WO2011090055A1 - 鋼管杭 - Google Patents

鋼管杭 Download PDF

Info

Publication number
WO2011090055A1
WO2011090055A1 PCT/JP2011/050825 JP2011050825W WO2011090055A1 WO 2011090055 A1 WO2011090055 A1 WO 2011090055A1 JP 2011050825 W JP2011050825 W JP 2011050825W WO 2011090055 A1 WO2011090055 A1 WO 2011090055A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel pipe
pile
pipe pile
inner peripheral
tip
Prior art date
Application number
PCT/JP2011/050825
Other languages
English (en)
French (fr)
Inventor
健二 西海
吉郎 石濱
吉高 松谷
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to JP2011522342A priority Critical patent/JP4874433B2/ja
Priority to CN201180006264.2A priority patent/CN102713077B/zh
Publication of WO2011090055A1 publication Critical patent/WO2011090055A1/ja
Priority to HK13103726.0A priority patent/HK1176979A1/xx

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/24Prefabricated piles
    • E02D5/28Prefabricated piles made of steel or other metals
    • E02D5/285Prefabricated piles made of steel or other metals tubular, e.g. prefabricated from sheet pile elements

Definitions

  • the present invention relates to a steel pipe pile used for a foundation pile in the field of civil engineering and building such as a building or a bridge structure.
  • the present invention relates to a steel pipe pile to be constructed by a hammering / vibration method or a rotary press-fitting method.
  • the hammering / vibration method, the rotary press-in method, the digging method, etc. are known as construction methods for steel pipe piles used for foundation piles in the field of civil engineering and construction such as buildings and bridge structures.
  • the construction load is reduced, so that construction can be performed by a relatively small construction machine.
  • auxiliary construction methods such as internal excavation and air injection are not required, and the construction period can be shortened.
  • Pile circumferential surface resistance is a resistance force caused by the frictional force between the outer circumferential surface of the steel pipe pile and the ground during construction, and tends to gradually increase as the pile driving length increases.
  • the resistance at the tip of the pile is only the bearing resistance at the net cross-sectional area of the steel pipe pile at the initial stage of construction, but when the pile driving length increases, earth and sand enter the steel pipe pile and the inner peripheral surface of the steel pipe pile and the ground The frictional force increases. As a result, it finally reaches a state where the earth and sand are blocked inside the steel pipe pile. In this state, the entire cross-sectional area of the steel pipe pile resists the ground, resulting in a very large resistance.
  • the steel pipe pile is vibrated or rotated to perform the construction while reducing the frictional force on the circumferential surface of the pile.
  • the pile surface resistance can be reduced by vibration and rotation of the steel pipe pile, the pile tip resistance cannot be reduced by hammering, vibration and rotation of the steel pipe pile. It is expected that the bearing force in the hammering / vibration method will be secured by gradually closing the soil in the steel pipe in the placement to the support layer (a predetermined layer in the ground where the pile is to be placed).
  • the pile peripheral surface and pile tip ground are loosened by loosening the pile peripheral surface and pile ground. Resistance can be reduced.
  • this digging method the frictional force around the pile surface is reduced due to the effect of loosening the ground during construction, so the support force after construction of steel pipe piles is more common than the above-mentioned hammering / vibration method or rotary press-fitting method. There is a problem that it is small.
  • Non-Patent Document 1 describes providing a reinforcing band at the tip of the pile. By providing this reinforcing band, the pile peripheral surface resistance can be reduced and the pile can be driven easily.
  • Patent Document 1 and patent document 2 the steel pipe pile which can arrange
  • the construction method is disclosed.
  • Patent Document 3 discloses a steel pipe pile provided with spiral ribs and excavation tools on the outer periphery
  • Patent Document 4 discloses a steel pipe pile provided with protrusions on the inner and outer surfaces
  • Patent Document 5 discloses excavation at the tip.
  • a steel pipe pile provided with a bit is disclosed.
  • Japanese Unexamined Patent Publication No. 62-170614 Japanese Unexamined Patent Publication No. 11-323919 Japanese Unexamined Patent Publication No. 6-257144 Japanese Unexamined Patent Publication No. 2006-207320 Japanese Unexamined Patent Publication No. 9-291529
  • the ratio of the pile tip resistance is larger than the pile peripheral surface resistance, and the steel pipe pile provided with the reinforcing band described in Non-Patent Document 1 is used to reduce the pile tip resistance. Since the effect is not exhibited, the ground resistance may not be sufficiently reduced. Similarly, even when the steel pipe pile described in Patent Document 3 is used, since the effect of reducing the pile tip resistance is not exhibited, the ground resistance may not be sufficiently reduced.
  • the construction of steel pipe piles described in Patent Documents 1, 2, and 4 is an invention directed to a construction method for constructing a consolidation part after digging, and an increase in load transmission force at the consolidation part after construction. Although it is effective, it is a construction that does not exhibit the effect of improving workability. Furthermore, when the steel pipe pile described in Patent Document 5 is used, the excavability at the time of rotary press-fit is improved, but the steel pipe that does not exhibit the effect of suppressing the blockage of the tip of the steel pipe pile or increasing the supporting force. It is a pile.
  • the present invention aims at providing a steel pipe pile that reduces the construction load by suppressing the occurrence of clogging of the tip particularly during construction of the steel pipe pile, improves the workability, and exhibits a large vertical support force after construction. To do.
  • a steel pipe pile according to an aspect of the present invention is a steel pipe pile used as a foundation pile of a structure, and a cylindrical basic steel pipe having a cavity inside; An inner peripheral steel pipe disposed on the inner surface of the tip end portion of the base shaft steel pipe so as to protrude from the tip end portion of the base end steel pipe.
  • the outer diameter of the basic steel pipe is larger than the outer diameter of the inner peripheral steel pipe.
  • the length of the protruding portion of the inner peripheral steel pipe protruding from the basic steel pipe is preferably equal to or less than the outer diameter of the basic steel pipe.
  • the inner peripheral steel pipe is composed of a plurality of steel pipes having different inner diameters; the plurality of steel pipes are arranged so as to protrude from respective tip portions; It is preferable that the inner diameter of the steel pipe is larger from the steel pipe arranged on the distal end side toward the steel pipe arranged on the base steel pipe side.
  • the outer diameter of the plurality of steel pipes is larger from the steel pipe arranged on the distal end side toward the steel pipe arranged on the base steel pipe side.
  • the steel pipe pile as described in said (1) is provided with the some excavation blade at the front-end
  • the steel pipe pile according to (1) further includes a cylindrical outer peripheral steel pipe having a cavity therein; and the outer peripheral steel pipe is preferably provided on an outer peripheral surface of the base steel pipe.
  • the basic steel pipe is arranged so as to protrude with respect to the outer peripheral steel pipe.
  • the steel pipe pile described in the above (1) at the time of construction of the steel pipe pile, by suppressing the blockage of the tip in particular, the construction load is reduced, the workability is improved, and a large vertical bearing capacity is provided after construction.
  • the steel pipe pile which exhibits can be provided.
  • the hammering / vibration method or rotary press-fitting method which is the construction method of steel pipe piles
  • the ground resistance during construction, in particular, the resistance at the tip of the steel pipe piles is reduced, and the construction load is reduced, so that construction can be performed with small construction heavy machinery. Is possible.
  • the construction period can be shortened, and the construction cost of the foundation pile can be reduced.
  • the size of the steel pipe pile used for the foundation pile such as a building or a bridge structure can be reduced and used.
  • the number of steel pipe piles can be reduced. Thereby, the construction cost can be reduced.
  • the inner diameter of the base steel pipe is larger than the inner diameter of the inner peripheral steel pipe, the earth and sand that has entered from the inner peripheral steel pipe enter the basic steel pipe with the larger inner diameter.
  • the steel pipe pile described in the above (3) since the length of the protruding portion protruding from the basic steel pipe of the inner peripheral steel pipe is equal to or less than the outer diameter of the basic steel pipe, the inner peripheral steel pipe is completely blocked Can be suppressed.
  • the steel pipe pile described in the above (4) since the inner diameters of the plurality of inner peripheral steel pipes are larger from the tip toward the basic steel pipe, the earth and sand that has entered from the inner peripheral steel pipe enters the inner peripheral steel pipe having a large inner diameter. .
  • the steel pipe pile as described in said (6) since a some excavation blade is provided in the front-end
  • the steel pipe pile as described in said (7) since the outer peripheral steel pipe is provided, the frictional force between the steel pipe pile and the ground above the outer peripheral steel pipe can be reduced. Therefore, it becomes possible to make the flow of the earth and sand discharged
  • the steel pipe pile described in the above (8) since the outer peripheral steel pipe is arranged so that the tip end portion of the base steel pipe protrudes, the outer shape becomes larger step by step, so that the outer pipe is discharged to the outer peripheral portion of the steel pipe pile. It is possible to make the flow of earth and sand smoother.
  • FIG. 1A is a side cross-sectional view of a steel pipe pile 1 according to the first embodiment of the present invention
  • FIG. 1B is a plan view of the steel pipe pile 1.
  • the steel pipe pile 1 includes a cylindrical basic steel pipe 10 having a cavity inside, and an inner peripheral steel pipe 15 having a cavity inside.
  • the inner peripheral steel pipe 15 is provided on the inner surface of the tip end portion 10 a of the base shaft steel pipe 10 and is disposed so as to protrude from the tip end portion 10 a of the base shaft steel pipe 10.
  • the inner peripheral steel pipe 15 is fixed to the base steel pipe 10 by welding or the like, for example.
  • the distal end portion 10a of the base steel pipe 10 is downward in FIG. 1A.
  • the inner diameter Di of the inner peripheral steel pipe 15 of the steel pipe pile 1 is shorter than the inner diameter D of the basic steel pipe 10.
  • the inner peripheral steel pipe 15 is arranged on the inner surface of the distal end portion 10a of the base steel pipe 10.
  • the tip opening ratio R is 90 to 95%. It is preferable.
  • the tip protrusion length L is It is preferable that the length is equal to or less than the pile diameter of the steel pipe pile 1.
  • the pile diameter of the steel pipe pile 1 is the pile diameter (outer diameter) Da of the basic steel pipe 10.
  • the tip opening ratio R it is desirable to set the tip opening ratio R to a small value in order to prevent soil and sand from entering the steel pipe pile 1 during construction.
  • the tip opening ratio R it is necessary to increase the plate thickness of the inner peripheral steel pipe 15 (thickness of the steel pipe). If the plate
  • the length L1 of the inner peripheral steel pipe 15 is preferably not more than three times the inner diameter Di of the inner peripheral steel pipe 15 of the steel pipe pile 1.
  • the length L1 of the inner peripheral steel pipe 15 is set short, the effect of suppressing the intrusion of earth and sand into the steel pipe pile 1 is reduced. As a result, the inner circumferential steel pipe 15 is clogged significantly and the work load cannot be reduced.
  • the length L1 of the inner peripheral steel pipe 15 is preferably 0.2 times or more the inner diameter Di of the inner peripheral steel pipe 15 of the steel pipe pile 1.
  • FIG. 2 is a diagram showing the relationship between the construction resistance ratio and L1 / Di (protrusion length ratio) when construction is performed by a method of press-fitting while rotating a pile in the ground.
  • the construction resistance ratio is a ratio of the resistance for pushing the pile of this embodiment having a tip opening ratio R of 95% to the resistance for pushing a general straight steel pipe pile.
  • the range of the length L1 of the inner peripheral steel pipe 15 is preferably 0.2 ⁇ (L1 / Di) ⁇ 3.0, more preferably 0.4 ⁇ (L1 / Di) ⁇ 2.0, 0.8 ⁇ (L1 / Di) ⁇ 1.4 is the most preferable value. This preferable range does not change if the tip opening ratio R is 90 to 95%.
  • the tip protrusion length L it is preferable that the relationship of L ⁇ 0.5 ⁇ L1 is established in relation to the length L1 of the inner peripheral steel pipe 15 so that the inner peripheral steel pipe 15 is more stable.
  • the angle ⁇ formed by the line connecting the tip of the inner peripheral portion of the inner peripheral steel pipe 15 and the tip of the outer peripheral portion of the basic steel pipe 10 and the inner surface of the inner peripheral steel pipe 15 is an angle of 45 degrees or less.
  • the tip protrusion length L is preferably (Da-Di) or more. Therefore, it is preferable to select the tip protrusion length L so as to satisfy (Da ⁇ Di) ⁇ L ⁇ 0.5 ⁇ L1.
  • FIG. 3 is an explanatory view showing a construction section during construction of a conventional steel pipe pile 100.
  • FIG. 4 is explanatory drawing which shows the construction cross section at the time of constructing the steel pipe pile 1 concerning this Embodiment. Since the structure of the steel pipe pile 1 shown in FIG. 4 is the same structure as the steel pipe pile 1 shown in FIG. 1A, the description is abbreviate
  • the conventional steel pipe pile 100 shown in FIG. 3 is a cylindrical single steel pipe which has a cavity inside.
  • an inner peripheral steel pipe 15 is provided on the inner surface of the distal end portion 10 a of the basic steel pipe 10.
  • the opening area of the steel pipe pile 1 is narrow, and as shown by the arrow B in FIG. And the intrusion of earth and sand into the steel pipe during construction is suppressed.
  • the inner diameters of the basic steel pipe 10 and the inner peripheral steel pipe 15 are different.
  • the earth and sand in the steel pipe Increase in frictional force (arrow C in FIG. 4) on the inner surface of the steel pipe pile 1 due to expansion is suppressed. Therefore, when the steel pipe pile 1 is constructed, an increase in construction load due to generation of a large ground resistance is suppressed, and workability is improved. Furthermore, at the time of construction of the steel pipe pile 1, as shown by an arrow B1 in FIG. 4, earth and sand are discharged (displaced) to the outer peripheral portion of the steel pipe pile 1 together with excavation.
  • the steel pipe pile 1 is a wedge shape in which the inner diameter is narrowed toward the tip 1a
  • the steel pipe pile 1 is constructed by applying rotation and vibration perpendicularly to the ground, for example, While suppressing intrusion of earth and sand inside, earth and sand can be discharged to the outer peripheral part of the steel pipe pile 1.
  • the ground (sediment) density in the steel pipe pile 1 can be reduced, and the ground density of the outer peripheral part of the steel pipe pile 1 can be increased.
  • workability at the time of building a building, a bridge structure, etc. improves.
  • the supporting force of the foundation pile (steel pipe pile 1) to be used increases, the size reduction and number reduction of the foundation pile to be used are implement
  • FIG. 5 is a side sectional view of the steel pipe pile 20 according to the second embodiment of the present invention.
  • the steel pipe pile 20 has a cylindrical basic steel pipe 10 having a cavity inside, a cylindrical first inner peripheral steel pipe (steel pipe) 24 having a cavity inside, and a cavity inside.
  • a cylindrical second inner peripheral steel pipe (steel pipe) 25 is provided.
  • the first inner peripheral steel pipe 24 is disposed so as to protrude from the tip end portion 10a of the base shaft steel pipe 10 (the end portion below the base shaft steel pipe 10 in FIG. 5).
  • the 2nd inner peripheral steel pipe 25 is arrange
  • FIG. 5 The inner diameters D1 and D2 of the first and second inner peripheral steel pipes 24 and 25 are directed from the second inner peripheral steel pipe 25 disposed on the tip 20 side to the first inner peripheral steel pipe 24 disposed on the base steel pipe 10 side. Big. Specifically, the inner diameter D1 of the first inner circumferential steel pipe 24 is smaller than the inner diameter D of the base steel pipe 10, and the inner diameter D2 of the second inner circumferential steel pipe 25 is smaller than the inner diameter D1 of the first inner circumferential steel pipe 24. . That is, the steel pipe pile 20 has a configuration in which the base steel pipe 10, the first inner peripheral steel pipe 24, and the second inner peripheral steel pipe 25 are sequentially projected toward the tip 20a (downward in FIG. 5).
  • the steel pipes are fixed to each other by welding, for example.
  • the diameter corresponding to the inner diameter Di of the inner peripheral steel pipe 15 in FIG. 1A is a value obtained by averaging D1 and D2 (D1 + D2) / 2.
  • the length corresponding to the length L1 of the inner peripheral steel pipe 15 in FIG. 1A is L2 shown in FIG.
  • the tip of the inner peripheral portion of the inner peripheral steel pipe 15 in FIG. 1A is a point A shown in FIG.
  • the inner peripheral steel pipe 15 has a plate thickness of 24 to achieve a tip opening ratio of 90 to 95% based on the first embodiment. It becomes very thick with ⁇ 48mm. If the plate
  • the steel pipe pile 20 when the steel pipe pile 20 is used, the steel pipe pile according to the first embodiment is provided because the steel pipe pile 20 includes the steel pipe 10, the first inner peripheral steel pipe 24, the second inner peripheral steel pipe 25, and the three steel pipes. Compared to 1, the thickness of each inner peripheral steel pipe 24, 25 is reduced. Thereby, processing of the inner peripheral steel pipes 24 and 25 and welding labor can be reduced. Further, since the cross-sectional area of the second inner peripheral steel pipe 25 affects the tip resistance during construction, the tip resistance can also be reduced. Furthermore, since the shape of the steel pipe pile 20 is a wedge-shaped shape in which the inner diameter is narrowed toward the tip 20a, the effect of discharging the ground (sediment) to the outer periphery of the steel pipe pile at the time of construction becomes remarkable. The supporting force can be increased.
  • FIG. 6 is a side sectional view of the steel pipe pile 30 according to the third embodiment of the present invention.
  • the steel pipe pile 30 includes a cylindrical basic steel pipe 10 having a cavity inside and a cylindrical inner peripheral steel pipe 34 having a cavity inside.
  • the inner peripheral steel pipe 34 is disposed so as to protrude from the distal end portion 10a of the basic steel pipe 10 (an end portion below the basic steel pipe 10 in FIG. 6).
  • tip part 34a of the inner peripheral steel pipe 34 is shape
  • the thickness of the inner peripheral steel pipe 34 is thicker than the thickness of the base steel pipe 10.
  • the structure of the steel pipe pile 30 is the same as that of the steel pipe pile 1 according to the above-described embodiment, and only the shape of the distal end portion 34a of the inner peripheral steel pipe 34 is different. Therefore, the preferable opening ratio of the tip of the steel pipe pile 30 is the same as that of the steel pipe pile 1, and the description thereof is omitted here.
  • the inner peripheral steel pipe when the inner peripheral steel pipe is one stage, the thickness of the inner peripheral steel pipe is increased, and the resistance at the tip of the steel pipe pile is increased.
  • the inner peripheral steel pipe 34 when the steel pipe pile 30 is used, the inner peripheral steel pipe 34 is thick, but the tip end 34a is formed in a tapered shape, so that the resistance of the tip end 34a of the inner peripheral steel pipe 34 during construction is reduced. be able to.
  • the intrusion of earth and sand into the steel pipe pile 30 can be more efficiently suppressed, and the earth and sand can be discharged to the outer peripheral portion of the steel pipe pile 30. That is, the sediment density in the steel pipe pile 30 can be reduced, and the ground density of the outer peripheral part of the steel pipe pile 30 can be increased.
  • tip part of the inner peripheral steel pipe 15 of the steel pipe pile 1 of the said 1st Embodiment, and the steel pipe pile 20 concerning the said 2nd Embodiment tip part of the inner peripheral steel pipe 15 of the steel pipe pile 1 of the said 1st Embodiment, and the steel pipe pile 20 concerning the said 2nd Embodiment, the 1st inner peripheral steel pipe 24 or the 2nd inner peripheral steel pipe. It is also conceivable to adopt a configuration in which the outer edge of the tip of 25 has a tapered shape.
  • FIG. 7 is a side sectional view of a steel pipe pile 40 according to the fourth embodiment of the present invention.
  • the steel pipe pile 40 includes a cylindrical basic shaft steel pipe 10 having a cavity inside, an inner peripheral steel pipe 15 having a cavity inside, and an outer peripheral steel pipe 44.
  • the inner peripheral steel pipe 15 is provided on the inner surface of the tip end portion 10a of the base shaft steel pipe 10 (the lower portion in FIG. 7 is the tip end portion), and is disposed so as to protrude from the tip end portion 10a of the base shaft steel pipe 10.
  • the outer peripheral steel pipe 44 is disposed on the outer peripheral surface in the vicinity of the distal end portion 10 a of the basic steel pipe 10.
  • the basic steel pipe 10 is configured to protrude from the outer peripheral steel pipe 44 toward the distal end portion 10a (downward in FIG. 7).
  • the configuration of the steel pipe pile 40 is the same as that of the steel pipe pile 1 according to the first embodiment, except for the configuration including the outer peripheral steel pipe 44.
  • the flow of earth and sand discharged to the outer peripheral portion of the steel pipe pile 40 is The steel pipe 44 is directed outward from the steel pipe pile 40. Thereby, there exists an effect that the flow of earth and sand becomes smoother. Moreover, the area which contributes to the supporting force at the time of construction increases with installation of the outer periphery steel pipe 44, and the improvement of a supporting force is implement
  • FIG. 8A and 8B are explanatory views of a steel pipe pile 50 according to the fifth embodiment of the present invention, FIG. 8A is a side sectional view, and FIG. 8B is a plan view.
  • the steel pipe pile 50 is disposed in the same manner as in the fourth embodiment, the cylindrical base steel pipe 10 having a cavity inside, the cylindrical inner peripheral steel pipe 54 having a cavity inside.
  • the outer peripheral steel pipe 44 is provided. In the present embodiment, the outer peripheral steel pipe 44 is not necessarily provided.
  • the inner peripheral steel pipe 54 is provided on the inner surface of the tip end portion 10 a of the base shaft steel pipe 10 and is disposed so as to protrude from the tip end portion 10 a of the base shaft steel pipe 10.
  • the excavation blade 55 is attached to the front-end
  • the excavation blades 55 are arranged at equal intervals (90 ° intervals) at four locations on the circumference of the circle.
  • the excavation blades 55 are arranged at four locations, but it is desirable to install them with suitable arrangement locations and arrangement numbers as necessary.
  • the steel pipe pile construction method mainly includes the hammering / vibration method or the rotary press-in method, but the use of the hammering / vibration method is restricted in places where noise / vibration is restricted, so the rotary press-in method is used.
  • the steel pipe pile 50 concerning this Embodiment is a steel pipe pile of the form suitable for the rotary press-fit method, and construction of the steel pipe pile 50 is performed by excavating the ground with the excavation blade 55 at the time of rotation.
  • the steel pipe pile 50 according to the present embodiment is constructed by using the rotary press-fitting method, the excavation of the ground can be performed efficiently, and the workability can be improved as in the above-described embodiments. Improvement and reduction of construction costs are realized.
  • the present invention relates to a steel pipe pile used for a foundation pile in the field of civil engineering and construction such as a building or a bridge structure.
  • the present invention can be applied to steel pipe piles constructed by a hammering / vibration method or a rotary press-fitting method.

Abstract

 この鋼管杭は、構造物の基礎杭として用いられる鋼管杭であって、内部に空洞を有する円筒形状の基軸鋼管と;内部に空洞を有し、前記基軸鋼管の先端部の内面に設けられ、前記基軸鋼管の先端部から突出するように配置される内周鋼管と;を備え、前記基軸鋼管の内径が前記内周鋼管の内径より大きい。

Description

鋼管杭
 本発明は、建築物や橋梁構造物等の土木建築分野の基礎杭に使用される鋼管杭に関する。特に、打撃・振動工法または回転圧入工法により施工する鋼管杭に関する。
 本願は、2010年01月19日に、日本に出願された特願2010-008841号に基づき優先権を主張し、その内容をここに援用する。
 例えば建築物や橋梁構造物等の土木建築分野の基礎杭に使用される鋼管杭の施工方法としては、打撃・振動工法、回転圧入工法、中掘り工法等が知られている。これら鋼管杭の施工においては、施工時の地盤抵抗を低減し、かつ、施工後に大きな支持力を発揮することが重要である。特に、施工時の地盤抵抗を低減させると、施工荷重が低下するため、比較的小型の施工機械によって施工することが可能となる。また、施工を容易に実施できるため、内部掘削やエア噴射等の補助工法が不要となり、施工期間を短縮化することも可能である。
 鋼管杭の施工時の地盤抵抗は、杭周面抵抗と杭先端抵抗とに分類される。杭周面抵抗とは、施工時の鋼管杭の外周面と地盤との摩擦力に起因して生じる抵抗力であり、杭打設長が長くなると次第に増加する傾向にある。一方、杭先端抵抗は施工初期段階では鋼管杭の純断面積での支圧抵抗のみであるが、杭打設長が長くなると鋼管杭内部に土砂が侵入し鋼管杭の内周面と地盤との摩擦力が増加する。その結果、最終的に鋼管杭内部に土砂が閉塞した状態に至る。この状態では鋼管杭の全断面積で地盤に抵抗するため、極めて大きな抵抗力が生じることとなる。
 一般に、打撃・振動工法や回転圧入工法では、鋼管杭を振動させたり、回転させたりすることにより、杭周面の摩擦力を低減させながら施工を行う。杭周面抵抗は鋼管杭の振動・回転により低減させることは可能であるが、杭先端抵抗については、鋼管杭の打撃・振動および回転によっては低減することができない。打撃・振動工法における支持力は、支持層(杭を打設すべき地盤における所定の層)までの打設において徐々に鋼管内の土砂が閉塞することにより確保されることが期待されている。しかしながら、長尺である鋼管杭を用いて施工を行う場合には、鋼管杭が支持層に至る前に鋼管先端が閉塞して高止まりを生じたり、地盤条件によっては所定の支持層まで鋼管杭を打設しても先端閉塞が不十分であるために計画した支持力が発揮できないという問題が発生する。
 一方、中掘り工法では、鋼管内部に配置した掘削オーガーで地盤を切削・排土しながら鋼管杭を圧入するために、杭周面および杭先端の地盤を緩めることにより杭周面抵抗および杭先端抵抗を低減させることができる。しかし、この中掘り工法では、施工時に地盤を緩めた影響により杭周面摩擦力が小さくなるために、鋼管杭を施工した後の支持力は上記打撃・振動工法や回転圧入工法と比べ一般的に小さいという問題点がある。また、施工した鋼管杭の先端支持力を発揮させるためには、鋼管内の土砂を全て排出・洗浄した後にモルタル等を注入して根固め部を築造する必要がある。
 杭周面抵抗を低減させるための方法として、例えば非特許文献1には杭の先端に補強バンドを設けることが記載されている。この補強バンドを設けることにより、杭周面抵抗の低減が図られ、杭の打ち込みが容易になる。
 また、特許文献1および特許文献2には、中掘り工法を対象として、鋼管杭先端に外周鋼管を配置し、施工後の先端根固め部での荷重伝達力を増加させることが可能な鋼管杭の施工法が開示されている。また、特許文献3には外周にスパイラルリブと掘削バイトとを設けた鋼管杭が開示され、特許文献4には内外面に突起を設けた鋼管杭が開示され、特許文献5には先端に掘削ビットを設けた鋼管杭が開示されている。
日本国特開昭62-170614号公報 日本国特開平11-323919号公報 日本国特開平6-257144号公報 日本国特開平2006-207320号公報 日本国特開平9-291529号公報
道路橋示方書・同解説IV下部構造編 社団法人日本道路協会424頁~427頁
 しかしながら、打撃・振動工法や回転圧入工法においては、杭先端抵抗の割合が杭周面抵抗に比べ大きく、上記非特許文献1に記載の補強バンドを設けた鋼管杭では杭先端抵抗の低減には効果を発揮しないため、地盤抵抗の低減が十分に図られない可能性がある。また、同様に、上記特許文献3に記載の鋼管杭を用いた場合も、杭先端抵抗の低減には効果を発揮しないため、地盤抵抗の低減が十分に図られない可能性がある。
 また、上記特許文献1、2および4に記載の鋼管杭の施工は、中掘り後に根固め部を築造する工法を対象とした発明であり、施工後の根固め部での荷重伝達力の増加には効果を発揮するが、施工性の向上には効果を発揮しない施工である。さらに、上記特許文献5に記載の鋼管杭を用いる場合、回転圧入時の掘削性は向上するが、鋼管杭の先端が閉塞するのを抑制することや支持力の増加には効果を発揮しない鋼管杭である。
 そこで、本発明は、鋼管杭の施工時に特に先端閉塞の発生を抑制することにより施工荷重を低下し、施工性を向上させると共に、施工後に大きな鉛直支持力を発揮する鋼管杭の提供を目的とする。
 本発明は、上記課題を解決して係る目的を達成するために以下の手段を採用した。
 すなわち、
(1)本発明の一態様に係る鋼管杭は、構造物の基礎杭として用いられる鋼管杭であって、内部に空洞を有する円筒形状の基軸鋼管と;内部に空洞を有し、前記基軸鋼管の先端部の内面に設けられ、前記基軸鋼管の先端部から突出するように配置される内周鋼管と;を備え、前記基軸鋼管の内径が前記内周鋼管の内径より大きい。
(2)上記(1)に記載の鋼管杭は、前記基軸鋼管の外径が、前記内周鋼管の外径より大きいことが好ましい。
(3)上記(1)に記載の鋼管杭は、前記基軸鋼管から突出している前記内周鋼管の突出部の長さが、前記基軸鋼管の外径以下であることが好ましい。
(4)上記(1)に記載の鋼管杭は、前記内周鋼管が、内径の異なる複数の鋼管で構成され;前記複数の鋼管が、それぞれの先端部から突出するように配置され;前記複数の鋼管の内径が、先端側に配置された前記鋼管から前記基軸鋼管側に配置された前記鋼管に向かって大きい;ことが好ましい。
(5)上記(4)に記載の鋼管杭は、前記複数の鋼管の外径が、先端側に配置された前記鋼管から前記基軸鋼管側に配置された前記鋼管に向かって大きいことが好ましい。
(6)上記(1)に記載の鋼管杭は、前記内周鋼管の先端部には複数の掘削刃が設けられていることが好ましい。
(7)上記(1)に記載の鋼管杭は、内部に空洞を有する円筒状の外周鋼管をさらに備え;前記外周鋼管が、前記基軸鋼管の外周面に設けられていることが好ましい。
(8)上記(7)に記載の鋼管杭では、前記基軸鋼管が、前記外周鋼管に対して突出するように配置されていることが好ましい。
 上記(1)に記載の鋼管杭によれば、鋼管杭の施工時に、特に先端が閉塞するのを抑制することにより、施工荷重を低下させ、施工性を向上させると共に、施工後に大きな鉛直支持力を発揮する鋼管杭を提供することができる。即ち、鋼管杭の施工方法である打撃・振動工法または回転圧入方法において、施工時の地盤抵抗、特に、鋼管杭の先端の抵抗を低減し、施工荷重を低減させることにより、小さな施工重機によって施工が可能となる。さらには施工期間の短縮も実現することができ、基礎杭の施工コストの低減が図られる。また、上記(1)に記載の鋼管杭の施工後には、大きな支持力を発揮できることから、例えば建築物や橋梁構造物等の基礎杭に用いる鋼管杭の寸法の縮小が図られるとともに、使用する鋼管杭の本数を低減させることができる。これにより、建設コストの低減が可能となる。
 さらには、基軸鋼管の内径が、内周鋼管の内径より大きいため、内周鋼管から侵入した土砂は、内径の大きい基軸鋼管に侵入する。このとき、鋼管杭内に侵入した土砂は、基軸鋼管の内壁面に向かって進むため、鋼管内での土砂の膨張による鋼管杭の内面における摩擦力の増加を抑えることができる。
 上記(2)に記載の鋼管杭によれば、基軸鋼管の外径が、内周鋼管の外径より大きいため、鋼管杭の外周部に排土される土砂が、鋼管杭の外周に沿って流れる。したがって、土砂の流れが円滑になるという効果を得ることができる。
 上記(3)に記載の鋼管杭によれば、内周鋼管の基軸鋼管から突出している突出部の長さが、基軸鋼管の外径以下であるため、内周鋼管の内部が、完全に閉塞するのを抑制することができる。
 上記(4)に記載の鋼管杭によれば、複数の内周鋼管の内径が、先端から基軸鋼管に向かって大きいため、内周鋼管から侵入した土砂は、内径の大きい内周鋼管に侵入する。このとき、鋼管杭内に侵入した土砂は、内周鋼管の内壁面に向かって進むため、鋼管内での土砂の膨張による鋼管杭の内面における摩擦力の増加を抑えることができる。
 上記(5)に記載の鋼管杭によれば、複数の内周鋼管の外径が、先端から基軸鋼管に向かって大きいため、鋼管杭の外周部に排土される土砂が、鋼管杭の外周に沿って流れる。したがって、土砂の流れが円滑になるという効果を得ることができる。
 上記(6)に記載の鋼管杭によれば、内周鋼管の先端部には複数の掘削刃が設けられるため、効率良く地盤を掘削することができる。
 上記(7)に記載の鋼管杭によれば、外周鋼管を備えているため、外周鋼管より上方の鋼管杭と地盤との摩擦力を低減させることができる。したがって、鋼管杭の外周部に排土される土砂の流れを円滑にすることが可能となる。
 上記(8)に記載の鋼管杭によれば、外周鋼管は、基軸鋼管の先端部が突出するように配置されるため、段階的に外形が大きくなるので、鋼管杭の外周部に排土される土砂の流れをより円滑にすることが可能となる。
第1の実施の形態にかかる鋼管杭の側面断面図である。 第1の実施の形態にかかる鋼管杭の平断面図である。 同鋼管杭の内周鋼管の内径に対する内周鋼管の長さの割合の最適範囲を示すグラフである。 従来の鋼管杭の施工時の施工断面を示す説明図である。 鋼管杭1施工時の施工断面を示す説明図である。 第2の実施の形態にかかる鋼管杭の側面断面図である。 第3の実施の形態にかかる鋼管杭の側面断面図である。 第4の実施の形態にかかる鋼管杭の側面断面図である。 第5の実施の形態にかかる鋼管杭の側面断面図である。 第5の実施の形態にかかる鋼管杭の平断面図である。
 以下、本発明の実施の形態について図面を参照して説明する。本明細書および図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 図1Aは、本発明の第1の実施の形態にかかる鋼管杭1の側面断面図であり、図1Bは、鋼管杭1の平面図である。図1Aに示すように、鋼管杭1は、内部に空洞を有する円筒形状の基軸鋼管10と、内部に空洞を有する内周鋼管15とを備えている。内周鋼管15は、基軸鋼管10の先端部10aの内面に設けられ、基軸鋼管10の先端部10aから突出するように配置されている。内周鋼管15は例えば溶接等によって基軸鋼管10に固着されている。ここで、基軸鋼管10の先端部10aとは、図1Aにおいて下方である。
 鋼管杭1の内周鋼管15の内径Diは基軸鋼管10の内径Dより短い。これにより、基軸鋼管10の先端部10aの内面に内周鋼管15が配置された構成となっている。ここで、内周鋼管15の内径Diを基軸鋼管10の内径Dで除した値(Di/D(%))を先端開口率Rとした場合に、先端開口率Rは90~95%であることが好ましい。また、鋼管杭1においては、内周鋼管15の基軸鋼管10から突出している突出部(図1A中の15a)の長さを先端突出長さLとした場合に、先端突出長さLは、鋼管杭1の杭径以下の長さであることが好ましい。ここで、鋼管杭1の杭径とは、基軸鋼管10の杭径(外径)Daである。
 鋼管杭1の施工性および支持力の両方を向上させるためには、上記先端開口率Rと先端突出長さLを好ましい値に規定することが必要である。先端開口率Rについては、施工時に土砂が鋼管杭1内に侵入するのを抑制するために、先端開口率Rを小さい値に設定することが望ましい。先端開口率Rを小さくするには、内周鋼管15の板厚(鋼管の厚み)を厚くする必要がある。内周鋼管15の板厚を厚くすると、鋼管杭1の先端1aの断面積が大きくなり、鋼管杭1の先端1aの抵抗が増加してしまう。そこで、土砂が鋼管杭1内に侵入するのを、ある程度抑制すると共に、鋼管杭1の先端1aの抵抗の増加を抑えるという観点から、上述したように、先端開口率Rは90~95%であることが好ましい。
 内周鋼管15の長さL1については、施工時の内周鋼管15の損傷を防止し、内周鋼管15内での土砂の閉塞が助長されるために、比較的短い長さを設定する必要がある。一般的な地盤では、鋼管杭1の杭径の3~5倍の長さの内周鋼管15の長さL1を有する鋼管杭1を硬い地盤に施工すると、鋼管杭1の先端1aの閉塞が発生する。すなわち、内周鋼管15の長さL1を鋼管杭1の内周鋼管15の内径Diの3倍以下の長さとすることにより、内周鋼管15内での土砂等により、鋼管杭1の先端1aが完全に閉塞するのを抑制することが可能となる。したがって、内周鋼管15の長さL1は、鋼管杭1の内周鋼管15の内径Diの3倍以下の長さであることが好ましい。一方、内周鋼管15の長さL1を短く設定すると、鋼管杭1内に土砂が侵入するのを抑制する効果が低減する。その結果、内周鋼管15内における閉塞が顕著に発生し施工荷重の低下が図られなくなってしまう。そこで内周鋼管15の長さL1は、鋼管杭1の内周鋼管15の内径Diの0.2倍以上であることが好ましい。図2は、地盤中に杭を回転させながら圧入していく方法で施工した際の、施工抵抗比とL1/Di(突出長比)の関係を示した図である。施工抵抗比は、先端開口率Rが95%の本実施形態の杭の押し込むための抵抗の、一般的なストレートの鋼管杭を押し込むための抵抗に対する比率である。施工抵抗を考えると、内周鋼管15の長さL1の範囲は0.2≦(L1/Di)≦3.0が好ましく、0.4≦(L1/Di)≦2.0がより好ましく、0.8≦(L1/Di)≦1.4が最も好ましい値である。先端開口率Rが90~95%であればこの好ましい範囲は変わらない。
 先端突出長さLに関しては、内周鋼管15の長さL1との関係では、内周鋼管15がより安定しやすいように、L≦0.5×L1の関係が成立することが好ましい。また、鋼管杭1の内周鋼管15の内径Di、基軸鋼管10の杭径(外径)Daとの関係では、効率よく鋼管内に侵入する土砂を確実に外周に沿って流すために、以下の関係であることが好ましい。すなわち、内周鋼管15の内周部の先端と基軸鋼管10の外周部の先端とを結んだ線と、内周鋼管15の内面とのなす角度θが、45度以下の角度となっていることが望ましく、先端突出長さLが(Da-Di)以上であることが好ましい。したがって、(Da-Di)≦L≦0.5×L1を満たすように先端突出長さLを選択することが好ましい。
 以下、従来の鋼管杭100の施工時と本実施の形態にかかる鋼管杭1の施工時とについて図面を参照して比較し、本実施の形態にかかる鋼管杭1を用いて施工を行う場合の作用効果について説明する。図3は従来の鋼管杭100施工時の施工断面を示す説明図である。また、図4は本実施の形態にかかる鋼管杭1を施工する時の施工断面を示す説明図である。図4に示す鋼管杭1の構成は図1Aで示した鋼管杭1と同様の構成であるため、その説明は省略する。また、図3に示す従来の鋼管杭100は内部に空洞を有する円筒形状の単一の鋼管である。
 図3に示すように、従来の鋼管杭100の施工時には(鋼管杭の施工方向を図3の矢印Aで示す)、図3の矢印Bで示すように土砂が流れ、鋼管110内に土砂が侵入する。土砂と鋼管110の内面との摩擦により、次第に土砂が締め固まり鋼管110の先端が閉塞状態となる。原地盤の密度が高い場合には、掘削された土砂が鋼管110内に侵入する際に膨張しようとするが、鋼管110の内面によって拘束されるため、鋼管110の内面との間で高い摩擦力(図3の矢印C)が発揮される。従って施工荷重が非常に大きくなり支持層に鋼管110が到達する前に鋼管110の先端が閉塞してしまう等、施工性の面で問題がある。
 一方、図4に示すように、基軸鋼管10の先端部10aの内面に内周鋼管15が設けられている。このため、本実施の形態にかかる鋼管杭1の施工時には(鋼管杭の施工方向を図4の矢印Aで示す)、鋼管杭1の開口面積が狭く、図4の矢印Bで示すように土砂が流れ、施工時の鋼管内への土砂の侵入が抑制される。さらに、基軸鋼管10と内周鋼管15の内径は異なっている。具体的には、鋼管杭1上方(施工方向を下方とした場合)に配置された基軸鋼管10の内径Dが、内周鋼管15の内径Diより大きくなっているため、鋼管内での土砂の膨張による鋼管杭1の内面における摩擦力(図4の矢印C)の増加が抑えられる。従って、鋼管杭1を施工する時に大きな地盤抵抗が発生することによる施工荷重の増加が抑制され、施工性の向上が図られる。さらに、鋼管杭1の施工時には、図4の矢印B1に示すように、掘削と共に土砂が鋼管杭1の外周部に排土される(押しのけられる)。これにより、鋼管杭1の外周部の地盤密度が増加するので、鋼管杭1の特に先端部1a(図4における下端部)周辺の地盤が締め固まり、施工後に大きな支持力が発揮されることとなる。
 即ち、鋼管杭1の形状が、先端1aに向かって内径が小さく絞れていく楔形であるため、鋼管杭1を地盤に対し垂直に、例えば回転・振動を与えて施工することで、鋼管杭1内への土砂の侵入を抑制すると共に、鋼管杭1の外周部に土砂を排土することができる。これにより、鋼管杭1内の地盤(土砂)密度を低減させ、鋼管杭1の外周部の地盤密度を増加させることができる。これにより、建築物や橋梁構造物等を建造する際の施工性が向上する。さらに、使用する基礎杭(鋼管杭1)の支持力が増加するため、使用する基礎杭の寸法の縮小や本数の低減が実現され、コスト削減が図られる。
 以上、本発明の実施の形態の一例を説明したが、本発明は図示の形態に限定されない。当業者であれば、請求の範囲に記載された思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。以下には本発明の他の実施の形態について図面を参照して説明する。上記第1の実施の形態と同一の構成要素については同一の符号を用いて説明する。
 図5は、本発明の第2の実施の形態にかかる鋼管杭20の側面断面図である。図5に示すように、鋼管杭20は、内部に空洞を有する円筒形状の基軸鋼管10と、内部に空洞を有する円筒形状の第1の内周鋼管(鋼管)24と、内部に空洞を有する円筒形状の第2の内周鋼管(鋼管)25とを備えている。
 第1の内周鋼管24は、基軸鋼管10の先端部10a(図5中の基軸鋼管10下方の端部)から突出するように配置されている。また、第2の内周鋼管25は、第1の内周鋼管24の先端部24a(図5中下方)から突出するように配置されている。
 第1,第2の内周鋼管24,25の内径D1,D2は、先端20側に配置された第2の内周鋼管25から基軸鋼管10側に配置された第1内周鋼管24に向かって大きい。具体的には、第1の内周鋼管24の内径D1は、基軸鋼管10の内径Dより小さく、第2の内周鋼管25の内径D2は、第1の内周鋼管24の内径D1より小さい。即ち、鋼管杭20は、基軸鋼管10、第1の内周鋼管24及び第2の内周鋼管25が先端20aに向かって(図5中下方)順次突出した構成である。各鋼管同士の固着は例えば溶接によって行われる。このとき、図1Aでの内周鋼管15の内径Diに相当する径は、D1とD2とを平均した値である(D1+D2)/2である。図1Aでの内周鋼管15の長さL1に相当する長さは、図5に示すL2である。図1Aでの内周鋼管15の内周部の先端は図5に示す点Aである。
 例えば、鋼管杭の寸法を外径1000mm、板厚22mmとした場合に、第1の実施形態にもとづき、先端開口率を90~95%とするためには、内周鋼管15の板厚は24~48mmと非常に厚くなる。内周鋼管15の板厚が厚くなると、内周鋼管15の加工や溶接手間が大きくなる。また、施工時の先端が閉塞する前の先端抵抗力は、内周鋼管の断面積の影響を受けるために、施工時の抵抗が大きくなることがある。したがって、内周鋼管の板厚は薄い方が好ましい。そこで、鋼管杭20を用いた場合、基軸鋼管10、第1の内周鋼管24及び第2の内周鋼管25と3つの鋼管を備えているため、上記第1の実施の形態にかかる鋼管杭1に比べ、それぞれの内周鋼管24,25の板厚が薄くなる。これにより、内周鋼管24,25の加工や溶接手間を低減することができる。また、施工時の先端抵抗には、第2の内周鋼管25の断面積が影響を及ぼすために、先端抵抗も低減できる。さらには、鋼管杭20の形状が、先端20aに向かって内径が小さく絞れていく楔形形状であるため、施工時に地盤(土砂)を鋼管杭外周部に排土する効果が顕著となり、施工後の支持力を増加することができる。
 図6は、本発明の第3の実施の形態にかかる鋼管杭30の側面断面図である。図6に示すように、鋼管杭30は、内部に空洞を有する円筒形状の基軸鋼管10と、内部に空洞を有する円筒形状の内周鋼管34とを備える。
 内周鋼管34は、基軸鋼管10の先端部10a(図6中の基軸鋼管10下方の端部)から突出するように配置されている。また、内周鋼管34の先端部34aの外縁(図6中下端部外縁)が、テーパ形状となるように成形されている。さらに、内周鋼管34の板厚は、基軸鋼管10の板厚よりも厚い。
 鋼管杭30の構成は、上記実施の形態にかかる鋼管杭1と同様であり、内周鋼管34の先端部34aの形状においてのみが異なる。従って鋼管杭30における好ましい先端開口率等も鋼管杭1と同様であり、それについての説明はここでは省略する。
 上記第2の実施の形態における説明で記載したように、内周鋼管を1段とした場合には、内周鋼管の厚みが厚くなり、鋼管杭の先端の抵抗が大きくなる。しかしながら、鋼管杭30を用いた場合、内周鋼管34の厚みは厚いが、先端部34aはテーパ形状に形成されていることから、施工時の内周鋼管34の先端部34aの抵抗を低減させることができる。また、鋼管杭30内への土砂の侵入をより効率的に抑制すると共に、鋼管杭30の外周部に土砂を排土することができる。すなわち、鋼管杭30内の土砂密度を低減し、鋼管杭30外周部の地盤密度を増加させることができる。これにより、施工性の向上や施工コストの低減が実現される。上記第1の実施の形態の鋼管杭1の内周鋼管15の先端部や、上記第2の実施の形態にかかる鋼管杭20においても、第1の内周鋼管24または第2の内周鋼管25の先端部の外縁がテーパ形状となるような構成をとることも考えられる。
 図7は、本発明の第4の実施の形態にかかる鋼管杭40の側面断面図である。図7に示すように、鋼管杭40は、内部に空洞を有する円筒形状の基軸鋼管10と、内部に空洞を有する内周鋼管15と、外周鋼管44とを備えている。
 内周鋼管15は、基軸鋼管10の先端部10a(図7において下方を先端部とする)の内面に設けられ、基軸鋼管10の先端部10aから突出するように配置されている。また、外周鋼管44は、基軸鋼管10の先端部10aの近傍の外周面に配置されている。即ち、基軸鋼管10が外周鋼管44から先端部10aに向かって(図7下方)に突出するような構成となっている。鋼管杭40の構成は、外周鋼管44を備えている点以外の構成については第1の実施の形態にかかる鋼管杭1と同様の構成である。
 鋼管杭40を用いた場合、外周鋼管44より上方の鋼管杭と地盤との摩擦力を低減する効果を発揮することに加え、鋼管杭40の外周部に排土される土砂の流れが、外周鋼管44によって鋼管杭40の外方に向かう。これにより、土砂の流れがよりスムーズになるという効果がある。また、外周鋼管44の設置に伴い施工時の支持力に寄与する面積が増大し、支持力の向上が実現される。
 また、外周鋼管44の位置はこれに限らず、例えば、基軸鋼管10の先端部10aを覆うように設けられていても良い。
 図8A及び図8Bは、本発明の第5の実施の形態にかかる鋼管杭50の説明図であり、図8Aは側面断面図であり、図8Bは平面図である。図8Aに示すように、鋼管杭50は、内部に空洞を有する円筒形状の基軸鋼管10と、内部に空洞を有する円筒形状の内周鋼管54と、上記第4の実施の形態と同様に配置される外周鋼管44とを備えている。本実施形態において、外周鋼管44は必ずしも備えていなくても良い。
 内周鋼管54は、基軸鋼管10の先端部10aの内面に設けられ、基軸鋼管10の先端部10aから突出するように配置されている。また、内周鋼管54の先端部54a(図8A中の下端部)には、掘削刃55が取り付けられており、掘削刃55は、図8Bに示すように、内周鋼管54の先端部54aの円周上の4ヶ所に等間隔(90°間隔)で配置されている。なお、本実施の形態では掘削刃55は4ヶ所に配置されるものとしたが、必要に応じて好適な配置箇所・配置数でもって設置することが望ましい。
 鋼管杭の施工方法としては、主に打撃・振動工法または回転圧入工法が挙げられるが、騒音・振動規制がある場所においては、打撃・振動工法の利用は制限されるため回転圧入工法が用いられる。本実施の形態にかかる鋼管杭50は回転圧入工法に適した形態の鋼管杭であり、回転時に掘削刃55によって地盤が掘削されることで鋼管杭50の施工が行われる。
 従って、本実施の形態にかかる鋼管杭50を、回転圧入工法を用いて施工した場合には、地盤の掘削が効率的に行うことができるとともに、上述した各実施の形態と同様に施工性の向上や施工コストの低減が実現される。
 本発明は、建築物や橋梁構造物等の土木建築分野の基礎杭に使用される鋼管杭に関する。特に、打撃・振動工法または回転圧入工法により施工する鋼管杭に適用できる。
  1、20、30、40、50…鋼管杭
  10…基軸鋼管
  15…内周鋼管
  24…第1の内周鋼管
  25…第2の内周鋼管
  34…内周鋼管
  44…外周鋼管
  54…内周鋼管
  55…掘削刃

Claims (8)

  1.  構造物の基礎杭として用いられる鋼管杭であって、
     内部に空洞を有する円筒形状の基軸鋼管と;
     内部に空洞を有し、前記基軸鋼管の先端部の内面に設けられ、前記基軸鋼管の先端部から突出するように配置される内周鋼管と;
    を備え、
     前記基軸鋼管の内径が前記内周鋼管の内径より大きいことを特徴とする鋼管杭。
  2.  前記基軸鋼管の外径が、前記内周鋼管の外径より大きいことを特徴とする請求項1に記載の鋼管杭。
  3.  前記基軸鋼管から突出している前記内周鋼管の突出部の長さが、前記基軸鋼管の外径以下であることを特徴とする請求項1に記載の鋼管杭。
  4.  前記内周鋼管が、内径の異なる複数の鋼管で構成され;
     前記複数の鋼管が、それぞれの先端部から突出するように配置され;
     前記複数の鋼管の内径が、先端側に配置された前記鋼管から前記基軸鋼管側に配置された前記鋼管に向かって大きい;
    ことを特徴とする請求項1に記載の鋼管杭。
  5.  前記複数の鋼管の外径が、先端側に配置された前記鋼管から前記基軸鋼管側に配置された前記鋼管に向かって大きいことを特徴とする請求項4に記載の鋼管杭。
  6.  前記内周鋼管の先端部には複数の掘削刃が設けられていることを特徴とする請求項1に記載の鋼管杭。
  7.  内部に空洞を有する円筒状の外周鋼管をさらに備え;
     前記外周鋼管が、前記基軸鋼管の外周面に設けられていることを特徴とする請求項1に記載の鋼管杭。
  8.  前記基軸鋼管が、前記外周鋼管に対して突出するように配置されていることを特徴とする請求項7に記載の鋼管杭。
PCT/JP2011/050825 2010-01-19 2011-01-19 鋼管杭 WO2011090055A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011522342A JP4874433B2 (ja) 2010-01-19 2011-01-19 鋼管杭
CN201180006264.2A CN102713077B (zh) 2010-01-19 2011-01-19 钢管桩
HK13103726.0A HK1176979A1 (en) 2010-01-19 2013-03-25 Steel pipe pile

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-008841 2010-01-19
JP2010008841 2010-01-19

Publications (1)

Publication Number Publication Date
WO2011090055A1 true WO2011090055A1 (ja) 2011-07-28

Family

ID=44306857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050825 WO2011090055A1 (ja) 2010-01-19 2011-01-19 鋼管杭

Country Status (4)

Country Link
JP (1) JP4874433B2 (ja)
CN (1) CN102713077B (ja)
HK (1) HK1176979A1 (ja)
WO (1) WO2011090055A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105133600A (zh) * 2015-09-21 2015-12-09 周兆弟 抗压桩
JP7464354B2 (ja) 2018-07-03 2024-04-09 株式会社テノックス 中掘り工法における杭の支持層到達確認方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101625192B1 (ko) * 2015-09-30 2016-05-27 (주)삼일이엔씨 하부 개방형 관입 콘크리트 말뚝 및 이의 시공방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56119032A (en) * 1980-02-26 1981-09-18 Kubota Ltd Pile driving method
JPH0194112A (ja) * 1987-10-05 1989-04-12 Kawasaki Steel Corp 鋼管杭の施工法
JPH11181759A (ja) * 1997-12-19 1999-07-06 Oak:Kk 鋼管杭
JP2003227134A (ja) * 2002-02-04 2003-08-15 Shoowa Kensho:Kk 中間打撃式杭及びその施工方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001182053A (ja) * 1999-12-24 2001-07-03 Nishimatsu Constr Co Ltd 地中耐震補強杭及び基礎耐震構造
JP3754698B1 (ja) * 2004-09-17 2006-03-15 東京電力株式会社 鉄塔の基礎構造
CN201367578Y (zh) * 2009-01-22 2009-12-23 国鼎(南通)管桩有限公司 一种高弯矩组合管桩

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56119032A (en) * 1980-02-26 1981-09-18 Kubota Ltd Pile driving method
JPH0194112A (ja) * 1987-10-05 1989-04-12 Kawasaki Steel Corp 鋼管杭の施工法
JPH11181759A (ja) * 1997-12-19 1999-07-06 Oak:Kk 鋼管杭
JP2003227134A (ja) * 2002-02-04 2003-08-15 Shoowa Kensho:Kk 中間打撃式杭及びその施工方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105133600A (zh) * 2015-09-21 2015-12-09 周兆弟 抗压桩
JP7464354B2 (ja) 2018-07-03 2024-04-09 株式会社テノックス 中掘り工法における杭の支持層到達確認方法

Also Published As

Publication number Publication date
JP4874433B2 (ja) 2012-02-15
CN102713077A (zh) 2012-10-03
HK1176979A1 (en) 2013-08-09
JPWO2011090055A1 (ja) 2013-05-23
CN102713077B (zh) 2015-04-01

Similar Documents

Publication Publication Date Title
KR101620380B1 (ko) 스파이럴 강관 말뚝
JP5867301B2 (ja) 管杭及びその施工方法
JP5053154B2 (ja) 回転圧入杭およびその施工方法
JP4874433B2 (ja) 鋼管杭
JP2011157780A (ja) 鋼管杭の施工方法、鋼管杭基礎および鋼管杭
JP3170756B1 (ja) ねじ込み式鋼管杭及びその施工方法
JP2007284866A (ja) 回転圧入鋼管杭及び鋼管杭を用いた圧入工法
JP5919675B2 (ja) 複合基礎杭及び複合基礎杭の構築方法
JP2005315050A (ja) 回転埋設杭
JP3216048B2 (ja) ねじ込み式鋼管杭
KR101124203B1 (ko) 파일 구조체
JP5204692B2 (ja) プレボーリングh形鋼杭
JP4210297B2 (ja) 先端羽根付き拡径管及びそれを備えた先端羽根付き鋼管杭
JP2001348867A (ja) ねじ込み式鋼管杭及びその施工方法
JPH11303069A (ja) 翼付きねじ込み式鋼管杭及びその施工方法
WO2020184282A1 (ja) 鋼管杭および鋼管杭の施工方法
JP4173069B2 (ja) 翼付き鋼管杭
KR100932952B1 (ko) 다양한 선단부를 갖는 말뚝부재
JP5163711B2 (ja) ねじ込み杭及びねじ込み杭の施工方法
JP3510988B2 (ja) 鋼管杭
JP2004190313A (ja) 翼付き鋼管杭
JP2001164566A (ja) 鋼管杭及びその埋設方法
WO2020184283A1 (ja) 鋼管杭および鋼管杭の施工方法
JP2001193061A (ja) 翼付き杭
JP7172978B2 (ja) 鋼管、鋼管構造体、鋼管構造体の構築方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180006264.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011522342

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11734661

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11734661

Country of ref document: EP

Kind code of ref document: A1