WO2015029421A1 - 統合弁、駆動システム - Google Patents

統合弁、駆動システム Download PDF

Info

Publication number
WO2015029421A1
WO2015029421A1 PCT/JP2014/004367 JP2014004367W WO2015029421A1 WO 2015029421 A1 WO2015029421 A1 WO 2015029421A1 JP 2014004367 W JP2014004367 W JP 2014004367W WO 2015029421 A1 WO2015029421 A1 WO 2015029421A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
liquid
refrigerant
side valve
phase
Prior art date
Application number
PCT/JP2014/004367
Other languages
English (en)
French (fr)
Inventor
伊藤 哲也
道夫 西川
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2015029421A1 publication Critical patent/WO2015029421A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/10Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit
    • F16K11/14Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit operated by one actuating member, e.g. a handle
    • F16K11/16Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit operated by one actuating member, e.g. a handle which only slides, or only turns, or only swings in one plane
    • F16K11/161Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit operated by one actuating member, e.g. a handle which only slides, or only turns, or only swings in one plane only slides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/04Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only lift valves
    • F16K11/044Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only lift valves with movable valve members positioned between valve seats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat

Definitions

  • the present disclosure relates to an integrated valve applied to a heat pump cycle that can be switched to a gas injection cycle, and a driving system for the integrated valve, and is suitable for a vehicle air conditioner.
  • high-temperature and high-pressure refrigerant discharged from a compressor of a heat pump cycle is used as an air conditioner applied to a vehicle such as an electric vehicle in which it is difficult to secure a heat source for heating the passenger compartment.
  • Some heat sources heat the passenger compartment.
  • the refrigerant is decompressed in two stages between the radiator and the evaporator, and a gas injection cycle in which a part of the intermediate pressure refrigerant (gas phase refrigerant) is merged with the refrigerant in the compression process in the compressor (A economizer refrigeration cycle is known.
  • Patent Document 1 discloses a heat pump cycle that switches from a normal cycle (one-stage compression cycle) to a gas injection cycle (two-stage compression cycle) during heating operation in order to improve the coefficient of performance (COP) of the cycle during heating operation. It is disclosed.
  • the heat pump cycle that can be switched to the gas injection cycle requires a gas-liquid separator that separates the gas-liquid refrigerant that has flowed out of the radiator, a switching unit that switches the refrigerant circuit, and the like, compared to a normal one-stage compression cycle. There is a problem that the cycle configuration becomes complicated.
  • Patent Document 1 in a heat pump cycle, a gas-liquid separator, a switching unit for switching a refrigerant circuit, and the like necessary for realizing a gas injection cycle are integrated as an integrated valve, thereby simplifying the cycle configuration. I am trying.
  • the present inventors investigated the cause of the above-mentioned problem, and as a result, revealed the cause of the problem. Hereinafter, this point will be described based on the components of the integrated valve.
  • FIG. 23 is a schematic diagram showing a configuration in which the integrated valve disclosed in Patent Document 1 is applied to a heat pump cycle that can be switched between a gas injection cycle and a normal cycle (hereinafter referred to as a study example).
  • the solid line arrow shown in FIG. 23 shows the flow of the refrigerant at the time of switching to the gas injection cycle during the heating operation
  • the broken line arrow shown in FIG. 23 is the one at the time of switching to the normal cycle (one-stage compression cycle) during the heating operation. The flow of the refrigerant is shown.
  • the heat pump cycle 100 of the examination example includes an intermediate pressure port 101c that compresses the refrigerant sucked from the suction port 101a and discharges it from the discharge port 101b, and flows the intermediate pressure refrigerant in the cycle into the refrigerant in the compression process.
  • a two-stage compression type compressor 101 is provided.
  • the radiator 102 From the upstream side to the discharge port 101b side of the compressor 101, the radiator 102, the decompression device 103, the integrated valve 104, the outdoor heat exchanger 105 functioning as an evaporator, and the gas-liquid refrigerant flowing out of the outdoor heat exchanger 105
  • separate are connected.
  • the integrated valve 104 selectively opens and closes the gas-phase refrigerant passage 104c and the liquid-phase refrigerant passage 104d in the body 104a in which the gas-liquid separation space 104b for separating the gas-liquid refrigerant flowing out from the decompression device 103 is formed.
  • the valve body 104e and the fixed throttle 104f are accommodated.
  • the valve body 104e is connected to the electric actuator 104h via the rod 104g.
  • the gas-phase refrigerant passage 104c communicates with the intermediate pressure port 101c of the compressor 101 via the intermediate pressure refrigerant passage 107.
  • valve element 104e of the integrated valve 104 is set to a position where the gas-phase refrigerant passage 104c is closed and the liquid-phase refrigerant passage 104d is opened by the electric actuator 104h.
  • the liquid-phase refrigerant passage 104d is open, all of the refrigerant that has flowed out of the gas-liquid separation space 104b flows into the outdoor heat exchanger 105 that functions as an evaporator via the liquid-phase refrigerant passage 104d.
  • the position of the valve body 104e is set to a position where the liquid-phase refrigerant passage 104d is closed and the gas-phase refrigerant passage 104c is opened by the electric actuator 104h.
  • the time until the flow rate of the refrigerant circulating in the cycle increases is shorter than the time until the pressure difference before and after the fixed throttle 104f expands to a level at which all the liquid-phase refrigerant can flow through the fixed throttle 104f.
  • the liquid-phase refrigerant cannot completely flow through the fixed throttle 104f, and the liquid-phase refrigerant that cannot flow through the fixed throttle 104f is a gas-phase refrigerant.
  • the refrigerant flows out to the intermediate pressure refrigerant passage 107 via the gas-phase refrigerant passage 104c.
  • the liquid-phase refrigerant flows into the compressor 101 through the intermediate pressure refrigerant passage 107.
  • Such a problem is not limited to when the refrigerant circuit of the heat pump cycle 100 is switched.
  • the same problem occurs even when the load state of the compressor 101 rapidly increases in the gas injection cycle. That is, in the transition period when the load state of the compressor 101 shifts to a high load state, the flow rate of the refrigerant passing through the fixed throttle 104f increases rapidly, and the refrigerant pressure after passing through the fixed throttle 104f rapidly decreases. So that the cycle is balanced. This is because, similarly to the switching of the refrigerant circuit in the heat pump cycle 100, forming (boiling, bumping) occurs in the accumulator 106, and the flow rate of the refrigerant circulating in the cycle increases.
  • the present disclosure is an integrated valve capable of simplifying the cycle configuration of the heat pump cycle while suppressing liquid phase refrigerant from flowing into the compressor via the intermediate pressure refrigerant passage, and
  • An object is to provide such a drive system.
  • the present disclosure is directed to an integrated valve applied to a heat pump cycle that can be switched to a gas injection cycle, and a drive system thereof.
  • An integrated valve includes a refrigerant inlet that allows a refrigerant discharged from a compressor of a heat pump cycle to flow in, a gas-liquid separation space that separates the gas and liquid of the refrigerant flowing from the refrigerant inlet, and an intermediate pressure refrigerant passage
  • a gas-phase side outlet through which the gas-phase refrigerant separated in the gas-liquid separation space flows out to the intermediate suction port side of the compressor, and a liquid phase from which the liquid-phase refrigerant separated in the gas-liquid separation space flows out A body in which a side outlet is formed, a gas phase side valve body for changing the opening degree of a gas phase refrigerant passage from the gas-liquid separation space to the gas phase side outlet, and a liquid phase side outlet from the gas-liquid separation space
  • a liquid-phase side valve element that changes the passage opening degree of the liquid-phase refrigerant path leading to the drive, a drive device that displaces both the gas-phase side valve element and the liquid
  • the driving device When the driving device displaces the gas-phase side valve element to the fully-closed position that closes the gas-phase refrigerant passage, the driving device is configured to displace the liquid-phase side valve element to the fully-open position where the opening degree of the liquid-phase refrigerant passage is fully opened.
  • the liquid phase side valve element When the liquid phase side valve element is displaced to the fully closed position that closes the liquid phase refrigerant passage, the gas phase refrigerant passage is fully open, and the gas phase refrigerant passage is open. Can be displaced to a position smaller than the fully open state.
  • the fixed throttle, the liquid phase side valve element, and the gas phase side valve element are accommodated and integrated in the body, and the liquid phase refrigerant side valve element and the gas phase side valve element are integrated into a single drive device.
  • the heat pump cycle that can be switched to the gas injection cycle can be realized with a simple cycle configuration.
  • all the refrigerant that has flowed out of the gas-liquid separation space flows out of the liquid-phase side outlet by setting the passage opening of the liquid-phase refrigerant passage to a fully open state with the gas-phase refrigerant passage closed.
  • the refrigerant circuit can be switched to.
  • the opening degree of the gas-phase refrigerant passage is set to a fully open state with the liquid-phase refrigerant passage closed, the liquid-phase refrigerant separated in the gas-liquid separation space is decompressed with a fixed throttle, It is possible to switch to a refrigerant circuit that causes the gas-phase refrigerant flowing out from the separation space to flow out to the intermediate suction port side of the compressor.
  • the passage opening of the gas phase refrigerant passage can be set to a passage opening smaller than the fully open state.
  • the gas-phase refrigerant passage is compressed through the intermediate pressure refrigerant passage by setting the passage opening of the gas-phase refrigerant passage to a passage opening smaller than the fully opened state. It is possible to suppress the liquid refrigerant from flowing into the intermediate suction port side of the machine. As a result, it is possible to suppress the occurrence of a malfunction of the compressor due to the inflow of the liquid phase refrigerant.
  • the “passage opening” indicates the degree of opening of the refrigerant passage. The larger the passage opening, the closer the refrigerant passage is to the fully open state, and the smaller the passage opening, the more the refrigerant passages are fully closed. It will approach.
  • the “position where the opening degree of the gas-phase refrigerant passage is smaller than the fully opened state” includes not only the position where the gas-phase refrigerant passage is opened but also the position where the gas-phase refrigerant passage is closed ( (Fully closed position) is also included.
  • the heat pump cycle controls the integrated valve and the driving device so that the gas phase refrigerant passage is closed and the liquid-phase refrigerant passage is fully opened.
  • the first mode the second mode in which the gas-phase refrigerant passage is fully opened with the liquid-phase refrigerant passage closed, and the gas-phase refrigerant passage opening with the liquid-phase refrigerant passage closed.
  • a drive control unit that switches to a third mode with a passage opening smaller than the fully open state. The drive control unit controls the drive device to switch to the third mode when a liquid inflow condition in which the liquid phase refrigerant flows into the intermediate pressure refrigerant passage is satisfied.
  • the passage opening of the gas-phase refrigerant passage is made smaller than that in the fully open state with the liquid-phase refrigerant passage closed, under the condition that the liquid-phase refrigerant flows into the intermediate suction port of the compressor.
  • It is principal part sectional drawing which shows the principal part of the integrated valve which concerns on embodiment.
  • It is principal part sectional drawing for demonstrating the shutter function of the vapor phase side valve body of the integrated valve which concerns on embodiment.
  • It is principal part sectional drawing for demonstrating the suppression effect of the refrigerant
  • It is a flowchart which shows the flow of the switching control process of the operation mode in a heat pump cycle.
  • the heat pump cycle 10 including the integrated valve 14 of the present disclosure and the drive system for the integrated valve 14 is applied to an air conditioner 1 for an electric vehicle that obtains a driving force for driving a vehicle from an electric motor for driving. Yes.
  • the heat pump cycle 10 functions to adjust the temperature of the indoor blown air by using the indoor blown air blown into the vehicle interior, which is the air conditioning target space, as the heat exchange target fluid.
  • the heat pump cycle 10 of the present embodiment includes a refrigerant circuit (FIG. 1) in a cooling operation mode for cooling the passenger compartment and heating while dehumidifying the passenger compartment (FIG. 1), and a refrigerant circuit in a heating operation mode for heating the passenger compartment. (FIGS. 2 and 3) can be switched.
  • the refrigerant circuit in the first heating mode executed when the outside air temperature is extremely low (for example, 0 ° C. or less) as the heating operation mode as will be described later (FIG. 2).
  • the refrigerant circuit (FIG. 3) in the second heating mode in which normal heating is performed can be switched.
  • the refrigerant circuit in the first heating mode shown in FIG. 2 constitutes a gas injection cycle (two-stage compression cycle), and the refrigerant circuit in the cooling operation mode and the dehumidifying heating mode and the refrigerant circuit in the second heating mode are normal. Cycle (single-stage compression cycle).
  • the first heating mode corresponds to an “injection mode” in which the gas-phase refrigerant flows into the intermediate pressure port 11c side of the compressor 11 via an intermediate pressure refrigerant passage 15 described later.
  • the heat pump cycle 10 of the present embodiment is configured as a cycle that can be switched to a gas injection cycle (two-stage compression cycle) and a normal cycle (one-stage compression cycle) other than the gas injection cycle.
  • the whole block diagram of FIG. 1 has shown the refrigerant circuit at the time of switching to air_conditionaing
  • the heat pump cycle 10 employs an HFC-based refrigerant (for example, R134a) as the refrigerant, and constitutes a vapor compression subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the refrigerant critical pressure.
  • HFO-based refrigerant e.g., R1234yf
  • the refrigerant is mixed with refrigerating machine oil (lubricating oil) for lubricating the compressor 11, and a part of the refrigerating machine oil circulates in the cycle together with the refrigerant.
  • the compressor 11 is disposed in the hood of the vehicle, and inhales, compresses and discharges the refrigerant in the heat pump cycle 10.
  • the compressor 11 is configured by an electric compressor configured to house a compression mechanism that compresses a refrigerant in a compression chamber (not shown) and an electric motor that rotationally drives the compression mechanism inside a housing that forms an outer shell. .
  • the housing of the compressor 11 includes a suction port 11a that sucks low-pressure refrigerant into the compression chamber, a discharge port 11b that discharges high-pressure refrigerant from the compression chamber, guides intermediate-pressure refrigerant in the cycle to the compression chamber, and serves as a refrigerant in the compression process.
  • An intermediate pressure port (intermediate suction port) 11c to be joined is provided.
  • the compressor 11 is provided with an oil sump for supplying lubricating oil to the sliding portion of the compression mechanism.
  • a scroll type compression mechanism can be adopted.
  • the compression mechanism of the compressor 11 is not limited to the scroll type compression mechanism, and various types such as a vane type compression mechanism and a rolling piston type compression mechanism can be adopted.
  • the compressor 11 allows the refrigerant to flow into the compression chamber from the intermediate pressure refrigerant passage 15 (described later) connected to the intermediate pressure port 11c, and the refrigerant flows from the compression chamber into the intermediate pressure refrigerant passage 15 side.
  • a check valve (not shown) for prohibiting is incorporated.
  • the electric motor is one whose operation (number of rotations) is controlled by a control signal output from the air conditioning control device 40 described later, and any type of an AC motor and a DC motor may be adopted. And the refrigerant
  • the refrigerant inlet side of the indoor condenser 12 is connected to the discharge port 11 b of the compressor 11.
  • the indoor condenser 12 is disposed in an air conditioning case 31 of an indoor air conditioning unit 30 to be described later, radiates high-pressure refrigerant discharged from the compressor 11, and heats indoor blown air that has passed through an indoor evaporator 23 to be described later. It is a radiator.
  • the refrigerant outlet side of the indoor condenser 12 is connected to the inlet side of the high-stage expansion valve 13 that can depressurize the high-pressure refrigerant flowing out of the indoor condenser 12 until it becomes an intermediate-pressure refrigerant.
  • the high-stage expansion valve 13 is an electric type that includes a valve body that can change the throttle opening degree and an electric actuator that includes a stepping motor that changes the throttle opening degree of the valve body. This is a variable aperture mechanism.
  • the high stage side expansion valve 13 is configured to be able to be set to a throttling state that exerts a pressure reducing action and a fully open state that does not exert a pressure reducing action.
  • the high stage side expansion valve 13 of the present embodiment is configured to be able to be set to a throttled state in which the refrigerant flowing out from the indoor condenser 12 is decompressed at least until it becomes an intermediate pressure refrigerant.
  • the high stage side expansion valve 13 is configured to change the throttle opening within a range where the throttle passage area has an equivalent diameter ⁇ 0.5 to ⁇ 3 mm when the refrigerant is decompressed. Further, when the throttle opening is fully opened, the high stage side expansion valve 13 can secure a throttle passage area of an equivalent diameter of about 10 mm so as not to exert the refrigerant decompression action.
  • the operation of the high stage side expansion valve 13 is controlled by a control signal output from the air conditioning control device 40.
  • the refrigerant inlet side of the integrated valve 14 is connected to the outlet side of the high stage side expansion valve 13.
  • the integrated valve 14 is an integral part of the components required to make the heat pump cycle 10 function as a gas injection cycle, and serves as a refrigerant circuit switching unit that switches the refrigerant circuit of the refrigerant circulating in the cycle. Fulfills the function.
  • the integrated valve 14 includes a gas-liquid separator (gas-liquid separation space 141b) that separates the gas-liquid refrigerant, a fixed throttle 17 that depressurizes the liquid-phase refrigerant separated by the gas-liquid separator, and gas-liquid separation.
  • the valve device 16 and the like for opening and closing the refrigerant passage through which the refrigerant flowing out of the vessel flows are integrally configured.
  • FIGS. 4 to 6 are schematic vertical sectional views of the integrated valve 14.
  • FIG. 4 shows a first mode in which the liquid-phase refrigerant passage 142c is fully opened while the gas-phase refrigerant passage 141f is closed.
  • FIG. 5 shows a cross-sectional view in the second mode in which the gas-phase refrigerant passage 141f is fully opened with the liquid-phase refrigerant passage 142c closed, and
  • FIG. 6 shows the state with the liquid-phase refrigerant passage 142c closed.
  • a sectional view in the third mode in which the gas-phase refrigerant passage 141f is fully closed or slightly opened is shown. Note that the up and down arrows in FIGS. 4 to 6 indicate directions in a state where the integrated valve 14 is mounted on the vehicle air conditioner 1.
  • the integrated valve 14 forms a shell thereof and has a body 140 for accommodating the fixed throttle 17 and the valve device 16 therein.
  • the body 140 is configured by a substantially rectangular tube-shaped metal block body (for example, aluminum) whose axial direction extends in the vertical direction.
  • the body 140 according to the present embodiment includes an upper block 141 disposed on the upper side and a lower block 142 attached and fixed to the lower side of the upper block 141.
  • a gas-liquid separation space 141b for separating the gas-liquid refrigerant flowing out from the high stage side expansion valve 13 is formed.
  • the gas-liquid separation space 141b is formed in a columnar shape whose axial direction extends in the vertical direction.
  • the gas-liquid separation space 141b of the present embodiment has an internal volume that exhibits the maximum capacity of the cycle from the enclosed refrigerant volume when the amount of refrigerant enclosed in the cycle is converted to the liquid phase. It is set smaller than the surplus refrigerant volume obtained by subtracting the necessary refrigerant volume when the necessary refrigerant amount is converted into the liquid phase. That is, the internal volume of the gas-liquid separation space 141b of the present embodiment is such that the surplus refrigerant cannot be substantially accumulated even when the load fluctuation occurs in the cycle and the refrigerant circulation flow rate circulating in the cycle fluctuates. It has become. According to this, size reduction of the physique as the integrated valve 14 whole can be achieved.
  • the upper block 141 is formed with a refrigerant inlet 141a for allowing the refrigerant from the high-stage expansion valve 13 to flow into the outer wall surface thereof.
  • the refrigerant inflow port 141a communicates with the gas-liquid separation space 141b through a refrigerant introduction hole 141g opened in the inner wall surface of the gas-liquid separation space 141b.
  • the refrigerant introduction passage 141h constituting the refrigerant passage from the refrigerant inlet 141a to the refrigerant introduction hole 141g is tangential to the inner wall surface of the gas-liquid separation space 141b when viewed from the axial direction of the gas-liquid separation space 141b. It is formed to extend.
  • the refrigerant flowing into the gas-liquid separation space 141b from the refrigerant inlet 141a swirls along the inner wall surface of the gas-liquid separation space 141b.
  • coolant which flowed into the gas-liquid separation space 141b is isolate
  • coolant falls to the downward side of the gas-liquid separation space 141b by gravity.
  • the gas-liquid separation space 141b of this embodiment constitutes a centrifugal gas-liquid separator.
  • the upper block 141 is provided with a round tubular pipe portion 141c that is disposed inside the gas-liquid separation space 141b and coaxially with the gas-liquid separation space 141b.
  • the refrigerant that has flowed into the gas-liquid separation space 141b swirls around the pipe portion 141c.
  • the pipe portion 141c extends such that the lowermost lower end portion is positioned inside the gas-liquid separation space 141b, and the gas phase refrigerant separated in the gas-liquid separation space 141b is supplied to the lower end portion.
  • An annular (doughnut-shaped) gas-phase-side inflow portion 141d for inflow is formed. Note that the gas-phase-side inflow portion 141d protrudes downward, and functions as a gas-phase-side valve seat portion to which a gas-phase-side valve body 161 described later contacts and separates.
  • a gas phase side outlet 141e formed on the outer wall surface of the upper block 141 and a through hole communicating with the internal space of the pipe portion 141c are formed.
  • This through hole constitutes, together with the internal space of the pipe portion 141c, a gas phase refrigerant passage 141f through which the gas phase refrigerant separated in the gas-liquid separation space 141b flows out from the gas phase side outlet 141e.
  • an intermediate pressure refrigerant passage 15 that guides the gas phase refrigerant to the intermediate pressure port 11c of the compressor 11 is connected to the gas phase side outlet 141e.
  • an annular shape in which the liquid-phase refrigerant separated in the gas-liquid separation space 141b flows into a position facing the gas-phase inflow portion 141d
  • a liquid phase side inflow portion 142a having a donut shape is formed.
  • the liquid phase side inflow portion 142a is formed integrally with the lower block 142 so as to protrude upward, and serves as a liquid phase side valve seat portion to which a liquid phase side valve body 162 to be described later contacts and separates. Plays a function.
  • the lower block 142 is formed with a liquid phase side outlet 142b formed on the outer wall surface of the lower block 142 and a through hole communicating with the liquid phase side inflow portion 142a.
  • This through-hole constitutes a liquid-phase refrigerant passage 142c through which the liquid-phase refrigerant separated in the gas-liquid separation space 141b flows out from the liquid-phase side outlet 142b.
  • the lower block 142 depressurizes the refrigerant flowing in from the gas-liquid separation space 141b and flows out to the liquid phase side outlet 142b side.
  • a fixed diaphragm 17 is formed.
  • the pressure loss that occurs when the refrigerant passes through the liquid-phase refrigerant passage 142c with the liquid-phase refrigerant passage 142c open is extremely small compared to the pressure loss that occurs when the refrigerant passes through the fixed throttle 17.
  • a nozzle, an orifice or the like having a fixed throttle opening can be employed as the fixed throttle 17, a nozzle, an orifice or the like having a fixed throttle opening.
  • the throttle passage area suddenly shrinks or expands rapidly, so that the flow rate of refrigerant passing through the fixed throttle as the pressure difference between the upstream side and downstream side (differential pressure between the inlet and outlet) changes.
  • the dryness of the fixed throttle upstream refrigerant can be self-adjusted (balanced).
  • the dryness of the fixed throttle upstream refrigerant is increased as the required circulation flow rate of the refrigerant that needs to circulate the cycle decreases.
  • the pressure difference is relatively small, it is balanced so that the dryness of the fixed throttle upstream side refrigerant decreases as the refrigerant circulation flow rate increases.
  • valve device 16 that opens and closes the gas-phase refrigerant passage 141f and the liquid-phase refrigerant passage 142c and the drive device 18 that displaces both the valve bodies 161 and 162 of the valve device 16 will be described.
  • the valve device 16 of the present embodiment changes the gas-phase-side valve body 161 that changes the passage opening degree of the gas-phase refrigerant passage 141f and the passage opening degree of the liquid-phase refrigerant passage 142c.
  • a liquid phase side valve body 162 is provided.
  • Each of the valve bodies 161 and 162 is disposed between a gas phase side inflow portion 141d and a liquid phase side inflow portion 142a that are formed to face each other. More specifically, the gas phase side valve body 161 is disposed so as to face the gas phase side inflow portion 141d, and the liquid phase side valve body 162 is in the liquid phase side inflow on the lower side of the gas phase side valve body 161. It arrange
  • the liquid-phase side valve body 162 covers a disc-shaped valve portion 162a that contacts and separates from the liquid-phase side inflow portion 142a, and a portion that exists between a valve portion 162a and a gas-phase-side valve body 161 in a rod described later. It is comprised with the member which integrated the provided annular cylindrical part 162b.
  • the valve portion 162a is a portion facing the liquid phase side inflow portion 142a in the liquid phase side valve body 162, and a through hole having a size capable of sliding a rod 181 described later is formed at the center thereof.
  • the area Sa2 of the valve portion 162a is larger than the opening area Sa1 of the liquid-phase inflow portion 142a (Sa2> Sa1).
  • a rubber-made first seal member 162c formed in an annular shape is formed at a portion contacting the liquid phase side inflow portion 142a on the lower surface side of the valve portion 162a and a second protrusion 181b of the rod 181 described later. Has been placed.
  • the first seal member 162c has a liquid phase side valve body 162 and a liquid phase side inflow portion 142a when the liquid phase side valve body 162 is displaced to a position where the liquid phase refrigerant passage 142c is closed. It functions as a member that improves the sealing performance.
  • the first seal member 162c is in close contact with a second protrusion 181b of the rod 181 described later when the gas-phase side valve body 161 is displaced to a position where the gas-phase refrigerant passage 141f is closed. And it is also a member for suppressing that a refrigerant leaks from the crevice between liquid phase side valve element 162 and rod 181.
  • Such refrigerant leakage is not preferable from the viewpoint of cycle performance and protection of the compressor 11.
  • the high-pressure refrigerant flows into the intermediate pressure port 11c of the compressor 11 through the gas-phase refrigerant passage 141f and the intermediate pressure refrigerant passage 15 in the cooling operation mode
  • the temperature of the refrigerant discharged from the compressor 11 is more than necessary.
  • the cycle performance decreases.
  • the first seal member 162c and the second protrusion 181b are brought into close contact with each other.
  • the first seal member 162c prevents the refrigerant from leaking from a gap between the liquid phase side valve body 162 and a rod 181 described later when the gas phase side valve body 161 closes the gas phase refrigerant passage 141f.
  • the 2nd leakage suppression part which suppresses is comprised.
  • the cylindrical part 162b is formed in the shape where the upper end part which contacts the gaseous-phase-side valve body 161 protrudes upwards by expanding the internal diameter in the site
  • the cylindrical portion 162b functions to suppress refrigerant leakage from a gap between a rod 181 and a valve portion 162a, which will be described later.
  • the gas-phase side valve body 161 is formed of a disk-like member having a through hole with a size that allows a rod 181 (described later) to slide in the center. And as shown in the principal part sectional view of Drawing 7, area Sb2 of gas phase side valve element 161 is larger than opening area Sb1 of gas phase side inflow part 141d (Sb2> Sb1).
  • the liquid-phase refrigerant separated in the gas-liquid separation space 141b falls to the lower side of the gas-liquid separation space 141b due to gravity.
  • the area ratio of the area Sb2 of the gas phase side valve body 161 to the opening area Sb1 of the gas phase side inflow portion 141d is set to be the ratio of the area Sb2 of the liquid phase side valve body 162 to the opening area Sa1 of the liquid phase side inflow portion 142a.
  • the area ratio of the area Sa2 is increased (Sb2 / Sb1> Sa2 / Sa1).
  • the gas-phase side valve element 161 can be opened when the gas-phase refrigerant passage 141f is opened. It can be made to function as a shutter which suppresses scattering of the liquid phase refrigerant to the phase refrigerant passage 141f side.
  • a rubber-made second seal member 161a formed in an annular shape is disposed at a portion in contact with the gas phase side inflow portion 141d on the upper surface side of the gas phase side valve body 161. As shown in FIG. 4, the second seal member 161a seals between the gas phase side valve body 161 and the gas phase side inflow portion 141d when the gas phase side valve body 161 closes the gas phase refrigerant passage 141f. It is a member for improving the property.
  • a rubber-made third seal member 161b formed in an annular shape is disposed in a portion of the lower surface side of the gas phase side valve body 161 that is in contact with the cylindrical portion 162b of the liquid phase side valve body 162. . As shown in FIG. 4, the third seal member 161b is in close contact with the cylindrical portion 162b when the gas-phase side valve body 161 closes the gas-phase refrigerant passage 141f. It is a member for suppressing the refrigerant from leaking from a gap between the rod 181 described later.
  • Such refrigerant leakage is not preferable from the viewpoint of cycle performance and protection of the compressor 11.
  • the high-pressure refrigerant flows into the intermediate pressure port 11c of the compressor 11 through the gas-phase refrigerant passage 141f and the intermediate pressure refrigerant passage 15 in the cooling operation mode
  • the temperature of the refrigerant discharged from the compressor 11 is more than necessary.
  • the cycle performance decreases.
  • the third seal member 161b and the cylindrical portion 162b are brought into close contact with each other.
  • the third seal member 161b prevents the refrigerant from leaking from a gap between the gas phase side valve body 161 and a rod 181 described later when the gas phase side valve body 161 closes the gas phase refrigerant passage 141f.
  • the 1st leakage suppression part which suppresses is comprised.
  • refrigerant leakage from the gaps between the valve bodies 161 and the rods 181 can be dealt with by arranging a seal member such as an O-ring in the gaps between the valve bodies 161 and the rods 181.
  • the driving device 18 displaces both the valve bodies 161 and 162 to desired positions.
  • the liquid phase side valve body 162 is configured to be displaceable to a fully open position where the passage opening degree is in a fully open state.
  • the gas phase side valve body 161 is configured to be displaceable at the fully open position.
  • the opening degree of the gas-phase refrigerant passage 141f is more than the fully-open state as shown in FIG.
  • the gas-phase side valve element 161 is configured to be displaceable to a position (a fully closed position or a slightly opened position).
  • the integrated valve 14 displaces the position of each valve element 161, 162 by the driving device 18 to change the operation mode into three modes such as the first to third modes shown in FIG. Switching is possible.
  • the drive device 18 of the present embodiment includes a rod 181 disposed so as to penetrate both the valve bodies 161 and 162, an electric actuator 182 that drives the rod 181 in the axial direction (vertical direction), each valve body 161,
  • the elastic member 183 is provided between the two members 162.
  • the rod 181 has one upper end connected to the movable portion of the electric actuator 182, and the other lower end slidably received in a guide hole 142d formed in the lower block 142.
  • the rod 181 of the present embodiment is arranged so that its axis coincides with the axis of the pipe portion 141c and penetrates the internal space of the pipe portion 141c.
  • a first protrusion 181a is provided for applying a load in a direction away from 141d (downward).
  • the first protrusion 181a is a bowl-shaped member that protrudes in a direction perpendicular to the axial direction of the rod 181 and is fixed to the upper side of the gas-phase-side valve body 161 in the rod 181 by caulking or the like.
  • a second protrusion 181b is provided to apply a load in a direction (upward) away from the inflow portion 142a.
  • the second protrusion 181 b is a bowl-shaped member that protrudes in a direction perpendicular to the axial direction of the rod 181, and is integrally formed with the rod 181 on the lower side of the liquid phase side valve body 162.
  • the second projecting portion 181b of the present embodiment is formed in a shape in which a portion on the upper surface side protrudes upward so as to come into contact with the first seal member 162c when contacting the liquid phase side valve body 162. ing.
  • the interval between the first and second protrusions 181a and 181b is larger than the interval between the gas-phase side inflow portion 141d and the liquid-phase side inflow portion 142a.
  • the electric actuator 182 displaces the valve bodies 161 and 162 by driving the rod 181 in the vertical direction.
  • a stepping motor is employed as the electric actuator 182.
  • the operation of the electric actuator 182 of this embodiment is controlled by a control pulse output from the air conditioning controller 40 described later.
  • the electric actuator 182 is configured by a stepping motor, when the control pulse output from the air-conditioning control device 40 is stopped, the position of each valve element 161, 162 depends on the frictional force of the feed screw and the magnet holding torque. Retained.
  • the elastic member 183 is a member that applies a load to the valve bodies 161 and 162 so as to be separated from each other, and is configured by a spring such as a coil spring. Specifically, the elastic member 183 applies a load to the gas phase side valve body 161 in a direction in contact with the gas phase side inflow portion 141d, and the liquid phase side inflow portion with respect to the liquid phase side valve body 162. It arrange
  • the electric actuator 182 drives the rod 181 upward when the liquid phase refrigerant passage 142c is opened by the liquid phase side valve body 162.
  • the second protrusion 181b of the rod 181 and the liquid phase side valve body 162 come into contact with each other, and the liquid phase side valve body 162 is separated from the liquid phase side inflow portion 142a.
  • a load is applied.
  • the gas-phase refrigerant passage 141f is closed by displacing the gas-phase-side valve body 161 at a position where it abuts on the gas-phase-side inflow portion 141d due to the load of the elastic member 183.
  • the electric actuator 182 drives the rod 181 downward when opening the gas-phase refrigerant passage 141f by the gas-phase side valve body 161.
  • the first protrusion 181a of the rod 181 and the gas phase side valve body 161 come into contact with each other, and the gas phase side valve body 161 is separated from the gas phase side inflow portion 141d.
  • a load is applied.
  • the liquid phase refrigerant passage 142c is closed by the liquid phase side valve body 162 being displaced to a position where it abuts on the liquid phase side inflow portion 142a due to the load of the elastic member 183.
  • the electric actuator 182 includes the projections 181a and 181b, respectively, the gas phase side inflow portion 141 and the liquid phase.
  • the rod 181 is driven to a position not in contact with the side inflow portion 142.
  • each valve body 161, 162 As a result, as shown in FIG. 6, no load is applied to each valve body 161, 162 from each projection 181a, 181b, and each valve body 161, 162 is placed at a position where it abuts on each inflow portion 141d, 142a by the load of the elastic member 183. As the valve bodies 161 and 162 are displaced, both the refrigerant passages 141f and 142c are closed.
  • the electric actuator 182 When the liquid-phase refrigerant passage 142c is closed and the gas-phase refrigerant passage 141f is opened slightly, the electric actuator 182 includes the protrusions 181a and 181b that are connected to the gas-phase-side inflow portion 141 and the liquid-phase-side inflow portion. The rod 181 is driven slightly downward from a position that does not contact 142.
  • the first protrusion 181a of the rod 181 contacts the gas phase side valve body 161, and a load is applied to the gas phase side valve body 161 in a direction away from the gas phase side inflow portion 141d.
  • the phase-side valve body 161 is slightly displaced to a position at which the gas-phase refrigerant passage 141f is opened.
  • the liquid phase refrigerant passage 142c is closed by the liquid phase side valve body 162 being displaced to a position where it abuts on the liquid phase side inflow portion 142a due to the load of the elastic member 183.
  • the refrigerant inlet side of the outdoor heat exchanger 20 is connected to the liquid phase side outlet 142 b of the integrated valve 14.
  • the outdoor heat exchanger 20 is disposed in the bonnet, and exchanges heat between the refrigerant circulating inside and the air outside the vehicle (outside air) blown from the blower fan 21.
  • the outdoor heat exchanger 20 functions as an evaporator that evaporates the refrigerant in the first and second heating modes and exerts a heat absorbing action, and functions as a radiator that radiates the refrigerant in the cooling operation mode and the like. It is an exchanger.
  • the refrigerant inlet side of the low stage side expansion valve 22 is connected to the refrigerant outlet side of the outdoor heat exchanger 20.
  • the low stage side expansion valve 22 depressurizes the refrigerant that flows out of the outdoor heat exchanger 20 and flows into the indoor evaporator 23 in the cooling operation mode or the like.
  • the basic configuration of the low stage side expansion valve 22 is the same as that of the high stage side expansion valve 13, and its operation is controlled by a control signal output from the air conditioning controller 40.
  • the refrigerant inlet side of the indoor evaporator 23 is connected to the outlet side of the low stage side expansion valve 22.
  • the indoor evaporator 23 is disposed in the air conditioning case 31 of the indoor air conditioning unit 30 on the upstream side of the air flow of the indoor condenser 12, and evaporates the refrigerant during the cooling operation mode or the dehumidifying heating operation mode to absorb heat. It is a heat exchanger that cools the air blown into the vehicle interior by exhibiting the above.
  • the inlet side of the accumulator 24 is connected to the refrigerant outlet side of the indoor evaporator 23.
  • the accumulator 24 separates the gas-liquid refrigerant flowing into the accumulator 24 and stores excess refrigerant.
  • the suction port 11 a of the compressor 11 is connected to the gas phase refrigerant outlet side of the accumulator 24. Therefore, the indoor evaporator 23 is connected so as to flow out to the suction port 11 a side of the compressor 11.
  • bypass passage 25 that guides the refrigerant flowing out of the outdoor heat exchanger 20 to the inlet side of the accumulator 24 by bypassing the low-stage expansion valve 22 and the indoor evaporator 23. It is connected.
  • bypass on-off valve 251 is arranged in this bypass passage 25, a bypass on-off valve 251 is arranged.
  • the bypass opening / closing valve 251 is an electromagnetic valve that opens and closes the bypass passage 25, and its opening / closing operation is controlled by a control signal output from the air conditioning controller 40.
  • the bypass on-off valve 251 of this embodiment functions to switch the cycle configuration (refrigerant flow path) by opening and closing the bypass passage 25. Therefore, the bypass on-off valve 251 of the present embodiment constitutes a refrigerant flow switching unit that switches the refrigerant flow of the refrigerant circulating in the cycle. Note that the pressure loss that occurs when the refrigerant passes through the bypass on-off valve 251 is extremely small relative to the pressure loss that occurs when the refrigerant passes through the low-stage expansion valve 22.
  • the refrigerant flowing out of the outdoor heat exchanger 20 flows into the accumulator 24 via the bypass passage 25 when the bypass on-off valve 251 is open, and low when the bypass on-off valve 251 is closed. It flows into the indoor evaporator 23 through the stage side expansion valve 22.
  • the indoor air conditioning unit 30 is arranged inside the instrument panel (instrument panel) at the foremost part of the vehicle interior to form an outer shell of the indoor air conditioning unit 30 and to the interior of the room air blown into the vehicle interior. It has an air conditioning case 31 that forms an air passage. And the air blower 32, the above-mentioned indoor condenser 12, the indoor evaporator 23, etc. are accommodated in this air passage.
  • Inside / outside air switching device 33 for switching and introducing vehicle interior air (inside air) and outside air is arranged on the most upstream side of the air flow of air conditioning case 31.
  • the inside / outside air switching device 33 continuously adjusts the opening area of the inside air introduction port for introducing the inside air into the air conditioning case 31 and the outside air introduction port for introducing the outside air by the inside / outside air switching door, so that the air volume of the inside air and the outside air are adjusted.
  • the air volume ratio with the air volume is continuously changed.
  • a blower 32 that blows the air sucked through the inside / outside air switching device 33 toward the vehicle interior is arranged on the downstream side of the air flow of the inside / outside air switching device 33.
  • the blower 32 is an electric blower that drives a centrifugal multiblade fan (sirocco fan) with an electric motor, and the number of rotations (air flow rate) is controlled by a control signal output from the air conditioning control device 40.
  • the indoor evaporator 23 and the indoor condenser 12 are arranged in the order of the indoor evaporator 23 ⁇ the indoor condenser 12 with respect to the flow of the indoor blown air.
  • the indoor evaporator 23 is disposed on the upstream side of the air flow with respect to the indoor condenser 12.
  • a bypass passage 35 is provided in the air conditioning case 31 to flow the blown air after passing through the indoor evaporator 23, bypassing the indoor condenser 12, on the downstream side of the air flow of the indoor evaporator 23.
  • An air mix door 34 is disposed on the upstream side of the air flow of the indoor condenser 12.
  • the air mix door 34 adjusts the air volume ratio between the air volume that passes through the indoor condenser 12 and the air volume that passes through the bypass passage 35 in the blown air that has passed through the indoor evaporator 23, and the heat of the indoor condenser 12. It is a heat exchange capacity adjustment unit that adjusts the exchange capacity.
  • the air mix door 34 is driven by a servo motor (not shown) whose operation is controlled by a control signal output from the air conditioning controller 40.
  • a merge space 36 for merging is provided.
  • an opening hole is formed through which the blown air merged in the merge space 36 is blown into the vehicle interior that is the air conditioning target space.
  • the defroster opening hole 37a that blows the conditioned air toward the inner side surface of the front window glass of the vehicle
  • the face opening hole 37b that blows the conditioned air toward the upper body of the passenger in the vehicle interior
  • the conditioned air toward the feet of the passenger A foot opening hole 37c to be blown out is formed.
  • each of the opening holes 37a to 37c is connected to a face air outlet, a foot air outlet, and a defroster air outlet provided in the vehicle interior via ducts that form air passages.
  • a defroster door 38a for opening and closing the defroster opening hole 37a, a face door 38b for opening and closing the face opening hole 37b, and a foot door 38c for opening and closing the foot opening hole 37c are arranged on the upstream side of the air flow of each opening hole 37a to 37c.
  • Each of the doors 38a to 38c constitutes a blowing mode switching unit that switches a blowing mode of air into the vehicle interior.
  • the doors 38a to 38c are driven by a servo motor (not shown) whose operation is controlled by a control signal output from the air conditioning controller 40.
  • the air conditioning control device 40 includes a known microcomputer including a CPU, a ROM, a RAM, and the like and peripheral circuits thereof.
  • the air conditioning control device 40 performs various calculations and processing based on a control program stored in a ROM or the like, and controls each control device (compressor 11, high stage expansion valve 13, integrated valve 14, bypass) connected to the output side. The operation of the on-off valve 251 and the blower 32).
  • a sensor group 41 for various air conditioning controls is connected to the input side of the air conditioning control device 40.
  • the sensor group 41 includes an inside air sensor that detects the temperature in the vehicle interior, an outside air sensor that detects the outside air temperature, a solar radiation sensor that detects the amount of solar radiation in the vehicle interior, an evaporator temperature sensor that detects the temperature of the indoor evaporator 23, and a compressor.
  • 11 is a discharge pressure sensor that detects the pressure of the high-pressure refrigerant discharged from No. 11.
  • an operation panel (not shown) arranged near the instrument panel is connected to the input side of the air conditioning control device 40, and operation signals from various air conditioning operation switches provided on the operation panel are input.
  • various air conditioning operation switches provided on the operation panel specifically, an operation switch of the vehicle air conditioner 1, a temperature setting switch for setting the passenger compartment temperature, a selection switch between the cooling operation mode and the heating operation mode, and the like are provided. It has been.
  • the air-conditioning control device 40 is configured such that a control unit that controls the operation of each control device connected to the output side is integrally configured, but the configuration that controls the operation of each control device (hardware and Software) constitutes a control unit that controls the operation of each control device.
  • the structure (hardware and software) which controls the integrated valve 14 in the air-conditioning control apparatus 40 comprises the drive control part 40a.
  • the integrated valve 14 and the drive control unit 40a constitute a drive system for the integrated valve 14.
  • the drive control unit 40a in the air conditioning control device 40 may be configured by a control device different from the air conditioning control device 40.
  • the vehicle air conditioner 1 can be switched to a cooling operation mode, a heating operation mode, and a dehumidifying heating operation mode. Switching between the operation modes is performed by a control process of the air conditioning control device 40.
  • the operation mode switching control process executed by the air conditioning control device 40 of this embodiment will be described with reference to the flowchart of FIG.
  • the control routine shown in FIG. 11 starts when the operation switch of the vehicle air conditioner 1 is turned on (ON operation) on the operation panel.
  • various signals are read from the various air conditioning control sensor group 41 and the operation panel (S10), and the operation mode of the heat pump cycle 10 is determined based on the read various signals (S12). .
  • the operation mode of the vehicle air conditioner 1 is determined according to the detection switch of the operation panel, the temperature setting switch, and the detected value of the outside air temperature sensor.
  • the operation mode is determined to be the cooling operation mode.
  • the operation mode flag is set to a value (for example, 0) indicating “cooling”.
  • the operation mode is determined to be the dehumidifying heating operation mode.
  • the operation mode flag is set to a value (for example, 1) indicating “dehumidifying / heating”.
  • the refrigerant circuit of the heat pump cycle 10 is gas-injected.
  • the first heating mode is determined as a cycle (two-stage compression cycle).
  • the operation mode flag is set to a value (for example, 2) indicating “first heating”.
  • the second heating mode in which the refrigerant circuit of the heat pump cycle 10 is set to the normal one-stage compression cycle is determined.
  • the operation mode flag is set to a value (for example, 3) indicating “second heating”.
  • step S12 it is determined whether or not the operation mode determined in step S12 is the cooling operation mode (S14), and when it is determined that the operation mode is the cooling operation mode, the cooling control process is executed (S16). .
  • step S18 it is determined whether or not to stop the air conditioning. If it is determined not to stop the air conditioning, the process returns to step S10 to read various signals again. On the other hand, when it is determined to stop the air conditioning, the operation mode switching control is finished. Whether or not to stop the air conditioning may be determined, for example, based on whether or not the operation switch is turned off.
  • step S14 If it is determined as a result of the determination process in step S14 that it is not in the cooling operation mode, it is determined whether or not it is in the first heating mode (S20). As a result, when it determines with it being 1st heating mode, 1st heating control processing is performed (S22) and it transfers to step S18 after that.
  • step S20 when it is determined that the first heating mode is not selected, it is determined whether or not the second heating mode is selected (S24). As a result, when it determines with it being the 2nd heating mode, a 2nd heating control process is performed (S26), and it transfers to step S18 after that.
  • step S24 If it is determined that the second heating mode is not set as a result of the determination process in step S24, a dehumidification heating control process is executed (S28), and then the process proceeds to step S18.
  • a dehumidification heating control process is executed (S28), and then the process proceeds to step S18.
  • Each determination of steps S14, S20, and S24 is processed based on the value of the operation mode flag set in step S12.
  • Cooling control processing (cooling operation mode)
  • the air conditioning control device 40 fully opens the high stage side expansion valve 13 (a state in which the pressure reducing action is not exerted), the low stage side expansion valve 22 is in a throttling state (a state in which the pressure reducing action is exerted), and bypass opening / closing.
  • the valve 251 is closed.
  • the air-conditioning control device 40 controls the electric actuator 182 so that the gas phase side valve body 161 is displaced to the fully closed position of the gas phase refrigerant passage 141f and the liquid phase side valve body 162 is displaced to the fully open position of the liquid phase refrigerant passage 142c.
  • a control pulse is output.
  • the integrated valve 14 is switched to the first mode in which the opening degree of the liquid-phase refrigerant passage 142c is fully opened while the gas-phase refrigerant passage 141f is closed.
  • the air conditioning control device 40 reads the detection signal of the sensor group 41 for air conditioning control and the operation signal of the operation panel, and calculates the target blowing temperature TAO, which is the target temperature of the air blown into the passenger compartment. Furthermore, the operating state of each control device connected to the output side of the air conditioning control device 40 is determined based on the calculated target blowing temperature TAO and the detection signal of the sensor group.
  • the control signal output to the electric motor of the compressor 11 is determined as follows. First, the target evaporator outlet temperature TEO of the indoor evaporator 23 is determined based on the target outlet temperature TAO with reference to a control map stored in the air conditioning controller 40 in advance. And the control signal output to the electric motor of the compressor 11 is determined so that the detected value (blowing air temperature) of the evaporator temperature sensor approaches the target evaporator blowing temperature TEO.
  • the target supercooling degree that is determined in advance so that the degree of supercooling of the refrigerant flowing into the low-stage side expansion valve 22 approaches the COP substantially to the maximum value. It is decided to approach.
  • the air mix door 34 closes the air passage of the indoor condenser 12, and the total flow rate of the blown air after passing through the indoor evaporator 23 is the bypass passage 35. Is determined to pass.
  • control signal determined as described above is output to each control device. Thereafter, reading of each signal ⁇ calculation of the target blowout temperature TAO ⁇ determination of the operating state of each control device ⁇ output of the control signal at every predetermined control period until the operation stop of the vehicle air conditioner 1 is requested by the operation panel The control routine is repeated. Such a control routine is repeated in the other operation modes.
  • the refrigerant flowing into the gas-liquid separation space 141b is in a gas phase state having a superheat degree, but the gas phase refrigerant passage 141f is fully closed by the gas phase side valve body 161. Therefore, the refrigerant that has flowed into the gas-liquid separation space 141b flows into the liquid-phase refrigerant passage 142c without flowing out from the gas-phase side outlet 141e, as shown in FIG.
  • the refrigerant that has flowed into the gas-liquid separation space 141 b is almost completely decompressed by the fixed throttle 17 without being reduced in pressure because the liquid-phase refrigerant passage 142 c is fully opened by the liquid-phase side valve body 162. And flows out from the liquid-phase side outlet 142b of the integrated valve 14.
  • the refrigerant flowing out from the liquid-phase side outlet 142b of the integrated valve 14 flows into the outdoor heat exchanger 20, and heat is exchanged with the outside air blown from the blower fan 21 in the outdoor heat exchanger 20 to dissipate heat (FIG. 12).
  • the refrigerant decompressed by the low stage side expansion valve 22 flows into the indoor evaporator 23, and absorbs heat from the air in-room air blown from the blower 32 to evaporate (c 11 points in FIG. 12 ⁇ d 11 points ). Thereby, indoor ventilation air is cooled.
  • the refrigerant flowing out of the indoor evaporator 23 flows into the accumulator 24 and is separated into gas and liquid. Then, the suction port 11a of the separated gas-phase refrigerant compressor 11 is sucked from the (e 11 points in FIG. 12), it is compressed again (e 11 points in FIG. 12 ⁇ a1 11 points ⁇ a 11 points).
  • separated in the accumulator 24 is stored in the accumulator 24 as a surplus refrigerant
  • the air-conditioning control device 40 opens the high stage expansion valve 13 in a throttled state (a state in which a pressure reducing action is exerted), fully closes the low stage expansion valve 22, and opens the bypass on-off valve 251. State.
  • the air-conditioning control device 40 is configured so that the gas-phase side valve element 161 is fully open in the gas-phase refrigerant passage 141f and the liquid-phase side valve element 162 is in the entire liquid-phase refrigerant passage 142c.
  • a control pulse is output to the electric actuator 182 so as to be displaced to the closed position.
  • the integrated valve 14 is switched to the second mode in which the opening degree of the liquid-phase refrigerant passage 142c is fully closed with the gas-phase refrigerant passage 141f opened.
  • the heat pump cycle 10 is switched to the refrigerant circuit through which the refrigerant flows, that is, the refrigerant circuit of the gas injection cycle, as shown by the solid line arrow in FIG.
  • the air conditioning control device 40 determines the operating state of each control device connected to the output side of the air conditioning control device 40 based on the target blowing temperature TAO and the detection signal of the sensor group 41.
  • the control signal output to the high stage side expansion valve 13 flows out from the indoor condenser 12 so that the refrigerant pressure in the indoor condenser 12 becomes a predetermined target high pressure.
  • the degree of supercooling of the refrigerant is determined to be a predetermined target degree of supercooling.
  • the air mix door 34 closes the bypass passage 35, and the entire flow rate of the blown air after passing through the indoor evaporator 23 passes through the indoor condenser 12. To be determined.
  • the high-pressure refrigerant (point 12 a in FIG. 13) discharged from the discharge port 11 b of the compressor 11 goes to the indoor condenser 12. Inflow.
  • the refrigerant flowing into the indoor condenser 12, the blower 32 is blown from the radiating heat cabin blown air by heat exchange through the interior evaporator 23 (a 12 point of FIG. 13 ⁇ b 12 points). Thereby, vehicle interior blowing air is heated.
  • the refrigerant flowing from the indoor condenser 12 is isenthalpic depressurize expansion in to have the high-stage expansion valve 13 to a stop state until the intermediate-pressure refrigerant (b 12 points in FIG. 13 ⁇ c1 12 points) .
  • the intermediate-pressure refrigerant decompressed by the high-stage expansion valve 13 is a refrigerant inlet 141a flows into the gas-liquid separation space 141b gas-liquid separation of the integrated valve 14 (c 12 points in FIG. 13 ⁇ c2 12 points, 12 points c ⁇ c3 12 points).
  • the liquid-phase refrigerant separated in the gas-liquid separation space 141b is completely closed by the liquid-phase side valve body 162. It is decompressed and expanded in an enthalpy manner until it becomes (c12 12 points ⁇ c4 12 points in FIG. 13), and flows out from the liquid phase side outlet 142b.
  • gas-phase refrigerant separated in the gas-liquid separation space 141b flows out from the gas-phase side outlet 141e of the integrated valve 14 because the gas-phase refrigerant passage 141f is fully opened by the gas-phase side valve body 161. It flows into the intermediate pressure port 11c side of the compressor 11 ( 12 points c2 in FIG. 13).
  • the refrigerant flowing into the intermediate pressure port 11c merges with the refrigerant in the compression process of the compressor 11 (a1 12 points in FIG. 13) and is compressed (a2 12 points in FIG. 13).
  • the refrigerant flowing out of the outdoor heat exchanger 20 flows into the accumulator 24 via the bypass passage 25 and is separated into gas and liquid because the bypass on-off valve 251 is in the open state.
  • the compressed again separated gas-phase refrigerant is sucked from the suction port 11a of the compressor 11 (e 12 points in FIG. 13).
  • the separated liquid-phase refrigerant is stored in the accumulator 24 as surplus refrigerant that is not necessary for exhibiting the refrigerating capacity required for the cycle.
  • the heat of the refrigerant discharged from the compressor 11 by the indoor condenser 12 is dissipated to the vehicle interior blown air, and the heated room blown air is blown out into the vehicle interior. it can. Thereby, heating of a vehicle interior is realizable.
  • the low-pressure refrigerant decompressed by the fixed throttle 17 is sucked from the suction port 11a of the compressor 11, and the intermediate-pressure refrigerant decompressed by the high stage side expansion valve 13 is sent to the intermediate pressure port 11c.
  • a gas injection cycle economizer-type refrigeration cycle
  • the refrigerant having a low temperature can be sucked into the compressor 11 and the compression efficiency in the compressor 11 can be improved.
  • the COP of the heat pump cycle 10 as a whole can be improved.
  • the liquid-phase refrigerant flows into the gas-phase refrigerant passage 141 f and passes through the intermediate-pressure refrigerant passage 15. Liquid phase refrigerant may be sucked.
  • FIG. 15 shows the high-stage side expansion valve 13, the refrigerant pressure in the cycle, and the compressor 11 when the operation mode is switched from the other operation mode (assuming the second heating mode in the present embodiment) to the first heating mode.
  • time Ta1 shown in FIG. 15 has shown the switching timing from other operation modes to 1st heating mode.
  • the solid line P ⁇ b> 1 is the pressure change of the high-pressure refrigerant discharged from the compressor 11
  • the dotted line P ⁇ b> 2 is the pressure change of the low-pressure refrigerant sucked into the compressor 11
  • the alternate long and short dash line P ⁇ b> 3 is the fixed throttle 17.
  • the refrigerant pressure change before passing and the two-dot chain line P4 show the refrigerant pressure change after passing through the fixed throttle 17. This also applies to the refrigerant pressure change shown in FIG.
  • the liquid-phase refrigerant flows into the gas-phase refrigerant passage 141f, and the intermediate-pressure refrigerant passage 15 The liquid phase refrigerant may be sucked into the compressor 11 via the.
  • FIG. 16 is a timing chart showing changes in the high-stage expansion valve 13, the refrigerant pressure in the cycle, and the rotation speed of the compressor 11 when the load state of the compressor 11 becomes a high load state.
  • time Tb1 shown in FIG. 16 has shown the timing when the load state of the compressor 11 became a high load state.
  • the diaphragm 17 can sufficiently flow the liquid phase refrigerant.
  • the cycle is balanced so that the pressure of the low-pressure refrigerant in the cycle rapidly decreases (see the dotted line P2 in FIG. 16). Then, due to the rapid pressure drop of the low-pressure refrigerant in the cycle, forming occurs in the accumulator 24 on the downstream side of the fixed throttle 17, and surplus refrigerant stored in the accumulator 24 is sucked into the suction port 11a of the compressor 11. As a result, the flow rate of the refrigerant circulating in the cycle increases. As a result, the fixed throttle 17 cannot completely flow the liquid refrigerant, and the liquid refrigerant that cannot flow through the fixed throttle 17 passes through the gas-phase refrigerant path 141f together with the gas-phase refrigerant. 15 flows into.
  • the liquid-phase refrigerant flows into the gas-phase refrigerant passage 141f, and the intermediate-pressure refrigerant The liquid refrigerant may be sucked into the compressor 11 through the passage 15.
  • the liquid inflow condition in which the liquid phase refrigerant flows into the intermediate pressure refrigerant passage 15 is satisfied.
  • the operation mode of the integrated valve 14 is switched to the third mode.
  • control routine of FIG. 17 is a process executed in the first heating mode.
  • step S241 it is determined whether or not the previous operation mode of the heat pump cycle 10 is not the first heating mode but another operation mode (S241). That is, it is determined whether or not the operation mode of the heat pump cycle 10 is an initial stage in which the operation mode other than the first heating mode is switched to the first heating mode. In the determination process of step S241, it is determined whether or not the previous operation mode flag matches the current operation mode flag. If they do not match, it is determined that the previous operation mode is another operation mode.
  • step S241 when it is determined that the previous operation mode is an operation mode other than the first heating mode, the liquid inflow condition is satisfied and the compression is performed via the intermediate pressure refrigerant passage 15. There is a possibility that the liquid refrigerant is sucked into the machine 11.
  • the air-conditioning control device 40 switches the operation mode of the integrated valve 14 to the third mode and executes the injection suppression operation (S242). Specifically, in the air conditioning control device 40, the liquid phase side valve body 162 is in the fully closed position of the liquid phase refrigerant passage 142c, and the gas phase side valve body 161 is in the fully closed position (or slightly open position) of the gas phase refrigerant passage 141f. A control pulse is output to the electric actuator 182 so as to be displaced to. As a result, the integrated valve 14 is switched to the third mode in which the gas-phase refrigerant passage 141f has a passage opening smaller than that in the fully opened state with the liquid-phase refrigerant passage 142c closed.
  • the liquid phase refrigerant separated in the gas-liquid separation space 141b is decompressed and expanded in an enthalpy manner until it becomes a low pressure refrigerant in the fixed throttle 17, and the liquid phase side It flows out from the outflow port 142b.
  • the gas-phase refrigerant passage 141f is fully closed or slightly opened by the gas-phase side valve body 161
  • the liquid-phase refrigerant hardly flows into the gas-phase refrigerant passage 141f via the fixed restrictor 17. It flows out from the liquid phase side outlet 142b.
  • the gas-phase refrigerant separated in the gas-liquid separation space 141b is inflow into the gas-phase refrigerant passage 141f because the gas-phase refrigerant passage 141f is fully closed or slightly opened by the gas-phase side valve body 161. Is limited.
  • the return condition in step S243 is set to a condition that is satisfied when a predetermined reference time has elapsed since switching to the third mode.
  • the reference time is set to the time required for the pressure difference before and after the fixed throttle 17 to increase to a level at which all of the liquid refrigerant can flow through the fixed throttle 17 after the operation mode of the heat pump cycle 10 is switched to the first heating mode.
  • the reference time may be set based on the longer one of the time from time Ta1 to time Ta2 shown in FIG. 15 and the time from time Tb1 to time Tb2 shown in FIG.
  • step S243 If it is determined that the return condition is not satisfied as a result of the determination process in step S243 shown in FIG. 17, the process returns to step S242. That is, until the return condition is satisfied, the operation mode of the integrated valve 14 is maintained in the third mode.
  • step S243 when it is determined that the return condition is satisfied as a result of the determination processing in step S243, it is considered that the pressure difference before and after the fixed throttle 17 has expanded to a level at which all the liquid refrigerant can flow through the fixed throttle 17. It is done.
  • the air conditioning control device 40 switches the operation mode of the integrated valve 14 to the second mode and executes the injection operation (S244). Specifically, the air-conditioning control device 40 is electrically operated so that the liquid phase side valve body 162 is displaced to the fully closed position of the liquid phase refrigerant passage 142c and the gas phase side valve body 161 is displaced to the fully open position of the gas phase refrigerant passage 141f. A control pulse is output to the actuator 182. Thereby, as shown in FIG. 5, the integrated valve 14 is switched to the second mode in which the opening degree of the gas-phase refrigerant passage 141f is fully opened while the liquid-phase refrigerant passage 142c is closed.
  • step S241 when it is determined that the previous operation mode is not an operation mode other than the first heating mode, the transient state in which the load state of the compressor 11 shifts to a predetermined high load state. It is determined whether it is a period (S245).
  • the difference between the target rotational speed output to the electric motor of the compressor 11 and the current rotational speed of the electric motor is not less than a predetermined reference value.
  • it determines with it being the transition period in which the load state of the compressor 11 transfers to a high load state.
  • the load state of the compressor 11 transitions to a high load state. Judge that it is not the period.
  • the air-conditioning control device 40 switches the operation mode of the integrated valve 14 to the third mode, and executes the injection suppression operation until a predetermined return condition is satisfied (S242, S243).
  • the air-conditioning control apparatus 40 switches the operation mode of the integrated valve 14 to the second mode, and executes the injection operation (S244).
  • a process end condition for ending the first heating control process is satisfied (S246).
  • the first heating control process is ended, and the process end condition is determined.
  • the process returns to step S241.
  • the process end condition is a condition that is satisfied when the operation switch of the vehicle air conditioner 1 is turned off when the operation mode is switched.
  • the operation mode of the integrated valve 14 is changed to the fully open gas-phase refrigerant passage 141f.
  • the mode is switched to the third mode in which the passage opening is smaller than the state.
  • the determination process in steps S241 and S245 in FIG. 17 constitutes a success / failure determination unit that determines whether or not the liquid inflow condition is satisfied.
  • (C) Second heating control process (second heating mode) In the second heating control process, the air-conditioning control device 40 throttles the high stage side expansion valve 13 (a state that exerts a pressure reducing action), the low stage side expansion valve 22 is fully closed, and the bypass on-off valve 251 is opened. State.
  • the air-conditioning control device 40 controls the electric actuator 182 so that the gas phase side valve body 161 is displaced to the fully closed position of the gas phase refrigerant passage 141f and the liquid phase side valve body 162 is displaced to the fully open position of the liquid phase refrigerant passage 142c.
  • a control pulse is output.
  • the integrated valve 14 is switched to the first mode in which the opening degree of the liquid-phase refrigerant passage 142c is fully opened while the gas-phase refrigerant passage 141f is closed.
  • the refrigerant circuit is switched to a refrigerant circuit through which the refrigerant flows as shown by the solid line arrows in FIG.
  • the air conditioning control device 40 determines the operating state of each control device connected to the output side of the air conditioning control device 40 based on the target blowing temperature TAO and the detection signal of the sensor group 41.
  • the control signal output to the high stage side expansion valve 13 flows out from the indoor condenser 12 so that the refrigerant pressure in the indoor condenser 12 becomes a predetermined target high pressure.
  • the degree of supercooling of the refrigerant is determined to be a predetermined target degree of supercooling.
  • the air mix door 34 closes the bypass passage 35, and the entire flow rate of the blown air after passing through the indoor evaporator 23 passes through the indoor condenser 12. To be determined.
  • the high-pressure refrigerant discharged from the discharge port 11 b of the compressor 11 goes to the indoor condenser 12. Inflow.
  • the refrigerant flowing into the indoor condenser 12, the blower 32 is blown from the radiating heat cabin blown air by heat exchange through the interior evaporator 23 (a 13 point of FIG. 18 ⁇ b 13 points). Thereby, vehicle interior blowing air is heated.
  • the refrigerant flowing from the indoor condenser 12, is isenthalpic depressurize expansion in the high stage side expansion valve 13 which has a stop state until a low-pressure refrigerant (b 13 points in FIG. 18 ⁇ c 13 points), It flows into the gas-liquid separation space 141b of the integrated valve 14.
  • the refrigerant that has flowed into the gas-liquid separation space 141b flows out of the liquid-phase side outlet 142b through the liquid-phase refrigerant passage 142c without flowing out of the gas-phase side outlet 141e, as in the cooling operation mode.
  • Low-pressure refrigerant flowing from the liquid phase side outlet 142b flows into the outdoor heat exchanger 20, and outside air heat exchanger that has been blown from the blower fan 21 absorbs heat (c 13 points in FIG. 18 ⁇ d 13 points).
  • the refrigerant flowing out of the outdoor heat exchanger 20 flows into the accumulator 24 via the bypass passage 25 and is separated into gas and liquid because the bypass on-off valve 251 is in the open state.
  • the separated gas-phase refrigerant is sucked from the suction port 11a of the compressor 11 (e 13 points in FIG. 18).
  • the heat of the refrigerant discharged from the compressor 11 by the indoor condenser 12 is dissipated to the vehicle interior blown air, and the heated room blown air is blown into the vehicle interior. it can. Thereby, heating of a vehicle interior is realizable.
  • the effect of executing the second heating mode when the heating load is relatively low, such as when the outside air temperature is high, is described with respect to the first heating mode.
  • the gas injection cycle can be configured as described above, the COP of the heat pump cycle 10 as a whole can be improved.
  • the first heating mode can exhibit higher heating performance than that in the second heating mode.
  • the rotation speed (refrigerant discharge capacity) of the compressor 11 necessary for exhibiting the same heating performance is lower in the first heating mode than in the second heating mode.
  • the compression mechanism has a maximum efficiency rotational speed at which the compression efficiency is maximized (peak), and has a characteristic that if the rotational speed is lower than the maximum efficient rotational speed, the compression efficiency is greatly reduced. For this reason, when the compressor 11 is operated at a rotation speed lower than the maximum efficiency rotation speed when the heating load is relatively low, the COP may decrease in the first heating mode.
  • the mode when the outside air temperature is high and the heating load is low during execution of the first heating mode, the mode is switched to the second heating mode, and the outside air temperature becomes low during the execution of the second heating mode.
  • the mode is switched to the first heating mode.
  • (D) Dehumidification heating control processing (dehumidification heating operation mode)
  • the air conditioning control device 40 brings the expansion valves 13 and 22 into a fully open state or a throttle state, and closes the bypass opening and closing valve 251.
  • the air-conditioning control device 40 controls the electric actuator 182 so that the gas phase side valve body 161 is displaced to the fully closed position of the gas phase refrigerant passage 141f and the liquid phase side valve body 162 is displaced to the fully open position of the liquid phase refrigerant passage 142c.
  • a control pulse is output.
  • the integrated valve 14 is switched to the first mode in which the opening degree of the liquid-phase refrigerant passage 142c is fully opened while the gas-phase refrigerant passage 141f is closed.
  • the refrigerant circuit is switched to the same refrigerant circuit as that in the cooling operation mode, that is, the refrigerant circuit through which the refrigerant flows as indicated by the solid line arrow in FIG.
  • the air conditioning control device 40 determines the operating state of each control device connected to the output side of the air conditioning control device 40 based on the target blowing temperature TAO and the detection signal of the sensor group 41.
  • the air mix door 34 closes the bypass passage 35, and the entire flow rate of the blown air after passing through the indoor evaporator 23 passes through the indoor condenser 12.
  • the throttle openings of the high stage side expansion valve 13 and the low stage side expansion valve 22 are changed according to the temperature difference between the set temperature and the outside air temperature.
  • the four-stage dehumidifying and heating operation modes of the first to fourth dehumidifying and heating modes are executed in accordance with the increase in the target blowing temperature TAO described above.
  • the high-pressure refrigerant discharged from the discharge port 11 b of the compressor 11 flows into the indoor condenser 12 and is cooled by the indoor evaporator 23.
  • the heat is exchanged with the dehumidified vehicle interior air to dissipate heat ( 14 points in FIG. 19 ⁇ 14 points in b1). Thereby, vehicle interior blowing air is heated.
  • the refrigerant that has flowed out of the indoor condenser 12 flows in the order of the high-stage expansion valve 13 ⁇ the integrated valve 14 and flows into the outdoor heat exchanger 20 in the same manner as in the cooling operation mode.
  • the high-pressure refrigerant flowing into the outdoor heat exchanger 20 exchanges heat with the outside air blown from the blower fan 21 to dissipate heat (b1 14 points ⁇ b2 14 points in FIG. 19).
  • the subsequent operation is the same as in the cooling operation mode.
  • the vehicle interior air cooled and dehumidified by the indoor evaporator 23 can be heated by the indoor condenser 12 and blown out into the vehicle interior. Thereby, dehumidification heating of a vehicle interior is realizable.
  • (D-2) Second Dehumidifying Heating Mode when the target blowing temperature TAO becomes higher than a predetermined first reference temperature during execution of the first dehumidifying heating mode, the second dehumidifying heating mode is set. Executed. In the second dehumidifying and heating mode, the high stage side expansion valve 13 is set to the throttled state, and the throttle opening degree of the low stage side expansion valve 22 is set to the throttled state that is increased compared to the first dehumidifying and heating mode. Therefore, in the second dehumidifying and heating mode, the state of the refrigerant circulating in the cycle changes as shown in the Mollier diagram of FIG.
  • the high-pressure refrigerant discharged from the discharge port 11b of the compressor 11 (a 15 point in FIG. 20), as in the first dehumidification and heating mode, and flows into indoor condenser 12, Heat is exchanged with the air blown into the passenger compartment cooled and dehumidified by the indoor evaporator 23 to dissipate heat ( 15 points in FIG. 20 ⁇ 15 points in b1). Thereby, vehicle interior blowing air is heated.
  • the refrigerant that has flowed out of the indoor condenser 12 is decompressed in an enthalpy manner until it becomes an intermediate-pressure refrigerant having a temperature higher than the outside air temperature by the high-stage expansion valve 13 that is in a throttled state (b1 in FIG. 20 at 15 points). ⁇ b2 15 points).
  • the intermediate pressure refrigerant decompressed by the high stage side expansion valve 13 flows into the outdoor heat exchanger 20 through the integrated valve 14 as in the cooling operation mode.
  • the vehicle interior blown air that has been cooled and dehumidified by the indoor evaporator 23 is heated by the indoor condenser 12 into the vehicle interior. Can be blown out. Thereby, dehumidification heating of a vehicle interior is realizable.
  • the temperature of the refrigerant flowing into the outdoor heat exchanger 20 can be lowered compared to the first dehumidifying and heating mode. Therefore, the temperature difference between the temperature of the refrigerant in the outdoor heat exchanger 20 and the outside air temperature can be reduced, and the amount of heat released from the refrigerant in the outdoor heat exchanger 20 can be reduced.
  • the target blowing temperature TAO becomes higher than a predetermined second reference temperature (second reference temperature> first reference temperature).
  • the third dehumidifying heating mode is executed.
  • the throttle opening of the high stage side expansion valve 13 is set to a throttled state smaller than that in the second dehumidifying and heating mode, and the throttle opening of the low stage side expansion valve 22 is set to be lower than that in the second dehumidifying heating mode. increase. Accordingly, in the third dehumidifying heating mode, the state of the refrigerant circulating in the cycle changes as shown in the Mollier diagram of FIG.
  • the high-pressure refrigerant discharged from the discharge port 11b of the compressor 11 flows into the indoor condenser 12 as in the first and second dehumidifying heating modes. Then, heat is exchanged with the air blown into the passenger compartment that has been cooled and dehumidified by the indoor evaporator 23 to dissipate heat (a 16 points ⁇ b 16 points in FIG. 21). Thereby, vehicle interior blowing air is heated.
  • the refrigerant that has flowed out of the indoor condenser 12 is decompressed in an enthalpy manner until it becomes an intermediate pressure refrigerant having a temperature lower than the outside air temperature by the high-stage expansion valve 13 in a throttled state (b 16 points in FIG. 21). ⁇ c1 16 points).
  • the intermediate pressure refrigerant decompressed by the high stage side expansion valve 13 flows into the outdoor heat exchanger 20 through the integrated valve 14 as in the cooling operation mode.
  • the intermediate-pressure refrigerant that has flowed into the outdoor heat exchanger 20 absorbs heat by exchanging heat with the outside air blown from the blower fan 21 (c1 16 points ⁇ c2 16 points in FIG. 21). Furthermore, the refrigerant that has flowed out of the outdoor heat exchanger 20 is decompressed in an isoenthalpy manner by the low-stage expansion valve 22 (c2 16 points ⁇ c3 16 points in FIG. 21), and flows into the indoor evaporator 23. The subsequent operation is the same as in the cooling operation mode.
  • the vehicle interior blown air cooled by the indoor evaporator 23 and dehumidified is heated by the indoor condenser 12. Can be blown into the passenger compartment. Thereby, dehumidification heating of a vehicle interior is realizable.
  • the outdoor heat exchanger 20 is caused to act as an evaporator by reducing the throttle opening of the high stage side expansion valve 13.
  • the heat absorption amount of the refrigerant in the outdoor heat exchanger 20 can be increased.
  • the suction refrigerant density of the compressor 11 can be increased with respect to the second dehumidifying heating mode, and the refrigerant pressure in the indoor condenser 12 can be increased without increasing the compressor rotation speed.
  • the temperature blown out from the indoor condenser 12 can be increased more than in the dehumidifying and heating mode.
  • (D-4) Fourth Dehumidifying Heating Mode Next, during the execution of the third dehumidifying heating mode, the target blowing temperature TAO becomes higher than a predetermined third reference temperature (third reference temperature> second reference temperature). In this case, the fourth dehumidifying and heating mode is executed. In the fourth dehumidifying and heating mode, the throttle opening of the high stage side expansion valve 13 is set to a throttled state smaller than that in the third dehumidifying and heating mode, and the low stage side expansion valve 22 is fully opened. Therefore, in the fourth dehumidifying heating mode, the state of the refrigerant circulating in the cycle changes as shown in the Mollier diagram of FIG.
  • the refrigerant that has flowed out of the indoor condenser 12 is decompressed in an enthalpy manner until it becomes a low-pressure refrigerant having a temperature lower than the outside air temperature by the high-stage expansion valve 13 that is in the throttled state (b 17 point in FIG. 22 ⁇ c1 17 points).
  • the low-pressure refrigerant decompressed by the high stage side expansion valve 13 flows into the outdoor heat exchanger 20 through the integrated valve 14 as in the cooling operation mode.
  • coolant which flowed into the outdoor heat exchanger 20 heat-exchanges with the external air ventilated from the ventilation fan 21, and absorbs heat (c1 17 point-> c2 17 point of FIG. 22). Furthermore, the refrigerant that has flowed out of the outdoor heat exchanger 20 flows into the indoor evaporator 23 without being depressurized because the low-stage expansion valve 22 is fully open. The subsequent operation is the same as in the cooling operation mode.
  • the vehicle interior blown air cooled and dehumidified by the indoor evaporator 23 is heated by the indoor condenser 12 as in the first to third dehumidifying and heating modes. Can be blown into the passenger compartment. Thereby, dehumidification heating of a vehicle interior is realizable.
  • the outdoor heat exchanger 20 is caused to act as an evaporator, and the throttle opening degree of the higher stage side expansion valve 13 is set to be higher than that in the third dehumidifying and heating mode. Since it is reduced, the refrigerant evaporation temperature in the outdoor heat exchanger 20 can be lowered. Therefore, the temperature difference between the refrigerant temperature and the outside air temperature in the outdoor heat exchanger 20 can be expanded more than in the third dehumidifying and heating mode, and the heat absorption amount of the refrigerant in the indoor condenser 12 can be increased.
  • the suction refrigerant density of the compressor 11 can be increased with respect to the third dehumidifying heating mode, and the refrigerant pressure in the indoor condenser 12 can be increased without increasing the rotational speed.
  • the temperature blown out from the indoor condenser 12 can be increased more than in the dehumidifying and heating mode.
  • the waste heat of the engine cannot be used for heating the vehicle interior as in a vehicle equipped with an internal combustion engine (engine). Therefore, it is extremely effective that a high COP can be exhibited regardless of the heating load in the heating operation mode as in the heat pump cycle 10 of the present embodiment.
  • the integrated valve 14 which integrally comprised a part of component apparatus required in order to function the heat pump cycle 10 as a gas injection cycle is employ
  • adopted the heat pump cycle which comprises a gas injection cycle Ten cycle configurations can be simplified. As a result, it is possible to improve the mountability of the heat pump cycle 10 on the mounting object.
  • the single drive unit 18 performs gas-liquid separation of the refrigerant, opening and closing of the liquid-phase refrigerant passage 142c and the gas-phase refrigerant passage 141f, and decompression of the liquid-phase refrigerant. Can do. According to this, the heat pump cycle 10 that can be switched to the gas injection cycle can be realized with a simple cycle configuration.
  • the liquid-phase refrigerant separated in the gas-liquid separation space 141b is decompressed by the fixed throttle 17 by setting the passage opening degree of the gas-phase refrigerant passage 141f to a fully open state with the liquid-phase refrigerant passage 142c closed.
  • the refrigerant circuit can be switched to allow the gas-phase refrigerant to flow out to the intermediate pressure port 11c side of the compressor 11.
  • the integrated valve 14 of the present embodiment can set the passage opening of the gas-phase refrigerant passage 141f to a smaller passage opening than the fully opened state with the liquid-phase refrigerant passage 142c closed.
  • the intermediate pressure refrigerant passage 15 is Therefore, it is possible to suppress the liquid-phase refrigerant from flowing into the intermediate pressure port 11c side of the compressor 11. As a result, it is possible to suppress the occurrence of the malfunction of the compressor 11 due to the liquid phase refrigerant flowing in.
  • the liquid phase refrigerant flows into the compressor 11 through the intermediate pressure refrigerant passage 15 while simplifying the cycle configuration of the heat pump cycle 10 that can be switched to the gas injection cycle. Can be suppressed.
  • the gas-phase refrigerant passage is in a state where the liquid-phase refrigerant passage 142c is closed under the condition that the inflow of the liquid-phase refrigerant into the intermediate pressure port 11c of the compressor 11 is assumed.
  • the passage opening of 141f is switched to a passage opening smaller than the fully opened state.
  • the integrated valve 14 of the present embodiment is moved to the positions of the valve bodies 161 and 162 by a simple drive device 18 including a rod 181, an electric actuator 182, and an elastic member 183. Can be switched to three modes such as the first to third modes. According to this, simplification of the integrated valve 14 which can suppress that a liquid phase refrigerant
  • the integrated valve 14 of this embodiment covers a part of rod 181 with the cylindrical part 162b of the liquid phase side valve body 162, and the first and third seal members 162c, 161b are provided on the valve bodies 161, 162, respectively. It is set as the structure which provides.
  • a third seal member 161b is provided in a portion of the gas phase side valve body 161 that contacts the cylindrical portion 162b, not in the gap between the rod 181 and each valve body 161, 162, and the liquid phase side valve body 162 is provided.
  • a first seal member 162c is provided at a portion in contact with the second protrusion 181b.
  • each sealing member 162c, 161b does not contact the rod 181, without increasing the sliding resistance when each valve body 161, 162 is displaced, the rod 181 and each valve body 161, 162 between It can suppress that a refrigerant
  • the area ratio of the area Sb2 of the gas phase side valve body 161 to the opening area Sb1 of the gas phase side inflow portion 141d is set to be the ratio of the liquid phase side valve body 162 to the opening area Sa1 of the liquid phase side inflow portion 142a.
  • the area ratio of the area Sa2 is increased (Sb2 / Sb1> Sa2 / Sa1).
  • the gas-phase side valve element 161 can be opened when the gas-phase refrigerant passage 141f is opened. It can be made to function as a shutter which suppresses scattering of the liquid phase refrigerant to the phase refrigerant passage 141f side. Thereby, it can suppress that the liquid phase refrigerant
  • the heat pump cycle 10 travels from an engine (internal combustion engine) and a traveling electric motor, for example. It is effective when applied to a vehicle in which engine waste heat may become insufficient as a heat source for heating, such as a hybrid vehicle that obtains a driving force for use.
  • the heat pump cycle 10 may be applied to, for example, a stationary air conditioner, a cold / hot storage, a liquid heating device, and the like. Furthermore, when applied to a liquid heating device, a liquid-refrigerant heat exchanger is adopted as a use side heat exchanger, and a liquid pump or flow rate adjustment for adjusting the flow rate of liquid flowing into the liquid-refrigerant heat exchanger as a flow rate adjusting unit A valve may be employed.
  • the heat pump cycle 10 may be configured to be able to switch between a gas injection cycle and a normal cycle other than the gas injection cycle.
  • the heat pump cycle 10 may have a configuration in which only the heating operation mode including the first heating mode and the second heating mode can be realized, or a configuration in which only the first heating mode and the cooling operation mode can be realized. It may be.
  • the provision of various operation modes is effective in that the temperature of the heat exchange target fluid (blast air) can be adjusted appropriately.
  • the shape of the body 140 is not limited to this, and the body 140 is mounted on a mounting object. You may employ
  • the internal volume of the gas-liquid separation space 141b is set to a volume that cannot substantially store surplus refrigerant.
  • the present invention is not limited to this. That is, the internal volume of the gas-liquid separation space 141b may be set to a volume that can store excess refrigerant.
  • gas-liquid separation space 141b configures a centrifugal gas-liquid separator
  • gravity depends on the required gas-liquid separation performance.
  • a configuration in which gas-liquid separation is performed by the action of the above or the action of surface tension may be employed.
  • the gas-phase side valve element 161 is allowed to function as a shutter that suppresses the scattering of the liquid-phase refrigerant toward the gas-phase refrigerant passage 141f when the gas-phase refrigerant passage 141f is opened.
  • a shutter member is added between the gas phase side inflow portion 141d and the liquid phase side inflow portion 142a to suppress scattering of the liquid phase refrigerant to the gas phase refrigerant passage 141f when the gas phase refrigerant passage 141f is opened. May be.
  • the present invention is not limited to this.
  • the driving device 18 may be configured by other mechanisms as long as the operation mode of the integrated valve 14 can be switched to three modes such as the first to third modes shown in FIG.
  • the first and third seal members 162c and 161b arranged in a state of being separated from the rod 181 suppress refrigerant leakage from the gaps between the valve bodies 161 and the rod 181.
  • the present invention is not limited to this.
  • the seal members 162c and 161b may be omitted.
  • the integrated valve 14 in the initial stage in which the operation mode of the vehicle air conditioner 1 is switched to the first heating mode, and in the transition period in which the load state of the compressor 11 shifts to the high load state, the integrated valve 14 Although it is desirable to switch the operation mode to the third mode, the present invention is not limited to this. For example, only when the operation mode of the vehicle air conditioner 1 is switched to the first heating mode, the operation mode of the integrated valve 14 is switched to the third mode, or the load state of the compressor 11 transitions to the high load state. Only in the period, the operation mode of the integrated valve 14 may be switched to the third mode.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Multiple-Way Valves (AREA)
  • Electrically Driven Valve-Operating Means (AREA)

Abstract

 統合弁(14)のボデー(140)の内部に、固定絞り(17)、液相側弁体(162)、気相側弁体(161)等を収容して一体化し、各弁体(161)、(162)を単一の駆動装置(18)により変位させる。また、駆動装置(18)を、気相冷媒通路(141f)を全閉して液相冷媒通路(142c)を全開する第1モード、液相冷媒通路(142c)を全閉して気相冷媒通路(141f)を全開する第2モード、液相冷媒通路(142c)を全閉して気相冷媒通路(141f)を全閉または微開とする第3モードに切替可能に構成される。そして、駆動システムが、中間圧冷媒通路(15)へ液相冷媒が流入する液流入条件が成立した際に、統合弁(14)の作動モードを第3モードに切り替える。そのため、中間圧冷媒通路(15)を介して圧縮機へ液相冷媒が流入することを抑制しつつ、ヒートポンプサイクルのサイクル構成を簡素化できる。

Description

統合弁、駆動システム 関連出願の相互参照
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2013年8月28日に出願された日本特許出願2013-176945を基にしている。
 本開示は、ガスインジェクションサイクルに切替可能なヒートポンプサイクルに適用される統合弁、および当該統合弁の駆動システムに関するもので、車両用空調装置に好適である。
 従来、電気自動車等のように車室内の暖房用の熱源を確保し難い車両に適用される空調装置として、ヒートポンプサイクル(蒸気圧縮式の冷凍サイクル)の圧縮機から吐出された高温高圧の冷媒を熱源として、車室内の暖房を行うものがある。
 この種のヒートポンプサイクルとして、放熱器と蒸発器の間で冷媒を2段階に減圧し、中間圧冷媒の一部(気相冷媒)を、圧縮機における圧縮過程の冷媒と合流させるガスインジェクションサイクル(エコノマイザ式冷凍サイクル)が知られている。
 例えば、特許文献1には、暖房運転時におけるサイクルの成績係数(COP)を向上させるために、暖房運転時に通常サイクル(一段圧縮サイクル)からガスインジェクションサイクル(二段圧縮サイクル)に切り替えるヒートポンプサイクルが開示されている。
 ここで、ガスインジェクションサイクルに切替可能なヒートポンプサイクルは、通常の一段圧縮サイクルに比べて、放熱器から流出した冷媒の気液を分離する気液分離器、冷媒回路を切り替える切替部等が必要となり、サイクル構成が複雑化するといった課題がある。
 そこで、特許文献1では、ヒートポンプサイクルにおいて、ガスインジェクションサイクルを実現する際に必要となる気液分離器、冷媒回路を切り替える切替部等を統合弁として一体化することで、サイクル構成の簡素化を図っている。
特開2013-92354号公報
 ところで、本発明者らの検討によれば、特許文献1に記載の統合弁をヒートポンプサイクルに適用した場合、以下の課題を有する点を見出した。即ち、ヒートポンプサイクルをガスインジェクションサイクルに切り替えた際に、中間圧冷媒通路を介して圧縮機へ液相冷媒が流入してしまう場合があることが判った。このような圧縮機への液相冷媒の流入が生ずると、圧縮機の内部に存する潤滑油が流出して、圧縮機内部の潤滑油不足等の不具合を招く要因となることから、好ましくない。
 本発明者らは、上述の不具合の発生要因について調査したところ、当該不具合の発生要因が明らかとなった。以下、この点について、統合弁の構成要素を踏まえて説明する。
 図23は、ガスインジェクションサイクルと通常サイクルに切替可能なヒートポンプサイクルに対して、特許文献1に開示された統合弁を適用した構成(以下、検討例という。)を示す模式図である。なお、図23に示す実線矢印は、暖房運転時にガスインジェクションサイクルに切り替えた際の冷媒の流れを示し、図23に示す破線矢印は、暖房運転時に通常サイクル(一段圧縮サイクル)に切り替えた際の冷媒の流れを示している。
 まず、検討例の各構成要素について簡単に説明する。検討例のヒートポンプサイクル100は、吸入ポート101aから吸入した冷媒を圧縮して吐出ポート101bから吐出すると共に、サイクル内の中間圧冷媒を流入させて圧縮過程の冷媒に合流させる中間圧ポート101cを有する二段圧縮型の圧縮機101を備える。
 圧縮機101の吐出ポート101b側には、上流側から順に放熱器102、減圧装置103、統合弁104、蒸発器として機能する室外熱交換器105、室外熱交換器105から流出した冷媒の気液を分離するアキュムレータ106等が接続されている。
 統合弁104は、減圧装置103から流出した冷媒の気液を分離する気液分離空間104bが形成されたボデー104aの内部に、気相冷媒通路104cおよび液相冷媒通路104dを選択的に開閉する弁体104e、および固定絞り104fが収容されている。なお、弁体104eは、ロッド104gを介して電動アクチュエータ104hに連結されている。なお、気相冷媒通路104cは、中間圧冷媒通路107を介して圧縮機101の中間圧ポート101cに連通している。
 以上までが検討例に係るヒートポンプサイクル100の説明であり、以下、前述の不具合の発生要因について説明する。
 通常サイクル時には、統合弁104の弁体104eは、電動アクチュエータ104hにより気相冷媒通路104cを閉じ、且つ、液相冷媒通路104dを開く位置に設定される。この場合、液相冷媒通路104dが開いているので、気液分離空間104bから流出した冷媒の全てが、液相冷媒通路104dを介して蒸発器として機能する室外熱交換器105に流入する。
 この状態から、ガスインジェクションサイクルへ切り替える場合、統合弁104では、電動アクチュエータ104hにより、弁体104eの位置が液相冷媒通路104dを閉じ、且つ、気相冷媒通路104cを開く位置に設定される。
 この場合、液相冷媒通路104dが閉鎖されることで、気液分離空間104bにて分離された液相冷媒の全てが、固定絞り104fに流入する。この際、固定絞り104fを通過する冷媒の流量が急激に増加することで、ヒートポンプサイクル10が、サイクル内の低圧冷媒の圧力が急激に低下するようにバランスする。
 そして、サイクル内の低圧冷媒の急激な圧力低下により、固定絞り104f下流側のアキュムレータ106にてフォーミング(沸騰、突沸)が生じ、アキュムレータ106内に蓄えられた余剰冷媒が圧縮機101の吸入ポート101aへ吸入される。これにより、サイクル内を循環する冷媒の流量が増加する。
 ここで、サイクル内を循環する冷媒の流量が増加するまでの時間は、固定絞り104f前後の圧力差が固定絞り104fで液相冷媒を全て流しきるレベルに拡大するまでの時間よりも短い。
 このため、固定絞り104fでは、サイクル内を循環する冷媒の流量が増加した際に、液相冷媒を全て流しきることができず、固定絞り104fにて流しきれない液相冷媒が、気相冷媒と共に気相冷媒通路104cを介して、中間圧冷媒通路107へ流出する。この結果、中間圧冷媒通路107を介して圧縮機101へ液相冷媒が流入してしまう。
 このような不具合は、ヒートポンプサイクル100の冷媒回路の切り替え時に限らず、例えば、ガスインジェクションサイクルにおいて、圧縮機101の負荷状態が急激に増加した場合においても同様に生ずる。つまり、圧縮機101の負荷状態が高負荷状態に移行する過渡期には、固定絞り104fを通過する冷媒の流量が急激に増加して、固定絞り104f通過後の冷媒の圧力が急激に低下するようにサイクルがバランスする。これにより、ヒートポンプサイクル100の冷媒回路の切り替え時と同様に、アキュムレータ106にてフォーミング(沸騰、突沸)が生じ、サイクル内を循環する冷媒の流量が増加するからである。
 本開示は上記点に鑑みて、中間圧冷媒通路を介して圧縮機へ液相冷媒が流入してしまうことを抑制しつつ、ヒートポンプサイクルのサイクル構成の簡素化を図ることのできる統合弁、およびその駆動システムを提供することを目的とする。
 本開示は、ガスインジェクションサイクルに切替可能なヒートポンプサイクルに適用される統合弁、およびその駆動システムを対象としている。
 本開示の第1態様による統合弁は、ヒートポンプサイクルの圧縮機から吐出された冷媒を流入させる冷媒流入口、冷媒流入口から流入した冷媒の気液を分離する気液分離空間、中間圧冷媒通路を介して気液分離空間にて分離された気相冷媒を圧縮機の中間吸入口側へ流出させる気相側流出口、および気液分離空間にて分離された液相冷媒を流出させる液相側流出口が形成されたボデーと、気液分離空間から気相側流出口へ至る気相冷媒通路の通路開度を変更する気相側弁体と、気液分離空間から液相側流出口へ至る液相冷媒通路の通路開度を変更する液相側弁体と、気相側弁体および液相側弁体の双方を変位させる駆動装置と、液相側弁体が液相冷媒通路を閉じた際に液相側流出口へ流出させる冷媒を減圧する固定絞りと、を備える。駆動装置は、気相冷媒通路を閉じる全閉位置に気相側弁体を変位させる際に、液相冷媒通路の通路開度が全開状態となる全開位置に液相側弁体を変位させるように構成され、液相冷媒通路を閉じる全閉位置に液相側弁体を変位させる際に、気相冷媒通路の通路開度が全開状態となる全開位置、および気相冷媒通路の通路開度が全開状態よりも小さくなる位置に変位させることが可能に構成されている。
 これによれば、ボデーの内部に、固定絞り、液相側弁体、および気相側弁体を収容して一体化し、液相冷媒側弁体および気相側弁体を単一の駆動装置により変位させることで、ガスインジェクションサイクルに切替可能なヒートポンプサイクルを簡素なサイクル構成で実現できる。
 具体的には、気相冷媒通路を閉じた状態で液相冷媒通路の通路開度を全開状態に設定することで、気液分離空間から流出した冷媒の全てを、液相側流出口から流出させる冷媒回路に切り替えることができる。
 また、液相冷媒通路を閉じた状態で気相冷媒通路の通路開度を全開状態に設定することで、気液分離空間にて分離された液相冷媒を固定絞りで減圧すると共に、気液分離空間から流出した気相冷媒を圧縮機の中間吸入口側へ流出させる冷媒回路に切り替えることができる。
 例えば、液相冷媒通路を閉じた状態で気相冷媒通路の通路開度を全開状態よりも小さい通路開度に設定可能となっている。
 これによれば、固定絞りにて液相冷媒が流しきれない場合に、気相冷媒通路の通路開度を全開状態よりも小さい通路開度に設定することで、中間圧冷媒通路を介して圧縮機の中間吸入口側へ液相冷媒が流入してしまうことを抑制可能となる。この結果、液相冷媒が流入することによる圧縮機の不具合の発生を抑制することができる。
 従って、本開示によれば、ガスインジェクションサイクルに切替可能なヒートポンプサイクルのサイクル構成の簡素化を図りつつ、中間圧冷媒通路を介して圧縮機へ液相冷媒が流入してしまうことを抑制することができる。
 なお、「通路開度」とは、冷媒通路を開き度合いを示しており、通路開度が大きい程、冷媒通路が全開状態に近づき、通路開度が小さい程、各冷媒通路が全閉状態に近づくことになる。また、「気相冷媒通路の通路開度が全開状態よりも小さくなる位置」には、気相冷媒通路が開いた状態となる位置だけでなく、気相冷媒通路が閉じた状態となる位置(全閉位置)も含まれる。
 また、本開示の第2態様によれば、ヒートポンプサイクルは、上記の統合弁と、駆動装置を制御して、気相冷媒通路を閉じた状態で液相冷媒通路の通路開度を全開状態とする第1モード、液相冷媒通路を閉じた状態で気相冷媒通路の通路開度を全開状態とする第2モード、および液相冷媒通路を閉じた状態で気相冷媒通路の通路開度を全開状態よりも小さい通路開度とする第3モードに切り替える駆動制御部と、を備える。駆動制御部は、中間圧冷媒通路へ液相冷媒が流入する液流入条件が成立した際に、駆動装置を制御して第3モードへ切り替える。
 このように、圧縮機の中間吸入口へ液相冷媒の流入が想定される条件で、液相冷媒通路を閉じた状態で気相冷媒通路の通路開度を全開状態よりも小さい通路開度に切り替えることで、気相冷媒通路への液相冷媒の流入を効果的に抑制できる。この結果、中間圧冷媒通路を介して圧縮機へ液相冷媒が流入してしまうことを効果的に抑制することができる。
実施形態に係るヒートポンプサイクルの冷房運転モード時、および除湿暖房運転モード時の冷媒回路を示す全体構成図である。 実施形態に係るヒートポンプサイクルの第1暖房モード時の冷媒回路を示す全体構成図である。 実施形態に係るヒートポンプサイクルの第2暖房モード時の冷媒回路を示す全体構成図である。 実施形態に係る統合弁の第1モード時の作動状態を示す上下方向断面図である。 実施形態に係る統合弁の第2モード時の作動状態を示す上下方向断面図である。 実施形態に係る統合弁の第3モード時の作動状態を示す上下方向断面図である。 実施形態に係る統合弁の要部を示す要部断面図である。 実施形態に係る統合弁の気相側弁体のシャッタ機能を説明するための要部断面図である。 実施形態に係る統合弁の冷媒漏れの抑制効果を説明するための要部断面図である。 統合弁の作動モードと気相側弁体および液相側弁体の位置との対応関係を示す図である。 ヒートポンプサイクルにおける運転モードの切替制御処理の流れを示すフローチャートである。 実施形態に係るヒートポンプサイクルの冷房運転モードを説明するためのモリエル線図である。 実施形態に係るヒートポンプサイクルの第1暖房モードを説明するためのモリエル線図である。 固定絞りに流入する冷媒流量と固定絞り前後の圧力差の関係を説明するための説明図である。 第1暖房モードへの切替時の高段側膨脹弁の絞り開度、サイクル内の冷媒圧力、圧縮機の回転数の変化を示すタイミングチャートである。タイミングチャートである。 第1暖房モード時に圧縮機の負荷状態が高負荷状態となった際の高段側膨脹弁の絞り開度、サイクル内の冷媒圧力、圧縮機の回転数の変化を示すタイミングチャートである。 第1暖房モード時における統合弁のモード切替制御処理の流れを示すフローチャートである。 実施形態に係るヒートポンプサイクルの第2暖房モードを説明するためのモリエル線図である。 実施形態に係るヒートポンプサイクルの第1除湿暖房モードを説明するためのモリエル線図である。 実施形態に係るヒートポンプサイクルの第2除湿暖房モードを説明するためのモリエル線図である。 実施形態に係るヒートポンプサイクルの第3除湿暖房モードを説明するためのモリエル線図である。 実施形態に係るヒートポンプサイクルの第4除湿暖房モードを説明するためのモリエル線図である。 検討例に係るヒートポンプサイクルの模式的な構成図である。
 以下、本開示の一実施形態について図面を参照して説明する。本実施形態では、本開示の統合弁14、および統合弁14の駆動システムを備えるヒートポンプサイクル10を、走行用の電動モータから車両走行用の駆動力を得る電気自動車の空調装置1に適用している。ヒートポンプサイクル10は、車両用空調装置1において、空調対象空間である車室内へ送風する室内送風空気を熱交換対象流体とし、当該室内送風空気の温度を調整する機能を果たす。
 本実施形態のヒートポンプサイクル10は、車室内を冷房する冷房運転モードや車室内を除湿しながら暖房する除湿暖房運転モードの冷媒回路(図1)、および車室内を暖房する暖房運転モードの冷媒回路(図2、図3)を切替可能に構成されている。
 また、本実施形態のヒートポンプサイクル10では、後述するように暖房運転モードとして、外気温が極低温時(例えば、0℃以下の時)に実行される第1暖房モードの冷媒回路(図2)、通常の暖房が実行される第2暖房モードの冷媒回路(図3)を切替可能に構成されている。
 本実施形態では、図2に示す第1暖房モードの冷媒回路がガスインジェクションサイクル(二段圧縮サイクル)を構成し、冷房運転モードおよび除湿暖房モードの冷媒回路や第2暖房モードの冷媒回路が通常サイクル(一段圧縮サイクル)を構成している。なお、本実施形態では、第1暖房モードが、後述の中間圧冷媒通路15を介して圧縮機11の中間圧ポート11c側へ気相冷媒を流入させる「インジェクションモード」に相当している。
 従って、本実施形態のヒートポンプサイクル10は、ガスインジェクションサイクル(二段圧縮サイクル)、およびガスインジェクションサイクル以外の通常サイクル(一段圧縮サイクル)に切替可能なサイクルとして構成されている。なお、図1の全体構成図は、冷房運転モードおよび除湿暖房運転モードに切り替えた際の冷媒回路を示しており、図2、図3の全体構成図が暖房運転モードに切り替えた際の冷媒回路を示している。また、図1~図3では、それぞれの運転モードにおける冷媒の流れを実線矢印で示している。
 ヒートポンプサイクル10では、冷媒としてHFC系冷媒(例えば、R134a)を採用しており、高圧側冷媒圧力が冷媒の臨界圧力を超えない蒸気圧縮式の亜臨界冷凍サイクルを構成している。勿論、HFO系冷媒(例えば、R1234yf)や二酸化炭素CO等を採用してもよい。なお、冷媒には圧縮機11を潤滑するための冷凍機油(潤滑油)が混入されており、冷凍機油の一部は冷媒とともにサイクルを循環している。
 ヒートポンプサイクル10の構成機器のうち、圧縮機11は、車両のボンネット内に配置され、ヒートポンプサイクル10において冷媒を吸入し、圧縮して吐出するものである。圧縮機11は、外殻を構成するハウジング内部に、図示しない圧縮室内の冷媒を圧縮する圧縮機構、および圧縮機構を回転駆動する電動モータを収容して構成された電動圧縮機で構成されている。
 圧縮機11のハウジングには、圧縮室へ低圧冷媒を吸入させる吸入ポート11a、圧縮室から高圧冷媒を吐出する吐出ポート11b、サイクル内の中間圧冷媒を圧縮室へ導くと共に、圧縮過程の冷媒に合流させる中間圧ポート(中間吸入口)11cが設けられている。なお、図示しないが、圧縮機11には、圧縮機構における摺動部位に対して潤滑油を供給するための油溜めが設けられている。
 圧縮機11の圧縮機構としては、スクロール型圧縮機構を採用することができる。なお、圧縮機11の圧縮機構としては、スクロール型圧縮機構に限らず、ベーン型圧縮機構、ローリングピストン型圧縮機構等の各種形式のものを採用することができる。
 また、圧縮機11には、中間圧ポート11cに接続される後述の中間圧冷媒通路15側から圧縮室への冷媒の流入を許容し、圧縮室から中間圧冷媒通路15側への冷媒の流入を禁止する逆止弁(図示略)が内蔵されている。これにより、圧縮室の冷媒圧力が中間圧冷媒通路15の冷媒圧力(中間圧ポート11c側の冷媒圧力)よりも高くなった際に、中間圧ポート11cを介して圧縮室から中間圧冷媒通路15側へ冷媒が逆流してしまうことを防止できる。
 電動モータは、後述する空調制御装置40から出力される制御信号によって、その作動(回転数)が制御されるもので、交流モータ、直流モータのいずれの形式を採用してもよい。そして、この回転数制御によって、圧縮機11の冷媒吐出能力が変更される。従って、本実施形態では、電動モータが圧縮機11の吐出能力変更部を構成している。
 圧縮機11の吐出ポート11bには、室内凝縮器12の冷媒入口側が接続されている。室内凝縮器12は、後述する室内空調ユニット30の空調ケース31内に配置され、圧縮機11から吐出された高圧冷媒を放熱させて、後述する室内蒸発器23を通過した室内送風空気を加熱する放熱器である。
 室内凝縮器12の冷媒出口側には、室内凝縮器12から流出した高圧冷媒を中間圧冷媒となるまで減圧可能な高段側膨脹弁13の入口側が接続されている。この高段側膨脹弁13は、絞り開度を変更可能に構成された弁体と、この弁体の絞り開度を変化させるステッピングモータからなる電動アクチュエータとを有して構成される電気式の可変絞り機構である。
 高段側膨脹弁13は、減圧作用を発揮する絞り状態と減圧作用を発揮しない全開状態とに設定可能に構成されている。換言すれば、本実施形態の高段側膨脹弁13は、室内凝縮器12から流出した冷媒を少なくとも中間圧冷媒となるまで減圧させる絞り状態に設定可能に構成されている。
 具体的には、高段側膨脹弁13では、冷媒を減圧させる際に、絞り通路面積が相当直径φ0.5~φ3mmとなる範囲で絞り開度を変化させるように構成されている。また、高段側膨脹弁13は、絞り開度を全開とする際に、絞り通路面積を相当直径φ10mm程度確保して、冷媒減圧作用を発揮させないようにすることもできる。なお、高段側膨脹弁13は、空調制御装置40から出力される制御信号によって、その作動が制御される。
 高段側膨脹弁13の出口側には、統合弁14の冷媒入口側が接続されている。この統合弁14は、ヒートポンプサイクル10をガスインジェクションサイクルとして機能させるために必要な構成機器の一部を一体的に構成したものであり、サイクルを循環する冷媒の冷媒回路を切り替える冷媒回路切替部としての機能を果たす。
 具体的には、統合弁14は、冷媒の気液を分離する気液分離器(気液分離空間141b)、気液分離器で分離された液相冷媒を減圧させる固定絞り17、気液分離器から流出した冷媒が流通する冷媒通路を開閉する弁装置16等を一体的に構成したものである。
 統合弁14の詳細構成については、図4~図8を用いて説明する。ここで、図4~図6は、統合弁14の模式的な上下方向断面図であり、図4は、気相冷媒通路141fを閉じた状態で、液相冷媒通路142cを全開する第1モード時の断面図を示している。また、図5は、液相冷媒通路142cを閉じた状態で、気相冷媒通路141fを全開する第2モード時の断面図を示し、図6は、液相冷媒通路142cを閉じた状態で、気相冷媒通路141fを全閉、または微開とする第3モード時の断面図を示している。なお、図4~図6における上下を示す矢印は、統合弁14を車両用空調装置1へ搭載した状態における方向を示している。
 統合弁14は、その外殻を形成すると共に、内部に固定絞り17や弁装置16等を収容するボデー140を有している。ボデー140は、その軸方向が上下方向に延びる略角筒状の金属ブロック体(例えば、アルミニウム)で構成されている。本実施形態のボデー140は、上方側に配置されるアッパーブロック141、およびアッパーブロック141の下方側に取り付け固定されるロワーブロック142によって構成されている。
 アッパーブロック141には、その内部に高段側膨脹弁13から流出した冷媒の気液を分離する気液分離空間141bが形成されている。この気液分離空間141bは、その軸線方向が上下方向に延びる円柱状に形成されている。
 より詳細には、本実施形態の気液分離空間141bは、その内容積が、サイクルに封入される冷媒量を液相に換算した際の封入冷媒体積から、サイクルの最大能力を発揮するために必要な冷媒量を液相に換算した際の必要冷媒体積を減算した余剰冷媒体積よりも小さく設定されている。すなわち、本実施形態の気液分離空間141bの内容積は、サイクルに負荷変動が生じてサイクルを循環する冷媒循環流量が変動しても、実質的に余剰冷媒を溜めることができない程度の容積となっている。これによれば、統合弁14全体としての体格の小型化を図ることができる。
 また、アッパーブロック141は、その外側壁面に高段側膨脹弁13からの冷媒を流入させる冷媒流入口141aが形成されている。この冷媒流入口141aは、気液分離空間141bの内側壁面に開口する冷媒導入穴141gを介して、気液分離空間141bに連通している。
 ここで、冷媒流入口141aから冷媒導入穴141gへ至る冷媒通路を構成する冷媒導入通路141hは、気液分離空間141bの軸線方向から見たときに、気液分離空間141bの内側壁面の接線方向に延びるように形成されている。
 これにより、冷媒流入口141aから気液分離空間141bに流入した冷媒は、気液分離空間141bの内側壁面に沿って旋回して流れる。そして、この旋回流れによって生ずる遠心力により、気液分離空間141bに流入した冷媒の気液が分離され、分離された液相冷媒が重力により気液分離空間141bの下方側へ落下する。なお、本実施形態の気液分離空間141bは、遠心分離方式の気液分離器を構成している。
 また、アッパーブロック141には、気液分離空間141bの内部であって、気液分離空間141bと同軸上に配置される丸管状のパイプ部141cが設けられている。なお、気液分離空間141bに流入した冷媒は、パイプ部141cの周囲を旋回して流れる。
 このパイプ部141cは、最も下方側の下方端部が気液分離空間141bの内部に位置付けられるように延びており、当該下方端部に、気液分離空間141bにて分離された気相冷媒を流入させる円環状(ドーナツ状)の気相側流入部141dが形成されている。なお、気相側流入部141dは、下方に向かって突出しており、後述する気相側弁体161が接離する気相側弁座部としての機能を果たしている。
 アッパーブロック141の気液分離空間141bの上方側には、アッパーブロック141の外側壁面に形成された気相側流出口141e、およびパイプ部141cの内部空間に連通する貫通穴が形成されている。この貫通穴は、パイプ部141cの内部空間と共に、気液分離空間141bにて分離された気相冷媒を気相側流出口141eから流出させる気相冷媒通路141fを構成している。なお、図示しないが気相側流出口141eには、圧縮機11の中間圧ポート11cへ気相冷媒を導く中間圧冷媒通路15が接続されている。
 続いて、ロワーブロック142は、アッパーブロック141と一体化された際に、気相側流入部141dと対向する位置に、気液分離空間141bにて分離された液相冷媒を流入させる円環状(ドーナツ状)の液相側流入部142aが形成されている。なお、液相側流入部142aは、上方に向かって突出するように、ロワーブロック142と一体に形成されており、後述する液相側弁体162が接離する液相側弁座部としての機能を果たしている。
 また、ロワーブロック142には、ロワーブロック142の外側壁面に形成された液相側流出口142b、および液相側流入部142aに連通する貫通穴が形成されている。この貫通穴は、気液分離空間141bにて分離された液相冷媒を液相側流出口142bから流出させる液相冷媒通路142cを構成している。
 また、ロワーブロック142には、後述する液相側弁体162が液相冷媒通路142cを閉じた際に、気液分離空間141bから流入した冷媒を減圧させて液相側流出口142b側へ流出させる固定絞り17が形成されている。
 ここで、液相冷媒通路142cを開いた状態で、冷媒が液相冷媒通路142cを通過する際に生ずる圧力損失は、冷媒が固定絞り17を通過する際に生ずる圧力損失に対して極めて小さい。
 このため、液相冷媒通路142cを開いた状態では、液相側流入部142aから流入した冷媒は、固定絞り17にて減圧されることなく、液相冷媒通路142を介して液相側流出口142bから流出する。
 一方、液相冷媒通路142cを閉じた状態では、液相側流入部142aから流入した冷媒は、固定絞り17にて減圧され、固定絞り17にて減圧された冷媒が液相側流出口142bから流出する。
 ここで、固定絞り17としては、絞り開度が固定されたノズル、オリフィス等を採用することができる。ノズル、オリフィス等の固定絞りでは、絞り通路面積が急縮小あるいは急拡大するので、上流側と下流側との圧力差(出入口間差圧)の変化に伴って、固定絞りを通過する冷媒の流量および固定絞り上流側冷媒の乾き度を自己調整(バランス)することができる。
 具体的には、圧力差が比較的大きい場合には、サイクルを循環させる必要のある冷媒の必要循環流量が減少するに伴って、固定絞り上流側冷媒の乾き度が大きくなるようにバランスする。一方、圧力差が比較的小さい場合には、冷媒循環流量が増加するに伴って、固定絞り上流側冷媒の乾き度が小さくなるようにバランスする。
 続いて、気相冷媒通路141fおよび液相冷媒通路142cを開閉する弁装置16、および当該弁装置16の各弁体161、162の双方を変位させる駆動装置18について説明する。
 まず、弁装置16について説明すると、本実施形態の弁装置16は、気相冷媒通路141fの通路開度を変更する気相側弁体161、および液相冷媒通路142cの通路開度を変更する液相側弁体162を有する。
 各弁体161、162それぞれは、互いに対向するように形成された気相側流入部141dと液相側流入部142aとの間に配置されている。より具体的には、気相側弁体161が気相側流入部141dと対向するように配置され、液相側弁体162が、気相側弁体161の下方側にて液相側流入部142aと対向するように配置されている。そのため、気相側流入部141dは、気相側弁体161が接離可能な気相側弁座部として構成され、液相側流入部142aは、液相側弁体162が接離可能な液相側弁座部として構成されている。
 液相側弁体162は、液相側流入部142aに接離する円盤状の弁部162a、および後述するロッドにおける弁部162aと気相側弁体161との間に存する部位を覆うように設けられた環状の筒状部162bを一体化した部材で構成されている。
 弁部162aは、液相側弁体162における液相側流入部142aと対向する部位であり、その中央に後述するロッド181が摺動可能な大きさの貫通穴が形成されている。また、図7の要部断面図に示すように、弁部162aの面積Sa2は、液相側流入部142aの開口面積Sa1よりも大きくなっている(Sa2>Sa1)。
 さらに、弁部162aの下面側における液相側流入部142a、および後述するロッド181の第2突起部181bに接触する部位には、円環状に形成されたゴム製の第1のシール部材162cが配置されている。
 この第1のシール部材162cは、図5に示すように、液相側弁体162が液相冷媒通路142cを閉じる位置に変位した際に、液相側弁体162と液相側流入部142aとのシール性を高める部材として機能する。
 また、第1のシール部材162cは、図4に示すように、気相側弁体161が気相冷媒通路141fを閉じる位置に変位した際に、後述するロッド181の第2突起部181bと密着して、液相側弁体162とロッド181との間の隙間から冷媒が漏れることを抑制するための部材でもある。
 ここで、第1のシール部材162cが設けられていない場合、気相側弁体161が気相冷媒通路141fを閉じたとしても、図9の一点鎖線矢印Aで示すように、液相側弁体162とロッド181との隙間を介して高圧冷媒や液相冷媒が気相冷媒通路141fに流入してしまう可能性がある。
 このような冷媒漏れは、サイクル性能や圧縮機11の保護の観点から好ましくない。例えば、冷房運転モード時には、高圧冷媒が、気相冷媒通路141fおよび中間圧冷媒通路15を介して、圧縮機11の中間圧ポート11cへ流入すると、圧縮機11から吐出する冷媒の温度が必要以上に上昇することになり、サイクルの性能が低下してしまう。
 このため、本実施形態では、気相側弁体161が気相冷媒通路141fを閉じた際に、第1のシール部材162cと第2突起部181bとを密着させる構成としている。なお、第1のシール部材162cは、気相側弁体161が気相冷媒通路141fを閉じた際に、液相側弁体162と後述するロッド181との間の隙間から冷媒が漏れることを抑制する第2漏洩抑制部を構成している。
 また、筒状部162bは、気相側弁体161側の部位における内径が拡大されることで、気相側弁体161と接触する上端部位が上方に向かって突出する形状に形成されている。この筒状部162bは、後述するロッド181と弁部162aとの間の隙間からの冷媒漏れを抑制する機能を果たす。
 一方、気相側弁体161は、その中央部に後述するロッド181が摺動可能な大きさの貫通穴が形成された円盤状の部材で構成されている。そして、図7の要部断面図に示すように、気相側弁体161の面積Sb2は、気相側流入部141dの開口面積Sb1よりも大きくなっている(Sb2>Sb1)。
 ここで、本実施形態では、気液分離空間141bにて分離された液相冷媒は、重力により気液分離空間141bの下方側へ落下する。
 ところが、気液分離空間141bの下方側に液相冷媒が溜まっていると、図8に示すように、気相側弁体161が気相側流入部141dを開いた際に、上方の気相冷媒通路141f側へ液相冷媒が飛散して、気相冷媒通路141fへ液相冷媒が流入してしまう可能性がある。
 そこで、本実施形態では、気相側流入部141dの開口面積Sb1に対する気相側弁体161の面積Sb2の面積比を、液相側流入部142aの開口面積Sa1に対する液相側弁体162の面積Sa2の面積比を大きくしている(Sb2/Sb1>Sa2/Sa1)。
 このように、気相側弁体161の面積Sb2を気相側流入部141dの開口面積Sb1よりも拡大することで、気相側弁体161を、気相冷媒通路141fを開いた際の気相冷媒通路141f側への液相冷媒の飛散を抑制するシャッタとして機能させることができる。
 また、気相側弁体161の上面側における気相側流入部141dに接触する部位には、円環状に形成されたゴム製の第2のシール部材161aが配置されている。この第2のシール部材161aは、図4に示すように、気相側弁体161が気相冷媒通路141fを閉じた際に、気相側弁体161と気相側流入部141dとのシール性を高めるための部材である。
 また、気相側弁体161の下面側における液相側弁体162の筒状部162bに接触する部位には、円環状に形成されたゴム製の第3のシール部材161bが配置されている。この第3のシール部材161bは、図4に示すように、気相側弁体161が気相冷媒通路141fを閉じた際に、筒状部162bに密着して、気相側弁体161と後述するロッド181との間の隙間から冷媒が漏れることを抑制するための部材である。
 ここで、第3のシール部材161bが設けられていない場合、気相側弁体161が気相冷媒通路141fを閉じたとしても、図9の二点鎖線矢印Bで示すように、気相側弁体161とロッド181との隙間を介して高圧冷媒や液相冷媒が気相冷媒通路141fに流入してしまう可能性がある。
 このような冷媒漏れは、サイクル性能や圧縮機11の保護の観点から好ましくない。例えば、冷房運転モード時には、高圧冷媒が、気相冷媒通路141fおよび中間圧冷媒通路15を介して、圧縮機11の中間圧ポート11cへ流入すると、圧縮機11から吐出する冷媒の温度が必要以上に上昇することになり、サイクルの性能が低下してしまう。
 このため、本実施形態では、気相側弁体161が気相冷媒通路141fを閉じた際に、第3のシール部材161bと筒状部162bとを密着させる構成としている。なお、第3のシール部材161bは、気相側弁体161が気相冷媒通路141fを閉じた際に、気相側弁体161と後述するロッド181との間の隙間から冷媒が漏れることを抑制する第1漏洩抑制部を構成している。
 なお、各弁体161とロッド181との隙間からの冷媒漏れは、各弁体161とロッド181との間の隙間にOリング等のシール部材を配置することでも対応可能である。
 しかし、各弁体161とロッド181との間の隙間にOリング等のシール部材を配置する場合、当該シール部材が、各弁体161、162の変位を妨げる要素(摺動抵抗)となり、各弁体161、162を変位させる際に必要となる操作力が増大してしまう。このような操作力の増大は、後述する駆動装置18の電動アクチュエータ182の大型化を招く要因となり、好ましくない。
 このため、本実施形態のように、ロッド181から離間させた状態で配置した第1、第3シール部材162c、161bにより、各弁体161とロッド181との隙間からの冷媒漏れを抑制する構成とすることが望ましい。
 続いて、駆動装置18について説明する。駆動装置18は、各弁体161、162の双方を所望の位置に変位させるものである。
 具体的には、本実施形態の駆動装置18は、気相冷媒通路141fを閉じる全閉位置に気相側弁体161を変位させる際に、図4に示すように、液相冷媒通路142cの通路開度が全開状態となる全開位置に液相側弁体162を変位可能に構成されている。
 また、駆動装置18は、液相冷媒通路142cを閉じる全閉位置に液相側弁体162を変位させる際に、図5に示すように、気相冷媒通路141fの通路開度が全開状態となる全開位置に気相側弁体161を変位可能に構成されている。
 さらに、駆動装置18は、液相冷媒通路142cを閉じる全閉位置に液相側弁体162を変位させる際に、図6に示すように、気相冷媒通路141fの通路開度が全開状態よりも小さくなる位置(全閉位置または微開位置)に気相側弁体161を変位可能に構成されている。
 このように、本実施形態の統合弁14は、駆動装置18で各弁体161、162の位置を変位させることで、その作動モードを図10に示す第1~第3モードといった3つのモードに切替可能となっている。
 本実施形態の駆動装置18は、各弁体161、162の双方を貫通するように配設されたロッド181、ロッド181を軸方向(上下方向)に駆動させる電動アクチュエータ182、各弁体161、162の間に配設された弾性部材183を備えている。
 ロッド181は、上方側の一端部が電動アクチュエータ182の可動部に連結されると共に、下方側の他端部がロワーブロック142に形成されたガイド穴142d内に摺動可能に収容されている。本実施形態のロッド181は、その軸がパイプ部141cの軸線と一致しており、パイプ部141cの内部空間を貫通するように配設されている。
 ロッド181には、気相冷媒通路141fを開く位置に気相側弁体161を変位させる際に、気相側弁体161に接触して気相側弁体161に対して気相側流入部141dから離間する方向(下方)へ荷重を付与する第1突起部181aが設けられている。この第1突起部181aは、ロッド181の軸方向に垂直な方向に突出する鍔状の部材であり、ロッド181における気相側弁体161の上方側にかしめ等により固定されている。
 また、ロッド181には、液相冷媒通路142cを開く位置に液相側弁体162を変位させる際に、液相側弁体162に接触して液相側弁体162に対して液相側流入部142aから離間する方向(上方)へ荷重を付与する第2突起部181bが設けられている。この第2突起部181bは、ロッド181の軸方向に垂直な方向に突出する鍔状の部材であり、液相側弁体162の下方側にてロッド181と一体に形成されている。
 本実施形態の第2突起部181bは、液相側弁体162に接触した際に第1のシール部材162cと当接するように、その上面側の部位が上方に向かって突出する形状に形成されている。
 ここで、本実施形態では、第1、第2突起部181a、181bの間隔が、気相側流入部141dと液相側流入部142aとの間の間隔よりも大きくなっている。これにより、本実施形態では、ロッド181を駆動した際に、第1、第2突起部181a、181bそれぞれが、気相側流入部141dおよび液相側流入部142aに接触しない状態にすることが可能となっている。
 電動アクチュエータ182は、ロッド181を上下方向に駆動することで、各弁体161、162を変位させるものである。本実施形態では、電動アクチュエータ182としてステッピングモータを採用している。
 本実施形態の電動アクチュエータ182は、後述する空調制御装置40から出力される制御パルスにより、その作動が制御される。なお、電動アクチュエータ182をステッピングモータで構成する場合、空調制御装置40から出力される制御パルスが停止された際、送りねじの摩擦力や磁石の保持トルクにより、各弁体161、162の位置が保持される。
 弾性部材183は、各弁体161、162に対して互いに離間するように荷重をかける部材であり、コイルバネ等のスプリングで構成されている。具体的には、弾性部材183は、気相側弁体161に対して気相側流入部141dに接触する方向へ荷重が作用すると共に、液相側弁体162に対して液相側流入部142aに接触する方向へ荷重が作用するように、各弁体161、162の間に配設されている。
 電動アクチュエータ182は、液相側弁体162により液相冷媒通路142cを開く際に、ロッド181を上方側へ駆動する。これにより、図4に示すように、ロッド181の第2突起部181bと液相側弁体162とが接触して、液相側弁体162に対して液相側流入部142aから離間する方向へ荷重が付与される。この際、弾性部材183の荷重により気相側流入部141dに当接する位置に気相側弁体161が変位することで、気相冷媒通路141fが閉鎖される。
 また、電動アクチュエータ182は、気相側弁体161により気相冷媒通路141fを開く際に、ロッド181を下方側へ駆動する。これにより、図5に示すように、ロッド181の第1突起部181aと気相側弁体161とが接触して、気相側弁体161に対して気相側流入部141dから離間する方向へ荷重が付与される。この際、弾性部材183の荷重により液相側流入部142aに当接する位置に液相側弁体162が変位することで、液相冷媒通路142cが閉鎖される。
 ここで、各弁体161、162により液相冷媒通路142cおよび気相冷媒通路141fを閉じる際には、電動アクチュエータ182は、各突起部181a、181bそれぞれが、気相側流入部141および液相側流入部142に接触しない位置にロッド181を駆動する。
 これにより、図6に示すように、各弁体161、162には、各突起部181a、181bから荷重が付与されず、弾性部材183の荷重により各流入部141d、142aに当接する位置に各弁体161、162が変位することで、各冷媒通路141f、142cの双方が閉鎖される。
 なお、液相冷媒通路142cを閉じ、且つ、気相冷媒通路141fを微開とする際には、電動アクチュエータ182は、各突起部181a、181bが気相側流入部141および液相側流入部142に接触しない位置から、ロッド181を僅かに下方側へ駆動する。
 これにより、ロッド181の第1突起部181aと気相側弁体161とが接触して、気相側弁体161に対して気相側流入部141dから離間する方向へ荷重が付与され、気相側弁体161が僅かに気相冷媒通路141fを開く位置に変位する。この際、弾性部材183の荷重により液相側流入部142aに当接する位置に液相側弁体162が変位することで、液相冷媒通路142cが閉鎖される。
 図1~図3に戻り、統合弁14の液相側流出口142bには、室外熱交換器20の冷媒入口側が接続されている。室外熱交換器20は、ボンネット内に配置されて、内部を流通する冷媒と送風ファン21から送風された車室外空気(外気)とを熱交換させるものである。この室外熱交換器20は、第1、第2暖房モード時等に冷媒を蒸発させて吸熱作用を発揮させる蒸発器として機能し、冷房運転モード時等に冷媒を放熱させる放熱器として機能する熱交換器である。
 室外熱交換器20の冷媒出口側には、低段側膨脹弁22の冷媒入口側が接続されている。低段側膨脹弁22は、冷房運転モード時等に室外熱交換器20から流出し、室内蒸発器23へ流入する冷媒を減圧させるものである。この低段側膨脹弁22の基本的構成は、高段側膨脹弁13と同様であり、空調制御装置40から出力される制御信号によって、その作動が制御される。
 低段側膨脹弁22の出口側には、室内蒸発器23の冷媒入口側が接続されている。室内蒸発器23は、室内空調ユニット30の空調ケース31内のうち、室内凝縮器12の送風空気流れ上流側に配置され、冷房運転モード時や除湿暖房運転モード時に、冷媒を蒸発させて吸熱作用を発揮させることにより車室内への送風空気を冷却する熱交換器である。
 室内蒸発器23の冷媒出口側には、アキュムレータ24の入口側が接続されている。アキュムレータ24は、その内部に流入した冷媒の気液を分離して余剰冷媒を蓄えるものである。さらに、アキュムレータ24の気相冷媒出口側には、圧縮機11の吸入ポート11aが接続されている。従って、室内蒸発器23は、圧縮機11の吸入ポート11a側へ流出させるように接続されている。
 さらに、室外熱交換器20の冷媒出口側には、室外熱交換器20から流出した冷媒を低段側膨脹弁22および室内蒸発器23を迂回させてアキュムレータ24の入口側へ導く迂回通路25が接続されている。
 この迂回通路25には、迂回用開閉弁251が配置されている。この迂回用開閉弁251は、迂回通路25を開閉する電磁弁であり、空調制御装置40から出力される制御信号によって、その開閉作動が制御される。
 本実施形態の迂回用開閉弁251は、迂回通路25を開閉することによって、サイクル構成(冷媒流路)を切り替える機能を果たす。従って、本実施形態の迂回用開閉弁251は、サイクルを循環する冷媒の冷媒流路を切り替える冷媒流路切替部を構成している。なお、冷媒が迂回用開閉弁251を通過する際に生じる圧力損失は、低段側膨脹弁22を通過する際に生じる圧力損失に対して極めて小さい。
 従って、室外熱交換器20から流出した冷媒は、迂回用開閉弁251が開いている場合には迂回通路25を介してアキュムレータ24へ流入し、迂回用開閉弁251が閉じている場合には低段側膨脹弁22を介して室内蒸発器23へ流入する。
 次に、室内空調ユニット30について説明する。室内空調ユニット30は、車室内最前部の計器盤(インストルメントパネル)の内側に配置されて、室内空調ユニット30の外殻を形成すると共に、その内部に車室内に送風される室内送風空気の空気通路を形成する空調ケース31を有している。そして、この空気通路に送風機32、前述の室内凝縮器12、室内蒸発器23等が収容されている。
 空調ケース31の空気流れ最上流側には、車室内空気(内気)と外気とを切替導入する内外気切替装置33が配置されている。この内外気切替装置33は、空調ケース31内に内気を導入させる内気導入口および外気を導入させる外気導入口の開口面積を、内外気切替ドアによって連続的に調整して、内気の風量と外気の風量との風量割合を連続的に変化させるものである。
 内外気切替装置33の空気流れ下流側には、内外気切替装置33を介して吸入した空気を車室内へ向けて送風する送風機32が配置されている。この送風機32は、遠心多翼ファン(シロッコファン)を電動モータにて駆動する電動送風機であって、空調制御装置40から出力される制御信号によって回転数(送風量)が制御される。
 送風機32の空気流れ下流側には、前述の室内蒸発器23および室内凝縮器12が、室内送風空気の流れに対して、室内蒸発器23→室内凝縮器12の順に配置されている。換言すると、室内蒸発器23は、室内凝縮器12に対して、空気流れ上流側に配置されている。
 また、空調ケース31内には、室内蒸発器23通過後の送風空気を、室内凝縮器12を迂回して流すバイパス通路35が設けられており、室内蒸発器23の空気流れ下流側であって、室内凝縮器12の空気流れ上流側には、エアミックスドア34が配置されている。
 このエアミックスドア34は、室内蒸発器23通過後の送風空気のうち、室内凝縮器12を通過させる風量とバイパス通路35を通過させる風量との風量割合を調整して、室内凝縮器12の熱交換能力を調整する熱交換能力調整部である。なお、エアミックスドア34は、空調制御装置40から出力される制御信号によって作動が制御される図示しないサーボモータによって駆動される。
 また、室内凝縮器12およびバイパス通路35の空気流れ下流側には、室内凝縮器12にて冷媒と熱交換して加熱された送風空気とバイパス通路35を通過して加熱されていない送風空気が合流する合流空間36が設けられている。
 空調ケース31の空気流れ最下流部には、合流空間36にて合流した送風空気を、空調対象空間である車室内へ吹き出す開口穴が形成されている。具体的には、車両前面窓ガラス内側面に向けて空調風を吹き出すデフロスタ開口穴37a、車室内の乗員の上半身に向けて空調風を吹き出すフェイス開口穴37b、乗員の足元に向けて空調風を吹き出すフット開口穴37cが形成されている。
 各開口穴37a~37cの空気流れ下流側は、それぞれ空気通路を形成するダクトを介して、車室内に設けられたフェイス吹出口、フット吹出口、およびデフロスタ吹出口に接続されている。
 また、各開口穴37a~37cの空気流れ上流側には、デフロスタ開口穴37aを開閉するデフロスタドア38a、フェイス開口穴37bを開閉するフェイスドア38b、フット開口穴37cを開閉するフットドア38cが配置されている。各ドア38a~38cは、車室内への空気の吹出モードを切り替える吹出モード切替部を構成する。なお、各ドア38a~38cは、空調制御装置40から出力される制御信号によってその作動が制御される図示しないサーボモータによって駆動される。
 次に、本実施形態の電気制御部について説明する。空調制御装置40は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。空調制御装置40は、ROM等に記憶された制御プログラムに基づいて各種演算、処理を行い、出力側に接続された各制御機器(圧縮機11、高段側膨脹弁13、統合弁14、迂回用開閉弁251、送風機32等)の作動を制御する。
 また、空調制御装置40の入力側には、各種空調制御用のセンサ群41が接続されている。センサ群41としては、車室内温度を検出する内気センサ、外気温を検出する外気センサ、車室内の日射量を検出する日射センサ、室内蒸発器23の温度を検出する蒸発器温度センサ、圧縮機11から吐出された高圧冷媒圧力を検出する吐出圧センサ等が挙げられる。
 さらに、空調制御装置40の入力側には、計器盤付近に配置された図示しない操作パネルが接続され、この操作パネルに設けられた各種空調操作スイッチからの操作信号が入力される。操作パネルに設けられた各種空調操作スイッチとしては、具体的に、車両用空調装置1の作動スイッチ、車室内温度を設定する温度設定スイッチ、冷房運転モードと暖房運転モードとの選択スイッチ等が設けられている。
 ここで、空調制御装置40は、その出力側に接続された各制御機器の作動を制御する制御部が一体に構成されたものであるが、各制御機器の作動を制御する構成(ハードウェアおよびソフトウェア)が各制御機器の作動を制御する制御部を構成している。
 例えば、本実施形態では、空調制御装置40における統合弁14を制御する構成(ハードウェアおよびソフトウェア)が駆動制御部40aを構成する。本実施形態では、統合弁14および駆動制御部40aにより統合弁14の駆動システムが構成されている。なお、空調制御装置40における駆動制御部40aを、空調制御装置40とは別の制御装置により構成してもよい。
 次に、本実施形態の車両用空調装置1の作動を説明すると、車両用空調装置1は、冷房運転モード、暖房運転モード、および除湿暖房運転モードに切替可能となっている。各運転モードの切替は、空調制御装置40の制御処理により行われる。
 本実施形態の空調制御装置40が実行する運転モードの切替制御処理については、図11のフローチャートを用いて説明する。なお、図11に示す制御ルーチンは、操作パネルにて車両用空調装置1の作動スイッチが投入(オン操作)されることで開始する。
 図11に示すように、まず、各種空調制御用のセンサ群41、および操作パネルから各種信号を読み込み(S10)、読み込んだ各種信号に基づいて、ヒートポンプサイクル10の運転モードを決定する(S12)。
 本実施形態では、操作パネルの選択スイッチ、温度設定スイッチ、および外気温センサの検出値に応じて、車両用空調装置1の運転モードを決定する。
 例えば、設定スイッチの設定温度が外気温センサの検出値以下となっている場合に、操作パネルの選択スイッチが冷房に設定されると、運転モードが冷房運転モードに決定される。なお、運転モードが冷房運転モードに決定された場合には、運転モードフラグが「冷房」を示す値(例えば、0)に設定される。
 そして、設定スイッチの設定温度が外気温センサの検出値より高くなっている場合に、操作パネルの選択スイッチが冷房に設定されると、運転モードが除湿暖房運転モードに決定される。なお、運転モードが除湿暖房運転モードに決定された場合には、運転モードフラグが「除湿暖房」を示す値(例えば、1)に設定される。
 また、外気温が極低温(例えば、外気温センサの検出値が0℃以下)となっている場合に、操作パネルの選択スイッチが暖房に設定されると、ヒートポンプサイクル10の冷媒回路をガスインジェクションサイクル(二段圧縮サイクル)とする第1暖房モードに決定される。なお、運転モードが第1暖房モードに決定された場合には、運転モードフラグが「第1暖房」を示す値(例えば、2)に設定される。
 そして、外気温が極低温となっていない場合に、操作パネルの選択スイッチが暖房に設定されると、ヒートポンプサイクル10の冷媒回路を通常の一段圧縮サイクルとする第2暖房モードに決定される。なお、運転モードが第2暖房モードに決定された場合には、運転モードフラグが「第2暖房」を示す値(例えば、3)に設定される。
 続いて、ステップS12にて決定された運転モードが、冷房運転モードであるか否かを判定し(S14)、冷房運転モードであると判定された場合に、冷房制御処理を実行する(S16)。
 続いて、空調を停止するか否かを判定し(S18)、空調を停止しないと判定された場合にはステップS10に戻り再び各種信号を読み込む。一方、空調を停止すると判定された場合には運転モードの切替制御を終える。なお、空調を停止するか否かは、例えば、作動スイッチのオフ操作の有無により判定すればよい。
 ステップS14の判定処理の結果、冷房運転モードでないと判定された場合には、第1暖房モードであるか否かを判定する(S20)。この結果、第1暖房モードであると判定された場合には、第1暖房制御処理を実行し(S22)、その後、ステップS18へ移行する。
 一方、ステップS20の判定処理の結果、第1暖房モードでないと判定された場合には、第2暖房モードであるか否かを判定する(S24)。この結果、第2暖房モードであると判定された場合に、第2暖房制御処理を実行し(S26)、その後、ステップS18へ移行する。
 ステップS24の判定処理の結果、第2暖房モードでないと判定された場合には、除湿暖房制御処理を実行し(S28)、その後、ステップS18へ移行する。なお、ステップS14、S20、S24の各判定は、ステップS12にて設定された運転モードフラグの値に基づいて処理される。
 続いて、図11のステップS16、S22、S26、S28にて実行される制御処理の内容、および各運転モードにおける車両用空調装置1の作動について説明する。
 (A)冷房制御処理(冷房運転モード)
 冷房制御処理では、空調制御装置40が、高段側膨脹弁13を全開状態(減圧作用を発揮しない状態)、低段側膨脹弁22を絞り状態(減圧作用を発揮する状態)、迂回用開閉弁251を閉弁状態とする。
 さらに、空調制御装置40が、気相側弁体161が気相冷媒通路141fの全閉位置、液相側弁体162が液相冷媒通路142cの全開位置に変位するように、電動アクチュエータ182に対して制御パルスを出力する。これにより、統合弁14は、図4に示すように、気相冷媒通路141fを閉じた状態で液相冷媒通路142cの通路開度が全開状態となる第1モードに切り替わる。
 従って、ヒートポンプサイクル10では、図1の実線矢印で示すように冷媒が流れる冷媒回路に切り替えられる。
 この冷媒回路の構成で、空調制御装置40が空調制御用のセンサ群41の検出信号および操作パネルの操作信号を読み込み、車室内へ吹き出す空気の目標温度である目標吹出温度TAOを算出する。さらに、算出された目標吹出温度TAOおよびセンサ群の検出信号に基づいて、空調制御装置40の出力側に接続された各制御機器の作動状態を決定する。
 例えば、圧縮機11の電動モータに出力される制御信号については、以下のように決定される。まず、目標吹出温度TAOに基づいて、予め空調制御装置40に記憶された制御マップを参照して、室内蒸発器23の目標蒸発器吹出温度TEOを決定する。そして、蒸発器温度センサの検出値(吹出空気温度)が目標蒸発器吹出温度TEOに近づくように、圧縮機11の電動モータに出力される制御信号が決定される。
 また、低段側膨脹弁22へ出力される制御信号については、低段側膨脹弁22へ流入する冷媒の過冷却度が、COPを略最大値に近づくように予め決定された目標過冷却度に近づくように決定される。
 また、エアミックスドア34のサーボモータへ出力される制御信号については、エアミックスドア34が室内凝縮器12の空気通路を閉塞し、室内蒸発器23通過後の送風空気の全流量がバイパス通路35を通過するように決定される。
 そして、上記の如く決定された制御信号等を各制御機器へ出力する。その後、操作パネルによって車両用空調装置1の作動停止が要求されるまで、所定の制御周期毎に、各信号の読み込み→目標吹出温度TAOの算出→各制御機器の作動状態決定→制御信号の出力といった制御ルーチンが繰り返される。なお、このような制御ルーチンの繰り返しは、他の運転モード時にも同様に行われる。
 従って、冷房運転モードのヒートポンプサイクル10では、図12のモリエル線図に示すように、圧縮機11の吐出ポート11bから吐出された高圧冷媒(図12のa11点)が室内凝縮器12へ流入する。この際、エアミックスドア34が室内凝縮器12の空気通路を閉塞しているので、室内凝縮器12へ流入した冷媒は殆ど室内送風空気へ放熱することなく、室内凝縮器12から流出する。
 室内凝縮器12から流出した冷媒は、高段側膨脹弁13が全開状態となっているので、高段側膨脹弁13にて殆ど減圧されることなく統合弁14内部の気液分離空間141bに流入する。
 この際、気液分離空間141bへ流入する冷媒は過熱度を有する気相状態となっているものの、気相側弁体161により気相冷媒通路141fを全閉されている。このため、気液分離空間141bへ流入した冷媒は、図4に示すように、気相側流出口141eから流出することなく、液相冷媒通路142cに流入する。なお、気液分離空間141bへ流入した冷媒は、液相側弁体162により液相冷媒通路142cが全開されているので、固定絞り17にて殆ど減圧されることなく、液相冷媒通路142cを介して統合弁14の液相側流出口142bから流出する。
 統合弁14の液相側流出口142bから流出した冷媒は、室外熱交換器20へ流入し、室外熱交換器20にて送風ファン21から送風された外気と熱交換して放熱する(図12のa11点→b11点)。室外熱交換器20から流出した冷媒は、迂回用開閉弁251が閉弁状態となっているので、絞り状態となっている低段側膨脹弁22へ流入して低圧冷媒となるまで、等エンタルピ的に減圧膨脹される(図12のb11点→c11点)。
 そして、低段側膨脹弁22にて減圧された冷媒は、室内蒸発器23へ流入し、送風機32から送風された室内送風空気から吸熱して蒸発する(図12のc11点→d11点)。これにより、室内送風空気が冷却される。
 室内蒸発器23から流出した冷媒は、アキュムレータ24へ流入して気液分離される。そして、分離された気相冷媒が圧縮機11の吸入ポート11a(図12のe11点)から吸入されて、再び圧縮される(図12のe11点→a111点→a11点)。なお、アキュムレータ24にて分離された液相冷媒は、サイクルが要求されている冷凍能力を発揮するために必要としていない余剰冷媒としてアキュムレータ24内に蓄えられる。
 ここで、図12においてd11点とe11点が異なっている理由は、アキュムレータ24から圧縮機11の吸入ポート11aへ至る冷媒配管を流通する気相冷媒に生じる圧力損失と、気相冷媒が外部(外気)から吸熱する吸熱量を表したものである。従って、理想的なサイクルでは、d11点とe11点が一致していることが望ましい。このことは、以下のモリエル線図においても同様である。
 以上の如く、冷房運転モードでは、エアミックスドア34にて室内凝縮器12の空気通路を閉塞しているので、室内蒸発器23にて冷却された送風空気を車室内へ吹き出すことができる。これにより、車室内の冷房を実現することができる。
 (B)第1暖房制御処理(第1暖房モード)
 第1暖房制御処理では、空調制御装置40が、高段側膨脹弁13を絞り状態(減圧作用を発揮する状態)、低段側膨脹弁22を全閉状態、迂回用開閉弁251を開弁状態とする。
 また、第1暖房制御処理では、基本的には、空調制御装置40が、気相側弁体161が気相冷媒通路141fの全開位置、液相側弁体162が液相冷媒通路142cの全閉位置に変位するように、電動アクチュエータ182に対して制御パルスを出力する。これにより、統合弁14は、図5に示すように、気相冷媒通路141fを開いた状態で液相冷媒通路142cの通路開度が全閉状態となる第2モードに切り替わる。
 従って、ヒートポンプサイクル10では、図2の実線矢印で示すように冷媒が流れる冷媒回路、すなわち、ガスインジェクションサイクルの冷媒回路に切り替えられる。
 この冷媒回路の構成で、空調制御装置40が目標吹出温度TAOおよびセンサ群41の検出信号に基づいて、空調制御装置40の出力側に接続された各制御機器の作動状態を決定する。なお、第1暖房モードでは、高段側膨脹弁13へ出力される制御信号については、室内凝縮器12における冷媒圧力が予め定めた目標高圧となるように、あるいは、室内凝縮器12から流出する冷媒の過冷却度が予め定めた目標過冷却度となるように決定される。また、エアミックスドア34のサーボモータへ出力される制御信号については、エアミックスドア34がバイパス通路35を閉塞し、室内蒸発器23通過後の送風空気の全流量が室内凝縮器12を通過するように決定される。
 従って、第1暖房モードのヒートポンプサイクル10では、図13のモリエル線図に示すように、圧縮機11の吐出ポート11bから吐出された高圧冷媒(図13のa12点)が室内凝縮器12へ流入する。室内凝縮器12へ流入した冷媒は、送風機32から送風されて室内蒸発器23を通過した車室内送風空気と熱交換して放熱する(図13のa12点→b12点)。これにより、車室内送風空気が加熱される。
 室内凝縮器12から流出した冷媒は、絞り状態となっている高段側膨脹弁13にて中間圧冷媒となるまで等エンタルピ的に減圧膨脹される(図13のb12点→c112点)。そして、高段側膨脹弁13にて減圧された中間圧冷媒は、統合弁14の冷媒流入口141aから気液分離空間141b内へ流入して気液分離される(図13のc12点→c212点、c12点→c312点)。
 気液分離空間141bにて分離された液相冷媒は、図5に示すように、液相側弁体162により液相冷媒通路142cが全閉されているので、固定絞り17にて低圧冷媒となるまで等エンタルピ的に減圧膨脹されて(図13のc312点→c412点)、液相側流出口142bから流出する。
 また、気液分離空間141bにて分離された気相冷媒は、気相側弁体161により気相冷媒通路141fが全開されているので、統合弁14の気相側流出口141eから流出して圧縮機11の中間圧ポート11c側へ流入する(図13のc212点)。
 中間圧ポート11cへ流入した冷媒は、圧縮機11の圧縮過程の冷媒(図13のa112点)と合流して圧縮される(図13のa212点)。
 続いて、統合弁14の液相側流出口142bから流出した冷媒は、室外熱交換器20へ流入して、送風ファン21から送風された外気と熱交換して吸熱する(図13のc412点→d12点)。
 室外熱交換器20から流出した冷媒は、迂回用開閉弁251が開弁状態となっているので、迂回通路25を介して、アキュムレータ24へ流入して気液分離される。そして、分離された気相冷媒が圧縮機11の吸入ポート11a(図13のe12点)から吸入されて再び圧縮される。一方、分離された液相冷媒はサイクルが要求されている冷凍能力を発揮するために必要としていない余剰冷媒としてアキュムレータ24内に蓄えられる。
 以上の如く、第1暖房モードでは、室内凝縮器12にて圧縮機11から吐出された冷媒の有する熱を車室内送風空気に放熱させて、加熱された室内送風空気を車室内へ吹き出すことができる。これにより、車室内の暖房を実現することができる。
 さらに、第1暖房モードでは、固定絞り17にて減圧された低圧冷媒を圧縮機11の吸入ポート11aから吸入させ、高段側膨脹弁13にて減圧された中間圧冷媒を中間圧ポート11cへ流入させて昇圧過程の冷媒と合流させる、ガスインジェクションサイクル(エコノマイザ式冷凍サイクル)を構成することができる。
 これにより、圧縮機11に温度の低い混合冷媒を吸入させることができ、圧縮機11における圧縮効率を向上させることができる。この結果、ヒートポンプサイクル10全体としてのCOPを向上させることができる。
 ここで、第1暖房モードにおいて、常時、気相冷媒通路141fが全開状態となっていると、気相冷媒通路141fに液相冷媒が流入して、中間圧冷媒通路15を介して圧縮機11へ液相冷媒が吸引されてしまうことがある。
 本発明者らの調査によれば、このような不具合は、他の運転モードから第1暖房モードへの切り替えの初期段階、および第1暖房モード時に圧縮機11の負荷状態が所定の高負荷状態に移行する過渡期に生じ易いことが判っている。以下、第1暖房モードにおいて、気相冷媒通路141fに液相冷媒が流入する不具合の発生要因について図14~図16を用いて説明する。
 ここで、図15は、他の運転モード(本実施形態では第2暖房モードを想定)から第1暖房モードへ切り替えた際の高段側膨脹弁13、サイクル内の冷媒圧力、圧縮機11の回転数の変化を示すタイミングチャートである。なお、図15中に示す時刻Ta1が、他の運転モードから第1暖房モードへの切り替えタイミングを示している。また、図15中の冷媒圧力のうち、実線P1が圧縮機11から吐出された高圧冷媒の圧力変化、点線P2が圧縮機11に吸入される低圧冷媒の圧力変化、一点鎖線P3が固定絞り17通過前の冷媒の圧力変化、二点鎖線P4が固定絞り17通過後の冷媒の圧力変化を示している。この点は、図16中に示す冷媒の圧力変化についても同様である。
 図15に示すように、他の運転モードを実行している状態から、第1暖房モードへの切り替わると(時間Ta1)、液相側弁体162により液相冷媒通路104dが全閉され、気液分離空間141bにて分離された液相冷媒の全てが固定絞り17に流入する。これにより、固定絞り17を通過する冷媒の流量が急激に増加する。
 冷媒流量Grは、図14に示すように、固定絞り17の前後の圧力差ΔP(=Pin-Pout)に比例する特性がある。このため、固定絞り17を通過する冷媒の流量が増加(Gr1→Gr2:Gr1<Gr2)すると、サイクル内の低圧冷媒の圧力が急激に低下するようにサイクルがバランスする(図15の点線P2参照)。
 そして、サイクル内の低圧冷媒の急激な圧力低下により、固定絞り17下流側のアキュムレータ24にてフォーミング(沸騰、突沸)が生じ、アキュムレータ24内に蓄えられた余剰冷媒が圧縮機11の吸入ポート11aへ吸入される。これにより、サイクル内を循環する冷媒の流量が増加する。
 ここで、サイクル内を循環する冷媒の流量が増加するまでの時間は、固定絞り17前後の圧力差ΔP(=P3-P4)が固定絞り17で液相冷媒を全て流しきるレベルに拡大するまでの時間(図14の時間Ta1~時間Ta2までの時間)よりも短い。
 このため、固定絞り17では、サイクル内を循環する冷媒の流量が増加した際に、液相冷媒を全て流しきることができず、固定絞り17にて流しきれない液相冷媒が、気相冷媒と共に気相冷媒通路141fを介して、中間圧冷媒通路15へ流入する。
 このように、他の運転モードを実行している状態や空調の停止状態等から第1暖房モードへの切り替える際には、気相冷媒通路141fに液相冷媒が流入し、中間圧冷媒通路15を介して圧縮機11へ液相冷媒が吸引されてしまうことがある。
 また、図16は、圧縮機11の負荷状態が高負荷状態となった際の高段側膨脹弁13、サイクル内の冷媒圧力、圧縮機11の回転数の変化を示すタイミングチャートである。なお、図16中に示す時刻Tb1が、圧縮機11の負荷状態が高負荷状態となったタイミングを示している。
 図16に示すように、圧縮機11の負荷状態が低い定常期間(時間Tb1までの期間)では、冷媒流量に対して、固定絞り17前後の圧力差ΔP(=P3-P4)が大きく、固定絞り17で液相冷媒を充分に流すことが可能となっている。
 この状態から、車室内の設定温度の変更等により圧縮機11の回転数が急激に増加して、圧縮機11の負荷状態が高負荷状態へ移行する過渡期には(時間Tb1)、固定絞り17を通過する冷媒の流量が急激に増加する。
 これにより、サイクル内の低圧冷媒の圧力が急激に低下するようにサイクルがバランスする(図16の点線P2参照)。そして、サイクル内の低圧冷媒の急激な圧力低下により、固定絞り17下流側のアキュムレータ24にてフォーミングが生じ、アキュムレータ24内に蓄えられた余剰冷媒が圧縮機11の吸入ポート11aへ吸入されることで、サイクル内を循環する冷媒の流量が増加する。この結果、固定絞り17では、液相冷媒を全て流しきることができず、固定絞り17にて流しきれない液相冷媒が、気相冷媒と共に気相冷媒通路141fを介して、中間圧冷媒通路15へ流入する。
 このように、第1暖房モードの実行中であっても、圧縮機11の負荷状態が高負荷状態に移行する過渡期には、気相冷媒通路141fに液相冷媒が流入し、中間圧冷媒通路15を介して圧縮機11へ液相冷媒が吸引されてしまうことがある。
 本実施形態では、中間圧冷媒通路15を介して圧縮機11へ液相冷媒が吸引されてしまう不具合の対策として、中間圧冷媒通路15へ液相冷媒が流入する液流入条件が成立した際に、統合弁14の作動モードを第3モードへ切り替えるようにしている。
 本実施形態の統合弁14のモード切替処理については、図17のフローチャートを用いて説明する。なお、図17の制御ルーチンは、第1暖房モード時に実行される処理である。
 図17に示すように、まず、前回のヒートポンプサイクル10の運転モードが、第1暖房モードではなく、他の運転モードであるか否かを判定する(S241)。すなわち、ヒートポンプサイクル10の運転モードが、第1暖房モード以外の他の運転モードから第1暖房モードへ切り替わった初期段階であるか否かを判定する。なお、ステップS241の判定処理では、前回の運転モードフラグと今回の運転モードフラグが一致するか否かを判定し、一致しない場合に、前回の運転モードが他の運転モードであると判定する。
 ステップS241の判定処理の結果、前回の運転モードが第1暖房モード以外の他の運転モードであると判定された場合には、液流入条件が成立して、中間圧冷媒通路15を介して圧縮機11へ液相冷媒が吸引されてしまう可能性がある。
 このため、空調制御装置40は、統合弁14の作動モードを第3モードに切り替えて、インジェクション抑制運転を実行する(S242)。具体的には、空調制御装置40は、液相側弁体162が液相冷媒通路142cの全閉位置、気相側弁体161が気相冷媒通路141fの全閉位置(または微開位置)に変位するように、電動アクチュエータ182に対して制御パルスを出力する。これにより、統合弁14は、液相冷媒通路142cを閉じた状態で気相冷媒通路141fの通路開度が全開状態よりも小さい通路開度となる第3モードに切り替わる。この第3モードでは、図6に示すように、気液分離空間141bにて分離された液相冷媒が、固定絞り17にて低圧冷媒となるまで等エンタルピ的に減圧膨脹されて、液相側流出口142bから流出する。
 この際、気相側弁体161により気相冷媒通路141fが全閉または微開となっているので、液相冷媒は、気相冷媒通路141fへ殆ど流入することなく、固定絞り17を介して液相側流出口142bから流出する。なお、気液分離空間141bにて分離された気相冷媒は、気相側弁体161により気相冷媒通路141fが全閉または微開となっているので、気相冷媒通路141fへの流入量が制限される。
 図17に戻り、統合弁14の作動モードを第3モードに切り替えた後、所定の復帰条件が成立したか否かを判定する(S243)。
 本実施形態では、ステップS243の復帰条件を、第3モードへ切り替えてから予め定めた基準時間が経過した際に成立する条件に設定している。なお、基準時間は、ヒートポンプサイクル10の運転モードを第1暖房モードへ切り替えてから固定絞り17前後の圧力差が固定絞り17で液相冷媒を全て流しきるレベルに拡大するまでに要する時間に設定されている。なお、基準時間は、例えば、図15に示す時間Ta1~時間Ta2までの時間、および図16に示す時間Tb1~時間Tb2までの時間のうち、時間が長い方を基準に設定すればよい。
 図17に示すステップS243の判定処理の結果、復帰条件が不成立と判定された場合には、ステップS242へ戻る。つまり、復帰条件が成立するまでは、統合弁14の作動モードが第3モードに維持される。
 また、ステップS243の判定処理の結果、復帰条件が成立したと判定された場合には、固定絞り17前後の圧力差が固定絞り17で液相冷媒を全て流しきるレベルに拡大していると考えられる。
 このため、空調制御装置40は、統合弁14の作動モードを第2モードに切り替えて、インジェクション運転を実行する(S244)。具体的には、空調制御装置40は、液相側弁体162が液相冷媒通路142cの全閉位置、気相側弁体161が気相冷媒通路141fの全開位置に変位するように、電動アクチュエータ182に対して制御パルスを出力する。これにより、統合弁14は、図5に示すように、液相冷媒通路142cを閉じた状態で気相冷媒通路141fの通路開度が全開状態となる第2モードに切り替わる。
 一方、ステップS241の判定処理の結果、前回の運転モードが第1暖房モード以外の他の運転モードでないと判定された場合には、圧縮機11の負荷状態が所定の高負荷状態に移行する過渡期であるか否かを判定する(S245)。
 本実施形態では、圧縮機11の電動モータに出力される目標回転数と、現在の電動モータの回転数との差(=目標回転数-現在の回転数)が、予め定めた基準値以上となった際に、圧縮機11の負荷状態が高負荷状態に移行する過渡期であると判定する。
 一方、圧縮機11の電動モータに出力される目標回転数と、現在の電動モータの回転数との差が、基準値より小さい場合に、圧縮機11の負荷状態が高負荷状態に移行する過渡期でないと判定する。
 この結果、圧縮機11の負荷状態が所定の高負荷状態に移行する過渡期であると判定された場合には、液流入条件が成立して、中間圧冷媒通路15を介して圧縮機11へ液相冷媒が吸引されてしまう可能性がある。
 このため、空調制御装置40は、統合弁14の作動モードを第3モードに切り替えて、所定の復帰条件が成立するまでインジェクション抑制運転を実行する(S242、S243)。
 一方、圧縮機11の負荷状態が所定の高負荷状態に移行する過渡期でないと判定された場合には、固定絞り17前後の圧力差が固定絞り17で液相冷媒を全て流しきるレベルに拡大していると考えられる。このため、空調制御装置40は、統合弁14の作動モードを第2モードに切り替えて、インジェクション運転を実行する(S244)。
 続いて、第1暖房制御処理を終了する処理終了条件が成立したか否かを判定し(S246)、処理終了条件が成立したと判定された場合に第1暖房制御処理を終え、処理終了条件が成立していないと判定された場合にステップS241に戻る。なお、処理終了条件は、運転モードの切り替え時、車両用空調装置1の作動スイッチがオフされた際に成立する条件である。
 このように、本実施形態の第1暖房モードでは、固定絞り17にて液相冷媒を流し切れない可能性が高い場合、統合弁14の作動モードを気相冷媒通路141fの通路開度が全開状態よりも小さい通路開度となる第3モードへ切り替えるようにしている。
 これによれば、中間圧冷媒通路15を介して圧縮機11の中間圧ポート11c側へ液相冷媒が流入してしまうことを抑制可能となる。この結果、液相冷媒が流入することによる圧縮機11の不具合の発生を抑制することができる。なお、本実施形態では、図17におけるステップS241、およびステップS245の判定処理が、液流入条件が成立したか否かを判定する成否判定部を構成している。
 (C)第2暖房制御処理(第2暖房モード)
 第2暖房制御処理では、空調制御装置40が、高段側膨脹弁13を絞り状態(減圧作用を発揮する状態)、低段側膨脹弁22を全閉状態、迂回用開閉弁251を開弁状態とする。
 さらに、空調制御装置40が、気相側弁体161が気相冷媒通路141fの全閉位置、液相側弁体162が液相冷媒通路142cの全開位置に変位するように、電動アクチュエータ182に対して制御パルスを出力する。これにより、統合弁14は、図4に示すように、気相冷媒通路141fを閉じた状態で液相冷媒通路142cの通路開度が全開状態となる第1モードに切り替わる。
 従って、ヒートポンプサイクル10では、図3の実線矢印で示すように冷媒が流れる冷媒回路に切り替えられる。
 この冷媒回路の構成で、空調制御装置40が目標吹出温度TAOおよびセンサ群41の検出信号に基づいて、空調制御装置40の出力側に接続された各制御機器の作動状態を決定する。なお、第2暖房モードでは、高段側膨脹弁13へ出力される制御信号については、室内凝縮器12における冷媒圧力が予め定めた目標高圧となるように、あるいは、室内凝縮器12から流出する冷媒の過冷却度が予め定めた目標過冷却度となるように決定される。また、エアミックスドア34のサーボモータへ出力される制御信号については、エアミックスドア34がバイパス通路35を閉塞し、室内蒸発器23通過後の送風空気の全流量が室内凝縮器12を通過するように決定される。
 従って、第2暖房モードのヒートポンプサイクル10では、図18のモリエル線図に示すように、圧縮機11の吐出ポート11bから吐出された高圧冷媒(図18のa13点)が室内凝縮器12へ流入する。室内凝縮器12へ流入した冷媒は、送風機32から送風されて室内蒸発器23を通過した車室内送風空気と熱交換して放熱する(図18のa13点→b13点)。これにより、車室内送風空気が加熱される。
 室内凝縮器12から流出した冷媒は、絞り状態となっている高段側膨脹弁13にて低圧冷媒となるまで等エンタルピ的に減圧膨脹されて(図18のb13点→c13点)、統合弁14の気液分離空間141b内へ流入する。気液分離空間141bへ流入した冷媒は、冷房運転モードと同様に、気相側流出口141eから流出することなく、液相冷媒通路142cを介して液相側流出口142bから流出する。
 液相側流出口142bから流出した低圧冷媒は、室外熱交換器20へ流入し、送風ファン21から送風された外気と熱交換して吸熱する(図18のc13点→d13点)。室外熱交換器20から流出した冷媒は、迂回用開閉弁251が開弁状態となっているので、迂回通路25を介して、アキュムレータ24へ流入して気液分離される。そして、分離された気相冷媒が圧縮機11の吸入ポート11a(図18のe13点)から吸入される。
 以上の如く、第2暖房モードでは、室内凝縮器12にて圧縮機11から吐出された冷媒の有する熱を車室内送風空気に放熱させて、加熱された室内送風空気を車室内へ吹き出すことができる。これにより、車室内の暖房を実現することができる。
 ここで、第2暖房モード時を、第1暖房モードに対して、外気温が高い場合等のように暖房負荷が比較的低い場合に実行することの効果を説明する。第1暖房モードでは、上述の如く、ガスインジェクションサイクルを構成することができるので、ヒートポンプサイクル10全体としてのCOPを向上させることができる。
 つまり、理論的には、圧縮機11の回転数が同一であれば、第1暖房モードは、第2暖房モード時よりも高い暖房性能を発揮することができる。換言すると、同一の暖房性能を発揮させるために必要な圧縮機11の回転数(冷媒吐出能力)は、第2暖房モードよりも第1暖房モード時の方が低くなる。
 ところが、圧縮機構には、圧縮効率が最大(ピーク)となる最大効率回転数があり、最大効率回転数よりも回転数が低くなると、圧縮効率が大きく低下してしまうという特性がある。このため、暖房負荷が比較的低い場合に圧縮機11を最大効率回転数よりも低い回転数で作動させると、第1暖房モードでは、却ってCOPが低下してしまうことがある。
 そこで、本実施形態では、第1暖房モードの実行中に、外気温が高く暖房負荷が低くなった際に、第2暖房モードへ切り替え、第2暖房モードの実行中に外気温が低くなり暖房負荷が高くなった際に、第1暖房モードへ切り替えるようにしている。
 これにより、第1暖房モードおよび第2暖房モードのうち高いCOPを発揮できる運転モードを選択することができる。従って、第1暖房モードの実行中に、圧縮機11の回転数が基準回転数以下となってしまう場合であっても、第2暖房モードへ切り替えることにより、ヒートポンプサイクル10全体としてのCOPを向上させることができる。
 (D)除湿暖房制御処理(除湿暖房運転モード)
 除湿暖房制御処理では、空調制御装置40が、各膨脹弁13、22を全開状態あるいは絞り状態とすると共に、迂回用開閉弁251を閉弁状態とする。
 さらに、空調制御装置40が、気相側弁体161が気相冷媒通路141fの全閉位置、液相側弁体162が液相冷媒通路142cの全開位置に変位するように、電動アクチュエータ182に対して制御パルスを出力する。これにより、統合弁14は、図4に示すように、気相冷媒通路141fを閉じた状態で液相冷媒通路142cの通路開度が全開状態となる第1モードに切り替わる。
 従って、ヒートポンプサイクル10では、冷房運転モードと同様の冷媒回路、すなわち、図1の実線矢印で示すように冷媒が流れる冷媒回路に切り替えられる。
 この冷媒回路の構成で、空調制御装置40が目標吹出温度TAOおよびセンサ群41の検出信号に基づいて、空調制御装置40の出力側に接続された各制御機器の作動状態を決定する。
 例えば、エアミックスドア34のサーボモータへ出力される制御信号については、エアミックスドア34がバイパス通路35を閉塞し、室内蒸発器23通過後の送風空気の全流量が室内凝縮器12を通過するように決定される。さらに、本実施形態の除湿暖房モードでは、設定温度と外気温との温度差に応じて、高段側膨脹弁13および低段側膨脹弁22の絞り開度を変化させている。具体的には、前述した目標吹出温度TAOの上昇に伴って、第1~第4除湿暖房モードの4段階の除湿暖房運転モードを実行する。
 (D-1)第1除湿暖房モード
 第1除湿暖房モードでは、高段側膨脹弁13を全開状態とし、低段側膨脹弁22を絞り状態とする。従って、サイクル構成については、冷房運転モードと全く同様となるものの、エアミックスドア34が室内凝縮器12の空気通路を全開しているので、サイクルを循環する冷媒の状態については図19のモリエル線図に示すように変化する。
 すなわち、図19に示すように、圧縮機11の吐出ポート11bから吐出された高圧冷媒(図19のa14点)は、室内凝縮器12へ流入して、室内蒸発器23にて冷却されて除湿された車室内送風空気と熱交換して放熱する(図19のa14点→b114点)。これにより、車室内送風空気が加熱される。
 室内凝縮器12から流出した冷媒は、冷房運転モードと同様に、高段側膨脹弁13→統合弁14の順に流れて室外熱交換器20へ流入する。そして、室外熱交換器20へ流入した高圧冷媒は、送風ファン21から送風された外気と熱交換して放熱する(図19のb114点→b214点)。以降の作動は冷房運転モードと同様である。
 以上の如く、第1除湿暖房モード時には、室内蒸発器23にて冷却され除湿された車室内送風空気を、室内凝縮器12にて加熱して車室内へ吹き出すことができる。これにより、車室内の除湿暖房を実現することができる。
 (D-2)第2除湿暖房モード
 次に、第1除湿暖房モードの実行中に、目標吹出温度TAOが予め定めた第1基準温度よりも高くなった際には、第2除湿暖房モードが実行される。第2除湿暖房モードでは、高段側膨脹弁13を絞り状態とし、低段側膨脹弁22の絞り開度を第1除湿暖房モードよりも増加させた絞り状態とする。従って、第2除湿暖房モードでは、サイクルを循環する冷媒の状態については図20のモリエル線図に示すように変化する。
 すなわち、図20に示すように、圧縮機11の吐出ポート11bから吐出された高圧冷媒(図20のa15点)は、第1除湿暖房モードと同様に、室内凝縮器12へ流入して、室内蒸発器23にて冷却されて除湿された車室内送風空気と熱交換して放熱する(図20のa15点→b115点)。これにより、車室内送風空気が加熱される。
 室内凝縮器12から流出した冷媒は、絞り状態となっている高段側膨脹弁13によって外気温よりも温度の高い中間圧冷媒となるまで等エンタルピ的に減圧される(図20のb115点→b215点)。高段側膨脹弁13にて減圧された中間圧冷媒は、冷房運転モードと同様に、統合弁14を介して室外熱交換器20へ流入する。
 そして、室外熱交換器20へ流入した中間圧冷媒は、送風ファン21から送風された外気と熱交換して放熱する(図20のb215点→b315点)。以降の作動は冷房運転モードと同様である。
 以上の如く、第2除湿暖房モードでは、第1除湿暖房モード時と同様に、室内蒸発器23にて冷却され除湿された車室内送風空気を、室内凝縮器12にて加熱して車室内へ吹き出すことができる。これにより、車室内の除湿暖房を実現することができる。
 この際、第2除湿暖房モードでは、高段側膨脹弁13を絞り状態としているので、第1除湿暖房モードに対して、室外熱交換器20へ流入する冷媒の温度を低下させることができる。従って、室外熱交換器20における冷媒の温度と外気温との温度差を縮小して、室外熱交換器20における冷媒の放熱量を低減できる。
 その結果、第1除湿暖房モード時に対してサイクルを循環する冷媒循環流量を増加させることなく、室内凝縮器12における冷媒圧力を上昇させることができ、第1除湿暖房モードよりも室内凝縮器12から吹き出される温度を上昇させることができる。
 (D-3)第3除湿暖房モード
 次に、第2除湿暖房モードの実行中に、目標吹出温度TAOが予め定めた第2基準温度(第2基準温度>第1基準温度)よりも高くなった際には、第3除湿暖房モードが実行される。第3除湿暖房モードでは、高段側膨脹弁13の絞り開度を第2除湿暖房モードよりも縮小させた絞り状態とし、低段側膨脹弁22の絞り開度を第2除湿暖房モードよりも増加させる。従って、第3除湿暖房モードでは、サイクルを循環する冷媒の状態については図21のモリエル線図に示すように変化する。
 すなわち、図21に示すように、圧縮機11の吐出ポート11bから吐出された高圧冷媒(図21のa16点)は、第1、第2除湿暖房モードと同様に、室内凝縮器12へ流入して、室内蒸発器23にて冷却されて除湿された車室内送風空気と熱交換して放熱する(図21のa16点→b16点)。これにより、車室内送風空気が加熱される。
 室内凝縮器12から流出した冷媒は、絞り状態となっている高段側膨脹弁13によって外気温よりも温度の低い中間圧冷媒となるまで等エンタルピ的に減圧される(図21のb16点→c116点)。高段側膨脹弁13にて減圧された中間圧冷媒は、冷房運転モードと同様に、統合弁14を介して室外熱交換器20へ流入する。
 そして、室外熱交換器20へ流入した中間圧冷媒は、送風ファン21から送風された外気と熱交換して吸熱する(図21のc116点→c216点)。さらに、室外熱交換器20から流出した冷媒は、低段側膨脹弁22にて等エンタルピ的に減圧されて(図21のc216点→c316点)、室内蒸発器23へ流入する。以降の作動は冷房運転モードと同様である。
 以上の如く、第3除湿暖房モードでは、第1、第2除湿暖房モード時と同様に、室内蒸発器23にて冷却され除湿された車室内送風空気を、室内凝縮器12にて加熱して車室内へ吹き出すことができる。これにより、車室内の除湿暖房を実現することができる。
 この際、第3除湿暖房モードでは、高段側膨脹弁13の絞り開度を縮小させることによって、室外熱交換器20を蒸発器として作用させているので、第2除湿暖房モードに対して、室外熱交換器20における冷媒の吸熱量を増加させることができる。
 その結果、第2除湿暖房モード時に対して、圧縮機11の吸入冷媒密度を上昇させることができ、コンプレッサ回転数を増加させることなく、室内凝縮器12における冷媒圧力を上昇させることができ、第2除湿暖房モードよりも室内凝縮器12から吹き出される温度を上昇させることができる。
 (D-4)第4除湿暖房モード
 次に、第3除湿暖房モードの実行中に、目標吹出温度TAOが予め定めた第3基準温度(第3基準温度>第2基準温度)よりも高くなった際には、第4除湿暖房モードが実行される。第4除湿暖房モードでは、高段側膨脹弁13の絞り開度を第3除湿暖房モードよりも縮小させた絞り状態とし、低段側膨脹弁22を全開状態とする。従って、第4除湿暖房モードでは、サイクルを循環する冷媒の状態については図22のモリエル線図に示すように変化する。
 すなわち、図22に示すように、圧縮機11の吐出ポート11bから吐出された高圧冷媒(図22のa17点)は、第1、第2除湿暖房モードと同様に、室内凝縮器12へ流入して、室内蒸発器23にて冷却されて除湿された車室内送風空気と熱交換して放熱する(図22のa17点→b17点)。これにより、車室内送風空気が加熱される。
 室内凝縮器12から流出した冷媒は、絞り状態となっている高段側膨脹弁13によって外気温よりも温度の低い低圧冷媒となるまで等エンタルピ的に減圧される(図22のb17点→c117点)。高段側膨脹弁13にて減圧された低圧冷媒は、冷房運転モードと同様に、統合弁14を介して室外熱交換器20へ流入する。
 そして、室外熱交換器20へ流入した低圧冷媒は、送風ファン21から送風された外気と熱交換して吸熱する(図22のc117点→c217点)。さらに、室外熱交換器20から流出した冷媒は、低段側膨脹弁22が全開状態となっているので、減圧されることなく室内蒸発器23へ流入する。以降の作動は冷房運転モードと同様である。
 以上の如く、第4除湿暖房モードでは、第1~第3除湿暖房モード時と同様に、室内蒸発器23にて冷却され除湿された車室内送風空気を、室内凝縮器12にて加熱して車室内へ吹き出すことができる。これにより、車室内の除湿暖房を実現することができる。
 この際、第4除湿暖房モードでは、第3除湿暖房モードと同様に、室外熱交換器20を蒸発器として作用させるとともに、第3除湿暖房モードよりも高段側膨脹弁13の絞り開度を縮小させているので、室外熱交換器20における冷媒蒸発温度を低下させることができる。従って、第3除湿暖房モードよりも室外熱交換器20における冷媒の温度と外気温との温度差を拡大させて、室内凝縮器12における冷媒の吸熱量を増加させることができる。
 その結果、第3除湿暖房モード時に対して、圧縮機11の吸入冷媒密度を上昇させることができ、回転数を増加させることなく、室内凝縮器12における冷媒圧力を上昇させることができ、第3除湿暖房モードよりも室内凝縮器12から吹き出される温度を上昇させることができる。
 以上説明した本実施形態の車両用空調装置1では、上記の如く、ヒートポンプサイクル10の冷媒回路を切り替えることによって、種々のサイクル構成を実現して、車室内の適切な冷房、暖房および除湿暖房を実現できる。
 さらに、本実施形態のように電気自動車に適用される車両用空調装置1では、内燃機関(エンジン)を搭載する車両のようにエンジンの廃熱を車室内の暖房のために利用できない。従って、本実施形態のヒートポンプサイクル10のように、暖房運転モード時に暖房負荷によらず高いCOPを発揮できることは、極めて有効である。
 また、本実施形態では、ヒートポンプサイクル10をガスインジェクションサイクルとして機能させるために必要な構成機器の一部を一体的に構成した統合弁14を採用しているので、ガスインジェクションサイクルを構成するヒートポンプサイクル10のサイクル構成を簡素化できる。延いては、ヒートポンプサイクル10の搭載対象物への搭載性の向上を図ることができる。
 また、本実施形態の統合弁14では、単一の駆動装置18にて、冷媒の気液分離、液相冷媒通路142cおよび気相冷媒通路141fの開閉、並びに、液相冷媒の減圧を行うことができる。これによれば、ガスインジェクションサイクルに切替可能なヒートポンプサイクル10を簡素なサイクル構成で実現できる。
 具体的には、気相冷媒通路141fを閉じた状態で液相冷媒通路142cの通路開度を全開状態に設定することで、気液分離空間141bから流出した冷媒の全てを、液相側流出口142bから流出させる冷媒回路に切り替えることができる。
 また、液相冷媒通路142cを閉じた状態で気相冷媒通路141fの通路開度を全開状態に設定することで、気液分離空間141bにて分離された液相冷媒を固定絞り17で減圧すると共に、気相冷媒を圧縮機11の中間圧ポート11c側へ流出させる冷媒回路に切り替えることができる。
 特に、本実施形態の統合弁14は、液相冷媒通路142cを閉じた状態で気相冷媒通路141fの通路開度を全開状態よりも小さい通路開度に設定可能となっている。
 これによれば、固定絞り17にて液相冷媒が流しきれない場合に、気相冷媒通路141fの通路開度を全開状態よりも小さい通路開度に設定することで、中間圧冷媒通路15を介して圧縮機11の中間圧ポート11c側へ液相冷媒が流入してしまうことを抑制可能となる。この結果、液相冷媒が流入することによる圧縮機11の不具合の発生を抑制することができる。
 従って、本実施形態の統合弁14によれば、ガスインジェクションサイクルに切替可能なヒートポンプサイクル10のサイクル構成の簡素化を図りつつ、中間圧冷媒通路15を介して圧縮機11へ液相冷媒が流入してしまうことを抑制することができる。
 また、本実施形態の統合弁14の駆動システムでは、圧縮機11の中間圧ポート11cへの液相冷媒の流入が想定される条件で、液相冷媒通路142cを閉じた状態で気相冷媒通路141fの通路開度を全開状態よりも小さい通路開度に切り替えるようにしている。
 これによれば、気相冷媒通路141fへの液相冷媒の流入を抑制して、中間圧冷媒通路15を介して圧縮機11へ液相冷媒が流入してしまうことを効果的に抑制することができる。
 また、本実施形態の統合弁14は、ロッド181、電動アクチュエータ182、弾性部材183を備える簡素な駆動装置18により、各弁体161、162の位置に変位させることで、統合弁14の作動モードを第1~第3モードといった3つのモードに切り替え可能となっている。これによれば、中間圧冷媒通路15を介して圧縮機11の中間圧ポート11c側へ液相冷媒が流入してしまうことを抑制可能な統合弁14の簡素化を図ることができる。
 また、本実施形態の統合弁14は、液相側弁体162の筒状部162bによりロッド181の一部を覆うと共に、各弁体161、162に第1、第3のシール部材162c、161bを設ける構成としている。
 これによれば、気相側弁体161により気相冷媒通路141fを閉じた際に、ロッド181と各弁体161、162との間の隙間を介して液相冷媒が気相冷媒通路141fへ流入することを抑制可能となる。
 さらに、ロッド181と各弁体161、162との間の隙間ではなく、気相側弁体161における筒状部162bと接触する部位に第3のシール部材161bを設け、液相側弁体162における第2突起部181bと接触する部位に第1のシール部材162cを設けている。
 これによれば、各シール部材162c、161bがロッド181に接触しないので、各弁体161、162が変位する際の摺動抵抗を増加させることなく、ロッド181と各弁体161、162との間の隙間を介して冷媒が漏れることを抑制できる。
 また、本実施形態では、気相側流入部141dの開口面積Sb1に対する気相側弁体161の面積Sb2の面積比を、液相側流入部142aの開口面積Sa1に対する液相側弁体162の面積Sa2の面積比を大きくしている(Sb2/Sb1>Sa2/Sa1)。
 このように、気相側弁体161の面積Sb2を気相側流入部141dの開口面積Sb1よりも拡大することで、気相側弁体161を、気相冷媒通路141fを開いた際の気相冷媒通路141f側への液相冷媒の飛散を抑制するシャッタとして機能させることができる。これにより、専用の部材を設けることなく、気液分離空間141bにて分離された液相冷媒が気相冷媒通路141fへ流入することを抑制できる。
 (他の実施形態)
 以上、本開示の実施形態について説明したが、本開示は上述の実施形態に限定されるものではなく、特許請求の範囲に記載した範囲内において適宜変更が可能である。例えば、以下のように種々変形可能である。
 (1)上述の実施形態では、ヒートポンプサイクル10を電気自動車用の車両用空調装置1に適用した例を説明したが、ヒートポンプサイクル10は、例えば、エンジン(内燃機関)および走行用電動モータから走行用の駆動力を得るハイブリッド車両のように、エンジン廃熱が暖房用熱源として不充分となることのある車両に適用して有効である。
 さらに、ヒートポンプサイクル10は、例えば、据置型空調装置、冷温保存庫、液体加熱装置等に適用してもよい。さらに、液体加熱装置に適用する場合は、利用側熱交換器として液体-冷媒熱交換器を採用し、流量調整部として液体-冷媒熱交換器へ流入する液体流量を調整する液体ポンプあるいは流量調整弁を採用してもよい。
 (2)上述の実施形態では、各膨脹弁13、22、統合弁14、迂回用開閉弁251等にてヒートポンプサイクル10の冷媒回路の切り替えることで、種々の運転モードを実現する例について説明したが、これに限定されない。
 ヒートポンプサイクル10は、ガスインジェクションサイクルとガスインジェクションサイクル以外の通常サイクルとを切替可能な構成であればよい。例えば、ヒートポンプサイクル10は、第1暖房モードおよび第2暖房モードからなる暖房運転モードだけが実現可能な構成となっていてもよいし、第1暖房モードおよび冷房運転モードだけが実現可能な構成となっていてもよい。勿論、種々の運転モードを設ける方が、熱交換対象流体(送風空気)の温度を適切に温度調整できる点で有効である。
 (3)上述の実施形態では、外気温に基づいて第1暖房モードと第2暖房モードとを切り替える例について説明したが、これに限定されず、例えば、圧縮機11の回転数に基づいて、第1暖房モードと第2暖房モードとを切り替えるようにしてもよい。具体的には、第1暖房モードの実行中に、圧縮機11の回転数が基準回転数(最大効率回転数)以下となってしまう場合に第2暖房モードへ切り替え、第2暖房モードの実行中に基準回転数に対して予め定めた所定量を加えた回転数以上となった際に第1暖房モードへ切り替えればよい。これによっても、第1暖房モードおよび第2暖房モードのうち高いCOPを発揮できる運転モードを選択することができる。
 (4)上述の実施形態では、ボデー140の形状として外観略角筒状のものを採用した例を説明したが、ボデー140の形状はこれに限定されず、搭載対象物に搭載される際の搭載スペースに適合する形状のものを採用してもよい。これによれば、ヒートポンプサイクル10全体としての搭載対象物への搭載性をより一層向上させることができる。
 (5)上述の実施形態の如く、統合弁14全体としての体格の小型化を図る観点では、気液分離空間141bの内容積を、実質的に余剰冷媒を溜めることができない程度の容積とすることが望ましいが、これに限定されない。すなわち、気液分離空間141bの内容積は、余剰冷媒を溜めることができる程度の容積に設定されていてもよい。
 (6)上述の実施形態では、気液分離空間141bが遠心分離方式の気液分離器を構成する例について説明したが、これに限定されず、要求される気液分離性能に応じて、重力の作用や表面張力の作用等によって気液分離する構成を採用してもよい。
 (7)上述の実施形態の如く、気相側弁体161を、気相冷媒通路141fを開いた際の気相冷媒通路141f側への液相冷媒の飛散を抑制するシャッタとして機能させることが望ましいが、これに限定されない。例えば、気相側流入部141dと液相側流入部142aとの間に、気相冷媒通路141fを開いた際の気相冷媒通路141f側への液相冷媒の飛散を抑制するシャッタ部材を追加してもよい。
 (8)上述の実施形態では、駆動装置18をロッド181、電動アクチュエータ182、弾性部材183により構成する例について説明したが、これに限定されない。駆動装置18は、統合弁14の作動モードを図10に示す第1~第3モードといった3つのモードに切替可能であれば、その他の機構により構成されていてもよい。
 (9)上述の実施形態の如く、ロッド181から離間させた状態で配置した第1、第3シール部材162c、161bにより、各弁体161とロッド181との隙間からの冷媒漏れを抑制することが望ましいが、これに限定されない。各弁体161とロッド181との隙間が小さく、冷媒漏れが殆ど問題とならない場合には、各シール部材162c、161bを省略してもよい。
 (10)上述の実施形態では、弁装置16を変位させる駆動装置18の電動アクチュエータ182としてステッピングモータを採用する例について説明したが、これに限らず、例えば、電動アクチュエータ182としてサーボモータを採用してもよい。
 (11)上述の実施形態の如く、車両用空調装置1の運転モードが第1暖房モードへ切り替わった初期段階、および圧縮機11の負荷状態が高負荷状態に移行する過渡期に、統合弁14の作動モードを第3モードへ切り替えることが望ましいが、これに限定されない。例えば、車両用空調装置1の運転モードが第1暖房モードへ切り替わった初期段階にだけ統合弁14の作動モードを第3モードへ切り替えたり、圧縮機11の負荷状態が高負荷状態に移行する過渡期にだけ、統合弁14の作動モードを第3モードへ切り替えたりしてもよい。
 (12)上述の実施形態では、車両用空調装置1の運転モードの切替制御処理や統合弁14のモード切替処理について図11、図17のフローチャートを用いて説明したが、図11、図17のフローチャートは一例にすぎず、当該フローチャートに示す処理内容を他の処理にて実現してもよい。
 (13)上述の実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。
 (14)上述の実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されない。
 (15)上述の実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されない。

Claims (7)

  1.  ガスインジェクションサイクルに切替可能なヒートポンプサイクル(10)に適用される統合弁であって、
     前記ヒートポンプサイクルの圧縮機(11)から吐出された冷媒を流入させる冷媒流入口(141a)、前記冷媒流入口から流入した冷媒の気液を分離する気液分離空間(141b)、中間圧冷媒通路(15)を介して前記気液分離空間にて分離された気相冷媒を前記圧縮機の中間吸入口(11c)側へ流出させる気相側流出口(141e)、および前記気液分離空間にて分離された液相冷媒を流出させる液相側流出口(142b)が形成されたボデー(140)と、
     前記気液分離空間から前記気相側流出口へ至る気相冷媒通路(141f)の通路開度を変更する気相側弁体(161)と、
     前記気液分離空間から前記液相側流出口へ至る液相冷媒通路(142c)の通路開度を変更する液相側弁体(162)と、
     前記気相側弁体および前記液相側弁体の双方を変位させる駆動装置(18)と、
     前記液相側弁体が前記液相冷媒通路を閉じた際に、前記液相側流出口へ流出させる冷媒を減圧する固定絞り(17)と、を備え、
     前記駆動装置は、
     前記気相冷媒通路を閉じる全閉位置に前記気相側弁体を変位させる際に、前記液相冷媒通路の通路開度が全開状態となる全開位置に前記液相側弁体を変位させるように構成され、
     前記液相冷媒通路を閉じる全閉位置に前記液相側弁体を変位させる際に、前記気相冷媒通路の通路開度が全開状態となる全開位置、および前記気相冷媒通路の通路開度が全開状態よりも小さくなる位置に変位させることが可能に構成されている統合弁。
  2.  前記ボデーの内部には、前記液相側弁体が接離する液相側弁座部(142a)、前記気相側弁体が接離する気相側弁座部(141d)が互いに対向するように形成されており、
     前記液相側弁体および前記気相側弁体それぞれは、前記液相側弁座部と前記気相側弁座部との間に配置されており、
     前記駆動装置は、
     前記気相側弁体および前記液相側弁体の双方を貫通するように配設されたロッド(181)と、
     前記ロッドを軸方向に駆動する電動アクチュエータ(182)と、
     前記気相側弁体と前記液相側弁体との間に配設され、前記気相側弁体に対して前記気相側弁座部に接触する方向へ荷重をかけると共に、前記液相側弁体に対して前記液相側弁座部に接触する方向へ荷重をかける弾性部材(183)と、を有し、
     前記ロッドには、前記気相冷媒通路を開く位置に前記気相側弁体を変位させる際に、前記気相側弁体に接触して前記気相側弁体に対して前記気相側弁座部から離間する方向へ荷重を付与する第1突起部(181a)、および前記液相冷媒通路を開く位置に前記液相側弁体を変位させる際に、前記液相側弁体に接触して、前記液相側弁体に対して前記液相側弁座部から離間する方向へ荷重を付与する第2突起部(181b)が設けられ、
     前記第1突起部と前記気相側弁体とが接触して前記気相側弁体に対して前記気相側弁座部から離間する方向へ荷重が付与された際に、前記弾性部材による荷重により前記液相側弁座部に当接する位置へ前記液相側弁体が変位し、
     前記第2突起部と前記液相側弁体とが接触して前記液相側弁体に対して前記液相側弁座部から離間する方向へ荷重が付与された際に、前記弾性部材による荷重により前記気相側弁座部に当接する位置へ前記気相側弁体が変位する請求項1に記載の統合弁。
  3.  前記液相側弁体は、前記液相側弁座部に接離する弁部(162a)、および前記ロッドにおける前記液相側弁部と前記気相側弁体との間に存する部位を覆うように設けられた環状の筒状部(162b)を有し、
     前記気相側弁体には、前記筒状部と接触する部位に、前記ロッドと前記気相側弁体との間に形成され隙間を介して冷媒が漏れることを抑制するための第1漏洩抑制部(161b)が設けられ、
     前記液相側弁体には、前記第2突起部と接触する部位に、前記ロッドと前記液相側弁体との間に形成され隙間を介して冷媒が漏れることを抑制するための第2漏洩抑制部(162c)が設けられている請求項2に記載の統合弁。
  4.  前記気相側弁座部における開口面積(Sb1)に対する前記気相側弁体における前記液相側弁座部と対向する部位の面積(Sb2)の面積比(Sb2/Sb1)は、前記液相側弁座部における開口面積(Sa1)に対する前記液相側弁体における前記液相側弁座部と対向する部位の面積(Sa2)の面積比(Sa2/Sa1)よりも大きくなっている請求項2または3に記載の統合弁。
  5.  請求項1ないし4のいずれか1つに記載の統合弁(14)と、
     前記駆動装置を制御して、前記統合弁の作動モードを、前記気相冷媒通路を閉じた状態で前記液相冷媒通路の通路開度を全開状態とする第1モード、前記液相冷媒通路を閉じた状態で前記気相冷媒通路の通路開度を全開状態とする第2モード、および前記液相冷媒通路を閉じた状態で前記気相冷媒通路の通路開度を全開状態よりも小さい通路開度とする第3モードに切り替える駆動制御部(40a)と、を備え、
     前記駆動制御部は、前記中間圧冷媒通路へ前記液相冷媒が流入する液流入条件が成立した際に、前記統合弁の作動モードを前記第3モードへ切り替える駆動システム。
  6.  前記液流入条件は、前記ヒートポンプサイクルの運転モードが前記中間圧冷媒通路を介して前記圧縮機の前記中間吸入口側へ前記気相冷媒を流入させるインジェクションモードに切り替えられた際、または、前記インジェクションモード時に前記圧縮機の負荷状態が所定の高負荷状態に移行する過渡期に成立する条件である請求項5に記載の駆動システム。
  7.  前記駆動制御部は、前記第3モードに切り替えた後、所定の復帰条件が成立した際に、前記第2モードに切り替える請求項5または6に記載の駆動システム。
PCT/JP2014/004367 2013-08-28 2014-08-25 統合弁、駆動システム WO2015029421A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-176945 2013-08-28
JP2013176945A JP6011493B2 (ja) 2013-08-28 2013-08-28 統合弁、駆動システム

Publications (1)

Publication Number Publication Date
WO2015029421A1 true WO2015029421A1 (ja) 2015-03-05

Family

ID=52586011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004367 WO2015029421A1 (ja) 2013-08-28 2014-08-25 統合弁、駆動システム

Country Status (2)

Country Link
JP (1) JP6011493B2 (ja)
WO (1) WO2015029421A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022487A1 (ja) * 2015-08-03 2017-02-09 株式会社デンソー 冷凍サイクル装置
WO2017175726A1 (ja) * 2016-04-08 2017-10-12 株式会社デンソー 熱交換器
CN109073296A (zh) * 2016-04-08 2018-12-21 株式会社电装 热交换器
EP3929508A1 (en) * 2020-05-06 2021-12-29 Daikin applied Europe S.p.A. An apparatus for dampening vibrations in a refrigeration system
CN114962727A (zh) * 2022-06-30 2022-08-30 小米汽车科技有限公司 阀门、热泵空调系统及车辆

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10293660B2 (en) 2015-02-04 2019-05-21 Denso Corporation Integrated valve and heat pump cycle
JP6852642B2 (ja) 2017-10-16 2021-03-31 株式会社デンソー ヒートポンプサイクル
JP7095845B2 (ja) * 2018-08-27 2022-07-05 サンデン・オートモーティブクライメイトシステム株式会社 複合弁及びそれを用いた車両用空気調和装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536704B2 (ja) * 1984-07-31 1993-05-31 Saginomiya Seisakusho Inc
JP2013092354A (ja) * 2011-10-05 2013-05-16 Denso Corp 統合弁

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536704B2 (ja) * 1984-07-31 1993-05-31 Saginomiya Seisakusho Inc
JP2013092354A (ja) * 2011-10-05 2013-05-16 Denso Corp 統合弁

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022487A1 (ja) * 2015-08-03 2017-02-09 株式会社デンソー 冷凍サイクル装置
CN107949758A (zh) * 2015-08-03 2018-04-20 株式会社电装 制冷循环装置
CN107949758B (zh) * 2015-08-03 2020-04-28 株式会社电装 制冷循环装置
WO2017175726A1 (ja) * 2016-04-08 2017-10-12 株式会社デンソー 熱交換器
CN109073296A (zh) * 2016-04-08 2018-12-21 株式会社电装 热交换器
CN109073296B (zh) * 2016-04-08 2020-09-04 株式会社电装 热交换器
EP3929508A1 (en) * 2020-05-06 2021-12-29 Daikin applied Europe S.p.A. An apparatus for dampening vibrations in a refrigeration system
EP4202324A1 (en) * 2020-05-06 2023-06-28 Daikin applied Europe S.p.A. A method for controlling a check valve in a refrigeration system
CN114962727A (zh) * 2022-06-30 2022-08-30 小米汽车科技有限公司 阀门、热泵空调系统及车辆

Also Published As

Publication number Publication date
JP2015045453A (ja) 2015-03-12
JP6011493B2 (ja) 2016-10-19

Similar Documents

Publication Publication Date Title
JP6011493B2 (ja) 統合弁、駆動システム
US10293660B2 (en) Integrated valve and heat pump cycle
JP5772764B2 (ja) 統合弁およびヒートポンプサイクル
JP5768784B2 (ja) 統合弁
JP5780166B2 (ja) ヒートポンプサイクル
US9581370B2 (en) Refrigerant cycle device
WO2015111116A1 (ja) ヒートポンプサイクル装置
JP2012233676A (ja) ヒートポンプサイクル
JP2014077552A (ja) 冷凍サイクル装置
JP5920272B2 (ja) 統合弁
JP5846094B2 (ja) 冷凍サイクル装置
WO2013145537A1 (ja) 車両用の空調装置
WO2018088034A1 (ja) 冷凍サイクル装置
WO2015107876A1 (ja) ヒートポンプサイクル
JP5991277B2 (ja) ヒートポンプ用統合弁
JP6070418B2 (ja) ヒートポンプサイクル
JP2019105422A (ja) 車両用ジョイントブロック
JP6572695B2 (ja) 統合弁
JP6079474B2 (ja) ヒートポンプ用差圧弁
JP6572829B2 (ja) 統合弁
JP6094401B2 (ja) ヒートポンプ用統合弁
JP6079475B2 (ja) ヒートポンプ用差圧弁
JP6183223B2 (ja) ヒートポンプサイクル
WO2018088033A1 (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14841159

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14841159

Country of ref document: EP

Kind code of ref document: A1