WO2015025753A1 - Esd保護機能付薄膜キャパシタ装置およびその製造方法 - Google Patents

Esd保護機能付薄膜キャパシタ装置およびその製造方法 Download PDF

Info

Publication number
WO2015025753A1
WO2015025753A1 PCT/JP2014/071153 JP2014071153W WO2015025753A1 WO 2015025753 A1 WO2015025753 A1 WO 2015025753A1 JP 2014071153 W JP2014071153 W JP 2014071153W WO 2015025753 A1 WO2015025753 A1 WO 2015025753A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
film capacitor
esd protection
protection function
layer
Prior art date
Application number
PCT/JP2014/071153
Other languages
English (en)
French (fr)
Inventor
雅信 野村
竹島 裕
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2014559016A priority Critical patent/JP5704291B1/ja
Publication of WO2015025753A1 publication Critical patent/WO2015025753A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/01Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate comprising only passive thin-film or thick-film elements formed on a common insulating substrate
    • H01L27/016Thin-film circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/866Zener diodes

Definitions

  • the present invention relates to a thin film capacitor device with an ESD protection function having a protection function against an overvoltage caused by electrostatic discharge or the like, and a manufacturing method thereof.
  • the thin film capacitor device with ESD protection function 500 shown in FIGS. 8 and 9 includes a first capacitor electrode layer 502 stacked on an insulating substrate 501, and a dielectric layer 503 stacked on the first capacitor electrode layer 502.
  • the thin film capacitor with ESD protection function 500 includes a protection circuit 506 connected in parallel to the thin film capacitor 505.
  • 8 is a plan view showing a conventional thin film capacitor with an ESD protection function
  • FIG. 9 is a cross-sectional view taken along line AA in FIG.
  • the protection circuit 506 is formed by connecting a plurality of (six) Schottky diodes 507a to 507f in a thin film structure in series.
  • the Schottky diodes 507a to 507f forming the protection circuit 506 are formed as follows, for example. That is, the electrode 508 a is formed in a frame shape on the peripheral portion of the dielectric layer 503 by being connected to the first capacitor electrode layer 502 formed in a substantially rectangular shape.
  • the second capacitor electrode layer 504 formed in a substantially rectangular shape has a lower right corner cut out in a substantially long rectangular shape. Then, rectangular electrodes 508c and 508e are formed on the dielectric layer 503 in the lower right corner where the second capacitor electrode layer 504 is notched. A semiconductor layer 509 is formed on the dielectric layer 503 so as to cover the electrodes 508a, 508c, and 508e. In addition, electrodes 508b and 508d are formed at positions corresponding to the electrodes 508a, 508c, and 508e in a plan view on the semiconductor layer 509, and an electrode 508f is formed at a position corresponding to between the electrode 508e and the second capacitor electrode layer 504. Is formed.
  • the Schottky diode 507a is formed by the electrodes 508a and 508b and the semiconductor layer 509
  • the Schottky diode 507b is formed by the electrodes 508b and 508c and the semiconductor layer 509
  • the Schottky diode 507c is formed by the electrodes 508c and 508d and the semiconductor layer 509. It is formed.
  • the Schottky diode 507d is formed by the electrodes 508d and 508e and the semiconductor layer 509
  • the Schottky diode 507e is formed by the electrodes 508e and 508f and the semiconductor layer 509.
  • the electrode 508f, the second capacitor electrode layer 504, and the semiconductor layer 509 are formed.
  • a Schottky diode 507f is formed.
  • the Schottky diodes 507a to 507f are connected in series to form a protection circuit 506.
  • the electrode 508a of the Schottky diode 507a is connected to the first capacitor electrode layer 502, and one electrode of the Schottky diode 507f is formed by the second capacitor electrode layer 504, whereby the protection circuit 506 is formed into a thin film capacitor. 505 is connected in parallel.
  • each Schottky diode 507a to 507f forming the protection circuit 506 breaks down and is protected. A current path is formed in the circuit 506. Therefore, the thin film capacitor 505 is protected by the overcurrent flowing through the protection circuit 506.
  • Each of the Schottky diodes 507a to 507f has a metal / semiconductor / metal structure, and is formed as an anti-parallel Schottky diode in which current flow is limited by tunneling of a Schottky barrier of metal / semiconductor that is Schottky junction. Has been.
  • the dielectric layer 503 is made of stoichiometric silicon nitride (Si 3 N 4 ), silicon oxide (SiO 2 ), or the like.
  • the semiconductor layer 509 is formed using silicon-rich non-stoichiometric silicon nitride, tantalum pentoxide (Ta 2 O 5 ), or the like.
  • the Schottky diodes 507a to 507f having a Schottky junction metal / semiconductor / metal thin film structure are connected in series to form the protection circuit 506. Since the electrical barrier height of the Schottky barrier is theoretically a magnitude of about 2 eV or less, the voltage at which the current sharply increases is a magnitude of about 2 V or less. For this reason, when the operating voltage of the thin film capacitor 505 is 2 V or more, the current flows through the path on the Schottky diode side only by connecting one Schottky diode to the thin film capacitor 505 in parallel. Therefore, the thin film capacitor 505 cannot function.
  • the functions of the thin film capacitor 505 are increased by connecting a plurality of Schottky diodes 507a to 507f in series and increasing the magnitude of the voltage at which the current increases. It is secured. However, if this is done, the number of Schottky diodes 507a to 507f connected in series increases, so that there is a problem that the element size of the thin film capacitor device 500 with an ESD protection function increases.
  • the thin film capacitor 505 is disposed in a region excluding the lower right corner portion on the substrate 501, and the protection circuit 506 is disposed in the lower right corner portion region on the substrate 501.
  • the thin film capacitor 505 and the protection circuit 506 are arranged separately in the same plane. Therefore, since the arrangement space on the substrate 501 is restricted, when the number of Schottky diodes connected in series increases, there is a problem that the element size of the thin film capacitor device with ESD protection function 500 increases.
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide a thin film capacitor device with an ESD protection function in which an element size is reduced and a manufacturing method thereof.
  • a thin film capacitor with an ESD protection function of the present invention includes a substrate, a dielectric layer, and at least a pair of capacitors formed on the upper and lower surfaces of the dielectric layer.
  • a thin film capacitor having an electrode layer, and a protection circuit provided on the substrate and having at least one pn junction type thin film Zener diode made of a p-type semiconductor and an n-type semiconductor, the thin film capacitor and the protection circuit, Are connected in parallel, and the charge storage region of the thin film capacitor and the pn junction region of the thin film Zener diode are arranged in a stacked state in the vertical direction and are arranged so as to overlap in a plan view from the vertical direction. It is characterized by that.
  • the protection circuit connected in parallel to the thin film capacitor has at least one p-type semiconductor and n-type semiconductor pn junction type thin film Zener diode.
  • Zener diodes can control the magnitude of the breakdown voltage at which the current sharply increases in the reverse voltage direction by controlling the semiconductor carrier concentration.
  • the Zener diode has a higher breakdown voltage than the Schottky diode. Can be very large. Therefore, unlike a Schottky diode, it is not necessary to connect a plurality of Zener diodes in series in order to increase the breakdown voltage. Therefore, the exclusive area of the protective circuit on the substrate in a plan view from the up and down direction can be reduced.
  • the charge storage region of the thin film capacitor and the pn junction region of the thin film Zener diode are arranged in a stacked state in the vertical direction and are arranged so as to have overlapping regions in plan view from the vertical direction. Therefore, the substrate size can be made extremely small and the element size can be reduced compared with the conventional protection circuit having a Schottky diode and a thin film capacitor arranged in parallel on the same plane on the substrate.
  • a thin film capacitor device with an ESD protection function can be provided.
  • the pn junction region may be disposed inside the charge storage region in the plan view, or the charge storage region may be disposed inside the pn junction region in the plan view.
  • the protection circuit may be formed by connecting the two thin film Zener diodes in series in the opposite direction.
  • the protection circuit includes two thin film Zener diodes connected in series in opposite directions.
  • one thin film Zener diode breaks down due to an overvoltage, the overvoltage is detected by the other Zener diode. Is always applied in the forward direction. Therefore, when one thin film Zener diode breaks down, a current path is always formed in the protection circuit, so that the thin film capacitor can be reliably protected from overvoltage. Therefore, since a current path is formed in the protection circuit against overvoltage of both positive and negative polarity, the thin film capacitor can be reliably protected from overvoltage of positive and negative polarity.
  • the dielectric layer may be formed of a perovskite oxide material or a perovskite oxynitride material, and the p-type semiconductor and the n-type semiconductor may be an oxide semiconductor material or an oxynitride semiconductor material.
  • the dielectric layer is formed of a high dielectric constant material such as a perovskite type oxide material or a perovskite type oxynitride material, whereby the thin film capacitor can be miniaturized.
  • the p-type semiconductor and the n-type semiconductor that form the thin film Zener diode are oxygen-containing materials and are formed in an oxygen-containing atmosphere, the dielectric layer of the thin film capacitor is reduced when the thin film Zener diode is formed. It is possible to suppress deterioration. Therefore, a small and high-quality thin film capacitor device with an ESD protection function can be provided.
  • a manufacturing method of a thin film capacitor with an ESD protection function according to any one of claims 1 to 5, wherein the dielectric layer is formed by heat treatment.
  • the thin film Zener diode is formed after the thin film capacitor is formed by firing in an oxidizing atmosphere.
  • the thin film Zener diode is formed after the dielectric layer is baked in an oxidizing atmosphere by heat treatment to form the thin film capacitor, and therefore the thin film Zener diode is heated. It is possible to prevent malfunction due to damage or the like.
  • the charge storage region of the thin film capacitor and the pn junction region of the thin film Zener diode are arranged in a stacked state in the vertical direction and are arranged so as to have overlapping regions in plan view from the vertical direction. Therefore, the substrate size can be made extremely small and the element size can be reduced compared with the conventional protection circuit having a Schottky diode and a thin film capacitor arranged in parallel on the same plane on the substrate.
  • a thin film capacitor device with an ESD protection function can be provided.
  • FIG. 5 is a diagram showing an example of a method for manufacturing a thin film capacitor device with an ESD protection function, wherein (a) to (d) show different states.
  • FIG. 4 is a diagram showing an example of a manufacturing method of a thin film capacitor device with an ESD protection function following FIG. 3, and (a) to (c) show different states.
  • FIG. 9 is a cross-sectional view taken along line AA in FIG. 8.
  • FIG. 1 is a view showing a thin film capacitor device with an ESD protection function according to an embodiment of the present invention, where (a) is a cross-sectional view, (b) is a view showing an equivalent circuit, and FIG. 2 is a thin film capacitor and thin film Zener. It is a figure which shows the arrangement
  • FIG. 3 is a diagram showing an example of a method of manufacturing a thin film capacitor device with an ESD protection function, wherein (a) to (d) show different states, and FIG. 4 shows a thin film capacitor device with an ESD protection function following FIG.
  • FIG. 5 is a diagram showing an example of a manufacturing method of the thin film capacitor device with an ESD protection function subsequent to FIG. 4. (A) and (b) show different states.
  • a thin film capacitor device 100 with an ESD protection function includes a thermally oxidized SiO 2 insulating layer 2 formed on a Si substrate 1 and a (Ba, Sr) TiO 3 (hereinafter referred to as “BST”) adhesion layer stacked on the insulating layer 2. 3, a thin film capacitor C provided on the substrate 1 is provided.
  • the thin film capacitor C has a BST dielectric layer 5 and at least a pair of capacitor electrode layers 4 and 6 formed of Pt films on the upper and lower surfaces of the dielectric layer 5.
  • a capacitor electrode layer 4 is laminated on the adhesion layer 3 of the substrate 1
  • a dielectric layer 5 is laminated on the capacitor electrode layer 4
  • a capacitor is formed on the dielectric layer 5.
  • the electrode layer 6 is laminated.
  • a protective layer 7 formed of a BST insulating film is laminated on the thin film capacitor C (capacitor electrode layer 6), and the thin film capacitor C is covered with a protective layer 8 formed of a SiO 2 insulating film.
  • a Cu / Ti lead electrode 9 connected to the capacitor electrode layer 4 through a through hole formed in the protective layer 8 and the dielectric layer 5 is formed on the upper surface of the protective layer 8.
  • a Cu / Ti lead electrode 10 connected to the capacitor electrode layer 6 through a through hole formed in the protective layers 7 and 8 is formed on the upper surface of the protective layer 8.
  • the thin film capacitor device 100 with an ESD protection function includes p-type semiconductors and p-type semiconductor thin-film Zener diodes D1 and D2 formed of p-type semiconductors and n-type semiconductors provided on the lead electrodes 9 and 10 provided on the substrate 1, respectively.
  • the protection circuit 101 is provided.
  • the thin film Zener diode D1 is formed of a p-type semiconductor layer 11 formed of p-type CuAlO 2 (p-type semiconductor) on the extraction electrode 9 and an n-type Nb-doped TiO 2 (n-type semiconductor) to form a p-type semiconductor layer. 11 and an n-type semiconductor layer 12 stacked on each other.
  • the thin film Zener diode D2 includes a p-type semiconductor layer 13 formed of p-type CuAlO 2 on the extraction electrode 10 and an n-type semiconductor layer 14 formed of n-type Nb-doped TiO 2 and stacked on the p-type semiconductor layer 13. And have.
  • a pn junction is formed at the junction interface between the p-type semiconductor layer 11 and the n-type semiconductor layer 12 and the junction interface between the p-type semiconductor layer 13 and the n-type semiconductor layer 14.
  • an SiO 2 insulating layer 15 and an insulating layer 16 made of a polyimide resin laminate are provided so as to cover each of the thin film Zener diodes D1 and D2.
  • the n-type semiconductor layers 12 and 14 of the respective Zener diodes D1 and D2 are connected to each other by a Cu / Ti connection electrode 17 through a through hole formed in the insulating layers 15 and 16. Therefore, as shown in FIG. 1B, the protection circuit 101 is formed by connecting two zener diodes D1 and D2 in series in the reverse direction.
  • a Cu / Ti extraction electrode 18 connected to the extraction electrode 9 through a through hole formed in the insulating layers 15 and 16 is formed on the upper surface of the insulating layer 16.
  • a Cu / Ti extraction electrode 19 connected to the extraction electrode 10 through a through hole formed in the insulating layers 15 and 16 is formed on the upper surface of the insulating layer 16.
  • Au / Ni external electrodes 20 and 21 are formed on the upper surfaces of the extraction electrodes 18 and 19, respectively.
  • an epoxy resin layer 22 that functions as a solder resist is provided so as to cover the peripheral portions of the extraction electrodes 18 and 19 and the external electrodes 20 and 21 and the upper surfaces of the connection electrodes 17 and the side surfaces of the insulating layers 15 and 16. ing.
  • a protection circuit 101 formed by connecting two thin film Zener diodes D1 and D2 in series in the reverse direction. And a thin film capacitor C are connected in parallel.
  • the upper capacitor electrode layer 6 forming region which becomes the charge storage region S1 of the thin film capacitor C and the pn junction region S2 of the thin film Zener diodes D1 and D2 are vertically moved. It is arranged in a stacked state in the direction.
  • the capacitor electrode layer 6 formation region (charge storage region S1) and the pn junction region S2 of the thin film Zener diodes D1 and D2 are arranged to overlap each other. More specifically, in this embodiment, the pn junction region S2 of the thin film Zener diodes D1 and D2 is disposed inside the capacitor electrode layer 6 (charge storage region S1).
  • a SiO 2 insulating layer 2 having a thickness of about 700 nm is formed on a Si substrate 1 by a thermal oxidation method.
  • RTA rapid thermal annealing
  • a Pt film for forming the lower capacitor electrode layer 4 is formed with a thickness of about 200 nm by sputtering.
  • an RTA is performed at about 650 ° C. for about 10 minutes in an oxygen atmosphere, so that a dielectric layer having a thickness of about 100 nm is formed by a thin film of BST which is a perovskite type oxide material. 5 is formed.
  • the upper capacitor electrode layer 6 and the protective layer 7 are processed into a predetermined shape by using photolithography and ion milling. Further, the adhesion layer 3, the lower capacitor electrode layer 4, and the dielectric layer 5 are processed into a predetermined shape by using photolithography and ion milling. Then, the dielectric layer 5 is baked by heat treatment at about 850 ° C. for about 30 minutes in an oxygen atmosphere, and the thin film capacitor C is formed. Thus, by firing the dielectric layer 5 at a high temperature in an oxygen atmosphere, the crystallinity of the dielectric layer 5 can be improved and oxygen defects in the dielectric layer 5 can be reduced.
  • the protective layer 8 is formed by forming a SiO 2 film with a thickness of about 1000 nm by sputtering. Then, as shown in FIG. 3D, the protective layers 7 and 8 and the dielectric layer 5 are processed using photolithography and dry etching to form through holes, and the edge of the insulating layer 2 is formed. The part is processed into a predetermined shape.
  • a Cu film is formed with a thickness of about 1000 nm.
  • the Cu / Ti film is processed using photolithography and wet etching, so that the extraction electrode 9 connected to the lower capacitor electrode layer 4 and the upper electrode An extraction electrode 10 connected to the capacitor electrode layer 6 is formed on the protective layer 8.
  • a sputtering method is used to form a p-type semiconductor film made of p-type CuAlO 2 that is an oxide semiconductor material with a thickness of about 300 nm, and an n-type half layer made of n-type Nb-doped TiO 2 that is an oxide semiconductor material.
  • a conductive film is formed with a thickness of about 300 nm.
  • the p-type semiconductor film and the n-type semiconductor film are processed using photolithography and dry etching, so that the p-type semiconductor layer 11 and the n-type semiconductor layer are formed on the extraction electrode 9.
  • the semiconductor layer 12 is formed in a stacked state, and the p-type semiconductor layer 13 and the n-type semiconductor layer 14 are stacked on the extraction electrode 10.
  • the carrier concentration of p-type CuAlO 2 is 5.0 ⁇ 10 16 cm ⁇ 3 and the carrier concentration of n-type doped TiO 2 is 1.0 ⁇ 10 17 cm ⁇ 3 , and each thin film Zener diode
  • the breakdown voltages of D1 and D2 are set to about 20V.
  • an insulating layer 15 is formed by forming a SiO 2 film with a thickness of about 1000 nm by sputtering. Subsequently, a photosensitive polyimide resin is applied, exposed, developed, processed into a predetermined shape, and then cured at about 320 ° C. in a nitrogen atmosphere, so that the insulating layer 16 has a thickness of about 6000 nm with the polyimide resin. Is formed. Then, by using the insulating layer 16 formed of polyimide resin as a mask, through holes for connecting to the extraction electrodes 9 and 10 are formed in the insulating layer 15 using a dry etching method, and a thin film Zener diode is formed. A through hole for connecting D1 and D2 in series is formed.
  • a Cu film is formed with a thickness of about 1000 nm.
  • a Ni film is formed on a part of the Cu film with a thickness of about 2000 nm, and an Au film is formed on the Ni film with a thickness of 50 nm.
  • the Cu / Ti film is processed using photolithography and wet etching, whereby the connection electrode 17, the extraction electrodes 18, 19 and the external electrodes 20, 21 are formed.
  • a photosensitive epoxy resin is applied, exposed, developed, processed into a predetermined shape, and then cured at about 200 ° C. in a nitrogen atmosphere, so that the epoxy resin has a thickness of about 3000 nm with an epoxy resin.
  • the layer 22 is formed to complete the thin film capacitor device 100 with an ESD protection function.
  • the thin film capacitor device 100 with an ESD protection function configured as described above is used by being mounted on another wiring board using solder or the like. Then, when various types of components are mounted in order on other wiring boards, or when devices with other wiring boards on which various types of components are mounted are used, static electricity, etc. Even if an overvoltage caused by the above occurs, an overcurrent flows through a current path formed on the protection circuit 101 side when one of the thin film Zener diodes D1 and D2 breaks down, so that the thin film capacitor C with low electrostatic resistance is protected. be able to.
  • the protection circuit 101 connected in parallel to the thin film capacitor C includes the p-type semiconductor and the pn junction type thin-film Zener diodes D1 and D2 made of the n-type semiconductor.
  • Zener diodes can control the magnitude of the breakdown voltage at which the current sharply increases in the reverse voltage direction by controlling the semiconductor carrier concentration.
  • the Zener diode has a higher breakdown voltage than the Schottky diode. Can be very large. Therefore, unlike the Schottky diode, it is not necessary to connect the plurality of thin film Zener diodes D1 and D2 in series in the forward direction in order to increase the breakdown voltage. Therefore, the exclusive area of the protection circuit 101 on the substrate 1 in a plan view from the up and down direction can be reduced.
  • the charge storage region S1 of the thin film capacitor C and the pn junction region S2 of the thin film Zener diodes D1 and D2 are arranged in a stacked state in the vertical direction and are arranged so as to have overlapping regions in plan view from the vertical direction. Yes. Therefore, the substrate size can be made extremely small and the element size can be reduced compared with the conventional protection circuit having a Schottky diode and a thin film capacitor arranged in parallel on the same plane on the substrate.
  • the thin film capacitor device 100 with an ESD protection function can be provided.
  • the pn junction region S2 is arranged inside the charge storage region S1, so that the thin film capacitor C and the protection circuit 101 are compactly arranged on the substrate 1 in a practical configuration.
  • a thin film capacitor device 100 with a protective function can be provided.
  • the protection circuit 101 includes two thin film Zener diodes D1 and D2 connected in series in the opposite direction.
  • one thin film Zener diode breaks down due to an overvoltage, the overvoltage is detected by the other Zener diode. Is always applied in the forward direction. Therefore, when one of the thin film Zener diodes breaks down, a current path is always formed in the protection circuit 101, so that the thin film capacitor C can be reliably protected from overvoltage. Therefore, since a current path is formed in the protection circuit 101 against overvoltage with both positive and negative polarities, the thin film capacitor C can be reliably protected from overvoltage with positive and negative polarities.
  • the thin film capacitor C can be further reduced in size by forming the dielectric layer 5 from a high dielectric constant BST material which is a perovskite oxide material.
  • the p-type semiconductor layers 11 and 13 and the n-type semiconductor layers 12 and 14 forming the thin film Zener diodes D1 and D2 are formed in an oxygen-containing atmosphere using an oxygen-containing material. For this reason, when the thin film Zener diodes D1 and D2 are formed, it is possible to prevent the dielectric layer 5 of the thin film capacitor C having low resistance to the reducing atmosphere from being reduced and deteriorated. Therefore, the small-sized and high-quality thin film capacitor device 100 with an ESD protection function can be provided.
  • edge portion of the pn junction interface between the p-type semiconductor layer 11 and the n-type semiconductor layer 12 and the edge portion of the pn junction interface between the p-type semiconductor layer 13 and the n-type semiconductor layer 14 are protected against moisture.
  • the thin film Zener diodes D1 and D2 operate in the breakdown behavior region and the pn junction interface is in a high electric field state, the following effects can be obtained. That is, water is electrolyzed at the edge portion of the pn junction interface to generate hydrogen, and the oxide semiconductor material forming the pn junction is reduced, so that the characteristics of the thin film Zener diodes D1 and D2 deteriorate. Can be prevented.
  • a conventional Zener diode is generally formed by doping impurities into a Si substrate.
  • a thin film capacitor is arranged in a stacked state in the vertical direction on a Si substrate on which such a conventional Zener diode is formed, the following problem occurs. That is, in order to increase the capacity and improve the capacity characteristics of the thin film capacitor, it is necessary to form a dielectric layer by firing a thin film formed of an insulating material having a high dielectric constant at a high temperature.
  • the dielectric layer is formed of a perovskite-type dielectric material whose composition formula is expressed as ABO 3
  • the perovskite-type crystal structure has a divalent A in the crystal unit cell.
  • One ion (Sr 2+ , Ba 2+, etc.), one tetravalent B ion (Ti 4+, etc.), and three O ions (O 2 ⁇ ) are contained.
  • the dielectric material having a perovskite structure include BaTiO 3 and PbTiO 3 , and these crystal structures have large polarization due to the effect of B ions (Ti 4+ ). Therefore, the dielectric constant is generally increased.
  • a perovskite crystal structure cannot be obtained unless it is formed by firing at a high temperature of 500 ° C. or higher.
  • the Zener diode may be heated and damaged when the thin film capacitor is formed, resulting in malfunction. Therefore, in the above-described embodiment, the thin film Zener diode D1 is formed by stacking the oxide semiconductor film after the dielectric layer 5 is baked by the heat treatment and the thin film capacitor C is formed on the substrate 1. , D2 is formed, it is possible to prevent the thin-film Zener diodes D1, D2 from being damaged due to heating or the like, resulting in malfunction.
  • the composition of the thin film capacitor C can be formed of a perovskite material while both the thin film capacitor C and the thin film Zener diodes D1 and D2 are formed of thin film elements. Therefore, the thin film capacitor C and the thin film Zener diodes D1 and D2 can be arranged in a stacked state in the vertical direction without deteriorating or damaging.
  • FIG. 6 is a sectional view showing a thin film capacitor device with an ESD protection function according to another embodiment of the present invention
  • FIG. 7 is a view showing an arrangement state of the thin film capacitor and the thin film Zener diode in a plan view from the vertical direction.
  • the thin film capacitor device with ESD protection function 100a of this embodiment is different from the thin film capacitor device with ESD protection function 100 of the above-described embodiment in that the charge storage region S1 is a pn junction region as shown in FIGS. It is the point arrange
  • the charge storage region S1 is a pn junction region as shown in FIGS. It is the point arrange
  • a thin film capacitor device 100a with an ESD protection function includes a thermally oxidized SiO 2 insulating layer 2 formed on a Si substrate 1 and a Pb (Zr, Ti) O 3 (hereinafter referred to as “PZT”) adhesion stacked on the insulating layer 2.
  • PZT Pb (Zr, Ti) O 3
  • a thin film capacitor C provided on the substrate 1 via the layer 3 is provided.
  • the thin film capacitor C includes a PZT dielectric layer 5 and at least a pair of capacitor electrode layers 4 and 6 formed of Pt films on the upper and lower surfaces of the dielectric layer 5.
  • the capacitor electrode layer 4 is laminated on the adhesion layer 3 of the substrate 1, the dielectric layer 5 is laminated on the capacitor electrode layer 4, and the capacitor electrode layer 6 is formed on the dielectric layer 5.
  • the capacitor electrode layer 4 is laminated on the adhesion layer 3 of the substrate 1
  • the dielectric layer 5 is laminated on the capacitor electrode layer 4
  • the capacitor electrode layer 6 is formed on the dielectric
  • a protective layer 7 formed of a PZT insulating film is laminated on the thin film capacitor C (capacitor electrode layer 6), and the thin film capacitor C is covered with a protective layer 8 formed of a SiO 2 insulating film. .
  • An insulating layer 16 made of a polyimide resin laminate is laminated on the upper surface of the protective layer 8.
  • a Cu / Ti lead electrode 9 connected to the capacitor electrode layer 4 is formed on the upper surface of the insulating layer 16 through a through hole formed in the insulating layer 16, the protective layer 8 and the dielectric layer 5. . Further, on the upper surface of the insulating layer 16, a Cu / Ti extraction electrode 10 connected to the capacitor electrode layer 6 through a through hole formed in the insulating layer 16 and the protective layers 7 and 8 is formed.
  • the thin film capacitor device 100 with an ESD protection function includes p-type semiconductors and p-type semiconductor thin-film Zener diodes D1 and D2 formed of p-type semiconductors and n-type semiconductors provided on the lead electrodes 9 and 10 provided on the substrate 1, respectively.
  • the protection circuit 101 is provided.
  • the thin film Zener diode D1 includes a p-type semiconductor layer 11 formed of p-type NiO (p-type semiconductor) that is an oxide semiconductor material on an extraction electrode 9, and an n-type ZnON (n-type semiconductor) that is an oxynitride semiconductor material. ) And an n-type semiconductor layer 12 stacked on the p-type semiconductor layer 11.
  • the thin film Zener diode D2 is formed on the extraction electrode 10 by a p-type semiconductor layer 13 made of p-type NiO that is an oxide semiconductor material, and by an n-type ZnON that is an oxynitride semiconductor material. And an n-type semiconductor layer 14 stacked on each other.
  • a pn junction is formed at the junction interface between the p-type semiconductor layer 11 and the n-type semiconductor layer 12 and the junction interface between the p-type semiconductor layer 13 and the n-type semiconductor layer 14.
  • an SiO 2 insulating layer 15 and an insulating layer 23 made of a laminate of epoxy resin layers are provided so as to cover each of the thin film Zener diodes D1 and D2.
  • the n-type semiconductor layers 12 and 14 of the respective Zener diodes D1 and D2 are connected to each other by a Cu / Ti connection electrode 17 through a through hole formed in the insulating layers 15 and 23. Therefore, similarly to the equivalent circuit shown in FIG. 1B, the protection circuit 101 is formed by connecting two Zener diodes D1 and D2 in series in the reverse direction.
  • a Cu / Ti extraction electrode 18 connected to the extraction electrode 9 through a through hole formed in the insulating layers 15 and 23 is formed on the upper surface of the insulating layer 23.
  • a Cu / Ti extraction electrode 19 connected to the extraction electrode 10 through a through hole formed in the insulating layers 15 and 23 is formed on the upper surface of the insulating layer 23.
  • Au / Ni external electrodes 20 and 21 are formed on the upper surfaces of the extraction electrodes 18 and 19, respectively.
  • an epoxy resin layer 22 that functions as a solder resist is provided so as to cover the peripheral portions of the extraction electrodes 18 and 19 and the external electrodes 20 and 21 and the upper surfaces of the connection electrodes 17 and the side surfaces of the insulating layers 15 and 23. ing.
  • two thin film Zener diodes D1 and D2 are formed by being connected in series in the reverse direction, similarly to the equivalent circuit shown in FIG.
  • the protection circuit 101 and the thin film capacitor C are connected in parallel.
  • the upper capacitor electrode layer 6 forming region serving as the charge storage region S1 of the thin film capacitor C and the pn junction regions S2 of the thin film Zener diodes D1 and D2 are stacked in the vertical direction. Arranged in a state.
  • the capacitor electrode layer 6 formation region (charge storage region S1) and the pn junction region S2 of the thin film Zener diodes D1 and D2 are arranged to overlap each other. More specifically, in this embodiment, the capacitor electrode layer 6 (charge storage region S1) is disposed inside the pn junction region S2 of the thin film Zener diodes D1 and D2.
  • the thin film capacitor device with ESD protection function 100a of this embodiment is partially different from the thin film capacitor device with ESD protection function 100 shown in FIG. 1A, but will be described with reference to FIGS.
  • the thin film capacitor device with ESD protection function 100a of this embodiment can be manufactured by the same manufacturing method as the manufacturing method of the thin film capacitor device with ESD protection function 100.
  • this embodiment can achieve the same effects as the above-described embodiment.
  • the protection circuit 101 only needs to include at least one thin film Zener diode.
  • the stacking order of the p-type semiconductor layer and the n-type semiconductor layer forming the thin film Zener diode is not limited to the above-described example.
  • the p-type semiconductor layer is stacked on the upper surface of the n-type semiconductor layer.
  • the two Zener diodes shown in FIG. 1B are connected in series in the reverse direction with the cathode side connected
  • the two Zener diodes are connected in series in the reverse direction by connecting the anode side. May be.
  • the semiconductor layer of the other conductivity type may be arranged between the two semiconductor layers of one of the p-type and n-type conductivity types. In this way, a circuit equivalent to a circuit in which two Zener diodes are connected in series in the opposite direction can be configured.
  • the other conductive type semiconductor layer formed on the first conductive type semiconductor layer is formed of an amorphous material. Good. In this case, even if the first conductive type semiconductor layer is formed of either an amorphous material or a crystalline material, the first conductive type semiconductor layer is formed on the first conductive type semiconductor layer. In the initial growth layer when the semiconductor layer is formed, it is possible to suppress the formation of a different phase that deteriorates the characteristics of the Zener diode.
  • the configuration of the thin film capacitor C is not limited to the above-described example, and it is only necessary to have a general configuration of a thin film capacitor.
  • the first and second capacitor electrode layers are formed at a predetermined distance on one main surface of the dielectric layer, and the first and second capacitor electrode layers are formed on the other main surface of the dielectric layer in plan view.
  • a thin film capacitor formed by forming a counter electrode layer so as to overlap with both may be adopted.
  • the dielectric material forming the dielectric layer and the semiconductor material forming the semiconductor layer are not limited to the above examples.
  • the dielectric layer may be formed of a dielectric material such as BaTiO 3 , SrTiO 3 , or PbTiO 3 .
  • the n-type semiconductor layer may be formed of a semiconductor material such as In 2 O 3 or InGaZnO 4 .
  • the p-type semiconductor layer may be formed of a semiconductor material such as Cu 2 O or SrCu 2 O 2 .
  • the substrate included in the thin film capacitor device with an ESD protection function may be formed by appropriately selecting the type of substrate according to the purpose of use of the thin film capacitor device with an ESD protection function, such as a glass substrate, a ceramic substrate, a resin substrate, or a Si substrate. That's fine.
  • the present invention can be widely applied to a thin film capacitor device with an ESD protection function and a manufacturing method thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

 素子サイズの小面積化が図られたESD保護機能付薄膜キャパシタ装置を提供する。 薄膜キャパシタCの電荷蓄積領域S1および薄膜ツェナーダイオードD1,D2のpn接合領域S2は、上下方向に積層状態に配置されると共に上下方向からの平面視において重なる領域を有するように配置されている。したがって、従来のショットキーダイオードを有する保護回路および薄膜キャパシタが基板上の同一平面に並設された構成と比較すると、基板サイズを極めて小さくすることができ、素子サイズの小面積化が図られたESD保護機能付薄膜キャパシタ装置100を提供することができる。

Description

ESD保護機能付薄膜キャパシタ装置およびその製造方法
 本発明は、静電気放電などを原因とする過電圧に対する保護機能を有するESD保護機能付薄膜キャパシタ装置およびその製造方法に関する。
 図8および図9に示すESD保護機能付薄膜キャパシタ装置500は、絶縁基板501上に積層された第1のキャパシタ電極層502と、第1のキャパシタ電極層502に積層された誘電体層503と、誘電体層503に積層された第2のキャパシタ電極層504とを備える薄膜キャパシタ505を備えている。また、ESD保護機能付薄膜キャパシタ500は、薄膜キャパシタ505に並列接続された保護回路506を備えている。なお、図8は従来のESD保護機能付薄膜キャパシタを示す平面図、図9は図8のA-A線矢視断面図である。
 保護回路506は、薄膜構造の複数(6個)のショットキーダイオード507a~507fが直列接続されて形成されている。保護回路506を形成する各ショットキーダイオード507a~507fは、例えば次のようにして形成される。すなわち、略矩形状に形成された第1のキャパシタ電極層502に接続されて誘電体層503の周縁部分に枠状に電極508aが形成されている。
 また、図8に示すように、略矩形状に形成された第2のキャパシタ電極層504は、その右下の隅部部分が略長矩形状に切り欠かれている。そして、第2のキャパシタ電極層504が切り欠かれた右下の隅部部分の誘電体層503上に、矩形状の電極508c,508eが形成されている。また、各電極508a,508c,508eを被覆するように誘電体層503上に半導体層509が形成されている。また、半導体層509上の平面視において各電極508a,508c,508e間に相当する位置に電極508b,508dが形成され、電極508eおよび第2のキャパシタ電極層504間に相当する位置に電極508fが形成されている。
 したがって、電極508a,508bおよび半導体層509によりショットキーダイオード507aが形成され、電極508b,508cおよび半導体層509によりショットキーダイオード507bが形成され、電極508c,508dおよび半導体層509によりショットキーダイオード507cが形成される。また、電極508d,508eおよび半導体層509によりショットキーダイオード507dが形成され、電極508e,508fおよび半導体層509によりショットキーダイオード507eが形成され、電極508fおよび第2のキャパシタ電極層504と半導体層509とによりショットキーダイオード507fが形成されている。そして、各ショットキーダイオード507a~507fが直列接続されて保護回路506が形成される。また、ショットキーダイオード507aの電極508aが第1のキャパシタ電極層502に接続され、ショットキーダイオード507fの一方の電極が第2のキャパシタ電極層504により形成されることにより、保護回路506が薄膜キャパシタ505に並列接続されている。
 このように構成されたESD保護機能付薄膜キャパシタ装置500では、薄膜キャパシタ505に静電気等に起因する過電圧が加わった場合に、保護回路506を形成する各ショットキーダイオード507a~507fが降伏して保護回路506に電流パスが形成される。したがって、保護回路506を過電流が流れることにより薄膜キャパシタ505が保護される。なお、各ショットキーダイオード507a~507fは、金属/半導体/金属構造を有し、ショットキー接合された金属/半導体のショットキー障壁のトンネリングにより電流の流れが制限される逆並列ショットキーダイオードに形成されている。また、誘電体層503は、化学量論比の窒化珪素(Si)や酸化シリコン(SiO)などにより形成される。また、半導体層509は、シリコンリッチな非化学量論比の窒化珪素やタンタル五酸化物(Ta)などにより形成される。
特表2002-541681号公報(段落0031~0032、図3~5、要約書など)
 上記したように、ESD保護機能付薄膜キャパシタ装置500では、ショットキー接合された金属/半導体/金属の薄膜構造のショットキーダイオード507a~507fが直列接続されて保護回路506が形成されている。ショットキー障壁の電気的な障壁高さは原理的に2eV程度以下の大きさであるので、電流が急峻に増加する電圧は2V程度以下の大きさとなる。そのため、薄膜キャパシタ505の使用電圧が2V以上の大きさである場合は、薄膜キャパシタ505に1個のショットキーダイオードが並列接続されているだけでは、ショットキーダイオード側の経路を電流が流れてしまうので、薄膜キャパシタ505は機能することができない。
 したがって、上記したように、ESD保護機能付薄膜キャパシタ装置500では、複数のショットキーダイオード507a~507fを直列接続して電流が増大する電圧の大きさを上昇させることにより、薄膜キャパシタ505の機能が確保されている。しかしながら、このようにすると、直列接続されるショットキーダイオード507a~507fの数が増大するので、ESD保護機能付薄膜キャパシタ装置500の素子サイズが大きくなるという問題がある。
 また、図8および図9に示すように、薄膜キャパシタ505が基板501上の右下の隅部部分を除く領域に配置され、保護回路506が基板501上の右下の隅部部分の領域に配置されることにより、薄膜キャパシタ505と保護回路506とは同一面内に分離して配置されている。したがって、基板501上の配置スペースに制約を受けるので、直列接続されるショットキーダイオードの数が増大すると、ESD保護機能付薄膜キャパシタ装置500の素子サイズが大面積化するという問題が生じる。
 この発明は、上記した課題に鑑みてなされたものであり、素子サイズの小面積化が図られたESD保護機能付薄膜キャパシタ装置を提供すると共に、その製造方法を提供することを目的とする。
 上記した目的を達成するために、本発明のESD保護機能付薄膜キャパシタは、基板と、前記基板上に設けられ、誘電体層と、前記誘電体層の上下面に形成された少なくとも一対のキャパシタ電極層とを有する薄膜キャパシタと、前記基板上に設けられ、p型半導体およびn型半導体によるpn接合型の薄膜ツェナーダイオードを少なくとも1つ有する保護回路とを備え、前記薄膜キャパシタと前記保護回路とが並列接続され、前記薄膜キャパシタの電荷蓄積領域および前記薄膜ツェナーダイオードのpn接合領域は、上下方向に積層状態に配置されると共に上下方向からの平面視において重なる領域を有するように配置されていることを特徴としている。
 このように構成された発明では、薄膜キャパシタに並列接続された保護回路が、p型半導体およびn型半導体によるpn接合型の薄膜ツェナーダイオードを少なくとも1つ有している。ツェナーダイオードは半導体のキャリア濃度を制御することにより、逆電圧方向で電流が急峻に増加する降伏電圧の大きさを制御することができるが、ツェナーダイオードでは、ショットキーダイオードと比較すると降伏電圧の大きさを非常に大きくすることができる。したがって、ショットキーダイオードのように、降伏電圧を大きくするために複数のツェナーダイオードを直列接続する必要がない。したがって、基板上における保護回路の上下方向からの平面視における専有面積を小さくすることができる。
 また、薄膜キャパシタの電荷蓄積領域および薄膜ツェナーダイオードのpn接合領域は、上下方向に積層状態に配置されると共に上下方向からの平面視において重なる領域を有するように配置されている。したがって、従来のショットキーダイオードを有する保護回路および薄膜キャパシタが基板上の同一平面に並設された構成と比較すると、基板サイズを極めて小さくすることができ、素子サイズの小面積化が図られたESD保護機能付薄膜キャパシタ装置を提供することができる。
 また、前記平面視において、前記pn接合領域が前記電荷蓄積領域の内側に配置されていたり、前記平面視において、前記電荷蓄積領域が前記pn接合領域の内側に配置されているとよい。
 このようにすると、薄膜キャパシタおよび保護回路が基板上にコンパクトに配置された実用的な構成のESD保護機能付薄膜キャパシタを提供することができる。
 また、前記保護回路は、2個の前記薄膜ツェナーダイオードが逆方向に直列接続されて形成されているとよい。
 このように構成すると、保護回路は、逆方向に直列接続された2個の薄膜ツェナーダイオードを備えているが、一方の薄膜ツェナーダイオードが過電圧により降伏した場合には、当該過電圧は他方のツェナーダイオードに対して必ず順方向に印加される。そのため、一方の薄膜ツェナーダイオードが降伏した場合には、保護回路に電流パスが必ず形成されるので確実に薄膜キャパシタを過電圧から保護することができる。したがって、プラス・マイナス両極性の過電圧に対して保護回路に電流パスが形成されるので、薄膜キャパシタを確実にプラス・マイナス両極性の過電圧から保護することができる。
 また、前記誘電体層が、ペロブスカイト型酸化物材料またはペロブスカイト型酸窒化物材料で形成され、前記p型半導体および前記n型半導体が、酸化物半導体材料または酸窒化物半導体材料であるとよい。
 このようにすると、ペロブスカイト型酸化物材料またはペロブスカイト型酸窒化物材料などの高誘電率材料により誘電体層が形成されることにより、薄膜キャパシタを小型化することができる。また、薄膜ツェナーダイオードを形成するp型半導体およびn型半導体が、酸素含有材料であり酸素含有雰囲気で形成されるため、薄膜ツェナーダイオードが形成される際に、薄膜キャパシタの誘電体層が還元されて劣化するのを抑制することができる。したがって、小型で高品質のESD保護機能付薄膜キャパシタ装置を提供することができる。
 また、本発明のESD保護機能付薄膜キャパシタの製造方法は、請求項1ないし5のいずれかに記載のESD保護機能付薄膜キャパシタ装置を製造する製造方法において、加熱処理することにより前記誘電体層を酸化雰囲気中で焼成させて前記薄膜キャパシタを形成した後に、前記薄膜ツェナーダイオードを形成することを特徴としている。
 このように構成された発明では、加熱処理することにより誘電体層を酸化雰囲気中で焼成させて薄膜キャパシタを形成した後に、薄膜ツェナーダイオードが形成されるので、薄膜ツェナーダイオードが加熱されることにより損傷等して機能不全に陥るのを防止することができる。
 本発明によれば、薄膜キャパシタの電荷蓄積領域および薄膜ツェナーダイオードのpn接合領域は、上下方向に積層状態に配置されると共に上下方向からの平面視において重なる領域を有するように配置されている。したがって、従来のショットキーダイオードを有する保護回路および薄膜キャパシタが基板上の同一平面に並設された構成と比較すると、基板サイズを極めて小さくすることができ、素子サイズの小面積化が図られたESD保護機能付薄膜キャパシタ装置を提供することができる。
本発明の一実施形態にかかるESD保護機能付薄膜キャパシタ装置を示す図であって、(a)は断面図、(b)は等価回路を示す図である。 薄膜キャパシタおよび薄膜ツェナーダイオードの上下方向からの平面視における配置状態を示す図である。 ESD保護機能付薄膜キャパシタ装置の製造方法の一例を示す図であって、(a)~(d)はそれぞれ異なる状態を示す。 図3に続くESD保護機能付薄膜キャパシタ装置の製造方法の一例を示す図であって、(a)~(c)はそれぞれ異なる状態を示す。 図4に続くESD保護機能付薄膜キャパシタ装置の製造方法の一例を示す図であって、(a),(b)はそれぞれ異なる状態を示す。 本発明の他の実施形態にかかるESD保護機能付薄膜キャパシタ装置を示す断面図である。 薄膜キャパシタおよび薄膜ツェナーダイオードの上下方向からの平面視における配置状態を示す図である。 従来のESD保護機能付薄膜キャパシタを示す平面図である。 図8のA-A線矢視断面図である。
 <一実施形態>
 本発明の一実施形態について図1~図5を参照して説明する。図1は本発明の一実施形態にかかるESD保護機能付薄膜キャパシタ装置を示す図であって、(a)は断面図、(b)は等価回路を示す図、図2は薄膜キャパシタおよび薄膜ツェナーダイオードの上下方向からの平面視における配置状態を示す図である。図3はESD保護機能付薄膜キャパシタ装置の製造方法の一例を示す図であって、(a)~(d)はそれぞれ異なる状態を示し、図4は図3に続くESD保護機能付薄膜キャパシタ装置の製造方法の一例を示す図であって、(a)~(c)はそれぞれ異なる状態を示し、図5は図4に続くESD保護機能付薄膜キャパシタ装置の製造方法の一例を示す図であって、(a),(b)はそれぞれ異なる状態を示す。
 (構成)
 ESD保護機能付薄膜キャパシタ装置100の概略構成について説明する。
 ESD保護機能付薄膜キャパシタ装置100は、Si基板1上に形成された熱酸化SiO絶縁層2、絶縁層2に積層された(Ba,Sr)TiO(以下「BST」と称する)密着層3を介して基板1上に設けられた薄膜キャパシタCを備えている。薄膜キャパシタCは、BST誘電体層5と、誘電体層5の上下面にPt膜により形成された少なくとも一対のキャパシタ電極層4,6とを有している。なお、図1(a)に示すように、基板1の密着層3上にキャパシタ電極層4が積層され、キャパシタ電極層4上に誘電体層5が積層されて、誘電体層5上にキャパシタ電極層6が積層されている。
 また、薄膜キャパシタC(キャパシタ電極層6)上にBST絶縁膜により形成された保護層7が積層されると共に、薄膜キャパシタCは、SiO絶縁膜により形成された保護層8により被覆されている。また、保護層8の上面には、保護層8および誘電体層5に形成された透孔を介してキャパシタ電極層4と接続されたCu/Ti引出電極9が形成されている。また、保護層8の上面には、保護層7,8に形成された透孔を介してキャパシタ電極層6と接続されたCu/Ti引出電極10が形成されている。
 また、ESD保護機能付薄膜キャパシタ装置100は、基板1上に設けられた引出電極9,10上のそれぞれに設けられたp型半導体およびn型半導体によるpn接合型の薄膜ツェナーダイオードD1,D2を有する保護回路101を備えている。
 薄膜ツェナーダイオードD1は、引出電極9上にp型CuAlO(p型半導体)により形成されたp型半導体層11と、n型NbドープTiO(n型半導体)により形成されてp型半導体層11に積層されたn型半導体層12とを有している。薄膜ツェナーダイオードD2は、引出電極10上にp型CuAlOにより形成されたp型半導体層13と、n型NbドープTiOにより形成されてp型半導体層13に積層されたn型半導体層14とを有している。なお、p型半導体層11およびn型半導体層12の接合界面と、p型半導体層13およびn型半導体層14の接合界面においてpn接合が形成されている。
 また、各薄膜ツェナーダイオードD1,D2の各々を被覆するように、SiO絶縁層15と、ポリイミド樹脂の積層体から成る絶縁層16とが設けられている。また、各ツェナーダイオードD1,D2それぞれのn型半導体層12,14が、絶縁層15,16に形成された透孔を介してCu/Ti接続電極17により接続されている。したがって、図1(b)に示すように、保護回路101は、2個のツェナーダイオードD1,D2が逆方向に直列接続されて形成されている。
 また、絶縁層16の上面には、絶縁層15,16に形成された透孔を介して引出電極9に接続されたCu/Ti引出電極18が形成されている。また、絶縁層16の上面には、絶縁層15,16に形成された透孔を介して引出電極10に接続されたCu/Ti引出電極19が形成されている。そして、引出電極18,19それぞれの上面には、Au/Ni外部電極20,21が形成されている。
 また、引出電極18,19および外部電極20,21の周縁部および接続電極17の上面と、絶縁層15,16の側面とを被覆するように、ソルダーレジストとして機能するエポキシ樹脂層22が設けられている。
 以上のように構成されたESD保護機能付薄膜キャパシタ装置100では、図1(b)に示すように、2個の薄膜ツェナーダイオードD1,D2が逆方向に直列接続されて形成された保護回路101と、薄膜キャパシタCとが並列接続されている。
 また、図1(a)および図2に示すように、薄膜キャパシタCの電荷蓄積領域S1となる上側のキャパシタ電極層6の形成領域と、薄膜ツェナーダイオードD1,D2のpn接合領域S2とが上下方向に積層状態に配置されている。また、上下方向からの平面視において、キャパシタ電極層6の形成領域(電荷蓄積領域S1)と、薄膜ツェナーダイオードD1,D2のpn接合領域S2とが重なる領域を有するように配置されている。より具体的には、この実施形態では、薄膜ツェナーダイオードD1,D2のpn接合領域S2が、キャパシタ電極層6(電荷蓄積領域S1)の内側に配置されている。
 (製造方法)
 ESD保護機能付薄膜キャパシタ装置100の製造方法の一例について説明する。
 まず、図3(a)に示すように、Si基板1上に、熱酸化法により約700nmの厚みのSiO絶縁層2が形成される。次に、図3(b)に示すように、Ba:Sr:Ti=7:3:10(モル比)の割合で構成されたMOD原料がスピンコート法により絶縁層2に塗布される。そして、MOD原料を熱乾燥した後、酸素雰囲気中において、約650℃で約30分間、高速昇温熱処理(RTA:Rapid Thermal Annealing)が施されることにより、約50nmの厚みの薄膜BSTにより密着層3が形成される。
 続いて、スパッタ法を用いて、下側のキャパシタ電極層4を形成するPt膜が約200nmの厚みで成膜される。また、Ba:Sr:Ti=7:3:10(モル比)の割合で構成されたMOD原料がスピンコート法によりキャパシタ電極層4に塗布される。そして、MOD原料を熱乾燥した後、酸素雰囲気中において、約650℃で約10分間、RTAが施されることにより、ペロブスカイト型酸化物材料であるBSTの薄膜により約100nmの厚みの誘電体層5が形成される。
 次に、スパッタ法を用いて、上側のキャパシタ電極層6を形成するPt膜が約200nmの厚みで成膜される。また、Ba:Sr:Ti=7:3:10(モル比)の割合で構成されたMOD原料がスピンコート法によりキャパシタ電極層6に塗布される。そして、MOD原料を熱乾燥した後、酸素雰囲気中において、約650℃で約60分間、RTAが施されることにより、約100nmの厚みの薄膜BSTにより保護層7が形成される。
 続いて、図3(c)に示すように、フォトリソグラフィおよびイオンミリング法を用いて、上側のキャパシタ電極層6および保護層7が所定形状に加工される。また、フォトリソグラフィおよびイオンミリング法を用いて、密着層3、下側のキャパシタ電極層4および誘電体層5が所定形状に加工される。そして、酸素雰囲気中において、約850℃で約30分間、加熱処理されることにより誘電体層5が焼成されて、薄膜キャパシタCが形成される。このように、酸素雰囲気中で誘電体層5を高温焼成することにより、誘電体層5の結晶性を向上させることができると共に、誘電体層5の酸素欠陥を低減することができる。
 次に、スパッタ法を用いて、約1000nmの厚みでSiO膜が成膜されることにより保護層8が形成される。そして、図3(d)に示すように、フォトリソグラフィおよびドライエッチング法を用いて、保護層7,8および誘電体層5が加工されて透孔が形成されると共に、絶縁層2の端縁部分が所定形状に加工される。
 続いて、スパッタ法を用いて、約100nmの厚みでTi膜が成膜された後に、約1000nmの厚みでCu膜が成膜される。そして、図4(a)に示すように、フォトリソグラフィおよびウェットエッチング法を用いて、Cu/Ti膜が加工されることにより、下側のキャパシタ電極層4に接続された引出電極9と、上側のキャパシタ電極層6に接続された引出電極10とが保護層8上に形成される。
 次に、スパッタ法を用いて、酸化物半導体材料であるp型CuAlOによるp型半導体膜が約300nmの厚みで成膜され、酸化物半導体材料であるn型NbドープTiOによるn型半導膜が約300nmの厚みで成膜される。そして、図4(b)に示すように、フォトリソグラフィおよびドライエッチング法を用いてp型半導体膜およびn型半導体膜が加工されることにより、引出電極9上にp型半導体層11およびn型半導体層12が積層された状態で形成され、引出電極10上にp型半導体層13およびn型半導体層14が積層された状態で形成される。
 続いて、大気雰囲気において、p型半導体層11,13およびn型半導体層12,14の物性を安定化させるために約400℃で加熱処理されて、薄膜ツェナーダイオードD1,D2が形成される。なお、この実施形態では、p型CuAlOのキャリア濃度は5.0×1016cm-3、n型ドープTiOのキャリア濃度は1.0×1017cm-3であり、各薄膜ツェナーダイオードD1,D2の降伏電圧は約20Vに設定されている。
 次に、図4(c)に示すように、スパッタ法を用いて、約1000nmの厚みでSiO膜が成膜されることにより絶縁層15が形成される。続いて、感光性ポリイミド樹脂が塗布されて露光され、現像されて所定形状に加工された後に、窒素雰囲気中において約320℃で硬化されることにより、ポリイミド樹脂により約6000nmの厚みで絶縁層16が形成される。そして、ポリイミド樹脂により形成された絶縁層16がマスクとして使用されることにより、ドライエッチング法を用いて絶縁層15に引出電極9,10に接続するための透孔が形成されと共に、薄膜ツェナーダイオードD1,D2を直列接続するための透孔が形成される。
 続いて、スパッタ法を用いて、約100nmの厚みでTi膜が成膜された後に、約1000nmの厚みでCu膜が成膜される。次に、フォトリソグラフィおよび電解めっき法を用いて、Cu膜の一部にNi膜が約2000nmの厚みで形成され、Ni膜上にAu膜が50nmの厚みで形成される。そして、図5(a)に示すように、フォトリソグラフィおよびウェットエッチングを用いて、Cu/Ti膜が加工されることにより、接続電極17、引出電極18,19および外部電極20,21が形成される。
 次に、感光性エポキシ樹脂が塗布されて露光され、現像されて所定形状に加工された後に、窒素雰囲気中にいて約200℃で硬化されることにより、エポキシ樹脂により約3000nmの厚みでエポキシ樹脂層22が形成されて、ESD保護機能付薄膜キャパシタ装置100が完成する。
 このように構成されたESD保護機能付薄膜キャパシタ装置100は、他の配線基板等にはんだ等を用いて実装されることにより使用される。そして、他の配線基板に各種の複数の部品が順番に実装されている途中や、各種の複数の部品が実装された他の配線基板が搭載された装置が使用されている際に、静電気等に起因する過電圧が生じても、薄膜ツェナーダイオードD1,D2のいずれかが降伏することにより保護回路101側に形成される電流パスを過電流が流れるので、静電気耐性の低い薄膜キャパシタCを保護することができる。
 以上のように、この実施形態では、薄膜キャパシタCに並列接続された保護回路101が、p型半導体およびn型半導体によるpn接合型の薄膜ツェナーダイオードD1,D2を有している。ツェナーダイオードは半導体のキャリア濃度を制御することにより、逆電圧方向で電流が急峻に増加する降伏電圧の大きさを制御することできるが、ツェナーダイオードでは、ショットキーダイオードと比較すると降伏電圧の大きさを非常に大きくすることができる。したがって、ショットキーダイオードのように、降伏電圧を大きくするために複数の薄膜ツェナーダイオードD1,D2を順方向に直列接続する必要がない。したがって、基板1上における保護回路101の上下方向からの平面視における専有面積を小さくすることができる。
 また、薄膜キャパシタCの電荷蓄積領域S1および薄膜ツェナーダイオードD1,D2のpn接合領域S2は、上下方向に積層状態に配置されると共に上下方向からの平面視において重なる領域を有するように配置されている。したがって、従来のショットキーダイオードを有する保護回路および薄膜キャパシタが基板上の同一平面に並設された構成と比較すると、基板サイズを極めて小さくすることができ、素子サイズの小面積化が図られたESD保護機能付薄膜キャパシタ装置100を提供することができる。
 具体的には、平面視において、pn接合領域S2が電荷蓄積領域S1の内側に配置されることにより、薄膜キャパシタCおよび保護回路101が基板1上にコンパクトに配置された実用的な構成のESD保護機能付薄膜キャパシタ装置100を提供することができる。
 また、保護回路101は、逆方向に直列接続された2個の薄膜ツェナーダイオードD1,D2を備えているが、一方の薄膜ツェナーダイオードが過電圧により降伏した場合には、当該過電圧は他方のツェナーダイオードに対して必ず順方向に印加される。そのため、一方の薄膜ツェナーダイオードが降伏した場合には、保護回路101に電流パスが必ず形成されるので確実に薄膜キャパシタCを過電圧から保護することができる。したがって、プラス・マイナス両極性の過電圧に対して保護回路101に電流パスが形成されるので、薄膜キャパシタCを確実にプラス・マイナス両極性の過電圧から保護することができる。
 また、ペロブスカイト型酸化物材料である高誘電率のBST材料により誘電体層5が形成されることにより、薄膜キャパシタCをさらに小型化することができる。また、薄膜ツェナーダイオードD1,D2を形成するp型半導体層11,13およびn型半導体層12,14が、酸素含有材料を用いて酸素含有雰囲気で形成される。そのため、薄膜ツェナーダイオードD1,D2が形成される際に、還元雰囲気に対する耐性が弱い薄膜キャパシタCの誘電体層5が還元されて劣化するのを抑制することができる。したがって、小型で高品質のESD保護機能付薄膜キャパシタ装置100を提供することができる。
 また、p型半導体層11とn型半導体層12とのpn接合界面の端縁部分と、p型半導体層13とn型半導体層14とのpn接合界面の端縁部分とが、耐湿保護機能を有するアモルファスSiO絶縁層15により被覆されているとよい。このようにすると、ESD保護機能付薄膜キャパシタ装置100が高湿度環境下で使用された場合にも、pn接合界面付近に水分が浸入するのが防止される。
 したがって、薄膜ツェナーダイオードD1,D2が降伏挙動領域において動作しており、pn接合界面が高電界状態である場合に、次のような効果を奏することができる。すなわち、pn接合界面の端縁部分において水の電気分解が生じて水素が発生し、pn接合を形成する酸化物半導体材料が還元されることにより、薄膜ツェナーダイオードD1,D2の特性が劣化するのを防止することができる。
 ところで、従来のツェナーダイオードは、一般的に、Si基板に不純物がドービングされることにより形成される。このような従来のツェナーダイオードが形成されたSi基板に、上下方向に積層状態に薄膜キャパシタを配置しようとすると次のような問題が生じる。すなわち、薄膜キャパシタは、その容量を増大すると共にその容量特性の向上を図るために、高誘電率の絶縁材料により形成された薄膜を高温で焼成させて誘電体層を形成する必要がある。
 具体的には、例えば組成式がABOと表記されるペロブスカイト型の誘電体材料で誘電体層が形成される場合に、ペロブスカイト型の結晶構造では、結晶の単位格子内に、2価のAイオン(Sr2+、Ba2+など)が1個、4価のBイオン(Ti4+など)が1個、Oイオン(O2-)が3個含まれている。ペロブスカイト型構造の誘電体材料としては、BaTiO、PbTiOなどがあるが、これらの結晶構造では、Bイオン(Ti4+)の効果により大きな分極を有する。したがって、誘電率が一般的に大きくなる。しかしながら、一般的に、500℃以上の高温度で焼成させて形成しないとペロブスカイト型の結晶構造を得ることができない。
 したがって、従来のツェナーダイオードが形成されたSi基板上に薄膜キャパシタが形成されると、薄膜キャパシタが形成される際にツェナーダイオードが加熱されて損傷等することにより機能不全に陥るおそれがある。そこで、上記した実施形態では、加熱処理されることにより誘電体層5が焼成されて薄膜キャパシタCが基板1上に形成された後に、酸化物半導体膜が積層されて形成される薄膜ツェナーダイオードD1,D2が形成されるので、薄膜ツェナーダイオードD1,D2が加熱されることにより損傷等して機能不全に陥るのを防止することができる。すなわち、誘電体層を形成する際の高温により薄膜ツェナーダイオードD1,D2が加熱されるおそれがないので、高温焼成が必要なペロブスカイト型の誘電体材料を採用することができる。そのため、薄膜キャパシタCおよび薄膜ツェナーダイオードD1,D2の双方を薄膜素子で形成しつつ、薄膜キャパシタCの組成をペロブスカイト型の材料で形成することができる。したがって、薄膜キャパシタCおよび薄膜ツェナーダイオードD1,D2を劣化させたり損傷させたりすることなく上下方向に積層状態に配置することができる。
 <他の実施形態>
 本発明の他の実施形態について図6および図7を参照して説明する。図6は本発明の他の実施形態にかかるESD保護機能付薄膜キャパシタ装置を示す断面図、図7は薄膜キャパシタおよび薄膜ツェナーダイオードの上下方向からの平面視における配置状態を示す図である。
 この実施形態のESD保護機能付薄膜キャパシタ装置100aが、上記した実施形態のESD保護機能付薄膜キャパシタ装置100と異なるのは、図6および図7に示すように、電荷蓄積領域S1がpn接合領域S2の内側に配置されている点である。以下の説明では、上記した実施形態と異なる点を中心に説明し、その他の構成は上記した実施形態と同様であるため、同一符号を付すことによりその構成の説明は省略する。
 ESD保護機能付薄膜キャパシタ装置100aは、Si基板1上に形成された熱酸化SiO絶縁層2、絶縁層2に積層されたPb(Zr,Ti)O(以下「PZT」と称する)密着層3を介して基板1上に設けられた薄膜キャパシタCを備えている。薄膜キャパシタCは、PZT誘電体層5と、誘電体層5の上下面にPt膜により形成された少なくとも一対のキャパシタ電極層4,6とを有している。なお、図6に示すように、基板1の密着層3上にキャパシタ電極層4が積層され、キャパシタ電極層4上に誘電体層5が積層されて、誘電体層5上にキャパシタ電極層6が積層されている。
 また、薄膜キャパシタC(キャパシタ電極層6)上にPZT絶縁膜により形成された保護層7が積層されると共に、薄膜キャパシタCは、SiO絶縁膜により形成された保護層8により被覆されている。また、保護層8の上面には、ポリイミド樹脂の積層体から成る絶縁層16が積層されている。
 また、絶縁層16の上面には、絶縁層16、保護層8および誘電体層5に形成された透孔を介してキャパシタ電極層4と接続されたCu/Ti引出電極9が形成されている。また、絶縁層16の上面には、絶縁層16、保護層7,8に形成された透孔を介してキャパシタ電極層6と接続されたCu/Ti引出電極10が形成されている。
 また、ESD保護機能付薄膜キャパシタ装置100は、基板1上に設けられた引出電極9,10上のそれぞれに設けられたp型半導体およびn型半導体によるpn接合型の薄膜ツェナーダイオードD1,D2を有する保護回路101を備えている。
 薄膜ツェナーダイオードD1は、引出電極9上に酸化物半導体材料であるp型NiO(p型半導体)により形成されたp型半導体層11と、酸窒化物半導体材料であるn型ZnON(n型半導体)により形成されてp型半導体層11に積層されたn型半導体層12とを有している。薄膜ツェナーダイオードD2は、引出電極10上に酸化物半導体材料であるp型NiOにより形成されたp型半導体層13と、酸窒化物半導体材料であるn型ZnONにより形成されてp型半導体層13に積層されたn型半導体層14とを有している。なお、p型半導体層11およびn型半導体層12の接合界面と、p型半導体層13およびn型半導体層14の接合界面においてpn接合が形成されている。
 また、各薄膜ツェナーダイオードD1,D2の各々を被覆するように、SiO絶縁層15と、エポキシ樹脂層の積層体から成る絶縁層23とが設けられている。また、各ツェナーダイオードD1,D2それぞれのn型半導体層12,14が、絶縁層15,23に形成された透孔を介してCu/Ti接続電極17により接続されている。したがって、図1(b)に示す等価回路と同様に、保護回路101は、2個のツェナーダイオードD1,D2が逆方向に直列接続されて形成されている。
 また、絶縁層23の上面には、絶縁層15,23に形成された透孔を介して引出電極9に接続されたCu/Ti引出電極18が形成されている。また、絶縁層23の上面には、絶縁層15,23に形成された透孔を介して引出電極10に接続されたCu/Ti引出電極19が形成されている。そして、引出電極18,19それぞれの上面には、Au/Ni外部電極20,21が形成されている。
 また、引出電極18,19および外部電極20,21の周縁部および接続電極17の上面と、絶縁層15,23の側面とを被覆するように、ソルダーレジストとして機能するエポキシ樹脂層22が設けられている。
 以上のように構成されたESD保護機能付薄膜キャパシタ装置100aでは、図1(b)に示す等価回路と同様に、2個の薄膜ツェナーダイオードD1,D2が逆方向に直列接続されて形成された保護回路101と、薄膜キャパシタCとが並列接続されている。
 また、図6および図7に示すように、薄膜キャパシタCの電荷蓄積領域S1となる上側のキャパシタ電極層6の形成領域と、薄膜ツェナーダイオードD1,D2のpn接合領域S2とが上下方向に積層状態に配置されている。また、上下方向からの平面視において、キャパシタ電極層6の形成領域(電荷蓄積領域S1)と、薄膜ツェナーダイオードD1,D2のpn接合領域S2とが重なる領域を有するように配置されている。より具体的には、この実施形態では、キャパシタ電極層6(電荷蓄積領域S1)が、薄膜ツェナーダイオードD1,D2のpn接合領域S2の内側に配置されている。
 なお、この実施形態のESD保護機能付薄膜キャパシタ装置100aは、図1(a)に示すESD保護機能付薄膜キャパシタ装置100と一部の構成が異なるが、図3~図5を参照して説明したESD保護機能付薄膜キャパシタ装置100の製造方法と同様の製造方法によりこの実施形態のESD保護機能付薄膜キャパシタ装置100aを製造することができる。
 以上のように、この実施形態では上記した実施形態と同様の効果を奏することができる。
 なお、本発明は上記した各実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて、上記したもの以外に種々の変更を行なうことが可能である。例えば、保護回路101は少なくとも1個の薄膜ツェナーダイオードを有していればよい。
 また、薄膜ツェナーダイオードを形成するp型半導体層およびn型半導体層の積層順は上記した例に限定されるものではなく、例えば、n型半導体層の上面にp型半導体層が積層されることによって、図1(b)に示す2個のツェナーダイオードがカソード側が接続されて逆方向に直列接続された例と異なり、2個のツェナーダイオードが、アノード側が接続されることにより逆方向に直列接続されていてもよい。また、p型およびn型のいずれか一方の導電型の2層の半導体層の間に他方の導電型の半導体層が配置されるようにしてもよい。このようにすると、2個のツェナーダイオードが逆方向に直列接続された回路と等価な回路を構成することができる。
 また、p型およびn型の半導体層が積層される場合に、先に形成された一方の導電型の半導体層上に形成される他方の導電型の半導体層は、アモルファス材料で形成されるとよい。このようにすると、先に形成される一方の導電型の半導体層がアモルファス材料および結晶質材料のいずれで形成された場合であっても、一方の導電型の半導体層上に他方の導電型の半導体層が形成されるときの初期成長層において、ツェナーダイオードの特性を劣化させる異相が形成されるのを抑制することができる。
 また、薄膜キャパシタCの構成は上記した例に限定されるものではなく、一般的な薄膜キャパシタの構成を有していればよい。例えば、誘電体層の一方の主面に所定距離を開けて第1および第2のキャパシタ電極層が形成され、誘電体層の他方の主面に平面視において第1および第2のキャパシタ電極層の両方に重なるように対向電極層が形成されて構成される薄膜キャパシタを採用してもよい。
 また、誘電体層を形成する誘電体材料および半導体層を形成する半導体材料は上記した例に限定されるものではない。たとえば、BaTiO、SrTiO、PbTiOなどの誘電体材料により誘電体層が形成されていてもよい。また、In、InGaZnOなどの半導体材料によりn型半導体層が形成されていてもよい。また、CuO、SrCuなどの半導体材料によりp型半導体層が形成されていてもよい。
 また、ESD保護機能付薄膜キャパシタ装置が備える基板は、ガラス基板やセラミック基板、樹脂基板、Si基板など、ESD保護機能付薄膜キャパシタ装置の使用目的に応じて適宜基板の種類を選択して形成すればよい。
 そして、ESD保護機能付薄膜キャパシタ装置およびその製造方法に本発明を広く適用することができる。
 1  基板
 4,6  キャパシタ電極層
 5  誘電体層
 100,100a  ESD保護機能付薄膜キャパシタ装置
 101  保護回路
 C  薄膜キャパシタ
 D1,D2  薄膜ツェナーダイオード
 S1  電荷蓄積領域
 S2  pn接合領域
 

Claims (6)

  1.  基板と、
     前記基板上に設けられ、誘電体層と、前記誘電体層の上下面に形成された少なくとも一対のキャパシタ電極層とを有する薄膜キャパシタと、
     前記基板上に設けられ、p型半導体およびn型半導体によるpn接合型の薄膜ツェナーダイオードを少なくとも1つ有する保護回路とを備え、
     前記薄膜キャパシタと前記保護回路とが並列接続され、
     前記薄膜キャパシタの電荷蓄積領域および前記薄膜ツェナーダイオードのpn接合領域は、上下方向に積層状態に配置されると共に上下方向からの平面視において重なる領域を有するように配置されている
     ことを特徴とするESD保護機能付薄膜キャパシタ装置。
  2.  前記平面視において、前記pn接合領域が前記電荷蓄積領域の内側に配置されていることを特徴とする請求項1に記載のESD保護機能付薄膜キャパシタ装置。
  3.  前記平面視において、前記電荷蓄積領域が前記pn接合領域の内側に配置されていることを特徴とする請求項1に記載のESD保護機能付薄膜キャパシタ装置。
  4.  前記保護回路は、2個の前記薄膜ツェナーダイオードが逆方向に直列接続されて形成されていることを特徴とする請求項1ないし3のいずれかに記載のESD保護機能付薄膜キャパシタ装置。
  5.  前記誘電体層が、ペロブスカイト型酸化物材料またはペロブスカイト型酸窒化物材料で形成され、
     前記p型半導体および前記n型半導体が、酸化物半導体材料または酸窒化物半導体材料であることを特徴とする請求項1ないし4のいずれかに記載のESD保護機能付薄膜キャパシタ装置。
  6.  請求項1ないし5のいずれかに記載のESD保護機能付薄膜キャパシタ装置を製造する製造方法において、
     加熱処理することにより前記誘電体層を酸化雰囲気中で焼成させて前記薄膜キャパシタを形成した後に、前記薄膜ツェナーダイオードを形成することを特徴とするESD保護機能付薄膜キャパシタ装置の製造方法。
PCT/JP2014/071153 2013-08-19 2014-08-11 Esd保護機能付薄膜キャパシタ装置およびその製造方法 WO2015025753A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014559016A JP5704291B1 (ja) 2013-08-19 2014-08-11 Esd保護機能付薄膜キャパシタ装置およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-169451 2013-08-19
JP2013169451 2013-08-19

Publications (1)

Publication Number Publication Date
WO2015025753A1 true WO2015025753A1 (ja) 2015-02-26

Family

ID=52483530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071153 WO2015025753A1 (ja) 2013-08-19 2014-08-11 Esd保護機能付薄膜キャパシタ装置およびその製造方法

Country Status (2)

Country Link
JP (1) JP5704291B1 (ja)
WO (1) WO2015025753A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017135294A1 (ja) * 2016-02-01 2017-08-10 Tdk株式会社 多結晶誘電体薄膜および容量素子
WO2018168173A1 (ja) * 2017-03-17 2018-09-20 株式会社村田製作所 薄膜esd保護デバイス

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208797911U (zh) 2016-08-01 2019-04-26 株式会社村田制作所 带有esd保护功能的安装型复合部件
JP6562161B2 (ja) 2017-02-17 2019-08-21 株式会社村田製作所 薄膜デバイスおよび薄膜デバイスの製造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01114077A (ja) * 1987-10-27 1989-05-02 Nec Corp 半導体装置
JPH01187965A (ja) * 1988-01-22 1989-07-27 Mitsubishi Electric Corp サージ電圧保護回路
JPH02226757A (ja) * 1989-02-28 1990-09-10 Toshiba Corp 半導体装置
JPH03171764A (ja) * 1989-11-30 1991-07-25 Casio Comput Co Ltd 薄膜misダイオードおよびその製造方法
US20050260822A1 (en) * 2004-05-20 2005-11-24 Magnachip Semiconductor, Ltd. Method of manufacturing semiconductor device
JP2008034705A (ja) * 2006-07-31 2008-02-14 New Japan Radio Co Ltd 半導体装置
JP2008532308A (ja) * 2005-03-02 2008-08-14 エヌエックスピー ビー ヴィ 電子デバイス及びその使用方法
JP2008218818A (ja) * 2007-03-06 2008-09-18 Toshiba Corp 半導体装置
JP2009009984A (ja) * 2007-06-26 2009-01-15 Sharp Corp 半導体装置及びその製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01114077A (ja) * 1987-10-27 1989-05-02 Nec Corp 半導体装置
JPH01187965A (ja) * 1988-01-22 1989-07-27 Mitsubishi Electric Corp サージ電圧保護回路
JPH02226757A (ja) * 1989-02-28 1990-09-10 Toshiba Corp 半導体装置
JPH03171764A (ja) * 1989-11-30 1991-07-25 Casio Comput Co Ltd 薄膜misダイオードおよびその製造方法
US20050260822A1 (en) * 2004-05-20 2005-11-24 Magnachip Semiconductor, Ltd. Method of manufacturing semiconductor device
JP2008532308A (ja) * 2005-03-02 2008-08-14 エヌエックスピー ビー ヴィ 電子デバイス及びその使用方法
JP2008034705A (ja) * 2006-07-31 2008-02-14 New Japan Radio Co Ltd 半導体装置
JP2008218818A (ja) * 2007-03-06 2008-09-18 Toshiba Corp 半導体装置
JP2009009984A (ja) * 2007-06-26 2009-01-15 Sharp Corp 半導体装置及びその製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017135294A1 (ja) * 2016-02-01 2017-08-10 Tdk株式会社 多結晶誘電体薄膜および容量素子
CN108475580A (zh) * 2016-02-01 2018-08-31 Tdk株式会社 多晶介电体薄膜及电容元件
JPWO2017135294A1 (ja) * 2016-02-01 2018-11-29 Tdk株式会社 多結晶誘電体薄膜および容量素子
US10611693B2 (en) 2016-02-01 2020-04-07 Tdk Corporation Polycrystalline dielectric thin film and capacitor element
CN108475580B (zh) * 2016-02-01 2020-06-02 Tdk株式会社 多晶介电体薄膜及电容元件
WO2018168173A1 (ja) * 2017-03-17 2018-09-20 株式会社村田製作所 薄膜esd保護デバイス
JP6406486B1 (ja) * 2017-03-17 2018-10-17 株式会社村田製作所 薄膜esd保護デバイス
US10770451B2 (en) 2017-03-17 2020-09-08 Murata Manufacturing Co, Ltd. Thin-film ESD protection device

Also Published As

Publication number Publication date
JP5704291B1 (ja) 2015-04-22
JPWO2015025753A1 (ja) 2017-03-02

Similar Documents

Publication Publication Date Title
US10153267B2 (en) ESD-protective-function-equipped composite electronic component
JP5704291B1 (ja) Esd保護機能付薄膜キャパシタ装置およびその製造方法
US20130128410A1 (en) Method of manufacturing thin film capacitor and thin film capacitor
JP2013515353A (ja) 温度依存的なコンデンサ、およびコンデンサモジュール
US7742277B2 (en) Dielectric film capacitor and method of manufacturing the same
JP5489009B2 (ja) 積層構造体、強誘電体ゲート薄膜トランジスター及び強誘電体薄膜キャパシター
JP2007194635A (ja) 半導体素子の製造方法及びそれを使用して製造される半導体素子
TW201725737A (zh) 金屬-絕緣層-金屬電容器及其製造方法
US10319524B2 (en) Thin-film capacitor
US11239226B2 (en) Semiconductor apparatus
JP6910599B2 (ja) 半導体装置
JPH05299584A (ja) 薄膜容量素子及び半導体記憶装置
JP5783340B2 (ja) ダイオード装置およびその製造方法
TWI769031B (zh) 鐵電記憶體結構
US11990470B2 (en) Ferroelectric and paraelectric stack capacitors
KR102230796B1 (ko) 변동 저저항 영역 기반 전자 소자 및 이의 제어 방법
US20240215257A1 (en) Ferroelectric memory device and method for forming the same
JP2011155198A (ja) 半導体装置
KR20230112001A (ko) 커패시터 및 이를 포함하는 반도체 장치
KR20220169882A (ko) 박막 구조체, 이를 포함하는 커패시터 및 반도체 소자, 및 이의 제조방법
KR20210033961A (ko) 변동 저저항 영역 기반 전자 소자 및 이의 제어 방법
KR20090081681A (ko) 강유전체 메모리 소자 및 그 제조 방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014559016

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14838602

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14838602

Country of ref document: EP

Kind code of ref document: A1