WO2020184283A1 - 鋼管杭および鋼管杭の施工方法 - Google Patents

鋼管杭および鋼管杭の施工方法 Download PDF

Info

Publication number
WO2020184283A1
WO2020184283A1 PCT/JP2020/008863 JP2020008863W WO2020184283A1 WO 2020184283 A1 WO2020184283 A1 WO 2020184283A1 JP 2020008863 W JP2020008863 W JP 2020008863W WO 2020184283 A1 WO2020184283 A1 WO 2020184283A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel pipe
excavation bit
pipe pile
bit
excavation
Prior art date
Application number
PCT/JP2020/008863
Other languages
English (en)
French (fr)
Inventor
和秀 戸田
妙中 真治
吉郎 石濱
悦孝 柳
裕貴 日下
将一 田邊
正道 澤石
智之 東海林
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Publication of WO2020184283A1 publication Critical patent/WO2020184283A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/24Prefabricated piles
    • E02D5/28Prefabricated piles made of steel or other metals
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/56Screw piles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D7/00Methods or apparatus for placing sheet pile bulkheads, piles, mouldpipes, or other moulds
    • E02D7/22Placing by screwing down
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B3/00Rotary drilling
    • E21B3/02Surface drives for rotary drilling

Definitions

  • the present invention relates to a steel pipe pile and a method for constructing a steel pipe pile.
  • the excavation bit attached to the tip of the steel pipe pile is expected to have the effect of controlling the movement of the excavated soil according to the rotation direction of the pile and suppressing or promoting the blockage of the soil inside the pipe, in addition to the conventional effect of excavating the ground.
  • the central axis in the longitudinal direction of the excavation bit and the tangential direction at the intersection of the outer periphery of the steel pipe pile have an angle, and the cutting edge of the excavation bit is directed toward the inside of the steel pipe pile by this angle.
  • the earth and sand are pushed out to the outside of the pile to suppress the blockage of the soil in the pipe, thereby improving the excavability, and after the pile tip reaches the support layer, the pile.
  • the earth and sand are taken into the inside of the pile, and high bearing capacity can be obtained by promoting the blockage of the soil inside the pipe.
  • an object of the present invention is to provide a new and improved method for constructing steel pipe piles and steel pipe piles, which can maintain the function of the excavation bit against wear during excavation.
  • the steel pipe main body is provided with a plate-shaped excavation bit that is attached to the end surface of the steel pipe main body at an angle with respect to the circumferential tangent line of the steel pipe main body and projects to at least either the outer side or the inner side in the radial direction of the steel pipe main body.
  • a first excavation bit having a first excavable region by projecting the excavation bit from the pipe thickness center line of the steel pipe body by a first distance in the radial direction of the steel pipe body, and a steel pipe body.
  • a steel pipe pile including a second drilling bit and also having an extended second drillable area.
  • the first drilling bit is attached at a first angle greater than 0 with respect to the circumferential tangent of the steel pipe body, and the second drilling bit is the first with respect to the circumferential tangent of the steel pipe body.
  • the first excavation bit has a first length along the attachment direction of the first excavation bit
  • the second excavation bit is the first along the attachment direction of the second excavation bit.
  • An inclination is formed on the tip surface of at least one of the first excavation bit and the second excavation bit so that the protrusion height increases from the inside to the outside in the radial direction of the steel pipe body [1].
  • the steel pipe pile according to item 1. By projecting the excavation bit from the pipe thickness center line of the steel pipe body by a third distance longer than the second distance in the radial direction of the steel pipe body, at least either outside or inside the radial direction of the steel pipe body. In any one of [1] to [5], further including a third excavation bit having a first excavable area and a third excavable area extended from the second excavable area. Described steel pipe pile. [7] The item according to any one of [1] to [6], wherein the excavation bit has a plate shape curved so as to have a C-shape or an S-shape when the steel pipe pile is viewed from the tip side. Steel pipe pile.
  • [8] The method for constructing a steel pipe pile according to any one of [1] to [7], in which the excavation bit removes earth and sand from the outside of the steel pipe body until the tip of the steel pipe pile reaches a predetermined depth.
  • Construction method of steel pipe pile including the process of excavating while rotating the pile.
  • [9] The method for constructing a steel pipe pile according to [8], wherein the tip of the steel pipe pile reaches the support layer at the time of stopping, and then the steel pipe pile is rotated in the second rotation direction.
  • the construction resistance can be borne by the second excavation bit having a wider excavation area, and the wear of the first excavation bit can be suppressed by that amount. Therefore, the function of the excavation bit can be maintained against the wear during excavation.
  • FIG. 1 is a view of a steel pipe pile according to a first embodiment of the present invention as viewed from the side and the tip side.
  • the steel pipe pile 10 includes a steel pipe main body 11 and a drilling bit 12 attached to an end surface 11E of the steel pipe main body 11.
  • the excavation bit 12 includes a first excavation bit 121 and a second excavation bit 122.
  • the first excavation bit 121 is attached with an angle ⁇ 1 (0 ⁇ 1 ⁇ 90 °) with respect to the circumferential tangent of the steel pipe body 11, and the second excavation bit 122 is attached to the circumferential tangent of the steel pipe body 11.
  • the length L of the first excavation bit 121 and the second excavation bit 122 along the attachment directions is the same.
  • the angle .theta.1, .theta.2, at positions each of the thickness center line L C 121, L C122 is intersecting the wall thickness center line L C11 steel pipe body 11 of the first drill bit 121 and the second drill bit 122, tangent L T11 of the thickness center line L C 121, L C122 and pipe thickness center line L C11, that is, the angle between the circumferential tangent of the steel pipe body 11.
  • these angles are also referred to as mounting angles of the excavation bit 12.
  • the attachment directions of the first excavation bit 121 and the second excavation bit 122 are directions tilted by the respective attachment angles ⁇ 1 and ⁇ 2 with respect to the circumferential tangent of the steel pipe main body 11.
  • the excavation bit 12 has the mounting angles ⁇ 1 and ⁇ 2, so that the excavation bit 12 projects outward and inside of the steel pipe body 11 in the radial direction (hereinafter, also simply referred to as outside and inside of the steel pipe body 11), respectively. Therefore, for example, during excavation using the steel pipe pile 10, excavation is performed while rotating the steel pipe pile 10 counterclockwise (CCW) shown in FIG. 1 until the tip of the pile reaches a predetermined depth, and the earth and sand are excavated in the steel pipe body 11 It can be extruded to the outside of the pipe to suppress blockage of the soil inside the pipe. Further, the steel pipe pile 10 is excavated while rotating clockwise (CW) shown in FIG.
  • CCW counterclockwise
  • the excavation bit 12 has edges both inside and outside in the radial direction of the steel pipe body 11, which enables excavation by reversing the rotation direction of the steel pipe body 11 as described above.
  • the attachment angle ⁇ 2 of the second excavation bit 122 is larger than the attachment angle ⁇ 1 of the first excavation bit 121.
  • the first drilling bit 121 is centered on the pipe thickness on the outside of the steel pipe body 11.
  • Write a distance D2 where the second drill bit 122 protrudes from the wall thickness center line L C11 in the radial direction of the steel pipe body 11 is longer than the distance D1 which projects from the line L C11 in the radial direction of the steel pipe body 11.
  • the excavable region R2 of the second excavation bit 122 is expanded beyond the excavable region R1 of the first excavation bit 121 on the outside of the steel pipe main body 11.
  • the excavable areas R1 and R2 are annular areas in which each of the first excavation bit 121 and the second excavation bit 122 excavates earth and sand when the steel pipe pile 20 is rotated in the ground.
  • both the first excavation bit 121 and the second excavation bit 122 project to both the outside and the inside of the steel pipe body 11 in the radial direction, and the pipe thickness of the steel pipe body 11 is at the center of the mounting direction. Since it intersects the center line LC11 , the distance that the second excavation bit 122 protrudes is longer than the distance that the first excavation bit 121 protrudes inside the steel pipe body 11, and the distance that the second excavation bit 122 protrudes is longer than the excavable area R1.
  • the excavable area R2 is also expanded.
  • the excavable area may be extended only on the outer side or the inner side in the radial direction of the steel pipe body 11.
  • the second excavation bit 122 that excavates the relatively expanded area bears the construction resistance, and the wear of the first excavation bit 121 whose construction resistance is reduced by that amount is suppressed. be able to.
  • the wear of the first excavation bit 121 becomes remarkable, for example, after the excavable area R2 is reduced to the same level as the excavable area R1 due to the wear of the second excavation bit 122, so that the construction is completed. In some cases, the wear of the first excavation bit 121 may not be noticeable.
  • the method of attaching the excavation bit 12 to the steel pipe body 11 may be, for example, welding or mechanical joining means such as screwing.
  • the end surface 11E of the steel pipe body 11 and the upper end surface of the excavation bit 12 coincide with each other, but the excavation bit 12 is fitted into, for example, a groove or a notch formed in the end surface 11E. It can be joined above, or it can be joined after fitting the end of the steel pipe body 11 including the end face 11E into the groove or notch formed in the upper end surface of the excavation bit 12, or the end face 11E and the upper end surface of the excavation bit 12. It is possible to form grooves or notches in both of them so that these grooves or notches fit together and then join. In this case, the end surface 11E of the steel pipe body 11 and the upper end surface of the excavation bit 12 do not always match. The same applies to the other examples described below.
  • FIG. 4 is a diagram showing another example of the steel pipe pile according to the first embodiment of the present invention.
  • the first excavation bit 121A and the second excavation bit 122A included in the excavation bit 12 have mounting angles ⁇ 1 and ⁇ 2, respectively, as in the example described with reference to FIG.
  • the mounting angle ⁇ 2 is larger than the mounting angle ⁇ 1.
  • the tip surfaces 121E and 122E of the first excavation bit 121A and the second excavation bit 122A that is, the end surface of the steel pipe body 11 opposite to the end surface 11E, in the radial direction of the steel pipe body 11.
  • a slope is formed in which the protruding height increases from the inside to the outside of the pipe.
  • FIG. 5 is a diagram showing still another example of the steel pipe pile according to the first embodiment of the present invention.
  • the first excavation bit 121 and the second excavation bit 122B included in the excavation bit 12 have mounting angles ⁇ 1 and ⁇ 2, respectively, as in the example described with reference to FIG.
  • the mounting angle ⁇ 2 is larger than the mounting angle ⁇ 1.
  • the second excavation bit 122B is formed with a tapered cross section that becomes thicker from the inside to the outside in the radial direction of the steel pipe body 11.
  • the second excavation bit 122B has a thickness t 1 inside the steel pipe body 11 in the radial direction and a thickness t 2 outside, and the thickness t 2 is larger than the thickness t 1 (t 1 ⁇ . t 2 ).
  • the second excavation bit 122B By forming the second excavation bit 122B with a tapered cross section as described above, the second portion that comes into contact with the earth and sand in advance when the steel pipe body 11 is rotated clockwise (CW) shown in FIG.
  • the excavation bit 122B becomes thicker, and the resistance to wear of the second excavation bit 122B can be improved.
  • only the second excavation bit 122B is formed with a tapered cross section, but both the first excavation bit 121 and the second excavation bit 122B may be formed with a tapered cross section. Only the excavation bit 121 of 1 may be formed with a tapered cross section.
  • an inclination is formed on the tip surface of the first excavation bit 121 or the second excavation bit 122, and the first excavation bit 121 or the second excavation bit 122 is formed.
  • 122 may be formed with a tapered cross section.
  • FIG. 6 is a view of the steel pipe pile according to the second embodiment of the present invention as viewed from the side and the tip side.
  • the steel pipe pile 20 includes a steel pipe main body 11 and a drilling bit 22 attached to an end surface 11E of the steel pipe main body 11.
  • the excavation bit 22 includes a first excavation bit 221 and a second excavation bit 222.
  • the length along the attachment direction of the first excavation bit 221 is L1
  • the length along the attachment direction of the second excavation bit 222 is L2
  • the length L2 is the length L1. Longer than (L1 ⁇ L2).
  • the first excavation bit 221 and the second excavation bit 222 are attached at the same attachment angle ⁇ (0 ⁇ ⁇ 90 °) with respect to the circumferential tangent of the steel pipe main body 11.
  • the step of excavating the steel pipe pile 20 while rotating it counterclockwise (CCW) by having the drilling bit 22 have a mounting angle ⁇ , and the steel pipe pile 20 It is possible to carry out a method of constructing a steel pipe pile, which includes a step of excavating while rotating the pipe clockwise (CW).
  • the length L2 along the attachment direction of the second excavation bit 222 is longer than the length L1 along the attachment direction of the first excavation bit 221.
  • a first drill bit 221 is the pipe thickness center line L C11 than the distance D1 which projects in the radial direction of the steel pipe body 11 from Trip distance D2 where the second drill bit 222 protrudes from the wall thickness center line L C11 in the radial direction of the steel pipe body 11 becomes longer.
  • the excavable region R2 of the second excavation bit 222 is expanded more than the excavable region R1 of the first excavation bit 221.
  • both the first excavation bit 221 and the second excavation bit 222 project to both the outside and the inside of the steel pipe body 11 in the radial direction, and the pipe thickness of the steel pipe body 11 is at the center of the mounting direction. Since it intersects the center line LC11 , the distance that the second excavation bit 222 protrudes is longer than the distance that the first excavation bit 221 protrudes inside the steel pipe main body 11, and the distance that the second excavation bit 222 protrudes is longer than the excavable area R1.
  • the excavable area R2 is also expanded.
  • the excavable area may be extended only on the outer side or the inner side in the radial direction of the steel pipe body 11.
  • FIG. 9 is a diagram showing another example of the steel pipe pile according to the second embodiment of the present invention.
  • the first excavation bit 221A and the second excavation bit 222A included in the excavation bit 22 both have a mounting angle ⁇ as in the example described with reference to FIG. 4 above.
  • the length L2 along the attachment direction of the second excavation bit 222A is larger than the length L1 along the attachment direction of the first excavation bit 221A.
  • the tip surfaces 221E and 222E of the first excavation bit 221A and the second excavation bit 222A that is, the end surfaces of the steel pipe body 11 opposite to the end surface 11E, are in the radial direction of the steel pipe body 11.
  • a slope is formed in which the protruding height increases from the inside to the outside of the pipe.
  • the effect of forming such an inclination is similar to the example described above with reference to FIG.
  • both the tip surfaces 221E and 222E of the first excavation bit 221A and the second excavation bit 222A are inclined, but only one of the tip surfaces may be inclined. ..
  • FIG. 10 is a diagram showing still another example of the steel pipe pile according to the second embodiment of the present invention.
  • both the first excavation bit 221 and the second excavation bit 222B included in the excavation bit 22 have a mounting angle ⁇ as in the example described with reference to FIG.
  • the length L2 along the attachment direction of the second excavation bit 222B is larger than the length L1 along the attachment direction of the first excavation bit 221.
  • the second excavation bit 222B is formed with a tapered cross section that becomes thicker from the inside to the outside in the radial direction of the steel pipe body 11.
  • the second excavation bit 222B has a thickness t 1 inside the steel pipe body 11 in the radial direction and a thickness t 2 outside, and the thickness t 2 is larger than the thickness t 1 (t 1 ⁇ . t 2 ).
  • the effect of forming such a tapered cross section is the same as the example described above with reference to FIG.
  • only the second excavation bit 222B is formed with a tapered cross section, but both the first excavation bit 221 and the second excavation bit 222B may be formed with a tapered cross section, the first.
  • Only the excavation bit 221 may be formed with a tapered cross section.
  • FIG. 10 and the example of FIG. 9 are combined to form an inclination on the tip surface of the first excavation bit 221 or the second excavation bit 222, and the first excavation bit 221 or the second excavation bit 222 is formed.
  • 222 may be formed with a tapered cross section.
  • the excavable area may be expanded by making either the attachment angle ⁇ of some excavation bits or the length L along the attachment direction larger than that of other excavation bits.
  • the excavable area may be expanded by making both the mounting angle ⁇ and the length L larger than the other excavation bits.
  • (Modification) 11 to 15 are diagrams showing a modification common to the first and second embodiments described above.
  • the drilling bit 32 includes a first drilling bit 321 and a second drilling bit 322.
  • the first excavation bit 321 and the second excavation bit 322 differ from each other in at least one of the mounting angles ⁇ and the length L as in the first and second embodiments described above.
  • such a difference in shape between the first excavation bit and the second excavation bit is not necessarily shown.
  • the excavable area is extended to the outside of the steel pipe main body 11, but the points that the excavable area may be extended to the inside of the steel pipe main body 11 or both outside or inside are described above. It is the same as the embodiment.
  • the arrangement pattern of the first excavation bit 321 and the second excavation bit 322 in the circumferential direction of the steel pipe main body 11 is different from each of the above embodiments. More specifically, in each of the above embodiments, the first excavation bit and the second excavation bit are alternately arranged alternately, whereas in the steel pipe pile 30 shown in FIG. 11, the first excavation bit and the second excavation bit are arranged alternately. The first excavation bit 321 and the second excavation bit 322 are alternately arranged every two. Further, in each of the above embodiments, the same number of the first excavation bit and the second excavation bit are arranged, whereas in the steel pipe pile 30 shown in FIG. 12, the first excavation bit 321 is set to 1. Two second excavation bits 322 are arranged for each arrangement, and therefore the number of second excavation bits 322 is greater than the number of first excavation bits 321.
  • the drilling bit includes a third drilling bit 323 and a fourth drilling bit 324 in addition to the first drilling bit 321 and the second drilling bit 322.
  • the third drill bit 323, the distance to further protrude from the second drill bit 322 is long (i.e., the distance D2 (FIG. 1 or FIG from pipe thickness center line L C11 in the radial direction of the steel pipe body 11 of the steel pipe body 11 It has an excavable region R3 that is extended beyond the excavable region R2 of the second excavation bit 322 by projecting by a third distance longer than (see 6 etc.).
  • the relationship between the third excavation bit 323 and the fourth excavation bit 324 is the same as the relationship between the second excavation bit 322 and the third excavation bit 323, and the fourth excavation bit 324 is the third excavation bit 324. It has an excavable region R4 that is further extended than the excavable region R3 of the third excavation bit 323 by having a longer projecting distance than the excavation bit 323.
  • the excavation bit is not limited to the two types of excavation bits, and may include three types or four or more types of excavation bits.
  • there are excavation bits that bear the construction resistance in advance such as the second excavation bit 322 and the third excavation bit 323 in the example shown in FIG. This includes an intermediate excavation bit that initially suppresses wear and then bears construction resistance to suppress wear of another excavation bit located later after the preceding excavation bit wears.
  • the excavation bit 32 is curved so as to have a C shape when the steel pipe pile 30 is viewed from the tip side.
  • the mounting angle ⁇ of the drill bit 32 at a position intersecting the wall thickness center line L C11 of the thickness center line L C32 steel pipe body 11 curved drilling bit 32, the tangent of the thickness center line L C32 L T32 that the angle between the tangential line L T11 of pipe thickness center line L C11.
  • the length L along the attachment direction of the excavation bit 32 is the length in the direction along the tangent line LT 32.
  • the wall thickness center line L C11 steel pipe main body 11 by at least one of the mounting angle ⁇ or the length L is different.
  • the distances D1 and D2 protruding outward are different, so that the excavable region R2 of the second excavation bit 322 is expanded more than the excavable region R1 of the first excavation bit 321.
  • the steel pipe pile 30 is counterclockwise (because the excavation bit 32 is curved so as to have a C shape).
  • the excavation bit 32 is curved so as to have an S shape when the steel pipe pile 30 is viewed from the tip side.
  • the mounting angle ⁇ of the drill bit 32 at a position where the thickness center line L C32 for curved drilling bit 32 intersects the wall thickness center line L C11 steel pipe body 11, the thickness center of the opposite ends of the drill bit 32 it is an angle formed by the tangent line L T11 linear L E32 and pipe thickness center line L C11 connecting the.
  • the length L along the attachment direction of the excavation bit 32 is the length in the direction along the straight line LE 32 .
  • the wall thickness center line L C11 steel pipe main body 11 by at least one of the mounting angle ⁇ or the length L is different
  • the distances D1 and D2 protruding outward are different, so that the excavable region R2 of the second excavation bit 322 is expanded more than the excavable region R1 of the first excavation bit 321.
  • the earth and sand taken into the inside of the steel pipe body 11 when the steel pipe pile 30 rotates clockwise (CW). Is likely to create a flow of earth and sand away from the excavation bit 32. Similar to the example of FIG. 14, the smooth flow of earth and sand makes excavation using the steel pipe pile 30 smoother.
  • the drilling bit 12 pushes the earth and sand to the outside of the steel pipe body 11 in the first rotation direction (CCW) shown in FIG. 1 is carried out.
  • the steel pipe pile 10 is placed in the second rotation direction (clockwise (CW) shown in FIG. 1) in which the excavation bit 12 takes in the earth and sand inside the steel pipe main body 11 until the tip of the steel pipe pile 10 reaches the stopping depth.
  • the process of excavating while rotating is carried out.
  • the predetermined depth is, for example, upward by a distance of about 1 to 5 times the diameter of the steel pipe main body 11 with respect to the stopping depth.
  • the predetermined depth may be deeper than the depth of the support layer.
  • the tip of the steel pipe pile 10 reaches the support layer at the time of stopping, and then the steel pipe pile 10 is rotated in the second rotation direction.
  • the predetermined depth may be shallower than the depth of the support layer.
  • the steel pipe pile 10 is excavated while rotating in the second rotation direction immediately before the tip of the steel pipe pile 10 reaches the support layer, and the tip of the steel pipe pile 10 is the support layer. Will be stopped after reaching.
  • the step of excavating while rotating the steel pipe pile 10 in the first rotation direction and the step of excavating while rotating the steel pipe pile 10 in the second rotation direction may be alternately performed. .. That is, even before the tip of the steel pipe pile 10 reaches a predetermined depth, it is possible to excavate the steel pipe pile 10 while rotating it in the second rotation direction. Specifically, for example, when the rooting of the steel pipe pile 10 is not smooth, the steel pipe pile 10 is rooted while alternately switching the rotation direction, and finally the steel pipe pile 10 is set to the second rotation direction. It is conceivable to rotate and stop.
  • the predetermined depth is the depth at which the steel pipe pile 10 is finally rotated in the first rotation direction, and may be, for example, a depth similar to the stopping depth.
  • excavation (lowering of the tip) and retreat (rising of the tip) of the steel pipe pile 10 may be alternately performed as well as the rotation direction of the steel pipe pile 10.
  • FIG. 16 is a graph showing the experimental results regarding the mounting angle of the excavation bit.
  • excavation bits having a thickness of 6 mm, a length of 30 mm along the mounting direction, and a protrusion height of 12 mm from the end face of the steel pipe body were placed at equal intervals on a steel pipe body having a cross-sectional diameter of 101.6 mm and a pipe thickness of 5.7 mm.
  • the mounting angle of the excavation bit is 0 ° (no mounting angle)
  • 5 °, 15 °, 20 ° and 30 ° hit the simulated ground using Iitoyo silica sand No. 7 to the same depth.
  • the bearing capacity of the installed steel pipe piles was compared.
  • the load when the amount of sinking of the pile head (steel pipe head) is 10% of the pile diameter (cross-sectional diameter) is based on the "Road Bridge Specification / Explanation (IV Substructure)".
  • (Ultimate bearing capacity) is the bearing capacity. Further, the bearing capacity is expressed by an increase rate when 1 is set when there is no mounting angle. As shown in the graph of FIG. 16, when there is a mounting angle (greater than 0 °), the bearing capacity is improved as compared with the case where there is no mounting angle. In particular, when the mounting angle was in the range of 5 ° to 15 °, a more remarkable improvement in bearing capacity was observed (about 1.25 times or more in the case of 0 °).
  • the mounting angles ⁇ , ⁇ 1, ⁇ 2 of the excavation bit are set in the range of 5 ° or more and 15 ° or less (5 ° ⁇ ⁇ , ⁇ 1, ⁇ 2 ⁇ 15 °). Good. Since the bearing capacity is improved even outside the above range, the values of the mounting angles ⁇ , ⁇ 1 and ⁇ 2 are not limited to the above range.
  • FIG. 17 is a diagram for explaining an experiment for verifying the wear suppressing effect of the excavation bit.
  • a steel pipe body 11 having a cross-sectional diameter of 101.6 mm and a pipe thickness of 5.7 mm has a thickness of 3.2 mm, a length of 30 mm along the mounting direction, and a height of protrusion from the end face of the steel pipe body.
  • Four 10 mm drilling bits 121 and 122 were attached at equal intervals.
  • the mounting angle of the two drilling bits 121 is set to 10 °
  • the mounting angle of the remaining two drilling bits 122 is set to 15 °
  • the drilling bit 121 and the drilling bit 122 are provided around the steel pipe body 11. They were arranged alternately in the direction.
  • the excavation bits 121 and 122 both project to both the outside and the inside of the steel pipe body 11 and intersect the pipe thickness center line of the steel pipe body 11 at the center in the mounting direction. Note that FIG. 17 shows the conditions of this embodiment. In the comparative example, four drilling bits were mounted in the same manner, but the mounting angle was set to 10 ° for all drilling bits.
  • FIG. 18 is a graph showing the results of the experiment shown in FIG.
  • a mortar-shaped model ground was excavated at a construction depth of 500 mm with steel pipe piles according to Examples and Comparative Examples as described with reference to FIG.
  • the size of the excavable area is different when the volume residual ratio of each bit in the comparative example in which the mounting angle and the excavable area are the same for all the excavating bits is 1.
  • the volume residual ratio of the excavation bit 121 having a small excavable area was 3.48 times that of the comparative example.
  • the volume residual ratio is the ratio of the volume of the excavation bit remaining after the construction to the volume of the excavation bit before the construction. This result shows that the function of the excavation bit can be maintained against the wear during excavation by making the size of the excavable area different among the plurality of excavation bits.

Abstract

鋼管本体(11)と、鋼管本体(11)の端面に鋼管本体(11)の周方向接線に対して角度をもって取り付けられ、鋼管本体(11)の径方向の外側または内側の少なくともいずれかに突出する板状の掘削ビット(12)とを備える鋼管杭(10)において、掘削ビット(12)が、鋼管本体(11)の管厚中心線から鋼管本体(11)の径方向に第1の距離(D1)だけ突出することによって第1の掘削可能領域(R1)を有する第1の掘削ビット(121)と、鋼管本体(11)の管厚中心線から鋼管本体(11)の径方向に第1の距離(D1)よりも長い第2の距離(D2)だけ突出することによって、鋼管本体(11)の径方向の外側または内側の少なくともいずれかで第1の掘削可能領域(R1)よりも拡張された第2の掘削可能領域(R2)を有する第2の掘削ビット(122)とを含む。

Description

鋼管杭および鋼管杭の施工方法
 本発明は、鋼管杭および鋼管杭の施工方法に関する。
 鋼管杭の先端に取り付ける掘削ビットは、地盤を掘削する従来の効果のみならず、杭の回転方向に応じて掘削した土の動きを制御し、管内土の閉塞を抑制または促進する効果が期待される。例えば、特許文献1には、掘削ビットの長手方向の中心軸線と鋼管杭の外周との交点における接線方向とが角度を有しており、この角度によって掘削ビットの刃先が鋼管杭内側に向かって設けられる技術が記載されている。これによって、例えば、杭先端が支持層に到達する前には土砂を杭の外側に押し出して管内土の閉塞を抑制することによって掘削性を向上させ、杭先端が支持層に到達した後は杭の回転方向を逆にすることによって土砂を杭の内側に取り込み、管内土の閉塞を促進することによって高い支持力を獲得することができる。
特許第5053154号公報
 しかしながら、鋼管杭の先端を支持層に貫入させる際には、地盤強度が高いために大きな施工抵抗(回転トルクや鉛直圧入力)が杭先端に取り付けられた掘削ビットに作用する結果、掘削ビットが摩耗することが想定される。それゆえ、例えば特許文献1に記載されたような掘削ビットの効果を最大化するためには、摩耗に対抗して掘削ビットの機能を維持できる構造とすることが望ましい。
 そこで、本発明は、掘削時の摩耗に対抗して掘削ビットの機能を維持することが可能な、新規かつ改良された鋼管杭および鋼管杭の施工方法を提供することを目的とする。
[1]鋼管本体と、鋼管本体の端面に鋼管本体の周方向接線に対して角度をもって取り付けられ、鋼管本体の径方向の外側または内側の少なくともいずれかに突出する板状の掘削ビットとを備える鋼管杭であって、掘削ビットが、鋼管本体の管厚中心線から鋼管本体の径方向に第1の距離だけ突出することによって第1の掘削可能領域を有する第1の掘削ビットと、鋼管本体の管厚中心線から鋼管本体の径方向に第1の距離よりも長い第2の距離だけ突出することによって、鋼管本体の径方向の外側または内側の少なくともいずれかで第1の掘削可能領域よりも拡張された第2の掘削可能領域を有する第2の掘削ビットとを含む鋼管杭。
[2]第1の掘削ビットは、鋼管本体の周方向接線に対して0よりも大きい第1の角度をもって取り付けられ、第2の掘削ビットは、鋼管本体の周方向接線に対して第1の角度よりも大きい第2の角度をもって取り付けられる、[1]に記載の鋼管杭。
[3]第1の掘削ビットは、第1の掘削ビットの取り付け方向に沿って第1の長さを有し、第2の掘削ビットは、第2の掘削ビットの取り付け方向に沿って第1の長さよりも長い第2の長さを有する、[1]または[2]に記載の鋼管杭。
[4]第1の掘削ビットまたは第2の掘削ビットの少なくともいずれかの先端面に、鋼管本体の径方向の内側から外側に向かって突出高さが高くなる傾斜が形成される、[1]から[3]のいずれか1項に記載の鋼管杭。
[5]第1の掘削ビットまたは第2の掘削ビットの少なくともいずれかが、鋼管本体の径方向の内側から外側に向かって厚くなるテーパー断面で形成される、[1]から[4]のいずれか1項に記載の鋼管杭。
[6]掘削ビットが、鋼管本体の管厚中心線から鋼管本体の径方向に第2の距離よりも長い第3の距離だけ突出することによって、鋼管本体の径方向の外側または内側の少なくともいずれかで第1の掘削可能領域および第2の掘削可能領域よりも拡張された第3の掘削可能領域を有する第3の掘削ビットをさらに含む、[1]から[5]のいずれか1項に記載の鋼管杭。
[7]掘削ビットは、鋼管杭を先端側から見たときにC字状またはS字状になるように湾曲した板状である、[1]から[6]のいずれか1項に記載の鋼管杭。
[8][1]から[7]のいずれか1項に記載された鋼管杭の施工方法であって、鋼管杭の先端が所定の深度に到達するまで、掘削ビットが土砂を鋼管本体の外側に押し出す第1の回転方向に鋼管杭を回転させながら掘削する工程と、鋼管杭の先端が打ち止め深さに到達するまで、掘削ビットが土砂を鋼管本体の内側に取り込む第2の回転方向に鋼管杭を回転させながら掘削する工程とを含む鋼管杭の施工方法。
[9]打ち止めの際に、鋼管杭の先端を支持層に到達させてから、鋼管杭を第2の回転方向に回転させる、[8]に記載の鋼管杭の施工方法。
[10]打ち止めの際に、鋼管杭の先端が支持層に到達する直前から、鋼管杭を第2の回転方向に回転させながら掘削し、鋼管杭の先端が支持層に到達してから打ち止める、[8]に記載の鋼管杭の施工方法。
[11]第1の回転方向に鋼管杭を回転させながら掘削する工程と、第2の回転方向に鋼管杭を回転させながら掘削する工程とが交互に実施される、[8]から[10]のいずれか1項に記載の鋼管杭の施工方法。
 上記の構成によれば、掘削領域がより広い第2の掘削ビットに施工抵抗を負担させ、その分だけ第1の掘削ビットの摩耗を抑制することができる。従って、掘削時の摩耗に対抗して掘削ビットの機能を維持することができる。
本発明の第1の実施形態に係る鋼管杭を側方および先端側から見た図である。 図1に示す鋼管杭の変形例を示す図である。 図1に示す鋼管杭の変形例を示す図である。 本発明の第1の実施形態に係る鋼管杭の別の例を示す図である。 本発明の第1の実施形態に係る鋼管杭のさらに別の例を示す図である。 本発明の第2の実施形態に係る鋼管杭を側方および先端側から見た図である。 図6に示す鋼管杭の変形例を示す図である。 図6に示す鋼管杭の変形例を示す図である。 本発明の第2の実施形態に係る鋼管杭の別の例を示す図である。 本発明の第2の実施形態に係る鋼管杭のさらに別の例を示す図である。 本発明の一実施形態の変形例を示す図である。 本発明の一実施形態の変形例を示す図である。 本発明の一実施形態の変形例を示す図である。 本発明の一実施形態の変形例を示す図である。 本発明の一実施形態の変形例を示す図である。 掘削ビットの取り付け角度に関する実験結果を示すグラフである。 掘削ビットの摩耗抑制効果について検証する実験について説明するための図である。 図17に示した実験の結果を示すグラフである。
 以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
(第1の実施形態)
 図1は、本発明の第1の実施形態に係る鋼管杭を側方および先端側から見た図である。図1に示されるように、鋼管杭10は、鋼管本体11と、鋼管本体11の端面11Eに取り付けられる掘削ビット12とを含む。掘削ビット12は、第1の掘削ビット121および第2の掘削ビット122を含む。本実施形態において、第1の掘削ビット121は鋼管本体11の周方向接線に対して角度θ1(0<θ1<90°)をもって取り付けられ、第2の掘削ビット122は鋼管本体11の周方向接線に対して角度θ2(0<θ2<90°)をもって取り付けられ、角度θ2は角度θ1よりも大きい(θ1<θ2)。一方、本実施形態において、第1の掘削ビット121および第2の掘削ビット122のそれぞれの取り付け方向に沿った長さLは同じである。
 ここで、角度θ1,θ2は、第1の掘削ビット121および第2の掘削ビット122のそれぞれの板厚中心線LC121,LC122が鋼管本体11の管厚中心線LC11に交わる位置において、板厚中心線LC121,LC122と管厚中心線LC11の接線LT11、すなわち鋼管本体11の周方向接線とがなす角度である。以下では、これらの角度を掘削ビット12の取り付け角度ともいう。第1の掘削ビット121および第2の掘削ビット122の取り付け方向は、鋼管本体11の周方向接線に対してそれぞれの取り付け角度θ1,θ2だけ傾いた方向である。
 本実施形態において、掘削ビット12は、取り付け角度θ1,θ2を有することによって、鋼管本体11の径方向の外側および内側(以下、単に鋼管本体11の外側および内側ともいう)にそれぞれ突出する。従って、例えば鋼管杭10を用いた掘削時において杭先端が所定の深さに到達するまでは鋼管杭10を図1に示す反時計回り(CCW)に回転させながら掘削して土砂を鋼管本体11の外側に押し出し、管内土の閉塞を抑制することができる。また、杭先端が打ち止め深さに到達するまでは鋼管杭10を図1に示す時計回り(CW)に回転させながら掘削して土砂を鋼管本体11の内側に取り込み、管内土の閉塞を促進することによって高い支持力を獲得することができる。なお、掘削ビット12は、鋼管本体11の径方向の内側および外側の両方にエッジを有し、これによって上記のように鋼管本体11の回転方向を反転させて掘削することが可能になる。
 加えて、本実施形態では、第2の掘削ビット122の取り付け角度θ2が第1の掘削ビット121の取り付け角度θ1よりも大きい。これによって、第1の掘削ビット121および第2の掘削ビット122の取り付け方向に沿った長さLが同じであっても、例えば鋼管本体11の外側について、第1の掘削ビット121が管厚中心線LC11から鋼管本体11の径方向に突出する距離D1よりも第2の掘削ビット122が管厚中心線LC11から鋼管本体11の径方向に突出する距離D2の方が長くなる。これによって、鋼管本体11の外側で、第1の掘削ビット121の掘削可能領域R1よりも第2の掘削ビット122の掘削可能領域R2が拡張される。ここで、掘削可能領域R1,R2は、地中で鋼管杭20を回転させたときに第1の掘削ビット121および第2の掘削ビット122のそれぞれが土砂を掘削する円環状の領域である。例えば、鋼管本体11の外側について、図1に示すように掘削可能領域R1の半径をr1、掘削可能領域R2の半径をr2とした場合、r2/r1=1.2程度になるように取り付け角度θ1,θ2を設定してもよい。
 なお、本実施形態では、第1の掘削ビット121および第2の掘削ビット122がいずれも鋼管本体11の径方向の外側および内側の両方に突出し、かつ取り付け方向の中心で鋼管本体11の管厚中心線LC11に交差するため、鋼管本体11の内側でも同様に、第1の掘削ビット121が突出する距離よりも第2の掘削ビット122が突出する距離の方が長く、掘削可能領域R1よりも掘削可能領域R2が拡張される。他の実施形態では、図2および図3に示す例のように、鋼管本体11の径方向の外側または内側のいずれか一方だけで掘削可能領域が拡張されてもよい。
 上記のような構成によって、相対的に拡張された領域を掘削する第2の掘削ビット122に施工抵抗を負担させ、その分だけ施工抵抗が軽減される第1の掘削ビット121の摩耗を抑制することができる。第1の掘削ビット121の摩耗が顕著になるのは、例えば第2の掘削ビット122の摩耗によって掘削可能領域R2が縮小して掘削可能領域R1と同程度になった後であるため、施工終了まで第1の掘削ビット121の摩耗が顕著にならない場合もあり得る。このように、第1の掘削ビット121の摩耗が抑制されることによって、例えば地盤強度が高い層で掘削を進めても、上述したような掘削ビット12による管内土の閉塞の抑制または促進の機能を維持することができる。
 なお、鋼管本体11への掘削ビット12の取り付け方法は、例えば溶接であってもよいし、ねじ止めなどの機械的な接合手段によるものであってもよい。また、図1に示された例において鋼管本体11の端面11Eと掘削ビット12の上端面とは一致しているが、例えば端面11Eに形成された溝または切り込みに掘削ビット12を嵌合させた上で接合したり、掘削ビット12の上端面に形成された溝または切り込みに鋼管本体11の端面11Eを含む端部を嵌合させた上で接合したり、端面11Eおよび掘削ビット12の上端面の両方に溝または切り込みを形成してこれらの溝または切り込みを互いに嵌合させた上で接合したりすることが可能である。この場合、鋼管本体11の端面11Eと掘削ビット12の上端面とは必ずしも一致しない。以下で説明する他の例についても同様である。
 図4は、本発明の第1の実施形態に係る鋼管杭の別の例を示す図である。図4に示された例では、上記で図1を参照して説明した例と同様に掘削ビット12に含まれる第1の掘削ビット121Aおよび第2の掘削ビット122Aがそれぞれ取り付け角度θ1,θ2を有し、取り付け角度θ2は取り付け角度θ1よりも大きい。加えて、図示された例では、第1の掘削ビット121Aおよび第2の掘削ビット122Aの先端面121E,122E、すなわち鋼管本体11の端面11Eとは反対側の端面に、鋼管本体11の径方向の内側から外側に向かって突出高さが高くなる傾斜が形成されている。
 上記のように第1の掘削ビット121Aおよび第2の掘削ビット122Aの先端面121E,122Eに傾斜を形成することによって、鋼管本体11を図4に示す時計回り(CW)に回転させたときに先行して土砂に接触する部分で第1の掘削ビット121Aおよび第2の掘削ビット122Aの突出高さがより高くなり、第1の掘削ビット121Aおよび第2の掘削ビット122Aの摩耗に対する抵抗力を向上させることができる。なお、図示された例では第1の掘削ビット121Aおよび第2の掘削ビット122Aの先端面121E,122Eの両方に傾斜が形成されているが、いずれか一方の先端面のみに傾斜が形成されてもよい。
 図5は、本発明の第1の実施形態に係る鋼管杭のさらに別の例を示す図である。図5に示された例では、上記で図1を参照して説明した例と同様に掘削ビット12に含まれる第1の掘削ビット121および第2の掘削ビット122Bがそれぞれ取り付け角度θ1,θ2を有し、取り付け角度θ2は取り付け角度θ1よりも大きい。加えて、図示された例では、第2の掘削ビット122Bが、鋼管本体11の径方向の内側から外側に向かって厚くなるテーパー断面で形成されている。具体的には、第2の掘削ビット122Bは鋼管本体11の径方向内側において厚さt、外側で厚さtであり、厚さtは厚さtよりも大きい(t<t)。
 上記のように第2の掘削ビット122Bをテーパー断面で形成することによって、鋼管本体11を図5に示す時計回り(CW)で回転させたときに先行して土砂に接触する部分で第2の掘削ビット122Bがより厚くなり、第2の掘削ビット122Bの摩耗に対する抵抗力を向上させることができる。なお、図示された例では第2の掘削ビット122Bのみがテーパー断面で形成されているが、第1の掘削ビット121および第2の掘削ビット122Bの両方がテーパー断面で形成されてもよく、第1の掘削ビット121のみがテーパー断面で形成されてもよい。また、図5の例と図4の例とを組み合わせ、第1の掘削ビット121または第2の掘削ビット122の先端面に傾斜を形成するとともに、第1の掘削ビット121または第2の掘削ビット122をテーパー断面で形成してもよい。
 (第2の実施形態)
 図6は、本発明の第2の実施形態に係る鋼管杭を側方および先端側から見た図である。図6に示されるように、鋼管杭20は、鋼管本体11と、鋼管本体11の端面11Eに取り付けられる掘削ビット22とを含む。掘削ビット22は、第1の掘削ビット221および第2の掘削ビット222を含む。本実施形態において、第1の掘削ビット221の取り付け方向に沿った長さはL1であり、第2の掘削ビット222の取り付け方向に沿った長さはL2であり、長さL2は長さL1よりも長い(L1<L2)。一方、本実施形態において、第1の掘削ビット221および第2の掘削ビット222は、鋼管本体11の周方向接線に対して同じ取り付け角度θ(0<θ<90°)で取り付けられている。第1の掘削ビット221および第2の掘削ビット222の取り付け方向は、鋼管本体11の周方向接線、すなわち管厚中心線LC11の接線LT11に対して取り付け角度θだけ傾いた方向である。
 本実施形態でも、上記の第1の実施形態と同様に、掘削ビット22が取り付け角度θを有することによって、鋼管杭20を反時計回り(CCW)に回転させながら掘削する工程と、鋼管杭20を時計回り(CW)に回転させながら掘削する工程とを含む鋼管杭の施工方法が実施可能である。
 加えて、本実施形態では、第2の掘削ビット222の取り付け方向に沿った長さL2が第1の掘削ビット221の取り付け方向に沿った長さL1よりも長い。これによって、第1の掘削ビット221および第2の掘削ビット222の取り付け角度θが同じであっても、例えば鋼管本体11の径方向外側について、第1の掘削ビット221が管厚中心線LC11から鋼管本体11の径方向に突出する距離D1よりも、第2の掘削ビット222が管厚中心線LC11から鋼管本体11の径方向に突出する距離D2の方が長くなる。これによって、鋼管本体11の外側で、第1の掘削ビット221の掘削可能領域R1よりも第2の掘削ビット222の掘削可能領域R2が拡張される。例えば、鋼管本体11の外側について、図6に示すように掘削可能領域R1の半径をr1、掘削可能領域R2の半径をr2とした場合、r2/r1=1.2程度になるように長さL1,L2を設定してもよい。
 なお、本実施形態では、第1の掘削ビット221および第2の掘削ビット222がいずれも鋼管本体11の径方向の外側および内側の両方に突出し、かつ取り付け方向の中心で鋼管本体11の管厚中心線LC11に交差するため、鋼管本体11の内側でも同様に、第1の掘削ビット221が突出する距離よりも第2の掘削ビット222が突出する距離の方が長く、掘削可能領域R1よりも掘削可能領域R2が拡張される。他の実施形態では、図7および図8に示される例のように、鋼管本体11の径方向の外側または内側のいずれか一方だけで掘削可能領域が拡張されてもよい。第2の掘削ビット222の掘削可能領域R2を相対的に拡張することによって、第1の掘削ビット221の摩耗を抑制し、例えば地盤強度が高い層で掘削を進めても掘削ビット22による管内土の閉塞の抑制または促進の機能を維持することができる点は、第1の実施形態と同様である。
 図9は、本発明の第2の実施形態に係る鋼管杭の別の例を示す図である。図9に示された例では、上記で図4を参照して説明した例と同様に掘削ビット22に含まれる第1の掘削ビット221Aおよび第2の掘削ビット222Aがいずれも取り付け角度θを有し、第2の掘削ビット222Aの取り付け方向に沿った長さL2は第1の掘削ビット221Aの取り付け方向に沿った長さL1よりも大きい。加えて、図示された例では、第1の掘削ビット221Aおよび第2の掘削ビット222Aの先端面221E,222E、すなわち鋼管本体11の端面11Eとは反対側の端面に、鋼管本体11の径方向の内側から外側に向かって突出高さが高くなる傾斜が形成されている。このような傾斜が形成されることによる効果は、上記で図4を参照して説明した例と同様である。図示された例では第1の掘削ビット221Aおよび第2の掘削ビット222Aの先端面221E,222Eの両方に傾斜が形成されているが、いずれか一方の先端面のみに傾斜が形成されてもよい。
 図10は、本発明の第2の実施形態に係る鋼管杭のさらに別の例を示す図である。図10に示された例では、上記で図5を参照して説明した例と同様に掘削ビット22に含まれる第1の掘削ビット221および第2の掘削ビット222Bがいずれも取り付け角度θを有し、第2の掘削ビット222Bの取り付け方向に沿った長さL2は第1の掘削ビット221の取り付け方向に沿った長さL1よりも大きい。加えて、図示された例では、第2の掘削ビット222Bが、鋼管本体11の径方向の内側から外側に向かって厚くなるテーパー断面で形成されている。具体的には、第2の掘削ビット222Bは鋼管本体11の径方向内側において厚さt、外側で厚さtであり、厚さtは厚さtよりも大きい(t<t)。このようなテーパー断面が形成されることによる効果は、上記で図5を参照して説明した例と同様である。図示された例では第2の掘削ビット222Bのみがテーパー断面で形成されているが、第1の掘削ビット221および第2の掘削ビット222Bの両方がテーパー断面で形成されてもよく、第1の掘削ビット221のみがテーパー断面で形成されてもよい。また、図10の例と図9の例とを組み合わせ、第1の掘削ビット221または第2の掘削ビット222の先端面に傾斜を形成するとともに、第1の掘削ビット221または第2の掘削ビット222をテーパー断面で形成してもよい。
 以上で説明した本発明の第1および第2の実施形態は、互いに組み合わせることが可能である。つまり、本発明の実施形態では、一部の掘削ビットの取り付け角度θまたは取り付け方向に沿った長さLのいずれかを他の掘削ビットよりも大きくすることによって掘削可能領域を拡張してもよいし、取り付け角度θおよび長さLの両方を他の掘削ビットよりも大きくすることによって掘削可能領域を拡張してもよい。
 (変形例)
 図11から図15は、上記で説明した第1および第2の実施形態に共通の変形例を示す図である。各図に示された鋼管杭30において、掘削ビット32は、第1の掘削ビット321および第2の掘削ビット322を含む。第1の掘削ビット321と第2の掘削ビット322との間では、上記で説明した第1および第2の実施形態と同様に取り付け角度θまたは長さLの少なくともいずれかが異なっているが、図11から図15の各図において、このような第1の掘削ビットと第2の掘削ビットとの形状の違いは必ずしも図示されていない。また、各図に示された例では掘削可能領域が鋼管本体11の外側に拡張されているが、鋼管本体11の内側、または外側もしくは内側の両方に拡張されてもよい点は、上記の各実施形態と同様である。
 図11および図12に示された例では、鋼管本体11の周方向における第1の掘削ビット321および第2の掘削ビット322の配置パターンが上記の各実施形態とは異なる。より具体的には、上記の各実施形態では第1の掘削ビットと第2の掘削ビットとが1つおきに交互に配置されていたのに対し、図11に示される鋼管杭30では、第1の掘削ビット321と第2の掘削ビット322とが2つおきに交互に配置される。また、上記の各実施形態では第1の掘削ビットと第2の掘削ビットとが同じ数だけ配置されていたのに対し、図12に示される鋼管杭30では、第1の掘削ビット321を1つ配置するごとに第2の掘削ビット322が2つ配置され、従って第1の掘削ビット321の数よりも第2の掘削ビット322の数の方が多い。
 図13に示された例では、掘削ビットが、第1の掘削ビット321および第2の掘削ビット322に加えて第3の掘削ビット323および第4の掘削ビット324を含む。第3の掘削ビット323は、第2の掘削ビット322よりもさらに突出する距離が長い(つまり、鋼管本体11の管厚中心線LC11から鋼管本体11の径方向に距離D2(図1または図6などを参照)よりも長い第3の距離だけ突出する)ことによって、第2の掘削ビット322の掘削可能領域R2よりも拡張された掘削可能領域R3を有する。第3の掘削ビット323と第4の掘削ビット324との関係についても第2の掘削ビット322と第3の掘削ビット323との関係と同様であり、第4の掘削ビット324は、第3の掘削ビット323よりもさらに突出する距離が長いことによって、第3の掘削ビット323の掘削可能領域R3よりもさらに拡張された掘削可能領域R4を有する。このように、本発明の実施形態において、掘削ビットは、2種類の掘削ビットに限らず、3種類、または4種類以上の掘削ビットを含んでもよい。この場合、3種類以上の掘削ビットは、例えば図13に示された例における第2の掘削ビット322および第3の掘削ビット323のように、先行して施工抵抗を負担する掘削ビットが存在するために最初は摩耗が抑制され、先行する掘削ビットが摩耗した後は後に位置する別の掘削ビットの摩耗を抑制するために施工抵抗を負担する中間的な掘削ビットを含む。
 図14に示された例では、掘削ビット32が、鋼管杭30を先端側から見たときにC字状になるように湾曲している。この場合、掘削ビット32の取り付け角度θは、掘削ビット32の湾曲した板厚中心線LC32が鋼管本体11の管厚中心線LC11に交わる位置において、板厚中心線LC32の接線LT32と管厚中心線LC11の接線LT11とがなす角度である。また、掘削ビット32の取り付け方向に沿った長さLは、接線LT32に沿った方向の長さである。掘削ビット32に含まれる第1の掘削ビット321と第2の掘削ビット322との間では、取り付け角度θまたは長さLの少なくともいずれかが異なることによって鋼管本体11の管厚中心線LC11から外側に突出する距離D1,D2が異なり、これによって第1の掘削ビット321の掘削可能領域R1よりも第2の掘削ビット322の掘削可能領域R2の方が拡張されている。図14の例では、例えば上記の各実施形態と同様の効果が得られるのに加えて、掘削ビット32がC字状になるように湾曲していることによって、鋼管杭30が反時計回り(CCW)で回転するときには鋼管本体11および掘削ビット32から離れる向きの土砂の流れを生み出しやすく、また鋼管杭30が時計回り(CW)で回転するときには鋼管本体11の内側に向かう土砂の流れを生み出しやすくなる。土砂の流れがスムーズになることによって、鋼管杭30を用いた掘削がより円滑になる。
 図15に示された例では、掘削ビット32が、鋼管杭30を先端側から見たときにS字状になるように湾曲している。この場合、掘削ビット32の取り付け角度θは、掘削ビット32の湾曲した板厚中心線LC32が鋼管本体11の管厚中心線LC11に交わる位置において、掘削ビット32の両端の板厚中心を結ぶ直線LE32と管厚中心線LC11の接線LT11とがなす角度である。また、掘削ビット32の取り付け方向に沿った長さLは、直線LE32に沿った方向の長さである。掘削ビット32に含まれる第1の掘削ビット321と第2の掘削ビット322との間では、取り付け角度θまたは長さLの少なくともいずれかが異なることによって鋼管本体11の管厚中心線LC11から外側に突出する距離D1,D2が異なり、これによって第1の掘削ビット321の掘削可能領域R1よりも第2の掘削ビット322の掘削可能領域R2の方が拡張されている。図15の例では、上記で図14に示した例と同様の効果が得られるのに加えて、鋼管杭30が時計回り(CW)に回転するときに鋼管本体11の内側に取り込まれた土砂が掘削ビット32から離れる向きの土砂の流れを生み出しやすくなる。図14の例と同様に、土砂の流れがスムーズになることによって、鋼管杭30を用いた掘削がより円滑になる。
 (鋼管杭の施工方法)
 上記で説明したような本発明の実施形態および変形例に係る鋼管杭を用いて、例えば以下のような施工方法が実施可能である。なお、以下では上記で図1を参照して説明した鋼管杭10を例として説明するが、第2の実施形態や各変形例に係る鋼管杭20,30でも同様の施工方法が実施可能である。
 まず、鋼管杭10の先端(掘削ビット12の先端、または鋼管本体11の端面11E)が所定の深度に到達するまで、掘削ビット12が土砂を鋼管本体11の外側に押し出す第1の回転方向(図1に示す反時計回り(CCW))に鋼管杭10を回転させながら掘削する工程が実施される。その後、鋼管杭10の先端が打ち止め深さに到達するまで、掘削ビット12が土砂を鋼管本体11の内側に取り込む第2の回転方向(図1に示す時計回り(CW))に鋼管杭10を回転させながら掘削する工程が実施される。ここで、所定の深度は、例えば打ち止め深さに対して鋼管本体11の直径の1倍~5倍程度の距離だけ上方である。これによって、鋼管杭10の打ち止め時においては、鋼管杭10の下端部を取り込んだ土砂で閉塞させて、高い支持力を得ることができる。
 なお、上記の所定の深度と、地盤中の支持層の深さとの関係は任意である。つまり、所定の深度は、支持層の深さよりも深くてもよい。この場合、施工方法では、打ち止めの際に、鋼管杭10の先端を支持層に到達させてから、鋼管杭10を第2の回転方向に回転させることになる。あるいは、所定の深度は、支持層の深さよりも浅くてもよい。この場合、施工方法では、打ち止めの際に、鋼管杭10の先端が支持層に到達する直前から、鋼管杭10を第2の回転方向に回転させながら掘削し、鋼管杭10の先端が支持層に到達してから打ち止めることになる。
 また、施工方法において、鋼管杭10を第1の回転方向に回転させながら掘削する工程と、鋼管杭10を第2の回転方向に回転させながら掘削する工程とは、交互に実施されてもよい。つまり、鋼管杭10の先端が所定の深度に到達する前であっても、鋼管杭10を第2の回転方向に回転させながら掘削することは可能である。具体的には、例えば鋼管杭10の根入れが順調ではないような場合に、鋼管杭10の回転方向を交互に切り替えながら根入れし、最終的には鋼管杭10を第2の回転方向に回転させて打ち止めることが考えられる。この場合、所定の深度は、鋼管杭10が最後に第1の回転方向に回転させられた深度であり、例えば打ち止め深さと同程度の深さでありうる。例えば上記のような場合において、鋼管杭10の回転方向だけではなく、鋼管杭10の掘削(先端の下降)および後退(先端の上昇)を交互に実施してもよい。
 図16は、掘削ビットの取り付け角度に関する実験結果を示すグラフである。実験では、断面直径101.6mm、管厚5.7mmの鋼管本体に、厚さ6mm、取り付け方向に沿った長さ30mm、鋼管本体の端面からの突出高さ12mmの掘削ビットを等間隔で4つ取り付け、掘削ビットの取り付け角度を0°(取り付け角度なし)、5°、15°、20°および30°の5通りにした場合について、飯豊珪砂7号を用いた模擬地盤に同じ深度まで打設した鋼管杭の支持力を比較した。なお、この実験では、「道路橋示方書・同解説(IV 下部構造編)」に準拠し、杭頭(鋼管頭部)の沈下量が杭径(断面直径)の10%のときの荷重(極限支持力)を支持力としている。また、支持力は取り付け角度がない場合を1とした場合の増加比率で表現されている。図16のグラフに示されるように、取り付け角度がある(0°よりも大きい)場合は、取り付け角度がない場合に比べて支持力が向上する。特に、取り付け角度が5°から15°の範囲で、より顕著な支持力の向上がみられた(0°の場合の約1.25倍以上)。この結果から、例えば、上述した各実施形態において、掘削ビットの取り付け角度θ,θ1,θ2を5°以上15°以下(5°≦θ,θ1,θ2≦15°)の範囲に設定してもよい。なお、上記の範囲外の場合でも支持力は向上するため、取り付け角度θ,θ1,θ2の値は上記の範囲には限定されない。
 図17は、掘削ビットの摩耗抑制効果について検証する実験について説明するための図である。図示されているように、実験では、断面直径101.6mm、管厚5.7mmの鋼管本体11に、厚さ3.2mm、取り付け方向に沿った長さ30mm、鋼管本体の端面からの突出高さ10mmの掘削ビット121,122を等間隔で4つ取り付けた。実施例では、このうち2つの掘削ビット121については取り付け角度を10°とし、残りの2つの掘削ビット122については取り付け角度を15°とし、掘削ビット121と掘削ビット122とを鋼管本体11の周方向について交互に配置した。掘削ビット121,122は、いずれも鋼管本体11の外側および内側の両方に突出し、かつ取り付け方向の中心で鋼管本体11の管厚中心線に交差する。なお、図17は、この実施例の条件を示している。比較例では、同様に4つの掘削ビットを取り付けたが、すべての掘削ビットで取り付け角度を10°とした。
 図18は、図17に示した実験の結果を示すグラフである。図17を参照して説明したような実施例および比較例に係る鋼管杭で、モルタル状の模型地盤を施工深度500mm分掘削した。その結果、グラフに示されるように、取り付け角度および掘削可能領域がすべての掘削ビットで同じである比較例における各ビットの体積残存率を1とした場合に、掘削可能領域の大きさが異なる2組の掘削ビットを配置した実施例では、掘削可能領域が小さい掘削ビット121の体積残存率が比較例の3.48倍であった。ここで、体積残存率は、施工前の掘削ビットの体積に対して、施工後に残存した掘削ビットの体積の割合である。この結果は、複数の掘削ビットの間で掘削可能領域の大きさを異ならせることによって掘削時の摩耗に対抗して掘削ビットの機能を維持できることを示している。
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範囲内において、各種の変形例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
 10,20,30…鋼管杭、11…鋼管本体、11E…端面、12,22,32…掘削ビット、121,121A,221,221A,321…第1の掘削ビット、121E,221E…先端面、122,122A,122B,222,222A,222B,322…第2の掘削ビット、122E,222E…先端面、323…第3の掘削ビット、324…第4の掘削ビット。
 

Claims (11)

  1.  鋼管本体と、前記鋼管本体の端面に前記鋼管本体の周方向接線に対して角度をもって取り付けられ、前記鋼管本体の径方向の外側または内側の少なくともいずれかに突出する板状の掘削ビットとを備える鋼管杭であって、
     前記掘削ビットが、
      前記鋼管本体の管厚中心線から前記鋼管本体の径方向に第1の距離だけ突出することによって第1の掘削可能領域を有する第1の掘削ビットと、
      前記鋼管本体の管厚中心線から前記鋼管本体の径方向に前記第1の距離よりも長い第2の距離だけ突出することによって、前記鋼管本体の径方向の外側または内側の少なくともいずれかで前記第1の掘削可能領域よりも拡張された第2の掘削可能領域を有する第2の掘削ビットと
     を含む鋼管杭。
  2.  前記第1の掘削ビットは、前記鋼管本体の周方向接線に対して0よりも大きい第1の角度をもって取り付けられ、
     前記第2の掘削ビットは、前記鋼管本体の周方向接線に対して前記第1の角度よりも大きい第2の角度をもって取り付けられる、請求項1に記載の鋼管杭。
  3.  前記第1の掘削ビットは、前記第1の掘削ビットの取り付け方向に沿って第1の長さを有し、
     前記第2の掘削ビットは、前記第2の掘削ビットの取り付け方向に沿って前記第1の長さよりも長い第2の長さを有する、請求項1または請求項2に記載の鋼管杭。
  4.  前記第1の掘削ビットまたは前記第2の掘削ビットの少なくともいずれかの先端面に、前記鋼管本体の径方向の内側から外側に向かって突出高さが高くなる傾斜が形成される、請求項1から請求項3のいずれか1項に記載の鋼管杭。
  5.  前記第1の掘削ビットまたは前記第2の掘削ビットの少なくともいずれかが、前記鋼管本体の径方向の内側から外側に向かって厚くなるテーパー断面で形成される、請求項1から請求項4のいずれか1項に記載の鋼管杭。
  6.  前記掘削ビットが、前記鋼管本体の管厚中心線から前記鋼管本体の径方向に前記第2の距離よりも長い第3の距離だけ突出することによって、前記鋼管本体の径方向の外側または内側の少なくともいずれかで前記第1の掘削可能領域および前記第2の掘削可能領域よりも拡張された第3の掘削可能領域を有する第3の掘削ビットをさらに含む、請求項1から請求項5のいずれか1項に記載の鋼管杭。
  7.  前記掘削ビットは、前記鋼管杭を先端側から見たときにC字状またはS字状になるように湾曲した板状である、請求項1から請求項6のいずれか1項に記載の鋼管杭。
  8.  請求項1から請求項7のいずれか1項に記載された鋼管杭の施工方法であって、
     前記鋼管杭の先端が所定の深度に到達するまで、前記掘削ビットが土砂を前記鋼管本体の外側に押し出す第1の回転方向に前記鋼管杭を回転させながら掘削する工程と、
     前記鋼管杭の先端が打ち止め深さに到達するまで、前記掘削ビットが土砂を前記鋼管本体の内側に取り込む第2の回転方向に前記鋼管杭を回転させながら掘削する工程と
     を含む鋼管杭の施工方法。
  9.  前記打ち止めの際に、前記鋼管杭の先端を支持層に到達させてから、前記鋼管杭を前記第2の回転方向に回転させる、請求項8に記載の鋼管杭の施工方法。
  10.  前記打ち止めの際に、前記鋼管杭の先端が支持層に到達する直前から、前記鋼管杭を前記第2の回転方向に回転させながら掘削し、前記鋼管杭の先端が前記支持層に到達してから打ち止める、請求項8に記載の鋼管杭の施工方法。
  11.  前記第1の回転方向に前記鋼管杭を回転させながら掘削する工程と、前記第2の回転方向に前記鋼管杭を回転させながら掘削する工程とが交互に実施される、請求項8から請求項10のいずれか1項に記載の鋼管杭の施工方法。
     
PCT/JP2020/008863 2019-03-08 2020-03-03 鋼管杭および鋼管杭の施工方法 WO2020184283A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-042534 2019-03-08
JP2019042534 2019-03-08
JP2019-114340 2019-06-20
JP2019114340 2019-06-20

Publications (1)

Publication Number Publication Date
WO2020184283A1 true WO2020184283A1 (ja) 2020-09-17

Family

ID=72427405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/008863 WO2020184283A1 (ja) 2019-03-08 2020-03-03 鋼管杭および鋼管杭の施工方法

Country Status (1)

Country Link
WO (1) WO2020184283A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005299191A (ja) * 2004-04-09 2005-10-27 Soiensu:Kk 回転圧入杭
JP2005315050A (ja) * 2004-03-30 2005-11-10 Masahiro Sugano 回転埋設杭
JP2008255694A (ja) * 2007-04-06 2008-10-23 Nippon Steel Corp 杭施工用掘削装置および杭の施工方法
JP2009249893A (ja) * 2008-04-04 2009-10-29 Nippon Steel Corp 回転圧入杭およびその施工方法
US20160348330A1 (en) * 2015-06-01 2016-12-01 West Virginia University Fiber-reinforced polymer shell systems and methods for encapsulating piles with concrete columns extending below the earth's surface

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005315050A (ja) * 2004-03-30 2005-11-10 Masahiro Sugano 回転埋設杭
JP2005299191A (ja) * 2004-04-09 2005-10-27 Soiensu:Kk 回転圧入杭
JP2008255694A (ja) * 2007-04-06 2008-10-23 Nippon Steel Corp 杭施工用掘削装置および杭の施工方法
JP2009249893A (ja) * 2008-04-04 2009-10-29 Nippon Steel Corp 回転圧入杭およびその施工方法
US20160348330A1 (en) * 2015-06-01 2016-12-01 West Virginia University Fiber-reinforced polymer shell systems and methods for encapsulating piles with concrete columns extending below the earth's surface

Similar Documents

Publication Publication Date Title
KR101620380B1 (ko) 스파이럴 강관 말뚝
US10837154B2 (en) Coupler for soil nail and method of emplacing same
WO2020184282A1 (ja) 鋼管杭および鋼管杭の施工方法
CN104088589B (zh) 钻具和旋挖钻机
WO2020184283A1 (ja) 鋼管杭および鋼管杭の施工方法
JP2006312825A (ja) 回転貫入杭およびその施工方法
JP4874433B2 (ja) 鋼管杭
JP2019100124A (ja) 拡底部を備えた地下壁杭構造
JP2021063356A (ja) 先端翼付回転貫入鋼管杭の製法
WO2022080161A1 (ja) 多方向オーガービット
KR101791211B1 (ko) 좌굴 보강용 헬릭스 강관 말뚝의 시공 방법
JP4210297B2 (ja) 先端羽根付き拡径管及びそれを備えた先端羽根付き鋼管杭
CN204002599U (zh) 钻具和旋挖钻机
JP7277726B2 (ja) 鋼管杭および鋼管杭の施工方法
JP5772658B2 (ja) ハット型鋼矢板およびハット型鋼矢板を用いた構造体
CN211924079U (zh) 先导阶梯型滚刀钻头
JP4173069B2 (ja) 翼付き鋼管杭
JP5413336B2 (ja) 鋼管杭の製造方法および杭の施工方法
JP7184285B2 (ja) 鋼管径変換リング
CN220280094U (zh) 一种挖掘部件及方桩钻头
CN220434629U (zh) 旋挖灌注桩倾斜岩面台阶钻进修整结构
JP6943633B2 (ja) リング状先端金物およびそれを使用する中掘り杭工法
KR20100076577A (ko) 비대칭 회전날개를 구비하는 강관파일
CN206600179U (zh) 一种端部膨胀式锁脚锚管
JP2014101647A (ja) 鋼製杭及び鋼製杭の使用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20770151

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20770151

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP