JP2005102508A - 植物栽培用器具および植物栽培方法 - Google Patents

植物栽培用器具および植物栽培方法 Download PDF

Info

Publication number
JP2005102508A
JP2005102508A JP2003336064A JP2003336064A JP2005102508A JP 2005102508 A JP2005102508 A JP 2005102508A JP 2003336064 A JP2003336064 A JP 2003336064A JP 2003336064 A JP2003336064 A JP 2003336064A JP 2005102508 A JP2005102508 A JP 2005102508A
Authority
JP
Japan
Prior art keywords
film
plant
water
cultivation
nutrient solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003336064A
Other languages
English (en)
Other versions
JP2005102508A6 (ja
Inventor
Akihiro Okamoto
昭弘 岡本
Makiko Kubota
眞紀子 窪田
Shinya Otsubo
真也 大坪
Yuichi Mori
森  有一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mebiol Inc
Mori Yuichi
Original Assignee
Mebiol Inc
Mori Yuichi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mebiol Inc, Mori Yuichi filed Critical Mebiol Inc
Priority to JP2003336064A priority Critical patent/JP2005102508A/ja
Priority to PCT/JP2004/000319 priority patent/WO2004064499A1/ja
Priority to CN200480004151.9A priority patent/CN1750751B/zh
Priority to JP2005508059A priority patent/JP4625408B2/ja
Priority to US10/542,392 priority patent/US7832145B2/en
Priority to SI200432142T priority patent/SI1606993T1/sl
Priority to KR1020057013277A priority patent/KR101018836B1/ko
Priority to CA2513500A priority patent/CA2513500C/en
Priority to DK04702818.8T priority patent/DK1606993T3/da
Priority to EP04702818.8A priority patent/EP1606993B1/en
Publication of JP2005102508A publication Critical patent/JP2005102508A/ja
Priority to IL169676A priority patent/IL169676A/en
Publication of JP2005102508A6 publication Critical patent/JP2005102508A6/ja
Priority to HK06106887.7A priority patent/HK1084563A1/xx
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G27/00Self-acting watering devices, e.g. for flower-pots
    • A01G27/02Self-acting watering devices, e.g. for flower-pots having a water reservoir, the main part thereof being located wholly around or directly beside the growth substrate

Abstract

【課題】 根に対する酸素供給と、水および肥料成分供給との両方ともを好適に行うことを可能とする植物栽培用器具、植物−フィルムの複合体、および植物栽培方法を提供する。
【解決手段】 栽培すべき植物体を収容可能な形状を有する器具。該器具の少なくとも一部に、該植物体の根と実質的に一体化し得るフィルムが配置される。
【選択図】 図1

Description

本発明は植物栽培用器具、植物−フィルム複合体、および植物栽培方法に関する。より詳しくは、本発明は、植物の根と実質的に一体化できるフィルムを有する植物栽培用器具;植物体と、該植物体の根と実質的に一体化したフィルムとを有する植物−フィルム複合体;および該植物栽培用器具を用いた植物栽培方法に関する。
本発明によれば植物体に対する酸素供給と、水および肥料成分の供給とを好適に機能分離することが可能となるため、例えば、養液栽培の基本となる植物の根と養液が直接接することにより生ずる多くの問題、すなわち根に対する酸素の供給、養液の精密な管理、根からの養液の汚染あるいは養液から植物への病原菌汚染等、多くの問題を解消することができる。更に、本発明の植物栽培用器具を用いることにより、栽培すべき植物を水分抑制状態として、該植物を高品質化することが容易になる。更に、本発明の植物栽培用器具を用いることにより、培養液からの植物への病原菌汚染が防止できるために、有糖培養、すなわち、クローン苗の組織培養を行うことが可能になる。
従来より、伝統的に種々の植物が露地(ろじ)栽培により、すなわち、太陽や土などの自然の恵みを利用して、屋外で栽培されて来た。これに対して、近年、施設栽培、すなわち、ガラスやビニールフィルム等で覆われた温室あるいはハウスの中で植物を栽培する方法も盛んに行われるようになって来た。このような施設栽培においては、露地栽培よりも自然条件に左右されにくいため、種々の植物(例えば蔬菜類)を安定して作ることが可能となるという利点がある。
1999年の統計によれば、蔬菜類の施設栽培の総面積は11万2822haに増加しており、蔬菜の端境期をなくし、種々の蔬菜を年間通じて供給可能とした点で、露地栽培によるものに比べて、栄養的に劣るという批判もあるものの施設栽培の功績は大きい。
植物の施設栽培において、露地栽培における連作障害の回避や栽培不適地での栽培が可能であること、露地栽培に比べると労働時間の短縮につながることや、単位面積当たりの収量増加、工業的生産の可能性等の観点から、温室中の設備を用いて、土を使わずに植物を保持し、且つ養分や水を与えて植物を栽培する、いわゆる養液栽培(一般には「水耕栽培」と称される場合が多い)が導入され始めた。この養液栽培においては、土を使った栽培に比べて、連作障害がなく(特に、燻蒸に使用する臭化メチルの全面使用禁止を控えて、この利点は大きい)、一般的に成長が早く収量が多い、栽培環境の調節が比較的容易である等の利点がある。
しかしながら、1999年における養液栽培の面積は1056haであって、蔬菜施設栽培総面積の約1%にすぎない。このように養液栽培が盛んとはならない大きな理由としては、初期資本投資が大きく、生産コストが上昇しリスクが大きいことや、管理に相当な技術を要する、栽培に一度失敗すると(病原菌の侵入や養液の調整等)壊滅的被害が出ること等が障害になることが挙げられる。
養液栽培の種類は、噴霧耕、水耕(たん液式、NFT)、固形培地(砂耕、れき耕、ロックウール耕)の3種類あり、それぞれの方式には利点、欠点を有する(これらの各方式の詳細、利害得失、等に関しては、例えば文献「養液栽培の新マニュアル」編者:(社)日本施設園芸協会、発行所:(株)誠文堂新光社、発行:2002年7月を参照することができる)。
上記した各方式の養液栽培システムに共通する最も重要なポイントないし弱点は、初期導入コスト、ランニングコスト、および酸素の供給である。更には、養液栽培では根と養液が直接接触することから、養液の調整がデリケートであり、その管理範囲が非常に狭いことが問題となる。特に、養液の組成、濃度、pHの変化には細心の注意が必要とされている。中でも、養液栽培で最も問題となる点の1つは、養液のpHが容易に変化することである。
また、植物に対する酸素の供給も、最も重要な条件である。特に、高温時には根の呼吸が高まって酸素要求量が増すが、一方で溶存酸素濃度は低くなるので、酸素欠乏の問題がある。酸素不足が発生すると「根づまり」と称される現象が生じ、その結果、根が腐敗し、アンモニアが発生し、養液のpHが上昇し始める。根への酸素の供給は養液栽培では液中の溶存酸素によるか、直接空気中の酸素に接することによって補うことができるが、一般的に養液栽培においては、そのシステム構成上、養液中の溶存酸素を使用せざるを得ない場合が多い。しかしながら、その性質上、溶存酸素の濃度自体を上昇させることは不可能であるため、実際には、養液栽培においては、植物への酸素の供給が不充分となることが極めて多い。
加えて、従来の養液栽培においては、病原菌の感染防止が極めて重大な問題である場合が極めて多い。これを防止するための種々の工夫が試みられている。農薬の投与が考えられるが、農薬登録上、培養液中に農薬を添加することが出来ないので、農薬によらない殺菌方法が、種々考えられている。例えば、紫外線、オゾンや熱による殺菌、ろ過による病原菌の除去、銀等の金属イオンの添加による殺菌、拮抗微生物の添加等がある。しかしながら、いずれも付帯設備の設置や管理によるコストアップが問題になり、更には、植物体にダメージを与えたり、養液中の有効成分を分解する等の新たな問題を生じ、未だに決定的な感染防止の効果は得られていない。
「養液栽培の新マニュアル」編者:(社)日本施設園芸協会、(株)誠文堂新光社、2002年7月発行
本発明の目的は、上記した従来技術の欠点を解消した植物栽培用器具、植物−フィルムの複合体、および植物栽培方法を提供することにある。
本発明の他の目的は、根に対する酸素供給と、水および肥料成分供給との両方ともを好適に行うことを可能とする植物栽培用器具、植物−フィルムの複合体、および植物栽培方法を提供することにある。
本発明の他の目的は、植物の病原菌による感染の危険性を極めて抑制した植物栽培用器具、植物−フィルムの複合体、および植物栽培方法を提供することにある。
本発明者らは鋭意研究の結果、フィルム(例えば高分子製フィルム)が、植物の根と実質的に一体化するという全く新たな現象を見出した。
本発明者らは、このような知見に基づいて更に研究を進めた結果、フィルムと実質的に一体化した植物の根が、フィルムを介して、溶液中の肥料成分および水を植物の成長に必要な程度、吸収する現象をも見出した。
本発明の植物栽培用器具は上記知見に基づくものであり、より詳しくは、栽培すべき植物体を収容可能な形状を有する器具であって;その少なくとも一部に、該植物体の根と実質的に一体化しうるフィルムを有することを特徴とするものである。
上記構成を有する本発明においては、前記フィルムとしては、例えば、所定の温度(27±3℃)において、該フィルムを介して水と塩水とを対向して接触させた際に、測定開始24時間後の水/塩水の電気伝導度(EC)の差ΔEC24hrs(dS/m)を、フィルム厚み(μm)を横軸にプロットしたグラフの傾きΔEC24hrs(dS/m)/10μmが、0.7以下であることが好ましい。この傾きΔEC24hrs(dS/m)/10μmは、更には0.5以下、特に0.3以下であることが好ましい。このようなフィルムを用いた場合には、フィルム厚みに基づく耐久性と、フィルム透過性との良好なバランスを容易に得ることができる。
本発明によれば更に、植物体と、該植物体の根と実質的に一体化したフィルムとを少なくとも有する植物−フィルムの複合体が提供される。
本発明によれば更に、植物体を収容可能な形状を有する器具であって;その少なくとも一部に、該植物体の根と実質的に一体化しうるフィルムを有することを特徴とする植物栽培用器具を用い;該容器中に植物保持用支持体および植物体を配置し;肥料成分を含有する水を、少なくとも前記フィルムを介して接触させつつ、前記植物体を栽培する植物栽培方法が提供される。
上記構成を有する本発明の植物栽培用器具においては、植物の根と養液(肥料成分を含む液体)とが直接には接触してはいない。換言すれば、植物体に対する酸素供給と、水および肥料成分の供給とが好適に機能分離された状態にある。このため、本発明においては、植物が空気中の酸素を有効に利用することができ、従来の養液栽培の問題(すなわち、植物の根と養液が直接に接することにより生ずる多くの問題)であったところの、根に対する酸素の供給、養液の精密な管理、根からの養液の汚染あるいは養液から植物への病原菌汚染等の問題を容易に解消することができる。更に、本発明の植物栽培用器具を用いることにより、栽培すべき植物を水分抑制状態とすることが極めて容易となり、該植物を高品質化することができる。
本発明者は上記により得られた知見に基づき更に研究を進めた結果、以下のような現象をも観察した。
すなわち、本発明によるシステムでは、水は水蒸気として根の存在する側のフィルム表面に供給され、他方、肥料成分も膜中の水にイオンとして溶ける。この肥料成分は、(1)根が直接フィルム表面から水と共に吸収する、あるいは(2)根の存在する側の膜表面に水が存在すると肥料成分が膜中からこの水に移行し根が吸収する、の2通りの方法で根に吸い上げられると推定される。後述する実施例(実施例12)には主要な肥料成分が膜(フィルム)を透過するデータが示されており、明らかに肥料成分が膜を透過していることがわかる。
上述したように本発明によれば、植物の根と実質的に一体化し得るフィルムを有する植物栽培用器具;植物体と、該植物体の根と実質的に一体化したフィルムとを有する植物−フィルム複合体;および該植物栽培用器具を用いた植物栽培方法が提供される。
上記構成を有する本発明の植物栽培用器具においては、植物の根と養液(肥料成分を含む液体)とが直接には接触せず、植物体に対する酸素供給と、肥料成分の供給とが好適に機能分離された状態にある。このため、本発明においては、植物が空気中の酸素を有効に利用することができ、従来の養液栽培の問題であった根に対する酸素の供給、養液の精密な管理、根からの養液の汚染あるいは養液から植物への病原菌汚染等の問題を容易に解消することができる。
更に、本発明の植物栽培用器具を用いることにより、栽培すべき植物を水分抑制状態とすることが極めて容易となり、該植物を高品質化することもできる。
加えて、本発明によれば、フィルムを介して接触する養液側の肥料成分ないし養分が有効に利用されるため、養液側の富栄養化を軽減しつつ、有用な植物を栽培することも可能である。例えば、湖沼等の天然の水資源に本発明の植物栽培用器具を接触させて(例えば、1個以上を浮かべて)、該湖沼等の富栄養化を軽減することが可能となる。
以下、必要に応じて図面を参照しつつ本発明を更に具体的に説明する。以下の記載において量比を表す「部」および「%」は、特に断らない限り質量基準とする。
(植物栽培用器具)
本発明の植物栽培用器具は、植物体を収容可能な形状を有する器具であって;その少なくとも一部に、該植物体の根と実質的に一体化し得るフィルムを有する器具である。
該器具の基本的な一態様を示す図1を参照して、この態様の植物栽培用器具1は、植物体を収容するための収容部2を与える(画する)ための壁材3と、該壁材3が画する収容部2の底部に対応する位置(植物体の根が接触すべき部分)の少なくとも一部に配置されたフィルム4とを含む。該フィルム4は、植物体の根と実質的に一体化し得る性質を有する。
図1においては、収容部2の底部全域にフィルム4を配置しているが、本発明においては、該底部の少なくとも一部に、フィルム4が配置されていれば足りる。また、器具1の強度、フィルム4の補強等の観点から、他の材料(例えば、壁材3と同じ材料)で、フィルム4を適当な数に分割してもよい。この場合には、例えば、障子の「さん」と同様の内枠(形状は、格子状、放射状、同心円等、任意である)を設けて、フィルム4を適当な数に分割することができる。
また、必要に応じて(強度、植物体保持等の条件が満たされる限り)、壁材3を含めた器具1の全体をフィルム4ないしは該フィルム4と同様の材料(ただし、厚さは適宜調節する)で構成してもよい。即ち、従来より使用されてきたような公知の植物栽培用容器(例えば、ポット状、トレイ状、プランター状)の全ての部分を、フィルム4ないしは該フィルム4と同様の材料で構成することも可能である。
フィルム4と壁材3とは一体的に成形してもよく、また接着剤や物理的固定手段等の接着・固定手段を用いて、相互に固定してもよい。
上記構成を有する植物栽培用器具1は、例えばこの図1に示すように、溶液容器5内に配置された溶液6に、少なくとも収容部2の底面(この場合にはフィルム4)が接触するようにして、溶液6と接触させることができる。
(他の態様)
図2は、本発明の植物栽培用器具1の他の態様を示す模式断面図である。図2を参照して、この態様においては、植物体収容部2を画する機能を有する有孔の壁材3(例えば、「ざる」状の形状を有する壁材3)の内側(植物体を配置すべき側)に、植物体の根と実質的に一体化し得る性質を有するフィルム4が全面的に配置されている以外は図1の態様と同様である。
(フィルム)
本発明において、植物栽培用器具1を構成するフィルム4は、「植物体の根と実質的に一体化し得る」であることが特徴である。本発明において「植物体の根と実質的に一体化」できるか否かは、例えば、後述する「一体化試験」によって判断できる。本発明者らの知見によれば、「植物体の根と実質的に一体化し得る」フィルム4としては、以下のような水分透過性/イオン透過性のバランスを有するフィルムが好ましいことが見出されている。本発明者らの知見によれば、このような水分/イオン透過性のバランスを有するフィルムにおいては、栽培すべき植物の成長(特に、根の成長)に好適な水分/養分透過性のバランスが容易に実現できるため、根と実質的に一体化が可能となると推定される。本発明において、植物はフィルムを通して肥料をイオンとして吸収するが、このような使用するフィルムの塩類(イオン)透過性が、植物に与えられる肥料成分の量に影響すると推定される。該フィルムを介して水と塩水を対向して接触させた際に、下記に示す測定開始4日後の水/塩水の電気伝導度(EC)の差が4.5dS/m以下のイオン透過性を有するフィルムを好適に用いることができる。このようなフィルムを用いた際には、根に対する好適な水あるいは肥料溶液を供給し、該フィルムと根との一体化を促進することが容易となる。
このフィルムは、耐水圧として10cm以上の水不透性を有することが好ましい。このようなフィルムを用いた際には、根に対する好適な酸素供給および該フィルムを介しての病原菌汚染を防止することが容易となる。
(耐水圧)
耐水圧はJIS L1092(B法)に準じた方法によって測定することができる。本発明のフィルムの耐水圧としては10cm以上、好ましくは20cm以上、より好ましくは30cm以上である。
(水分/イオン透過性)
本発明においては、上記フィルム4は、該フィルムを介して水と塩水(0.5質量%)とを対向して接触させた際に、測定開始4日後の水/塩水の栽培温度において測定した電気伝導度(EC)の差が4.5dS/m以下であることが好ましい。この電気伝導度の差は、更には3.5dS/m以下であることが好ましい。特に、2.0dS/m以下であることが好ましい。この電気伝導度の差は、以下のようにして測定することが好ましい。
<実験器具等>
なお、本明細書の以降の部分(実施例も含む)において用いた実験器具、装置および材料は、(特に指定がない限り)後述する「実施例」の前の部分に示した通りである。
<電気伝導度の測定方法>
肥料は、通常イオンの形で吸収されるため、液中に溶けている塩類(あるいはイオン)量を把握することが望ましい。このイオン濃度を測定する手段として電気伝導度(EC、イーシー)を用いる。ECは比導電率ともいい、断面積1cm2の電極2枚を1cmの距離に離したときの電気伝導度の値を使用する。単位はシーメンス(S)が使われ、S/cmとなるが肥料養液のECは小さいので、1/1000のmS/cmを使う(国際単位系ではdS/m(dはデシ)と表示する)。
実際の測定においては、上記した電気伝導度の測定部位(センサー部)にスポイトを用いて試料(例えば溶液)を少量乗せ、導電率を測定する。
<フィルムの塩/水の透過試験>
市販の食塩(例えば、後述する「伯方の塩」)10gを水2000mlに溶解して、0.5%塩水を作製する(EC:約9dS/m)。
図3を参照して、上記「ざるボウルセット」を使い、ざる上に試験すべきフィルム(サイズ:200〜260×200〜260mm)を乗せ、該フィルム上に水150gを加える。他方、ボウル側に上記の塩水150gを加え、得られた系全体を食品用ラップ(ポリ塩化ビニリデンフィルム、商品名:サランラップ、旭化成社製)で包んで、水分の蒸発を防ぐ。この状態で、常温で放置して、24hrs毎に水側、塩水側のECを測定する。
本発明においては、フィルムを介する植物の根の養分(有機物)吸収を容易とする点からは、上記フィルムは、所定のグルコース透過性を示すことが好ましい。このグルコース透過性は、下記の水/グルコース溶液の透過試験により好適に評価できる。本発明においては、上記フィルムは、該フィルムを介して水とグルコース溶液とを対向して接触させた際に、測定開始後3日目(72時間)の水/グルコース溶液の栽培温度において測定した濃度(Brix%)の差が4以下であることが好ましい。この濃度(Brix%)の差は、更には、3以下、より好ましくは2以下(特に1.5以下)であることが好ましい。
<フィルムの水/グルコース溶液透過試験>
市販のグルコース(ブドウ糖)を用いて5%グルコース溶液を作製する。上記塩水試験と同様の「ざるボウルセット」を使い、ざる上に試験すべきフィルム(サイズ:200〜260×200〜260mm)を乗せ、該フィルム上に水150gを加える。他方、ボウル側に上記のグルコース溶液150gを加え、得られた系全体を食品用ラップ(ポリ塩化ビニリデンフィルム、商品名:サランラップ、旭化成社製)で包んで、水分の蒸発を防ぐ。この状態で、常温で放置して、24hrs毎に水側、グルコース溶液側の糖度(Brix%)を糖度計で測定する。
(植物との一体化)
後述する実施例1の条件(バーミキュライト使用)で、試験を行う。すなわち、サニーレタス(本葉1枚強)を2本用いて、実施例1の液肥(原液ハイポネックス1000倍希釈液)条件で、35日間、植物の成長試験を行う。
得られた植物−フィルムの系において、植物苗の根元で茎葉を切断する。根の密着したフィルムの茎がほぼ中心になるように、該フィルムを巾5cm(長さ:約20cm)に切断して試験片とする図17を参照)。
図4を参照して、ばね式手秤に市販のクリップを付け、上記で得た試験片の一方をクリップで固定して、ばね式手秤の示す重量(試験片の自重に対応=Aグラム)を記録する。次いで試験片の中心にある茎を手で持ち、下方に緩やかに引き下げて、根とフィルムが離れる(あるいは切断される)際の重量(荷重=Bグラム)をばね式手秤の目盛りから読み取る。この値から初期の重量を差し引き、得られた(B−A)グラムを巾5cmの引き剥がし荷重とする。
本発明においては、このようにして測定された剥離強度において、前記植物体の根に対して10g以上の剥離強度を示すフィルムが好適に使用可能である。この剥離強度は、更には30g以上、特に100g以上であることが好ましい。
(光学顕微鏡による確認)
上述したように、本発明においては、フィルムと植物の根の一体化は、根が密着したフィルムから根を引き剥しため必要な荷重の大きさで評価することができるが、この一体化は、光学顕微鏡によっても確認することができる。例えば、後述する実施例14に示すように、根とフィルムの界面の光学顕微鏡写真において、根とフィルムが一体化して、根がフィルム表面を実質的に隙間無く覆っていることが観察され、フィルムと植物の根が一体化していることが確認されている。
(フィルム材料)
上述した「根と実質的に一体化し得る」性質を満足する限り、本発明において、使用可能なフィルム材料は、特に制限されず、公知の材料から適宜選択して使用することが可能である。このような材料は、通常フィルムないし膜の形態で用いることができる。
より具体的には、このようなフィルム材料としては、例えば、ポリビニルアルコール(PVA)、セロファン、酢酸セルロース、硝酸セルロース、エチルセルロース、ポリエステル等の親水性材料が使用可能である。
上記フィルムの厚さも特に制限されないが、通常は、300μm以下程度、更には200〜5μm程度、特に100〜20μm程度であることが好ましい。
必要に応じて、上記フィルム4は他の材料と複合化(例えば、ラミネート化)してもよい。このような複合化は、例えば、フィルムの強度維持の点から好ましい。上記した「他の材料」としては、本発明におけるフィルム4の効果(根との実質的な一体化)を実質的に妨害しない限り特に制限されない。通常の多孔質材料(例えば、不織布)、透水性および/又はイオン透過性材料等を、植物体から見てフィルム4より外側(すなわち、フィルム4より溶液側)に配置しても、本発明におけるフィルム4の効果が実質的に妨害されない場合が多い。他方、後述するように、所定の材料を植物体から見てフィルム4より内側(すなわち、フィルム4より植物側)配置しても、本発明におけるフィルム4の効果が実質的に妨害されない場合もあり得る(したがって、このような「他の材料」も使用可能である)。
本発明のフィルム4の強度補強、取り扱い易さおよび形状保持性の向上の目的で、必要に応じて、「他の材料」と複合化する場合、このような「他の材料」としては、例えば、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリアミド、ポリビニルアルコール、セルロース等から成る不織布および連通孔を有するスポンジ等が挙げられる。該複合化の手法としては、例えば、貼り合せ、二重容器等が挙げられる。
更には、フィルム4の機械的強度を考慮して、該フィルム4の外側を、水透過性を有する他の材料でカバーしてもよい。該「他の材料」とフィルム4とは接触(一部接触を含む)していてもよく、また必要に応じて、互いに間隙をおいて配置してもよい。このような材料としては、例えば、金属、プラスチック、セラミック、木材等の比較的堅い材料が挙げられる。
(器具・収容部・壁材)
器具1の形状、大きさ等も特に制限されず、例えば、従来より使用されてきたような公知の栽培容器(例えば、ポット状、トレイ状、プランター状)の形状、大きさ等を、そのまま用いることができる。
また、該器具1の収容部2の形状、大きさ、ないしは該収容部を与えるための壁材3の材質、厚さ等も、特に制限されず、育成すべき植物の水分消費量、容器の内容積、植物支持体(土壌等)の通気性、水の温度等の種々の条件を考慮して、適宜選択することが可能である。
例えば、壁材3の材質としては、軽量化、易成形性および低コスト化の点からはポリプロピレン、ポリ塩化ビニル、ポリエチレン等の汎用プラスチックが好適に使用可能である。
(無孔性親水性フィルムと多孔性疎水性フィルム)
水を透過せず、水蒸気を透過する透湿性材料には、(1)多孔性を持つタイプと、(2)無孔性のタイプとの2種類が知られている。前者の多孔性の材料として、微孔を多数付与した疎水性高分子フィルムがあるが、このタイプの場合、水蒸気は微孔を透過するのであって、疎水性であるフィルム自身に水が浸透しないので、肥料成分としてのイオンは実質的に透過できないと推定される。他方、本発明者の知見によれば、後者の無孔性のタイプにおいては、肥料成分としてのイオンの透過が容易である。この点からは、(1)微孔を有する疎水性高分子フィルムよりも、(2)無孔性のタイプの方が本発明のシステムに適している。例えば、後述する実施例(実施例13)には、微孔性ポリプロピレンフィルム「セルガード」((株)トクヤマ製)を用いた植物栽培例が示されている。この例においては、26日間栽培後の植物体の重量がPVAフィルムでは13.1gなのに対し、微孔性ポリプロピレンフィルムでは1g以下と育ちが劣り、実質的に肥料成分が微孔性ポリプロピレンフィルムを透過していないことを示している。
(マルチフィルムによる植物体の成長性および糖度/Brix値の制御)
本発明においては、いわゆる「マルチフィルム」も、好適に使用することができる。ここに、「マルチフィルム」とは、植物の生長を助けるため、防寒・乾燥防止などを根元や幹などに施す目的のために使用されるフィルムを言う。このようなマルチフィルムを用いた場合には、水分の有効利用性が高まるというメリットを得ることができる。
すなわち、本発明によるシステムでは、養液からフィルム中に移動した水が、フィルムに密着した植物の根によって直接吸収される以外に、土壌側のフィルム表面から水蒸気として蒸発する傾向がある。このように蒸発する水蒸気を大気中に出来る限り逃がさないようにするために、土壌表面をマルチフィルムで覆うことができる。マルチフィルムで覆うことにより、土壌側のマルチフィルム面に水蒸気を凝結させ、水として利用することができる。
例えば、実施例18にサニ−レタスおよびルッコラのマルチフィルムの有無による、作物の重量およびBrix値を示した。マルチフィルムにより作物重量が増え、マルチフィルム無しは、より水分抑制がかかって、Brix値が上がることを示している。
(容器の形成方法)
上記構成を有する植物栽培用器具の使用方法は特に制限されないが、例えば、該容器中に植物保持用支持体および植物体を配置し、少なくとも前記フィルムを水もしくは肥料溶液に接触させつつ、該植物体を栽培すればよい。
(植物体)
本発明において栽培可能な植物(体)は、特に制限されない。本発明の栽培方法においては、植物の成長した根が、上記したフィルムと一体化した後に、該フィルムを介して接する液体からの肥料成分吸収が可能となるため、該植物は、ある程度成長した苗の状態であることが望ましい。ただし、該植物を保持すべき支持体(ないし土壌)中に、該植物がフィルムと一体化するまでの根の成長を可能とする程度の養分および水分を含有ないし混入することにより、種子ないし発芽直後の種子であっても、本発明の栽培方法により栽培することが可能となる。
また、本発明においては、支持体無しで、直接フィルム上に植物体(例えば、種子)を蒔いて発芽させ、生育させることも可能である。
例えば、後述する実施例22に示すように、養液の上に厚み40μのPVAフィルム単独あるいはPVAフィルム上に障子紙を重ね、ルッコラとブロッコリーの種子を用いて、充分な発芽〜生育における発芽生長を行うことができる。この場合、植物体に接触させるべきフィルムは、透湿性フィルム単独であってもよく、また、必要に応じて、透湿性フィルムに障子紙等の紙、吸湿性の繊維、不織布等を重ねてもよい。
このように、フィルム上に直接種子を蒔き、生育させることにより、得られた生長後の植物体を「苗」として使用できることはもちろんであるが、野菜のスプラウト(新芽)を作製する手段としても、本発明の栽培方法は非常に有効となる。例えば、本発明の特徴の一つとして前述したように、養液からのウイルスや病原菌から植物体が汚染されることを有効に防止することができる。また、一般的には、スプラウトは発泡ポリウレタンなどの培地に種子を蒔いて、発芽生育する方法がとられているが、本発明によれば、フィルム上にスプラウトを生長させることが出来るため、容易に根とフィルムを剥がすことにより、スプラウトを容易に回収することも可能になる。その他、スプラウトの製造時においても、本発明の栽培方法が有する、多くの特徴を活かすことが出来ることは、もちろんである。
(植物保持用支持体)
本発明においては、上記の植物保持用支持体(ないし土壌)としては、従来より公知の支持体を特に制限なく使用することが可能である。このような支持体としては、例えば、土壌(礫、砂、土)、炭化物、天然鉱物質(バーミキュライト、パーライト、ゼオライト等)、天然植物質(ピートモス、パーク、水苔、ヤシガラ等)、植物育成用保水材およびこれらを配合した苗育苗用混合植込材料等が挙げられる。
(土壌)
上述したように、通常使用される土壌ないし培地は、本発明において、いずれも使用可能である。このような土壌ないし培地としては、例えば、土耕栽培に用いられる土壌、および水耕栽培に用いられる培地が挙げられる。
例えば、無機系では天然の砂、れき、パミスサンドなど、加工品(高温焼成等)では、ロックウール、バーミキュライト、パーライト、セラミック、籾殻くん炭など。有機系では天然のピートモス、ココヤシ繊維、樹皮培地、籾殻、ニータン、ソータンなど、合成品の粒状フェノール樹脂などがある。また、これらの混合物でもよい。必要最小限の肥料および微量要素を、これらの土壌ないし培地に加えてもよい。本発明者らの知見によれば、本発明の栽培器具/栽培方法においては、植物の根が、フィルムを介して接触する養液側から吸収可能な程度に伸びるまでの養分は、ここに言う「必要最小限の肥料および微量要素」として、フィルムより内側(すなわち、植物側)に加えておくことが望ましい。
(養液)
本発明において使用可能な養液(ないし肥料溶液)は特に制限されない。例えば、従来の養液栽培ないし水耕栽培において使用されてきた液状成分は、本発明においていずれも使用可能である。
一般には、水あるいは養液とした植物の生育にとって必要不可欠な無機成分としては、主要な成分として:窒素(N)、リン(P)、カリウム(K)、カルシウム(Ca)、マグネシウム(Mg)、硫黄(S)、微量成分として:鉄(Fe)、マンガン(Mn)、ホウ素(B)、銅(Cu)、亜鉛(Zn)、モリブデン(Mo)が挙げられる。さらにこの他に、副成分として、珪素(Si)、塩素(Cl)、アルミニウム(Al)、ナトリウム(Na)等がある。必要に応じて、本発明の効果を実質的に阻害しない限り、その他の生理活性物質も加えることができる。更に、グルコース(ブドウ糖)などの糖質を添加することも可能である。
(根圏温度の制御)
本発明においては、必要に応じて、フィルムを介して植物体の根と接触する液体(例えば、養液)の温度を制御することにより、該フィルムと一体化すべき(ないしは、既に一体化した)根周辺の温度、すなわち根圏温度を調節することができる。このような態様によれば、温室等の室内全体を暖房/冷房していた従来の方式と比べて、植物の根圏温度を精密に、且つ省エネルギー的にコントロールすることが容易となる。
本発明においては、特に、植物体の根がフィルムと密着ないし一体化しているため、根圏温度の制御が特に容易である。
加えて、本発明によるシステムでは加温、冷却すべき使用水量が極めて少ないこと、従来の養液栽培のように、養液の溶存酸素を増やす操作が不要であること、あるいは、栽培ベッド中の養液が外気と直接に触れず、密閉されているため保温効果に優れ、全体として加温冷却を効率的に行うことができ、エネルギーコストに優位性がある。例えば、根圏の冬場の加温、夏場の冷却効果をホウレンソウについて実施例17に示す。ホウレンソウの育成適温は15〜20℃とされるが、厳冬期や盛夏においては、適温範囲を大きくはずれることが多い。このような厳冬期や盛夏の時期においても、根圏のみを適温範囲に制御することにより、実施例17に示すように、作物重量がアップし優れた生育が得られることがわかる。
(栽培方法)
本発明においては、上記した構成を有する栽培器具1を使用する限り、これと組み合わせて使用すべき栽培方法は、特に制限されない。本発明において好適に使用可能な栽培方法の態様を、以下に述べる。
(好適な栽培方法)
図5の模式断面図を参照して、この態様においては、フィルムと溶液とが直接に接触している。この態様においては、溶液内部に配置したヒーターによって、該溶液を加温することもできる。また、溶液を外部で加温して循環することもできる。例えば、発泡スチロール製のトロ箱を用い、肥料溶液の上にフィルム(網目のある箱を支えにしてもよい)を置き、土壌を乗せ、苗を植え付けることができる。この態様においては、肥料水溶液はフィルムによって蓋をされ、水分の蒸発は主として植物を通して行われるので、水溶液表面から直接の蒸散を防ぐことができる。
図6の模式断面図を参照して、この態様においては、フィルムが網状の容器を介して溶液と接触している。網状の容器は、フィルムの破損防止等のために有用である。図7(a)および(b)は、網状の容器内にフィルムを配置した例図7(a))と、溶液中にこれらの容器を複数配置した例図7(b))を示す。
図8の模式断面図を参照して、この態様においては、フィルムと容器の接触面におけるサイホン効果で、溶液をフィルムと接触させる例を示す。この態様においては、溶液の種類切替の容易さなど自由度が増えるという利点がある。
図9の模式断面図を参照して、この態様においては、不織布等の吸水マットの上にフィルムを配置することにより溶液をフィルムと接触させて供給する。例えば、フィルムとして不織布付親水性ポリエステルを用いた容器の隣に水の入った容器を置き、吸水マットのサイホン効果で土壌の容器に水を導くことができる。
本発明においては、上記したような図5〜図9の個々に示した構成の2以上を、必要に応じて組み合わせてもよい。
(本発明の利点)
上記構成を有する本発明の栽培器具ないし栽培方法を用いることにより、植物に対する酸素供給が、植物に対する養分供給から機能分離されることとなる。すなわち、従来の養液栽培の最大の問題点であった根への酸素が、空気中から充分に供給可能ある一方で、養分はフィルムを介して接触する養液から必要な程度を供給することができる。したがって、本発明においては、養液の濃度、pH等の管理に関し、従来の養液栽培におけるよりも遥かに自由度が増大する。すなわち、本発明においては、植物体がフィルムによって養液と物理的に分離されているため、実質的に、植物体とは無関係に養液を管理することが可能となる。換言すれば、栽培途中における養液自体の交換、および/又は養液の濃度、pH等の管理が極めて容易になる。
更に、本発明によれば、養液中の有害細菌から、植物体を隔離することが極めて容易である。加えて、フィルムを介して接触する養液からの水分供給が、植物に対しては比較的抑制されるため、糖度等の点における品質の向上も可能となる。
(養液における利点)
上述したように、植物の生育にとって必要不可欠な無機成分としては、主成分:窒素(N)、リン(P)、カリウム(K)、カルシウム(Ca)、マグネシウム(Mg)、硫黄(S)、微量成分として:鉄(Fe)、マンガン(Mn)、ホウ素(B)、銅(Cu)、亜鉛(Zn)、モリブデン(Mo)が挙げられる。さらにこの他に、副成分として、珪素(Si)、塩素(Cl)、アルミニウム(Al)、ナトリウム(Na)等がある。これらの成分は通常はイオンの形で供給されるが、植物の種類ごとに要求する各成分の量が異なるため、一般には、植物ごとに配合を決める必要がある。また、使用する水によっては、含まれるイオンの量も考慮した濃度の調整が必要になる場合がある。
養液−植物体がフィルムによって分離されている本発明においては、このような養液組成の調整も、遥かに容易に行うことができる。例えば、植物体をフィルムごと第1の養液から引き上げて分離し、他の組成を有する第2の養液中に浸漬すればよい。
(養液の濃度)
養液の個々の成分濃度や全塩濃度は、作物の生育や品質に大きな影響を及ぼす。従って、養液の濃度をどの値にするかは重要な問題である。生育段階、生育環境条件によって大きく変化することが明らかになっている。
これまで、日本では最初に調整したときの成分組成が栽培中にも変化せず、不必要なものは蓄積しないことが理想とされてきたが、ロックウール等の固形培地では、かん液する培養液と排液の組成、濃度は必ずしも一致していない。欧州では、培地内に存在する養液をスターター養液、日々かん液する養液を追肥養液と呼び、両者を区別している。今後、栽培の各段階で、養液組成、濃度を変化させることが必要になる可能性がある。
養液−植物体がフィルムによって分離されている本発明においては、このような養液濃度の調整も、上記した養液組成の調整と同時に、遥かに容易に行うことができる。
(pH)
養液のpH(水素イオン濃度)は植物の養分吸収によって変化するが、同時に、植物体の根による養分吸収能にも直接影響することが知られている。高pH(アルカリ性側)条件ではP、Ca、Fe、Mnの溶解度が低い場合があり、また植物の吸収できるイオン形態でない場合もある。また、低pH(酸性側)ではMnの過剰吸収が生じる場合がある。このことから、一般的にpH5.5〜6.5が好適とされる。養液栽培で用いる養液のpHが変化する主な原因は、陽イオンと陰イオンの吸収の不均衡である。また、植物が硝酸態窒素(NO3 -)とアンモニア態窒素(NH4 +)のどちらを優先吸収するかによっても影響を受け、NO3 -が優先吸収されるとpHは上昇傾向となり、NH4 +が優先すると低下する。更に、根からの漏出や、根の腐敗による、酢酸、蟻酸、プロピオン酸等の有機酸の生成によっても、養液のpHが容易に変化することである。
養液−植物体がフィルムによって分離されている本発明においては、このような養液pHの調整も、上記した養液組成の調整と同様に、遥かに容易に行うことができる。
(酸素濃度)
一般に、植物体の育成において、酸素の供給は最も重要な条件である。特に、高温時には根の呼吸が高まって酸素要求量が増すが、一方で溶存酸素濃度は低くなるので、酸素欠乏の問題がある。酸素不足が発生すると「根づまり」と称される現象が生じ、その結果、根が腐敗し、アンモニアが発生し、養液のpHが上昇し始める。根への酸素の供給は水耕栽培では液中の溶存酸素によるか、直接空気中の酸素に接することによって補う。液中の溶存酸素による場合には、液表面と空気層との接触によって行う自然溶存の場合と、液循環の際の瀑気や吸い込みによって行う場合に分けられる。直接空気中の酸素に接する場合は、NFTの一部の方式(養液を一次的に止め、根を空気に完全にさらす)やロックウール等で行われている。
根の発育生態を見ると、溶存酸素のみによる場合には根毛がほとんど発達せず、環境適応幅も狭い。それに対し、空気中の酸素を利用した場合には根毛が良く発達し、環境の変化に対し順応性が高い。したがって、有機物が充分に供給された土壌の場合には土壌の団粒構造が発達しており、土壌中に空気すなわち酸素が充分含まれるため、そこで栽培した植物の根には根毛が発達しており、環境に対する適応性も高くなる。養液栽培は、この土壌で栽培した場合の良い点を取り入れる努力がなされ、かつ土壌の場合に生じる欠点を補うことを目標にしているため、特にこの酸素の供給に対しては細心の注意が払われてきた。
養液−植物体がフィルムによって分離されている本発明においては、このような植物への酸素の供給は、空気中の酸素を有効に利用して、かつ、土壌中水分が極めて少ないため、従来の露地栽培と同等以上に、容易に行うことができる。
(高品質化のための養液管理技術−高糖度)
最近、トマトやメロン等の果菜類では、高品質化により高付加価値をつける工夫がなされている。メロンの養液栽培では、収穫前に培養液濃度を高めて果実の糖度を上げることがよく行われている。トマトでは通常、培養液濃度を高めたり、培養液に食塩を加えたり、あるいは海水を加えて浸透圧を高めて、植物体の吸水を抑制して、高糖度の果実を得ている。
養液−植物体がフィルムによって分離されている本発明においては、植物への水の供給は比較的不足した状態であるため、高糖度等の高品質化を容易に行うことができる。
例えば、後述する実施例15に本発明のシステムによるミニトマトの栽培事例を示すが、通常のミニトマトの糖度4〜5に対し、この例では糖度7.0〜8.4レベルは少なくとも可能であることが確認されている。実施例16においては、本発明のシステムにより栽培したサニーレタス、ルッコラおよびホウレンソウのBrix値は、通常法と比較してが、いずれも高いBrix値を示している。
(高品質化のための養液管理技術−特定成分の低含量化)
養液−植物体がフィルムによって分離されている本発明においては、上述したように、養液組成、濃度、pH等の調整が極めて容易であるため、以下のような特定成分の調整も容易に行うことができる。
(1)硝酸態窒素
サラダやホウレン草等の葉菜にはその可食部に葉柄部が含まれているため、高い濃度で硝酸塩が含まれていることがある。硝酸塩は唾液と反応して亜硝酸塩となり、更に消化の過程で発ガン性を持つニトロソアミンという物質を生成するとされている。このため、野菜に含まれる硝酸含量が品質の重要な基準の1つになりつつあり、その低含量化が求められている。養液管理によって植物体の硝酸態窒素含量を低下させるには、まず収穫前の数日間、硝酸態窒素の供給を停止することで可能である。
(2)シュウ酸
葉菜の中でもホウレン草は特にシュウ酸含量が高いものとして知られている。シュウ酸はアク、えぐ味の成分であるばかりでなく、尿路結石の原因物質としても知られ、その低含量化が求められている。例えば、養液中の硝酸態窒素を減らすことでシュウ酸含量を低下させることができる(ただし、一般的には若干の生育の抑制も伴う傾向がある)(養液栽培のデメリットの克服ないし軽減)
(1)一般的には養液栽培においては、初期の資本投資額が大きいとされている。すなわち、養液栽培では温室・ハウスなどの園芸用施設だけでなく、養液栽培装置の設置が不可欠であり、土耕栽培と比較して初期投資額が大きくなる。しかも、養液の給液管理や環境制御等を自動化する場合には、さらに各種コントローラーへの投資が必要となる。
これに対して、養液−植物体がフィルムによって分離されいる本発明においては、フィルムと接している植物の根が同時に土耕栽培に使用されているマトリックスに接触しているため、養液等の環境変化に対する緩衝効果が発揮され、環境制御等が極めて容易となるため、施設コストを著しく軽減することが可能となる。
(2)一般的には、養液栽培においては、ランニングコストがより多くかかるとされている。すなわち、養液栽培は土耕栽培に比べ肥料費や光熱動力費をより多く要する。また、培養液の分析、機器のメンテナンスのほか、方式によっては使用済みロックウールや廃液等の廃棄物処理に費用がかかる場合もある。
これに対して、養液−植物体がフィルムによって分離されいる本発明においては、栽培環境の簡略化により、上述した施設コストのみならずランニングコストをも著しく軽減することが可能となる。
(3)一般的には、養液栽培においては、培養液の管理が難しいとされている。すなわち、養液栽培の場合、土耕栽培よりも地下部の緩衝能力が小さいため、肥料成分や温度、酸素量等の影響を受けやすい。
これに対して、養液−植物体がフィルムによって分離されいる本発明においては、先に述べたように、用いられている土耕栽培用の土壌の緩衝能力により、上述した養液の管理を著しく容易化することが可能となる。
(4)一般的には、養液栽培においては、導入できる植物(例えば、野菜)の種類が限定されている。
これに対して、養液−植物体がフィルムによって分離されいる本発明においては、上述した酸素供給の容易化(実質的に露地栽培と同等以上の酸素供給)、および養液管理の容易化により、従来の養液栽培よりも。適用すべき植物の対象を拡大することが可能となる。
(5)更に、従来、有糖培養によってのみ生育可能な幼苗の栽培方法(例えば、組織培養によるクローン苗の栽培等)においては、寒天培地等にグルコース(ブドウ糖)等を添加し、無菌的に行われてきたが、いくつかの重大な問題点がある。例えば、滅菌操作、クリーンルームの使用等の高いコストと培養段階から圃場に移行する際のグルコースを含む寒天培地の除去、水分環境の激変による活着率の低下、および苗の低品位化である。
これに対して、養液−植物体がフィルムによって分離されている本発明においては、グルコース等の栄養成分がフィルムを介して植物に供給され、かつ酸素が充分供給され、かつフィルムによって菌による汚染が防止されるため、上述した従来の組織培養法の問題点が完全に解消される。
(養液(水)の消費量)
一般的には、養液栽培では水の使用量が多く、夏場のトマトでは1日1本の苗当たり数百mLから2L以上も消費すると言われている。実際にガーベラ養液栽培において測定された例では1L/日・本とされている。一般の養液栽培の場合は、表面から大気中への直接蒸発があることに加え、養液中の溶存酸素を増やすために空気と接触面を増やすための操作が行われるため、水分の消費が多くなる。
これに対して、本発明による事例では、実施例19に示すように、サニーレタスやルッコラの栽培で養液の消費量が0.015L/日・本であり、非常に水消費量が少ないことがわかる。加えて、水使用量が少ないので、肥料のロスを少なくすることが期待できる。水使用量が少ないことは設備投資あるいはランニングコストの面で経済的優位性がある。更には、本発明によれば、水および肥料使用量を最小限に抑えることが可能であり、コスト面以外にも、使用済み廃液も最小限に抑えることができ、環境汚染の極小化が可能となる。
(養液の再使用、コンタミネーション抑制)
本発明によるシステムでは、養液が土壌や根から隔離されているので、根からの分泌物や土壌による養液汚染が少なく、使用後の養液は不純物がほとんど無く、pHや養液濃度の管理が容易になる。実施例20に、数種類の野菜栽培後の養液の汚染程度を観察した結果を示す。この実施例20のいずれの例においても、使用後の養液は清澄で、初期の透明さを、ほぼ保っていいる。これは、養液が土壌の敷かれたフィルムで蓋をされている状態にあり、土壌側からの汚染が殆ど無いこと、あるいは、外気から酸素が入りにくく、また、光も入らないことから、微生物や藻類も育ちにくいためと考えられる。従って、養液の再使用に際し必要な処理も容易に且つ最小限の操作で良く、再利用もし易くなる。
また、養液からの土壌汚染が少ないので、土壌として、肥料成分やその他不純物を含まない材料を用いることで、植物の根が微量分泌する物質を回収、定性、定量することが容易になる。
(接木)
一般的に、土壌中の病気や線虫、又は低温や高温により野菜の生育が困難な場合、病害虫抵抗性、耐乾湿性あるいは耐寒耐暑性をもつ台木に栽培品種の穂木を接木して苗作りをすることが行われる場合がある。スイカ・メロン・キュウリ・トマト・ナスなどの野菜栽培には接木を用いた栽培法が行われており、スイカでは95%と多く、メロン・キュウリ・ナスでは40〜90%ほど、およびトマトは5〜15%が接木により栽培されているとされる。
接木した作物の栄養源は、基本的には(台木の)根からの無機栄養の吸収と光合成であるが、本発明においては、養液−植物体がフィルムによって分離されているため、台木に穂木が完全に接合するまでの間、グルコース等の栄養分をフィルムを介して、接木すべき(または接木した)植物に供給することも可能である。また、本発明によるシステムで作られた植物苗の根は生育に優れ、根の量も多く、毛根も発達しているため、接木に使用する台木としても適している。
(フィルム強度とイオン透過性の関係)
一般に、フィルムの厚さが大きくなるにつれて、(根等によるフィルムの破れ難さは増大するが)養液の透過性は減少する傾向にあると考えられる。
本発明によるシステムでは、植物栽培を長期にわたりフィルム上で行うので、フィルムの長期耐久性(例えば、破れ難さ)は高い方が好ましい。フィルムの耐久性を上げる方法は例えば、組成や延伸などの加工方法などフィルム種類を変えること、あるいは、同一種類の場合は厚みを増す方法もある。これに対して、フィルム厚みを単に増した場合、イオン透過性が低下する可能性がある。
しかしながら、本発明者の知見によれば、例えば、スキン構造を有するフィルムにおいては、厚さが厚くなっても、透過性はあまり低下しない場合があることが見出された。例えばソルベント・キャスティングでは、表面のみが先ず乾燥して緻密な膜(スキン層)を形成するため、スキン構造を有するフィルムが形成される。この場合、スキン構造以外の部分(フィルム内部)は、かなり多孔質のままである。本発明者の知見によれば、「養液の透過」は、緻密なスキン層の透過が律速であり、内部の多孔質部分はあまり影響がない(すなわち、スキン構造の厚さがあまり変化しなければ、フィルムの厚さが大きくなっても、透過性はあまり低下しない)と推定される。例えば、後述するようにPVAフィルムを使用した場合には、厚さが厚くなっても、透過性はあまり低下せず非常に好都合であることが判明している。後述する実施例21に示すように、フィルム強度を上げるために、フィルム厚みを増しても、PVAフィルムの場合には、肥料成分のイオン透過性の目安である0.5%塩水透過性が、大きく変化しない利点がある。
この実施例21においては、親水性ポリエステルフィルムとPVAフィルムについて、フィルム厚みを20〜75μmの範囲で変え、0.5%塩水透過性(肥料イオンのフィルム透過性の目安となる)の試験結果が示されている。PVAフィルムの場合はフィルム厚みを25〜65μmに変えた場合、殆ど塩水透過性が変化せず、本発明のシステムによる植物栽培において、非常に有利であることがわかる。
(水分/イオン透過性のフィルム厚み依存性)
本発明においては、上記フィルムは、所定の温度(27±3℃)において、該フィルムを介して水と塩水(0.5質量%)とを対向して接触させた際に、測定開始24時間後の水/塩水の電気伝導度(EC)の差で表現した際の水分/イオン透過性が、特定のフィルム厚み依存性を有することが好ましい。この水分/イオン透過性のフィルム厚み依存性が小さい場合には、(例えば、該フィルムの破損耐性を増大させる観点から)フィルム厚みを増大させたとしても、フィルムの水分/イオン透過性は比較的に低下しないこととなり、フィルムの破損耐性の向上、および水分/イオン透過性の維持の両立を図ることが容易となるからである。
より具体的には、27±3℃において、該フィルムを介して水と塩水を対向して接触させた際に、測定開始24時間後の水/塩水の電気伝導度(EC)の差ΔEC24hrs(dS/m)を、フィルム厚み(μm)を横軸にプロットしたグラフの傾きΔEC24hrs(dS/m)/10μm(即ち、厚み10μm当たりのΔEC24hrs変化量)が、0.7以下であることが好ましく、更には0.5以下(特に0.3以下)であることが好ましい。
上記のフィルム透過度試験においては、比較的に高い温度(27±3℃)を使用したが、この温度は、本発明に好適に使用可能なフィルムを確認する目的のみに使用するものであって、他の温度条件(例えば、実際の栽培時の温度条件)を何ら制限しない。すなわち、本発明においては、例えば、実質的に温度調節を省略することにより、比較的に低温の条件(冬季等)においても、植物体を栽培することができる。
以下、実施例により本発明を更に具体的に説明する。
[実施例]
以下で用いた実験方法は、上述したものの他は、以下の通りである。
<水の蒸発量測定>
図10の模式断面図を参照して、上述した「ざるボウルセット」を使い、ざるにフィルム(200〜260×200〜260mm)を敷いた後に土壌を加え、植物の苗(1〜2本)を植え付ける。ボウルに水あるいは所定濃度の肥料希釈液を加え、この上にざるを乗せた。定期的に上皿天秤にて重量を測定し、減量から液の蒸発量を測定した。蒸発により減量した液は随時追加した。
<成長過程の観察>
苗の成長過程の観察は、デジタル写真により撮影した(デジタルカメラ:キャノン社製 IXY Digital 200a)。
<試験終了後の観察ならびに測定>
試験終了後は、根の乗っているフィルムの裏側をフィルム越しに、あるいはフィルムを除き、根の部分を中心に写真撮影を行った。成長した苗の重量測定は、根の付いたまま、あるいは根元で切断し、茎葉部分を秤量した。
<pHの測定>
pHの測定は後述のpHメーターによって行った。標準液(pH7.0)で校正したpHメーターのセンサー部分を測定すべき溶液につけ、本体を軽く揺らし、値が安定するのを待ち、LCD(液晶)表示部に表示される値を読み取った。
<Brix%の測定>
Brix%測定は後述の糖度計(屈折計)を用いて行った。測定溶液をスポイトでサンプリングし、糖度計のプリズム部分に滴下し測定後、LCDの値を読み取った。
<実験器具等>
1.使用器具および装置 1)ざるボールセット:ざるの半径6.4cm(底面の面積約130cm2
2)発泡スチロール製トロ箱:サイズ55×32×15cm等
3)上皿電子天秤:Max.1Kg 株式会社タニタ
4)ばね式天秤:Max.500g 株式会社鴨下精衡所
5)ポストスケール:ポストマン100 丸善社
6)電気伝導度計:Twin Cond B−173 株式会社堀場製作所
7)pHメーター:pHパル TRANSInstruments(グンゼ産業)
8)糖度計(屈折計):PR201 (株)アタゴ社製
2.使用材料(土壌)
1)スーパーミックスA:水分約70% 微量肥料入り 株式会社サカタの種
2)ロックファイバー:栽培用粒状綿66R(細粒) 日東紡
成分(%)SiO2 43、CaO 33、Al23 15、MgO 6、
Fe23 1以下、MnO 1以下
3)バーミキュライト:タイプGS ニッタイ株式会社(フィルム)
4)ポリビニルアルコール(PVA):40μm アイセロ化学
5)二軸延伸PVA:ボブロン 日本合成化学工業
6)親水性ポリエステル:12μm デュポン社
同不織布付、生地付
7)セロファン
8)浸透セロファン: 横浜商事(株)
9)微孔性ポリプロピレンフィルム:セルガードPH−35 トクヤマ
10)不織布:シャレリア(超極細繊維不織布) 旭化成社(苗用種)
11)サニーレタス:レッドファイヤー タキイ種苗株式会社
12)パンジー:マキシムF−1 株式会社サカタの種(肥料)
13)原液ハイポネックス: 株式会社ハイポネックスジャパン
全窒素量 5.0%
内アンモニア性窒素 1.95%、硝酸性窒素 0.90%
水溶性リン酸 10.0%、水溶性カリ 5.0%、水溶性苦土 0.05%
水溶性マンガン 0.001%,水溶性ほう素 0.005%(その他)
14)伯方の塩: 伯方塩業株式会社
100g中ナトリウム37.5g、マグネシウム110mg、カルシウム
90mg、カリウム50mg15) ブドウ糖:ブドウ糖100 (株)イーエスNA
(液体肥料の効果)
図10の系を用いて、ハイポネックス原液の濃度の効果を調べた。すなわち、ハイポネックス100倍希釈液、1000倍希釈液、および水(水道水)の効果を比較した。
大きさが約20cm×20cmのフィルム(PVA)内に土壌として、バーミキュライト、またはロックファイバーを約300ml配置した。この土壌内に、植物の苗として、サニーレタス(本葉1枚強)を2本配置した。土壌および溶液毎に6種類の系を作製し、それぞれの溶液に浸漬した。この際、溶液は各300ml使用し、フィルム(PVA)内の土壌が約2cmの深さで浸かるように配置した。実験はハウス内で行い、日照は自然のままのものとした。実験の際の気温は、約0〜25℃、湿度は50〜90%RH程度であった。
水分蒸発量および溶液のEC値を、栽培開始後13日後、および35日後に測定した。35日後には、前述した「引き剥がし試験」も行った。
上記実験条件を纏めると、以下の通りである。1.実験
1)フィルム:PVA40μm(アイセロ化学) 200×200mm
2)苗:サニーレタス 本葉1枚強
3)土壌:バーミキュライト(細粒)、ロックファイバー66R
4)溶液:
水、ハイポネックス原液 100倍希釈水溶液、1000倍希釈水溶液
5)器具:ざるとボールのセット
6)置き場所:ハウス(温度湿度制御無し)
7)実験方法:
ざるにフィルム(200×200mm)を介しバーミキュライト150g
(水分73%、乾燥重量40g)、ロックファイバー200g(水分79%、乾燥重量40g)を加え、苗を2本植え付ける。ボウルに水または養液を240〜300g加え、ざるを乗せた。
8)期間:2002.10.29〜12.42.上記実験により得られた結果を、下記表1に示す。
Figure 2005102508
EC:液肥追加前/追加後
図11〜13は、本実施例で得られた栽培開始から35日目の植物体の状態を示す写真である(いずれも土壌はバーミキュライトである)。図11はフィルムを介した溶液としてハイポネックス100倍希釈液を使用した場合、図12はハイポネックス1000倍希釈液を使用した場合、図13は水(水道水)を使用した場合である。
また、図14〜16は、本実施例で得られた栽培開始から35日目のフィルムの裏側(溶液側)から見た根の状態を示す写真である(いずれも土壌はバーミキュライトである)。図14は、フィルムを介した溶液としてハイポネックス100倍希釈液を使用した場合、図15はハイポネックス1000倍希釈液を使用した場合、図16は水(水道水)を使用した場合である。
上記した表1および写真を見れば、本実施例において植物の良好な成長が得られていることが理解できよう。ハイポネックス100倍希釈液を使用した場合の方が、該1000倍希釈液を使用した場合よりも良好な成長が見られる。(表1、図11および14)。また、これらのデータ(例えば、100倍希釈−1000倍希釈−水のデータの比較)により、植物がフィルムを介した肥料溶液中から成長に必要な肥料成分を得ていることも、容易に理解できよう。
養液とした用いた液体肥料の濃度を、ハイポネックス1000倍、2000倍、3000倍希釈とし、表2に示した項目とした以外は、実施例1と同様に実験を行った。
「ざる」にフィルムを介し土壌200g(水分79%、乾燥重量40g)を加え、苗を2本植え付けた。ボウルに水または肥料溶液を240g加え「ざる」を乗せた。(実施期間:2002.10.30〜12.4)
上記実験により得られた結果は、以下の通りである。
Figure 2005102508
EC:液肥追加前/追加後(実験結果に対する記述)
液体肥料の希釈倍率によって、植物成長の程度は実施例1と同様に濃度の濃い方が成長しており、フィルムを介して肥料成分を吸収していることが理解できる。
(バーミキュライト/PVA液体肥料効果)
バーミキュライト/PVAの系を用いて、水とハイポネックス1000倍希釈液の効果を比較した。表3に示した以外は、実施例1と同様に実験を行った。
「ざる」にフィルムを介し土壌235g(水分63%)を加え、苗を2本植え付けた。ボウルに水または肥料溶液を約250ml加え「ざる」を乗せた(実施期間:2002.10.22〜11.25)。
上記実験により得られた結果を纏めれば、以下の通りである。
Figure 2005102508
*EC:液肥追加前/追加後
*引き剥がし試験:ポストスケール使用(実験結果に対する記述)
肥料溶液のEC値は、初期0.5dS/mに対し、最終35日目には0.22dS/mと低下し、明らかに肥料が消費されていた(水分蒸発を考慮すると、液体肥料の消費量は、さらに大きいと思われる)。
土壌としてバーミキュライトを用い、フィルムを黒不織布付親水性ポリエステルとし、表4に示した項目とした以外は、実施例1と同様に実験を行った。
<バーミキュライト/不織布付親水性ポリエステル液体肥料効果>
実験は、「ざる」にフィルムを介し土壌230g(水分76%、乾燥重量55g)を加え、苗を2本植え付けた。ボウルに水、または肥料溶液を約200g加え「ざる」を乗せた。
上記実験により得られた結果は、以下の通りである。
Figure 2005102508
(実験結果に対する記述)
30日目における根と茎葉の重量を、肥料溶液と水で比較すると、明らかに肥料溶液の方が大であり、肥料を吸収していることが理解できる。
土壌としてロックファイバー(使用量:乾燥重量10、20、30g)を用い、表5に示した項目とした以外は、実施例1と同様に実験を行った。
<ロックファイバー量の効果>
「ざる」にフィルムを介し土壌50〜150g(水分83%、乾燥重量10、20、30g)を加え、苗を2本植え付けた。ボウルに水、または肥料溶液を290〜390g加え「ざる」を乗せた。(期間:2002.11.1〜12.4)
上記実験により得られた結果は、以下の通りである。
Figure 2005102508
*引き剥がし試験:ばね式秤を使用(実験結果に対する記述)
土壌量10gの場合には10日目で枯れ、根の成長が進む前に水分不足により枯れたと思われる。従って、適度な土壌量が極めて好ましいと考えられる。
(各種フィルムの差)
上記した方法で、各種フィルムに関して、水による苗の成長を観察した。フィルムとしては、PVA、二軸延伸PVA(ボブロン)、親水性ポリエステル3種の計5サンプルを用いた。
ざるにフィルム(260×260mm)を介し土壌500mlを加え、苗を2本植え付ける。ボウルに水250mlを加え「ざる」を乗せた。期間は8月17日〜9月14日である。
Figure 2005102508
(実験結果に対する記述)
不織布付親水性ポリエステルの水分蒸発量が突出しているが、不織布からの蒸発が含まれているためと考えられる。
最終苗の本葉数は、不織布付親水性ポリエステル≧PVA>親水性ポリエステル≧ボブロン>生地付親水性ポリエステルの順であった。これは、根の発育状況と同様の傾向であった。
(塩水透過試験)
前述の<フィルムの塩/水透過試験>方法に従って、各種フィルムの塩水透過試験を行った。フィルムはPVA、ボブロン(二軸延伸PVA)、親水性ポリエステル、セロファン、セルガード、超極細繊維不織布(シャレリア)の6種である。
上記実験により得られた結果は、以下の通りである。
Figure 2005102508
上記データをグラフ化したものを図18に示す。
(実験結果に対する記述)
6種類のフィルムのうち、セルガードは塩水の透過が認められなかった。その他のフィルムでは、超極細繊維不織布は水と共に塩が完全に透過しているが、PVA、親水性ポリエステルおよびセロファンも比較的早く塩の透過が進んでいる。ボブロンは塩の透過速度が小さいものの、4日目には塩水系と水系とのEC値の差が4.5以内になっている。
(ブドウ糖透過試験)
下記の<グルコース(ブドウ糖)透過試験>方法に従って、各種フィルムのブドウ糖透過試験を行った。フィルムはPVA、ボブロン(二軸延伸PVA)、セロファン、浸透セロファン、セルガードの5種である。
<グルコース(ブドウ糖)透過試験>
前述のざるボウルセットを使用し、ボウルに5%ブドウ糖水溶液(ブドウ糖50g/水1000ml)150gを加え、ざるに200×200mmのフィルムを敷き、水150gを加えて、ボウルに乗せた。それぞれの濃度と重量の経時変化を測定した。
<濃度測定>糖度計(屈折計)を用いてBrix%を測定した。Brix%はショ糖を水に溶解したときの重量%の単位で、例えば100g中に10gのショ糖が溶けている液はBrix10%となる。
上記実験により得られた結果は、以下の通りである。
Figure 2005102508
上記データをグラフ化したものを、図19に示す。
(実験結果に対する記述)
5種類のフィルムのうち、ボブロン、セルガードを除いた、PVA、セロファンおよび浸透セロファンは実験開始から3日目程度で、ブドウ糖系と水系とのBrix値の差が1以内になり、ブドウ糖がフィルムを透過していることが判る。
(耐水圧試験)
JIS L1092(B法)に準じた試験により、200cmH2Oの耐水圧試験を行った。実験結果
フィルム種 耐水圧(cmH2O)
PVAフィルム(40μm) 200以上
二軸延伸PVA(ボブロン) 200以上
セロファン 200以上
親水性ポリエステル 200以上
超極細繊維不織布 0
(PVAと極細繊維不織布の比較)
以下の条件で植物を栽培し、得られたフィルム(PVAフィルムおよび不織布の、植物根に接触していたもの)から根を手で引き剥がした。
<実験条件>
器具:ざるボウルセット
フィルム:PVA(200×200mm)、
超極細繊維不織布(アクリル系)シャレリア(旭化成社)(160×170mm)
土壌:バーミキュライト
苗:サニーレタス
溶液:ハイポネックス1000倍希釈液
期間:2002.9.29〜10.31
引き剥がした後のフィルムの状態を、図20〜22の写真に示す。図20は不織布の裏側である。不織布の裏側に、根が突き出ていることが観察される。図21は、不織布の表(土壌)側であり、土壌を除いても根が残っている。このように、根がフィルムないし布の裏側に突き出た場合には、貫根という状態となり、本発明の栽培には適しない。
これに対し、図22はPVAフィルムの裏側を示す。PVAフィルムは透明であるために、該フィルムの裏・表ともに、根が残っていないことが観察される。
(pHの測定)
トロ箱(30×22×8cm)に300倍希釈のハイポネックス溶液(EC:1.37)を1.3L入れ、その上にPVAフィルム(48×40cm)を敷いた。PVAフィルムに土壌(スーパーミックスA)を2cmの深さを加え、サニ−レタス(本葉3枚)の苗を12本植え付けた。無加温のハウス内(11月12日〜12月25日)にて育て、溶液のEC値とpHを定期的に測定した。この間、上からの給水も溶液の補充も全く行っていない。
上記実験により得られた結果は、以下の通りである。
Figure 2005102508
図23、24に生育状況の写真を示す。図23は苗の植付け時の写真で、図24は43日目の写真である。
(実験結果に対する記述)
pHについて、0日目7.2に対し、43日目は4.2と低下している。一般に、レタスは窒素肥料のアンモニア態窒素を優先的に吸収するため、アンモニア態窒素が消費されるまで、pHが低下すると言われており、本実験結果からもアンモニア態窒素が消費されていると考えられる。EC値も経時的に低下しており、肥料の吸収を裏付けており、図23および24の比較からも苗の成長が理解できる。
実施例7と同様にしてざるボールセット(ざるの半径6.4cm、容量130cm3)を用い、ざるに20×20cmのフィルムを乗せ純水を150g加え、ボール側に養液150gを加えて、サランラップで包んだ。サンプリング時間3、6、12、24、36、48、72hrsで計7個の容器を用意し、所定時間経過後100mlずつサンプル容器に採取した。各サンプル中の、主要肥料成分の分析を行った。
1)透湿フィルム:PVAフィルム25μm(日本合成化学工業(株)製)、親水性ポリエステル20μm(デュポン社製)
2)水:蒸留水(和光純薬工業(株)製)、養液肥料:大塚ハウス1号 1.5g/L、2号 1g/L(大塚化学(株)製)
3)分析方法
a)アンモニウムイオン、硝酸イオンおよび硫酸イオン:イオンクロマトグラフ法により分析(分析の詳細に関しては:「水の分析」第4版 日本分析化学会北海道支部編 発行(株)化学同人 1997年7月20日 第3章水の分析に用いられる分析法 3.7.3 イオンクロマトグラフィー(P125〜129)を参照することができる)。
b)りん、カリウム、カルシウムおよびマグネシウム:ICP(発光分光分析)法により分析(分析の詳細に関しては:「水の分析」第4版 日本分析化学会北海道支部編 発行(株)化学同人 1997年7月20日 第13章微量汚染物質と関連する分析法 13.10 ICP(P478〜480)を参照することができる)。
主要成分のアンモニア性窒素(NH4−N)、硝酸性窒素(NO3−N)、りん酸(P25)、カリウム(K2O)、カルシウム(CaO)、マグネシウム(MgO)および硫黄(SO4)について、フィルム透過性の経時変化を表10)〜表16)に、またこれらのデータに対応するグラフを図25〜図31に示す。
上記した表およびグラフに示すように、肥料のフィルム透過性に関して、肥料成分によって透過速度の違いはあるものの、主要成分の窒素(N)、リン(P)、カリウム(K)、カルシウム(Ca)、マグネシウム(Mg)および硫黄(S)はすべて透過する。
アンモニア性窒素 単位:ppm
Figure 2005102508
硝酸性窒素 単位:ppm
Figure 2005102508
りん酸 単位:ppm
Figure 2005102508
カリウム 単位:ppm
Figure 2005102508
カルシウム 単位:ppm
Figure 2005102508
マグネシウム 単位:ppm
Figure 2005102508
硫黄 単位:ppm
Figure 2005102508
実施例11と同様にして発泡スチロール製トロ箱に養液を入れ、表面をフィルムで覆い、その上にバーミキュライトを0.2〜0.3g/cm2加えた。バーミキュライトに約70%の水分を含ませ、土壌表面を覆うマルチフィルムとしてアルミホイルを使用し、ルッコラの幼苗を植えつけた。試験期間経過後、生育状況の観察と植物体の重量を測定した。
[試験条件と結果]
Figure 2005102508
フィルム:セルガード((株)トクヤマ製)微孔ポリプロピレンフィルム、
PVA40μm(アイセロ化学(株)製)
土壌:バーミキュライト(昭和バーミキュライト(株)製)
マルチフィルム:アルミホイル(アルファミック(株)製)
養液:マツザキ1号6g/8L、マツザキ2号4g/8L
((株)マツザキアグリビジネス製)
試験期間:2003年5月9日〜6月4日
生育後の植物体重量を表17に、生育状況を図32〜図33に示す。微孔ポリプロピレンにおいては明らかに生育が劣り、養液側から水分は透過しているが、肥料成分が透過していなかった。
実施例11と同様に、30×22×8cmのトロ箱に養液としてハイポネックス原液(N:5%、P:10%、K:5%)((株)ハイポネックスジャパン製)300倍希釈水溶液(EC:1.37)1.3Lを加え、40μmPVAフィルム(アイセロ化学(株)製)48×40cmを上に浮かべた。
フィルム上に土壌としてスーパーミックスA((株)サカタの種)を深さ2cm乗せ、サニーレタス幼苗(本葉3枚)を12本植えつけた。ビニルハウス(温度湿度制御無し)に2002.11.12〜2003.1.11(60日間)の間生長させた。その後、根と一体化したPVAフィルムを試料とし、根の界面の光学顕微鏡写真(倍率:10〜100倍)を撮影した。
[試料の前処理と観察]
1)試料をエタノールで脱水
2)親水性の樹脂「テクノビット」(応研商事(株)社製)に包埋
3)ガラスナイフで厚さ3ミクロンに薄切りしてガラス板の上に載せ乾燥させる
4)0.1%のトルイジン青にて15分間染色
5)水洗下の血に70%エタノール溶液で過剰な染色部分を脱色させる(分別)
6)アルコールで脱水した後にキシレンに入れて、その後にカバーガラスをかけ て封入
7)観察は光学顕微鏡にて、10倍から100倍の間で観察
(なお、上記した試料の前処理および観察方法の詳細に関しては、例えば、応研商事株式会社のホームページ(http//www.okenshoji.co.jp/)の「低温重合樹脂テクノビット」の項で詳細な試験方法を参照することができる。)
光学顕微鏡による観察結果を、図34に示す。この図34に示すように、根の細胞がPVAフィルム面に隙間無く配置され、PVAフィルムと根が一体化している様子が観察された。
ミニトマトの栽培(糖度測定結果)
実施例11と同様に、発泡スチロール製のトロ箱(内容積11L)に養液2.2Lを加え、40μmのPVAフィルムで表面を覆った。その上にバーミキュライトを0.6g/cm2敷き、バーミキュライトに水道水を加えることにより水分を75%(水/バーミキュライト=75/25の比)に調整し栽培ベッドとした。ミニトマトの苗を寝かせ植えし、ビニルハウス中で育てた。
試験条件と結果
フィルム:PVA40μm(アイセロ化学(株)製)
用土:バーミキュライト(ニッタイ(株)製)
養液:ハイポネックス((株)ハイポネックスジャパン製)500倍希釈(EC:1.28) 5/20(栽培開始後34日)に2L、6/16(栽培開始後61日)に2Lを追加
苗:ミニトマト
栽培期間:2003年4月16日〜6月29日
測定日 系列No. 重量(g) 糖度
6/15 1 13.3 7.6
2 13.2 7.6
6/23 1 7.2 8.2
2 4.2 8.4
8.4 7.0
6/25 2 8.4 8.0
6/29 2 8.4 7.8
(糖度測定:手持ち屈折計ATC−1((株)アタゴ製))
[比較市販品]
7/9(測定日) ピッコロトマト(愛知あつみ)
154g/13個 糖度 4.6
上記したように、通常(市販品)のミニトマトが糖度5程度に対し、本実施例では糖度7.0〜8.4レベルが可能であることを確認した。
1.サニーレタス Brix%測定結果
発泡スチロール製のトロ箱(内容積5.3L)に養液2Lを加え、40μのPVAフィルムで表面を覆った。その上に土壌を深さ約2cm加え水分を約75%に調整し栽培ベッドとした。アルミホイルで土壌表面を被覆し、サニーレタスの幼苗2本植えビニルハウス中で育てた。
[試験条件と結果]
フィルム:PVA40μ(アイセロ化学(株)製)
土壌:1)バーミキュライト(昭和バーミキュライト(株)製)0.3g/cm2
2)スーパーミックスA((株)サカタの種製)0.9g/cm2
3)さつま軽石(エスペックミック(株))0.9g/cm2
苗:サニーレタス(4/10播種)本葉2枚強
マルチ:アルミホイル(アルファミック(株)製)
養液:マツザキ1号6g/8L、マツザキ2号4g/8L
((株)マツザキアグリビジネス製) EC:1.7
Figure 2005102508
比較 市販サニーレタス(長野産水耕栽培) Brix% 0.5
(Brix%測定:手持ち屈折計ATC−1E((株)アタゴ製)
いずれの土壌においても、比較の市販品に比べ、高Brix値を示した。
2.ルッコラ Brix%測定結果
発泡スチロール製の容器(内容積:巾60cm×深さ15cm×長さ約3m)を厚さ0.15mmの水耕シートで包み、栽培用プールとした。プールに養液を加え、フィルムを敷き、その上に土壌を厚さ約2cm置いて、栽培用ベッドとした。土壌の水分を約70%とし、幼苗を植え付け、水分蒸発抑制用マルチフィルムの有無による植物の生育状況を観察した。
[試験条件と結果]
フィルム:PVA40μ(アイセロ化学(株)製)
土壌:バーミキュライト(昭和バーミキュライト(株)製)
マルチフィルム:アルミホイル(アルファミック(株)製)の有無
養液:マツザキ1号6g/8L、マツザキ2号4g/8L
((株)マツザキアグリビジネス製) EC:1.3 45L
試験期間:2003年5月19日〜6月14日
Figure 2005102508
比較(市販養液栽培) Brix% 2.6
(Brix%測定:手持ち屈折計ATC−1E((株)アタゴ)
土壌表面からの水分蒸発を制御することで植物の生育状況ならびに植物葉茎の Brix値(栄養価値の目安)を制御できることがわかる。
Brix%はマルチ有りの3.8から無しの5.2へと増大した。
比較例の市販養液栽培品に比較し、いずれも実施例の方がBrix%が高く、特に水分抑制が大のマルチフィルム無しの数値が高い。
3.ホウレンソウ Brix測定結果
実施例17で栽培した冬期加温、無加温ホウレンソウのBrix%を測定した。(Brix%測定:手持ち屈折計ATC−1E((株)アタゴ)
条件 Brix(%)
無加温(冬) 6.2
加温(19℃) 4
比較(市販養液栽培) 2.2
無加温、加温とも市販水耕栽培ホウレンソウに比較して、高Brix%であった。特に、無加温の場合は水分抑制が強いため、より高いBrix%を示す。
1.冬期保温による効果
発泡スチロール製のトロ箱(内容積:約26L)に18×28×7.5cmのざるをセットした。ざるにフィルムを張り、土壌を厚さ約2cm敷いて、栽培用ベッドとした。トロ箱に養液を20L加え、水槽用ヒーターで19℃に加温した。土壌に幼苗を植え付け、加温の有無による植物の生育状況を見た。
試験条件と結果
Figure 2005102508
フィルム:PVA40μm(アイセロ化学製)
土壌:スーパーミックスA(水分70%)((株)サカタの種)
苗:ホウレンソウ(ディンプル (株)サカタの種)
養液:ハイポネックス原液Newタイプ((株)ハイポネックスジャパン製)
希釈水溶液 EC:2.8
水槽用ヒーター:150W(コトブキ工芸(株)製)
試験期間:2002年12月28日〜2003年2月16日(横浜市)
2.夏期冷却による効果
発泡スチロール製のトロ箱(内容積:約15L)に、フィルムを張り、水分約70%の土壌を深さ約2cm置いて、栽培用ベッドとした。トロ箱に養液を4〜6.5L加え、冷却装置で20℃に循環冷却した。土壌に幼苗を植え付け、冷却の有無による植物の生育状況を見た。
試験条件と結果
Figure 2005102508
フィルム:PVA40μm(アイセロ化学製)
マルチ:シルバーマルチ30μm(東罐興産(株)製)
土壌:バーミキュライト(昭和バーミキュライト(株)製)
苗:ホウレンソウ(おかめ タキイ種苗(株))
養液:マツザキ1号6g/8L、マツザキ2号4g/8L
((株)マツザキアグリビジネス製) EC:2.7
冷却装置:Rei Sea LX−502CX型((株)レイシー製)
試験期間:2003年6月23日〜2003年8月5日
3.結果のまとめ
植物体1本の平均重量が冬期の場合、無加温の2g以下が加温の7g、夏季の場合、無冷却の6.7gが冷却の8.5gといずれも増えている。
ホウレンソウの生育適温は15〜20℃とされるが、環境全体を厳寒期に加温、盛夏期に冷却することなく、根圏のみを適温範囲に加温あるいは冷却することで、良好な生育状況を示すことが確認できた。
実施例16の2と同様に、発泡スチロール製の容器(内容積:巾60cm×深さ15cm×長さ約3m)を厚さ2mmの給水シートで包み、栽培用プールとした。プールに養液を加え、表面をフィルムで覆い、その上に土壌を厚さ約2cm敷き、栽培用ベッドとした。
土壌に水分を加え幼苗を植え付け、水分蒸発抑制用マルチフィルムとしてアルミホイルの有無による植物の生育状況を観察した。
[試験条件と結果]
フィルム:PVA40μm(アイセロ化学(株)製)
土壌:バーミキュライト(昭和バーミキュライト(株)製)
マルチフィルム:アルミホイル(アルファミック(株)製)の有無
養液:マツザキ1号6g/8L、マツザキ2号4g/8L
((株)マツザキアグリビジネス製) EC:1.3 45L
試験期間:2003年5月19日〜6月14日
Figure 2005102508
Figure 2005102508
表22および表23に示すように、ルッコラ/バーミキュライトの系では、植物体の重量はマルチ無しの6.3gがマルチ有りの16.3gと増えた。一方、サニーレタス/軽石の系でも、植物体の重量はマルチ無しの7gがマルチ有りの13.7gへと増大した。
土壌の種類、植物の種類を変えた上記試験より、土壌表面からの水分蒸発を制御することで植物の生育を制御できることが判明した。
実施例16の2と同様に、発泡スチロール製の容器(内容積:巾60cm×深さ15cm×長さ約3m)を厚さ2mmの給水シートで包み、栽培用プールとした。プールに養液を加え、表面をフィルムで覆い、その上に土壌を厚さ約2cm敷き、栽培用ベッドとした。
土壌に水分を加え幼苗を植え付け、マルチフィルムとしてシルバーマルチフィルムを使用し、生育し、養液の消費量を測定した。
養液溜め面積:60cm×310cm
養液:マツザキ1号6g/8L、2号4g/8L((株)マツザキアグリビジネス製)
EC:2.7 52L
フィルム:PVA厚み40μm、巾1m、長さ4m(アイセロ化学製)
土壌:バーミキュライト(昭和バーミキュライト(株)製)深さ約2cm
マルチフィルム:シルバーマルチ厚み30μm、巾95cm、長さ3.1m
(東罐興産(株)製)
苗:ルッコラ14本、サニーレタス14本
試験期間:2003年6月15日〜7月9日
[結果]
初期(6/15) 最終(7/9)
養液量(L) 52 42
養液消費量(L) 10 0.015L/苗1本・日
本発明によるシステム(実施例15あるいは17の2の方法)で植物を生育した後の養液の汚れ具合を観察した。図41〜図43に、ミニトマト、ルッコラ/サニーレタスおよびホウレンソウを栽培したときの養液の状態を写真で示すが、いずれも非常に清澄な状態にある。
1.ミニトマト
発泡スチロール製のトロ箱(内容積11L)に養液2.2Lを加え、40μmのPVAフィルムで表面を覆った。その上にバーミキュライトを0.6g/cm2 敷き水分を約70%に調整し栽培ベッドとした。ミニトマトの苗を植え、ビニルハウス中で育てた。
[試験条件]
フィルム:PVA40μm(アイセロ化学)
用土:バーミキュライト(ニッタイ(株)製) 0.6g/cm2
養液:ハイポネックス原液((株)ハイポネックスジャパン)の500倍希釈液(EC:1.28) 5/20に2L追加
苗:ミニトマト
栽培期間:2003年4月16日〜6月29日
図41に、栽培開始後39日目の養液の写真を示す。
2.サニーレタス、ルッコラの栽培
発泡スチロール製のトロ箱(内容積15L)に養液4Lを加え、40μmのPVAフィルムで表面を覆った。その上にバーミキュライトを0.3g/cm2 敷き水分を約70%に調整し栽培ベッドとした。ルッコラ、サニーレタスの幼苗を植え、ビニルハウス中で育てた。
[試験条件]
フィルム:PVA40μm(日本合成化学工業(株)製)
用土:バーミキュライト(昭和バーミキュライト(株)製)
養液:マツザキ1号、2号((株)マツザキアグリビジネス製)EC:2.7
苗:サニーレタス、ルッコラ各3本
栽培期間:2003年6月27日〜7月13日
図42に、栽培開始後20日目の養液の写真を示す。
3.ホウレンソウの栽培
発泡スチロール製のトロ箱(内容積15L)に養液4Lを加え、40μmのPVAフィルムで表面を覆った。その上にバーミキュライトを0.3g/cm2 敷き水分を約70%に調整し栽培ベッドとした。マルチフィルムを敷きホウレンソウの幼苗を植え、ビニルハウス中で育てた。
[試験条件]
フィルム:PVA40μm(日本合成化学工業(株)製)
土壌:バーミキュライト(昭和バーミキュライト(株)製)
マルチ:シルバーマルチ30μm(東罐興産(株)製)
養液:マツザキ1号、2号((株)マツザキアグリビジネス製)EC:2.7
苗:ホウレンソウ「おかめ」(タキイ種苗(株))7本
栽培期間:2003年6月23日〜8月5日
図43に、栽培開始後43日目の養液の写真を示す。
実施例7と同様に、ざるボールセット(ざるの半径6.4cm、容量130cm3)を用い、ざるに20×20cmのフィルムを乗せ水道水を150g加え、ボール側に塩水150gを加えて、サランラップで包み室温に置いた。サンプリング時間毎に、水側(ざる)および塩水側(ボール)の養液を良く撹拌した後、スポイトでサンプリングし、EC値を測定した。
1)透湿フィルム:厚みの異なる親水性ポリエステルフィルム(デュポン社製)およびPVAフィルム(日本合成化学工業(株)製)を使用した。
親水性ポリエステルK06−20μm、K06−40μm、CRP06−75μm(デュポン社製)、PVA#2500(25μm)、#4000(40μm)、#6500(65μm)(日本合成化学工業(株)製)
2)0.5%塩水:水道水に「伯方の塩」(伯方塩業(株)製)を0.5重量%溶解した。
伯方の塩:100g中ナトリウム37.5g、マグネシウム110mg、カルシウム90mg、カリウム50mg
3)実験方法
電気伝導度計:Twin Cond B−173((株)堀場製作所)を用い、スポイトでサンプリングした溶液を電気伝導度計の測定部位に少量乗せ、電気伝導度EC(ds/m)を測定した。
実施期間:2003年8月26日〜31日
親水性ポリエステルフィルムの結果を表24および図44に、PVAフィルムの結果を表25および図45に示す。
上記の図44および図45から、親水性ポリエステルフィルムおよびPVAフィルムとも水側のEC値は増加し、塩水側のEC値は減少し、両者の値が時間と共に同じ値に収束して行くことが判明した。親水性ポリエステルフィルムの場合、フィルム厚み20〜75μmの範囲で、水側EC値の増加速度および塩水側EC値の低下速度は、厚みが増すに従って遅くなり、すなわち0.5%塩水透過性が大きく低下している。一方、PVAフィルムの場合は、フィルム厚み25〜65μmの範囲で、厚みが増しても0.5%塩水透過性は殆ど変わらない。
親水性ポリエステル 単位:dS/m
Figure 2005102508
PVA 単位:dS/m
Figure 2005102508
発泡スチロール製トロ箱に養液を入れ、表面をフィルムで覆った。フィルム上に、下記のように前処理方法を変えた種子を蒔き、トロ箱をシルバーマルチフィルムで覆い、室内の窓辺に置いた。2日目にシルバーマルチフィルムを取り除き、サランラップ(旭化成(株)製)で覆い、光にあて、4日目に生育状況を観察した。
実験No.2においては、PVAフィルムの上に障子紙を重ね合わせ、その上に種子を蒔いた。
[試験条件と結果]
Figure 2005102508
フィルム:PVA40μm(日本合成化学工業(株)製)
障子紙:無地 パルプ(85%)、レーヨン(10%)、バインダー(5%)
((株)エルホーム製)
マルチフィルム:ポリシルバーマルチ30μ(東罐興産(株)製)
養液:大塚ハウス1号、2号(大塚化学(株))養液EC:1.5
試験期間:2003年9月6日〜9月10日
種子の前処理条件:
1)無処理(種をそのまま蒔き霧吹きで軽く水分を与える)
2)水に30分浸漬
3)園芸用活力剤メネデール((株)メネデール化学研究所製)の100倍希釈水溶液に30分浸漬
4)微生物土壌改良資材EM1((株)EM研究所製)の1000希釈水溶液に30分浸漬
上記により得られた植物体の生育4日後の写真を図46および図47に示す。これらの図に示すように、No.1(PVAフィルム単独で使用)、およびNo.2(PVAフィルムに障子紙を重ねて使用)のいずれも、充分に発芽し、生育していることが判明した。
本発明の植物栽培用器具の基本的な態様の例を示す模式断面図である。 本発明の植物栽培用器具の他の態様例を示す模式断面図である。 本発明において用いるフィルム特性(水−塩水接触)測定を説明するための模式断面図である。 本発明に用いるフィルム特性(引き剥がし強度)測定を説明するための模式斜視図である。 本発明の植物栽培用器具の他の態様例を示す模式断面図である。 本発明の植物栽培用器具の他の態様例を示す模式断面図である。 本発明の植物栽培用器具の他の態様例を示す模式断面図である。 本発明の植物栽培用器具の他の態様例を示す模式断面図である。 本発明の植物栽培用器具の他の態様例を示す模式断面図である。 本発明において用いるフィルム特性(水蒸発量)測定を説明するための模式断面図である。 実施例において得られた植物の生育状態を示す写真である。 実施例において得られた植物の生育状態を示す写真である。 実施例において得られた植物の生育状態を示す写真である。 実施例において得られた植物根のフィルム上の発達状態を示す写真である。 実施例において得られた植物根のフィルム上の発達状態を示す写真である。 実施例において得られた植物根のフィルム上の発達状態を示す写真である。 本発明において用いるフィルムの特性(引き剥がし強度)測定用の試験片を示す写真である。 本発明において用いるフィルム特性(水−塩水接触)測定結果の例を示すグラフである。 本発明において用いるフィルム特性(水−ブドウ糖接触)測定結果の例を示すグラフである。 植物の根がフィルムを突き抜けた状態の例を示す写真である。 植物の根がフィルムを突き抜けた状態の例を示す写真である。 植物の根がフィルムを突き抜けない状態の例を示す写真である。 実施例において得られた植物の生育初期の状態を示す写真である。 実施例において得られた植物の生育終盤の状態を示す写真である。 アンモニア性窒素のフィルム透過性を表すグラフである。 硝酸性窒素のフィルム透過性を表すグラフである。 りん酸のフィルム透過性を表すグラフである。 カリウムのフィルム透過性を表すグラフである。 カルシウムのフィルム透過性を表すグラフである。 マグネシウムのフィルム透過性を表すグラフである。 硫黄のフィルム透過性を表すグラフである。 植物の植付け時の状態を表す写真である。 植物の栽培終了時の状態を表す写真である。 植物の栽培終了時の、根/フィルム/養液の界面近傍の状態を表す光学顕微鏡写真(倍率:250倍)である。 冬季加温時および無加温時の植物の植付け時の状態を表す写真である。 冬季加温時および無加温時の植物の栽培終了時の状態を表す写真である。 夏期冷却時および無冷却時の植物の植付け時の状態を表す写真である。 夏期冷却時および無冷却時の植物の栽培終了時の状態を表す写真である。 水分蒸発を防ぐためのマルチフィルムが有る場合と無い場合の植物の栽培終了時の状態を表す写真である。 水分蒸発を防ぐためのマルチフィルムが有る場合と無い場合の植物の栽培終了時の状態を表す写真である。 ミニトマト栽培開始後39日目の養液の写真である。 ルッコラ、レタス栽培開始後20日目の養液の写真である。 ホウレンソウ栽培開始後43日目の養液の写真である。 種々の厚みの親水性ポリエステルフィルムの0.5%塩水透過性を示すグラフである。 種々の厚みのPVAフィルムの0.5%塩水透過性を示すグラフである。 PVAフィルム上に種子(ルッコラ)を配置して発芽させた状態を示す写真(倍率:0.5倍)である。 PVAフィルムと障子紙とを重ねた上に種子(ブロッコリー)を配置して発芽させた状態を示す写真(倍率:0.5倍)である。

Claims (8)

  1. 栽培すべき植物体を収容可能な形状を有する器具であって;その少なくとも一部に、該植物体の根と実質的に一体化し得るフィルムを有することを特徴とする植物栽培用器具。
  2. 前記フィルムが、該フィルムを介して水と塩水とを対向して接触させた際に、測定開始後4日目(96時間)の水/塩水の電気伝導度(EC)の差が4.5dS/m以下のフィルムである請求項1に記載の植物栽培用器具。
  3. 前記フィルムが、該フィルムを介して水とグルコース溶液とを対向して接触させた際に、測定開始後3日目(72時間)の水/グルコース溶液の濃度(Brix%)の差が4以下のフィルムである請求項1または2に記載の植物栽培用器具。
  4. 前記フィルムが、該フィルムの内側(水に対向する面の反対側)に植物体を配置して栽培を開始した35日後に、前記植物体の根に対して10g以上の剥離強度を示すフィルムである請求項1〜3のいずれかに記載の植物栽培用器具。
  5. 前記フィルムが、耐水圧として10cm以上の水不透性を有する請求項1〜4のいずれかに記載の植物栽培用器具。
  6. 植物体と、該植物体の根と実質的に一体化したフィルムとを少なくとも有することを特徴とする植物−フィルムの複合体。
  7. 植物体を収容可能な形状を有する器具であって;その少なくとも一部に、該植物体の根と実質的に一体化し得るフィルムを有することを特徴とする植物栽培用器具を用い;
    該器具中に植物体を配置し、肥料成分あるいは生理活性物質を有する水を、少なくとも前記フィルムを介して接触させつつ、前記植物体を栽培することを特徴とする植物栽培方法。
  8. 前記植物体とフィルムとの間に、植物保持用支持体を配置する請求項7に記載の植物栽培方法。
JP2003336064A 2003-01-17 2003-09-26 植物栽培用器具および植物栽培方法 Pending JP2005102508A (ja)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP2003336064A JP2005102508A (ja) 2003-01-17 2003-09-26 植物栽培用器具および植物栽培方法
CA2513500A CA2513500C (en) 2003-01-17 2004-01-16 Plant-cultivating device and plant-cultivating method
DK04702818.8T DK1606993T3 (da) 2003-01-17 2004-01-16 Fremgangsmåde og redskab til dyrkning af planter
JP2005508059A JP4625408B2 (ja) 2003-01-17 2004-01-16 植物栽培用器具および植物栽培方法
US10/542,392 US7832145B2 (en) 2003-01-17 2004-01-16 Plant-cultivating device and plant-cultivating method
SI200432142T SI1606993T1 (sl) 2003-01-17 2004-01-16 Postopek in naprava za gojenje rastlin
KR1020057013277A KR101018836B1 (ko) 2003-01-17 2004-01-16 식물 재배용 기구 및 식물 재배 방법
PCT/JP2004/000319 WO2004064499A1 (ja) 2003-01-17 2004-01-16 植物栽培用器具および植物栽培方法
CN200480004151.9A CN1750751B (zh) 2003-01-17 2004-01-16 栽培植物用的器具及植物栽培方法
EP04702818.8A EP1606993B1 (en) 2003-01-17 2004-01-16 Method and utensil for cultivating plant
IL169676A IL169676A (en) 2003-01-17 2005-07-14 Method and system for cultivating plants
HK06106887.7A HK1084563A1 (en) 2003-01-17 2006-06-16 Method and utensil for cultivating plant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003010198 2003-01-17
JP2003336064A JP2005102508A (ja) 2003-01-17 2003-09-26 植物栽培用器具および植物栽培方法

Publications (2)

Publication Number Publication Date
JP2005102508A true JP2005102508A (ja) 2005-04-21
JP2005102508A6 JP2005102508A6 (ja) 2005-12-15

Family

ID=32775152

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2003336064A Pending JP2005102508A (ja) 2003-01-17 2003-09-26 植物栽培用器具および植物栽培方法
JP2005508059A Expired - Lifetime JP4625408B2 (ja) 2003-01-17 2004-01-16 植物栽培用器具および植物栽培方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2005508059A Expired - Lifetime JP4625408B2 (ja) 2003-01-17 2004-01-16 植物栽培用器具および植物栽培方法

Country Status (11)

Country Link
US (1) US7832145B2 (ja)
EP (1) EP1606993B1 (ja)
JP (2) JP2005102508A (ja)
KR (1) KR101018836B1 (ja)
CN (1) CN1750751B (ja)
CA (1) CA2513500C (ja)
DK (1) DK1606993T3 (ja)
HK (1) HK1084563A1 (ja)
IL (1) IL169676A (ja)
SI (1) SI1606993T1 (ja)
WO (1) WO2004064499A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007330215A (ja) * 2006-06-19 2007-12-27 Electric Power Dev Co Ltd 微細藻類培養器具
JP2008061503A (ja) * 2006-09-04 2008-03-21 Mebiol Kk 植物栽培用器具および植物栽培方法
JP2008154505A (ja) * 2006-12-25 2008-07-10 Mebiol Kk 植物栽培システムおよび植物栽培方法
JP2008182909A (ja) * 2007-01-29 2008-08-14 Mebiol Kk 植物栽培システム
JP2008193980A (ja) * 2007-02-14 2008-08-28 Mebiol Kk 植物栽培システムおよび植物栽培方法
WO2010008042A1 (ja) * 2008-07-16 2010-01-21 メビオール株式会社 植物栽培システム
WO2015025752A1 (ja) * 2013-08-19 2015-02-26 メビオール株式会社 植物栽培システムおよび植物栽培方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1628522A1 (en) * 2003-05-15 2006-03-01 Gartneriet Bladgroent ApS Growing system and inactive growing medium, in particular for use in the growing system
US8555547B2 (en) * 2005-11-30 2013-10-15 Suntory Holdings Limited Plant cultivating unit and plant cultivating container
WO2007105667A1 (ja) * 2006-03-15 2007-09-20 Mebiol Inc. 植物栽培用器具および植物栽培方法
JP2008072931A (ja) 2006-09-20 2008-04-03 Mebiol Kk 植物栽培方法
US20110179709A1 (en) * 2010-01-25 2011-07-28 Developmental Technologies, Llc Potted Plant Fluid-Delivery Device And Associated Methods
CN102024369A (zh) * 2010-12-27 2011-04-20 安徽师范大学 演示植物生长动态的教学用具
WO2012149115A1 (en) 2011-04-26 2012-11-01 International Horticultural Technologies, Llc. Soil free planting composition
CN102265779A (zh) * 2011-05-10 2011-12-07 常熟思美科农业技术有限公司 植物栽培系统
IL215501A0 (en) * 2011-10-03 2011-11-30 Gil Shani Irrigating plants with salty water
CN103843605A (zh) * 2012-12-02 2014-06-11 林兆钧 一种自动喷淋花盆
TWI503074B (zh) * 2013-08-16 2015-10-11 Univ Nat Taiwan 水耕栽培作物的重量量測裝置及其量測方法
CN104488585B (zh) * 2014-10-23 2017-02-15 祁同刚 自供能源现代化立体农业培育系统
CN104604660B (zh) * 2015-02-11 2017-10-10 贵州绿春缘有机农业产业管理有限公司 一种铁皮石斛的仿野生种植方法
JP6491309B2 (ja) 2015-02-18 2019-03-27 不二精工株式会社 植物栽培設備
CN104956944A (zh) * 2015-07-09 2015-10-07 杭州恒麟环保科技有限公司 一种可降解花盆的制备工艺
CN107036873B (zh) * 2017-05-09 2023-07-04 黑龙江大学 一种原位提取丛枝菌根化植物根系分泌物的装置及方法
CN108401882A (zh) * 2018-04-11 2018-08-17 中南大学 一种设施栽培装置及栽培方法
CN110432100A (zh) * 2019-09-11 2019-11-12 上海市农业生物基因中心 基于深浅层根胁迫处理的水稻双筒抗旱鉴定装置和方法
CN111413465B (zh) * 2020-04-02 2022-03-25 沈阳农业大学 一种测定植物总光合碳同化能力的方法
US11540459B2 (en) * 2021-01-22 2023-01-03 Susan Tunes Plant holder and method
DE102021127756A1 (de) 2021-10-26 2023-04-27 REHAU Industries SE & Co. KG Beheizbares Gefäß zur Aufnahme von Pflanzen
WO2024004260A1 (ja) * 2022-07-01 2024-01-04 メビオール株式会社 植物栽培システム及び栽培方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5920325B2 (ja) * 1980-06-24 1984-05-12 株式会社クラレ 植物の育成用薄膜
IT1179018B (it) * 1984-07-16 1987-09-16 Gualtiero Giovando Impianto per l'idrocoltura di vegetali su un substrato capillare all'interno di un film fotoselettivo
DE3775007D1 (de) * 1986-11-12 1992-01-16 Harry Dudley Wright Verfahren und vorrichtung zum pflanzenanbau.
LU86799A1 (fr) * 1987-03-04 1988-09-20 Luc Janssens Bac de plantation
US4885077A (en) * 1988-11-17 1989-12-05 Becton, Dickinson And Company Composite membrane, method for its preparation and electrolyte sensor including same
JP2951598B2 (ja) * 1996-07-11 1999-09-20 丸和バイオケミカル株式会社 養液栽培用ベット
US6793824B2 (en) * 1998-02-05 2004-09-21 E. I. Du Pont De Nemours And Company Water purification apparatus
EP1203525B1 (en) * 1999-04-19 2008-03-05 Mebiol Inc. Plant cultivation container and plant cultivation method
US6453610B2 (en) * 1999-08-06 2002-09-24 E. I. Du Pont De Nemours And Company Method for modifying root growth
GB0217458D0 (en) * 2002-07-27 2002-09-04 Smart Tech Ltd Plant watering system
US20050166451A1 (en) * 2003-07-09 2005-08-04 Stachnik Mieczyslaw M. Breathable plant container

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007330215A (ja) * 2006-06-19 2007-12-27 Electric Power Dev Co Ltd 微細藻類培養器具
JP2008061503A (ja) * 2006-09-04 2008-03-21 Mebiol Kk 植物栽培用器具および植物栽培方法
JP2008154505A (ja) * 2006-12-25 2008-07-10 Mebiol Kk 植物栽培システムおよび植物栽培方法
JP2008182909A (ja) * 2007-01-29 2008-08-14 Mebiol Kk 植物栽培システム
JP2008193980A (ja) * 2007-02-14 2008-08-28 Mebiol Kk 植物栽培システムおよび植物栽培方法
WO2010008042A1 (ja) * 2008-07-16 2010-01-21 メビオール株式会社 植物栽培システム
WO2015025752A1 (ja) * 2013-08-19 2015-02-26 メビオール株式会社 植物栽培システムおよび植物栽培方法
JP2015037386A (ja) * 2013-08-19 2015-02-26 メビオール株式会社 植物栽培システムおよび植物栽培方法
AU2014309969B2 (en) * 2013-08-19 2016-09-29 Mebiol Inc. Plant cultivation system and plant cultivation method
EA030429B1 (ru) * 2013-08-19 2018-08-31 Мебиол Инк. Система культивирования растений и способ культивирования растений
US10660280B2 (en) 2013-08-19 2020-05-26 Mebiol Inc. Plant cultivation system and a method for plant cultivation
US11058075B2 (en) 2013-08-19 2021-07-13 Mebiol Inc. Plant cultivation system and a method for plant cultivation

Also Published As

Publication number Publication date
EP1606993A1 (en) 2005-12-21
HK1084563A1 (en) 2006-08-04
CN1750751A (zh) 2006-03-22
WO2004064499A1 (ja) 2004-08-05
US7832145B2 (en) 2010-11-16
KR20050103279A (ko) 2005-10-28
US20060112632A1 (en) 2006-06-01
JPWO2004064499A1 (ja) 2006-05-18
SI1606993T1 (sl) 2014-05-30
IL169676A (en) 2012-08-30
DK1606993T3 (da) 2014-04-07
IL169676A0 (en) 2007-07-04
CA2513500A1 (en) 2004-08-05
KR101018836B1 (ko) 2011-03-04
EP1606993B1 (en) 2014-03-12
CN1750751B (zh) 2012-02-29
JP4625408B2 (ja) 2011-02-02
CA2513500C (en) 2012-03-13
EP1606993A4 (en) 2008-10-29

Similar Documents

Publication Publication Date Title
JP4625408B2 (ja) 植物栽培用器具および植物栽培方法
JP4142725B1 (ja) 植物栽培システム
WO2005065443A1 (ja) 植物の栽培方法、水の鮮度保持剤、根腐れ防止剤、及び植物培地、並びに保水剤、殺菌剤、除草剤、断熱剤、改良剤、及び消臭剤、並びに水の鮮度保持
JP3678654B2 (ja) 植物栽培用容器および植物栽培方法
JP2014143926A (ja) 植物栽培システムおよび植物栽培方法
JP2008154505A (ja) 植物栽培システムおよび植物栽培方法
JP2005000176A (ja) 吸水ポリマー製人工培土による植物栽培方法、植物用保水体及びその製造方法並びに使用方法、根腐れ防止剤及び根腐れ防止方法、並びに保水剤及び保水方法
JP2008193980A (ja) 植物栽培システムおよび植物栽培方法
JP2003199425A (ja) 吸水ポリマー製人工培土による植物栽培方法、植物用保水体及びその製造方法並びに使用方法、根腐れ防止剤及び根腐れ防止方法、並びに保水剤及び保水方法
JP4425244B2 (ja) 植物栽培用器具および植物栽培方法
JP2008061503A (ja) 植物栽培用器具および植物栽培方法
JP2006180837A (ja) 植物栽培用器具および植物栽培方法
JP2008182909A (ja) 植物栽培システム
TWI432136B (zh) Plant cultivation system, plant cultivation equipment and plant cultivation method
JP2007244276A (ja) 植物栽培用器具および植物栽培方法
JP2014132870A (ja) 植物栽培用器具および植物栽培方法
WO2024004260A1 (ja) 植物栽培システム及び栽培方法
WO2007105667A1 (ja) 植物栽培用器具および植物栽培方法
JP2011103855A (ja) 通気構造親水性培地植物栽培システム
Maher et al. Comparison of substrates, including fractioned peat, for the production of greenhouse cucumbers
JP2011120521A (ja) 植物栽培システムおよび植物栽培部材