WO2015025752A1 - 植物栽培システムおよび植物栽培方法 - Google Patents

植物栽培システムおよび植物栽培方法 Download PDF

Info

Publication number
WO2015025752A1
WO2015025752A1 PCT/JP2014/071141 JP2014071141W WO2015025752A1 WO 2015025752 A1 WO2015025752 A1 WO 2015025752A1 JP 2014071141 W JP2014071141 W JP 2014071141W WO 2015025752 A1 WO2015025752 A1 WO 2015025752A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
pva
plant
water
nutrient solution
Prior art date
Application number
PCT/JP2014/071141
Other languages
English (en)
French (fr)
Inventor
吉岡 浩
森 有一
昭弘 岡本
茂樹 三浦
知由 水谷
Original Assignee
メビオール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to RS20190619A priority Critical patent/RS58903B1/sr
Priority to NZ716541A priority patent/NZ716541A/en
Priority to TN2016000028A priority patent/TN2016000028A1/en
Application filed by メビオール株式会社 filed Critical メビオール株式会社
Priority to PL14837962T priority patent/PL3036988T3/pl
Priority to SG11201600876SA priority patent/SG11201600876SA/en
Priority to CA2920870A priority patent/CA2920870C/en
Priority to US14/913,125 priority patent/US10660280B2/en
Priority to LTEP14837962.1T priority patent/LT3036988T/lt
Priority to AU2014309969A priority patent/AU2014309969B2/en
Priority to MX2016002161A priority patent/MX358456B/es
Priority to KR1020167007156A priority patent/KR101820615B1/ko
Priority to EA201690423A priority patent/EA030429B1/ru
Priority to CU2016000023A priority patent/CU24382B1/es
Priority to MYPI2016700487A priority patent/MY183008A/en
Priority to AP2016009035A priority patent/AP2016009035A0/en
Priority to EP14837962.1A priority patent/EP3036988B1/en
Priority to MA38843A priority patent/MA38843B1/fr
Priority to ES14837962T priority patent/ES2724329T3/es
Priority to UAA201602685A priority patent/UA114373C2/uk
Priority to MEP-2019-139A priority patent/ME03405B/me
Priority to SI201431219T priority patent/SI3036988T1/sl
Priority to CN201480045632.8A priority patent/CN105472974B/zh
Priority to BR112016002659A priority patent/BR112016002659B1/pt
Publication of WO2015025752A1 publication Critical patent/WO2015025752A1/ja
Priority to IL243777A priority patent/IL243777B/en
Priority to PH12016500333A priority patent/PH12016500333B1/en
Priority to CR20160107A priority patent/CR20160107A/es
Priority to DKPA201670132A priority patent/DK178974B1/en
Priority to HK16111445.0A priority patent/HK1222979A1/zh
Priority to HRP20190803TT priority patent/HRP20190803T1/hr
Priority to CY20191100594T priority patent/CY1121671T1/el
Priority to US16/852,055 priority patent/US11058075B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • A01G31/02Special apparatus therefor
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G25/00Watering gardens, fields, sports grounds or the like
    • A01G25/02Watering arrangements located above the soil which make use of perforated pipe-lines or pipe-lines with dispensing fittings, e.g. for drip irrigation
    • A01G25/023Dispensing fittings for drip irrigation, e.g. drippers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
    • Y02P60/21Dinitrogen oxide [N2O], e.g. using aquaponics, hydroponics or efficiency measures

Definitions

  • the present invention relates to a plant cultivation system and a plant cultivation method using a nonporous hydrophilic film, particularly a polyvinyl alcohol (PVA) film.
  • a nonporous hydrophilic film particularly a polyvinyl alcohol (PVA) film.
  • Patent Document 1 Plant cultivation instrument and plant cultivation method for cultivating a plant by integrating the film and plant root on a hydrophilic film
  • Patent Document 2 Plant cultivation instrument and plant cultivation method for irrigating the upper part of the film
  • Patent Document 3 Plant cultivation system
  • Patent Document 4 a plant cultivation system using means for continuously supplying nutrient solution to the lower surface side of the film
  • Patent Literature 5 a plant cultivation system using means for continuously supplying nutrient solution to the lower surface side of the film
  • the plant root If the plant root penetrates the film, the plant root will be in direct contact with the nutrient solution, and the plant cultivated on the film will be infected with bacteria and viruses that have propagated in the nutrient solution, Plants cannot be cultivated in a healthy state.
  • the thickness of the film has to be at least 60 ⁇ m or more.
  • the thickness of the film is increased, there is a problem that the growth rate of the plant is hindered because the permeation rate of the nutrient solution is lowered, or the cost of the film is increased.
  • the present inventors have an equilibrium swelling degree of polyvinyl alcohol (PVA) film at a predetermined temperature in water (30 ° C.) in the range of 125% to 250%. By doing so, it discovered that it became a PVA-type film excellent in the absorptivity and permeability
  • PVA polyvinyl alcohol
  • the loss tangent (tan ⁇ ) of the PVA film at 30 ° C. is 0.005 or more and 0.2 or less, it is found that the PVA film has excellent film strength for plant cultivation, and the present invention has been completed. It was.
  • the present invention Polyvinyl alcohol (PVA) film for cultivating plants thereon, nutrient solution holding means arranged so as to be in contact with the lower surface of the PVA film, and the nutrient solution under the PVA film
  • a system for plant cultivation comprising means for supplying to the water; the equilibrium swelling degree of the PVA film in water (30 ° C.) is in the range of 125% to 250% and the equilibrium swelling state of the PVA film in water ( A system for plant cultivation, characterized in that a loss tangent (tan ⁇ ) at 30 ° C is 0.005 or more and 0.2 or less.
  • the plant cultivation system according to any one of 1) to 3) above, further comprising a nutrient solution supply means for supplying the nutrient solution.
  • a nutrient solution supply means for supplying the nutrient solution.
  • the nutrient solution supply means is a drip irrigation tube installed between the PVA film and the nutrient solution holding means.
  • a plant cultivation system including means for supplying; the equilibrium swelling degree of the PVA film in water (30 ° C.) in the range of 125% or more and 250% or less, and the equilibrium swelling state of the PVA film in water (30 A loss tangent (tan ⁇ ) at 0.005) is 0.005 or more and 0.2 or less, and provides a plant cultivation system, (2) placing the plant on the PVA-based film in the system; and (3) contacting the nutrient solution with the plant via the PVA-based film, thereby planting the plant on the PVA-based film.
  • a plant cultivation method that includes cultivating a plant.
  • the PVA film used in the present invention is made of PVA as a raw material, and the PVA is not particularly limited and can be produced by a known method. That is, it is obtained by saponifying a vinyl ester polymer obtained by polymerizing a vinyl ester compound.
  • vinyl ester compounds examples include vinyl formate, vinyl acetate, vinyl trifluoroacetate, vinyl propionate, vinyl butyrate, vinyl caprate, vinyl laurate, vinyl versatate, vinyl palmitate, vinyl stearate, etc. Although used in combination, vinyl acetate is preferred for practical use.
  • other monomers can be copolymerized in an amount of about 0.5 to 10 mol% within the range not impairing the object of the present invention.
  • monomers include propylene and isobutylene.
  • Olefins such as ⁇ -octene, ⁇ -dodecene, ⁇ -octadecene, unsaturated acids such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, maleic anhydride, itaconic acid or salts thereof, mono- or dialkyl esters, etc.
  • Nitriles such as acrylonitrile and methacrylonitrile, amides such as acrylamide and methacrylamide, olefin sulfonic acids such as ethylene sulfonic acid, allyl sulfonic acid and methallyl sulfonic acid or salts thereof, alkyl vinyl ethers, N-acrylamidomethyltrimethylammonium chloride , Allyl Polyoxyalkylenes such as limethylammonium chloride, dimethyldiallylammonium chloride, dimethylallyl vinyl ketone, N-vinyl pyrrolidone, vinyl chloride, vinylidene chloride, polyoxyethylene (meth) allyl ether, polyoxypropylene (meth) allyl ether (meta ) Polyoxyalkylene (meth) acrylates such as allyl ether, polyoxyethylene (meth) acrylate, polyoxypropylene (meth) acrylate, polyoxyalkylenes such as polyoxyethylene
  • the polymerization (or copolymerization), there is no particular limitation and a known polymerization method is arbitrarily used. Usually, solution polymerization using an alcohol such as methanol, ethanol or isopropyl alcohol as a solvent is carried out. Of course, emulsion polymerization and suspension polymerization are also possible.
  • the polymerization reaction is carried out using a known radical polymerization catalyst such as azobisisobutyronitrile, acetyl peroxide, benzoyl peroxide, lauroyl peroxide, and the reaction temperature is 35 ° C. to 200 ° C. (more preferably 50 ° C.). It is selected from the range of about ⁇ 80 ° C.
  • the polymer is dissolved in an alcohol or an alcohol / fatty acid ester mixed solvent in the presence of an alkali catalyst.
  • the alcohol include methanol, ethanol, butanol and the like.
  • the fatty acid ester solvent include methyl acetate, ethyl acetate, butyl acetate and the like, and benzene, hexane and the like may be used in combination.
  • the concentration of the copolymer in the alcohol is selected from the range of 20 to 50% by weight.
  • alkali catalysts such as alkali metal hydroxides and alcoholates such as sodium hydroxide, potassium hydroxide, sodium methylate, sodium ethylate and potassium methylate can be used.
  • the amount of the catalyst used may be 1 to 100 mmol equivalents relative to the vinyl ester copolymer.
  • it may be saponified with an acid catalyst such as hydrochloric acid, sulfuric acid, p-toluenesulfonic acid or the like.
  • the saponification degree of PVA is preferably 90 mol% or more (more preferably 95 mol% or more, particularly 99 mol% or more). When the saponification degree is less than 90 mol%, the water resistance may decrease. Absent.
  • the average degree of polymerization of PVA is preferably 1100 or more (more preferably 1300 to 4500, particularly 1300 to 4200). If the average degree of polymerization is less than 1100, the strength as a film cannot be obtained, and breakage or the like may occur. It may occur easily and is not preferable.
  • the average degree of polymerization conforms to JIS K6726.
  • the amount of sodium acetate contained can be adjusted to 0.8% by weight or less (more preferably 0.5% by weight or less) in order to improve heat resistance and coloring prevention ability. preferable.
  • a PVA solution used for film production a PVA aqueous solution having a PVA content (concentration) of 5 to 70% by weight (more preferably 10 to 60% by weight) may be prepared.
  • aqueous solutions may contain, as necessary, polyhydric alcohols such as ethylene glycol, glycerin, polyethylene glycol, diethylene glycol, and triethylene glycol, antioxidants such as phenols and amines, and stabilizers such as phosphate esters.
  • polyhydric alcohols such as ethylene glycol, glycerin, polyethylene glycol, diethylene glycol, and triethylene glycol
  • antioxidants such as phenols and amines
  • stabilizers such as phosphate esters.
  • Ordinary additives such as colorants, fragrances, bulking agents, defoaming agents, release agents, ultraviolet absorbers, inorganic powders, and surfactants may be appropriately blended.
  • water-soluble resins other than polyvinyl alcohol such as starch, carboxymethylcellulose, methylcellulose, and hydroxymethylcellulose.
  • the PVA aqueous solution prepared above is formed into a film by a film forming machine (extruder).
  • the melt kneading temperature in the extruder is preferably from 55 to 140 ° C. (more preferably from 55 to 130 ° C.). If the temperature is less than 55 ° C., the film skin will be defective.
  • the film formed by extrusion is then dried, and the drying temperature at this time is preferably 70 to 120 ° C. (more preferably 80 to 100 ° C.). If it takes too much or the residual moisture becomes excessive, and the temperature exceeds 120 ° C., the flexibility of the film is lost, which may hinder the subsequent stretching process, which is not preferable.
  • the first prepared aqueous solution can be used for film formation as it is, but this is once pelletized or flaked in a water-containing state, and then supplied to a film forming machine to perform extrusion film formation. It is also possible.
  • a PVA film used in the plant cultivation system of the present invention can be obtained.
  • such a film is stretched so that the physical properties of flexibility and mechanical strength can be stably imparted.
  • a stretching method will be described.
  • the film may be uniaxially stretched in the longitudinal (machine) direction, but biaxially stretching in both the longitudinal and lateral directions is preferable because the above physical properties can be further improved.
  • Such biaxial stretching may be either sequential biaxial stretching or simultaneous biaxial stretching.
  • the water content of the PVA film obtained above is 5 to 30% by weight (more preferably 20 to 30% by weight). %) Is preferable, and when the moisture content is outside these ranges, the draw ratio cannot be sufficiently increased, which is not preferable.
  • the adjustment of the moisture content and the moisture content is adjusted by drying the PVA film or by immersing or conditioning the PVA film having a moisture content of less than 5% by weight in water. The method etc. which adjust or can be mentioned.
  • the draw ratio is not particularly limited, but the draw ratio in the longitudinal direction is 1.5 to 5.0, preferably 2.0 to 5.0 times, the draw ratio in the transverse direction is 1.5 to 5.0, Preferably, it is 2.0 to 5.0 times, and when the draw ratio in the machine direction is less than 1.5 times, it is difficult to improve physical properties by stretching, that is, to reduce loss tangent (tan ⁇ ) in a swollen state in water, If it exceeds 5.0 times, the film tends to tear in the longitudinal direction, which is not preferable.
  • the stretching ratio in the transverse direction is less than 1.5 times, it is difficult to improve physical properties by stretching, that is, loss tangent (tan ⁇ ) reduction in a swollen state in water, and if it exceeds 5.0 times, the film will be broken, which is not preferable. .
  • the temperature of the heat setting is preferably selected to be lower than the melting point of polyvinyl alcohol.
  • the temperature is lower than the melting point by 80 ° C. or more, the dimensional stability is poor and the shrinkage rate is increased.
  • the temperature is higher than the melting point, the thickness variation of the film is increased.
  • the heat setting temperature is preferably 140 to 250 ° C.
  • the heat setting time is preferably 1 to 30 seconds, more preferably 5 to 10 seconds.
  • the heat setting may be performed in one step or divided into multiple steps depending on different temperatures and times, but in order to obtain the desired physical property value, that is, the loss tangent (tan ⁇ ) in the swollen state in water, it is divided into multiple steps. It is preferable to carry out.
  • the biaxially stretched PVA film is subjected to water washing and drying as necessary, but the water washing method and the drying method are not particularly limited. For example, it is conceivable to adjust the amount of water by immersing in a water bath at an appropriate temperature and allowing it to contain water, and then drying by applying normal temperature air or high temperature air.
  • the thickness of the PVA film used in the present invention is preferably 5 to 100 ⁇ m (more preferably 10 to 60 ⁇ m). Below this range, it becomes difficult for the PVA film to withstand the penetration of plant roots, and when it exceeds this range, it takes time to penetrate the fertilizer components. This range is also advantageous in industrial productivity.
  • the equilibrium swelling degree in water (30 ° C.) of the PVA film used in the present invention is preferably in the range of 125% to 250%, more preferably 150% to 200%. If the equilibrium swelling degree of the PVA film is below this range, the permeability of water and fertilizer components will be insufficient, and the growth rate of the plant will be slow. On the other hand, when the equilibrium swelling degree of the PVA film exceeds this range, the strength of the PVA film in water decreases and it becomes difficult to withstand penetration of plant roots.
  • the equilibrium swelling degree of PVA film in water (30 ° C.) is measured as follows. First, a dry PVA film is cut into a 20 cm ⁇ 20 cm square, and its weight (a) g is measured. Next, the cut-out PVA film is immersed in 30 ° C. water and left to stand for 30 minutes. The film is taken out from the water, excess water adhering to the film surface is quickly wiped off, and the weight (b) g of the film is measured. The equilibrium swelling degree is calculated as b / a x 100%.
  • the dynamic viscoelastic behavior required for the PVA film of the present invention is that the storage elastic modulus (G ′) of the film in an equilibrium swelling state in water (30 ° C.) is 5,000 Pa to 100,000 Pa. More preferably, it is the range of 10,000 Pa or more and 80,000 Pa or less.
  • the dynamic viscoelastic behavior required for the PVA-based film of the present invention is that the loss elastic modulus (G ′′) of the film in an underwater (30 ° C.) equilibrium swelling state is 100 Pa or more and 10,000 Pa or less. The range is from 300 Pa to 8,000 Pa.
  • the dynamic viscoelastic behavior required for the PVA film of the present invention is the ratio of loss elastic modulus (G ′′) to storage elastic modulus (G ′) (G ′′ / G ′) of the film in an equilibrium swelling state in water (30 ° C.). ) Is a loss tangent (tan ⁇ ) of 0.005 or more and 0.2 or less. More preferably, it is the range of 0.01 or more and 0.1 or less.
  • the PVA film swollen with water is a hydrogel and behaves as a viscoelastic body.
  • a viscoelastic body When a viscoelastic body is deformed by applying stress, most of the applied force is stored as energy of internal deformation and becomes a driving force for restoration when the stress is removed, but some of the internal molecular movement accompanying strain is part of it. It is consumed due to friction and eventually turns into heat.
  • a value indicating the magnitude of the internal friction is a loss tangent (Tan ⁇ ).
  • the loss tangent (Tan ⁇ ) of the PVA film swollen with water is small has a strong property of returning to its original state even when it is deformed.
  • a large loss tangent (Tan ⁇ ) means that when a stress to be deformed is applied, molecular migration is likely to occur in the PVA film swollen with water, and the stress is relaxed by the deformation.
  • the penetration of PVA film by plant roots is considered to occur as follows.
  • the roots that are in close contact with the film seek the nutrients present on the lower surface of the film and stretch while dragging the film toward the lower surface of the film.
  • stress is generated in the film due to elongation of the roots.
  • the PVA film itself is deformed by molecular movement inside the PVA film in an attempt to relieve stress due to root elongation.
  • the root penetrates the film having a large loss tangent (Tan ⁇ ). That is, the PVA film swollen with water leads to ductile fracture.
  • the dynamic viscoelastic behavior of the underwater equilibrium swollen PVA film is observed as follows. That is, storage modulus (G '), loss modulus (G "), loss tangent (measured when a 1Hz vibration is applied to a film immersed in water at 30 ° C for 30 minutes in a 30 ° C saturated water vapor environment ( tan ⁇ ) is measured.
  • the dynamic viscoelastic behavior of an underwater equilibrium swollen PVA film is observed using a stress-controlled viscoelasticity measuring apparatus (Rheometer AR-500, manufactured by TA Instruments Japan Co., Ltd.). . Shape and dimensions of measurement cell: Stainless steel parallel disk (diameter: 4.0 cm), aluminum solvent trap used. Observation frequency: 1 Hz. Measurement temperature: 30 ° C. Applied stress and displacement: in the linear region. Specifically, the applied stress is, for example, 10 Pa to 200 Pa, and the displacement is 10 ⁇ 6 radians to 10 ⁇ 5 radians.
  • the present invention aims to perform plant cultivation using the PVA film obtained as described above in a plant cultivation system, and the plant cultivation system and the plant cultivation method will be specifically described.
  • the PVA film of the present invention is indispensable as a component of the plant cultivation system of the present invention, but can be roughly divided into two types depending on the difference in nutrient solution holding means.
  • the first type is that the nutrient solution holding means is a hydroponics tank, and the nutrient solution arranged so as to come into contact with the lower surface of the PVA film of the present invention is accommodated in the hydroponics tank.
  • This is a plant cultivation system.
  • Patent Document 1 Such a system is disclosed in Patent Document 1.
  • the nutrient solution holding means has a water-impermeable surface, and the PVA film of the present invention is laid thereon, and between the PVA film of the present invention and the nutrient solution holding means.
  • a plant cultivation system characterized by further comprising a nutrient solution supply means for supplying the nutrient solution continuously or intermittently.
  • a typical nutrient solution supply means is the PVA film of the present invention and the nutrient solution holding system.
  • a drip irrigation tube placed between the means. That is, this second type of cultivation system is a system having a multilayer structure in which the nutrient solution holding means is a base material layer and the PVA film of the present invention is laminated directly or indirectly thereon. Such a system is disclosed in Patent Document 5.
  • FIG. 1 is a schematic cross-sectional view showing a basic aspect of a first type of plant cultivation system.
  • a water tank (2) is installed under the PVA film (1) of the present invention, and a nutrient solution (3) containing a fertilizer component is accommodated in the water tank.
  • the nutrient solution (3) is absorbed by the PVA film (1) of the present invention, and the root (5) of the plant (4) is in close contact with the upper surface of the PVA film (1) of the present invention. Absorbs water and fertilizer components contained in PVA film (1).
  • a support for plant cultivation such as soil (6) and / or a water-permeable or low-permeability evaporation suppressing member (for example, mulching described later) on the PVA film (1).
  • Material) or fixed planting board (7) can be arranged.
  • the plant cultivation support (6) is disposed on the PVA film (1), the effect of protecting the roots of the plant can be obtained.
  • an evaporation suppression member or a fixed planting plate (7) is disposed, water vapor evaporating from the PVA film (1) into the atmosphere is condensed on the surface of the evaporation suppression member or the plant cultivation support (6). Plants can be used with water vapor as water.
  • the nutrient solution (3) containing the fertilizer component is supplied to the plant via the PVA film (1) of the present invention.
  • the surface of water or nutrient solution is in contact with the air layer, so that bacteria and fungi in the air It is easily mixed, and bacteria and fungi propagate to the roots of plants, causing significant growth problems and plant diseases.
  • the root of the plant absorbs oxygen dissolved in water, so the amount of dissolved oxygen in water used for cultivation exceeds a certain level. There was a need to keep.
  • the root of the plant is in the air layer on the PVA film (1) of the present invention, so that oxygen can be absorbed from the air.
  • means for fine mist spraying (8) for example, a valve
  • water, nutrient solution or agricultural chemical diluent can be sprayed intermittently.
  • plant roots cultivated on the PVA film (1) of the present invention try to absorb nutrient solution through the PVA film (1) of the present invention, thereby And the PVA film (1) of the present invention are substantially integrated.
  • PVA film of the present invention In the plant cultivation system of the present invention, the PVA film of the present invention for cultivating a plant thereon is essential. Although the production method and characteristic physical properties of the PVA film of the present invention used in the present invention have been described above, those satisfying all the various physical properties described later are preferable.
  • the PVA-based film of the present invention is a film that can be “substantially integrated with the roots of a plant” that is being cultivated.
  • the film “which can be substantially integrated with the roots of the plant body” means that when the plant is cultivated for 35 days on the PVA film of the present invention of the plant cultivation system of the present invention, the PVA film of the present invention is It is a film having a peel strength of 10 g or more for peeling from the roots of cultivated plants.
  • the “integration test” for measuring the integration of the root and the film can be performed as follows.
  • the film to be tested 200 x 200mm
  • seedlings of sunny lettuce (one real leaf) 2 are planted.
  • the rice cake is placed in a bowl filled with 240 to 300 g of nutrient solution, and the film is brought into contact with the nutrient solution to grow seedlings.
  • Cultivation is carried out in a house, using natural light, at a temperature of 0 to 25 ° C., and a humidity of 50 to 90% RH for 35 days.
  • the stems and leaves are cut at the roots of the cultivated plants, and the film is cut into a width of 5 cm (length: about 20 cm) so that the stems of the film with which the roots are closely attached are centered to form a test piece.
  • the (BA) gram obtained by subtracting the initial weight from this value is the peeling load of 5 cm in width, and this peeling load is the peeling strength.
  • the peel strength of the PVA film of the present invention used in the present invention is preferably 10 g or more, more preferably 30 g or more, and most preferably 100 g or more.
  • the plant When a plant is cultivated using the plant cultivation system of the present invention, the plant absorbs the fertilizer as ions through the film. Therefore, the salt (ion) permeability of the film used affects the amount of fertilizer component given to the plant.
  • a film having a difference in degree (EC) of 4.5 dS / m or less is preferable.
  • the difference in electrical conductivity between water and salt water is more preferably 3.5 dS / m or less, and most preferably 2.0 dS / m or less.
  • Electrical conductivity is an index of the amount of salts (or ions) dissolved in the liquid and is also called specific conductivity.
  • EC Electrical conductivity
  • Siemens S
  • S Siemens
  • mS / cm which is a unit of 1/1000, is used (in the international unit system, dS / m (d is deci)).
  • the ion permeability of the film can be measured as follows. 10 g of commercially available salt is dissolved in 2000 ml of water to make 0.5% salt water (EC: about 9 dS / m). Using the “Zaru Bowl Set”, place the film to be tested (size: 200-260 ⁇ 200-260 mm) on the sieve and add 150 g of water onto the film. On the other hand, 150 g of the above-mentioned salt water is added to the bowl side, and the entire system obtained is wrapped with a food wrap (polyvinylidene chloride film, trade name: Saran Wrap (registered trademark), manufactured by Asahi Kasei Co., Ltd.) to prevent evaporation of moisture.
  • a food wrap polyvinylidene chloride film, trade name: Saran Wrap (registered trademark), manufactured by Asahi Kasei Co., Ltd.
  • the PVA film of the present invention preferably exhibits a predetermined glucose permeability from the viewpoint of facilitating nutrient absorption (organic matter) of plant roots via the PVA film of the present invention.
  • This film with excellent glucose permeability is obtained at the cultivation temperature of water and glucose solution when water and 5% glucose aqueous solution are opposed to each other for 3 days (72 hours) through the PVA film of the present invention.
  • It is a film having a difference in measured density (Brix%) of 4 or less, more preferably 3 or less, more preferably 2 or less, and most preferably 1.5 or less.
  • the glucose permeability of the film can be measured as follows. A 5% glucose solution is prepared using commercially available glucose (glucose). Using the same “Zaru Bowl Set” as in the ion permeability test above, place the PVA film of the present invention to be tested (size: 200 to 260 ⁇ 200 to 260 mm) on the sieve and add 150 g of water onto the film. . On the other hand, 150 g of the above glucose solution is added to the bowl side, and the entire system obtained is wrapped in a food wrap (polyvinylidene chloride film, trade name: Saran Wrap (registered trademark), manufactured by Asahi Kasei Co., Ltd.) to prevent moisture evaporation. . In this state, the sample is left at room temperature, and the sugar content (Brix%) on the water side and glucose solution side is measured with a saccharimeter every 24 hrs.
  • a food wrap polyvinylidene chloride film, trade name: Saran Wrap (registered trademark), manufactured by
  • the PVA film of the present invention preferably has a water impermeability of 10 cm or more as a water pressure resistance.
  • a water impermeability of 10 cm or more as a water pressure resistance.
  • the water pressure resistance can be measured by a method according to JIS L1092 (Method B).
  • the water pressure resistance of the PVA film of the present invention used in the present invention is preferably 10 cm or more, more preferably 20 cm or more, still more preferably 30 cm or more, and particularly preferably 200 cm or more.
  • a plant cultivation support such as soil can be disposed on the PVA film of the present invention in order to protect the roots of the plant body.
  • or culture medium normally used can be used. Examples of such soil or medium include soil used for soil cultivation and medium used for hydroponics.
  • inorganic supports for plant cultivation include natural sand, rubble, and pumice sand, and processed products (high temperature firing etc.) include rock wool, vermiculite, perlite, ceramic, rice husk charcoal, etc.
  • processed products include rock wool, vermiculite, perlite, ceramic, rice husk charcoal, etc.
  • the support for cultivation include natural peat moss, coconut fiber, bark culture medium, rice husk, neat and sotan, and synthetic granular phenol resins. These may be used alone or in combination as appropriate. You can also. Synthetic fiber cloth or non-woven fabric can also be used as a plant cultivation support.
  • ⁇ Minimum fertilizer and trace elements may be added to the plant cultivation support.
  • the root of the plant grows to the extent that water or nutrients can be absorbed from the water / nutrient solution in contact with the PVA film, in other words, the root and the PVA film of the present invention Until these are integrated, it is desirable to add nutrients to the plant cultivation support on the PVA film of the present invention as "minimum required fertilizer and trace elements" mentioned here.
  • the plant cultivation system of the present invention includes nutrient solution holding means for holding the nutrient solution under the PVA film of the present invention.
  • nutrient solution holding means for holding the nutrient solution under the PVA film of the present invention.
  • either a container-shaped nutrient solution holding means for storing a nutrient solution or a nutrient solution holding layer functioning as a base material layer having a water-impermeable surface can be used.
  • the container-shaped nutrient solution holding means for storing the nutrient solution is not particularly limited as long as it is a container capable of holding a necessary amount of nutrient solution, and the material thereof is light weight, easy moldability and low cost.
  • general-purpose plastics such as polystyrene, polypropylene, polyvinyl chloride, polyethylene, and polyacrylate can be suitably used.
  • a conventionally used hydroponics tank can be used.
  • the water-impermeable surface of the nutrient solution holding layer is not particularly limited as long as it is made of a material that does not allow water to pass through, and examples thereof include synthetic resin, wood, metal, and ceramic.
  • the shape of the nutrient solution holding layer is not particularly limited, and examples thereof include a film shape, a sheet shape, a plate shape, and a box shape.
  • the nutrient solution supply means is not particularly limited as long as it is a means conventionally used for continuous or intermittent supply of water or nutrient solution.
  • a drip irrigation tube also referred to as “drip tube” capable of supplying a nutrient solution little by little.
  • the water-absorbing material is further mixed with the PVA film of the present invention. It can be placed between the permeable surfaces.
  • the water-absorbing material is basically not particularly limited as long as it is a material that absorbs and holds water. Examples include sponges and non-woven fabrics made from synthetic resins, fabrics made from woven fabrics, plant fibers, chips, powders, or materials commonly used as plant supports such as peat moss and moss. Can also be used.
  • plants that can be cultivated using the plant cultivation system of the present invention there is no particular limitation on the plants that can be cultivated using the plant cultivation system of the present invention, and all plants that are normally grown in the fields of agriculture, forestry, and horticulture can be targeted.
  • the cultivation method of the present invention is (1) the PVA film of the present invention for cultivating a plant thereon, a nutrient solution for promoting the growth of the plant, and disposed so as to contact the lower surface of the film A plant culture system comprising a nutrient solution and a nutrient solution holding means for holding the nutrient solution under the film is provided. (2) The PVA film of the present invention in the system A plant cultivation method comprising cultivating a plant on the film by placing the plant on the substrate and (3) contacting the nutrient solution with the plant through the film.
  • the plant can be placed in the seed or seedling state on the PVA film of the present invention that has absorbed the nutrient solution.
  • the plant When seeded on the film in a seed state, it is necessary to germinate and root first, and a small amount of irrigation necessary for seed germination and rooting is performed.
  • a large amount of water is present on the film, the integration of the roots of the plant and the film is hindered, so it is necessary to keep the minimum watering necessary for germination and rooting of seeds.
  • the plant cultivation support having high water retention is arranged on the film, it is easy to maintain a wet state around the root while avoiding the presence of a large amount of moisture on the film as described above. preferable.
  • PVA film production example Example 1 Polyvinyl alcohol in which 40 parts of PVA (average saponification degree 99.7 mol%, average polymerization degree 1700, 4% aqueous solution viscosity (25 ° C.) 40 mPa ⁇ s, sodium acetate content 0.3%) is dissolved in 60 parts of water
  • the cooled film was peeled off from the cast roll and dried for 30 seconds using 10 continuous rotary heating rolls adjusted to 90 ° C. to prepare a PVA film having a moisture content of 25%.
  • the PVA film is stretched 3 times in the longitudinal direction, then stretched 3.5 times in the transverse direction by a tenter stretching machine to form a biaxially stretched PVA film, and then heat treated at 130 ° C. for 8 seconds (first stage heat treatment). Subsequently, a heat treatment (second-stage heat treatment) was performed at 170 ° C. for 8 seconds to obtain a biaxially stretched PVA film (F-1, thickness 30 ⁇ m) having a water content of 0.8%.
  • the obtained film having a thickness of 30 ⁇ m was cut into a square having a winding direction of 20.0 cm and a width direction of 20.0 cm, and its weight was measured to be 1.55 g.
  • the weight was 2.85 g.
  • Example 2 In Example 1, a water content of 0.8 was obtained in the same manner as in Example 1 except that the speed after the cast roll cooled to 5 ° C. was changed to 0.75 times to prepare a PVA film having a water content of 25%. % Biaxially stretched PVA film (F-2, thickness 40 ⁇ m). When the equilibrium swelling degree in water (30 ° C.) was determined in the same manner as in Example 1, it was calculated to be 183%.
  • Example 3 In Example 1, after obtaining a biaxially stretched PVA film, heat treatment was performed at 145 ° C. for 8 seconds (first-stage heat treatment), followed by heat treatment at 180 ° C. for 8 seconds (second-stage heat treatment). In the same manner as in Example 1, a biaxially stretched PVA film (F-3, thickness 30 ⁇ m) having a water content of 0.8% was obtained. When the equilibrium swelling degree in water (30 ° C.) was determined in the same manner as in Example 1, it was calculated to be 152%.
  • Example 4 In Example 3, a water content of 0.8 was obtained in the same manner as in Example 3 except that the speed after the cast roll cooled to 5 ° C. was changed to 0.75 times to prepare a PVA film having a water content of 25%. % Biaxially stretched PVA film (F-4, thickness 40 ⁇ m). When the equilibrium swelling degree in water (30 ° C.) was determined in the same manner as in Example 1, it was calculated to be 152%.
  • Comparative Example 1 (F-5) PVA (average saponification degree 99.7 mol%, average polymerization degree 1700, 4% aqueous solution viscosity (25 ° C.) 40 mPa ⁇ s, sodium acetate content 0.3%), plasticizer 12 parts glycerin, surfactant As a solution, 1.2 parts of polyoxyethylene sorbitan monolaurate was dissolved in water to obtain an 18% aqueous dispersion.
  • Comparative Example 2 (F-6) A PVA film (F-6, thickness 60 ⁇ m) was obtained in the same manner as in Comparative Example 1 except that the film was formed at a speed of 12 m / min in Comparative Example 1. The obtained film (60 ⁇ m) was separately dried at 200 ° C. for 60 seconds to obtain a heat-treated film. When the equilibrium swelling degree in water (30 ° C.) was determined in the same manner as in Example 1, it was calculated to be 127%.
  • PVA average saponification degree 99.7 mol%, average polymerization degree 1700, 4% aqueous solution viscosity (25 ° C.) 40 mPa ⁇ s, sodium acetate content 0.3%)
  • the cooled film was peeled off from the cast roll and dried for 30 seconds using 10 continuous rotary heating rolls adjusted to 90 ° C. to prepare a PVA film having a moisture content of 25%.
  • the polyvinyl alcohol film was stretched 3 times in the longitudinal direction, then stretched 3.5 times in the transverse direction by a tenter stretching machine to form a biaxially stretched PVA film, and then heat treated at 165 ° C.
  • Comparative Example 4 (F-8) The equilibrium swelling degree in water (30 ° C.) of “Imec Film” (thickness: 65 ⁇ m) sold by Meviol Co., Ltd. was calculated in the same manner as in Example 1, and was calculated to be 148%.
  • Comparative Example 5 The equilibrium swelling degree in water (30 ° C.) of “Imec Film 2” (thickness 60 ⁇ m) sold by Meviol Co., Ltd. was calculated in the same manner as in Example 1 and was calculated to be 153%.
  • Example 6 Measurement of Dynamic Elastic Modulus
  • the film samples (F-1) to (F-9) of Examples 1 to 4 and Comparative Examples 1 to 5 were each immersed in water at 30 ° C. for 30 minutes, cut into a 4 cm diameter circle, and stress-controlled viscoelasticity Dynamic viscoelastic behavior was observed using a measuring device (Rheometer AR-500, manufactured by TA Instruments Japan Co., Ltd.).
  • the measurement conditions were as follows.
  • Shape and dimensions of measurement cell Stainless steel parallel disk (diameter: 4.0 cm), aluminum solvent trap used. Observation frequency: 1 Hz. Measurement temperature: 30 °C Applied stress and displacement: in the linear region. Specifically, the applied stress is 10 Pa to 200 Pa, and the displacement is 10 ⁇ 6 radians to 10 ⁇ 5 radians.
  • the PVA film in equilibrium swelling state is taken out of water, cut into a 4 cm diameter circle in accordance with a stainless steel parallel disk (diameter: 4.0 cm), which is a measurement device, and the solvent remains in close contact with the measurement device.
  • a trap and water as a solvent were placed on it and attached to the measuring device.
  • the measurement stage was raised, the PVA film to be measured was sandwiched between the measurement device and the measurement stage, and the gap was adjusted so that the film was in close contact with the measurement device and the measurement stage. At this time, care was taken not to compress the film so that no slip would occur between the PVA film and the measuring device and measuring stage.
  • the temperature of the measurement stage was set to 30 ° C., and dynamic viscoelasticity was observed under stress and displacement within the linear region at an observation frequency of 1 Hz, and the loss tangent (tan ⁇ ) was obtained.
  • the results for each sample were compared and summarized in Table 1.
  • An A4 size PVA film obtained in the comparative example was placed. Place a coconut chip as a soil on a PVA film with a thickness of 1.5cm, sow turf seeds (Western turf “Perennial ryegrass accent
  • Example 1 the plants grew smoothly with roots on the PVA film, and the roots of the plants were prevented from penetrating the film over 150 days.
  • Comparative Example 3 since the film permeability of nutrients was low, plant growth was suppressed.
  • Comparative Examples 1, 2, 4, and 5 the strength of the film was insufficient, so that plant roots penetrated the film in a relatively short period of time.
  • the present invention can be used in a wide range of industries including plant cultivation, such as agriculture, horticulture, and pharmaceutical manufacturing.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Soil Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Hydroponics (AREA)
  • Cultivation Of Plants (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Cultivation Receptacles Or Flower-Pots, Or Pots For Seedlings (AREA)

Abstract

【課題】ポリビニルアルコール(PVA)系フィルムの下面に養液を接触させ、該フィルム上で植物を長期間栽培すると、該植物の根が該フィルムを貫通する問題があった。【解決手段】上記PVA系フィルムの水中(30℃)における平衡膨潤度が125%以上250%以下の範囲かつ水中平衡膨潤状態(30℃)での損失正接(tan δ)が0.005以上0.2以下であることを特徴とする植物栽培用システムおよび植物栽培方法を提供する。 【産業上の利用可能性】植物の病気を誘発する雑菌などからの感染を長期間回避して栽培することができるので、農業や医薬品製造分野で利用できる。

Description

植物栽培システムおよび植物栽培方法
本発明は、無孔性親水性フィルム、特にポリビニルアルコール(PVA)系フィルムを用いた、植物栽培システムおよび植物栽培方法に関する。
 従来より、本発明者らは、無孔性親水性フィルムを使用した養液栽培について研究を重ねており、以下の植物栽培システムや栽培方法について開示している:養液と接触する無孔性親水性フィルム上で、該フィルムと植物の根を一体化させて植物を栽培する植物栽培用器具および植物栽培方法(特許文献1)、上記フィルム上部にも灌水する植物栽培用器具および植物栽培方法(特許文献2)、上記フィルムが養液上を連続的に移動する植物栽培システム(特許文献3)、上記フィルムとその上部に配置される蒸発抑制部材の間に空気層を設ける植物栽培システム(特許文献4)、上記フィルムの下面側に養液を連続的に供給する手段を用いる植物栽培システム(特許文献5)。
再表2004-64499号公報 特許4425244号公報 特開2008-182909号公報 特開2008-193980号公報 特許4142725号公報
 しかしながら、上記の特許文献1~5に記載の植物栽培システムでは、長期間に亘って養液の上にその下面が養液に接触するように配置された、無孔性親水性フィルム上で根の強い植物を栽培した際、無孔性親水性フィルムに密着した植物の根が該フィルムを貫通してしまう問題があった。
植物の根が該フィルムを貫通してしまうと、植物の根が養液に直接接触することとなり、フィルム上で栽培されている植物が養液中に繁殖した細菌やウイルスに感染してしまい、植物を健全な状態で栽培することができなくなる。
また、植物の根が該フィルムを貫通してしまうと、フィルムに穴が開き、フィルム上に養液が浸水してしまうため、植物の根が根ぐされを起こし、植物を健全な状態で栽培することができなくなる。
更に、植物の根が該フィルムを貫通してしまうと、植物の根が養液に直接接触することとなり、フィルムを介して水分を吸収することによる水分ストレスを十分に与えることが出来なくなり、植物の品質が低下してしまう。
また、特許文献6に記載されるように、植物の根が該フィルムを貫通しないようにするためには、該フィルムの厚みを少なくとも60μm以上にする必要があった。フィルムの厚みを大きくすると、養液の透過速度が低下するために植物の生長が阻害されたり、フィルムのコスト上昇を招くなどの問題があった。
特開2008-61503号公報
そこで、本発明者らは、かかる現況に鑑みて鋭意研究を重ねた結果、水中所定温度(30℃)におけるポリビニルアルコール(PVA)系フィルムの平衡膨潤度が125%以上250%以下の範囲となるようにすることで、水または養液の吸収性、透過性に優れたPVA系フィルムとなることを見出した。
さらに、この特性と合わせて、該PVA系フィルムの水中所定温度におけるポリビニルアルコール(PVA)系フィルムの動的粘弾性挙動、特に周波数1Hzの損失正接(tan δ)に着目し、水中平衡膨潤状態(30℃)でのPVA系フィルムの損失正接(tan δ)を0.005以上0.2以下とすることにより、植物栽培用としてフィルム強度に優れたPVA系フィルムとなることを見出し、本発明を完成するに至った。
すなわち、本発明は、
1)植物をその上で栽培するためのポリビニルアルコール(PVA)系フィルム、該PVA系フィルムの下面に接触するように配置された養液保持手段、および該養液を、該PVA系フィルムの下に供給するための手段を含む植物栽培用システムであって;該PVA系フィルムの水中(30℃)における平衡膨潤度が125%以上250%以下の範囲かつ該PVA系フィルムの水中平衡膨潤状態(30℃)での損失正接(tan δ)が0.005以上0.2以下であることを特徴とする、植物栽培用システム。
2)該PVA系フィルムが二軸延伸されたものであることを特徴とする、上記1)に記載の植物栽培用システム。
3)該PVA系フィルムの乾燥厚さが5~100μmの範囲であることを特徴とする、上記1)または2)に記載の植物栽培用システム。
4)養液保持手段が水耕栽培用水槽であり、該PVA系フィルムの下面に接触するように配置された養液が水耕栽培用水槽に収容されてなることを特徴とする、上記1)~3)いずれかに記載の植物栽培用システム。
5)該養液保持手段が水不透過性表面を有し、その上に該PVA系フィルムが敷設されてなり、PVA系フィルムと養液保持手段との間に該養液を連続的または間歇的に供給する養液供給手段をさらに含むことを特徴とする、上記1)~3)いずれかに記載の植物栽培用システム。
6)養液供給手段が、PVA系フィルムと養液保持手段との間に設置された点滴灌水チューブであることを特徴とする、上記5)に記載の植物栽培用システム。
7)(1)植物をその上で栽培するためのPVA系フィルム、該PVA系フィルムの下面に接触するように配置された養液保持手段、および該養液を、該PVA系フィルムの下に供給するための手段を含む植物栽培用システムであって;該PVA系フィルムの水中(30℃)における平衡膨潤度が125%以上250%以下の範囲かつ該PVA系フィルムの水中平衡膨潤状態(30℃)での損失正接(tan δ)が0.005以上0.2以下であることを特徴とする植物栽培用システムを提供し、
 (2)該システム内のPVA系フィルムの上に植物を配置し、そして
 (3)該養液を、該PVA系フィルムを介して該植物に接触させることによって、該PVA系フィルムの上で植物を栽培することを包含する植物栽培方法。
水または養液の吸収性、透過性に優れ、しかもフィルム強度に優れたPVA系フィルムを用いる本発明の植物栽培システムを使用して植物の栽培を行うと、植物の病気を誘発する雑菌などからの感染を回避して、また根ぐされなどの原因となる根の酸素欠乏状態を招くことなく、効率的且つ安定的に、長期間に亘り十分な量の養分を植物の根から吸収させることができ、それにより長期間に亘り持続的に植物の生長を著しく促進させることが可能となる。
以下、本発明について具体的に説明する。
本発明で用いられるPVA系フィルムは、PVAを原料とするもので、かかるPVAとしては、特に限定されず、公知の方法で製造することができる。すなわち、ビニルエステル系化合物を重合して得られたビニルエステル系重合体をケン化して得られるものである。
かかるビニルエステル系化合物としては、ギ酸ビニル、酢酸ビニル、トリフルオロ酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、カプリン酸ビニル、ラウリル酸ビニル、バーサティック酸ビニル、パルミチン酸ビニル、ステアリン酸ビニル等が単独又は併用で用いられるが、実用上は酢酸ビニルが好適である。
また、本発明においては、本発明の目的を阻害しない範囲において、他の単量体を0.5~10モル%程度共重合させることも可能で、かかる単量体としては、例えばプロピレン、イソブチレン、α-オクテン、α-ドデセン、α-オクタデセン等のオレフィン類、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、無水マレイン酸、イタコン酸等の不飽和酸類あるいはその塩あるいはモノ又はジアルキルエステル等、アクリロニトリル、メタアクリロニトリル等のニトリル類、アクリルアミド、メタクリルアミド等のアミド類、エチレンスルホン酸、アリルスルホン酸、メタアリルスルホン酸等のオレフィンスルホン酸あるいはその塩、アルキルビニルエーテル類、N-アクリルアミドメチルトリメチルアンモニウムクロライド、アリルトリメチルアンモニウムクロライド、ジメチルジアリルアンモニウムクロリド、ジメチルアリルビニルケトン、N-ビニルピロリドン、塩化ビニル、塩化ビニリデン、ポリオキシエチレン(メタ)アリルエーテル、ポリオキシプロピレン(メタ)アリルエーテルなどのポリオキシアルキレン(メタ)アリルエーテル、ポリオキシエチレン(メタ)アクリレート、ポリオキシプロピレン(メタ)アクリレート等のポリオキシアルキレン(メタ)アクリレート、ポリオキシエチレン(メタ)アクリルアミド、ポリオキシプロピレン(メタ)アクリルアミド等のポリオキシアルキレン(メタ)アクリルアミド、ポリオキシエチレン(1-(メタ)アクリルアミド-1,1-ジメチルプロピル)エステル、ポリオキシエチレンビニルエーテル、ポリオキシプロピレンビニルエーテル、ポリオキシエチレンアリルアミン、ポリオキシプロピレンアリルアミン、ポリオキシエチレンビニルアミン、ポリオキシプロピレンビニルアミン、3,4-ジアセトキシ-1-ブテン、ビニルエチルカーボネート、酢酸イソプロペニル等を挙げることができる。
重合(あるいは共重合)を行うに当たっては、特に制限はなく公知の重合方法が任意に用いられるが、通常は、メタノール、エタノールあるいはイソプロピルアルコール等のアルコールを溶媒とする溶液重合が実施される。勿論、乳化重合、懸濁重合も可能である。
また、重合反応は、アゾビスイソブチロニトリル、過酸化アセチル、過酸化ベンゾイル、過酸化ラウロイルなどの公知のラジカル重合触媒を用いて行われ、反応温度は35℃~200℃(さらに好ましくは50~80℃)程度の範囲から選択される。
得られたビニルエステル系重合体をケン化するにあたっては、該重合体をアルコール又はアルコール/脂肪酸エステル系混合溶媒に溶解してアルカリ触媒の存在下に行なわれる。アルコールとしては、メタノール、エタノール、ブタノール等が挙げられる。かかる脂肪酸エステル系溶媒としては、酢酸メチル、酢酸エチル、酢酸ブチル等を挙げることができ、他にベンゼンやヘキサン等を併用してもよい。アルコール中の共重合体の濃度は、20~50重量%の範囲から選ばれる。
ケン化触媒としては、水酸化ナトリウム、水酸化カリウム、ナトリウムメチラート、ナトリウムエチラート、カリウムメチラート等のアルカリ金属の水酸化物やアルコラートの如きアルカリ触媒を用いることができる。かかる触媒の使用量はビニルエステル系共重合体に対して1~100ミリモル当量にすればよい。なお、場合によっては、塩酸、硫酸、p-トルエンスルホン酸等の酸触媒によりケン化することも可能である。
PVAのケン化度は90モル%以上(さらには95モル%以上、特には99モル%以上)のものが好ましく、かかるケン化度が90モル%未満では、耐水性が低下することがあり好ましくない。
また、PVAの平均重合度は、1100以上(さらには1300~4500、特には1300~4200)ものが好ましく、かかる平均重合度が1100未満ではフィルムとした場合の強度が得られず、破断等が発生しやすくなる場合があり好ましくない。なお、かかる平均重合度は、JIS K6726に準拠するものである。
さらに、本発明に用いるPVAは、耐熱性や着色防止能の向上のために、含有される酢酸ナトリウムの量を0.8重量%以下(さらには0.5重量%以下)に調整することが好ましい。
上記の如きPVAを用いて、フィルムを得るにあたっては、特に制限はなく、公知の方法により製造することができ、以下に製造例を挙げるが、これに限定されるものではない。フィルムの製造(製膜)に用いるPVA溶液としては、PVA含有量(濃度)が5~70重量%(さらには10~60重量%)のPVA水溶液を調製すればよい。
また、かかる水溶液には、必要に応じてエチレングリコール、グリセリン、ポリエチレングリコール、ジエチレングリコール、トリエチレングリコール等の多価アルコール類、フェノール系、アミン系等の抗酸化剤、リン酸エステル類等の安定剤、着色料、香料、増量剤、消包剤、剥離剤、紫外線吸収剤、無機粉体、界面活性剤等の通常の添加剤を適宜配合しても差し支えない。さらに、澱粉、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース等のポリビニルアルコール以外の水溶性樹脂を混合してもよい。
次いで、上記で調製したPVA水溶液は、製膜機(押出機)により、製膜される。押出機での溶融混練温度は、55~140℃(さらには55~130℃)が好ましく、かかる温度が55℃未満ではフィルム肌の不良を招き、140℃を超えると発泡現象を招き好ましくない。押出製膜されたフィルムは、次いで乾燥されるが、このときの乾燥温度は、70~120℃(さらには80~100℃)で行うことが好ましく、かかる温度が70℃未満では乾燥に時間がかかりすぎたり残存水分が過剰となり、逆に120℃を超えるとフィルムの柔軟性が失われて後の延伸工程に支障をきたす場合があり好ましくない。
尚、PVAの製膜において、最初に調整される水溶液は、そのまま製膜に用いることも出来るが、これを一旦含水状態でペレット化あるいはフレーク化してから製膜機に供給して押出製膜することも可能である。
かくして、本発明の植物栽培システムに用いるPVA系フィルムが得られるのであるが、本発明においては、かかるフィルムが延伸されていることが、可撓性、機械的強度の物性を安定付与できる点で好ましく、かかる延伸方法について説明する。
延伸するにあたっては、縦(機械)方向に一軸延伸してもよいが、縦・横両方向に二軸延伸することが、上記の物性をより改善することができ好ましい。かかる二軸延伸は、逐次二軸延伸あるいは同時二軸延伸のどちらでもよく、二軸延伸するにあたっては、上記で得られたPVA系フィルムの含水率5~30重量%(さらには20~30重量%)に調整しておくことが好ましく、かかる含水率がこれらの範囲外では、延伸倍率を充分に高めることができず好ましくない。かかる含水率の調整にあたっては特に制限はなく、上記のPVA系フィルムの乾燥時に含水率を調整したり、含水率5重量%未満のPVA系フィルムを水に浸漬あるいは調湿等を施して含水率を調整したりする方法等を挙げることができる。
延伸倍率については、特に制限はないが、縦方向の延伸倍率が1.5~5.0、好ましくは2.0~5.0倍、横方向の延伸倍率が1.5~5.0、好ましくは2.0~5.0倍であることが好ましく、該縦方向の延伸倍率が1.5倍未満では延伸による物性向上、即ち水中膨潤状態での損失正接(tanδ)減少が得難く、5.0倍を超えるとフィルムが縦方向へ裂けやすくなり好ましくない。また、横方向の延伸倍率が1.5倍未満では延伸による物性向上、即ち水中膨潤状態での損失正接(tanδ)減少が得難く、5.0倍を超えるとフィルムが破断することとなり好ましくない。
二軸延伸を施した後は、熱固定を行うことが好ましく、かかる熱固定の温度は、ポリビニルアルコールの融点より低い温度を選択することが好ましい。ただし、融点より80℃以上低い温度の場合は寸法安定性が悪く、収縮率が大きくなり、一方融点より高い場合はフィルムの厚み変動が大きくなり好ましくない。例えば、ポリビニルアルコールが酢酸ビニル単独重合体のケン化物である場合の熱固定温度は、140~250℃が好ましく、また、熱固定時間は1~30秒間であることが好ましく、より好ましくは5~10秒間である。
熱固定温度が高いほど、熱固定時間が長いほどPVA系フィルムの、水中膨潤状態での損失正接(tanδ)は小さくなる傾向があるので、適宜熱固定温度と熱固定時間を調節することにより、所望の物性値、即ち水中膨潤状態での損失正接(tanδ)を得ることができる。熱固定は1段階で行っても、異なる温度、時間による複数段階に分けて行っても良いが、所望の物性値、即ち水中膨潤状態での損失正接(tanδ)を得るには複数段階に分けて行うことが好ましい。
更にこの二軸延伸PVA系フィルムに必要に応じて水洗および乾燥の加工を施すが、水洗の方法および乾燥の方法については特に限定されない。例えば、適当な温度の水浴中に浸漬して含水させた後、常温の風あるいは高温の風を与えて乾燥することで水分量を調節することが考えられる。
また、本発明で用いるPVA系フィルムの厚みは、5~100μm(さらには10~60μm)が好ましい。この範囲を下回るとPVA系フィルムが植物の根の貫通に耐え難くなり、この範囲を上回ると肥料成分の透過に時間を要するようになる。また、工業的な生産性でもこの範囲が有利である。
本発明で用いるPVA系フィルムの水中(30℃)における平衡膨潤度は、125%以上250%以下の範囲であることが好ましく、150%以上200%以下であることがより好ましい。PVA系フィルムの該平衡膨潤度がこの範囲を下回ると、水と肥料成分の透過性が不十分となり、植物の生長速度が遅くなる。一方、PVA系フィルムの該平衡膨潤度がこの範囲を上回ると、水中におけるPVA系フィルムの強度が低下し、植物の根の貫通に耐え難くなる。
ここで、PVA系フィルムの水中(30℃)における平衡膨潤度は以下のように測定する。まず、乾燥状態のPVA系フィルムを20cmx20cmの正方形に切り出し、その重量(a)gを測定する。次いで、切り出したPVA系フィルムを30℃の水に浸漬し、30分間静置する。該フィルムを水中から取り出し、フィルム表面に付着した余剰の水分を素早く拭き取り、該フィルムの重量(b)gを測定する。平衡膨潤度はb/a x 100%で算出する。
本発明のPVA系フィルムに求められる動的粘弾性挙動は、水中(30℃)平衡膨潤状態におけるフィルムの貯蔵弾性率(G’)が5,000Pa以上100,000Pa以下となることである。さらに好ましくは、10,000Pa以上80,000Pa以下の範囲である。
本発明のPVA系フィルムに求められる動的粘弾性挙動は、水中(30℃)平衡膨潤状態におけるフィルムの損失弾性率(G”)が100Pa以上10,000Pa以下となることである。さらに好ましくは、300Pa以上8,000Pa以下の範囲である。
本発明のPVA系フィルムに求められる動的粘弾性挙動は、水中(30℃)平衡膨潤状態におけるフィルムの損失弾性率(G”)と貯蔵弾性率(G’)の比(G”/ G’)である損失正接(tanδ)が0.005以上0.2以下となることである。さらに好ましくは、0.01以上0.1以下の範囲である。
水中(30℃)平衡膨潤状態における本発明のPVA系フィルムの損失正接(tanδ)が上記の範囲を上回ると、植物の根による貫通が起こり易くなるので好ましくない。一方、水中(30℃)平衡膨潤状態における本発明のPVA系フィルムの損失正接(tanδ)が上記の範囲を下回ると、フィルムの柔軟性が乏しくなり、フィルムの脆性破壊が起こり易くなるので好ましくない。
水で膨潤したPVA系フィルムは、ハイドロゲルであり粘弾性体として挙動する。粘弾性体に応力を加えて変形させると、与えられた力の大部分は内部変形のエネルギーとして貯えられ、応力の除去に際し復元の原動力となるが、一部は歪みに伴う内部の分子移動の摩擦のために消費され、最終的に熱に変わる。そして、この内部摩擦の大小を示す値が損失正接(Tanδ)である。
従って、水で膨潤したPVA系フィルムの損失正接(Tanδ)が小さいということは、変形させても元に戻る性質が強いことになる。逆に損失正接(Tanδ)が大きいということは、変形させる応力が加えられると水で膨潤したPVA系フィルム内で分子移動が起こり易く、変形によって応力が緩和されるということになる。
植物の根によるPVA系フィルムの貫通は、以下のようにして発生するものと考えられる。該フィルムに密着した根は該フィルム下面に存在する養分を求めて、該フィルム下面方向に該フィルムを引き摺りながら伸張する。この時、該フィルムには根の伸張による応力が発生する。損失正接(Tanδ)が大きいPVAフィルムの場合は根の伸張による応力を緩和しようとして、該PVAフィルム内部の分子移動により該PVAフィルム自体が変形してしまう。この様なPVAフィルムの変形が続くことにより、損失正接(Tanδ)が大きいフィルムを根が貫通してしまう。すなわち、水で膨潤したPVA系フィルムは延性破壊に至る。
一方、水で膨潤したPVA系フィルムの損失正接(Tanδ)が小さい場合、該フィルムに密着した根は伸張の際に該フィルムに応力を与えるが、その大部分は該フィルム内部変形のエネルギーとして貯えられる。根は生長しながら新たな接着点を探して伸張する。新たな接着点に根の生長点が接着することにより、植物の根がPVA系フィルムに与えていた応力は除去され、該フィルムは内部に貯えたエネルギーにより復元する。このように水で膨潤したPVA系フィルムの損失正接(Tanδ)が小さい場合、植物の根による貫通が回避されるものと考えられる。
ここで、水中平衡膨潤PVA系フィルムの動的粘弾性挙動は次のようにして観測される。即ち、30℃の水に30分間浸漬したフィルムに、30℃飽和水蒸気環境下で1Hzの振動を与えた時に測定される貯蔵弾性率(G’)、損失弾性率(G”)、損失正接(tanδ)を測定する。
本発明では、ストレス制御型粘弾性測定装置(ティー・エイ・インスツルメント・ジャパン株式会社製、レオメーター AR-500)を用いて、水中平衡膨潤PVA系フィルムの動的粘弾性挙動を観測する。
測定用セルの形状・寸法:ステンレス製平行円盤(直径4.0cm)、アルミ製ソルベントトラップ使用。
観測周波数:1Hz。
測定温度:30℃。
適用ストレス及び変位:線形領域内。具体的には、適用ストレスとして例えば10Pa~200Pa、変位として10-6ラジアン~10-5ラジアン。
具体的な操作としては、
1)測定対象となるPVA系フィルムを30℃の水に30分間浸漬する。
2)上記操作により平衡膨潤状態となったPVA系フィルムを取り出し、測定デバイスであるステンレス製平行円盤(直径4.0cm)に合わせて直径4cmの円形に切り取る。
3)該フィルムを測定デバイスに密着させたまま、ソルベントトラップと溶媒としての水を乗せ、測定装置に装着する。
4)測定ステージを上昇させ、測定対象となるPVA系フィルムを測定デバイスと測定ステージの間に挟み、該フィルムが測定デバイスと測定ステージに密着するようギャップを調整する。この時、PVA系フィルムと、測定デバイスおよび測定ステージの間にすべりが生じないように、またフィルムを圧縮しないように注意する。
5)測定ステージの温度を30℃に設定し、観測周波数1Hzで線形領域内となるストレスおよび変位において動的粘弾性の観測を行う。
本発明は、上記の如く得られたPVA系フィルムを植物栽培システムに用い、植物栽培を行うことを目的とするもので、かかる植物栽培システムおよび植物栽培方法について具体的に説明する。
<植物栽培システム>
 本発明の植物栽培システムの構成要素として、本発明のPVA系フィルムは必須であるが、養液保持手段の違いによって、大きく2種に分けることができる。第1のタイプは、養液保持手段が水耕栽培用水槽であり、本発明のPVA系フィルムの下面に接触するように配置された養液が水耕栽培用水槽に収容されてなることを特徴とする、植物栽培用システムである。このようなシステムについては、特許文献1に開示されている。
第2のタイプは、養液保持手段が水不透過性表面を有し、その上に本発明のPVA系フィルムが敷設されてなり、本発明のPVA系フィルムと養液保持手段との間に養液を連続的または間歇的に供給する養液供給手段をさらに含むことを特徴とする植物栽培用システムであり、養液供給手段の代表的なものが本発明のPVA系フィルムと養液保持手段との間に設置された点滴灌水チューブである。即ち、この第2のタイプの栽培システムは、養液保持手段を基材層とし、その上に直接的または間接的に本発明のPVA系フィルムが積層されてなる多層構造を有するシステムである。このようなシステムについては、特許文献5に開示されている。
 図1は、第1のタイプの植物栽培システムの基本的な一態様を示す模式断面図である。図1の例においては、本発明のPVA系フィルム(1)の下に水槽(2)が設置され、水槽内に肥料成分を含む養液(3)が収容される。該養液(3)は、本発明のPVA系フィルム(1)に吸収され、植物(4)の根(5)は、本発明のPVA系フィルム(1)の上面に密着し、本発明のPVA系フィルム(1)に含まれる水、肥料成分を吸収する。
 必要に応じて、PVA系フィルム(1)の上に土壌などの植物栽培用支持体(6)、および/または、水蒸気を通さないか、または低透過性の蒸発抑制部材(例えば、後述するマルチング材)あるいは定植板(7)を配置することができる。PVA系フィルム(1)の上に植物栽培用支持体(6)を配置すると、植物体の根を保護する効果が得られる。また、蒸発抑制部材あるいは定植板(7)を配置することによりPVA系フィルム(1)から大気中に蒸散する水蒸気を蒸発抑制部材表面あるいは植物栽培用支持体(6)中に凝結させると、凝結した水蒸気を水として植物が利用できる。
 本発明の植物栽培システムによれば、肥料成分を含む養液(3)は本発明のPVA系フィルム(1)を介して植物に供給される。これに対して、植物の根が水(または養液)に浸かっている従来の水耕栽培方法においては、水や養液の表面が空気層と接しているため、空気中の細菌や菌類が容易に混入してしまい、細菌や菌類が植物の根に繁殖して著しい生育障害や植物の病気を誘発する。
 また、植物の根が水(または養液)に浸かっている従来の水耕栽培方法においては、根は水に溶存した酸素を吸収するため、栽培に使用する水の溶存酸素量を一定以上に保つ必要があった。これに対して、本発明の植物栽培システムにおいては、植物の根は本発明のPVA系フィルム(1)の上の空気層にあるので、酸素は空気中から吸収することができる。
 さらに、必要に応じて、フィルム(1)の上部に細霧噴霧用手段(8)(例えば、バルブ)を配置し、間歇的に水、養液または農薬希釈液を噴霧することができる。このような細霧噴霧用手段(8)を配置することにより、水の間歇的噴霧による特に夏季の冷却と、養液の噴霧による環境の冷却と葉面散布による肥料成分の供給、農薬の配合された水または養液の噴霧による農薬の散布などの自動化が可能となるというメリットを得ることができる。
 本発明の植物栽培システムによれば、本発明のPVA系フィルム(1)上で栽培される植物の根が本発明のPVA系フィルム(1)を介して養液を吸収しようとして、植物の根と本発明のPVA系フィルム(1)が実質的に一体化する。フィルムと根の「一体化」を促進させるためには、該フィルム(1)の下からは養液を供給することが好ましい。 
 本発明のPVA系フィルム(1)の下面から水のみを供給した場合と比較して、養液を使用した方が、植物の生育のみならず、根とフィルムの接着強度が著しく向上する。これは、植物がフィルムを介して、水のみならず肥料成分をも吸収していることを示している。さらに、フィルムを介して水および肥料成分を効率良く吸収するためには、根がフィルム表面に強く密着することが必須であり、その結果として根とフィルムが一体化することになるものと考えられる。
 本発明のPVA系フィルム(1)と根の「一体化」が完成する前に、該フィルム上から水分を加え過ぎると、植物はフィルム上の取り易い水分を吸収して、該フィルム下からの水分を取る必要が減じ、その結果、根が該フィルムと一体化し難くなる傾向がある。従って、根が該フィルムと一体化するまでは、該フィルム上からは、過剰の水分を加えることは好ましくない。他方、根が本発明のPVA系フィルム(1)と一体化した後であれば、適宜、該フィルム上から水分/養分を与えても良い。
<植物栽培用システムの構成>
 以下、本発明の植物栽培システムにおける各部の構成について詳細に説明する。このような構成(ないしは機能)に関しては、必要に応じて、本発明者による文献(特許文献1~5)の「発明の詳細な説明」、「実施例」等を参照することができる。
(本発明のPVA系フィルム)
 本発明の植物栽培システムにおいては、植物をその上で栽培するための本発明のPVA系フィルムが必須である。本発明で使用する本発明のPVA系フィルムの製造法や特徴的な物性については先にも述べたが、さらに、後述する種々の物性をすべて満足するものが好ましい。
  (一体化試験)
 本発明のPVA系フィルムは、栽培している「植物体の根と実質的に一体化し得る」フィルムであることが重要である。「植物体の根と実質的に一体化し得る」フィルムとは、本発明の植物栽培用システムの本発明のPVA系フィルムの上で植物を35日間栽培した際に、本発明のPVA系フィルムを栽培した植物の根から剥離するための剥離強度が10g以上となるフィルムである。根とフィルムの一体化を測定するための「一体化試験」は、次のようにして実施することができる。
 「ざるボウルセット」を使い、ざる上に試験すべきフィルム(200×200mm)を乗せ、フィルムの上にバーミキュライト150g(水分73%、乾燥重量40g)を載せ、サニーレタスの幼苗(本葉1枚強)を2本植え付ける。このざるを、240~300gの養液が張られたボウル中に設置し、該フィルムを該養液と接触させ、幼苗を栽培する。栽培はハウス内で行い、自然光を使用し、気温は0~25℃、湿度は50~90%RHの条件下で35日間行う。次に、栽培した植物の根元で茎葉を切断し、根の密着したフィルムの茎がほぼ中心になるように、該フィルムを巾5cm(長さ:約20cm)に切断して試験片とする。
 ばね式手秤に市販のクリップを付け、上記で得た試験片の一方をクリップで固定して、ばね式手秤の示す重量(試験片の自重に対応=Aグラム)を記録する。次いで試験片の中心にある茎を手で持ち、下方に緩やかに引き下げて、根とフィルムが離れる(または切断される)際の重量(荷重=Bグラム)をばね式手秤の目盛りから読み取る。この値から初期の重量を差し引いた(B-A)グラムを巾5cmの引き剥がし荷重とし、この引き剥がし荷重を剥離強度とする。
 本発明において使用する本発明のPVA系フィルムの剥離強度は、10g以上であることが好ましく、30g以上であることがさらに好ましく、100g以上であることが最も好ましい。
(イオン透過性試験)
さらに本発明においては、本発明のPVA系フィルムが「植物体の根と実質的に一体化し得る」か否かを判断するための指標の1つとして、イオン透過性のバランスが挙げられる。
 本発明の植物栽培システムを使用して植物を栽培すると、植物はフィルムを通して肥料をイオンとして吸収する。従って、使用するフィルムの塩類(イオン)透過性が、植物に与えられる肥料成分の量に影響する。本発明においては、本発明のPVA系フィルムを介して水と0.5質量%塩水とを対向して4日間(96時間)接触させた際に、水と塩水の栽培温度において測定した電気伝導度(EC)の差が4.5dS/m以下となるフィルムが好ましい。
水と塩水の電気伝導度の差は、3.5dS/m以下であることがさらに好ましく、2.0dS/m以下であることが最も好ましい。このようなフィルムを用いた際には、根に対する好適な水あるいは肥料溶液を供給し、該フィルムと根との一体化を促進することが容易となる。
 電気伝導度(EC、イーシー)は、液中に溶けている塩類(あるいはイオン)量の指標であり、比導電率とも言う。ECとしては、断面積1cm2の電極2枚を1cmの距離に離したときの電気伝導度の値を使用し、単位はシーメンス(S)であり、S/cmで表す。しかし、養液のECは小さいので、1/1000の単位となるmS/cmを使う(国際単位系ではdS/m(dはデシ)と表示する)。
 フィルムのイオン透過性は、以下のようにして測定することができる。市販の食塩10gを水2000mlに溶解して、0.5%塩水を作製する(EC:約9dS/m)。「ざるボウルセット」を使い、ざる上に試験すべきフィルム(サイズ:200~260×200~260mm)を乗せ、該フィルム上に水150gを加える。他方、ボウル側に上記の塩水150gを加え、得られた系全体を食品用ラップ(ポリ塩化ビニリデンフィルム、商品名:サランラップ(登録商標)、旭化成社製)で包んで、水分の蒸発を防ぐ。この状態で、常温で放置して、24時間毎に水側、塩水側のECを測定する。具体的には、電気伝導度計の測定部位(センサー部)にスポイトを用いて試料(即ち、水側または塩水側の溶液)を少量乗せ、導電率を測定する。
(水分透過性/グルコース溶液透過性試験)
本発明においては、本発明のPVA系フィルムを介した植物の根の養分(有機物)吸収を容易とする点から、本発明のPVA系フィルムは、所定のグルコース透過性を示すことが好ましい。このグルコース透過性の優れたフィルムは、本発明のPVA系フィルムを介して水と5%グルコース水溶液とを対向して3日間(72時間)接触させた際に、水とグルコース溶液の栽培温度において測定した濃度(Brix%)の差が4以下、さらに好ましくは3以下、より好ましくは2以下、最も好ましくは1.5以下となるフィルムである。
 フィルムのグルコース透過性は、以下のようにして測定することができる。
 市販のグルコース(ブドウ糖)を用いて5%グルコース溶液を作製する。上記イオン透過性試験と同様の「ざるボウルセット」を使い、ざる上に試験すべき本発明のPVA系フィルム(サイズ:200~260×200~260mm)を乗せ、該フィルム上に水150gを加える。他方、ボウル側に上記のグルコース溶液150gを加え、得られた系全体を食品用ラップ(ポリ塩化ビニリデンフィルム、商品名:サランラップ(登録商標)、旭化成社製)で包んで、水分の蒸発を防ぐ。この状態で、常温で放置して、24hrs毎に水側、グルコース溶液側の糖度(Brix%)を糖度計で測定する。
(耐水圧)
さらに本発明においては、本発明のPVA系フィルムが耐水圧として10cm以上の水不透性を有することが好ましい。このような本発明のPVA系フィルムを用いた際には、根とフィルムの一体化を促進することができる。また、根に対する好適な酸素供給および本発明のPVA系フィルムを介しての病原菌汚染を防止することが容易となる。
 耐水圧はJIS L1092(B法)に準じた方法によって測定することができる。本発明で使用する本発明のPVA系フィルムの耐水圧は10cm以上であることが好ましく、より好ましくは20cm以上、さらに好ましくは30cm以上であり、特に好ましくは200cm以上である。
<植物栽培用支持体>
 本発明の植物栽培システムにおいては、植物体の根を保護するために、本発明のPVA系フィルムの上に土壌などの植物栽培用支持体を配置することができる。使用する植物栽培用支持体に特に限定はなく、通常使用される土壌ないし培地が使用可能である。このような土壌ないし培地としては、例えば、土耕栽培に用いられる土壌、および水耕栽培に用いられる培地が挙げられる。
 無機系の植物栽培用支持体としては、天然の砂、れき、パミスサンドなど、加工品(高温焼成等)では、ロックウール、バーミキュライト、パーライト、セラミック、籾殻くん炭などが挙げられ、有機系の植物栽培用支持体としては、天然のピートモス、ココヤシ繊維、樹皮培地、籾殻、ニータン、ソータンなどや、合成した粒状フェノール樹脂などが挙げられ、これらは単独でも、複数種を適宜混合して使用することもできる。また、合成繊維の布あるいは不織布も植物栽培用支持体として使用可能である。
 必要最小限の肥料および微量要素を上記植物栽培用支持体に加えてもよい。本発明者らの知見によれば、植物の根が、PVA系フィルムを介して接触する水/養液から水または養分を吸収可能な程度に伸びるまで、言い換えると根と本発明のPVA系フィルムが一体化するまでは、ここで言う「必要最小限の肥料および微量要素」として、養分を本発明のPVA系フィルム上の植物栽培用支持体に加えておくことが望ましい。
<養液保持手段>
 本発明の植物栽培システムは、養液を本発明のPVA系フィルムの下に保持するための養液保持手段を含んでいる。本発明の植物栽培システムにおいては、養液を収容する容器状の養液保持手段、あるいは水不透過性表面を有する基材層として機能する養液保持層の何れかが使用可能である。
養液を収容する容器状の養液保持手段としては、必要な量の養液を保持することのできる容器である限り特に限定はなく、その材質としては、軽量化、易成形性および低コスト化の点からはポリスチレン、ポリプロピレン、ポリ塩化ビニル、ポリエチレン、ポリアクリレート等の汎用プラスチックが好適に使用可能である。例えば、従来使用されてきた水耕栽培用水槽を使用することができる。
 養液保持層の水不透過性表面は水を通さない材質からなるものであれば特に限定はなく、合成樹脂、木材、金属あるいはセラミックなどが挙げられる。その養液保持層の形状にも特に限定はなく、フィルム状、シート状、板状、または箱状などが挙げられる。
 養液供給手段は、従来から水あるいは養液の連続的あるいは間歇的な供給に使用されている手段であれば特に限定はない。本発明においては、養液を少量ずつ供給することが可能な点滴灌水チューブ(「ドリップチューブ」とも称される)の使用が好ましい。点滴灌水チューブを使用した点滴潅水によって、作物の生育に必要な水および肥料をできるだけ少量供給することができる。
 さらに、養液保持層と養液供給手段とを含む態様においては、本発明のPVA系フィルムへの養液の供給を補助するために、さらに吸水性材料を本発明のPVA系フィルムと水不透過性表面との間に設置することができる。吸水性材料は、基本的には水を吸収して保持する材料であれば特に限定はない。一例としては、合成樹脂から作られたスポンジや不織布、織物からなる布、植物性の繊維状、チップ状、粉末状、または、ピートモスや水苔をはじめ一般的に植物支持体として使用される材料も使用可能である。
 本発明の植物栽培システムを使用して栽培することのできる植物については特に限定はなく、農業、林業、園芸の分野で普通に生育されている植物を全て対象とすることができる。
<栽培方法>
本発明の栽培方法は、(1)植物をその上で栽培するための本発明のPVA系フィルム、植物の生育を促進する養液であって、該フィルムの下面に接触するように配置された養液、および該養液を、該フィルムの下に保持するための養液保持手段を含むことを特徴とする植物栽培用システムを提供し、(2)該システム内の本発明のPVA系フィルムの上に植物を配置し、そして(3)該養液を、該フィルムを介して該植物に接触させることによって、該フィルムの上で植物を栽培することを包含する植物栽培方法である。
栽培を開始するに際し、植物は種子あるいは苗の状態で、養液を吸収した本発明のPVA系フィルム上に配置することができる。該フィルム上に種子の状態で播種された場合は、まず発芽、発根させる必要があり、種子の発芽、発根に必要な少量の灌水を行う。ここでフィルム上に多量の水分が存在すると、植物の根とフィルムの一体化を妨げるので、種子の発芽、発根に必要な最小限の灌水にとどめる必要がある。
植物が本発明のPVA系フィルムに苗の状態で配置された場合は、発芽、発根のための灌水は必要ないが、苗の根が伸張してフィルムと一体化し、フィルムから水と養分を吸収できるようになるまでは、根が乾燥しないように根の周囲を湿潤状態に保つ必要がある。
保水性の高い植物栽培用支持体をフィルム上に配置する態様によれば、上述のようなフィルム上に多量の水分が存在することを回避しつつ、根の周囲の湿潤状態を維持し易いので好ましい。
 以下、実施例により本発明をさらに具体的に説明する。
PVA系フィルム製造実施例
実施例1(F-1)
 PVA(平均ケン化度99.7モル%、平均重合度1700、4%水溶液粘度(25℃)40mPa・s、酢酸ナトリウム含有量0.3%)40部を水60部に溶解させたポリビニルアルコール水溶液を定量ポンプにより、ジャケット温度を60~150℃に設定した二軸押出型混錬機(スクリューL/D=40)に供給し、吐出量500kg/hrの条件で吐出した。この吐出物を直ちに、一軸押出機(スクリューL/D=30)に圧送し、温度85~140℃にて、混錬後、Tダイより5℃に冷却されたキャストロールに流延固化させ、キャストロールから冷却されたフィルムを剥離し、90℃に調整された連続した10個の回転加熱ロールを用いて30秒間乾燥し、含水率25%のPVAフィルムを作成した。
次いで、かかるPVAフィルムを縦方向に3倍延伸した後に、テンター延伸機で横方向に3.5倍延伸して、二軸延伸PVAフィルムとし、次いで130℃で8秒間熱処理(一段目熱処理)を行い、続いて、170℃で8秒間熱処理(二段目熱処理)を行い、含水率0.8%の二軸延伸PVAフィルム(F-1、厚み30μm)を得た。
得られた厚さ30μmのフィルムから巻取り方向20.0cm、巾方向20.0cmの正方形で切り出し、重量を測定したところ、1.55gであった。このフィルムを30℃の水に30分間浸漬して膨潤させたところ、重量2.85gとなった。水中(30℃)における平衡膨潤度は、2.85 / 1.55 x 100 = 184%と算出された。
実施例2(F-2)
 実施例1において、5℃に冷却されたキャストロール以降の速度を0.75倍に変えて、含水率25%のPVAフィルムを作成する以外は実施例1と同様にして、含水率0.8%の二軸延伸PVAフィルム(F-2、厚み40μm)を得た。 実施例1と同様にして水中(30℃)における平衡膨潤度を求めたところ、183%と算出された。
実施例3(F-3)
 実施例1において、二軸延伸PVAフィルムを得た後、145℃で8秒間熱処理(一段目熱処理)を行い、続いて、180℃で8秒間熱処理(二段目熱処理)を行う以外は実施例1と同様にして、含水率0.8%の二軸延伸PVAフィルム(F-3、厚み30μm)を得た。 実施例1と同様にして水中(30℃)における平衡膨潤度を求めたところ、152%と算出された。
実施例4(F-4)
実施例3において、5℃に冷却されたキャストロール以降の速度を0.75倍に変えて、含水率25%のPVAフィルムを作成する以外は実施例3と同様にして、含水率0.8%の二軸延伸PVAフィルム(F-4、厚み40μm)を得た。実施例1と同様にして水中(30℃)における平衡膨潤度を求めたところ、152%と算出された。
比較例1(F-5)
PVA(平均ケン化度99.7モル%、平均重合度1700、4%水溶液粘度(25℃)40mPa・s、酢酸ナトリウム含有量0.3%)に、可塑剤としてグリセリン12部、界面活性剤としてポリオキシエチレンソルビタンモノラウレート1.2部を水に溶解して18%水分散液を得た。そして、上記水分散液を用い、ステンレス製のエンドレスベルトを備えたベルト製製膜機により、10m/minの速度で流延製膜法に従い製膜し、温度120℃の条件で乾燥させ、PVAフィルム(F-5、厚み70μm)を得た。実施例1と同様にして水中(30℃)における平衡膨潤度を求めたところ、200%と算出された。
比較例2(F-6)
比較例1において速度を12m/minの速度で製膜する以外は比較例1と同様にしてPVAフィルム(F-6、厚み60μm)を得た。得られたフィルム(60μm)を別途、200℃の条件で60秒乾燥させて熱処理を施したフィルムを得た。実施例1と同様にして水中(30℃)における平衡膨潤度を求めたところ、127%と算出された。
比較例3(F-7)
PVA(平均ケン化度99.7モル%、平均重合度1700、4%水溶液粘度(25℃)40mPa・s、酢酸ナトリウム含有量0.3%)40部を水60部に溶解させたPVA水溶液を定量ポンプにより、ジャケット温度を60~150℃に設定した二軸押出型混錬機(スクリューL/D=40)に供給し、吐出量500kg/hrの条件で吐出した。この吐出物を直ちに、一軸押出機(スクリューL/D=30)に圧送し、温度85~140℃にて、混錬後、Tダイより5℃に冷却されたキャストロールに流延固化させ、キャストロールから冷却されたフィルムを剥離し、90℃に調整された連続した10個の回転加熱ロールを用いて30秒間乾燥し、含水率25%のPVAフィルムを作成した。次いで、かかるポリビニルアルコールフィルムを縦方向に3倍延伸した後に、テンター延伸機で横方向に3.5倍延伸して、二軸延伸PVAフィルムとし、次いで165℃で8秒間熱処理(一段目熱処理)を行い、続いて、205℃で8秒間熱処理(二段目熱処理)を行い、含水率0.8%の二軸延伸PVAフィルム(F-7、厚み25μm)を得た。実施例1と同様にして水中(30℃)における平衡膨潤度を求めたところ、118%と算出された。
比較例4(F-8)
メビオール株式会社より販売されている「アイメックフィルム」(厚さ65μm)について、実施例1と同様にして水中(30℃)における平衡膨潤度を求めたところ、148%と算出された。
比較例5(F-9)
メビオール株式会社より販売されている「アイメックフィルム2」(厚さ60μm)について、実施例1と同様にして水中(30℃)における平衡膨潤度を求めたところ、153%と算出された。
実施例6(動的弾性率の測定)
実施例1~4、比較例1~5のフィルムサンプル(F-1)~(F-9)をそれぞれ、30℃の水に30分間浸漬し、直径4cmの円形に切り抜き、ストレス制御型粘弾性測定装置(ティー・エイ・インスツルメント・ジャパン株式会社製、レオメーター AR-500)を用いて、動的粘弾性挙動を観測した。
測定条件は以下の通りとした。
測定用セルの形状・寸法:ステンレス製平行円盤(直径4.0cm)、アルミ製ソルベントトラップ使用。
観測周波数:1Hz。
測定温度:30℃
適用ストレス及び変位:線形領域内。具体的には、適用ストレスとして10Pa~200Pa、変位として10-6ラジアン~10-5ラジアン。
具体的な操作としては、
平衡膨潤状態となったPVA系フィルムを水中から取り出し、測定デバイスであるステンレス製平行円盤(直径4.0cm)に合わせて直径4cmの円形に切り取り、該フィルムを測定デバイスに密着させたまま、ソルベントトラップと溶媒としての水を乗せ、測定装置に装着した。次いで測定ステージを上昇させ、測定対象となるPVA系フィルムを測定デバイスと測定ステージの間に挟み、該フィルムが測定デバイスと測定ステージに密着するようギャップを調整した。この時、PVA系フィルムと、測定デバイスおよび測定ステージの間にすべりが生じないように、フィルムを圧縮しないように注意した。測定ステージの温度を30℃に設定し、観測周波数1Hzで線形領域内となるストレスおよび変位において動的粘弾性の観測を行い、損失正接(tanδ)を求めた。各サンプルの結果を表1に比較してまとめた。
実施例7(根による貫通試験)
スチロール樹脂製トレー(縦19.5cmx横12.5cmx深さ5.5cm)に養液(大塚化学株式会社製、大塚ハウスA処方EC=2)600mL を入れ、養液に片面が接触するように実施例または比較例で得られたA4判サイズのPVAフィルムを配置した。PVAフィルムの上に、土壌として、ヤシガラチップを1.5cmの厚さで置き、芝の種(雪印種苗株式会社製 西洋芝「ペレニアルライグラス アクセント」)を50g/m2で蒔き、霧吹きで充分給水し、乾燥を防ぐため、全体を半透明ポリエチレンフィルム(好川産業株式会社製、YKシート、厚さ10μm)で覆った。これを25℃の室内に置き、6時~20時までの間、蛍光灯を用いて播種からフィルムに根が張るまでは2,000ルクス、フィルムに根が張ってからは半透明ポリエチレンフィルムを数日かけて少しずつはずし、6,000ルクスの照度で栽培した。試験結果を表1に比較してまとめた。根がPVAフィルムを貫通した日が栽培を開始してから150日以上の場合を「○」(良好)と評価し、150日未満の場合は「×」(不良)と評価し、貫通までの日数をカッコ内に記した。尚、芝の生長が悪く、芝の根がPVAフィルムに張らなかった場合を「-」(不能)と評価した。
Figure JPOXMLDOC01-appb-T000001
実施例1~4では、植物がPVAフィルムに根を張って順調に生育し、150日間以上に亘って植物の根がフィルムを貫通することを抑制した。一方、比較例3では養分のフィルム透過性が低いため、植物の生育が抑制された。比較例1、2、4、5ではフィルムの強度が不十分なため、比較的短期間で植物の根がフィルムを貫通してしまった。
 
水または養液の吸収性、透過性に優れ、しかもフィルム強度に優れたPVA系フィルムを用いる本発明の植物栽培システムを使用して植物の栽培を行うと、植物の病気を誘発する雑菌などからの感染を回避することができる。また根ぐされなどの原因となる根の酸素欠乏状態を招くことなく、効率的且つ安定的に、長期間に亘り十分な量の養分を植物の根から吸収させることができ、それにより長期間に亘り持続的に植物の生長を著しく促進させることが可能となる。従って本発明は、植物の栽培が関わる産業、例えば農業や園芸、医薬品製造業など、幅広い分野で利用できる。
は、本発明の植物栽培システムの基本的な態様の例を示す摸式断面図である。
1. 本発明のPVA系フィルム 2. 水槽3. 養液4. 植物体5. 根6. 植物栽培用支持体7. 蒸発抑制部材あるいは定植板8. 細霧噴霧用手段

Claims (7)

  1.  植物をその上で栽培するためのポリビニルアルコール(PVA)系フィルム、該PVA系フィルムの下面に接触するように配置された養液保持手段、および該養液を、該PVA系フィルムの下に供給するための手段を含む植物栽培用システムであって;該PVA系フィルムの水中(30℃)における平衡膨潤度が125%以上250%以下の範囲かつ該PVA系フィルムの水中平衡膨潤状態(30℃)での損失正接(tan δ)が0.005以上0.2以下であることを特徴とする、植物栽培用システム。
  2.  該PVA系フィルムが二軸延伸されたものであることを特徴とする、請求項1に記載の植物栽培用システム。
  3. 該PVA系フィルムの乾燥厚さが5~100μmの範囲であることを特徴とする、請求項1または2に記載の植物栽培用システム。
  4.  養液保持手段が水耕栽培用水槽であり、該PVA系フィルムの下面に接触するように配置された養液が水耕栽培用水槽に収容されてなることを特徴とする、請求項1~3いずれかに記載の植物栽培用システム。
  5.  該養液保持手段が水不透過性表面を有し、その上に該PVA系フィルムが敷設されてなり、PVA系フィルムと養液保持手段との間に該養液を連続的または間歇的に供給する養液供給手段をさらに含むことを特徴とする、請求項1~3いずれかに記載の植物栽培用システム。
  6.  養液供給手段が、PVA系フィルムと養液保持手段との間に設置された点滴灌水チューブであることを特徴とする、請求項5に記載の植物栽培用システム。
  7.  (1)植物をその上で栽培するためのPVA系フィルム、該PVA系フィルムの下面に接触するように配置された養液保持手段、および該養液を、該PVA系フィルムの下に供給するための手段を含む植物栽培用システムであって;該PVA系フィルムの水中(30℃)における平衡膨潤度が125%以上250%以下の範囲かつ該PVA系フィルムの水中平衡膨潤状態(30℃)での損失正接(tan δ)が0.005以上0.2以下であることを特徴とする植物栽培用システムを提供し、
     (2)該システム内のPVA系フィルムの上に植物を配置し、そして
     (3)該養液を、該PVA系フィルムを介して該植物に接触させることによって、該PVA系フィルムの上で植物を栽培することを包含する植物栽培方法。
PCT/JP2014/071141 2013-08-19 2014-08-11 植物栽培システムおよび植物栽培方法 WO2015025752A1 (ja)

Priority Applications (31)

Application Number Priority Date Filing Date Title
MA38843A MA38843B1 (fr) 2013-08-19 2014-08-11 Système de culture de plantes et procédé de culture de plantes
TN2016000028A TN2016000028A1 (en) 2013-08-19 2014-08-11 Plant cultivation system and plant cultivation method
EP14837962.1A EP3036988B1 (en) 2013-08-19 2014-08-11 Plant cultivation system and plant cultivation method
PL14837962T PL3036988T3 (pl) 2013-08-19 2014-08-11 System uprawy rośliny i sposób uprawy rośliny
SG11201600876SA SG11201600876SA (en) 2013-08-19 2014-08-11 Plant cultivation system and a method for plant cultivation
CA2920870A CA2920870C (en) 2013-08-19 2014-08-11 Plant cultivation system and a method for plant cultivation
NZ716541A NZ716541A (en) 2013-08-19 2014-08-11 Plant cultivation system and a method for plant cultivation
LTEP14837962.1T LT3036988T (lt) 2013-08-19 2014-08-11 Augalų kultivavimo sistema ir augalų kultivavimo būdas
AU2014309969A AU2014309969B2 (en) 2013-08-19 2014-08-11 Plant cultivation system and plant cultivation method
MX2016002161A MX358456B (es) 2013-08-19 2014-08-11 Sistema de cultivo de plantas y procedimiento para el cultivo de plantas.
KR1020167007156A KR101820615B1 (ko) 2013-08-19 2014-08-11 식물 재배용 시스템 및 식물 재배 방법
EA201690423A EA030429B1 (ru) 2013-08-19 2014-08-11 Система культивирования растений и способ культивирования растений
ES14837962T ES2724329T3 (es) 2013-08-19 2014-08-11 Sistema de cultivo de plantas y procedimiento para el cultivo de plantas
MYPI2016700487A MY183008A (en) 2013-08-19 2014-08-11 Plant cultivation system and a method for plant cultivation
AP2016009035A AP2016009035A0 (en) 2013-08-19 2014-08-11 Plant cultivation system and plant cultivation method
RS20190619A RS58903B1 (sr) 2013-08-19 2014-08-11 Sistem za gajenje biljaka i postupak za gajenje biljaka
US14/913,125 US10660280B2 (en) 2013-08-19 2014-08-11 Plant cultivation system and a method for plant cultivation
CU2016000023A CU24382B1 (es) 2013-08-19 2014-08-11 Sistema de cultivo de plantas y procedimiento para el cultivo de plantas
UAA201602685A UA114373C2 (uk) 2013-08-19 2014-08-11 Система культивування рослин і спосіб культивування рослин
MEP-2019-139A ME03405B (me) 2013-08-19 2014-08-11 Sistem za gajenje biljaka i postupak za gajenje biljaka
SI201431219T SI3036988T1 (sl) 2013-08-19 2014-08-11 Sistem kultivacije rastlin in metoda kultivacije rastlin
CN201480045632.8A CN105472974B (zh) 2013-08-19 2014-08-11 植物栽培系统和植物栽培方法
BR112016002659A BR112016002659B1 (pt) 2013-08-19 2014-08-11 sistema de cultivo de plantas, e, método para cultivar uma planta.
IL243777A IL243777B (en) 2013-08-19 2016-01-25 A system for growing plants and a method for growing plants
PH12016500333A PH12016500333B1 (en) 2013-08-19 2016-02-18 Plant cultivation system and a method for plant cultivation
CR20160107A CR20160107A (es) 2013-08-19 2016-03-03 Sistema de cultivo de plantas y procedimiento para el cultivo de plantas
DKPA201670132A DK178974B1 (en) 2013-08-19 2016-03-07 Plant cultivation system and method of plant cultivation
HK16111445.0A HK1222979A1 (zh) 2013-08-19 2016-09-30 植物栽培系統和植物栽培方法
HRP20190803TT HRP20190803T1 (hr) 2013-08-19 2019-04-29 Sustav za uzgoj biljaka i postupak uzgoja biljaka
CY20191100594T CY1121671T1 (el) 2013-08-19 2019-06-05 Συστημα καλλιεργειας φυτων και μεθοδος καλλιεργειας φυτων
US16/852,055 US11058075B2 (en) 2013-08-19 2020-04-17 Plant cultivation system and a method for plant cultivation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013169317A JP5960102B2 (ja) 2013-08-19 2013-08-19 植物栽培システムおよび植物栽培方法
JP2013-169317 2013-08-19

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/913,125 A-371-Of-International US10660280B2 (en) 2013-08-19 2014-08-11 Plant cultivation system and a method for plant cultivation
US16/852,055 Division US11058075B2 (en) 2013-08-19 2020-04-17 Plant cultivation system and a method for plant cultivation

Publications (1)

Publication Number Publication Date
WO2015025752A1 true WO2015025752A1 (ja) 2015-02-26

Family

ID=52483529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071141 WO2015025752A1 (ja) 2013-08-19 2014-08-11 植物栽培システムおよび植物栽培方法

Country Status (38)

Country Link
US (2) US10660280B2 (ja)
EP (1) EP3036988B1 (ja)
JP (1) JP5960102B2 (ja)
KR (1) KR101820615B1 (ja)
CN (1) CN105472974B (ja)
AP (1) AP2016009035A0 (ja)
AU (1) AU2014309969B2 (ja)
BR (1) BR112016002659B1 (ja)
CA (1) CA2920870C (ja)
CR (1) CR20160107A (ja)
CU (1) CU24382B1 (ja)
CY (1) CY1121671T1 (ja)
DK (1) DK178974B1 (ja)
DO (1) DOP2016000050A (ja)
EA (1) EA030429B1 (ja)
ES (1) ES2724329T3 (ja)
GE (1) GEP201706781B (ja)
GT (1) GT201600034A (ja)
HK (1) HK1222979A1 (ja)
HR (1) HRP20190803T1 (ja)
HU (1) HUE045508T2 (ja)
IL (1) IL243777B (ja)
LT (1) LT3036988T (ja)
MA (1) MA38843B1 (ja)
ME (1) ME03405B (ja)
MX (1) MX358456B (ja)
MY (1) MY183008A (ja)
NZ (1) NZ716541A (ja)
PH (1) PH12016500333B1 (ja)
PL (1) PL3036988T3 (ja)
PT (1) PT3036988T (ja)
RS (1) RS58903B1 (ja)
SG (1) SG11201600876SA (ja)
SI (1) SI3036988T1 (ja)
TN (1) TN2016000028A1 (ja)
TR (1) TR201910152T4 (ja)
UA (1) UA114373C2 (ja)
WO (1) WO2015025752A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024004260A1 (ja) * 2022-07-01 2024-01-04 メビオール株式会社 植物栽培システム及び栽培方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5960102B2 (ja) * 2013-08-19 2016-08-02 メビオール株式会社 植物栽培システムおよび植物栽培方法
US20170099789A1 (en) * 2015-10-08 2017-04-13 Chaz Shelton Systems, Methods, and Devices for Growing and Harvesting Produce
KR101871481B1 (ko) 2016-05-30 2018-06-27 농업회사법인 주식회사 그린코프 원예작물의 양액재배를 위한 비료처방 방법
KR101970647B1 (ko) 2016-12-09 2019-04-19 강유신 코이어 블럭
CN107232048B (zh) * 2017-06-01 2020-06-26 深圳春沐源控股有限公司 管式栽培装置
CN107926676A (zh) * 2017-12-15 2018-04-20 无锡微云农业科技有限公司 一种植物水培的培育装置及培育方法
CN109006232A (zh) * 2018-05-04 2018-12-18 铜仁市万山区恒利达种养殖有限公司 一种瓠子栽培方法
CN108575720A (zh) * 2018-05-25 2018-09-28 北京中农富通园艺有限公司 一种自发热复合基质栽培槽
EP3828227A4 (en) * 2018-07-25 2022-04-20 Sekisui Chemical Co., Ltd. POLYVINYL ALCOHOL FILM
CN111837704A (zh) * 2019-04-29 2020-10-30 车德辉 一种高效节能的树木栽培装置
JP2022036365A (ja) * 2020-08-23 2022-03-08 メビオール株式会社 植物を用いたタンパク質の製造方法
CN112400682B (zh) * 2020-11-17 2024-07-19 福建省中科生物股份有限公司 一种应用凝胶栽培介质的栽培盘及其栽培方法
WO2022233382A1 (en) 2021-05-03 2022-11-10 Roheline Kivi Oü Composite for a plant growth substrate and methods for use said substrate
CA3217665A1 (en) 2022-07-01 2024-01-01 Mebiol Inc. Plant cultivation system and plant cultivation method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004064499A (ja) 2002-07-30 2004-02-26 Casio Comput Co Ltd 画像入力装置
JP2005102508A (ja) * 2003-01-17 2005-04-21 Yuichi Mori 植物栽培用器具および植物栽培方法
JP2008061503A (ja) 2006-09-04 2008-03-21 Mebiol Kk 植物栽培用器具および植物栽培方法
JP2008182909A (ja) 2007-01-29 2008-08-14 Mebiol Kk 植物栽培システム
JP2008193980A (ja) 2007-02-14 2008-08-28 Mebiol Kk 植物栽培システムおよび植物栽培方法
JP4142725B1 (ja) 2006-09-20 2008-09-03 メビオール株式会社 植物栽培システム
JP4425244B2 (ja) 2006-06-21 2010-03-03 メビオール株式会社 植物栽培用器具および植物栽培方法
JP2011194694A (ja) * 2010-03-19 2011-10-06 Kuraray Co Ltd 積層体
WO2012043192A1 (ja) * 2010-09-28 2012-04-05 株式会社クラレ 植物栽培用フィルム
JP2012170396A (ja) * 2011-02-22 2012-09-10 Kuraray Co Ltd 植物栽培用フィルム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3798836A (en) * 1972-12-04 1974-03-26 Dow Chemical Co A hydroponic bed for growing plants
US3973355A (en) * 1974-01-18 1976-08-10 Agritec Co. Self-contained hydrophilic plant growth matrix and method
US4155971A (en) * 1976-08-18 1979-05-22 E. I. Du Pont De Nemours And Company Method of making water-soluble films from polyvinyl alcohol compositions
JPH04142725A (ja) * 1990-10-04 1992-05-15 Japan Carlit Co Ltd:The 電解コンデンサ駆動用電解液
EP1460807A1 (en) 2003-03-21 2004-09-22 Siemens Aktiengesellschaft System method and apparatus for routing traffic in a telecommunications network
EP2574456B1 (en) * 2004-10-01 2016-10-05 Sekisui Chemical Co., Ltd. Termoplastic resin sheet and laminate
WO2010008042A1 (ja) 2008-07-16 2010-01-21 メビオール株式会社 植物栽培システム
JP2011194697A (ja) 2010-03-19 2011-10-06 Kaneka Corp 多層押出発泡成形体の製造方法及び製造装置
CN110419393A (zh) * 2013-04-03 2019-11-08 三井化学株式会社 植物栽培系统和利用该系统的栽培方法及该系统的制造方法
JP5960102B2 (ja) * 2013-08-19 2016-08-02 メビオール株式会社 植物栽培システムおよび植物栽培方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004064499A (ja) 2002-07-30 2004-02-26 Casio Comput Co Ltd 画像入力装置
JP2005102508A (ja) * 2003-01-17 2005-04-21 Yuichi Mori 植物栽培用器具および植物栽培方法
JP4425244B2 (ja) 2006-06-21 2010-03-03 メビオール株式会社 植物栽培用器具および植物栽培方法
JP2008061503A (ja) 2006-09-04 2008-03-21 Mebiol Kk 植物栽培用器具および植物栽培方法
JP4142725B1 (ja) 2006-09-20 2008-09-03 メビオール株式会社 植物栽培システム
JP2008182909A (ja) 2007-01-29 2008-08-14 Mebiol Kk 植物栽培システム
JP2008193980A (ja) 2007-02-14 2008-08-28 Mebiol Kk 植物栽培システムおよび植物栽培方法
JP2011194694A (ja) * 2010-03-19 2011-10-06 Kuraray Co Ltd 積層体
WO2012043192A1 (ja) * 2010-09-28 2012-04-05 株式会社クラレ 植物栽培用フィルム
JP2012170396A (ja) * 2011-02-22 2012-09-10 Kuraray Co Ltd 植物栽培用フィルム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3036988A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024004260A1 (ja) * 2022-07-01 2024-01-04 メビオール株式会社 植物栽培システム及び栽培方法

Also Published As

Publication number Publication date
BR112016002659B1 (pt) 2019-08-13
KR101820615B1 (ko) 2018-01-19
CN105472974A (zh) 2016-04-06
EA201690423A1 (ru) 2016-11-30
PH12016500333A1 (en) 2016-05-02
IL243777B (en) 2019-09-26
LT3036988T (lt) 2019-07-25
TR201910152T4 (tr) 2019-07-22
MA38843B1 (fr) 2017-09-29
SG11201600876SA (en) 2016-03-30
HRP20190803T1 (hr) 2019-08-23
MY183008A (en) 2021-02-05
MX358456B (es) 2018-08-22
EP3036988A1 (en) 2016-06-29
AU2014309969A1 (en) 2016-03-17
MX2016002161A (es) 2017-01-05
US20160205880A1 (en) 2016-07-21
JP5960102B2 (ja) 2016-08-02
AU2014309969B2 (en) 2016-09-29
SI3036988T1 (sl) 2019-08-30
US20200260671A1 (en) 2020-08-20
ES2724329T3 (es) 2019-09-10
IL243777A0 (en) 2016-04-21
TN2016000028A1 (en) 2017-07-05
HUE045508T2 (hu) 2020-01-28
PT3036988T (pt) 2019-06-12
EA030429B1 (ru) 2018-08-31
RS58903B1 (sr) 2019-08-30
GT201600034A (es) 2017-07-18
DOP2016000050A (es) 2016-03-31
US11058075B2 (en) 2021-07-13
CA2920870A1 (en) 2015-02-26
PH12016500333B1 (en) 2016-05-02
CU24382B1 (es) 2019-03-04
EP3036988B1 (en) 2019-04-24
CU20160023A7 (es) 2016-08-31
KR20160044558A (ko) 2016-04-25
BR112016002659A2 (ja) 2018-05-02
CN105472974B (zh) 2019-01-15
MA38843A1 (fr) 2017-01-31
NZ716541A (en) 2016-11-25
EP3036988A4 (en) 2017-08-16
CR20160107A (es) 2016-04-18
CA2920870C (en) 2016-12-13
US10660280B2 (en) 2020-05-26
DK201670132A1 (en) 2016-04-04
UA114373C2 (uk) 2017-05-25
CY1121671T1 (el) 2020-07-31
HK1222979A1 (zh) 2017-07-21
ME03405B (me) 2020-01-20
JP2015037386A (ja) 2015-02-26
PL3036988T3 (pl) 2019-09-30
GEP201706781B (en) 2017-11-27
DK178974B1 (en) 2017-07-17
AP2016009035A0 (en) 2016-02-29

Similar Documents

Publication Publication Date Title
JP5960102B2 (ja) 植物栽培システムおよび植物栽培方法
KR101900279B1 (ko) 식물 재배용 배지, 및 이를 사용한 식물 재배 장치 및 식물 재배 방법
JP2014143926A (ja) 植物栽培システムおよび植物栽培方法
KR101408438B1 (ko) 식물 재배용 필름
JP2008193980A (ja) 植物栽培システムおよび植物栽培方法
JP3188276U (ja) 植物栽培装置
JP2015073448A (ja) 植物栽培用培地、並びにそれを用いた植物栽培装置および植物栽培方法
JP2016198012A (ja) トマト類栽培用培地、並びにそれを用いたトマト類栽培装置およびトマト類栽培方法
JP2015096060A (ja) 植物栽培用培地、並びにそれを用いた植物栽培装置および植物栽培方法
JP2008182909A (ja) 植物栽培システム
OA17676A (en) Plant cultivation system and plant cultivation method.
JP2014132870A (ja) 植物栽培用器具および植物栽培方法
JP5656681B2 (ja) 植物栽培用フィルム
JPS60251824A (ja) 農業用調湿シ−ト及びそれを使用する有用植物の栽培方法
JP2017112895A (ja) キノコの菌床栽培方法及びこれに用いる菌床栽培用袋
JPH10174519A (ja) きのこ栽培用培地およびきのこ栽培用菌床

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480045632.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2014837962

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14837962

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 243777

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 2920870

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 38843

Country of ref document: MA

WWE Wipo information: entry into national phase

Ref document number: P175/2016

Country of ref document: AE

WWE Wipo information: entry into national phase

Ref document number: 12016500333

Country of ref document: PH

Ref document number: MX/A/2016/002161

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14913125

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 16052871

Country of ref document: CO

WWE Wipo information: entry into national phase

Ref document number: CR2016-000107

Country of ref document: CR

WWE Wipo information: entry into national phase

Ref document number: 14089

Country of ref document: GE

WWE Wipo information: entry into national phase

Ref document number: IDP00201601767

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 2014309969

Country of ref document: AU

Date of ref document: 20140811

Kind code of ref document: A

Ref document number: 20167007156

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201690423

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: A201602685

Country of ref document: UA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016002659

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112016002659

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160205