WO2015025746A1 - 被削性に優れた機械構造用鋼 - Google Patents

被削性に優れた機械構造用鋼 Download PDF

Info

Publication number
WO2015025746A1
WO2015025746A1 PCT/JP2014/071081 JP2014071081W WO2015025746A1 WO 2015025746 A1 WO2015025746 A1 WO 2015025746A1 JP 2014071081 W JP2014071081 W JP 2014071081W WO 2015025746 A1 WO2015025746 A1 WO 2015025746A1
Authority
WO
WIPO (PCT)
Prior art keywords
ferrite grain
ferrite
less
steel
grain
Prior art date
Application number
PCT/JP2014/071081
Other languages
English (en)
French (fr)
Inventor
雄也 山本
尾崎 勝彦
亮廣 松ヶ迫
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to EP14838708.7A priority Critical patent/EP3037566A4/en
Priority to KR1020167004165A priority patent/KR20160030577A/ko
Priority to US14/910,888 priority patent/US20160194741A1/en
Priority to CN201480045836.1A priority patent/CN105473750A/zh
Publication of WO2015025746A1 publication Critical patent/WO2015025746A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/01Selection of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J13/00Details of machines for forging, pressing, or hammering
    • B21J13/02Dies or mountings therefor
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2261/00Machining or cutting being involved

Definitions

  • the present invention relates to a machine structural steel used for manufacturing various machine structural parts such as automobile parts and construction machine parts, and more particularly for machine structures having excellent machinability with reduced cutting finish surface roughness. It is about steel.
  • various parts such as automobile parts and construction machine parts are finished into a final shape by performing a cutting process on a machine structural steel after performing a process such as forging.
  • steel for machine structural use that exhibits excellent machinability in terms of component accuracy and manufacturing efficiency is required.
  • the demand for cutting surface roughness is high, and machine structural steels that can obtain smaller cutting surface roughness are desired.
  • the cutting surface roughness becomes large (rough), it is necessary to further finish the surface properties by grinding or the like, and there is a problem that the manufacturing process becomes complicated.
  • Patent Document 1 defines a content of elements such as C, Mn, P, S, Pb, O, Si, and Al in a low-carbon sulfur free-cutting steel and includes MnS-based intervening materials. It has been shown that machinability can be improved by defining the average size of the product and the proportion of sulfide not bonded to the oxide. It is also shown that good finished surface roughness can be obtained.
  • This technology includes lead (Pb) as a basic component as an element for improving machinability.
  • Lead is a widely known element that improves machinability.
  • Pb has been pointed out to be harmful to the human body and the environment. In recent years, Pb is required to exhibit good machinability without adding Pb.
  • Patent Document 2 discloses that excellent machinability equivalent to that of Pb-added steel can be obtained by composite addition of S, Te and Ca.
  • this technique discloses that machinability is further improved by adding Bi or rare earth elements (REM).
  • REM rare earth elements
  • machinability improving elements such as Te, Bi, and REM are expensive and there is a problem of cost increase in production.
  • Patent Document 3 relates to a free-cutting steel for machine structures that exhibits both the mechanical properties and the chip breaking property of steel by containing a predetermined amount of Mg in the presence of sulfide inclusions. Proposed.
  • Mg is added to control the sulfide inclusions in a predetermined shape and dispersion state.
  • Mg has a low boiling point and easily evaporates, and is a strong deoxidizing element. Therefore, Mg is easily separated from molten steel as an oxide, so that the yield is low and an increase in cost is inevitable.
  • Japanese Unexamined Patent Publication No. 62-23970 Japanese Unexamined Patent Publication No. 2004-292929 Japanese Unexamined Patent Publication No. 2002-69569
  • the present invention has been made under such circumstances, and the object thereof is excellent machinability even with a normal chemical component composition without using Pb harmful to the human body or expensive free-cutting elements. It is to provide a steel for machine structural use that exhibits particularly good cutting surface roughness.
  • the steel for machine structural use of the present invention capable of achieving the above object has a mixed structure consisting of a hard phase and a ferrite phase consisting of at least one selected from pearlite, bainite and martensite, and an average circle of ferrite grains It has a gist in that the equivalent diameter is 7 ⁇ m or less and the ferrite grain-ferrite grain coupling ratio X represented by the following formula (1) is 0.15 or less.
  • [Ferrite grain-ferrite grain connection ratio X] [ferrite grain-ferrite grain interface number A] / [ferrite grain-hard phase interface number B] (1)
  • the ferrite grain-ferrite grain interface number A is the intersection of the ferrite grain-ferrite grain interface and the straight line when a straight line of a predetermined length is drawn on the structure photograph taken using a scanning electron microscope.
  • Number and The ferrite grain-hard phase interface number B indicates the number of intersections between the ferrite grain-hard phase interface and the straight line when a straight line having a predetermined length is drawn in the same manner as described above.
  • the “average equivalent circle diameter” is an average value of diameters (equivalent circle diameters) when ferrite crystal grains are converted into circles having the same area.
  • the chemical component composition of the steel for machine structural use of the present invention is not particularly limited as long as it is steel for machine structural use.
  • C 0.2 to 1.2% (“mass%”)
  • the chemical composition is the same.)
  • Si 0.05 to 0.5%
  • Mn 0.2 to 1.8%
  • P 0.03% or less (excluding 0%)
  • S 0.03% or less (excluding 0%) is included, and the balance is iron and inevitable impurities.
  • Cr 0.5% or less (not including 0%)
  • Cu 0.5% or less (not including 0%)
  • Ni 0.5% or less (if necessary)
  • Mo 0.5% or less (not including 0%)
  • Mo depending on the type of element to be included.
  • the present invention includes a method for improving the cutting surface properties, and a steel product with improved cutting surface properties can be obtained by cutting the steel for machine structure as described above.
  • a molding die having a good surface property can be efficiently produced without performing finishing such as grinding.
  • the present invention has a mixed structure composed of at least one hard phase selected from pearlite, bainite and martensite and a ferrite phase, the average equivalent circle diameter of ferrite is 7 ⁇ m or less, and a predetermined relational expression
  • [Ferrite Grain-Ferrite Grain Connection Ratio X] expressed, it is possible to realize a steel for machine structural use that exhibits excellent machinability and has particularly good cutting surface roughness.
  • FIG. 4 is a drawing-substituting photograph showing a procedure for obtaining a ferrite grain-ferrite grain coupling ratio X, and is a diagram showing a case where X ⁇ 0.15.
  • FIG. 6 is a drawing-substituting photograph showing a procedure for obtaining a ferrite grain-ferrite grain coupling ratio X, and showing a case where X> 0.15.
  • the inventors of the present invention have studied particularly the relationship with the metal structure in order to realize a steel for machine structural use that can obtain a good machined surface roughness even with a normal chemical composition.
  • the idea that the roughness of the machined surface during machining is one of the causes is that the phases with different hardness are mixed in the structure.
  • FIGS. 1A to 1C are schematic diagrams for explaining the relationship between the structure of steel material and the roughness of the cut surface.
  • 1 indicates a ferrite phase
  • 2 indicates a hard phase (a hard phase composed of at least one selected from pearlite, bainite, and martensite), and has a mixed structure structure in which these are mixed.
  • the upper side of the steel material indicates the steel material surface to be cut.
  • the soft ferrite phase 1 in the mixed structure is deformed so as to be pushed out by the hard phase 2. Subsequently, as shown in FIG.
  • the ferrite phase 1 is removed by a cutting edge (blade edge) of the tool in a state where the ferrite phase 1 is extruded.
  • a cutting edge blade edge
  • FIG. 1C since the cutting edge of the tool passes through the cutting portion (processed surface), the ferrite phase 1 on the processed surface is deformed so that the ferrite phase 1 is drawn by the elastic recovery of the hard phase 2.
  • a recess 3 is generated in the surface, and the presence of this recess deteriorates the surface roughness of the steel material.
  • the present inventors have further investigated the requirements for obtaining good cutting surface roughness. As a result, it has been found that if the average equivalent circle diameter of ferrite grains is set within a predetermined range and the number of portions where the ferrite grains are connected is reduced, it is possible to realize a machine structure that can obtain good finished surface roughness. Was completed.
  • the size of ferrite grains In order to make the soft ferrite phase finely dispersed, it is necessary to make the size (particle size) of the ferrite grains as small as possible.
  • the size of ferrite grains In the steel for machine structure of the present invention, in order to ensure the desired dispersion state of ferrite, the size of ferrite grains needs to be 7 ⁇ m or less in terms of average equivalent circle diameter.
  • the average equivalent circle diameter of the ferrite is preferably 6 ⁇ m or less, and more preferably 5 ⁇ m or less.
  • the minimum with a preferable average equivalent circle diameter of a ferrite is 2 micrometers or more.
  • the pearlite refers to a structure having a structure in which ferrite and plate-like cementite are alternately arranged in layers. Such a structure is collectively referred to as “pearlite”.
  • the ferrite targeted in the present invention does not take into account the layered ferrite in pearlite, but refers to a phase that looks white with a scanning electron microscope when it is subjected to nital etching.
  • ferrite grain-ferrite grain coupling ratio X [ferrite grain-ferrite grain interface number A] / [ferrite grain-hard phase interface number B] (1)
  • the ferrite grain-ferrite grain interface number A is the intersection of the ferrite grain-ferrite grain interface and the straight line when a straight line of a predetermined length is drawn on the structure photograph taken using a scanning electron microscope.
  • Number and The ferrite grain-hard phase interface number B indicates the number of intersections between the ferrite grain-hard phase interface and the straight line when a straight line having a predetermined length is drawn in the same manner as described above.
  • “ferrite grain-ferrite grain coupling ratio X” is calculated based on the formula (1).
  • the observation area when observing is preferably 40000 ⁇ m 2 or more from the viewpoint of improving the accuracy as much as possible.
  • the total length (total length) of the line segments drawn horizontally at equal intervals is 1000 ⁇ m or more for the same reason as described above.
  • ferrite grain-ferrite grain coupling ratio X defined as described above means that there are few regions where ferrite grains and ferrite grains are continuous, that is, ferrite grains are not continuous and hard. It is surrounded by phases and shows an isolated and dispersed state. Conversely, a large value of “ferrite grain-ferrite grain coupling ratio X” indicates that there are many regions where the ferrite grains are continuous, that is, the ferrite grains tend to form a large phase.
  • FIG. 2A shows an example in which the ferrite grain-ferrite grain coupling ratio X is 0.15 or less
  • FIG. 2B shows an example in which the ferrite grain-ferrite grain coupling ratio X exceeds 0.15.
  • the ferrite grain-ferrite grain coupling ratio X needs to be 0.15 or less. Preferably it is 0.13 or less, More preferably, it is 0.10 or less.
  • the purpose can be achieved by satisfying the above requirements, and the ferrite area ratio (the area fraction of ferrite in the entire structure) is not limited at all.
  • the ferrite area ratio (the area fraction of ferrite in the entire structure) is not limited at all.
  • it is about 30 to 80 area%.
  • machine structural steel is assumed, and its steel type may be any chemical composition as long as it is a normal chemical structural steel, but C, Si, Mn, P and S It is better to adjust to the appropriate range. From these viewpoints, the appropriate ranges of these chemical components and the reasons for setting the ranges are as follows.
  • C (C: 0.2-1.2%) C is an element effective for securing the strength of steel parts manufactured from machine structural steel. If the C content is too low, it is difficult to adjust the material within the specified range of the ferrite grain-ferrite grain coupling ratio X. If the C content is excessive, the hardness becomes too high and the material is cut. (For example, tool life) decreases. Therefore, the C content is preferably 0.2% or more (more preferably 0.25% or more) and 1.2% or less (more preferably 1.1% or less).
  • Si 0.05-0.5%)
  • Si is contained as a deoxidizing element and for the purpose of increasing the strength of the steel part by solid solution hardening. However, if it is less than 0.05%, such an effect is not exhibited effectively, and exceeds 0.5%. When it contains excessively, hardness will rise too much and machinability (for example, tool life) will fall.
  • the more preferable minimum of Si content is 0.1% or more, and a more preferable upper limit is 0.4% or less.
  • Mn is an effective element for deoxidizing and desulfurizing steel during melting, and is an effective element for improving the hardenability and increasing the strength of steel parts.
  • Mn content is less than 0.2%, these effects are not exhibited.
  • Mn content exceeds 1.8%, the hardness is excessively increased and the cold workability is deteriorated.
  • the more preferable minimum of Mn content is 0.3% or more, and a more preferable upper limit is 1.5% or less.
  • P 0.03% or less (excluding 0%)
  • P is an element inevitably contained in the steel, but segregates at the ferrite grain boundary and deteriorates cold workability. Therefore, it is preferable to reduce P as much as possible, but an extreme reduction leads to an increase in steelmaking cost, and since it is difficult to make it 0%, it is 0.03% or less (not including 0%). It is preferable.
  • the upper limit with more preferable P content is 0.025% or less.
  • S is an element inevitably contained in steel like P, but it is present as MnS in steel and is a harmful element that deteriorates cold workability, so it needs to be reduced as much as possible.
  • the S content is preferably 0.03% or less (more preferably 0.025% or less).
  • S is an unavoidable impurity, it is industrially difficult to reduce the amount to 0%.
  • the basic component composition of the steel for machine structure of the present invention is as described above, and the balance is substantially iron.
  • substantially iron can accept trace components (eg, Sb, Zn, etc.) that do not impair the properties of the steel material of the present invention in addition to iron, and inevitable impurities other than P and S ( For example, Al, N, O, H, etc.) may also be included.
  • the steel for machine structure of this invention may contain the following selective components as needed. The reasons for limiting the component range when these components are contained are as follows.
  • Cr 0.5% or less (not including 0%), Cu: 0.5% or less (not including 0%), Ni: 0.5% or less (not including 0%), and Mo: 0 .1 or more selected from the group consisting of 5% or less (excluding 0%)) Cr, Cu, Ni and Mo are all effective elements for increasing the strength of the final product by improving the hardenability of the steel material, and are contained alone or in combination of two or more as required.
  • the respective preferable upper limits are set as described above. More preferably, both are 0.45% or less (more preferably 0.40% or less).
  • the preferable minimum for exhibiting those effects effectively is 0.015% or more (more preferably 0.020% or more). It is.
  • a steel that satisfies the above component composition is hot-rolled under normal conditions to obtain a hot-rolled material. Heating to a temperature of 800 to 950 ° C., holding at that temperature for about 10 to 25 minutes (holding time), and then cooling to 500 ° C. or less at an average cooling rate of 2 ° C./second or more. In addition, as long as it exists in the range of these manufacturing conditions, you may change the conditions in the middle. These manufacturing conditions will be described.
  • Heating temperature 800-950 ° C
  • the heating temperature heating temperature after hot rolling
  • the austenite grain size at the time of heating becomes coarse, so that the total area of the austenite grain boundary per unit volume decreases, and the ferrite grains precipitated from the austenite grain boundary approach. This makes it difficult to isolate the ferrite grains.
  • the heating temperature is less than 800 ° C., the ferrite grains existing in the material before the heat treatment do not completely change to the austenite phase, and it is difficult to control the ferrite grain-ferrite grain coupling ratio X to 0.15 or less. It becomes.
  • the more preferable lower limit of this heating temperature is 820 ° C. or higher (more preferably 850 ° C. or higher), and the more preferable upper limit is 930 ° C. or lower (more preferably 900 ° C. or lower).
  • the holding time in the heating temperature range is a factor affecting the ferrite grain-ferrite grain coupling ratio X. If the holding time at this time is less than 10 minutes, the change from the ferrite phase before the heat treatment to the austenite phase does not proceed sufficiently, and the ferrite phase remains in the structure. Also, if the holding time exceeds 25 minutes, the austenite grains become coarse and the total area of the austenite grain boundaries per unit volume decreases, so that the ferrite grains precipitated from the austenite grain boundaries approach, so that the ferrite grains It becomes difficult to isolate. A more preferable lower limit of the holding time is 15 minutes or more, and a more preferable upper limit is 20 minutes or less.
  • the average cooling rate up to 500 ° C. or less (cooling stop temperature) is less than 2 ° C./second, the ferrite average particle size cannot be made 7 ⁇ m or less. From such a viewpoint, the average cooling rate needs to be 2 ° C./second or more.
  • the average cooling rate is more preferably 5 ° C./second or more, and further preferably 7 ° C./second or more.
  • the cooling form which changes a cooling rate may be sufficient.
  • the cooling stop temperature is preferably 500 ° C. or lower. If this temperature is higher than 500 ° C., the ferrite particle size tends to be coarse, and it becomes difficult to make the ferrite average particle size 7 ⁇ m or less. On the other hand, as the cooling stop temperature is lowered, there is no influence on the material structure. Therefore, after cooling to 500 ° C. or lower, normal cooling (cooling) is performed, Just do it.
  • the steel for machine structure of the present invention has excellent machinability, and a steel product with improved cutting surface properties (cut surface roughness) can be obtained by cutting such steel for machine structure. Further, if the steel for machine structural use of the present invention is cut, a good cutting surface property can be obtained, so that it can be applied as it is as a molding die without performing a finishing process such as grinding.
  • steel types A to D having the chemical composition shown in Table 1 below, hot rolled material (thick plate material: plate thickness: 30 mm) was used under normal hot rolling conditions.
  • Steel type A shown in Table 1 is S55C equivalent steel (JISG4051)
  • Steel type B is S60C equivalent steel (JISG4051)
  • Steel type C is S50C equivalent steel (JISG4051)
  • Steel type D is S45C equivalent steel (JISG4051). It is.
  • the obtained hot rolled material was used as various test materials under the production conditions (heating temperature, holding time, average cooling rate after heating, cooling method) shown in Table 2 below (Test Nos. 1 to 7).
  • Test No. 1 a hot-rolled material of S55C equivalent steel (steel type A) was heated to 850 ° C., held at that temperature for 20 minutes, and then air-cooled without blowing with a blower (average cooling rate: 3 ° C./second) ).
  • Test No. In No. 2 the S60C equivalent steel (steel type B) hot-rolled material was heated to 850 ° C., held at that temperature for 20 minutes, and then cooled in the furnace (average cooling rate: 0.8 ° C./second). It is the obtained test material.
  • Test No. 3 a hot-rolled material of S50C equivalent steel (steel type C) was heated to 900 ° C., held at that temperature for 20 minutes, and then air-cooled while blowing with a blower (average cooling rate: 6 ° C./second) It is a test material obtained by doing. Test No. In No. 3, a hot-rolled material of S50C equivalent steel (steel type C) was heated to 900 ° C., held at that temperature for 20 minutes, and then air-cooled while blowing with a blower (average cooling rate: 6 ° C./second) It is a test material obtained by doing. Test No. In No.
  • a hot-rolled material of S55C equivalent steel (steel type A) was not heated.
  • Test No. 7 a hot-rolled material of S45C equivalent steel (steel type D) was heated to 700 ° C. and held at that temperature for 30 minutes, and then air-cooled without blowing with a blower (average cooling rate: 3 ° C./second) ). In all cases, the cooling stop temperature was set to 500 ° C. or lower.
  • the average equivalent-circle diameter of ferrite and the ferrite grain-ferrite grain coupling ratio X were measured by the following method.
  • the cutting experiment was performed on the conditions shown in following Table 3, and the cutting surface roughness of each test material after cutting was evaluated.
  • the cutting experiment at this time was performed by two-dimensional cutting (planing) using a machining center.
  • the cutting surface roughness which is a criterion for machinability, was measured by moving the stylus parallel to the cutting direction using a stylus type roughness meter.
  • the evaluation standard of the cutting surface roughness was evaluated as good surface properties when the cutting surface roughness was less than 0.10 ⁇ m in the calculated average roughness Ra.
  • the cutting experiment is performed by two-dimensional cutting, and it is expected that a more complicated three-dimensional cutting will be obtained by normal cutting. However, since the three-dimensional cutting can be regarded as an accumulation of two-dimensional cutting with a narrow width, the effect in the three-dimensional cutting can be predicted from the data in the two-dimensional cutting.
  • Test No. Examples 1, 3, and 4 are examples that satisfy all of the requirements defined in the present invention (ferrite grain-ferrite grain connection ratio X, average circle equivalent diameter of ferrite), and have a good cutting surface roughness (Ra). It can be seen that the values are shown. Of these, in particular, test no. No. 1 is an example in which the heating temperature and the holding time are set to more preferable values, and the ferrite grain-ferrite grain connection ratio X is a more preferable value, and it is understood that the most excellent surface properties are obtained.
  • test no. Nos. 2, 5 to 7 are examples that do not satisfy any of the requirements defined in the present invention, and all have a large cut surface roughness. That is, test no. 2 and test no. No. 5 is an example in which the average cooling rate is 0.8 ° C./second, the average equivalent circle diameter of ferrite is large, and the cutting surface roughness (Ra) is large.
  • Test No. No. 6 is an example in which the heat treatment was not performed after the hot rolling, and the ferrite grain-ferrite grain connection ratio X is large, and the cut surface roughness (Ra) is large.
  • Test No. No. 7 is an example in which the heating temperature is low, the ferrite grain-ferrite grain coupling ratio X is large, and the cutting surface roughness (Ra) is large.
  • the steel for machine structure of the present invention is useful for various machine structure parts such as automobile parts and construction machine parts, and is excellent in machinability, so that it is particularly suitable for application to a molding die.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

 パーライト、ベイナイトおよびマルテンサイトから選ばれる少なくとも1種からなる硬質相とフェライト相とからなる混合組織を有し、フェライト粒の平均円相当直径が7μm以下であり、下記(1)式で表されるフェライト粒-フェライト粒連結率Xが0.15以下である。 [フェライト粒-フェライト粒連結率X]=[フェライト粒-フェライト粒界面数A]/[フェライト粒-硬質相界面数B]  …(1)

Description

被削性に優れた機械構造用鋼
 本発明は、自動車用部品、建設機械用部品等の各種機械構造用部品の製造に用いられる機械構造用鋼に関し、特に切削仕上げ面粗さが小さくなるような被削性に優れた機械構造用鋼に関するものである。
 自動車用部品、建設機械用部品等の各種部品は、機械構造用鋼に対して鍛造等の加工を施した後に、切削加工を施すことによって最終形状に仕上げられるのが一般的である。こうした切削加工を施す際には、部品精度や製造効率の面から優れた被削性を発揮する機械構造用鋼が求められている。特に、成形用金型に適用される鋼材では、切削加工面粗さに対する要求が高くなっており、より小さい切削加工面粗さが得られる機械構造用鋼が望まれている。切削加工面粗さが大きく(粗く)なると、研削等によって表面性状を更に仕上げる必要があり、製造工程が煩雑になるという問題がある。
 これまでにも、優れた被削性を発揮する機械構造用鋼について様々な技術が提案されている。こうした技術として、例えば特許文献1には、低炭素硫黄の鉛快削鋼で、C,Mn,P,S,Pb,O,Si,Al等の元素の含有量を規定すると共に、MnS系介在物の平均サイズや酸化物と結合していない硫化物の割合を規定することによって、被削性が改善できることが示されている。また、良好な仕上げ面粗さが得られることも示されている。
 この技術は、被削性を改善する元素として、基本成分に鉛(Pb)を含有させるものである。鉛は被削性を改善する元素として広く知られているものである。しかしながら、Pbは人体や環境への有害性が指摘され、近年ではPbを添加することなく、良好な被削性を発揮することが求められている。
 このような背景の下、Pbを積極的に添加することなく、良好な被削性を発揮する技術の開発が進められている。こうした技術として、例えば特許文献2には、S,TeおよびCaを複合添加することによってPb添加鋼と同等の優れた被削性が得られることが開示されている。またこの技術では、Biや希土類元素(REM)を添加することによって、被削性が更に向上することが開示されている。
 しかしながら、Te,Bi,REM等の被削性向上元素(快削元素)は、高価であり、製造におけるコストアップが問題となる。
 一方、特許文献3には、硫化物系介在物の存在下で所定量のMgを含有させることによって、鋼材の機械的性質と切屑分断性の両特性を発揮させた機械構造用快削鋼について提案されている。この技術では、硫化物系介在物を所定の形状および分散状態に制御するために、Mgが添加されるものである。しかしながら、Mgは沸点が低く蒸発しやすい上、強い脱酸元素であるため、酸化物として溶鋼から分離しやすく、このため歩留まりが低くなって、コストアップが避けられない状況である。
日本国特開昭62-23970号公報 日本国特開2004-292929号公報 日本国特開2002-69569号公報
 本発明はこうした状況の下になされたものであって、その目的は、人体に有害なPbや高価な快削元素を用いることなく、通常の化学成分組成であっても、優れた被削性を発揮し、特に切削加工面粗さが良好であるような機械構造用鋼を提供することにある。
 上記目的を達成し得た本発明の機械構造用鋼とは、パーライト、ベイナイトおよびマルテンサイトから選ばれる少なくとも1種からなる硬質相とフェライト相とからなる混合組織を有し、フェライト粒の平均円相当直径が7μm以下であり、下記(1)式で表されるフェライト粒-フェライト粒連結率Xが0.15以下である点に要旨を有するものである。
 [フェライト粒-フェライト粒連結率X]=[フェライト粒-フェライト粒界面数A]/[フェライト粒-硬質相界面数B]    …(1)
 式中、フェライト粒-フェライト粒界面数Aは、走査型電子顕微鏡を用いて撮影された組織写真に所定長さの直線を引いた時の、フェライト粒-フェライト粒界面と前記直線との交点の数を示し、
 フェライト粒-硬質相界面数Bは、前記と同様にして所定長さの直線を引いた時の、フェライト粒-硬質相界面と前記直線との交点の数を示す。
 尚、前記「平均円相当直径」とは、フェライト結晶粒を、同一面積の円に換算したときの直径(円相当直径)の平均値である。 
 本発明の機械構造用鋼の化学成分組成については、機械構造用鋼であれば特に限定されるものではないが、好ましいものとして、例えばC:0.2~1.2%(「質量%」の意味。以下、化学成分組成について同じ。)、Si:0.05~0.5%、Mn:0.2~1.8%、P:0.03%以下(0%を含まない)、S:0.03%以下(0%を含まない)、を夫々含有し、残部が鉄および不可避的不純物であるものが挙げられる。
 上記好ましい化学成分組成においては、必要によって更に、Cr:0.5%以下(0%を含まない)、Cu:0.5%以下(0%を含まない)、Ni:0.5%以下(0%を含まない)、およびMo:0.5%以下(0%を含まない)よりなる群から選択される1種以上を含有することも有効であり、含有させる元素の種類に応じて機械構造用鋼の特性が更に改善される。
 本発明は、切削面性状の改善方法も包含するものであり、上記のような機械構造用鋼を切削することによって、切削面性状が改善された鋼製品が得られる。
 また、本発明の機械構造用鋼を切削することによって、研削等の仕上げ加工を施すことなく、表面性状の良好な成型用金型が効率良く製造することができる。
 本発明では、パーライト、ベイナイトおよびマルテンサイトから選ばれる少なくとも1種からなる硬質相とフェライト相とからなる混合組織を有し、フェライトの平均円相当直径を7μm以下とすると共に、所定の関係式で表される[フェライト粒-フェライト粒連結率X]を規定することによって、優れた被削性を発揮し、特に切削加工面粗さが良好であるような機械構造用鋼が実現できる。
鋼材の組織と切削加工面粗さとの関係を説明するための模式図であり、切削加工当初の状態を示す図である。 鋼材の組織と切削加工面粗さとの関係を説明するための模式図であり、切削加工途中の状態を示す図である。 鋼材の組織と切削加工面粗さとの関係を説明するための模式図であり、切削加工後の状態を示す図である。 フェライト粒-フェライト粒連結率Xを求める手順を示す図面代用写真であり、X≦0.15である場合を示す図である。 フェライト粒-フェライト粒連結率Xを求める手順を示す図面代用写真であり、X>0.15である場合を示す図である。
 本発明者らは、通常の化学成分組成であっても、良好な切削加工面粗さが得られる機械構造用鋼を実現すべく、特に金属組織との関係について検討した。その結果、切削加工時に加工面粗さが悪化するのは、組織中に硬さの違う相が混在していることが原因の一つとなっているとの着想が得られた。こうした状態を、図面を用いて説明する。
 図1A~1Cは、鋼材の組織と切削加工面粗さとの関係を説明するための模式図である。図中、1はフェライト相、2は硬質相(パーライト、ベイナイトおよびマルテンサイトから選ばれる少なくとも1種からなる硬質相)を夫々示し、これらが混在した混合組織構造となっている。尚、図中、鋼材の上側が、切削される鋼材表面を示している。切削加工時には、図1Aに示すように、混合組織のうちで軟らかいフェライト相1が、硬質相2によって押し出されるように変形する。続いて、図1Bに示すように、フェライト相1が押し出された状態で、工具の切れ刃(刃先)によって除去される。工具の切れ刃が切削部分を通過した面(加工面)では、図1Cに示すように、硬質相2の弾性回復によってフェライト相1が引き込まれるように変形するため、加工面上のフェライト相1に凹部3が発生し、この凹部の存在によって鋼材の加工面粗さが悪化することになる。
 本発明者らは、上記着想に基づき、良好な切削加工面粗さを得るための要件について、更に検討を進めた。その結果、フェライト粒の平均円相当直径を所定の範囲にすると共に、フェライト粒同士が連結する部分を少なくしてやれば、良好な仕上げ面粗さが得られる機械構造用が実現できることを見出し、本発明を完成した。
 本発明で規定する各要件について説明する。
 加工面上での凹部の生成を抑制するためには、軟らかいフェライト相を細かく分散させる必要がある。細かく分散した組織では、個々の相が小さくなるため、1つの軟らかい相が硬い相(硬質相)に押し出されたときの量が少なくなり、加工面上に発生する凹部も小さくなる。その結果、微小な凹凸が分散された状態となり、加工面粗さが改善されることになる。
 軟らかいフェライト相を細かく分散された状態にするためには、フェライト粒の大きさ(粒径)をできるだけ小さくする必要がある。本発明の機械構造用鋼では、希望するフェライトの分散状態を確保するためには、フェライト粒の大きさを、平均円相当直径で7μm以下とする必要がある。尚、フェライトの平均円相当直径は、好ましくは6μm以下であり、より好ましくは5μm以下である。また、フェライトの平均円相当直径の好ましい下限は2μm以上である。
 しかしながら、フェライト粒の大きさを規定するだけでは、本発明の目的を達成するには不十分である。これは、粒径の小さいフェライト粒同士が連結する現象が生じる可能性があるからである。こうした現象が生じると、複数のフェライト粒が集まって、まとまった大きなフェライト相としての挙動を示し、フェライト相よりも硬い相(硬質相)によって、フェライト相がまとめて押し出されることになる。こうした状態は、あたかも粒径の大きなフェライト粒が存在するのと同様の現象(切削加工面粗さが悪くなる現象)が起こることになる。
 これに対し、粒径の小さなフェライト粒が硬質相で囲まれた状態になっていると、その箇所で押し出されるフェライト相の量が少なくなり、切削加工後の凹部が微小化するため、切削加工面粗さが良好となる。尚、上記パーライトは、厳密にはフェライトと板状セメンタイトが交互に層状に並んだ構造の組織を指すが、このような組織は一括して「パーライト」と呼んでいる。また本発明で対象とするフェライトは、パーライト中の層状フェライトは考慮せず、ナイタールエッチングを施した際に、走査型電子顕微鏡で白く見える相を指すものである。
 粒径の小さなフェライト粒が、硬質相で囲まれた存在状態となっているかを判断するために、本発明ではフェライト粒-フェライト粒連結率Xという概念を規定して評価した。このフェライト粒-フェライト粒連結率Xは、下記(1)式で表される。
 [フェライト粒-フェライト粒連結率X]=[フェライト粒-フェライト粒界面数A]/[フェライト粒-硬質相界面数B]    …(1)
 式中、フェライト粒-フェライト粒界面数Aは、走査型電子顕微鏡を用いて撮影された組織写真に所定長さの直線を引いた時の、フェライト粒-フェライト粒界面と前記直線との交点の数を示し、
 フェライト粒-硬質相界面数Bは、前記と同様にして所定長さの直線を引いた時の、フェライト粒-硬質相界面と前記直線との交点の数を示す。
 フェライト粒-フェライト粒連結率Xを求める手順を、図面を用いて説明する。まず金属組織を現出させた後、走査型電子顕微鏡(SEM)にて組織観察を行なう。この観察面において、図2A及び図2B(図面代用写真)に示すように、5μm間隔で水平線分を総長(合計長さ)で1000μm以上となるように引き、これらの線分と、フェライト粒子同士の界面との交点(□で囲んだ部分)の数(フェライト粒-フェライト粒界面数A)、およびフェライト粒と硬質相との交点(○(白抜き)で囲んだ部分)の数(フェライト粒-硬質相界面数B)の夫々を求める。そして、上記(1)式に基づいて、「フェライト粒-フェライト粒連結率X」を算出する。尚、観察するときの観察面積は、できるだけ精度を高めるという観点からして40000μm以上であることが好ましい。また、等間隔で水平に引く線分の合計の長さ(総長さ)は、上記と同様の理由で、1000μm以上であることが好ましい。
 上記のように規定される「フェライト粒-フェライト粒連結率X」の値が小さいということは、フェライト粒とフェライト粒が連続している領域が少ないこと、つまり、フェライト粒が連続せず、硬質相で囲まれ、孤立分散した状態であることを示している。逆に、「フェライト粒-フェライト粒連結率X」の値が大きいということは、フェライト粒子同士が連続している領域が多いこと、即ちフェライト粒がまとまった大きな相となりやすいことを示している。
 尚、図2Aは、フェライト粒-フェライト粒連結率Xが0.15以下の例を示しており、図2Bは、フェライト粒-フェライト粒連結率Xが0.15を超える例を示している。
 良好な切削加工面粗さを得るためには、フェライト粒-フェライト粒連結率Xは0.15以下とする必要がある。好ましくは0.13以下であり、より好ましくは0.10以下である。
 本発明の機械構造用鋼においては、上記の要件を満足させることによって、その目的を達成できるものであり、フェライト面積率(組織全体に占めるフェライトの面積分率)については、何ら限定するものではないが、フェライト面積率の増加による延性の増加や、フェライト面積率の低下による材料硬さが増加することによる工具摩耗の増加、等の観点からすれば、30~80面積%程度であることが好ましい。より好ましくは40~70面積%程度である。
 本発明では、機械構造用鋼を想定してなされたものであり、その鋼種については機械構造用鋼としての通常の化学成分組成のものであれば良いが、C、Si、Mn、PおよびSについては、適切な範囲に調整するのが良い。こうした観点から、これらの化学成分の適切な範囲およびその範囲設定理由は下記の通りである。
(C:0.2~1.2%) 
 Cは、機械構造用鋼から製造される鋼部品の強度を確保するために有効な元素である。C含有量が低すぎると、フェライト粒-フェライト粒連結率Xの規定範囲内に材料を調整するのは困難であり、またC含有量が過剰になると、硬さが高くなりすぎて、被削性(例えば、工具寿命)が低下する。そのため、C含有量は0.2%以上(より好ましくは0.25%以上)、1.2%以下(より好ましくは1.1%以下)とするのが良い。
(Si:0.05~0.5%)
 Siは、脱酸元素として、および固溶体硬化による鋼部品の強度を高くすることを目的として含有させるが、0.05%未満ではこうした効果が有効に発揮されず、また0.5%を超えて過剰に含有されると硬度が過度に上昇して被削性(例えば、工具寿命)が低下する。尚、Si含有量のより好ましい下限は0.1%以上であり、より好ましい上限は0.4%以下である。
(Mn:0.2~1.8%)
 Mnは、溶製中の鋼の脱酸、脱硫元素として有効であり、また焼入れ性を向上させて鋼部品の強度を高めるのに有効な元素である。Mn含有量が、0.2%未満ではこれらの効果が発揮されず、1.8%を超えて過剰に含有されると、硬度が上昇しすぎて冷間加工性を劣化させる。尚、Mn含有量のより好ましい下限は0.3%以上であり、より好ましい上限は1.5%以下である。
(P:0.03%以下(0%を含まない))
 Pは、鋼中に不可避的に含まれる元素であるが、フェライト粒界に偏析し、冷間加工性を劣化させる。従って、Pは極力低減することが好ましいが、極端な低減は製鋼コストの増大を招き、0%とすることは製造上困難であるので、0.03%以下(0%を含まない)とすることが好ましい。P含有量のより好ましい上限は0.025%以下である。
(S:0.03%以下(0%を含まない)) 
 SもPと同様に鋼中に不可避的に含まれる元素であるが、鋼中でMnSとして存在し、冷間加工性を劣化させる有害な元素であるので、なるべく低減する必要がある。こうした観点から、S含有量は0.03%以下(より好ましくは0.025%以下)とすることが好ましい。しかしSは、不可避的に含まれる不純物であるので、その量を0%とすることは工業的に困難である。
 本発明の機械構造用鋼の基本成分組成は上記の通りであり、残部は実質的に鉄である。尚、「実質的に鉄」とは、鉄以外にも本発明の鋼材の特性を阻害しない程度の微量成分(例えば、Sb,Zn等)も許容できる他、P,S以外の不可避的不純物(例えば、Al,N,O,H等)も含み得るものである。また、本発明の機械構造用鋼には、必要に応じて、以下の選択成分を含有していても良い。これらの成分を含有させるときの成分範囲限定理由は下記の通りである。
(Cr:0.5%以下(0%を含まない)、Cu:0.5%以下(0%を含まない)、Ni:0.5%以下(0%を含まない)、およびMo:0.5%以下(0%を含まない)よりなる群から選択される1種以上)
 Cr,Cu,NiおよびMoは、いずれも鋼材の焼入れ性を向上させることによって最終製品の強度を増加させるのに有効な元素であり、必要によって単独でまたは2種以上で含有される。しかしながら、これらの元素の含有量が過剰になると、強度が高くなり過ぎ、冷間加工性を劣化させるので、上記のように夫々の好ましい上限を定めた。より好ましくは、いずれも0.45%以下(更に好ましくは0.40%以下)である。尚、これらの元素による効果はその含有量が増加するにつれて大きくなるが、それらの効果を有効に発揮させるための好ましい下限は、いずれも0.015%以上(より好ましくは0.020%以上)である。
 本発明の機械構造用鋼を製造するに当たっては、上記のような成分組成を満足する鋼を、通常の条件で熱間圧延して熱間圧延材とした後、この熱間圧延材に対して800~950℃の温度まで加熱し、その温度で10~25分程度保持(保持時間)した後、2℃/秒以上の平均冷却速度で500℃以下まで冷却すればよい。尚、これらの製造条件の範囲内であれば、その途中でその条件を変更しても良い。これらの製造条件について説明する。
(加熱温度:800~950℃)
 フェライト粒-フェライト粒連結率Xを0.15以下に制御するためには、加熱温度(熱間圧延後の加熱温度)を800~950℃に制御する必要がある。このときの加熱温度が950℃を超えると、加熱時のオーステナイト粒径が粗大化することで、単位体積当たりのオーステナイト粒界の総面積が減少し、オーステナイト粒界から析出するフェライト粒が接近することとなって、フェライト粒同士を孤立化させることが困難となる。また、加熱温度が800℃未満であると、熱処理前の材料に存在するフェライト粒が完全にオーステナイト相に変化せず、フェライト粒-フェライト粒連結率Xを0.15以下に制御することが困難となる。この加熱温度のより好ましい下限は820℃以上(更に好ましくは850℃以上)であり、より好ましい上限は930℃以下(更に好ましくは900℃以下)である。
(加熱温度範囲での保持時間:10~25分)
 上記加熱温度範囲での保持時間は、フェライト粒-フェライト粒連結率Xに影響を及ぼす要因である。このときの保持時間が10分未満であると、熱処理前のフェライト相からオーステナイト相への変化が十分に進行せず、組織内にフェライト相が残った状態となる。また、保持時間が25分を超えると、オーステナイト粒が粗大化し、単位体積当たりのオーステナイト粒界の総面積が減少するため、オーステナイト粒界から析出するフェライト粒が接近することで、フェライト粒同士を孤立化させることが困難となる。この保持時間のより好ましい下限は15分以上であり、より好ましい上限は20分以下である。
(加熱保持後に、2℃/秒以上の平均冷却速度で500℃以下まで冷却)
 500℃以下(冷却停止温度)までの平均冷却速度が2℃/秒未満であると、フェライト平均粒径を7μm以下とすることができなくなる。こうした観点から、平均冷却速度は2℃/秒以上とする必要がある。この平均冷却速度は、より好ましくは5℃/秒以上であり、更に好ましくは7℃/秒以上である。尚、このときの冷却については、2℃/秒以上となる平均冷却速度の範囲内であれば、冷却速度を変えるような冷却形態であっても良い。
(冷却停止温度:500℃以下)
 冷却停止温度は、500℃以下とすることが好ましい。この温度が500℃よりも高くなると、フェライト粒径が粗大化しやすく、フェライト平均粒径を7μm以下にすることが困難となる。一方、冷却停止温度が低くなる分には、材料組織に対して何ら影響が無いため、500℃以下まで冷却を終えた後は、通常の冷却(放冷)を行って、室温までの温度とすれば良い。
 本発明の機械構造用鋼は被削性に優れたものとなり、こうした機械構造用鋼を切削することによって、切削面性状(切削加工面粗さ)が改善された鋼製品が得られる。また、本発明の機械構造用鋼を切削すれば良好な切削面性状が得られるので、研削等の仕上げ加工を施すことなく、そのままで成型用金型として適用できることになる。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明は以下の実施例によって制限を受けるものではなく、前記・下記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
 下記表1に示した化学成分組成の鋼種A~Dを用い、通常の熱間圧延条件で熱間圧延材(厚板材料:板厚30mm)とした。尚、表1に示した鋼種Aは、S55C相当鋼(JISG4051)、鋼種Bは、S60C相当鋼(JISG4051)、鋼種Cは、S50C相当鋼(JISG4051)、鋼種Dは、S45C相当鋼(JISG4051)である。
Figure JPOXMLDOC01-appb-T000001
 得られた熱間圧延材を用い、下記表2に示す製造条件(加熱温度、保持時間、加熱後の平均冷却速度、冷却方法)で、各種供試材とした(試験No.1~7)。試験No.1のものは、S55C相当鋼(鋼種A)の熱間圧延材を850℃まで加熱し、その温度で20分間保持した後、送風機で風をあてないで空冷(平均冷却速度:3℃/秒)することによって得られた供試材である。試験No.2のものは、S60C相当鋼(鋼種B)の熱間圧延材を850℃まで加熱し、その温度で20分間保持した後、炉冷(平均冷却速度:0.8℃/秒)することによって得られた供試材である。試験No.3のものは、S50C相当鋼(鋼種C)の熱間圧延材を900℃まで加熱し、その温度で20分間保持した後、送風機で風をあてながら空冷(平均冷却速度:6℃/秒)することによって得られた供試材である。試験No.4のものは、S55C相当鋼(鋼種A)の熱間圧延材を850℃まで加熱し、その温度で20分間保持した後、送風機で風をあてながら空冷(平均冷却速度:6℃/秒)し、750℃まで温度が低下した時点で1.5分間保持し、その後再び送風機で風をあてながら空冷(平均冷却速度:6℃/秒)することによって得られた供試材である。試験No.5のものは、S55C相当鋼(鋼種A)の熱間圧延材を850℃まで加熱し、その温度で20分間保持した後、炉冷(平均冷却速度:0.8℃/秒)することによって得られた供試材である。試験No.6のものは、S55C相当鋼(鋼種A)の熱間圧延材を加熱しなかった供試材である。試験No.7のものは、S45C相当鋼(鋼種D)の熱間圧延材を700℃まで加熱し、その温度で30分間保持した後、送風機で風をあてないで空冷(平均冷却速度:3℃/秒)することによって得られた供試材である。尚、何れも冷却停止温度を500℃以下とした。
Figure JPOXMLDOC01-appb-T000002
 得られた各供試材(試験No.1~7)について、下記の方法によって、フェライトの平均円相当直径とフェライト粒-フェライト粒連結率Xを測定した。
(フェライトの平均円相当直径の測定)
 各供試材を鏡面に研磨し、3%ナイタール液で腐蝕させて金属組織を現出させた後、概略170μm×230μmの領域の5視野について、倍率:400倍の走査型電子顕微鏡(SEM)にて組織観察し、撮影した。それらの写真を元に、画像のコントラストから白い部分をフェライト粒子と判別してマーキングし、画像解析によって、フェライト粒子の円相当直径を求め、5視野の平均値を求めた。
(フェライト粒-フェライト粒連結率Xの測定)
 各供試材を鏡面に研磨し、3%ナイタール液で腐蝕させて金属組織を現出させた後、面積40000μmの領域において、倍率:400倍の走査型電子顕微鏡(SEM)にて組織観察を行い、撮影した。そして、組織写真中に等間隔で平行な線を総長さ1000μm以上となるように引き、前述した手順に従ってフェライト粒-フェライト粒連結率Xを求めた。
 また各供試材について、下記表3に示す条件で切削実験を行い、切削後の各供試験材の切削加工面粗さを評価した。このときの切削実験は、マシニングセンターを用いた二次元切削(平削り)で行った。また、被削性の判断基準となる切削加工面粗さは、触針式粗さ計を用いて切削方向と平行にスタイラスを動かして測定した。切削加工面粗さの評価基準は、切削加工面粗さが算出平均粗さRaで0.10μm未満のときに良好な表面性状と評価した。尚、切削実験は二次元切削で行っており、通常の切削加工ではもっと複雑な三次元切削となることが予想される。しかしながら、三次元切削は、幅の狭い二次元切削を集積したものとみなすことができるので、二次元切削でのデータによって三次元切削での効果が予想できる。
Figure JPOXMLDOC01-appb-T000003
 これらの結果を、一括して下記表4に示す。 
Figure JPOXMLDOC01-appb-T000004
 この結果から次のように考察できる。試験No.1、3、4は、本発明で規定する要件(フェライト粒-フェライト粒連結率X、フェライトの平均円相当直径)の全てを満足する例であり、切削加工面粗さ(Ra)は良好な値を示していることが分かる。このうち、特に試験No.1のものは、加熱温度および保持時間をより好ましい値とした例であり、フェライト粒-フェライト粒連結率Xがより好ましい値となっており、最も優れた表面性状となっていることが分かる。
 これに対して、試験No.2、5~7は、本発明で規定するいずれかの要件を満足しない例であり、いずれも切削加工面粗さが大きくなっている。即ち、試験No.2および試験No.5のものは、平均冷却速度が0.8℃/秒となっている例であり、フェライトの平均円相当直径が大きくなっており、切削加工面粗さ(Ra)が大きくなっている。
 試験No.6のものは、熱間圧延後、熱処理を行わなかった例であり、フェライト粒フェライト粒連結率Xが大きくなっており、切削加工面粗さ(Ra)が大きくなっている。試験No.7のものは、加熱温度が低くなっている例であり、フェライト粒-フェライト粒連結率Xが大きくなっており、切削加工面粗さ(Ra)が大きくなっている。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2013年8月22日出願の日本特許出願(特願2013-172546)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の機械構造用鋼は、自動車用部品や建設機械用部品等の各種機械構造用部品に有用であり、被削性に優れることから、特に成形用金型への適用が好適である。
1 フェライト相
2 硬質相
3 凹部

Claims (5)

  1.  パーライト、ベイナイトおよびマルテンサイトから選ばれる少なくとも1種からなる硬質相とフェライト相とからなる混合組織を有し、フェライト粒の平均円相当直径が7μm以下であり、下記(1)式で表されるフェライト粒-フェライト粒連結率Xが0.15以下であることを特徴とする被削性に優れた機械構造用鋼。
     [フェライト粒-フェライト粒連結率X]=[フェライト粒-フェライト粒界面数A]/[フェライト粒-硬質相界面数B]    …(1)
     式中、フェライト粒-フェライト粒界面数Aは、走査型電子顕微鏡を用いて撮影された組織写真に所定長さの直線を引いた時の、フェライト粒-フェライト粒界面と前記直線との交点の数を示し、
     フェライト粒-硬質相界面数Bは、前記と同様にして所定長さの直線を引いた時の、フェライト粒-硬質相界面と前記直線との交点の数を示す。
  2.  C:0.2~1.2%(「質量%」の意味。以下、化学成分組成について同じ。)、
     Si:0.05~0.5%、 
     Mn:0.2~1.8%、 
     P :0.03%以下(0%を含まない)、 
     S :0.03%以下(0%を含まない)、 
    を夫々含有し、残部が鉄および不可避的不純物である請求項1に記載の機械構造用鋼。
  3.  更に他の元素として、
     Cr:0.5%以下(0%を含まない)、
     Cu:0.5%以下(0%を含まない)、
     Ni:0.5%以下(0%を含まない)、および
     Mo:0.5%以下(0%を含まない)よりなる群から選択される1種以上を含有するものである請求項2に記載の機械構造用鋼。
  4.  請求項1~3のいずれかに記載の機械構造用鋼を切削する、切削面性状の改善方法。
  5.  請求項1~3のいずれかに記載の機械構造用鋼を切削する、成型用金型の製造方法。
PCT/JP2014/071081 2013-08-22 2014-08-08 被削性に優れた機械構造用鋼 WO2015025746A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14838708.7A EP3037566A4 (en) 2013-08-22 2014-08-08 Steel for mechanical structures which has excellent machinability
KR1020167004165A KR20160030577A (ko) 2013-08-22 2014-08-08 피삭성이 우수한 기계 구조용 강
US14/910,888 US20160194741A1 (en) 2013-08-22 2014-08-08 Steel for use in machine-construction excellent in machinability
CN201480045836.1A CN105473750A (zh) 2013-08-22 2014-08-08 可切削性优异的机械结构用钢

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013172546A JP2015040335A (ja) 2013-08-22 2013-08-22 被削性に優れた機械構造用鋼
JP2013-172546 2013-08-22

Publications (1)

Publication Number Publication Date
WO2015025746A1 true WO2015025746A1 (ja) 2015-02-26

Family

ID=52483524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071081 WO2015025746A1 (ja) 2013-08-22 2014-08-08 被削性に優れた機械構造用鋼

Country Status (6)

Country Link
US (1) US20160194741A1 (ja)
EP (1) EP3037566A4 (ja)
JP (1) JP2015040335A (ja)
KR (1) KR20160030577A (ja)
CN (1) CN105473750A (ja)
WO (1) WO2015025746A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6433339B2 (ja) 2015-03-02 2018-12-05 キヤノン株式会社 情報処理システム、サーバ装置、制御方法およびプログラム
CN110791709B (zh) * 2019-11-11 2020-12-04 广东韶钢松山股份有限公司 结构钢线材、改善结构钢线材切削性能的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6223970A (ja) 1985-07-24 1987-01-31 Nippon Steel Corp 連続鋳造による低炭素硫黄−鉛快削鋼
JPH08283838A (ja) * 1995-04-17 1996-10-29 Nippon Steel Corp 強度、靱性および延性に優れた低降伏比高延性鋼の製造方法
JPH09324212A (ja) * 1996-06-07 1997-12-16 Kawasaki Steel Corp 焼入性と冷間加工性に優れた高炭素熱延鋼帯の製造方法
JPH11236644A (ja) * 1998-02-24 1999-08-31 Nippon Steel Corp 高強度特性と低熱処理歪み特性に優れた高周波焼入れ用鋼材とその製造方法
JP2002069569A (ja) 2000-08-31 2002-03-08 Kobe Steel Ltd 機械的特性に優れた機械構造用快削鋼
JP2004292929A (ja) 2003-03-28 2004-10-21 Sumitomo Metal Ind Ltd 機械構造用鋼
JP2008255398A (ja) * 2007-04-03 2008-10-23 Kobe Steel Ltd 高速冷間加工用鋼及びその製造方法、並びに高速冷間加工部品およびその製造方法
JP2013001928A (ja) * 2011-06-14 2013-01-07 Kobe Steel Ltd 被削性に優れた高周波焼入れ用鋼、及びその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3873111B2 (ja) * 1997-09-22 2007-01-24 独立行政法人物質・材料研究機構 超微細フェライト組織鋼
JP3539546B2 (ja) * 1999-01-19 2004-07-07 Jfeスチール株式会社 加工性に優れた高張力溶融亜鉛めっき鋼板およびその製造方法
JP3551064B2 (ja) * 1999-02-24 2004-08-04 Jfeスチール株式会社 耐衝撃性に優れた超微細粒熱延鋼板およびその製造方法
JP3548461B2 (ja) * 1999-06-02 2004-07-28 新日本製鐵株式会社 耐食性と耐腐食疲労特性に優れた構造用鋼及びその製造方法
DE60035616T2 (de) * 2000-02-10 2008-04-10 Sanyo Special Steel Co., Ltd., Himeji Bleifreier maschinenbaustahl mit ausgezeichneter verarbeitbarkeit und verminderter anisotropie der festigkeit
KR20080057845A (ko) * 2006-12-21 2008-06-25 주식회사 포스코 연속로 열처리 특성이 우수한 열연강판 및 고강도 강관과그 제조방법
KR100851805B1 (ko) * 2006-12-27 2008-08-13 주식회사 포스코 충격인성이 우수한 고탄소 강판의 제조 방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6223970A (ja) 1985-07-24 1987-01-31 Nippon Steel Corp 連続鋳造による低炭素硫黄−鉛快削鋼
JPH08283838A (ja) * 1995-04-17 1996-10-29 Nippon Steel Corp 強度、靱性および延性に優れた低降伏比高延性鋼の製造方法
JPH09324212A (ja) * 1996-06-07 1997-12-16 Kawasaki Steel Corp 焼入性と冷間加工性に優れた高炭素熱延鋼帯の製造方法
JPH11236644A (ja) * 1998-02-24 1999-08-31 Nippon Steel Corp 高強度特性と低熱処理歪み特性に優れた高周波焼入れ用鋼材とその製造方法
JP2002069569A (ja) 2000-08-31 2002-03-08 Kobe Steel Ltd 機械的特性に優れた機械構造用快削鋼
JP2004292929A (ja) 2003-03-28 2004-10-21 Sumitomo Metal Ind Ltd 機械構造用鋼
JP2008255398A (ja) * 2007-04-03 2008-10-23 Kobe Steel Ltd 高速冷間加工用鋼及びその製造方法、並びに高速冷間加工部品およびその製造方法
JP2013001928A (ja) * 2011-06-14 2013-01-07 Kobe Steel Ltd 被削性に優れた高周波焼入れ用鋼、及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3037566A4 *

Also Published As

Publication number Publication date
CN105473750A (zh) 2016-04-06
EP3037566A1 (en) 2016-06-29
JP2015040335A (ja) 2015-03-02
KR20160030577A (ko) 2016-03-18
US20160194741A1 (en) 2016-07-07
EP3037566A4 (en) 2017-04-19

Similar Documents

Publication Publication Date Title
JP5357994B2 (ja) 冷間加工用機械構造用鋼およびその製造方法
JP5939359B2 (ja) 高炭素鋼線材及びその製造方法
KR100940379B1 (ko) 연성이 우수한 고강도 강선 및 그 제조 방법
CN107735505B (zh) 钢板及制造方法
KR101925735B1 (ko) 신선 가공용 강선
WO2018026014A1 (ja) 鋼板及びめっき鋼板
JP5811282B2 (ja) 冷間鍛造用丸鋼材
KR101965521B1 (ko) 냉간 단조 부품용 압연 봉강 또는 압연 선재
KR102059046B1 (ko) 신선 가공용 강 선재
KR101952527B1 (ko) 신선 가공성이 우수한 고탄소강 선재
JP6073167B2 (ja) 面疲労強度と冷間鍛造性に優れた肌焼用鋼材
WO2016021556A1 (ja) 伸線加工性に優れた高炭素鋼線材
KR20150119951A (ko) 경질 냉연 강판 및 그의 제조 방법
JP2013007089A (ja) 冷間加工用機械構造用鋼およびその製造方法、並びに機械構造用部品
WO2015025746A1 (ja) 被削性に優れた機械構造用鋼
JP6497146B2 (ja) 冷間加工性に優れた鋼線材
JP2008081823A (ja) ファインブランキング加工性に優れた鋼板およびその製造方法
JP6068291B2 (ja) 軟質高炭素鋼板
JP2016216809A (ja) 冷間成形性と熱処理後靭性に優れた低炭素鋼板及び製造方法
EP3255165B1 (en) Cold work tool material, cold work tool and method for manufacturing same
JP6120604B2 (ja) オートマチックトランスミッション部材用冷延鋼板およびその製造方法
JP6893371B2 (ja) 高靭性を有する鋼材及びその製造方法、この鋼材を用いた構造用鋼板
JP2005330554A (ja) 圧延棒鋼およびその製造方法
JP2016164291A (ja) 冷間加工用鋼
WO2024095533A1 (ja) 熱間圧延鋼板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480045836.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14838708

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014838708

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14910888

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167004165

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE