ46が直列に接続されている直列回路で構成されている。同調コイル45と同調コンデンサ46は基本波において直列共振が生じるよう選択されると最も効果的である。
 図9の例では、同調線路41と同調線路44の双方を実装しているが、同調線路41又は同調線路44の少なくとも一方が実装されていればよく、増幅素子6と増幅素子8の特性差に伴って発生する不均一な電圧分布を解消することができる。
 図10は図9の高周波電力増幅器を誘電体基板上に金属パターンのマイクロストリップラインで実現した場合の回路パターンを示す模式図である。
 図10では、同調コンデンサ43,46を金属パターンによるインターディジタルキャパシタによって実現しているが、モノリシックマイクロ波集積回路でよく用いられるMIMコンデンサや、チップコンデンサなどによって実現してもよい。
 図10では、同調コイル42,45をスパイラルインダクタと取り出しワイヤによって実現しているが、ワイヤのみや、チップインダクタで実現してもよい。
 上記実施の形態1では、基本波で1波長(=λ)の長さを有している同調線路13,14を端子間に接続しているものを示したが、同調線路13,14の代わりに、同調コイル42と同調コンデンサ43が直列に接続されている同調線路41と、同調コイル45と同調コンデンサ46が直列に接続されている同調線路44とを端子間に接続するようにしてもよい。
 この場合、同調線路41における同調コイル42と同調コンデンサ43が直列共振を起こし、同調線路44における同調コイル45と同調コンデンサ46が直列共振を起こすため、同調線路41,44は、上記実施の形態1における1波長線路の同調線路13,14と同様の作用をもたらすようになる。
 以上で明らかなように、この実施の形態3によれば、分配端子3と分配端子5の間に接続する同調線路41として、同調コイル42と同調コンデンサ43の直列回路で構成し、合成端子7と合成端子9の間に接続する同調線路44として、同調コイル45と同調コンデンサ46の直列回路で構成しているので、上記実施の形態1と同様に、2つの増幅素子6,8の特性差に伴って発生する不均一な電圧分布を解消することができるほか、1波長の線路長を接続する必要がないため、上記実施の形態1よりも、同調線路41,44が占める回路面積を削減することができる効果を奏する。
実施の形態4.
 図11はこの発明の実施の形態4による高周波電力増幅器を示す構成図であり、図において、図1と同一符号は同一または相当部分を示すので説明を省略する。
 同調線路51は分配端子3と分配端子5の間に接続されており、同調線路51は1/2波長線路52,53及び発振抑制用抵抗54,55,56が直列に接続されて構成されている。
 ここでは、同調線路51が1波長(=λ)の長さを有している例を説明するが、同調線路51の長さは1波長に限るものではなく、n波長(nは自然数)であればよい。
 1/2波長線路52,53はインピーダンスがZ0isで、線路長が入力端子1から入力された信号の基本波で2分の1波長(=λ/2)の長さである。
 発振抑制用抵抗54は発振を抑制する目的で、同調線路51に装荷されている抵抗値Ri,1の抵抗である。
 発振抑制用抵抗55は発振を抑制する目的で、同調線路51に装荷されている抵抗値Ri,2の抵抗である。
 発振抑制用抵抗56は発振を抑制する目的で、同調線路51に装荷されている抵抗値Ri,1の抵抗である。
 同調線路61は合成端子7と合成端子9の間に接続されており、同調線路61は1/2波長線路62,63及び発振抑制用抵抗64,65,66が直列に接続されて構成されている。
 ここでは、同調線路61が1波長(=λ)の長さを有している例を説明するが、同調線路61の長さは1波長に限るものではなく、n波長(nは自然数)であればよい。
 1/2波長線路62,63はインピーダンスがZ0osで、線路長が入力端子1から入力された信号の基本波で2分の1波長(=λ/2)の長さである。
 発振抑制用抵抗64は発振を抑制する目的で、同調線路61に装荷されている抵抗値Ro,1の抵抗である。
 発振抑制用抵抗65は発振を抑制する目的で、同調線路61に装荷されている抵抗値Ro,2の抵抗である。
 発振抑制用抵抗66は発振を抑制する目的で、同調線路61に装荷されている抵抗値Ro,1の抵抗である。
 上記実施の形態1では、基本波で1波長(=λ)の長さを有している同調線路13,14を端子間に接続しているものを示したが、同調線路13,14において、低周波領域の発振を起こす可能性がある。
 この実施の形態4では、基本波で1波長(=λ)の長さを有している同調線路を二等分し、2つの1/2波長線路52,53(1/2波長線路62,63)と直列に発振抑制用抵抗54,55,56(発振抑制用抵抗64,65,66)を装荷することで、低周波領域の発振の可能性を低減できるようにしている。
 最初に、図1の同調線路13,14で起こる可能性がある1/2倍波発振について説明する。
 同調線路13,14は、同相モードで励振されると、周波数に依らず、対称性から中心で電圧定在波の腹となる。
 このとき、周波数が基本波の半分(以下、1/2倍波)の波を考えると、同調線路13,14の中心で定在波の腹となるから、同調線路13,14の両端を考えると、1/2倍波では、1/4波長位置が異なるので、腹と節の関係が逆転して節となる。電圧定在波の節は、仮想的な接地点と考えることができるため、分配端子3,5及び合成端子7,9が仮想接地点となる。
 分配端子3,5及び合成端子7,9が仮想接地されると、分配端子3,5及び合成端子7,9で電磁波が強い反射を起こすようになる。分配端子3,5及び合成端子7,9で強い反射が生じると、増幅素子6,8から回路側を見たときの反射係数が大きくなり、最悪の場合、発振してしまう可能性がある。
 次に、発振抑制用抵抗54,55,56(発振抑制用抵抗64,65,66)を装荷することで、1/2倍波発振が起こる可能性が低減される理由について説明する。
 1/2倍波の同相モードにおいて、同調線路51,61の両端が仮想接地点となることは、上記実施の形態1の場合と同様である。
 しかし、この実施の形態4では、同調線路51(同調線路61)の両端に、発振抑制用抵抗54,56(発振抑制用抵抗64,66)を装荷するとともに、1/2波長線路52と1/2波長線路53の間(1/2波長線路62と1/2波長線路63の間)に、発振抑制用抵抗55(発振抑制用抵抗65)を装荷しているため、分配線路2,4と同調線路51の接続点である分配端子3,5が仮想接地点とはならず、また、合成線路10,11と同調線路61の接続点である合成端子7,9が仮想接地点とはならない。
 分配端子3,5では、発振抑制用抵抗54,56が主線路に対して並列に接続されたように動作し、合成端子7,9では、発振抑制用抵抗64,66が主線路に対して並列に接続されたように動作する。
 ここで、図12は1つの増幅素子の周辺の等価回路である。
 1/2倍波同相モードの電磁波は、発振抑制用抵抗54,56の抵抗値Ri,1及び発振抑制用抵抗64,66の抵抗値Ro,1を適切に選べば、発振抑制用抵抗54,56,64,66によって消費される。
 したがって、分配端子3,5及び合成端子7,9で強い反射が生じずに、反射係数が小さくなるため、1/2倍波の同相モードでの発振の可能性が減少する。
 一方、1/2倍波の逆相モードの場合を考えると、発振抑制用抵抗55(発振抑制用抵抗65)の中心点が電圧定在波の節となる。
 したがって、仮想接地点は、発振抑制用抵抗55(発振抑制用抵抗65)の中心となる。このため、発振抑制用抵抗55(発振抑制用抵抗65)の半分の抵抗値Ri,2/2(Ro,2/2)に、1/4波長線路(基本波においては1/2波長線路)が接続されたのち、発振抑制用抵抗54,56(発振抑制用抵抗64,66)が接続された回路とみなすことができる。
 この場合、主線路に対して、下記の式(1)が示す抵抗値Ri,odd,1/2f0,Ro,odd,1/2f0を有する抵抗が並列に接続されたように動作する。この場合、図13に示す等価回路で考えることができる。
Figure JPOXMLDOC01-appb-I000001
 1/2倍波逆相モードの電磁波は、発振抑制用抵抗55,65の抵抗値Ri,2,Ro,2及び1/2波長線路52,53,62,63の特性インピーダンスを適切に選択すれば、
発振抑制用抵抗55,65によって消費される。
 したがって、分配端子3,5及び合成端子7,9で強い反射が生じずに、反射係数が小さくなるため、1/2倍波の逆相モードでの発振の可能性が減少する。
 この実施の形態4では、発振抑制用抵抗54,55,56(発振抑制用抵抗64,65,66)が同調線路51(同調線路61)に装荷されているが、発振抑制用抵抗54,55,56(発振抑制用抵抗64,65,66)が装荷されていることで、上記実施の形態1と少し異なる理由で、増幅素子の歩留まりを高めることができる。
 同調線路51,61における基本波の逆相モードの電圧定在波を考えると、対称性から発振抑制用抵抗55,65の中心点が電圧定在波の節となる。
 このため、発振抑制用抵抗55,65の中心が仮想接地点となり、発振抑制用抵抗55(発振抑制用抵抗65)の半分の抵抗値Ri,2/2(Ro,2/2)に、1/4波長線路(基本波においては1/2波長線路)が接続されたのち、発振抑制用抵抗54,56(発振抑制用抵抗64,66)が接続された回路とみなすことができる。
 したがって、分配線路2,4及び合成線路10,11に対して、下記の式(2)が示す抵抗値Ri,odd,f0,Ro,odd,f0を有する抵抗が並列に接続されたように動作する。
Figure JPOXMLDOC01-appb-I000002
 ここで、図14は基本波逆相モードにおける1つの増幅素子の周辺の等価回路である。
 増幅素子6,8の周辺は、図14に示す等価回路で考えることができるので、基本波の逆相モードの電磁波は、発振抑制用抵抗54,55,56(発振抑制用抵抗64,65,66)の抵抗値Ri,1,Ri,2(Ro,1,Ro,2)を適切に選択すれば、発振抑制用抵抗54,55,56(発振抑制用抵抗64,65,66)によって消費される。
 一方、基本波の同相モードの電圧定在波を考えると、発振抑制用抵抗55(発振抑制用抵抗65)の中心点が電圧定在波の腹となる。したがって、発振抑制用抵抗55(発振抑制用抵抗65)には全く同相モードの電流は流れない。このため、同調線路51,61の中心側の端子は仮想解放点とみなすことができる。
 その仮想解放点から1/2波長線路52,53(1/2波長線路62,63)が接続されているが、1/2波長線路52,53(1/2波長線路62,63)は、定在波の腹と節の関係が二回反転するため、発振抑制用抵抗54,56(発振抑制用抵抗64,66)との接続点は腹となる。
 したがって、1/2波長線路52,53(1/2波長線路62,63)の発振抑制用抵抗54,56(発振抑制用抵抗64,66)との接続点は仮想解放点とみなすことができる。このため、発振抑制用抵抗54,56(発振抑制用抵抗64,66)には電流が流れず、発振抑制用抵抗54,56(発振抑制用抵抗64,66)は接続されていないのと同様とみなすことができる(図15を参照)。
 図15は基本波同相モードにおける1つの増幅素子の周辺の等価回路である。
 以上のことから、増幅素子6と増幅素子8間の不平衡動作の原因である基本波逆相モードの電磁波を吸収する一方、増幅に必要な基本波同相モードの電磁波を吸収しないことが分かる。これによって、不均一動作を解消して、増幅素子6,8が持つ性能を十分に発揮させることができる。
 ここで、図16は図15の高周波電力増幅器の伝送線路の部分を誘電体基板上に金属パターンによって形成し、発振抑制用抵抗を誘電体基板上の薄膜抵抗によって実現した場合の回路パターンを示す模式図である。
 発振抑制用抵抗54,55,56(発振抑制用抵抗64,65,66)については薄膜抵抗のみに限らず、表面実装型等であってもよい。
 図17は1つの増幅素子の製作誤差xに対する出力電力及び電力付加効率の特性を示す説明図である。
 特に、図17(a)は製作誤差xに対する出力電力の変動を表しており、図17(b)は製作誤差xに対する電力付加効率の変動を表している。
 図17において、実線は同調線路51,61が有る場合の特性を示し、破線は同調線路51,61が無い場合の特性を示している。
 同調線路51,61が無い場合、1つの増幅素子の製作誤差xに対して、特性が急峻に変化しているが、同調線路51,61が有る場合、多少の製作誤差xがあっても、特性の低下が小さくなっている。
 これにより、増幅素子の製作誤差xが、ある確率分布を持って発生するとしても、増幅素子の歩留まりを高めることができる。
 また、図18は実施の形態1,4における小信号利得の周波数特性を示す説明図である。
 図18において、横軸は基本波の周波数で規格化した周波数を百分率で表示している。
 基本波(規格化周波数:100%)においては、上記実施の形態1と実施の形態4の結果に大きな差異はないが、1/2倍波(規格化周波数:50%)付近では、大きな差異がある。
 即ち、上記実施の形態1では、利得が急峻に変化して、異常に利得が高くなる点があるのに対して、この実施の形態4では、利得の変化が滑らかであり、異常に利得が高くなる点がない。これは1/2倍波の発振に対して安定化できていることを表している。
 この実施の形態4では、発振抑制用抵抗54,55,56(発振抑制用抵抗64,65,66)が同調線路51(同調線路61)に装荷されているものを示したが、図19に示すように、発振抑制用抵抗54,56(発振抑制用抵抗64,66)については装荷せずに、発振抑制用抵抗55(発振抑制用抵抗65)だけが同調線路51(同調線路61)に装荷されていてもよい。
 この場合でも、基本波の逆相モードが発振する可能性を低減することができる。
 また、この実施の形態4では、発振抑制用抵抗54,55,56(発振抑制用抵抗64,65,66)が同調線路51(同調線路61)に装荷されているものを示したが、図20に示すように、さらに、同調コンデンサ57,58が同調線路51に装荷され、同調コンデンサ67,68が同調線路61に装荷されていてもよい。
実施の形態5.
 図21はこの発明の実施の形態5による高周波電力増幅器を示す構成図であり、図において、図1と同一符号は同一または相当部分を示すので説明を省略する。
 同調線路71は分配端子3と分配端子5の間に接続されており、同調線路71は1/4波長線路72,74と1/2波長線路73の直列回路と、抵抗とバイアスカット用コンデンサが直列に接続されている接地用の回路とから構成されている。
 ここでは、同調線路71が1波長(=λ)の長さを有している例を説明するが、同調線路71の長さは1波長に限るものではなく、n波長(nは自然数)であればよい。
 1/4波長線路72,74はインピーダンスがZ0isで、線路長が入力端子1から入力された信号の基本波で4分の1波長(=λ/4)の長さである。
 1/2波長線路73はインピーダンスがZ0isで、線路長が入力端子1から入力された信号の基本波で2分の1波長(=λ/2)の長さである。
 発振抑制用抵抗75は発振を抑制する目的で接続されている抵抗値Ri,1の抵抗であり、発振抑制用抵抗75の一端は1/4波長線路72と1/2波長線路73の間、即ち、同調線路71の中心から基本波で1/4波長離れている点に接続されている。
 バイアスカット用コンデンサ76はバイアスをカットする目的で接続されているコンデンサである。
 発振抑制用抵抗77は発振を抑制する目的で接続されている抵抗値Ri,1の抵抗であり、発振抑制用抵抗77の一端は1/4波長線路74と1/2波長線路73の間、即ち、同調線路71の中心から基本波で1/4波長離れている点に接続されている。
 バイアスカット用コンデンサ78はバイアスをカットする目的で接続されているコンデンサである。
 同調線路81は合成端子7と合成端子9の間に接続されており、同調線路81は1/4波長線路82,84と1/2波長線路83の直列回路と、抵抗とバイアスカット用コンデンサが直列に接続されている接地用の回路とから構成されている。
 ここでは、同調線路81が1波長(=λ)の長さを有している例を説明するが、同調線路81の長さは1波長に限るものではなく、n波長(nは自然数)であればよい。
 1/4波長線路82,84はインピーダンスがZ0osで、線路長が入力端子1から入力された信号の基本波で4分の1波長(=λ/4)の長さである。
 1/2波長線路83はインピーダンスがZ0osで、線路長が入力端子1から入力された信号の基本波で2分の1波長(=λ/2)の長さである。
 発振抑制用抵抗85は発振を抑制する目的で接続されている抵抗値Ro,1の抵抗であり、発振抑制用抵抗85の一端は1/4波長線路82と1/2波長線路83の間、即ち、同調線路81の中心から基本波で1/4波長離れている点に接続されている。
 バイアスカット用コンデンサ86はバイアスをカットする目的で接続されているコンデンサである。
 発振抑制用抵抗87は発振を抑制する目的で接続されている抵抗値Ro,1の抵抗であり、発振抑制用抵抗87の一端は1/4波長線路84と1/2波長線路83の間、即ち、同調線路81の中心から基本波で1/4波長離れている点に接続されている。
 バイアスカット用コンデンサ88はバイアスをカットする目的で接続されているコンデンサである。
 この実施の形態5における高周波電力増幅器の基本的な動作は、上記実施の形態1と同様であるが、同調線路71(同調線路81)には、発振抑制用抵抗75,77(発振抑制用抵抗85,87)が装荷されているので、上記実施の形態4と同様に、低周波領域の発振の可能性を低減することができる。
 なお、この実施の形態5では、バイアスカット用コンデンサ76,78(バイアスカット用コンデンサ86,88)を介して接地しているが、増幅素子6,8に対して、高周波電力増幅器の外側からバイアスを印加しない場合には、バイアスカット用コンデンサ76,78(バイアスカット用コンデンサ86,88)を実装する必要はない。
 なお、上記説明では、説明の簡単化のため、主に、2合成増幅器を例に説明したが、本発明はこれに限られるものではなく、他の合成数の場合でも適用することができる。
 また、構成図において、同調線路が分配線路に接続されている形態を記載しているが、本発明はこれに限られるものではなく、同調線路と分配線路を分離しておき、必要に応じてワイヤ又はリボン等で接続する構成でもよい。
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 この発明に係る高周波電力増幅器は、分配線路における第1及び第2の分配端子間、合成線路における第1及び第2の合成端子間のうち、少なくとも一方の端子間に同調線路を接続するようにしたので、2つの増幅素子の特性差に伴って発生する不均一な電圧分布を解消することができ、VHF帯、UHF帯、マイクロ波帯、およびミリ波帯で使用するのに好適なものである。
 1 入力端子、2 分配線路、3 分配端子(第1の分配端子)、4 分配線路、5 分配端子(第2の分配端子)、6 増幅素子(第1の増幅素子)、7 合成端子(第1の合成端子)、8 増幅素子(第2の増幅素子)、9 合成端子(第2の合成端子)、10 合成線路、11 合成線路、12 出力端子、13 同調線路、14 同調線路、21 分配器用誘電体基板、22 合成器用誘電体基板、23,24,25,26 金属ワイヤ、31 同調線路、32 1/2波長未満線路、33,34 同調コンデンサ、35 同調線路、36 1/2波長未満線路、37,38 同調コンデンサ、41 同調線路、42 同調コイル、43 同調コンデンサ、44 同調線路、45 同調コイル、46 同調コンデンサ、51 同調線路、52,53 1/2波長線路、54,55,56 発振抑制用抵抗、57,58 同調コンデンサ、61 同調線路、62,63 1/2波長線路、64,65,66 発振抑制用抵抗、67,68 同調コンデンサ、71 同調線路、72,74 1/4波長線路、73 1/2波長線路、75,77 発振抑制用抵抗、76 バイアスカット用コンデンサ、81 同調線路、82,84 1/4波長線路、83 1/2波長線路、85,87 発振抑制用抵抗、86 バイアスカット用コンデンサ。

Claims (5)

  1.  入力端子から入力された信号を2つに分配して、第1の分配端子から一方の分配信号を出力するとともに、第2の分配端子から他方の分配信号を出力する分配線路と、
     前記分配線路の第1の分配端子から出力された分配信号を増幅する第1の増幅素子と、
     前記分配線路の第2の分配端子から出力された分配信号を増幅する第2の増幅素子と、
     前記第1の増幅素子により増幅された分配信号と前記第2の増幅素子により増幅された分配信号とを合成し、2つの分配信号の合成信号を出力端子に出力する合成線路と、
     前記分配線路における第1及び第2の分配端子間、前記第1及び第2の増幅素子により増幅された分配信号を入力する前記合成線路における第1及び第2の合成端子間のうち、少なくとも一方の端子間に接続され、当該端子間に生じている不均一な電圧分布を解消する同調線路と
     を備えた高周波電力増幅器。
  2.  前記同調線路は、前記入力端子から入力された信号の基本波でn波長(nは自然数)の長さを有する線路で構成されていることを特徴とする請求項1記載の高周波電力増幅器。
  3.  前記同調線路は、前記入力端子から入力された信号の基本波で2分の1波長より短い長さを有する線路と、コンデンサとが直列に接続されている直列回路で構成されていることを特徴とする請求項1記載の高周波電力増幅器。
  4.  前記同調線路は、コイルとコンデンサが直列に接続されている直列回路で構成されており、前記コイルと前記コンデンサが動作周波数で共振することを特徴とする請求項1記載の高周波電力増幅器。
  5.  前記同調線路には、抵抗が装荷されていることを特徴とする請求項1記載の高周波電力増幅器。
PCT/JP2014/060191 2013-08-29 2014-04-08 高周波電力増幅器 WO2015029486A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015534018A JP6095787B2 (ja) 2013-08-29 2014-04-08 高周波電力増幅器
CA2920594A CA2920594C (en) 2013-08-29 2014-04-08 High-frequency power amplifier
US14/912,982 US9602068B2 (en) 2013-08-29 2014-04-08 High-frequency power amplifier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013177981 2013-08-29
JP2013-177981 2013-08-29

Publications (1)

Publication Number Publication Date
WO2015029486A1 true WO2015029486A1 (ja) 2015-03-05

Family

ID=52586069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060191 WO2015029486A1 (ja) 2013-08-29 2014-04-08 高周波電力増幅器

Country Status (4)

Country Link
US (1) US9602068B2 (ja)
JP (1) JP6095787B2 (ja)
CA (1) CA2920594C (ja)
WO (1) WO2015029486A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10644665B2 (en) 2017-12-28 2020-05-05 Fujitsu Limited Amplifier with amplification stages connected in parallel

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10938358B2 (en) * 2018-10-31 2021-03-02 Kabushiki Kaisha Toshiba Digital power amplifier
KR102229589B1 (ko) * 2019-01-15 2021-03-18 주식회사 파워캅 딘레일에 탈부착이 용이한 고정장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09321509A (ja) * 1996-03-26 1997-12-12 Matsushita Electric Ind Co Ltd 分配器/合成器
JPH11103205A (ja) * 1997-09-29 1999-04-13 Mitsubishi Electric Corp 半導体装置
JP2001257546A (ja) * 2001-02-21 2001-09-21 Matsushita Electric Ind Co Ltd 高周波電力増幅器
JP2003110381A (ja) * 2001-09-26 2003-04-11 Mitsubishi Electric Corp 半導体装置
JP2006270774A (ja) * 2005-03-25 2006-10-05 Mitsubishi Electric Corp 電力増幅器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3963993A (en) * 1975-01-31 1976-06-15 The Bendix Corporation Power amplifier using a plurality of parallel connected amplifier elements and having burn-out protection
US4893093A (en) * 1989-02-02 1990-01-09 United Technologies Incorporated Switched power splitter
US5282072A (en) * 1991-11-19 1994-01-25 Harmonic Lightwaves, Inc. Shunt-expansive predistortion linearizers for optical analog transmitters
JPH06334054A (ja) 1993-05-19 1994-12-02 Mitsubishi Electric Corp マイクロ波半導体回路装置
JP3290533B2 (ja) 1994-03-17 2002-06-10 富士通株式会社 電力増幅器
JP3214245B2 (ja) 1994-07-15 2001-10-02 三菱電機株式会社 マイクロ波半導体増幅器
US6005442A (en) 1996-03-26 1999-12-21 Matsushita Electric Industrial Co., Ltd. Divider/combiner
DE602005023895D1 (de) * 2004-10-29 2010-11-11 Nortel Networks Ltd Bandzurückweisungsfilter
US8031003B2 (en) * 2006-05-17 2011-10-04 Dishop Steven M Solid-state RF power amplifier for radio transmitters
CN102257726B (zh) * 2008-10-17 2015-08-26 特里奎恩特半导体公司 用于宽带放大器线性化的装置和方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09321509A (ja) * 1996-03-26 1997-12-12 Matsushita Electric Ind Co Ltd 分配器/合成器
JPH11103205A (ja) * 1997-09-29 1999-04-13 Mitsubishi Electric Corp 半導体装置
JP2001257546A (ja) * 2001-02-21 2001-09-21 Matsushita Electric Ind Co Ltd 高周波電力増幅器
JP2003110381A (ja) * 2001-09-26 2003-04-11 Mitsubishi Electric Corp 半導体装置
JP2006270774A (ja) * 2005-03-25 2006-10-05 Mitsubishi Electric Corp 電力増幅器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10644665B2 (en) 2017-12-28 2020-05-05 Fujitsu Limited Amplifier with amplification stages connected in parallel

Also Published As

Publication number Publication date
CA2920594C (en) 2017-09-05
JP6095787B2 (ja) 2017-03-15
US20160211815A1 (en) 2016-07-21
CA2920594A1 (en) 2015-03-05
JPWO2015029486A1 (ja) 2017-03-02
US9602068B2 (en) 2017-03-21

Similar Documents

Publication Publication Date Title
JPH08148949A (ja) 高周波増幅器
US8305283B2 (en) Coplanar differential bi-strip delay line, higher-order differential filter and filtering antenna furnished with such a line
JP2010087934A (ja) 整合回路、高周波電力増幅器および携帯電話機
US6798305B2 (en) High frequency oscillator using transmission line resonator
JPH11136045A (ja) マイクロ波増幅器
JP6095787B2 (ja) 高周波電力増幅器
JP6098195B2 (ja) 増幅器
JP2007049689A (ja) フィードフォワード増幅器
JP6112500B2 (ja) マイクロ波増幅器
US20230144500A1 (en) High frequency heterodyne mixer
JP5402887B2 (ja) 高周波増幅器
JP5496074B2 (ja) 高周波増幅器及び整合回路
CN111819788B (zh) 放大器
JP6678827B2 (ja) 高周波増幅器
JP6409664B2 (ja) 高周波共振器及び高周波発振器
US20220255210A1 (en) Wilkinson power divider, wilkinson power combiner, and amplifier
JP2012205246A (ja) 高調波処理回路、高周波増幅器及び高周波発振器
JP7418662B2 (ja) ドハティ増幅器
JP5419812B2 (ja) 高周波多段能動回路
JP2018142827A (ja) 半導体装置および電子機器
WO2017199429A1 (ja) 電力増幅器
WO2019208675A1 (ja) 発振装置、及び発振周波数の調整方法
JP2013118428A (ja) マイクロストリップ伝送線路および高周波増幅器
JP6452315B2 (ja) 増幅器
JPH04352503A (ja) マイクロストリップアンテナ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14840704

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015534018

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2920594

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14912982

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14840704

Country of ref document: EP

Kind code of ref document: A1