WO2015027821A1 - 钴酸锂的制备方法 - Google Patents

钴酸锂的制备方法 Download PDF

Info

Publication number
WO2015027821A1
WO2015027821A1 PCT/CN2014/084280 CN2014084280W WO2015027821A1 WO 2015027821 A1 WO2015027821 A1 WO 2015027821A1 CN 2014084280 W CN2014084280 W CN 2014084280W WO 2015027821 A1 WO2015027821 A1 WO 2015027821A1
Authority
WO
WIPO (PCT)
Prior art keywords
cobalt
lithium
spherical
lithium cobaltate
solution
Prior art date
Application number
PCT/CN2014/084280
Other languages
English (en)
French (fr)
Inventor
方谋
王要武
何向明
王莉
尚玉明
高剑
郭建伟
毛宗强
Original Assignee
江苏华东锂电技术研究院有限公司
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏华东锂电技术研究院有限公司, 清华大学 filed Critical 江苏华东锂电技术研究院有限公司
Publication of WO2015027821A1 publication Critical patent/WO2015027821A1/zh
Priority to US15/053,261 priority Critical patent/US20160200589A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the field of lithium ion batteries, and in particular relates to a preparation method of lithium cobaltate, in particular to a preparation method of low energy consumption lithium cobalt oxide.
  • the industrialized mature lithium cobalt oxide production process is a solid phase method, which requires preparing a precursor of cobalt oxyhydroxide, and then sintering the cobalt oxyhydroxide to a tricobalt tetroxide at a high temperature, and then accurately arranging cobalt trioxide and lithium carbonate. Weighing, mixing, and high-temperature sintering, and repeated ball milling after high-temperature sintering. The whole process has shortcomings such as many processes, high energy consumption, and difficult to control product appearance.
  • a method for preparing lithium cobaltate comprising: preparing a spherical cobalt oxyhydroxide by using a cobalt salt solution and an alkaline solution as a reactant, and performing stirring by controlling a crystallization method in a controlled crystallizer having a buffer; and The spherical cobalt oxyhydroxide is placed in a lithium hydroxide solution, and a hydrothermal reaction is carried out in a hydrothermal reaction vessel to replace lithium in the lithium oxyhydroxide with lithium in the lithium hydroxide to form spherical lithium cobaltate.
  • the invention combines spherical cobalt oxyhydroxide as a precursor and a lithium source solution, and directly forms a lithium cobaltate crystal in a liquid phase by a hydrothermal method, which is omitted from the solid phase method production preparation process widely used in the industry today.
  • the sintering process of tricobalt tetroxide and the subsequent ball milling process have less processes, low energy consumption, and regular and controllable morphology, and are suitable for large-scale industrial production.
  • FIG. 1 is a schematic view showing the structure of a control crystallizer used in the method for preparing lithium cobaltate according to an embodiment of the present invention.
  • FIG. 2 is a scanning electron micrograph of lithium cobaltate obtained by the method for producing lithium cobaltate according to an embodiment of the present invention.
  • 3 is an XRD pattern of lithium cobaltate obtained by the method for producing lithium cobaltate according to an embodiment of the present invention.
  • FIG. 4 is a graph showing electrochemical performance test data of lithium cobaltate obtained in a lithium ion battery according to a method for preparing lithium cobaltate according to an embodiment of the present invention.
  • Embodiments of the present invention provide a method for preparing lithium cobaltate, which includes the following steps:
  • the spherical cobalt oxyhydroxide is placed in a lithium hydroxide solution to carry out a hydrothermal reaction, and lithium in the lithium hydroxide is replaced with hydrogen in the cobalt oxyhydroxide to form spherical lithium cobaltate.
  • the controlled crystallizer 100 includes a kettle body 10, a stirring device, and a feeding device.
  • the stirring device 20 is for agitating the reactant contained in the kettle body 10, and the stirring device includes a motor 22, a stirring shaft 24, and a stirring blade 26.
  • the motor 22 is connected to the agitating shaft 24, and the agitating paddle 26 is preferably disposed only at the end of the agitating shaft 24.
  • the motor 22 is used to drive the agitating shaft 24 to rotate and drive the agitating paddle 26 to rotate.
  • the agitating shaft 24 has an end portion of the agitating paddle 26 inserted into the interior of the body 10 and reaches the bottom portion in the body 10 such that the agitating paddle 26 is rotated only in the bottom region of the body 10.
  • the number of the agitating blades 26 can be determined according to the depth of the kettle body 10. When the kettle body 10 is shallow, a set of agitating paddles 26 can be provided only at the end of the agitating shaft 24, and when the kettle body 10 is deep, the agitating shaft 24 can be provided. A plurality of sets of the paddles 26 are disposed at the end intervals. However, it is preferable that the stirring blade 26 is provided only in a section of 1/10 to 1/3 of the depth of the body from the bottom of the body 10, so that a non-uniform stirring reaction can be formed inside the body 10.
  • the feed device includes a plurality of feed tubes 30 for separately adding different reactants and buffers to the kettle body 10. Specifically, a cobalt salt solution feed tube, an alkaline solution feed tube, and a buffer feed tube may be included.
  • the controlled crystallizer 100 may further comprise a temperature control device.
  • the temperature control device is used to provide a controllable reaction temperature to the interior of the kettle 10, and may specifically include a heater and a thermocouple 40.
  • the heater may be disposed on a side wall of the exterior of the kettle body 10, specifically a water bath heater 42 or a resistance wire.
  • the thermocouple 40 is inserted into the reactant inside the kettle body 10 for monitoring the temperature of the reactants in the kettle body 10.
  • the controlled crystallizer 100 may further include a baffle 50.
  • the baffle may be disposed on the side wall of the interior of the kettle body 10 for blocking the rotation of the material during agitation to aid in the mixing of the reactants.
  • the controlled crystallizer 100 can further include a pH meter 60 for monitoring the pH within the kettle body 10 to control the amount of reactants added.
  • the controlled crystallizer 100 may further include an overflow tank 70 disposed on a side wall of the top of the kettle body 10 for allowing material exceeding the overflow tank 70 to flow out of the overflow tank 70 during agitation.
  • the reactant is subjected to a non-uniform stirring reaction in the controlled crystallizing vessel 100, and specifically, stirring may be carried out only in the bottom portion of the autoclave 10.
  • stirring may be performed only in a section of 1/10 to 1/3 of the depth of the body from the bottom of the body 10 .
  • the degree of filling of the reactant in the kettle body 10 is preferably more than the stirring section, for example, may exceed 1/2 of the depth of the kettle body, or fill the interior of the kettle body to reach the overflow tank 70. Excess reactants may flow out of the overflow tank 70 during the agitation process.
  • the reactant is agitated only by the stirring paddle 26 at the bottom of the kettle body 10, so that the formed product particles, that is, cobalt oxyhydroxide, are constantly collided with each other to form a solid spherical cobalt oxyhydroxide sphere.
  • the centrifugal action caused by the agitation causes the material to have an upward trend, thereby avoiding the stirring of the various parts of the kettle body to rapidly grow the cobalt oxyhydroxide sphere.
  • the cobalt oxyhydroxide particles can be continuously moved up and down during the stirring process to increase the strength of the collision between the two, thereby forming a dense solid sphere.
  • the formed spherical cobalt oxyhydroxide When the formed spherical cobalt oxyhydroxide reaches a predetermined particle diameter, it is thrown out of the kettle body, and flows out from the overflow tank 70, whereby the particle diameter of the spherical cobalt oxyhydroxide is controllable.
  • the concentration of the buffer and the stirring speed can be further controlled to control the reaction speed, and in combination with the non-uniform stirring, a solid spherical cobalt oxyhydroxide having a dense structure, a regular shape and a controlled particle size can be obtained.
  • the stirring speed can be from 900 rpm to 2,000 rpm, thereby achieving strong agitation.
  • the concentration of the buffer in the controlled crystallizer may be from 3 mol/L to 8 mol/L.
  • the spherical cobalt oxyhydroxide may have a particle diameter of 5 ⁇ m to 20 ⁇ m.
  • the agitating paddles 26 are evenly disposed at various depths in the body, so that the agitation in the body 10 is uniformly stirred, the material in the body 10 is less stressed, and the product is mostly determined to have a cavity inside.
  • the sphere, and the particle size of the sphere cannot be controlled, and it is easy to reach a larger particle size while the inside is still loose, and it is difficult to form a sphere having a relatively dense structure and a controllable particle size.
  • a step of heating the reactant by the control of the crystallizer 100 may be further included, and the reaction temperature is between 40 ° C and 60 ° C.
  • the cobalt salt solution may be an aqueous solution of a soluble cobalt salt, and the cobalt salt may be one or more of cobalt chloride, cobalt sulfate, and cobalt nitrate.
  • the alkaline solution may be a strong alkali solution such as one or more of an aqueous potassium hydroxide solution and an aqueous sodium hydroxide solution.
  • the molar ratio of cobalt salt to sodium hydroxide in the controlled crystallizer is about 1:2.
  • the buffer may be one or more of ammonia water, ethylenediaminetetraacetic acid (EDTA), and lactic acid. The buffer can control the reaction rate of the reactants to prevent the reaction from proceeding too quickly.
  • the step S1 may further include: first injecting a buffer into the control crystallizer 100; and simultaneously injecting the cobalt salt solution and the strong alkali solution into the buffer for controlling the crystallizer 100 through the respective feed tubes 30; and crystallizing the control
  • the reactants in the kettle 100 were subjected to non-uniform stirring.
  • the step of preparing the spherical cobalt oxyhydroxide in the step S1 may be a continuous production step. Specifically, after the buffer is injected into the controlled crystallizer 100, the cobalt salt solution and the alkaline solution are continuously added to the controlled crystallizer 100. The reactant in the controlled crystallizer 100 is non-uniformly stirred, and the spherical cobalt oxyhydroxide obtained by the reaction is continuously overflowed from the overflow tank by controlling the feed rate and the stirring speed of the cobalt salt solution and the alkaline solution. The amount of the reactants in the controlled crystallizer 100 is maintained to achieve continuous production. The reactant feed per minute may be from one third to one ten thousandth of the volume of the kettle body 10.
  • the cobalt salt solution and the alkaline solution can be slowly input into the interior of the kettle body 10 from the two feed pipes 30 by a peristaltic pump, respectively, so that the molar ratio of the cobalt salt to the sodium hydroxide in the kettle body 10 is controlled at 1:2, and The amount of reactant added was controlled by monitoring the pH.
  • the reaction time from the addition of the reactants into the autoclave to the overflow of the spherical cobalt oxyhydroxide from the overflow tank may be from 5 hours to 72 hours.
  • the step of taking out spherical cobalt oxyhydroxide from the controlled crystallizer 100, washing it with deionized water, and suctioning it may be further included.
  • the spherical cobalt oxyhydroxide flowing out from the overflow tank 70 may be collected and washed by deionized water.
  • step S2 the obtained spherical cobalt oxyhydroxide and lithium hydroxide solution are mixed and placed in a hydrothermal reaction vessel to carry out a hydrothermal reaction.
  • the concentration of the lithium hydroxide solution is not limited, and is preferably a saturated lithium hydroxide solution.
  • the molar ratio of cobalt oxyhydroxide to lithium hydroxide in the hydrothermal reactor may be less than 1:1.
  • the hydrothermal reaction has a temperature of between 150 ° C and 200 ° C and a hydrothermal reaction time of from 1 hour to 5 hours.
  • the pressure inside the hydrothermal reactor is the autogenous pressure due to heating, which is about 15 to 22 atmospheres, preferably 18 atmospheres.
  • the hydrothermal reaction step causes the hydrogen in the spherical cobalt hydroxide to be replaced by lithium in the lithium hydroxide, and this process maintains the original spherical structure of the spherical cobalt hydroxide to form spherical sodium cobaltate.
  • the remaining lithium hydroxide solution can be recycled.
  • the step of suction-filtering and drying the spherical cobalt cobalt oxide obtained after the hydrothermal reaction may be further included.
  • lithium cobalt oxide taken out from the hydrothermal reaction vessel may be suction-filtered and vacuum-dried at 50 ° C to 90 ° C for 5 hours to 10 hours.
  • the method may further include the step S3 of sintering the obtained lithium cobaltate. Specifically, it can be sintered in a sintering furnace at 350 ° C to 800 ° C for 3 hours to 10 hours.
  • the purpose of the sintering step is to remove impurities such as moisture incorporated in the crystal during the hydrothermal reaction, and at the same time to make the crystal structure of the lithium cobaltate more regular.
  • This sintering step can be carried out in air in an open environment.
  • the preparation method of the lithium cobaltate of the present technical solution is prepared by controlling the crystallization method to prepare spherical cobalt oxyhydroxide, and the spherical cobalt oxyhydroxide is formed once, without the need for a primary particle powder, and then by secondary granulation and In the sieving process, the primary particle powder is aggregated to form secondary particles.
  • the spherical cobalt oxyhydroxide obtained by the method has a compact structure, a regular shape and a high tap density. Therefore, the spherical lithium cobaltate obtained later has the characteristics of compact structure, regular shape and high tap density.
  • the obtained spherical lithium cobaltate is subjected to XRD test.
  • 2 Theta is the scanning angle
  • a and c are the unit cell parameters of the crystal.
  • the technical scheme adopts hydrothermal method to prepare lithium cobaltate, and all the synthesis reactions are carried out in the liquid phase, the phase of the phase is uniformly mixed, the energy consumption is small, the reaction solution can be recycled, and the surface of the lithium cobaltate product is a regular spherical particle.
  • the spherical particles are obtained in the preparation of cobalt oxyhydroxide, and the morphology is maintained in the subsequent steps, and the particle size of the spherical particles is controllable and the tap density is large.
  • the particle diameter of the spherical lithium cobaltate can be controlled between 5 ⁇ m and 20 ⁇ m, and the tap density can be controlled between 2.3 g ⁇ cm -3 and 2.9 g ⁇ cm -3 .
  • the obtained spherical lithium cobalt oxide is used as a positive electrode active material of a lithium ion battery, and the negative electrode is lithium metal.
  • the obtained lithium ion battery has a specific capacity of about 140 mAh/g, and the first 100 cycle capacities have no significant attenuation.
  • the spherical lithium cobaltate has high bulk density and tap density, and has small specific surface area. Surface modification of the micron-sized spherical lithium cobaltate is more effective than non-spherical nano powder, and surface coating is easy to be obtained.
  • the layer is uniform, stable, dense and strong, and the fine dispersibility and fluidity of the micron-sized spherical particles are very favorable for the preparation of high-performance battery pads.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种钴酸锂的制备方法,包括:采用钴盐溶液及碱性溶液为反应物,通过控制结晶法在具有缓冲剂的控制结晶釜中反应的同时进行搅拌,制备球形羟基氧化钴;及将该球形羟基氧化钴放入氢氧化锂溶液中,在水热反应釜中进行水热反应,使氢氧化锂中的锂置换羟基氧化钴中的氢,生成球形钴酸锂。

Description

钴酸锂的制备方法 技术领域
本发明属于锂离子电池领域,具体涉及一种钴酸锂的制备方法,尤其涉及一种低能耗的钴酸锂的制备方法。
背景技术
以智能手机、平板电脑、笔记本电脑、移动工具等为代表的移动电子设备的迅猛发展是建立在锂离子蓄电池的制备技术的发展的基础之上的。小型移动式电子设备对电池的安全性、热稳定性和循环寿命等技术指标有着近乎苛刻的要求。正因为对电池的安全性、可靠性的高标准使得目前阶段对整个产业起着支撑作用的正极材料钴酸锂在可预见的将来难以被取代。
目前工业化的成熟的钴酸锂的生产工艺是固相法,该生产工艺要求先制备羟基氧化钴的前驱体,然后再在高温下把羟基氧化钴烧结成为四氧化三钴,再把四氧化三钴和碳酸锂进行精确的称量、混合,再进行高温烧结,高温烧结后还需要进行反复球磨。整个工艺流程存在工序多、能耗大,产品形貌难以控制等缺点。
发明内容
有鉴于此,确有必要提供一种工艺简单、工序少、能耗低且产品形貌可控的钴酸锂的制备方法。
一种钴酸锂的制备方法,包括:采用钴盐溶液及碱性溶液为反应物,通过控制结晶法在具有缓冲剂的控制结晶釜中反应的同时进行搅拌,制备球形羟基氧化钴;及将该球形羟基氧化钴放入氢氧化锂溶液中,在水热反应釜中进行水热反应,使氢氧化锂中的锂置换羟基氧化钴中的氢,生成球形钴酸锂。
本发明把球形羟基氧化钴作为前驱体和锂源溶液相混合,利用水热法在液相中直接生成钴酸锂晶体,相比于目前工业界所广泛采用的固相法生产制备工艺,省略了四氧化三钴的烧结工序以及随后反复的球磨过程,具有工序少、能耗低、形貌规整可控,适合于大规模工业生产。
附图说明
图1为本发明实施例的钴酸锂的制备方法采用的控制结晶釜的结构示意图。
图2为本发明实施例的钴酸锂的制备方法得到的钴酸锂的扫描电镜照片。
图3为本发明实施例的钴酸锂的制备方法得到的钴酸锂的XRD图谱。
图4为本发明实施例的钴酸锂的制备方法得到的钴酸锂在锂离子电池中的电化学性能测试数据曲线。
主要元件符号说明
控制结晶釜 100
釜体 10
电机 22
搅拌轴 24
搅拌桨 26
进料管 30
热电偶 40
水浴加热器 42
挡板 50
pH值计 60
溢流槽 70
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
下面将结合附图及具体实施例对本发明提供的钴酸锂的制备方法作进一步的详细说明。
本发明实施例提供一种钴酸锂的制备方法,其包括以下步骤:
S1,采用钴盐溶液及碱性溶液为反应物,通过控制结晶法在具有缓冲剂的控制结晶釜中反应的同时进行搅拌,制备球形羟基氧化钴;及
S2,将该球形羟基氧化钴放入氢氧化锂溶液中,进行水热反应,使氢氧化锂中的锂置换羟基氧化钴中的氢,生成球形钴酸锂。
请参阅图1,该控制结晶釜100包括釜体10、搅拌装置及进料装置。
该搅拌装置20用于搅拌容置于釜体10中的反应物,该搅拌装置包括电机22、搅拌轴24及搅拌桨26。该电机22与该搅拌轴24连接,该搅拌桨26优选仅设置在该搅拌轴24的端部,该电机22用于驱动该搅拌轴24转动,并带动该搅拌桨26转动。该搅拌轴24具有搅拌桨26的端部插入釜体10内部,并到达釜体10内的底部,从而使该搅拌桨26仅在该釜体10内的底部区域转动。这种设置方式可以使容置于该釜体10内部的物料仅在釜体10内的底部区域被搅拌,从而使物料形成非均匀搅拌,发生非均态反应。该搅拌桨26的数量可根据釜体10的深度确定,当釜体10较浅时可以只在搅拌轴24的端部设置一套搅拌桨26,当釜体10较深时可以在搅拌轴24的端部间隔设置多套搅拌桨26。然而,该搅拌桨26优选仅设置在从该釜体10的底部开始的釜体深度的1/10~1/3的区间,使釜体10内部可以形成非均匀搅拌反应。
该进料装置包括多个进料管30,分别用于向釜体10中加入不同的反应物及缓冲剂。具体地,可包括钴盐溶液进料管、碱性溶液进料管及缓冲剂进料管。
该控制结晶釜100还可进一步包括控温装置。该控温装置用于给釜10体内部提供一可控的反应温度,具体可以包括加热器及热电偶40。该加热器可设置在该釜体10外部的侧壁上,具体可以为水浴加热器42或电阻丝加热。该热电偶40插入该釜体10内部的反应物中,用于监控该釜体10内反应物的温度。
该控制结晶釜100还可进一步包括挡板50。该挡板可以设置在该釜体10内部的侧壁上,用于在搅拌的过程中阻挡物料的旋转,帮助反应物的混合。
该控制结晶釜100还可进一步包括pH值计60,用于对釜体10内的pH值进行监控,从而对加入的反应物的量进行控制。
该控制结晶釜100还可进一步包括溢流槽70,设置在该釜体10顶部的侧壁上,用于使在搅拌过程中超过该溢流槽70的物料从该溢流槽70流出。
在该步骤S1中,优选为将该反应物在该控制结晶釜100中进行非均匀搅拌反应,具体可以是仅在釜体10底部区域进行搅拌。例如可以是仅在从该釜体10的底部开始的釜体深度的1/10~1/3的区间进行搅拌。在搅拌的过程中,该反应物在釜体10中的填充程度优选是超过该搅拌区间,例如可以是超过该釜体深度的1/2,或充满该釜体内部,达到溢流槽70处,在搅拌过程中多余的反应物可以从溢流槽70流出。
使该反应物仅在该釜体10的底部受到搅拌桨26的搅拌,可以使形成的产物颗粒即羟基氧化钴不断的相互撞击,形成形状规则的实心的羟基氧化钴球体。并且,由于该搅拌仅在釜体10底部区域进行,通过搅拌所产生的离心作用使物料有向上的趋势,既可以避免在釜体的各个部位均受到搅拌而使羟基氧化钴球体快速长大,又可以使羟基氧化钴颗粒在搅拌过程中不断的上下运动,增加相互间撞击的强度,从而形成结构致密的实心球体。当形成的球形羟基氧化钴达到预定粒径即被抛出釜体,从该溢流槽70流出,从而使该球形羟基氧化钴的粒径可控。
在该步骤S1中可进一步对缓冲剂的浓度及搅拌速度进行控制,从而控制反应速度,结合该非均匀搅拌,可以得到结构较为致密、形状规则且粒径可控的实心的球形羟基氧化钴。
该搅拌速度可以为900转/分~2000转/分,从而实现强力搅拌。该缓冲剂在控制结晶釜中的浓度可以为3mol/L~8mol/L。该球形羟基氧化钴的粒径可以为5μm~20μm,
如果该搅拌桨26均匀设置在该釜体内的各个深度位置,使釜体10内的搅拌为均匀搅拌时,釜体10内的物料受力较小,经试验测定该产物多为内部具有空腔的球体,且球体的粒径无法控制,容易在内部仍然松散的情况下达到较大粒径,难以形成结构较为致密且粒径可控的球体。
在该步骤S1中可进一步包括通过该控制结晶釜100对反应物进行加热的步骤,使反应温度在40℃~60℃之间。
在该步骤S1中,该钴盐溶液可以为可溶性钴盐的水溶液,该钴盐可以为氯化钴、硫酸钴及硝酸钴中的一种或多种。该碱性溶液可以为强碱溶液,如氢氧化钾水溶液及氢氧化钠水溶液中的一种或多种。该控制结晶釜中钴盐和氢氧化钠的摩尔比约为1∶2。该缓冲剂可以为氨水、乙二胺四乙酸(EDTA)及乳酸中的一种或多种。该缓冲剂可以对反应物的反应速度进行控制,防止反应过快进行。
该步骤S1可进一步包括:先将缓冲剂注入控制结晶釜100;再将钴盐溶液和强碱溶液分别通过各自的进料管30同时注入控制结晶釜100的缓冲剂中;以及对该控制结晶釜100中的反应物进行非均匀搅拌。
该步骤S1的制备球形羟基氧化钴的步骤可以为一连续生产步骤,具体为将缓冲剂注入该控制结晶釜100后,不断的向该控制结晶釜100中加入该钴盐溶液和碱性溶液,对该控制结晶釜100中的反应物进行非均匀搅拌,并通过控制该钴盐溶液和碱性溶液的进料速度及搅拌速度,使反应得到的球形羟基氧化钴从该溢流槽不断溢出,保持该控制结晶釜100中的反应物的量,实现连续生产。反应物每分钟进料量可以为釜体10容积的三百分之一至万分之一。
该钴盐溶液和碱性溶液可以分别通过蠕动泵从两个进料管30缓慢输入该釜体10内部,使釜体10内的钴盐和氢氧化钠的摩尔比控制在1∶2,并通过监控pH值对加入的反应物的量进行控制。从反应物加入釜体内到球形羟基氧化钴从溢流槽溢出的反应时间可以为5小时~72小时。
在该步骤S1后,可进一步包括从该控制结晶釜100中取出球形羟基氧化钴,用去离子水洗涤并抽滤的步骤。具体可以为收集从溢流槽70流出的该球形羟基氧化钴,并通过去离子水洗涤。
在该步骤S2中,所得的球形羟基氧化钴和氢氧化锂溶液混合后放入水热反应釜以进行水热反应。
该氢氧化锂溶液的浓度不限,优选为饱和氢氧化锂溶液。水热反应釜中羟基氧化钴和氢氧化锂的摩尔比可以小于1∶1。该水热反应的温度为150℃至200℃之间,水热反应的时间为1小时~5小时。该水热反应釜内部的压力为因加热产生的自生压力,约为15~22个大气压,优选为18个大气压。该水热反应的步骤使球形氢氧化钴中的氢被氢氧化锂中的锂置换,且这一过程保持球形氢氧化钴原有的球体结构不变,从而生成球形钴酸锂。另外,在水热反应结束后,剩余的氢氧化锂溶液可以继续循环使用。
在该步骤S2后,可进一步包括将水热反应后得到的球形钴酸锂抽滤并干燥的步骤。具体地,可以将从水热反应釜中取出的钴酸锂抽滤,并在50℃至90℃条件下真空干燥5小时~10小时。
该方法可进一步包括步骤S3,将得到的钴酸锂进行烧结。具体可以在烧结炉中350℃~800℃烧结3小时~10小时。该烧结步骤的作用是去除水热反应中结合在晶体里面的水分等杂质,同时使钴酸锂的晶体结构更为规整。该烧结步骤可以在开放环境的空气中进行。
请参阅图2,本技术方案的钴酸锂的制备方法通过控制结晶法制备球形的羟基氧化钴,且球形羟基氧化钴是一次成型,无需先生成一次颗粒粉体,再通过二次造粒和过筛的工序,将一次颗粒粉体聚集形成二次颗粒。本方法得到的球形羟基氧化钴结构紧密,形状规整,振实密度较高。从而使后续得到的球形钴酸锂同样具有结构紧密,形状规整,振实密度较高的特点。
请参阅图3, 将得到的球形钴酸锂进行XRD测试,图中2Theta为扫描角度,a、c为晶体的晶胞参数。通过与标准谱进行比对可以确认得到的产物为钴酸锂,且无杂质峰,并且各特征峰的峰值较强,证明得到的钴酸锂晶体具有较好的结晶度。
本技术方案采用水热法制备钴酸锂,全部合成反应都在液相中进行,物相混合均匀,能耗小,反应溶液可以循环使用,钴酸锂产品形貌为规整的球形颗粒。球形颗粒在羟基氧化钴的制备过程中得到,且该形貌在随后的各步骤中一直得到保持,并且球形颗粒的粒径可控,振实密度大。球形钴酸锂的粒径可以控制在5μm到20μm之间,振实密度可以控制在2.3g∙cm-3到2.9g∙cm-3之间。
请参阅图4,将得到的球形钴酸锂作为锂离子电池正极活性物质,负极为金属锂,得到的锂离子电池的比容量约为140mAh/g,并且前100个循环容量没有明显的衰减。该球形钴酸锂具有较高的松装密度和振实密度,比表面积小,对该微米级的球形钴酸锂进行表面改性比非球形的纳米粉体更为有效,容易得到表面涂覆层均匀、稳定、致密和牢固的产品,并且微米级的球形颗粒良好的分散性、流动性非常有利于制备高性能电池电极片。
实施例1
1)在4升的控制结晶釜中加入4mol/L的氨水溶液做为缓冲剂,机械强力搅拌,搅拌强度为1500转/分,用蠕动泵从两边同时缓慢加入2mol/L的氯化钴水溶液和4mol/L的氢氧化钠水溶液,加料速度控制在每分钟0.5毫升,得到球形羟基氧化钴。
2)取出1)的反应产物球形羟基氧化钴,用去离子水反复洗涤并抽滤以保存所得到的球形羟基氧化钴;
3)将2)所得的球形羟基氧化钴取1公斤和含400克饱和氢氧化锂的水溶液混合后放入高压水热反应釜以进行水热反应,水热反应釜应快速升温至150℃并保温5小时,得到球形钴酸锂;
4)取出3)的反应产物钴酸锂并抽滤以保存所得到的钴酸锂;
5)将4)所得产物球形钴酸锂在50℃条件下真空干燥10小时;
6)将5)所得产物球形钴酸锂放入烧结炉,在800℃烧结5小时,最终制备成锂离子电池正极活性材料。
实施例2
1)在10升的控制结晶釜中加入8mol/L的氨水溶液做为缓冲剂,机械强力搅拌,搅拌强度为900转/分,用蠕动泵从两边同时缓慢加入3mol/L的氯化钴水溶液和6mol/L的氢氧化钠水溶液,两种溶液的加料速度都控制在每分钟2毫升,得到球形羟基氧化钴。
2)取出1)的反应产物球形羟基氧化钴,用去离子水反复洗涤并抽滤以保存所得到的球形羟基氧化钴;
3)将2)所得的球形羟基氧化钴取3千克和含1千克饱和氢氧化锂的水溶液混合后放入高压水热反应釜以进行水热反应,水热反应釜应快速升温至200℃并保温1个小时,得到球形钴酸锂;
4)取出3)的反应产物球形钴酸锂并抽滤以保存所得到的钴酸锂;
5)将4)所得产物球形钴酸锂在90℃条件下真空干燥5个小时;
6)将5)所得产物球形钴酸锂放入烧结炉,在350℃烧结10个小时,最终制备成锂离子电池正极活性材料。
另外,本领域技术人员还可在本发明精神内做其他变化,当然,这些依据本发明精神所做的变化,都应包含在本发明所要求保护的范围之内。

Claims (12)

  1. 一种钴酸锂的制备方法,包括:
    采用钴盐溶液及碱性溶液为反应物,通过控制结晶法在具有缓冲剂的控制结晶釜中反应的同时进行搅拌,制备球形羟基氧化钴;及
    将该球形羟基氧化钴放入氢氧化锂溶液中,在水热反应釜中进行水热反应,使氢氧化锂中的锂置换羟基氧化钴中的氢,生成球形钴酸锂。
  2. 如权利要求1所述的钴酸锂的制备方法,其特征在于,将该反应物在该控制结晶釜中进行非均匀搅拌。
  3. 如权利要求2所述的钴酸锂的制备方法,其特征在于,该非均匀搅拌为仅在从该控制结晶釜的釜体底部开始的釜体深度的1/10~1/3的区间进行搅拌。
  4. 如权利要求1所述的钴酸锂的制备方法,其特征在于,该搅拌速度为900转/分~2000转/分。
  5. 如权利要求1所述的钴酸锂的制备方法,其特征在于,该钴盐溶液为钴盐的水溶液,该钴盐为氯化钴、硫酸钴及硝酸钴中的一种或多种,该碱性溶液为氢氧化钾水溶液及氢氧化钠水溶液中的一种或多种。
  6. 如权利要求1所述的钴酸锂的制备方法,其特征在于,该控制结晶釜中钴盐和氢氧化钠的摩尔比为1∶2。
  7. 如权利要求1所述的钴酸锂的制备方法,其特征在于,该制备球形羟基氧化钴的步骤为一连续生产步骤,包括:
    将缓冲剂注入控制结晶釜;
    不断的向该控制结晶釜中加入该钴盐溶液和碱性溶液;以及
    对该控制结晶釜中的反应物进行非均匀搅拌,并通过控制该钴盐溶液和碱性溶液的进料速度及搅拌速度,使反应得到的球形羟基氧化钴从该控制结晶釜的溢流槽不断溢出,保持该控制结晶釜中的反应物的量,实现连续生产。
  8. 如权利要求1所述的钴酸锂的制备方法,其特征在于,在该制备球形羟基氧化钴的步骤后,进一步包括用去离子水洗涤该球形羟基氧化钴的步骤。
  9. 如权利要求1所述的钴酸锂的制备方法,其特征在于,该水热反应釜中羟基氧化钴和氢氧化锂的摩尔比小于1∶1。
  10. 如权利要求1所述的钴酸锂的制备方法,其特征在于,该水热反应的温度为150℃~200℃。
  11. 如权利要求1所述的钴酸锂的制备方法,其特征在于,进一步包括将水热反应后得到的球形钴酸锂抽滤并在50℃~90℃条件下真空干燥5小时~10小时的步骤。
  12. 如权利要求1所述的钴酸锂的制备方法,其特征在于,进一步包括将该球形钴酸锂在350℃~800℃烧结3小时~10小时的步骤。
PCT/CN2014/084280 2013-08-27 2014-08-13 钴酸锂的制备方法 WO2015027821A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/053,261 US20160200589A1 (en) 2013-08-27 2016-02-25 Method for making lithium cobalt oxide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310378779.6 2013-08-27
CN201310378779.6A CN103490062B (zh) 2013-08-27 2013-08-27 钴酸锂的制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/053,261 Continuation US20160200589A1 (en) 2013-08-27 2016-02-25 Method for making lithium cobalt oxide

Publications (1)

Publication Number Publication Date
WO2015027821A1 true WO2015027821A1 (zh) 2015-03-05

Family

ID=49830130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/084280 WO2015027821A1 (zh) 2013-08-27 2014-08-13 钴酸锂的制备方法

Country Status (3)

Country Link
US (1) US20160200589A1 (zh)
CN (1) CN103490062B (zh)
WO (1) WO2015027821A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103490062B (zh) * 2013-08-27 2016-05-04 江苏华东锂电技术研究院有限公司 钴酸锂的制备方法
CN103482710B (zh) * 2013-08-27 2015-09-09 江苏华东锂电技术研究院有限公司 球形羟基氧化钴的制备方法
CN109994730B (zh) * 2017-12-29 2022-07-15 荆门市格林美新材料有限公司 一种层状钴酸锂正极材料的制备方法
CN109994713B (zh) * 2017-12-29 2022-07-15 荆门市格林美新材料有限公司 离子掺杂的层状钴酸锂正极材料的制备方法
CN108383170B (zh) * 2018-04-23 2021-10-08 湖南工学院 一种活性羟基氧化钴纳米线及其制备方法和应用
CN108682807B (zh) * 2018-04-27 2020-06-19 多氟多新能源科技有限公司 锂离子电池正极材料前驱体及其制备方法、正极活性材料、锂离子电池、连续反应器
CN109336192B (zh) * 2018-10-11 2021-06-25 新乡天力锂能股份有限公司 一种制备锂离子电池正极材料前驱体的超声波震荡反应器
CN109399728A (zh) * 2018-10-17 2019-03-01 南通南京大学材料工程技术研究院 一种三维自支撑的高比能钴酸钒锂负极材料及其制备方法
CN111233051B (zh) * 2020-03-04 2022-03-01 陕西师范大学 一种制备亚微米级球形碳酸钴的方法
CN111647752A (zh) * 2020-07-01 2020-09-11 深圳技术大学 一种锂离子电池废料的钴金属回收方法及其设备
US20220177324A1 (en) 2020-09-18 2022-06-09 eJoule, Inc. Materials and Methods of Producing Lithium Cobalt Oxide Materials of A Battery Cell
CN113903903A (zh) * 2021-10-13 2022-01-07 中南大学 一种掺杂改性高镍正极材料的制备方法
CN114774714B (zh) * 2022-06-22 2022-09-23 广东芳源新材料集团股份有限公司 从锂溶液中分离锂与三元金属离子m的装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102344173A (zh) * 2011-10-25 2012-02-08 中信大锰矿业有限责任公司 湿化学反应制取羟基三价氧化钴生产钴酸锂的方法
CN102689933A (zh) * 2012-03-15 2012-09-26 湖南红太阳电源新材料股份有限公司 一种羟基氧化钴生产方法
CN103490062A (zh) * 2013-08-27 2014-01-01 江苏华东锂电技术研究院有限公司 钴酸锂的制备方法
CN103482710A (zh) * 2013-08-27 2014-01-01 江苏华东锂电技术研究院有限公司 球形羟基氧化钴的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007000075A1 (fr) * 2005-06-27 2007-01-04 Shenzhen Bak Battery Co., Ltd Procédé de préparation d’hydroxyde nickeleux sphérique qui est dopé et d’oxydes métalliques multiples, et pile secondaire au lithium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102344173A (zh) * 2011-10-25 2012-02-08 中信大锰矿业有限责任公司 湿化学反应制取羟基三价氧化钴生产钴酸锂的方法
CN102689933A (zh) * 2012-03-15 2012-09-26 湖南红太阳电源新材料股份有限公司 一种羟基氧化钴生产方法
CN103490062A (zh) * 2013-08-27 2014-01-01 江苏华东锂电技术研究院有限公司 钴酸锂的制备方法
CN103482710A (zh) * 2013-08-27 2014-01-01 江苏华东锂电技术研究院有限公司 球形羟基氧化钴的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHRISTENSEN, M. ET AL.: "Structure, Size, and Morphology Control of Nanocrystalline Lithium Cobalt Oxide", CRYSTAL GROWTH & DESIGN, vol. 11, no. 3, 20 January 2011 (2011-01-20), pages 753 - 758 *
FANG, MOU ET AL.: "Research on Preparation of CoOOH Controlled Crystallization Method", PROCEEDINGS OF 30TH ANNUAL MEETING ON POWER SOURCES, 31 July 2013 (2013-07-31), pages 150 *
HE, XIANGMING ET AL.: "Preparation of Spherical Materials Based on Controlled Crystallization", ENGINEERING SCIENCE, vol. 8, no. 7, 31 July 2006 (2006-07-31), pages 36 - 41 *
OKUBO, M. ET AL.: "Nanosize Effect on High-Rate Li-Ion Intercalation in LiCo02 Electrode", J. AM. CHEM. SOC., vol. 23, no. 129, 19 May 2007 (2007-05-19), pages 7444 - 7452 *

Also Published As

Publication number Publication date
CN103490062B (zh) 2016-05-04
CN103490062A (zh) 2014-01-01
US20160200589A1 (en) 2016-07-14

Similar Documents

Publication Publication Date Title
WO2015027821A1 (zh) 钴酸锂的制备方法
WO2015027841A1 (zh) 球形羟基氧化钴的制备方法
CN101434416B (zh) 羟基体球形四氧化三钴及制备方法
CN100583512C (zh) 锂离子电池用球形掺铝镍钴酸锂的制备方法
WO2016188477A2 (zh) 碳包覆三元正极材料及其制备方法、锂离子电池
CN107265520B (zh) 一种球形镍钴锰前驱体材料的制备方法及产品
CN105047900A (zh) 一种纳米片状镍锰酸锂材料的制备方法及其设备
CN108023077A (zh) 一种快离子导体包覆改性高镍正极材料及其制备方法
CN101229928B (zh) 一种球形镍钴锰酸锂材料的制备方法
CN112582605A (zh) 一种连续生产过程中降低硫含量的镍钴锰三元前驱体的制备方法
CN107364901B (zh) 一种高电压尖晶石镍锰酸锂正极材料及其制备方法
CN101501790A (zh) 含有内部空隙的纳米结构金属氧化物及其使用方法
CN101434417A (zh) 电池级球形四氧化三钴的湿法制备方法
CN111732131B (zh) 一种核壳结构三元正极材料的制备方法
CN104332629B (zh) 一种磷酸锰锂中空纳米球的制备方法及产品
CN111072075A (zh) 一种锂离子电池正极材料的制备方法
CN113651374B (zh) 锆铁掺杂的镍钴锰三元前驱体的制备方法
CN109817901A (zh) 一种镍钴铝掺杂的球形前驱体的制备方法
CN105810894A (zh) 一种多层包覆结构的锂离子电池正极材料的制备方法
CN104600303A (zh) 一种纳米磷酸铁锂正极材料的制备方法
CN105304865A (zh) 一种球形氢氧化镍钴铝前躯体的制备方法
CN111792679A (zh) 一种绿色低成本的三元材料前驱体及其制备方法与装置
CN114620774A (zh) 一种核壳结构高镍三元前驱体的制备方法和应用
CN109585843A (zh) 一种高镍三元镍钴铝正极材料前驱体的制备方法
CN107317019B (zh) 一种钠离子电池负极用碳酸亚铁/石墨烯复合材料及其制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14839192

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14839192

Country of ref document: EP

Kind code of ref document: A1