WO2015029426A1 - 鋼矢板 - Google Patents

鋼矢板 Download PDF

Info

Publication number
WO2015029426A1
WO2015029426A1 PCT/JP2014/004386 JP2014004386W WO2015029426A1 WO 2015029426 A1 WO2015029426 A1 WO 2015029426A1 JP 2014004386 W JP2014004386 W JP 2014004386W WO 2015029426 A1 WO2015029426 A1 WO 2015029426A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
sheet pile
pattern
reducing material
friction
Prior art date
Application number
PCT/JP2014/004386
Other languages
English (en)
French (fr)
Inventor
恩田 邦彦
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201480047947.6A priority Critical patent/CN105492695B/zh
Priority to JP2015501259A priority patent/JP6086147B2/ja
Priority to MYPI2016700590A priority patent/MY185705A/en
Priority to SG11201510752TA priority patent/SG11201510752TA/en
Publication of WO2015029426A1 publication Critical patent/WO2015029426A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/02Sheet piles or sheet pile bulkheads
    • E02D5/03Prefabricated parts, e.g. composite sheet piles
    • E02D5/04Prefabricated parts, e.g. composite sheet piles made of steel

Definitions

  • the present invention relates to a steel sheet pile having a U-shaped or hat-shaped cross section (U-shaped steel sheet-pile-or-hat-shaped steel sheet-pile).
  • the cross-sectional shape is asymmetric with respect to the normal line of the steel sheet pile wall, so when driving into the ground (warp) ) (See FIG. 18), rotation (torsion), and the like may occur.
  • the above-mentioned tendency becomes prominent when the length of the steel sheet pile is increased.
  • the ground resistance (penetration resistance) at the time of steel sheet pile driving and the contact resistance between adjacent steel sheet pile joints (joint) increase, making it difficult to drive. Arise.
  • a driveable length or the like is set according to the cross-sectional shape (size) of the steel sheet pile (see Non-Patent Document 1).
  • the U-shaped steel sheet pile II W type has a driveable length of 10 m
  • the U-shaped steel sheet pile VI L type has a driveable length of 30 m.
  • the present invention was made in order to solve the above-described problems, and without adversely affecting the surrounding ground, by improving the straightness of the steel sheet pile at the time of placement,
  • the purpose is to obtain a steel sheet pile that can prevent bending and falling, and enables construction having a longer driving length than the conventional construction method.
  • FIG. 30A, FIG. 30B, and FIG. 31 are explanatory views for explaining a state when a steel sheet pile having a U-shaped cross section is placed.
  • a web and a flange are formed at the lower end portion of the steel sheet pile 11. It is conceivable that the bottom of the steel sheet pile is closed due to clogging of the soil 13 inside the corner formed by, thereby increasing the frictional resistance of the part.
  • the steel sheet pile 11 When the frictional resistance of the inner peripheral surface of the steel sheet pile 11 is larger than the frictional resistance of the outer peripheral surface, the steel sheet pile bends in the direction of the outer side of the steel sheet pile having a smaller resistance, and the straightness is impaired.
  • the subsequent steel sheet pile After placing the preceding steel sheet pile, the subsequent steel sheet pile is fitted to the preceding steel sheet pile with a joint. Therefore, when the leading steel sheet pile is placed in a bent state, the resistance of the joint fitting portion (joints fitting portion) of the subsequent steel sheet pile increases, and the construction becomes difficult.
  • the main factor that hinders the straightness of the steel sheet pile is that the soil is blocked inside the lower end of the steel sheet pile, so that straightness can be ensured by preventing this blockage.
  • As a method of preventing blockage of the steel sheet pile lower end inside by reducing the friction of the steel sheet pile surface at the steel sheet pile lower end, preventing clogging of the soil inside the corner portion on the inner peripheral surface of the steel sheet pile, It is possible to suppress blockage inside the lower end. This can prevent clogging inside the bottom end of the steel sheet pile, and also balance the frictional resistance on the inner and outer circumferential surfaces of the steel sheet pile, increasing the straightness of the steel sheet pile, and bending during construction. Can prevent falls.
  • the present invention has been made based on such knowledge, and specifically comprises the following configuration.
  • the steel sheet pile according to the present invention is a steel sheet pile having a U-shaped or hat-shaped cross section, Friction reduction treatment was applied to at least the inner peripheral surface of the steel sheet pile surface over the length of the steel sheet pile cross section width and 1/3 or less of the steel sheet pile overall length from the bottom position of the steel sheet pile when placing in the ground. Is.
  • FIG. 1A is an explanatory diagram of a U-shaped steel sheet pile according to an embodiment of the present invention.
  • FIG. 1B is an explanatory diagram of a U-shaped steel sheet pile according to an embodiment of the present invention.
  • Drawing 2 is an explanatory view of one mode of friction reduction processing of U-shaped steel sheet pile concerning one embodiment of the present invention (the 1).
  • Drawing 3 is an explanatory view of other modes of friction reduction processing of a U-shaped steel sheet pile concerning an embodiment of the present invention (the 2).
  • Drawing 4 is an explanatory view of other modes of friction reduction processing of U-shaped steel sheet pile concerning an embodiment of the present invention (the 3).
  • FIG. 1A is an explanatory diagram of a U-shaped steel sheet pile according to an embodiment of the present invention.
  • FIG. 1B is an explanatory diagram of a U-shaped steel sheet pile according to an embodiment of the present invention.
  • Drawing 2 is an explanatory view of one mode of friction reduction processing of U-shaped steel sheet pile concerning one embodiment of the
  • FIG. 5 is explanatory drawing of the other aspect of the friction reduction process of the U-shaped steel sheet pile which concerns on one embodiment of this invention (the 4).
  • Drawing 6 is an explanatory view of the other mode of friction reduction processing of the U-shaped steel sheet pile concerning one embodiment of the present invention (the 5).
  • FIG. 7 is explanatory drawing of the other aspect of the friction reduction process of the U-shaped steel sheet pile which concerns on one embodiment of this invention (the 6).
  • Drawing 8 is an explanatory view of the other mode of friction reduction processing of the U-shaped steel sheet pile concerning one embodiment of the present invention (the 7).
  • FIG. 9 is an explanatory diagram of a hat-shaped steel sheet pile according to an embodiment of the present invention.
  • Drawing 10 is an explanatory view of one mode of friction reduction processing of a hat-shaped steel sheet pile concerning an embodiment of the present invention (the 1).
  • FIG. 11 is explanatory drawing of the other aspect of the friction reduction process of the hat-shaped steel sheet pile which concerns on one embodiment of this invention (the 2).
  • Drawing 12 is an explanatory view of other modes of friction reduction processing of a hat-shaped steel sheet pile concerning an embodiment of the present invention (the 3).
  • FIG. 13 is explanatory drawing of the other aspect of the friction reduction process of the hat-shaped steel sheet pile which concerns on one embodiment of this invention (the 4).
  • Drawing 14 is an explanatory view of other modes of friction reduction processing of a hat-shaped steel sheet pile concerning an embodiment of the present invention (the 5).
  • FIG. 11 is explanatory drawing of the other aspect of the friction reduction process of the hat-shaped steel sheet pile which concerns on one embodiment of this invention (the 2).
  • Drawing 12 is an explanatory view of other modes of friction reduction processing of a hat
  • FIG. 15 is explanatory drawing of the other aspect of the friction reduction process of the hat-shaped steel sheet pile which concerns on one embodiment of this invention (the 6).
  • FIG. 16 is explanatory drawing of the other aspect of the friction reduction process of the hat-shaped steel sheet pile which concerns on one embodiment of this invention (the 7).
  • FIG. 17A is an explanatory diagram of an experimental condition according to Example 1 of the present invention, and is an explanatory diagram of an aspect of a friction reduction process for a U-shaped steel sheet pile.
  • FIG. 17B is an explanatory diagram of an experimental condition according to Example 1 of the present invention, and is an explanatory diagram of an aspect of a friction reduction process for a U-shaped steel sheet pile.
  • FIG. 17A is an explanatory diagram of an experimental condition according to Example 1 of the present invention, and is an explanatory diagram of an aspect of a friction reduction process for a U-shaped steel sheet pile.
  • FIG. 17B is an explanatory diagram of an experimental condition according to Example 1 of the present
  • FIG. 17C is an explanatory diagram of an experimental condition according to Example 1 of the present invention, and is an explanatory diagram of an aspect of a friction reduction process of a U-shaped steel sheet pile.
  • FIG. 17D is an explanatory diagram of an experimental condition according to Example 1 of the present invention, and is an explanatory diagram of an aspect of friction reduction processing of a U-shaped steel sheet pile.
  • FIG. 17E is an explanatory diagram of an experimental condition according to Example 1 of the present invention, and is an explanatory diagram of an aspect of a friction reduction process of a U-shaped steel sheet pile.
  • FIG. 18 is an explanatory diagram of an experimental result evaluation method according to Example 1 of the present invention.
  • FIG. 19 is a graph based on experimental results according to Example 1 of the present invention (part 1).
  • FIG. 20 is a graph based on experimental results according to Example 1 of the present invention (part 2).
  • FIG. 21 is a graph based on experimental results according to Example 1 of the present invention (part 3).
  • FIG. 22 is a graph based on experimental results according to Example 1 of the invention (part 4).
  • FIG. 23 is a graph based on experimental results according to Example 1 of the present invention (part 5).
  • FIG. 24A is an explanatory diagram of an experimental condition according to Example 2 of the present invention, and is an explanatory diagram of an aspect of a friction reduction process for a hat-shaped steel sheet pile.
  • FIG. 24B is an explanatory diagram of an experimental condition according to Example 2 of the present invention, and is an explanatory diagram of an aspect of a friction reduction process for a hat-shaped steel sheet pile.
  • FIG. 24C is an explanatory diagram of an experimental condition according to Example 2 of the present invention, and is an explanatory diagram of an aspect of a friction reduction process for a hat-shaped steel sheet pile.
  • FIG. 24D is an explanatory diagram of an experimental condition according to Example 2 of the present invention, and is an explanatory diagram of an aspect of a friction reduction process for a hat-shaped steel sheet pile.
  • FIG. 24B is an explanatory diagram of an experimental condition according to Example 2 of the present invention, and is an explanatory diagram of an aspect of a friction reduction process for a hat-shaped steel sheet pile.
  • FIG. 24C is an explanatory diagram of an experimental condition according to Example 2 of the present invention, and is an explanatory diagram of an aspect of a friction reduction process for a hat-shaped
  • FIG. 24E is an explanatory diagram of an experimental condition according to Example 2 of the present invention, and is an explanatory diagram of an aspect of a friction reduction process for a hat-shaped steel sheet pile.
  • FIG. 25 is a graph based on experimental results according to Example 2 of the present invention (part 1).
  • FIG. 26 is a graph based on experimental results according to Example 2 of the present invention (part 2).
  • FIG. 27 is a graph based on experimental results according to Example 2 of the present invention (part 3).
  • FIG. 28 is a graph based on experimental results according to Example 2 of the present invention (part 4).
  • FIG. 29 is a graph based on experimental results according to Example 2 of the present invention (part 5).
  • FIG. 30A is an explanatory diagram illustrating a problem to be solved by the present invention (part 1).
  • FIG. 30B is an explanatory diagram illustrating the problem to be solved by the present invention (part 2).
  • FIG. 31 is an explanatory diagram for explaining the problem to be solved by the present invention (part 3).
  • FIG. 32 is a graph for evaluating the difference in friction reduction effect due to the influence of the steel sheet pile length.
  • the U-shaped steel sheet pile 1 extends from the steel sheet pile lower end position in the case of placing in the ground to a steel sheet pile cross-sectional width and 1/3 of the steel sheet pile overall length. Friction reduction processing is performed on at least the inner peripheral surface side of the sheet pile surface.
  • the U-shaped steel sheet pile 1 according to the present embodiment will be described in detail.
  • the U-shaped steel sheet pile 1 has a substantially U-shaped cross section, and includes a web portion 1a and flange portions 1b provided on both sides of the web portion 1a. And a joint portion 1c provided at the tip of the flange portion 1b.
  • the U-shaped steel sheet pile 1 has a steel sheet pile length L and a steel sheet pile cross-sectional width B.
  • the lower end of the U-shaped steel sheet pile 1 has a friction reducing material 3 that has been subjected to a friction reducing process.
  • the aspect of this friction reduction process is as follows.
  • Friction reduction treatment is performed by applying conventional friction reduction materials such as resin materials, asphalt materials, paints, etc., or by applying chemical treatment to the surface of steel sheet piles and adjusting the chemical composition of steel sheet piles. Or a method such as attaching a plate-like member capable of reducing friction to the surface of a steel sheet pile.
  • coating a friction reducing material it is necessary for a coating film to be a hard thing which does not peel off by the placement of a steel sheet pile.
  • the length of the section subjected to the friction reduction treatment is not less than the steel sheet pile cross-sectional width B and not more than 1/3 of the steel sheet pile overall length L from the lower position of the steel sheet pile when placing in the ground. It is preferable to do this.
  • the total length of the plurality of sheets is defined as a steel sheet pile total length L. The reason for this is that, as will be demonstrated in the examples described later, even if the friction reduction treatment is performed exceeding 1/3 of the total length L of the steel sheet pile, the effect of improving straightness is small and the cost increases.
  • the length to be subjected to the friction reduction treatment is less than the steel sheet pile cross-sectional width B, the effect of ensuring the straightness that is the object of the present invention cannot be sufficiently obtained.
  • the construction of the friction reducing material 3 includes the one for applying the friction reducing material and the one for attaching the friction reducing member among the above-described aspects of the friction reducing process.
  • the construction preparation time in the field can be shortened by performing construction of the friction reducing material 3 in advance at a factory or the like.
  • the friction reducing material 3 extends from the lower end position of the steel sheet pile 1 to the steel sheet pile cross section width B or more and 1/3 of the steel sheet pile overall length L at least on the inner peripheral surface side of the steel sheet pile surface.
  • a steel sheet pile of 30m or more may be placed to prevent the effect of subsidence on the dike reinforcement or surrounding structures, but it can be transported by vehicle.
  • the length of steel sheet piles is usually about 15m, and multiple steel sheet piles will be joined longitudinally by welding at the construction site.
  • the friction reducing material 3 is applied to the entire surface of the U-shaped steel sheet pile 1 (see FIG. 2), but the friction reducing material 3 is at least the inner periphery of the surface of the U-shaped steel sheet pile 1. It may be applied to the surface side, and may be applied only to the inner peripheral surface side of the U-shaped steel sheet pile 1 as shown in FIG. In this case, it is possible to reduce the cost by reducing the coating amount of the friction reducing material 3 and the like, and at the same time, it is possible to obtain the effect of reducing the penetration resistance according to the structure of FIG.
  • the surface of the fixed part from the lower end of the steel sheet pile is more than the case where the friction reducing material 3 is applied to the entire surface of the fixed part from the lower end of the steel sheet pile.
  • the friction reducing material 3 is applied only to the inner peripheral surface side of the steel sheet, the friction resistance on the inner peripheral surface and the outer peripheral surface of the steel sheet pile is balanced, the straightness of the steel sheet pile is further increased, and bending during construction is suppressed. The effect can also be expected. This point is demonstrated in the examples described later.
  • FIG. 4 is a modification of FIG. 3 in which the construction of the friction reducing material 3 on the inner peripheral surface of the joint 1c is omitted. This is because the frictional resistance of the inner peripheral surface of the joint portion 1c is considered to have a small contribution to the soil restraining effect (effect of constraining soil).
  • the friction reducing material 3 is applied only to the corner portion 1 d on the inner peripheral surface side of the U-shaped steel sheet pile 1.
  • the corner portion 1d is a portion where an obtuse angle is formed by the web portion 1a and the flange portion 1b. Which part of the corner 1d on one side is to be subjected to the friction reduction material 3 may be determined from the viewpoint of improvement effect and economy.
  • the web portion 1a is 1/5 or more and 1/3 or less of the entire length of the web portion 1a
  • the flange portion 1b is 1/3 or more and 2/3 or less of the entire length of the flange portion 1b. Is preferred.
  • the application of the friction reducing material 3 to the portion has a high effect of suppressing the bending during the placement and reducing the penetration resistance. . That is, in the example shown in FIG. 5, the construction amount of the friction reducing material 3 can be further reduced as compared with the case of FIG. 4, and the cost can be further reduced. It can be expected to suppress bending during the construction of steel sheet piles and reduce penetration resistance.
  • the friction reducing material 3 is applied to the central portion on the inner peripheral surface side of the web portion 1 a of the U-shaped steel sheet pile 1 in addition to the corner portion 1 d shown in FIG. 5. Since it is considered that the frictional resistance in the central portion of the inner peripheral surface of the web part 1a also contributes to the soil restraining effect, it is considered that the friction reducing material 3 is applied to the part in order to suppress the bending during the steel sheet pile construction and the penetration resistance. It is effective for reduction.
  • the example shown in FIG. 7 is an example in which the friction reducing material 3 is applied only to the inner peripheral surface of the web portion 1a of the U-shaped steel sheet pile 1.
  • the friction reducing material 3 By applying the friction reducing material 3 on the inner peripheral surface of the web portion 1a of the U-shaped steel sheet pile 1, friction is reduced on one side (web portion 1a side) of the corner portion 1d, and the soil is restrained at the corner portion 1d. The effect which can prevent that this occurs can be expected.
  • the U-shaped steel sheet pile 1 has been described as an example of the steel sheet pile of the present invention, the same applies to the hat-shaped steel sheet pile 5.
  • the cross-sectional shape of the hat-shaped steel sheet pile 5 includes a web portion 5a, flange portions 5b provided on both sides of the web portion 5a, and an arm portion 5c bent from the flange portion 5b and extending in the width direction. And a joint portion 5d provided at the tip of the arm portion 5c.
  • FIG. 10 shows the friction reducing material 3 applied to the entire surface of the hat-shaped steel sheet pile 5.
  • FIG. 11 shows the friction reducing material 3 applied to the entire inner peripheral surface side of the surface of the hat-shaped steel sheet pile 5.
  • FIG. 12 omits the construction of the friction reducing material 3 on the arm portion 5 c of the inner peripheral surface of the surface of the hat-shaped steel sheet pile 5. This is because the frictional resistance in the arm portion 5c is considered to contribute little to the soil restraining effect.
  • FIG. 13 shows a case where only the corner portion 5e on the inner peripheral surface of the hat-shaped steel sheet pile 5 is subjected to a low friction treatment, similarly to the U-shaped steel sheet pile 1 (see FIG. 5).
  • the amount of the friction reducing material 3 can be reduced, and bending suppression and penetration resistance during construction according to the structure of FIGS. 10 and 11 can be reduced. A reduction effect is obtained.
  • FIG. 14 shows that the friction reducing material 3 is applied to the central portion of the inner peripheral surface of the web portion 5a of the hat-shaped steel sheet pile 5 in addition to the corner portion 5e as in the case of the U-shaped steel sheet pile 1 of FIG. It is.
  • FIG. 15 is an example in which the friction reducing material 3 is applied only to the inner peripheral surface of the web portion 5 a of the hat-shaped steel sheet pile 5 as in the case of FIG. 7 of the U-shaped steel sheet pile 1.
  • FIG. 14 shows that the friction reducing material 3 is applied to the central portion of the inner peripheral surface of the web portion 5a of the hat-shaped steel sheet pile 5 in addition to the corner portion 5e as in the case of the U-shaped steel sheet pile 1 of FIG.
  • FIG. 15 is an example in which the friction reducing material 3 is applied only to the inner
  • 16 is an example in which the friction reducing material 3 is applied only to the inner peripheral surface of the flange portion 5b, as in the case of the U-shaped steel sheet pile 1 in FIG. Also in this case, as in the example shown in FIG. 15, it is possible to expect an effect that can prevent the soil from being restrained at the corner 5e.
  • a model experiment (1/10 of the actual scale) on the U-shaped steel sheet pile 1 was performed, and the results will be described below.
  • the experiment was performed by simulating actual construction. Homogeneous sand ground with a depth of 1.5m (15m in real scale) is created in a soil box, and a steel sheet pile model with different friction reduction conditions is hydraulically converted into a full length, sand ground.
  • the experimental results were obtained with the penetration of the penetration resistance ratio (ratio of penetration resistance) and the warp of the steel sheet pile as evaluation items.
  • the experiment was performed by changing the friction reduction material construction pattern and the construction section length (friction reduction treatment section length S) of the friction reduction material 3 from the lower end of the steel sheet pile. In the experiment, the entire length of the steel sheet pile was set as the driving length.
  • the friction reducing material construction pattern will be described with reference to FIGS. 17A to 17E.
  • Each dimension in FIGS. 17A to 17E is expressed in terms of actual scale.
  • the plate thickness was 20 mm on an actual scale.
  • the friction reducing material construction pattern is a pattern N (see FIG. 17A) in which the friction reducing material 3 is not applied, and a pattern A in which the friction reducing material 3 is applied to the entire surface of the friction reduction processing section length S from the lower end of the U-shaped steel sheet pile 1 17B), pattern B (see FIG.
  • the penetration resistance ratio at the time of placing and the bending of the steel sheet pile which are evaluation items, will be described.
  • the warp (rad) of the steel sheet pile is ⁇ / L when the horizontal displacement of the steel sheet pile head and the lower end of the steel sheet pile is defined as the bending amount ⁇ , and has a small value. It means that the bending of the steel sheet pile is small and suitable.
  • Table 1 shows a summary of the experimental conditions and experimental results.
  • steel sheet pile cross-section width B, steel sheet pile length L, and friction reduction treatment section length S represent values converted into actual scales (values obtained by multiplying the actual steel sheet pile model size by 10).
  • Various graphs were created based on the experimental results (evaluation items) shown in Table 1, and evaluation was performed based on the respective graphs. The results will be described below.
  • FIG. 19 is a graph for evaluating the difference for each friction reduction processing section length S, where the horizontal axis indicates the friction reduction processing section length S (m) and the vertical axis indicates the bending (rad) of the steel sheet pile. Yes.
  • the friction reducing material construction patterns are those of pattern N (Comparative Example 1) and those of Pattern A (Comparative Examples 2 to 4 and Invention Examples 1 to Invention Examples).
  • the experimental results for 3) are plotted.
  • the friction reduction processing section length S increases, the bending of the steel sheet pile generally tends to decrease.
  • the degree of decrease in the bending of the steel sheet pile is slight, and considering the construction cost of the friction reducing material 3, it is described in the above embodiment.
  • the friction reduction processing section length S is 1/3 ⁇ L or less.
  • FIG. 20 is a graph for comparing the bending of the steel sheet pile for each friction reducing material construction pattern.
  • the pattern N in which the friction reducing material 3 is not applied and the case in which the friction reducing material 3 is applied (pattern A to pattern D).
  • the experiment result for pattern A uses the friction reduction processing section length S of 0.12m which is the same as pattern B to pattern D (Example 2 of the present invention).
  • the vertical axis represents the bending (rad) of the steel sheet pile.
  • the bending of the steel sheet pile is reduced in the patterns A to D where the friction reducing material 3 is applied, and the magnitude of the effect (
  • the bending reduction effect of the steel sheet pile was in the order of pattern B ⁇ pattern A ⁇ pattern C ⁇ pattern D in the descending order, and pattern B was the most effective.
  • Pattern B was more effective in suppressing the bending of the steel sheet pile than pattern A because the frictional resistance on the inner and outer peripheral surfaces of the steel sheet pile was balanced, and the straightness of the steel sheet pile was further increased. It is assumed that this is because bending was suppressed.
  • the outer peripheral surface of the steel sheet pile has a smaller frictional resistance than the inner peripheral surface, so that the inner periphery of the steel sheet pile can be obtained by applying the friction reducing material 3 only to the inner peripheral surface. It is considered that the frictional resistance on the surface and the outer peripheral surface is balanced.
  • FIG. 21 is a graph for comparing the penetration resistance ratio for each friction reducing material construction pattern. Similar to FIG. 20, the pattern N in which the friction reducing material 3 is not constructed and the case in which the friction reducing material 3 is constructed. (Pattern A to Pattern D) are compared. The experimental result for Pattern A was that of Example 2 of the present invention. As shown in FIG. 21, the penetration resistance ratio is reduced in patterns A to D in which the friction reducing material 3 is applied compared to the pattern N in which the friction reducing material 3 is not applied. The resistance ratio reduction effect was in the order of pattern A ⁇ pattern B ⁇ pattern C ⁇ pattern D in descending order.
  • FIG. 22 is a graph showing the relationship between the perimeter of the friction reducing material 3 applied and the bending of the steel sheet pile in the case where the friction reducing material 3 is applied (patterns A to D).
  • each plot of pattern A and pattern D is located above a straight line P 1 that passes through a plot of pattern B and a plot of pattern C.
  • P 1 that passes through a plot of pattern B and a plot of pattern C.
  • FIG. 23 is a graph showing the relationship between the construction peripheral length of the friction reducing material 3 and the penetration resistance ratio in cases (pattern A to pattern D) in which the friction reducing material 3 is applied.
  • Pattern A, Pattern B, and penetration resistance ratio is reduced substantially linearly (see linear P 2 in FIG. 23) in accordance with the construction perimeter of the pattern C in the friction reducing material 3 becomes longer, the plot pattern D Is located above a straight line P 2 connecting the patterns A, B, and C.
  • the friction reducing material construction pattern has the shapes of pattern A, pattern B, and pattern C.
  • Example 2 In order to verify the effect of the present invention on the hat-shaped steel sheet pile 5, a model experiment similar to that in Example 1 was performed, and the result will be described.
  • the parameters of the experiment are the friction reducing material construction pattern and the friction reduction processing section length S. In the experiment, the entire length of the steel sheet pile was set as the driving length.
  • the friction reducing material construction patterns are shown in FIGS. 24A to 24E. Each dimension in FIGS. 24A to 24E is expressed in actual scale. The plate thickness was 20 mm on an actual scale.
  • the friction reducing material construction pattern is the same as that of the U-shaped steel sheet pile 1 of Example 1. As shown in FIGS. 24A to 24E, the pattern N (see FIG. 24A) in which the friction reducing material 3 is not constructed, the hat-shaped steel sheet pile Pattern A (see FIG.
  • FIG. 25 corresponds to FIG. 19 of the first embodiment, and illustrates the relationship between the friction reduction processing section length S and the bending of the steel sheet pile.
  • FIG. 26 corresponds to FIG. 20 of Example 1 and illustrates the relationship of the bending of the steel sheet pile for each friction reducing material construction pattern.
  • Pattern N in which the friction reducing material 3 is not constructed and friction reduction Cases with pattern 3 applied (Pattern A to Pattern D) are compared.
  • the experimental result in Pattern A was that of Example 9 of the present invention.
  • the bending of the steel sheet pile is reduced in the case where the friction reducing material 3 is applied (Pattern A to Pattern D).
  • the steel sheet pile bending reduction effect was in the order of pattern B ⁇ pattern A ⁇ pattern C ⁇ pattern D in descending order.
  • Pattern B was the most effective in suppressing the bending of steel sheet piles. Therefore, even in the case of the hat-shaped steel sheet pile 5, it is most preferable to construct the friction reducing material 3 with the pattern B from the viewpoint of straight running workability like the U-shaped steel sheet pile 1.
  • FIG. 27 corresponds to FIG. 21 of Example 1, and shows the penetration resistance ratio for each friction reducing material construction pattern. As shown in FIG. 27, the penetration resistance ratio is reduced in the case where the friction reducing material 3 is applied (patterns A to D) compared to the pattern N where the friction reducing material 3 is not applied, and the magnitude of the effect (penetration) The resistance ratio reduction effect was in the order of pattern A ⁇ pattern B ⁇ pattern C ⁇ pattern D in descending order.
  • FIG. 28 corresponds to FIG. 22 of Example 1 and shows the relationship between the construction circumference of the friction reducing material 3 and the bending of the steel sheet pile in the case (pattern A to pattern D) in which the friction reducing material 3 is applied. It is a thing.
  • each plot of pattern A and pattern D is located above a straight line P3 passing through a plot of pattern B and a plot of pattern C. This means that in the case of Pattern A and Pattern D, the effect of reducing the bending of the steel sheet pile relative to the construction circumference of the friction reducing material 3 is smaller than in the case of Pattern B and Pattern C. Therefore, from the viewpoint of suppressing the bending of the steel sheet pile, it is preferable that the friction reducing material construction pattern has the shapes of pattern B and pattern C as in the first embodiment.
  • FIG. 29 corresponds to FIG. 23 of Example 1 and shows the relationship between the construction peripheral length of the friction reducing material 3 and the penetration resistance ratio of the case (pattern A to pattern D) in which the friction reducing material 3 is applied.
  • the plot of the pattern D is , Pattern A, pattern B, and pattern C are positioned above a straight line P 4 .
  • the friction reducing material construction pattern has the shapes of pattern A, pattern B, and pattern C.
  • the friction reducing material construction pattern was all pattern A (see FIG. 17B, expressed in terms of actual scale).
  • the friction reduction processing section length is set to 0.1 ⁇ L (L: steel sheet pile length).
  • Penetration resistance ratio at the time of placement is the case without friction reducing material 3 (U type 12-N-0 (Comparative Example 7), U type 24-N-0 (Comparative Example 8), U type 36-N-0)
  • the bending (rad) of the steel sheet pile is ⁇ / L when the horizontal displacement between the steel sheet pile head and the lower end of the steel sheet pile is defined as the bending amount ⁇ . This means that the bend is small and suitable.
  • U-shaped 36-N-0 Comparative Example 9
  • the depth of the steel sheet pile could not be penetrated due to the deformation of the steel sheet pile at a depth of 28m (converted to actual scale) during construction. There wasn't.
  • Table 3 shows a summary of the experimental conditions and experimental results.
  • FIG. 32 is a graph for evaluating the difference in the friction reduction effect due to the influence of the steel sheet pile length, in which the horizontal axis indicates the steel sheet pile length L (m), and the vertical axis indicates the penetration resistance ratio.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Bulkheads Adapted To Foundation Construction (AREA)

Abstract

 周辺地盤への悪影響を及ぼすことなく、打設施工時の鋼矢板の直進性を高め、打設施工中の曲がりや倒れなどが防止でき、従来工法よりも打設長さの長い施工を可能にする鋼矢板を得る。本発明に係るU形鋼矢板1は地中に打設する場合における鋼矢板下端位置から、鋼矢板断面幅B以上かつ鋼矢板長さLの1/3以下の長さに亘り、鋼矢板表面の少なくとも内周面側に摩擦低減処理を施してあることを特徴とするものである。

Description

鋼矢板
 本発明は、断面形状がU形またはハット形の鋼矢板(U-shaped steel sheet pile or hat-shaped steel sheet pile)に関するものである。
 U形、ハット形などの鋼矢板については、その断面形状が鋼矢板壁(steel sheet pile wall)の法線に対して非対称であることから、地盤に打設(drive)する際、曲がり(warp)(図18参照)や回転(rotation)(ねじれ(torsion))などが生じる場合がある。
 特に鋼矢板の打設長さが長くなると、上記の傾向が顕著になる。その結果、鋼矢板打設時の地盤抵抗(貫入抵抗(penetration resistance))や隣接する鋼矢板継手(joint)間の接触抵抗(contact resintance)が大きくなり、打設が困難になるなどの問題が生じる。
 これらの問題が発生するのを防止するために、鋼矢板の断面形状(サイズ)に応じて打ち込み(drive)可能長さなどが設定されている(非特許文献1参照)。
 例えば、油圧圧入工法(hydraulic press-in construction method)の場合、U形鋼矢板IIW型では打ち込み可能長さが10mであり、U形鋼矢板VIL型では打ち込み可能長さが30mである。
 一方、厚い軟弱地盤層(soft ground layer)上に堤防(embankment)を築造する場合などにおいて、堤防補強工(reinforcing work for embankment)やあるいは周辺構造物への沈下(subsidence)影響防止のため、30m以上の長尺の鋼矢板を打設することが必要となる場合がある。
 長尺の鋼矢板を打設するためには鋼矢板の施工性(workability)を向上させる必要がある。このような必要性を満たす従来技術として、高圧の水を噴射させ周辺地盤を柔らかくしつつ、鋼矢板を打設するウォータージェット工法(water jet construction method)がある(特許文献1参照)。
 また、鋼矢板表面の摩擦抵抗(frictional resistance)を低減する技術としては、特許文献2のように、吸水性樹脂(water-absorbing resin)とアルカリ水可溶性樹脂(alkaline water-soluble resin)とを必須成分とする摩擦低減材(friction reducing material)を表面に塗布または貼り付けるものがある。
鋼管杭協会(Japanese Association for Steel Pipe Piles):鋼矢板 設計から施工まで、pp.337-338、2007
特許第4239566号公報 特開2008-303628号公報
 従来の鋼矢板は、構造設計上では十分な必要性能を有する鋼矢板断面形状(サイズ)であるにもかかわらず、打設時の施工性の問題から、断面形状(サイズ)をより大きなものにせざるを得ないケースがあり、経済性を損なっているという問題がある。
 また、鋼矢板を打設する際の施工性を向上するために、特許文献1に開示されたウォータージェット工法を用いると以下のような問題がある。高圧水を通すジェットノズルの設置作業やノズルホルダを鋼矢板に付設する作業などにより、現地での施工準備時間が長くなることや、高圧の水を噴射することで周辺地盤が乱れ、地耐力(soil bearing power)が低下し、不安定な構造となるおそれがある。
 また、特許文献2では、軟弱地盤での地盤圧密沈下(ground consolidation settlement)に起因して鋼矢板に生じる引込み力(ネガティブフリクション)(negative friction)を低減することを目的として、鋼矢板表面全長に摩擦低減材を設置する構造になっている。
 しかしながら、このような構造は、鋼矢板の直進性を改善することにより打設性(drivability)を向上するという観点からは、必ずしも合理的ではない。特に打設長が長い鋼矢板の場合、摩擦低減材の設置面積が大きくなり、コストが膨大となる。ここで直進性とは、鋼矢板打設時に、鋼矢板の曲がりや回転(ねじれ)が発生せず、鋼矢板がまっすぐに地中に貫入する(penetrate)程度を表すものである。
 本発明は、上記のような課題を解決するためになされたものであり、周辺地盤への悪影響を及ぼすことなく、打設施工時の鋼矢板の直進性を高めることで、打設施工中の曲がりや倒れなどが防止でき、従来工法よりも打設長さの長い施工を可能にする鋼矢板を得ることを目的としている。
 発明者は、鋼矢板の打設に際して直進性を阻害する要因について検討した。図30A、図30B、図31はU形断面の鋼矢板打設時の状態を説明する説明図である。
 鋼矢板の打設時において、貫入抵抗が増大する大きな要因の一つとして、図30A、図30Bおよび図31に示すように、鋼矢板11の下端部において、ウェブ(web)およびフランジ(flange)によって形成される隅角部(corner)内側に土13が詰まることで鋼矢板下端部内側が閉塞し、当該部位の摩擦抵抗が増大することが考えられる。
 鋼矢板11の内周面の摩擦抵抗が、外周面の摩擦抵抗より大きくなると、より抵抗の小さい鋼矢板外側方向に鋼矢板が曲がる挙動が生じ、直進性が損なわれる。鋼矢板の打設施工は、先行鋼矢板を打設した後、後続の鋼矢板を先行鋼矢板に継手嵌合させて打設する。従って、先行鋼矢板が曲がった状態で打設された場合、後続の鋼矢板の継手嵌合部(joints fitting portion)の抵抗が増大し、施工が困難となる。
 上記のように、鋼矢板の直進性を阻害する大きな要因が鋼矢板下端部内側に土が閉塞することであることから、この閉塞を防止することで直進性を確保することができる。鋼矢板下端部内側の閉塞を防止する方法として、鋼矢板下端部における鋼矢板表面の摩擦を低減することで、鋼矢板の内周面にある隅角部内側での土の詰まりを防止し、下端部内側の閉塞を抑制することが可能となる。これにより、鋼矢板下端部内側での閉塞が防止でき、さらには鋼矢板の内周面および外周面における摩擦抵抗が均衡化(balance)され、鋼矢板の直進性が高まり、施工中の曲がりや倒れなどを防止できる。
 本発明は、かかる知見に基づいてなされたものであり、具体的には以下の構成からなるものである。
(1)本発明に係る鋼矢板は、断面形状がU形またはハット形の鋼矢板であって、
 地中に打設する場合における鋼矢板下端位置から、鋼矢板断面幅以上かつ鋼矢板全長の1/3以下の長さに亘り、鋼矢板表面の少なくとも内周面側に摩擦低減処理を施したものである。
(2)また、上記(1)に記載のものにおいて、前記摩擦低減処理を鋼矢板表面の内周面側のみに施したものである。
(3)また、上記(2)に記載のものにおいて、前記摩擦低減処理を鋼矢板表面の内周面側における隅角部のみに施した。
 本発明においては、地中に打設する場合における鋼矢板下端位置から、鋼矢板断面幅以上かつ鋼矢板全長の1/3以下の長さに亘り、鋼矢板表面の少なくとも内周面側に摩擦低減処理を施したことにより、周辺地盤への悪影響を及ぼすことなく、打設施工時の鋼矢板の直進性を高め、施工中の曲がりや倒れなどを防止することができる。その結果、複数枚の鋼矢板を施工現場にて溶接などにより縦継ぎして打設する場合にも、本発明を用いることで、従来工法よりも打設長さを長くすることが可能となる。
図1Aは、本発明の一実施の形態に係るU形鋼矢板の説明図である。 図1Bは、本発明の一実施の形態に係るU形鋼矢板の説明図である。 図2は、本発明の一実施の形態に係るU形鋼矢板の摩擦低減処理の一態様の説明図である(その1)。 図3は、本発明の一実施の形態に係るU形鋼矢板の摩擦低減処理の他の態様の説明図である(その2)。 図4は、本発明の一実施の形態に係るU形鋼矢板の摩擦低減処理の他の態様の説明図である(その3)。 図5は、本発明の一実施の形態に係るU形鋼矢板の摩擦低減処理の他の態様の説明図である(その4)。 図6は、本発明の一実施の形態に係るU形鋼矢板の摩擦低減処理の他の態様の説明図である(その5)。 図7は、本発明の一実施の形態に係るU形鋼矢板の摩擦低減処理の他の態様の説明図である(その6)。 図8は、本発明の一実施の形態に係るU形鋼矢板の摩擦低減処理の他の態様の説明図である(その7)。 図9は、本発明の一実施の形態に係るハット形鋼矢板の説明図である。 図10は、本発明の一実施の形態に係るハット形鋼矢板の摩擦低減処理の一態様の説明図である(その1)。 図11は、本発明の一実施の形態に係るハット形鋼矢板の摩擦低減処理の他の態様の説明図である(その2)。 図12は、本発明の一実施の形態に係るハット形鋼矢板の摩擦低減処理の他の態様の説明図である(その3)。 図13は、本発明の一実施の形態に係るハット形鋼矢板の摩擦低減処理の他の態様の説明図である(その4)。 図14は、本発明の一実施の形態に係るハット形鋼矢板の摩擦低減処理の他の態様の説明図である(その5)。 図15は、本発明の一実施の形態に係るハット形鋼矢板の摩擦低減処理の他の態様の説明図である(その6)。 図16は、本発明の一実施の形態に係るハット形鋼矢板の摩擦低減処理の他の態様の説明図である(その7)。 図17Aは、本発明の実施例1に係る実験条件の説明図であって、U形鋼矢板の摩擦低減処理の態様の説明図である。 図17Bは、本発明の実施例1に係る実験条件の説明図であって、U形鋼矢板の摩擦低減処理の態様の説明図である。 図17Cは、本発明の実施例1に係る実験条件の説明図であって、U形鋼矢板の摩擦低減処理の態様の説明図である。 図17Dは、本発明の実施例1に係る実験条件の説明図であって、U形鋼矢板の摩擦低減処理の態様の説明図である。 図17Eは、本発明の実施例1に係る実験条件の説明図であって、U形鋼矢板の摩擦低減処理の態様の説明図である。 図18は、本発明の実施例1に係る実験結果の評価方法の説明図である。 図19は、本発明の実施例1に係る実験結果に基づいたグラフである(その1)。 図20は、本発明の実施例1に係る実験結果に基づいたグラフである(その2)。 図21は、本発明の実施例1に係る実験結果に基づいたグラフである(その3)。 図22は、本発明の実施例1に係る実験結果に基づいたグラフである(その4)。 図23は、本発明の実施例1に係る実験結果に基づいたグラフである(その5)。 図24Aは、本発明の実施例2に係る実験条件の説明図であって、ハット形鋼矢板の摩擦低減処理の態様の説明図である。 図24Bは、本発明の実施例2に係る実験条件の説明図であって、ハット形鋼矢板の摩擦低減処理の態様の説明図である。 図24Cは、本発明の実施例2に係る実験条件の説明図であって、ハット形鋼矢板の摩擦低減処理の態様の説明図である。 図24Dは、本発明の実施例2に係る実験条件の説明図であって、ハット形鋼矢板の摩擦低減処理の態様の説明図である。 図24Eは、本発明の実施例2に係る実験条件の説明図であって、ハット形鋼矢板の摩擦低減処理の態様の説明図である。 図25は、本発明の実施例2に係る実験結果に基づいたグラフである(その1)。 図26は、本発明の実施例2に係る実験結果に基づいたグラフである(その2)。 図27は、本発明の実施例2に係る実験結果に基づいたグラフである(その3)。 図28は、本発明の実施例2に係る実験結果に基づいたグラフである(その4)。 図29は、本発明の実施例2に係る実験結果に基づいたグラフである(その5)。 図30Aは、本発明が解決しようとする課題を説明する説明図である(その1)。 図30Bは、本発明が解決しようとする課題を説明する説明図である(その2)。 図31は、本発明が解決しようとする課題を説明する説明図である(その3)。 図32は、鋼矢板長さの影響による摩擦低減効果の違いを評価するためのグラフである。
 本発明の一実施の形態に係るU形鋼矢板1は、地中に打設する場合における鋼矢板下端位置から、鋼矢板断面幅以上かつ鋼矢板全長の1/3の長さに亘り、鋼矢板表面の少なくとも内周面側に摩擦低減処理を施してあることを特徴とするものである。
 以下、本実施の形態に係るU形鋼矢板1について詳細に説明する。
 U形鋼矢板1は、図1Aに示すように、断面形状が略U字形になっており、ウェブ部(web portion)1aと、ウェブ部1aの両側に設けられたフランジ部(flange portion)1bと、フランジ部1bの先端に設けられた継手部1cとを有している。
 U形鋼矢板1は、図1Bに示す通り、鋼矢板長さをL、鋼矢板断面幅をBとしている。
 U形鋼矢板1の下端部には、摩擦低減処理が施された摩擦低減材3を有している。この摩擦低減処理の態様は以下の通りである。
<摩擦低減処理の態様>
 摩擦低減処理は、樹脂性材料、アスファルト材料(asphalt)、塗料などの従来から存在する摩擦低減材を塗布すること、あるいは鋼矢板の表面に化学処理を施したり、鋼矢板の化学成分を調整するなどの方法、あるいは摩擦低減可能な板状の部材などを鋼矢板表面に貼り付けることなどの態様を含む。
 なお、摩擦低減材を塗布する場合には、塗布膜が鋼矢板の打設によって剥がれない硬質のものである必要がある。
<摩擦低減処理を施す範囲>
 摩擦低減処理を施す区間の長さ(摩擦低減処理区間長S)は、地中に打設する場合における鋼矢板下端位置から、鋼矢板断面幅B以上かつ鋼矢板全長Lの1/3以下にするのが好ましい。複数枚の鋼矢板を縦継ぎして打設して用いる場合は、複数枚の総計長さを鋼矢板全長Lとする。
 その理由は、後述する実施例において実証するように、鋼矢板全長Lの1/3を超えて摩擦低減処理を行っても直進性を向上させる効果が少なく、コストが高くなるからである。
 一方、摩擦低減処理を施す長さが鋼矢板断面幅B未満では、本発明の目的である直進性を確保する効果が十分得られないからである。
 また、摩擦低減処理は、鋼矢板表面の少なくとも内周面側に施す必要がある。本実施の形態においては、図2に示すように、鋼矢板1の内周面側と外周面側の両面に摩擦低減材3を施工した例を示している。摩擦低減材3の施工とは、上記の摩擦低減処理の態様のうち摩擦低減材を塗布するもの、摩擦低減部材を貼り付けるものを含む。
 なお、摩擦低減材3の施工は、工場などで予め行うことで、現地での施工準備時間を短くすることができる。
 本実施の形態においては、鋼矢板1の下端位置から、鋼矢板断面幅B以上かつ鋼矢板全長Lの1/3の長さに亘り、鋼矢板表面の少なくとも内周面側に摩擦低減材3を施工したことにより、打設施工時の貫入抵抗を低減し、鋼矢板の直進性を高めることが可能となり、その結果、鋼矢板施工中の曲がりや倒れなどを抑止できる。
 また、ウォータージェット工法(water jet construction method)を実施する場合のような周辺地盤への悪影響を与えることなく、長い鋼矢板の施工が可能になる。
 これらの効果については、後述する実施例において実証している。
 なお、厚い軟弱地盤層上に堤防を築造する場合などにおいて、堤防補強工やあるいは周辺構造物への沈下影響防止のため、30m以上の鋼矢板を打設する場合があるが、車両で運搬できる鋼矢板の長さは通常15m程度であり、施工現場にて溶接などにより複数枚の鋼矢板を縦継ぎ(longitudinally joint)していくこととなる。
 上記の説明では、U形鋼矢板1の表面全周に摩擦低減材3を施工した例を挙げたが(図2参照)、摩擦低減材3は、U形鋼矢板1の表面の少なくとも内周面側に施工すればよく、図3に示すように、U形鋼矢板1の内周面側のみに施工してもよい。
 この場合、摩擦低減材3の塗布量等を減じてコスト低減が可能であると同時に、図2の構造に準ずる貫入抵抗の低減効果を得ることができる。
 また、施工中の曲がりや倒れなどを防止するという観点では、鋼矢板の下端からの一定部位の表面全周に摩擦低減材3を施工する場合よりも、鋼矢板の下端からの一定部位の表面の内周面側にのみ摩擦低減材3を施工した方が、鋼矢板の内周面および外周面における摩擦抵抗が均衡化され、鋼矢板の直進性がより高まり、施工中の曲がりが抑えられる効果も期待できる。この点は、後述の実施例において実証している。
 なお、摩擦低減材3を鋼矢板1の内周面側のみ施工する場合において、内周面の全面に施工する必要はない。以下に、摩擦低減材3を鋼矢板1の内周面のみ施工する場合の好ましい態様について詳細に説明する。
 図4は、図3の変形例であり、継手部1cの内周面への摩擦低減材3の施工を省略したものである。継手部1cの内周面の摩擦抵抗は、土の拘束効果(effect of constraining soil)に対する寄与は小さいと考えられるためである。
 図5に示す例は、U形鋼矢板1の内周面側における隅角部1dのみに摩擦低減材3を施工したものである。ここで隅角部1dとは、ウェブ部1aとフランジ部1bによって鈍角を形成している部位である。片側の隅角部1dのどの部分に摩擦低減材3を施工するかは、改良効果と経済性の観点から、決めればよい。施工する範囲については、例えばウェブ部1aについては、ウェブ部1a全長の1/5以上、1/3以下、フランジ部1bについてはフランジ部1b全長の1/3以上、2/3以下にするのが好適である。
 隅角部1dの摩擦抵抗は、土の拘束効果への寄与が大きいと考えられるので、当該部位に摩擦低減材3を施工することは打設施工中の曲がり抑止および貫入抵抗の低減効果が高い。
 つまり、図5に示す例では、図4の場合と比較して摩擦低減材3の施工量をさらに減じることができ、一層のコスト低減が可能であると同時に、図2、図3の構造に準ずる鋼矢板施工中の曲がり抑止および貫入抵抗の低減効果が期待できる。
 図6に示す例は、図5で示した隅角部1dに加えてU形鋼矢板1のウェブ部1aの内周面側中央部分にも摩擦低減材3を施工したものである。
 ウェブ部1aの内周面中央部分における摩擦抵抗も土の拘束効果への寄与があると考えられるので、当該部位に摩擦低減材3を施工することは鋼矢板施工中の曲がり抑止および貫入抵抗の低減に効果的である。
 図7に示す例は、U形鋼矢板1のウェブ部1aの内周面のみに摩擦低減材3を施工した例である。U形鋼矢板1のウェブ部1aの内周面に摩擦低減材3を施工することで、隅角部1dの片側(ウェブ部1a側)において摩擦低減がなされ、隅角部1dで土の拘束が生ずるのを防止できる効果が期待できる。
 図8に示す例は、U形鋼矢板1のフランジ部1bの内周面のみに摩擦低減材3を施工した例である。この場合も、図7に示した例と同様に、隅角部1dで土の拘束が生ずるのを防止できる効果が期待できる。
 上記では本発明の対象の鋼矢板としてU形鋼矢板1を例に挙げて説明したが、ハット形鋼矢板5においても同様である。
 ハット形鋼矢板5の断面形状は、図9に示すように、ウェブ部5aと、ウェブ部5aの両側に設けられたフランジ部5bと、フランジ部5bから屈曲して幅方向に延びるアーム部5cと、アーム部5cの先端に設けられた継手部(joint portion)5dとを有している。
 ハット形鋼矢板5の場合の摩擦低減処理の態様を以下に説明する。
 図10は、ハット形鋼矢板5の表面全周に摩擦低減材3を施工したものである。
 図11は、ハット形鋼矢板5の表面の内周面側全面に摩擦低減材3を施工したものである。
 図12は、ハット形鋼矢板5の表面の内周面のうち、アーム部(arm portion)5cへの摩擦低減材3の施工を省略したものである。アーム部5cにおける摩擦抵抗は土の拘束効果への寄与は小さいと考えられるためである。
 図13は、U形鋼矢板1の場合(図5参照)と同様に、ハット形鋼矢板5の内周面における隅角部5eのみ、摩擦低処理を施したものである。図13の例では、U形鋼矢板1の図5の場合と同様に、摩擦低減材3の施工量を低減できると共に、図10、図11の構造に準ずる施工中の曲がり抑止および貫入抵抗の低減効果が得られる。
 図14は、U形鋼矢板1の図6の場合と同様に、隅角部5eに加えてハット形鋼矢板5のウェブ部5aの内周面中央部分にも摩擦低減材3を施工したものである。
 図15は、U形鋼矢板1の図7の場合と同様に、ハット形鋼矢板5のウェブ部5aの内周面のみに摩擦低減材3を施工した例である。この場合も、U形鋼矢板1の場合と同様に、隅角部5eの片側(ウェブ部5a側)における摩擦低減がされることで、隅角部5eで土の拘束が生ずるのを防止できる効果が期待できる。
 図16は、U形鋼矢板1の図8の場合と同様に、フランジ部5bの内周面のみに摩擦低減材3を施工した例である。この場合も、図15に示した例と同様に、隅角部5eで土の拘束が生ずるのを防止できる効果が期待できる。
 本発明の効果検証を行うため、U形鋼矢板1についての模型実験(実際のスケールの1/10)を行ったのでその結果について以下に説明する。
 実験は、実際の施工を模擬して行った。土槽(soil box)に深度1.5m(実スケール換算15m)の均質な砂地盤(sand ground)を作成して、摩擦低減処理の条件を変えた鋼矢板模型を油圧により、全長、砂地盤に貫入し、条件毎の打設時の貫入抵抗比(ratio of penetration resistance)および鋼矢板の曲がり(warp)を評価項目として実験結果を取得した。
 実験は、摩擦低減材施工パターン、および、鋼矢板下端からの摩擦低減材3の施工区間長(摩擦低減処理区間長S)を変化させて行った。
 実験では、鋼矢板全長を打設長さとした。
 摩擦低減材施工パターンについて図17A~17Eに基づいて説明する。図17A~17E中の各寸法は、実スケール換算で表記している。なお、板厚は実スケールで20mmとした。
 摩擦低減材施工パターンは、摩擦低減材3を施工しないパターンN(図17A参照)、U形鋼矢板1の下端から摩擦低減処理区間長Sの全表面に摩擦低減材3を施工したパターンA(図17B参照)、U形鋼矢板1の下端から摩擦低減処理区間長S表面の内周面側のみに摩擦低減材3を施工したパターンB(図17C参照)、U形鋼矢板1の下端から摩擦低減処理区間長Sの表面の内周面側における隅角部1dのみに摩擦低減材3を施工したパターンC(図17D参照)、U形鋼矢板1の下端から摩擦低減処理区間長Sの表面の内周面側におけるウェブ部1aのみに摩擦低減材3を施工したパターンD(図17E参照)の5通りとした。
 摩擦低減処理区間長Sは、0m(摩擦低減材3を施工しないもの)、0.2m(=1/3×B、B:鋼矢板断面幅)、0.6m(=B)、1.2m(=0.1×L、L:鋼矢板長さ)、4m(=1/3×L)、6m(=1/2×L)、12m(=L、摩擦低減材3を鋼矢板全長に亘って施工したもの)の7通りとした。
 次に、評価項目である打設時の貫入抵抗比および鋼矢板の曲がりについて説明する。
 打設時の貫入抵抗比は、摩擦低減材3なしのケース(U形-N-0(比較例1))における最大貫入抵抗力を基準(=1.0)とした場合における、摩擦低減材3を施工したケースにおける最大貫入抵抗力の比率である。貫入抵抗比の値が小さいものほど貫入抵抗が小さく好適であることを意味している。
 鋼矢板の曲がり(warp)(rad)は、図18に示すように、鋼矢板頭部と鋼矢板下端の水平方向の変位を曲がり量Δとした場合におけるΔ/Lであり、値が小さいものほど鋼矢板の曲がりが小さく好適であることを意味している。
 上記実験条件および実験結果をまとめたものを表1に示す。
Figure JPOXMLDOC01-appb-T000001
 
 なお、表1において、鋼矢板断面幅B、鋼矢板長さL、摩擦低減処理区間長Sは、実スケール換算した値(実際の鋼矢板模型サイズを10倍した値)を表記している。
 表1に示す実験結果(評価項目)に基づいて種々のグラフを作成し、該各グラフに基づいて評価を行ったので、その結果について以下に説明する。
 図19は、摩擦低減処理区間長S毎の違いを評価するためのグラフであり、横軸が摩擦低減処理区間長S(m)を示し、縦軸が鋼矢板の曲がり(rad)を示している。
 図19においては、表1に示したもののうち、摩擦低減材施工パターンがパターンNのもの(比較例1)とパターンAのもの(比較例2~比較例4、本発明例1~本発明例3)についての実験結果をプロットしている。
 図19に示す通り、摩擦低減処理区間長Sが長くなれば、総じて鋼矢板の曲がりは減少する傾向にある。ただし、摩擦低減処理区間長Sが4m(=1/3×L)より長くなると鋼矢板の曲がりの減少度合いは僅かであり、摩擦低減材3の施工コストを考慮すると、上記実施の形態で説明したように、摩擦低減処理区間長Sを1/3×L以下とすることが好適な条件となる。
 また、同図より摩擦低減処理区間長Sを0.2m(=1/3×B)とした比較例2では、摩擦低減材3の施工なしの比較例1と比べて鋼矢板の曲がりの低減効果が小さいのに対し、摩擦低減処理区間長Sを0.6m(=B)とした本発明例1では鋼矢板の曲がりの低減効果が顕著であった。このことから、摩擦低減処理区間長SをB(鋼矢板断面幅)以上とすることが好適であることが確認された。
 図20は、摩擦低減材施工パターン毎の鋼矢板の曲がりを比較するためのグラフであり、摩擦低減材3を施工しないパターンNと、摩擦低減材3を施工したケース(パターンA~パターンD)を比較している。また、摩擦低減材施工パターンの影響のみを評価するために、パターンAについての実験結果は、摩擦低減処理区間長SがパターンB~パターンDと同じ0.12mのもの(本発明例2)を使用した。
 図20において、縦軸は鋼矢板の曲がり(rad)を表している。
 図20に示す通り、摩擦低減材3を施工していないパターンNに比べて、摩擦低減材3を施工したパターンA~パターンDでは鋼矢板の曲がりが減少しており、その効果の大きさ(鋼矢板の曲がり低減効果)は、大きい順にパターンB⇒パターンA⇒パターンC⇒パターンDの順であり、パターンBが最も効果的であった。
 パターンAよりもパターンBの方が鋼矢板の曲がり抑止効果が高かったのは、鋼矢板の内周面および外周面における摩擦抵抗が均衡化され、鋼矢板の直進性がより高まり、施工中の曲がりが抑えられたためであると推察される。つまり、摩擦低減材3を施工していない状態において、鋼矢板の外周面は内周面よりも摩擦抵抗が小さいため、摩擦低減材3を内周面のみに施工することで鋼矢板の内周面および外周面における摩擦抵抗が均衡化されたものと考えられる。
 図21は、摩擦低減材施工パターンごとの貫入抵抗比を比較するためのグラフであり、図20と同様に、摩擦低減材3を施工していないパターンNと、摩擦低減材3を施工したケース(パターンA~パターンD)を比較している。パターンAについての実験結果は、本発明例2のものを採用した。
 図21に示す通り、摩擦低減材3を施工していないパターンNに比べて、摩擦低減材3を施工したパターンA~パターンDでは貫入抵抗比が減少しており、その効果の大きさ(貫入抵抗比低減効果)は、大きい順にパターンA⇒パターンB⇒パターンC⇒パターンDの順であった。
 図22は、摩擦低減材3を施工したケース(パターンA~D)における摩擦低減材3を施工した周長と鋼矢板の曲がりの関係を示すグラフである。
 図22において、パターンAおよびパターンDの各プロットは、パターンBのプロットとパターンCのプロットを通る直線P1よりも上方に位置している。このことは、パターンAおよびパターンDの場合、パターンBおよびパターンCの場合よりも、摩擦低減材3の施工周長に対する鋼矢板の曲がり抑制効果が小さいことを意味している。
 従って、鋼矢板の曲がり抑止の観点から、摩擦低減材施工パターンとしては、パターンB、パターンCの形状とすることが好ましいと言える。
 図23は、摩擦低減材3を施工したケース(パターンA~パターンD)の摩擦低減材3の施工周長と貫入抵抗比の関係を示すグラフである。パターンA、パターンB、パターンCでは摩擦低減材3の施工周長が長くなるにしたがってほぼ直線的(図23中の直線P2参照)に貫入抵抗比が低減しているが、パターンDのプロットは、パターンA、パターンB、パターンCを結んだ直線P2の上方に位置している。このことは、パターンDが他のパターンに比較して摩擦低減材3の施工周長に対する貫入抵抗低減効果が小さいことを意味している。従って、貫入抵抗比低減の観点から、摩擦低減材施工パターンとしては、パターンA、パターンB、パターンCの形状とするのが好ましい。
 ハット形鋼矢板5について、本発明の効果検証を行うために、実施例1と同様の模型実験を行ったので、その結果について説明する。
 実験のパラメータは、摩擦低減材施工パターンおよび摩擦低減処理区間長Sである。
 実験では、鋼矢板全長を打設長さとした。
 摩擦低減材施工パターンを図24A~24Eに示す。図24A~24E中の各寸法は、実スケールで表記している。なお、板厚は実スケールで20mmとした。
 摩擦低減材施工パターンは、実施例1のU形鋼矢板1の場合と同様であり、図24A~24Eに示すとおり、摩擦低減材3を施工しないパターンN(図24A参照)、ハット形鋼矢板5の下端から摩擦低減処理区間長Sの全表面に摩擦低減材3を施工したパターンA(図24B参照)、ハット形鋼矢板5表面の下端から摩擦低減処理区間長Sの内周面側のみに摩擦低減材3を施工したパターンB(図24C参照)、ハット形鋼矢板5の下端から摩擦低減処理区間長Sの表面の内周面側における隅角部5eのみに摩擦低減材3を施工したパターンC(図24D参照)、ハット形鋼矢板5の下端から摩擦低減処理区間長Sの表面の内周面側におけるウェブ部5aのみに摩擦低減材3を施工したパターンD(図24E参照)の5通りとした。
 摩擦低減処理区間長Sは、0m(摩擦低減材3を施工しないもの)、0.9m(=B:鋼矢板断面幅)、2.4m(=0.2×L、L:鋼矢板長さ)、4m(=1/3×L)、6m(=1/2×L)の5通りとした。
 評価項目(打設時の貫入抵抗比、鋼矢板の曲がり)は、実施例1と同様であるのでその説明を省略する。
 実験条件および実験結果をまとめたものを表2に示す。
Figure JPOXMLDOC01-appb-T000002
 
 表2に示す値に基づいて、実施例1の各グラフに対応するグラフを作成し、該各グラフに基づいて評価を行ったので、その結果について以下に説明する。
 図25は、実施例1の図19に対応するものであり、摩擦低減処理区間長Sと鋼矢板の曲がりの関係を図示したものである。
 図25に示す通り、実施例1と同様に、摩擦低減処理区間長Sが長くなれば、総じて貫入抵抗比は小さくなる傾向にあるが、摩擦低減処理区間長Sが4m(=1/3×L)より長くなるケースでは鋼矢板の曲がりの減少度合いは僅かであるであることから、摩擦低減材3の施工コストを考慮して、摩擦低減処理区間長Sを4m(=1/3×L)以下とすることが好適な条件となる。
 図26は、実施例1の図20に対応するものであり、摩擦低減材施工パターン毎の鋼矢板の曲がりの関係を図示したものであり、摩擦低減材3を施工しないパターンNと、摩擦低減材3を施工したケース(パターンA~パターンD)を比較している。パターンAにおける実験結果は本発明例9のものを採用した。
 図26に示す通り、摩擦低減材3を施工しないパターンNに比べて、摩擦低減材3を施工したケース(パターンA~パターンD)では鋼矢板の曲がりが減少しており、その効果の大きさ(鋼矢板の曲がり低減効果)は、大きい順にパターンB⇒パターンA⇒パターンC⇒パターンDの順であった。鋼矢板の曲がり抑止にはパターンBが最も効果的であった。したがって、ハット形鋼矢板5の場合でも、U形鋼矢板1と同様に直進施工性の観点からは、摩擦低減材3をパターンBで施工するのが最も好ましい。
 図27は、実施例1の図21に対応するものであり、摩擦低減材施工パターン毎の貫入抵抗比を示したものである。
 図27に示す通り、摩擦低減材3を施工しないパターンNに比べて、摩擦低減材3を施工したケース(パターンA~D)では貫入抵抗比が減少しており、その効果の大きさ(貫入抵抗比低減効果)は、大きい順にパターンA⇒パターンB⇒パターンC⇒パターンDの順であった。
 図28は、実施例1の図22に対応するものであり、摩擦低減材3を施工したケース(パターンA~パターンD)の摩擦低減材3の施工周長と鋼矢板の曲がりの関係を示したものである。
 図28において、パターンAおよびパターンDの各プロットは、パターンBのプロットとパターンCのプロットを通る直線P3よりも上方に位置している。このことは、パターンAおよびパターンDの場合、パターンBおよびパターンCの場合よりも、摩擦低減材3の施工周長に対する鋼矢板の曲がり低減効果が小さいことを意味している。
 従って、鋼矢板の曲がり抑止の観点から、実施例1と同様に、摩擦低減材施工パターンとしてはパターンB、パターンCの形状とすることが好適である。
 図29は、実施例1の図23に対応するものであり、摩擦低減材3を施工したケース(パターンA~パターンD)の摩擦低減材3の施工周長と貫入抵抗比の関係を示したものである。
 パターンA、パターンB、パターンCでは摩擦低減材3の施工周長に応じて、ほぼ直線的(図29中の直線P4参照)に貫入抵抗比が低減しているが、パターンDのプロットは、パターンA、パターンB、パターンCを結んだ直線P4の上方に位置している。このことは、パターンDが他のパターンに比較して摩擦低減材3の施工周長に対する貫入抵抗低減効果が小さいことを意味している。従って、貫入抵抗比低減の観点から、摩擦低減材施工パターンとしては、パターンA、パターンB、パターンCの形状とすることが好適となる。
 本発明の効果について、鋼矢板長さが変化した場合の影響について検証を行うため、U形鋼矢板1についての模型実験(実際のスケールの1/20)を行ったのでその結果について以下に説明する。
 実験は、実際の施工を模擬して行った。土槽(soil box)に深度2.0m(実スケール換算40m)の均質な砂地盤を作成して、長さLを実スケール換算でそれぞれ、12m、24m、36mに変えた鋼矢板模型を、油圧により、全長、砂地盤に貫入し、条件毎の打設時の貫入抵抗比および鋼矢板の曲がりを評価項目として実験結果を取得した。
 実験は、鋼矢板長さの他、摩擦低減処理有り/無しを変化させて行った。
 実験では、鋼矢板全長を打設長さとした。
 摩擦低減材有りのケースについて、その摩擦低減材施工パターンは、全てパターンA(図17B参照、実スケール換算で表記)とした。また、摩擦低減処理区間長は0.1×L(L:鋼矢板長さ)としている。
 次に、評価項目である打設時の貫入抵抗比および鋼矢板の曲がりについて説明する。
 打設時の貫入抵抗比は、摩擦低減材3なしのケース(U形12-N-0(比較例7)、U形24-N-0(比較例8)、U形36-N-0(比較例9))における最大貫入抵抗力を基準(=1.0)とした場合における、摩擦低減材3を施工したケースにおける最大貫入抵抗力の比率であり、値が小さくなるほど貫入抵抗低減効果が大きく、好適であることを意味している。
 鋼矢板の曲がり(rad)は、図18に示すように、鋼矢板頭部と鋼矢板下端の水平方向の変位を曲がり量Δとした場合におけるΔ/Lであり、値が小さいものほど鋼矢板の曲がりが小さく好適であることを意味している。
 なお、U形36-N-0(比較例9))では、施工途中の深度28m(実スケール換算)で、鋼矢板の変形により貫入不能となったため、最終的な鋼矢板の曲がりは計測できなかった。
 上記実験条件および実験結果をまとめたものを表3に示す。
Figure JPOXMLDOC01-appb-T000003
 
 なお、表3において、鋼矢板断面幅B、鋼矢板長さL、摩擦低減処理区間長Sは、実スケール換算した値(実際の鋼矢板模型サイズを20倍した値)を表記している。
 図32は、鋼矢板長さの影響による摩擦低減効果の違いを評価するためのグラフであり、横軸が鋼矢板長さL(m)を示し、縦軸が貫入抵抗比を示している。
 図32に示す通り、鋼矢板長さLが長くなれば、貫入抵抗比は減少しており、鋼矢板長さが長くなるほど摩擦低減材による効果が高まる傾向にあり、本発明の適用が好適となることが確認できた。
 以上のように、本発明の鋼矢板によれば、鋼矢板の直進性が高まり、施工中の曲がりや倒れなどを抑止できることが実証されている。
  1 U形鋼矢板
  1a ウェブ部
  1b フランジ部
  1c 継手部
  1d 隅角部
  3 摩擦低減材
  5 ハット形鋼矢板
  5a ウェブ部
  5b フランジ部
  5c アーム部
  5d 継手部
  5e 隅角部
 11 鋼矢板(従来例)
 13 土

Claims (3)

  1.  断面形状がU形またはハット形の鋼矢板であって、
     地中に打設する場合における鋼矢板下端位置から、鋼矢板断面幅以上かつ鋼矢板全長の1/3以下の長さに亘り、鋼矢板表面の少なくとも内周面側に摩擦低減処理を施してある鋼矢板。
  2.  前記摩擦低減処理を鋼矢板表面の内周面側のみに施した請求項1記載の鋼矢板。
  3.  前記摩擦低減処理を鋼矢板表面の内周面側における隅角部のみに施した請求項2記載の鋼矢板。
PCT/JP2014/004386 2013-08-30 2014-08-27 鋼矢板 WO2015029426A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480047947.6A CN105492695B (zh) 2013-08-30 2014-08-27 钢板桩
JP2015501259A JP6086147B2 (ja) 2013-08-30 2014-08-27 鋼矢板
MYPI2016700590A MY185705A (en) 2013-08-30 2014-08-27 Steel sheet pile
SG11201510752TA SG11201510752TA (en) 2013-08-30 2014-08-27 Steel sheet pile

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-178766 2013-08-30
JP2013178766 2013-08-30

Publications (1)

Publication Number Publication Date
WO2015029426A1 true WO2015029426A1 (ja) 2015-03-05

Family

ID=52586015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004386 WO2015029426A1 (ja) 2013-08-30 2014-08-27 鋼矢板

Country Status (5)

Country Link
JP (2) JP6086147B2 (ja)
CN (1) CN105492695B (ja)
MY (1) MY185705A (ja)
SG (1) SG11201510752TA (ja)
WO (1) WO2015029426A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63312421A (ja) * 1987-06-15 1988-12-20 Giken Seisakusho:Kk 杭打及び引抜工法
US6234720B1 (en) * 1996-12-02 2001-05-22 Foundation Technologies, Inc. Reduced skin friction sheet pile
JP2004044150A (ja) * 2002-07-10 2004-02-12 Nippon Steel Corp 圧延鋼矢板

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU88805A1 (fr) * 1996-08-14 1998-02-16 Profil Arbed S A Palplanche en forme de "u" à faible résistance d'enfoncement
JPH11323911A (ja) * 1998-05-08 1999-11-26 Kawasaki Steel Corp 土留壁用鋼構造物
JP5764909B2 (ja) * 2010-10-28 2015-08-19 Jfeスチール株式会社 鋼矢板及び該鋼矢板によって形成された鋼矢板壁

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63312421A (ja) * 1987-06-15 1988-12-20 Giken Seisakusho:Kk 杭打及び引抜工法
US6234720B1 (en) * 1996-12-02 2001-05-22 Foundation Technologies, Inc. Reduced skin friction sheet pile
JP2004044150A (ja) * 2002-07-10 2004-02-12 Nippon Steel Corp 圧延鋼矢板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KOYAITA SEKKEI KARA SHIKO MADE, REVISED NEW EDITION, JAPANESE ASSOCIATION FOR STEEL PIPE PILES, April 2007 (2007-04-01), pages 416 *

Also Published As

Publication number Publication date
MY185705A (en) 2021-05-31
JP6086147B2 (ja) 2017-03-01
JP2016223288A (ja) 2016-12-28
CN105492695A (zh) 2016-04-13
CN105492695B (zh) 2018-06-12
JPWO2015029426A1 (ja) 2017-03-02
SG11201510752TA (en) 2016-01-28

Similar Documents

Publication Publication Date Title
JP2005299202A (ja) 鋼矢板とそれを用いた土留め構造及び土留め構造の構築方法
JP4903744B2 (ja) 既設の鋼矢板の補強構造、既設の鋼矢板の補強用部材
JP6542789B2 (ja) シートパイル
WO2013008905A1 (ja) 組合せ鋼矢板、地中連続壁、及び組合せ鋼矢板の再利用方法
JP3603793B2 (ja) 地中連続壁用鋼材および地中連続壁
JP6086147B2 (ja) 鋼矢板
JP2011157781A (ja) 鋼矢板擁壁およびその設計方法
JP2014020129A (ja) 鋼矢板及び鋼矢板壁体
JP5114731B2 (ja) 地中連続壁体の設計方法
JP2017066702A (ja) 鋼矢板の縦継構造及び鋼矢板壁
WO2010089966A1 (ja) 組合せ鋼矢板、組合せ鋼矢板を利用した連続壁、及び組合せ鋼矢板の圧入方法
CN110158572B (zh) 一种h型钢板桩
JP2017180048A (ja) 鋼矢板壁
JP5633524B2 (ja) 鋼矢板地下壁構造
JP6477586B2 (ja) 鋼矢板壁
JP2009155897A (ja) ハット形鋼矢板
JP5782729B2 (ja) Z形鋼矢板、該z形鋼矢板で形成された鋼矢板壁
WO2011090055A1 (ja) 鋼管杭
KR101667986B1 (ko) Z형강 널말뚝
JP6254469B2 (ja) 土留め壁用鋼製部材および該土留め壁用鋼製部材を用いた合成構造壁
JP2004044150A (ja) 圧延鋼矢板
WO2013171910A1 (ja) Z形鋼矢板、該z形鋼矢板で形成された鋼矢板壁
JP6119879B2 (ja) 組合せ鋼矢板連設用治具及び組合せ鋼矢板連設方法
CN210507410U (zh) 一种新型拉森桩
CN206233224U (zh) 波型混凝土板桩

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480047947.6

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2015501259

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14840520

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201601955

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 14840520

Country of ref document: EP

Kind code of ref document: A1